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Accurate age determination is a fundamental prerequisite for demographic studies as well as population monitoring 
efforts that provide information for management and conservation. Yet, common age determination methods 
suffer from low accuracy rates, impose additional handling and time costs on animals and biologists, or rely on 
invasive techniques such as tooth extraction. We introduce an alternative, mixture modeling approach for age 
determination that exploits mammalian growth patterns to classify newly encountered animals as juveniles or 
adults, and present an example analysis that classifies Allegheny woodrats based solely on their capture dates and 
mass at capture, in combination with data from known adults. We also introduce and validate a simulation-based 
heuristic to evaluate potential classification accuracy when no known-age test cases are available. In the Allegheny 
woodrat example, the mixture model achieved a 90–92% accuracy rate (heuristic range: 89–94%), far better than 
the 36–43% achieved with a fixed mass criterion, and comparable to accuracies reported for other species using 
more data-intensive, multivariate classification techniques. The model can be extended to classify multiple age 
groups, estimate chronological age, or further improve accuracy by including additional morphometric measures.

Key words:  age determination, Allegheny woodrat, growth model, mixture model, Neotoma magister, receiver operating 
characteristic curve, ROC

The accurate description of age structure is a foundational ele-
ment of population ecology (Lyons et al. 2012). Correct age 
classifications for individual study animals are necessary to 
describe age-specific patterns of survival, to quantify recruit-
ment rates, and to differentiate parental and offspring cohorts 
for parentage analyses. To identify age in mammals, biologists 
may focus trapping efforts during seasons when juveniles can 
be easily differentiated based on body size or pelage, collect 
precise measurements of body size (Karels et al. 2004), assess 
the progression of tooth eruption or wear (Spinage 1973), or 
visualize cementum annuli in the cross section of extracted 
teeth (Hamlin et al. 2000). However, the applicability of these 
and other methods for age identification may vary considerably 
among species and study systems. Additionally, many aging 
methods can impose undesirable costs on study animals (e.g., 
stress associated with prolonged handling or need for chemical 
immobilization to collect requisite data) or researchers (e.g., 
increased handling time and reduction in the number of indi-
viduals that can be processed). Given that the feasibility of 

collecting data needed for age identification may vary among 
study systems, we sought to develop a generalized method for 
aging unknown individuals. Our solution exploits the predict-
able patterns of juvenile growth in mammals and the result-
ing differences in the distributions of body sizes among age 
classes of interest to probabilistically assign newly encountered 
individuals to discrete age classes. Although we illustrate the 
model with live-trapping data collected as part of population 
monitoring efforts for the Allegheny woodrat (Neotoma magis-
ter), we deliberately sought to create a flexible solution that can 
readily be extended to the unique biology of a variety of study 
systems.

Allegheny woodrats are endemic to forested ecosystems 
throughout the Appalachian Mountains in the eastern United 
States (Castleberry et al. 2006). As habitat specialists, the 
local distribution of woodrats is restricted by the presence of 
complex rock structures such as caves, fissures, talus fields, 
and boulder piles (Castleberry et al. 2006). Woodrats estab-
lish den sites within the interstices of complex rock features, 
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which they depend upon for protection from predators and for 
a thermally moderated environment in which to cache food 
items for overwinter subsistence and rearing young. Mengak 
(2002) observed a pulse in woodrat reproduction in the spring 
with additional litters produced opportunistically throughout 
the growing season, depending on resource availability. With 
small litter sizes generally numbering only 2 to 3 pups, wood-
rats have high maternal investment with young reaching sexual 
maturity in their 2nd year of life (Alligood et al. 2008; Wood 
2008; Smyser and Swihart 2014). Once common, Allegheny 
woodrats have declined dramatically over the last 40 years 
as a result of synergistic effects of habitat fragmentation and 
increasing edge effects, reduced hard mast availability, and 
increased mortality associated with infection by Baylisascaris 
procyonis (LoGiudice 2006, 2008; Smyser et al. 2012). Given 
widespread declines, effective field methods are needed for 
monitoring woodrat populations and assessing the efficacy of 
recovery efforts.

