# The Roman ( $k, k$ )-domatic number of a graph* 

A.P. Kazemi ${ }^{a}$, S.M. Sheikholeslami ${ }^{b c}$, L. Volkmann ${ }^{d}$

${ }^{a}$ Department of Mathematics<br>University of Mohaghegh Ardabili, Ardabil, Iran<br>e-mail: adelpkazemi@yahoo.com<br>${ }^{b}$ Department of Mathematics<br>Azarbaijan University of Tarbiat Moallem, Tabriz, Islamic Republic of Iran<br>e-mail: s.m.sheikholeslami@azaruniv.edu<br>${ }^{c}$ School of Mathematics<br>Institute for Research in Fundamental Sciences (IPM), Tehran, Islamic Republic of Iran<br>${ }^{d}$ Lehrstuhl II für Mathematik<br>RWTH-Aachen University, Aachen, Germany<br>e-mail: volkm@math2.rwth-aachen.de

Submitted February 21, 2011 Accepted April 19, 2011


#### Abstract

Let $k$ be a positive integer. A Roman $k$-dominating function on a graph $G$ is a labelling $f: V(G) \longrightarrow\{0,1,2\}$ such that every vertex with label 0 has at least $k$ neighbors with label 2. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct Roman $k$-dominating functions on $G$ with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 2 k$ for each $v \in V(G)$, is called a Roman ( $k, k$ )-dominating family (of functions) on $G$. The maximum number of functions in a Roman $(k, k)$-dominating family on $G$ is the Roman $(k, k)$-domatic number of $G$, denoted by $d_{R}^{k}(G)$. Note that the Roman (1,1)-domatic number $d_{R}^{1}(G)$ is the usual Roman domatic number $d_{R}(G)$. In this paper we initiate the study of the Roman $(k, k)$-domatic number in graphs and we present sharp bounds for $d_{R}^{k}(G)$. In addition, we determine the Roman ( $k, k$ )-domatic number of some graphs. Some of our results extend those given by Sheikholeslami and Volkmann in 2010 for the Roman domatic number.


Keywords: Roman domination number, Roman domatic number, Roman $k$ -

[^0]domination number, Roman $(k, k)$-domatic number.
MSC: 05C69

## 1. Introduction

In this paper, $G$ is a simple graph with vertex set $V=V(G)$ and edge set $