Allegheny woodrats are highly trappable (Castleberry et al. 
2014; Smyser et al. 2016a, 2016b) yet trapping and handling is 
accompanied by some innate risk to target and nontarget spe-
cies (Powell and Proulx 2003). To minimize the risks to wood-
rat populations introduced by livetrapping, standard monitoring 
protocols have been established for the species (Mengak 2002; 
Mengak et al. 2008). In addition to restricting livetrapping to 
2 consecutive nights with traps checked daily, trapping efforts 
are scheduled to avoid the spring pulse in woodrat reproduc-
tion so as to minimize the risk of introducing undue stress on 
pregnant females or separating dependent young from lactating 
dams. However, delaying data collection until the summer or 
fall months complicates the differentiation of young-of-the-
year (hereafter, juveniles) from previously unmarked adults. 
With livetrapping restricted to summer or fall, individuals born 
early in the reproductive season will have begun to approach 
adult body sizes and may possess adult coloration (brown as 
opposed to gray) by the time that monitoring efforts are initi-
ated. As a result, follow-up analyses that rely on accurate age 
classifications (e.g., assessments of recruitment rates, juvenile 
versus adult survival, or individual reproductive success) may 
be biased. In addition, because the level of uncertainty associ-
ated with individual age determinations is unknown, no good 
method exists to assess the quality of age classification data.

Given the challenges of differentiating older juveniles from 
reproductively mature adults, annual live-trap monitoring data 
for Allegheny woodrats collected from 2005 to 2013 provide an 
ideal test for our statistical age classification model. Briefly, we 
develop a finite mixture approach that estimates an age classi-
fication for each unknown-age encounter with an animal based 
on a growth curve whose parameters are estimated as part of the 
classification model. In the Allegheny woodrat example devel-
oped here, we base the model on body mass and capture date. 
However, body mass may not be the best metric for all species; 
any morphometric variable that exhibits a predictable growth 
pattern may be substituted for body mass without a change 
in the model structure. In addition, the mixture modeling 
approach can utilize data on multiple morphometric variables 

simultaneously (we present a simplified example of such a 
multivariate mixture model, without the growth component, in 
the Supplementary Data). Unlike the approach typically used 
for age determination of Allegheny woodrats (Mengak et al. 
2008), which uses a fixed body mass criterion to differentiate 
juveniles from adults, our model-based classification provides 
an estimate of the uncertainty in each individual classification 
by assigning each animal (or each encounter) a probability of 
belonging to each of the represented age classes. In addition, 
we present a simulation-based technique to evaluate accuracy 
of age classification. Although our example analysis classifies 
unmarked individuals from a species with discrete breeding 
periods and only 2 age classes, our approach can be general-
ized to take advantage of repeated measures in mark–recapture 
studies, to use multiple morphometric criteria, and to classify 
multiple age classes.

Materials and Methods

Study site.—We used data collected from live-trap monitor-
ing of the Allegheny woodrat metapopulation occurring within 
Harrison and Crawford counties in extreme southern Indiana. 
Extensive efforts have been conducted previously to identify 
the extent of woodrat habitat within this landscape (Cudmore 
1983; Johnson 2002; Smyser et al. 2016b). Locally, woodrats 
are restricted to discrete habitat patches that function as sub-
populations within a metapopulation context with all habitat 
patches associated with cliff formations immediately adjacent 
to the Ohio River. Complex rock features (i.e., caves, fissures, 
and rock jumbles) within cliff lines satisfy the denning require-
ments of woodrats, whereas surrounding forests, dominated 
by sugar maple (Acer saccharum), white oak (Quercus alba), 
northern red oak (Q. rubra), black oak (Q. velutina), chinkapin 
oak (Q. muehlenbergii), pignut hickory (Carya glabra), and 
shagbark hickory (C. ovata), provide foraging resources.

Annually from 2005 to 2013, we used standard trapping 
protocols to monitor all known Allegheny woodrat subpopu-
lations within the study area (Mengak et al. 2008; Smyser 
et al. 2016b). Although scheduled to minimize disturbance to 
woodrat breeding behavior, the timing in which subpopulations 
were livetrapped varied both within and among years with the 
earliest trapping date of 12 June and latest trapping date of 5 
November. During trapping efforts, we saturated areas of high 
woodrat activity (i.e., den sites, thoroughfares, and latrines) 
with live traps (Model #102; Tomahawk Live Trap, Hazelhurst, 
Wisconsin) baited with fresh, sliced apples. Upon initial cap-
ture during annual 2-night trapping sessions, we transferred 
woodrats from live traps to a handling cone, effectively immo-
bilizing animals. We then recorded sex and weighed each indi-
vidual to the nearest gram (estimated between 5-g increments) 
with a spring scale (Model 40600, 600 g; Pesola, Schindellegi, 
Switzerland) tared to correct for the mass of the handling cone. 
For newly encountered individuals, we applied a uniquely 
numbered ear tag to each ear (Monel #1; National Band and 
Tag Company, Newport, Kentucky) and collected a 2-mm cir-
cular biopsy punch (1538; National Band and Tag Company) 
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from each ear for genetic analysis. Loss of both tags between 
annual monitoring efforts was rare; however, collection of a 
biopsy punch left an indelible mark on the ear that allowed us 
to unmistakably differentiate individuals that had lost tags from 
newly encountered individuals. Employing these methods, we 
encountered an estimated 76% of males and 94% of females 
that were present within subpopulations at the time of trapping 
(Smyser et al. 2016b).

In addition to annual monitoring, study areas were part of 
ongoing woodrat recovery and research efforts associated with 
reinforcement of extant populations through translocation 
and monitoring of survival via radiotelemetry (Smyser et al. 
2013; Blythe et al. 2015). Prior to the release of translocated 
woodrats, we conducted limited trapping to ensure that wood-
rats were released into vacant den sites, applying the same 
methods as described above at localized scales. Similarly, we 
implemented targeted trapping of radiocollared individuals 
at the conclusion of the monitoring period to remove collars. 
These auxiliary trapping efforts added data on several indi-
viduals from opportunistic encounters that fell outside of our 
typical monitoring period. All trapping and handling meth-
ods conformed to Purdue University Animal Care and Use 
Committee policies (Protocol 1201000596) and guidelines 
provided by the American Society of Mammalogists (Sikes 
et al. 2016).

Data analysis.—We sought to develop a statistical classifi-
cation model that would allow us to estimate the probability 
that each of n newly encountered woodrats of unknown age 
was an adult (born > 1 year prior to capture) versus a juvenile 
(born in the same year as capture) at the time of capture. To do 
this, we related body mass (m) to the ordinal date of capture 
(t) for the unknown-age woodrats and compared the resulting
patterns with the equivalent relationship between body mass 
(m

A
) and capture date (t

A
) in a set of n

A
 additional woodrats that 

were known to be adults because they had been encountered in 
a previous year. In addition, because Allegheny woodrats are 
sexually dimorphic, we fit separate parameters for males and 
females and included sex (s and s

A
 for new and known-adult 

woodrats, respectively) as a stratifying variable in our model.
Although the woodrats in our study were marked with indi-

vidually labeled ear tags, our analysis does not use this infor-
mation except to assign animals to the known-adult group. 
Recaptures of the same unknown-age woodrat within a single 
trapping season are treated as separate, independent events, and 
age classifications are based on the 1st encounter with a given 
individual. This approach allows us to classify individuals that 
were encountered only once. While we do not use individual 
encounter histories directly for classification, we did take 
advantage of these histories to test model accuracy.

Model description.—Our modeling approach can incorporate 
either general or sex-specific parameters as needed. Allegheny 
woodrats are sexually dimorphic, and males generally attain a 
larger body size than females. Accordingly, our fitted model 
incorporates sex-specific parameters. However, to reduce the 
complexity of model notation, we describe a generalized model 
with only 1 set of parameters.

For convenience, we assumed that body masses of adults 
are normally distributed with mean μ

A
 and standard devia-

tion σ
A
. Normality is not required, but is usually a reasonable

assumption for body mass. Additionally, we assumed that on 
average, body masses of juveniles increase over the course of a 
single field season (for the woodrats, 12 June to 5 November) 
according to a growth function, g t( , , )δ β0

, where µ δA - 0 is the
expected body mass at t = 0 (i.e., of the youngest individuals 
vulnerable to capture), t is an ordinal capture date ≥ 0, and β is 
a set of parameters determined by the form of the growth func-
tion. Assuming that juveniles were all born at approximately 
the same time, the distribution of body masses of juveniles in 
the population on any given capture date, t, is normal with mean 
g t( , , )δ β0  and standard deviation σ

J
, which may differ from σ

A
.

For age classification of Allegheny woodrats, we used a 
simple asymptotic growth model to describe changes in body 
masses of juveniles over time, g t tA( , , ) exp( )δ β µ δ β0 0= - - ,  
where β ≥ 0. However, our approach does not depend on a 
specific type of growth model. For example, we include a 
Weibull growth model in Supplementary Data SD1 that is 
flexible enough to fit the growth patterns of a variety of 
species and includes the asymptotic model used here as a 
special case.

Given the distributions for body masses of adults and juve-
niles over time, we define the likelihood function for age clas-
sification of an unknown-age individual, i, given its body mass, 
m

i
, and capture date as a finite mixture, 

L N N( | , ) ( | , ) ( ) [ | ( , , ), ]p m t p m p m g ti i i i i A A i i J= + -µ σ δ β σ1 0  (1)

where p
i
 is the probability that individual i is an adult, and 

N( | , )mi A Aµ σ  represents the density of a normal distribution 
with mean μ

A
 and standard deviation σ

A
 at m

i
. When the distri-

butions for adults and juveniles are strongly separated, and m
i
 

clearly falls near the mode of 1 of the distributions, setting p
i
 

near 1 for adults or 0 for juveniles will maximize equation 1. In 
contrast, if m

i
 falls between the 2 distributions so that it is in the 

upper tail of the distribution of juveniles and lower tail of the 
distribution of adults, equation 1 will be maximized by setting 
p

i
 nearer to 0.5.
Given N = n + n

A
 captures that are ordered so that all known 

adults appear in the data set after the unknown-age individuals, 
we can write the log-likelihood of the full parameter set given 
the data as, 

 log | log{ ( | , ) ( ) [ | ( , , ), ]}L N N( )θ µ σ δ β σdata = + -p m p m g ti i A A i i i J
i

1 0
==

= +

å

å

+
1

1

n

i A A
i n

N

mlog ( | , )N µ σ
(2)

where θ µ σ δ β σ= ( , , , , , ,..., )A A J np p0 1 , and the data include 
measured body masses and the capture times for both unknown-
age individuals and known adults. Equation 2 assumes that 
no known juveniles exist. If any are available, they would be 
included in a 3rd summation term that uses the body mass dis-
tribution for juveniles rather than the body mass distribution 
for adults.
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Fitting the model.—Equation 2 can be maximized directly. 
Alternatively, the model can be fit in a Bayesian context by 
assigning prior distributions to each of the parameters in θ 
and then sampling from the (unnormalized) log-posterior for 
θ, which is equal to equation 2 plus the sum of the logs of 
the priors for the parameters. One advantage of the Bayesian 
approach is that it can be more easily generalized to different 
life history patterns (see “Discussion”); accordingly, we have 
adopted the Bayesian approach here.

We used a Gibbs sampling approach to fit the model to our 
data (Gelman et al. 2004). With the exception of δ0, we allowed
all population-level parameters to vary by sex. In addition, we 
used zero-truncated normal distributions for mass; this had 
little effect as all of the body masses in our data set fell well 
above zero. With each Gibbs iteration, we drew a random vari-
able, α i ip~ Bernoulli( ), to represent the true age category of
each unknown-age individual i = (1, ..., n), and then substituted 
α

i
 for p

i
 in equation 2 where α

i
 = 1 indicates that the individual

is currently imputed to be an adult, and α
i
 = 0 indicates that it

is a juvenile. After sampling, we took the proportion of draws 
in which α

i
 = 1 as an estimate of the probability that individual

i is an adult. Using α
i
 to perform the categorization is prefer-

able to using p
i
 directly because α

i
 is less sensitive to the prior

distribution of p
i
.

We fit the model in the software package JAGS (Plummer 
2003), implemented through the jagsUI package in R (R 
Development Core Team 2012; Kellner 2015). Posterior dis-
tributions were based on 4 parallel Markov chains, initialized 
with random starting values and each with 12,000 iterations, 
a burn-in of 10,000 iterations and a thinning rate of 5. We 
assessed convergence of the chains to stationary distributions 
using the Gelman–Rubin convergence diagnostic (Brooks and 
Gelman 1998). Both JAGS model code and R functions to fit 
the model are provided in Supplementary Data SD1.

Classification accuracy.—Ideally, predictive accuracy for 
binary classification models can be evaluated by analyzing a 
receiver operating characteristic (ROC) curve (Hanley and 
McNeil 1982). ROC curves plot the true positive rate for a clas-
sification (i.e., the proportion of unknown-age captures that 
actually are adults and are correctly classified as adults) against 
the false positive rate (1 minus the proportion of juveniles 
incorrectly classified as adults). Because both rates are inverse 
functions of the threshold used to classify individuals, the curve 
is strictly non-declining. For example, if the threshold is 0.5, 
any individual with P(α

i
 = 1) ≥ 0.5 is classified as an adult. At

a threshold of 0, the true positive rate = 1, but the false posi-
tive rate also = 1. In contrast, if a threshold of 1 is used, both 
rates drop to 0. One consequence of this construction is that 
the area under the curve (AUC) provides a direct measure of 
overall classification accuracy. For a perfect model, AUC = 1. 
For a model that performs no better than a coin-flip, AUC = 0.5.

A major limitation of ROC curve analysis is that it requires 
knowledge of the true classifications. This information gen-
erally is not available for field data. Accordingly, we used 2 
approaches to evaluate our model’s classification accuracy. 
First, we developed a heuristic technique to test model accu-
racy using simulated woodrat growth data. While it cannot 

directly measure the classification accuracy for a real data set, 
this approach allowed us to measure classification accuracy in 
artificial data sets that have a similar structure to the observed 
data. The method can be used in any situation where true classi-
fications are unavailable. Second, we took advantage of the fact 
that our woodrat data included individual encounter histories 
to estimate classification accuracy using the observed data. To 
do this, we identified a subset of individuals whose histories 
allowed us to make unambiguous age determinations for the 
encounters that were included in the main data set. We used this 
secondary check to verify the results of the heuristic approach.

For the 1st approach, we simulated data sets that were simi-
lar to the woodrat data, fit the classification model to the sim-
ulated data sets, and then analyzed the resulting ROC curves 
given the true values in the simulated data. Rather than simulat-
ing data through a parametric bootstrap procedure based on the 
classification model that we had previously fit to the observed 
data, we simulated data sets from a stochastic Gompertz pro-
cess (see below). This function differed from the asymptotic 
growth function used in the classification model but neverthe-
less produced patterns similar to the actual data. This procedure 
avoids any biases that might arise by implicitly assuming that 
the functional form used for growth in the classification model 
is a true representation of growth in the study population.

Following McClure and Randolph (1980), we 
simulated woodrat growth as a Gompertz process, 
m A K t jit it i i i= - - -ε exp[ exp( [ ])], where m

it
 is the body mass

of individual i on day t, A
i
 and K

i
 are the individual’s asymptotic 

body mass and average growth rate constant, respectively, and j
i
 

is the ordinal date of the inflection point in the growth curve for 
i. The term ε τit ~ ( , )N 1  allows body mass to fluctuate randomly 
over time as a percentage of the expected mass. For each simu-
lation, we randomly generated data for n = 894 captures, corre-
sponding to the number of woodrat encounters in our true data 
set (unlike the true data, the simulation assumed that each indi-
vidual was captured only once). Ordinal capture dates (from 1 
January) and demographic data were taken directly from field 
observations, yielding 494 females and 400 males, of which 
294 (= 182 female + 112 male) were known adults. Capture 
dates ranged from 163 to 309. For each simulation, separate 
values of A, K, and j were randomly generated for each individ-
ual by drawing a value from a normal or lognormal distribution 
with hyperparameters generated from a uniform distribution 
(Table 1). We set the standard deviation for random mass fluc-
tuations on the percentage scale, τ = 0.02, for all simulations.

Table 1.—Parameterization ranges and distributions for asymptotic 
body mass of adults (A), growth rate constants (K), and the Julian date 
at curve inflection (j) for simulations of Allegheny woodrat (Neotoma 
magister) growth.

Parameter Distribution Female mean Male mean SDa

A Normal 285–315 300–359 35–39
K Log-normal 0.0095–0.010 0.0091–0.011 0.57–0.63
j Normal 152–168 146–176 14–16

aThe same SDs were used for both sexes in a given simulation.
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We selected the ranges for the hyperparameters in Table 1 by 
visually overlaying the point clouds for the observed data and 
simulated data sets to ensure that they produced similar overall 
patterns of body mass relative to capture date (Fig. 1). Based on 
the observed distribution of woodrat body masses, we designated 
unknown-age individuals as true adults with a probability drawn 
from Uniform(0.25, 0.35). Thus, approximately one-third of the 
unknown-age individuals were actually adults, corresponding to 
the approximate proportion of woodrats of unknown age with 
a body mass > 225 g, the weight threshold recommended by 
Mengak et al. (2008) for identification of adult woodrats.

In total, we generated 500 simulated data sets, each of which 
was subjected to model fitting (using the same approach as the 
observed data; see “Fitting the model”) and ROC curve anal-
ysis. In addition to the model-based classification, we classi-
fied a 2nd set of 500 simulations using Mengak et al.’s (2008) 

recommended threshold of 225 g for classification as adults. 
For the observed data and each of the modeled simulations, 
we also calculated the total proportional volume of overlap (V) 
between the fitted adult and juvenile body mass distributions 
over time, 

V
T

m m g t dm dtA A J

t

t

=
¥

òò
1

0

0

min{ ( | ), [ | ( , , ), ]}
min

max

N Nµ σ δ β σ  (3)

where T = tmax − tmin, and tmin and tmax are the earliest and latest 
sampling days in the data set. Note that this equation assumes 
both distributions fall several standard deviations above 0. If 
this is not the case, a different distributional model should be 
considered.

If the distributions of body masses of adults and juveniles are 
well separated throughout the sample period, V will be small 

Fig. 1.—Relationship between Julian capture date (x-axis) and body mass (y-axis) for known-adult (triangles) and unknown-age (circles) 
Allegheny woodrats (Neotoma magister) in a real data set (A) and in 1 replicate of a simulated data set (B). Lines show the results for a fitted 
model assuming stable mean adult size (solid lines) and asymptotic juvenile growth (dashed lines) for females (black lines, open symbols) and 
males (gray lines, filled symbols). Simulations followed a Gompertz model (McClure and Randolph 1980) and were used to evaluate the accuracy 
of the fitted model.
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and overall classification accuracy should be high. Conversely, 
if most of the sampling occurs after juveniles have grown to 
near-adult size, V will be large and classification accuracy will 
be lower. By regressing AUC against V for the simulated data 
and then determining where in the regression the model for the 
actual data falls, we can estimate the classification accuracy for 
the observed data set.

To empirically validate our heuristic evaluation of classifica-
tion accuracy, we identified a subset (n = 25) of the unknown-
age woodrats for which we had ≥ 3 capture records that included 
measurements of body mass. We included data from auxiliary 
trapping efforts to increase the number of individuals that met 
these criteria. By separately plotting the change in mass over 
time, we were able to confidently assign age classes for each 
these individuals at the time of their 1st encounter in the main 
data set. Specifically, all but 1 of the adults weighed > 210 g, 
and their masses varied randomly over time within a relatively 
narrow range. In contrast, woodrats captured as juveniles were 
smaller (typically < 200 g) and showed substantial growth over 
subsequent encounters (Supplementary Data SD1). Finally, 
we estimated the model’s classification accuracy by compar-
ing the age classes of these woodrats as determined by inspect-
ing the pattern of changes in their body masses over successive 
encounters with their most likely age classes as assigned by the 
model.

results

Woodrat classification.—We captured Allegheny woodrats 
on 894 occasions during the regular monitoring period; 294 of 
those captures were of known adults (i.e., recapture of individ-
uals marked in a previous year) and 600 represented encounters 
with individuals of unknown age (Fig. 1A). Known adults had 
a mean body mass (± standard deviation) of 311 ± 40 g and 
unknown individuals had mean body mass 221 ± 66 g. Based 
on a fixed criterion of 225 g for the classification as an adult 
(Mengak et al. 2008), 267 of the 600 unknown individuals 
(45%) were identified as adults and the remaining 333 (55%) as 
juveniles. Model-derived probabilities of adult status for each 
unknown woodrat ranged from 0 to 1 as a function of mass, sex, 
and date of capture (Fig. 2; Table 2). Of the 600 unknown-age 
woodrats, the model classified 524 (87%) as either adults or 
juveniles with a probability ≥ 0.7, 401 (67%) with probabil-
ity ≥ 0.9, and 331 (55%) with probability ≥ 0.95 based on the 
posterior distribution for α

i
. When all woodrats of unknown

age were assigned to their most likely age status based on the 
model-derived probabilities, 181 woodrats (30%) were classi-
fied as adults, whereas 419 (70%) were classified as juveniles.

Classification differed between the model-based and fixed-
criterion approach for 86 captures with body masses that 
ranged from 226 to 278 g. Among the captures with conflicting 
classification, the model-derived probability of being an adult 
ranged from 0.085 to 0.49, with a mean of 0.30. No probabili-
ties > 0.50 were present in this group because conflicting clas-
sifications only occurred when an individual was identified as 
an adult with the fixed criterion but identified as a juvenile with 
the model.

Classification accuracy.—Our simulations captured the 
major features of the observed data, including the shape of 
the scatterplot of body mass versus capture date, and the ten-
dency for males to be larger than females (Fig. 1). Figure 3 
shows the average ROC curves (± 95% quantile envelopes) for 
both females and males over 500 simulated data sets. Across 
all simulations, accuracy of age classification was > 84% for 
females and > 86% for males; overall accuracies (mean AUC 
values) were 93% and 95%, respectively. In contrast, the fixed-
criterion approach gave mean true positive rates of 93% and 
98% for females and males, respectively, but also produced 
high rates of false positives, resulting in mean AUC values 
≤ 37% for females and ≤ 43% for males. There was no sig-
nificant difference between males and females for the regres-
sion of AUC on V (Fig. 3B). After pooling across both sexes 
(AUC = 1.01 − 0.545V, P < 0.001, R2 = 0.36), we infer that the 

Fig. 2.—Model-derived probability of adult status (y-axis) for 600 
Allegheny woodrats (Neotoma magister) of unknown age, but known 
sex, body mass (x-axis), and Julian date of capture. Females are shown 
as circles and males as triangles; darker symbol shading indicates a 
later capture date. Individuals to the right of the vertical line at 225 g 
would be classified as adults by a standard rule of thumb.

Table 2.—Estimated parameter values and 95% credible inter-
vals from the fitted model predicting Allegheny woodrat (Neotoma  
magister) age status.

Parameter Estimate 95% CI

δ0 457 (390, 498)
μ

A,female 290.5 (284.0, 296.0)
βfemale 0.00665 (0.00584, 0.00720)
σ

A,female 40.9 (37.0, 45.3)
σ

J,female 35.5 (31.7, 39.6)
μ

A,male 318.8 (311.0, 326.3)
βmale 0.00614 (0.00529, 0.00674)
σ

A,male 43.7 (38.4, 49.7)
σ

J,male 38.7 (34.8, 43.5)
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overall classification accuracy for the observed data is likely in 
the range of 85–94%. By comparison, the model correctly clas-
sified 92% (23/25) of the woodrats for which we had multiple 

encounters that allowed confident age determinations to be 
made based on changes in mass over time. Of the 2 misclassi-
fied individuals, 1 was an unusually small adult with a mass of 
only 202 g, and the other was a large juvenile classified by the 
model as an adult with a probability of 0.68.

discussion

Accurate descriptions of age structure are essential for under-
standing population dynamics and are absolutely crucial for 
estimating population trends and guiding recovery efforts for 
imperiled species such as Allegheny woodrats. In growth simu-
lations, the average accuracy of age assignments for unmarked 
Allegheny woodrats using our model-based classification was 
≈ 94%, and accuracy was > 89% for the vast majority of simu-
lated data sets. Moreover, we found an accuracy of 92% in a 
small subsample of the real data for which ages could be con-
fidently determined from encounter histories. In contrast, use 
of an established fixed criterion for classification of unmarked 
woodrats as adults (Mengak et al. 2008) had an overall accuracy 
of 37% and 43% for females and males, respectively. Thus, our 
model-based approach can greatly improve the accuracy of age 
classification over the fixed-criterion approach without requir-
ing additional handling of captured individuals in the field.

Our model estimates the rate of juvenile growth, which may 
independently be of interest to biologists, but also can be used to 
help plan future data collection. For species such as woodrats, 
which have distinct breeding seasons and attain near-adult body 
mass within their 1st year, the overlap between size distributions 
(V) of juveniles and adults is directly related to end date for annual 
data collections (tmax). At some point in time, young-of-the year
will have attained sufficient body size to be indistinguishable
from adults. Thus, individual ages cannot be determined for data
collected after this point. The mean trendline from the regression
of AUC against V (or more conservatively at one of its lower
quantiles) can be used to identify a target end date for field data
collection that provides a desired level of classification accuracy
or that balances accuracy against other criteria (e.g., disruption
during peak in breeding season). For example, this relationship
allows biologists to plan the timing of field seasons so that the
number of unique individuals encountered is balanced against
the information content that can be gleaned from each capture.
Based on changes in body mass of Allegheny woodrats observed
over the course of our monitoring efforts, AUC would increase
marginally to approximately 97% if monitoring were to end on
12 July, 30 days after the earliest start date in our data set, and
would only decline to 89% if monitoring were extended through
31 December (see Supplementary Data SD1). Therefore, little
would be gained by altering the current duration of monitoring
efforts. Any such analysis that aims to identify periods when
data collections are most likely to yield high power for age dis-
criminations necessarily assumes that breeding dates and growth
patterns are relatively stable across years, or must also include
environmental drivers for reproduction and growth.

Other model-based techniques for age classification also have 
been developed. For instance, Karels et al. (2004) estimated 

Fig. 3.—A) Receiver operating characteristic (ROC) curves for age 
classifications of female and male Allegheny woodrats (Neotoma 
magister). Solid lines show the mean ROC curve from analyses of 
500 simulated data sets and dashed lines show the corresponding 95% 
quantile envelopes. The diagonal dotted line corresponds to a coin-
flip model which is correct 50% of the time. Curves above this line 
indicate better predictive performance, up to a maximum possible area 
under the curve (AUC) of 1 for a perfect predictor. B) Relationship 
between AUC and the volume of overlap between adult and juvenile 
size-date distributions in fitted models for the 500 simulations. The 
vertical error bars show the predicted AUC range for the volume of 
overlap in the model fit to the true data.
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age classification accuracies for marmots (Marmota vancouve-
rensis and M. caligata) between 69% and 86% (mean = 81%) 
using 2 classification techniques—discriminant function anal-
ysis (DFA) and classification and regression trees (CART). 
Although their results cannot be contrasted directly with ours 
due to our use of a different study species, age classification 
schemes, and methods to evaluate accuracy, our model appears 
to compare favorably with these techniques, especially consid-
ering that we only used data on mass, sex, and capture date, as 
opposed to a suite of 4–8 morphometric variables (see table 1 in 
Karels et al. 2004). While our application in Allegheny wood-
rats produced accurate classifications using only body mass and 
sex, additional morphometric variables could easily be added 
to the analysis, either as a series of univariate models (each of 
which would depend on a common imputed value for α

i
) or by

replacing equation 1 with a multivariate mixture distribution. 
To illustrate, we have reanalyzed the marmot data from Karels 
et al. (2004) in Supplementary Data SD2.

DFA, CART, and most other age classification techniques 
construct rules to categorize unknown-age individuals based 
on their relative similarity to individuals in different known-age 
classes. The mixture approach taken in our analysis can also be 
applied in this manner, as illustrated in our supplementary analy-
sis of the Karels et al. (2004) marmot data. In contrast, our anal-
ysis for the Allegheny woodrats directly models the biological 
growth process. As a population, juvenile woodrats gain notice-
able mass over the course of a single field season. As a result, the 
distribution of body masses of juveniles is non-stationary with 
respect to time and does not follow a parametric distribution if 
viewed over the entire season. By including a growth model, 
we break the marginal body mass distribution of juveniles down 
into a series of time-conditional distributions, each of which is 
approximately normal. Consequently, classification accuracy is 
improved. The model also does not require training data from 
known-age juveniles, although this information could be used 
if available. Another consequence is that the model can be used 
for inference on growth as well as for classification, and could 
be extended to estimate actual ages, rather than age categories.

As indicated above, other morphometric measures (e.g., 
hind-foot length) can be used in addition to (or in place of) body 
mass. This could be particularly effective if growth in multiple 
morphometrics are modeled jointly, and would be required in 
order to discriminate age classes in species for which a single 
morphometric is not diagnostic (e.g., if senescent, older adults 
routinely lose mass and return to a body mass characteristic of 
juveniles). It is also straightforward to classify individuals to 
one of several age classes by adding more terms to the mixture 
model in equation 1 and then drawing α from a multinomial 
distribution instead of a Bernoulli (p in this case would become 
a vector with a Dirichlet or similarly distributed prior; see 
Supplementary Data SD2). However, extending the model to 
classify C age classes does require training data from at least C 
− 1 of those classes. Additionally, if the unknown-age individu-
als are uniquely marked and are recaptured on multiple occa-
sions, a hierarchical version of the model can use the repeated
measurements of individuals to better estimate the growth func-
tion and reduce the uncertainty in age classifications. Finally,

the Bayesian approach used here can be extended by linking it 
directly to subsequent analyses that depend on age classifica-
tions. For example, parentage analyses require animals to be 
classified into cohorts of offspring and (older) potential parents. 
Each unique realization of α in our results leads to a different 
cohort structure and therefore a potentially different outcome 
for the parentage analysis.

Although we have focused on a species that has a discrete, 
relatively short breeding season, the general approach devel-
oped here can also be used to classify species that have more 
extended breeding periods, as long as there is a sufficient 
number of recaptures to model individual growth. Without the 
assumption of pulsed breeding, the model as we have currently 
defined it becomes unidentifiable. An individual captured on 
a particular date with a given mass might be equally likely to 
have been born early in the season and to have grown slowly 
(i.e., µ δA - 0 is large and β is small) or to have been born later 
in the season and grown more quickly (small µ δA - 0 and large 
β). Fitting a hierarchical model in which each individual has 
its own initial size and growth rate would allow us to define 
distributions for both parameters. Alternatively, continuous-
breeding species could also be classified without recaptures if 
strong informative priors can be placed on δ0 and β. A potential 
additional benefit in either case would be an ability to estimate 
individual birthdates and intraseasonal reproductive patterns.

In addition to breeding within a discrete season, Allegheny 
woodrats typically achieve their adult body mass within 
approximately 1 year. In pulse-breeding species that mature 
over > 1 field season, young-of the-year, 2nd-year subadults, 
and any older subadult cohorts would each fall into separate 
size classes. Thus, species with longer times-to-maturity would 
necessarily require a model designed for multiple age catego-
ries as described above. In addition, the time component of 
the model would need to be modified to account for the fact 
that subadult classes had been growing for > 1 year at capture. 
Using our simple asymptotic model as an example, we could 
define g t ti A i( , , , ) exp[ ( )]δ β α µ δ β α0 0 365= - - + , where α

i
 is

the currently imputed age class for the ith unknown-age indi-
vidual, and is equal to 0 for young-of-the-year, 1 for 2nd-year 
subadults, and so-on up to C − 1 for adults. This particular 
modification assumes that breeding happens at the same time 
each year, but more flexible parameterizations are also possible.

In addition to the age classification model, our analysis intro-
duces a heuristic, simulation-based technique to evaluate the 
accuracy of age classification models when known true classifi-
cations are not available. The goal of this technique is to analyze 
the relationship between AUC and 1 or more characteristics of 
the fitted model (in our case, the overlap between fitted distribu-
tions for adult and juvenile body masses over time), and then to 
use this relationship to predict the range of likely AUC values 
for the real data. We are comfortable suggesting this method to 
build confidence in classification results. However, we also cau-
tion users to treat the technique as a diagnostic of model accu-
racy as opposed to a true prediction. To be reliable, simulated 
data should match the real growth process and data patterns as 
closely as possible. Even in the best case, however, high accu-
racy in simulations only provides insight into model behavior 
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and does not guarantee similar performance in a real data set. On 
the other hand, poor performance with simulated data should be 
taken as grounds for skepticism where real data are concerned.
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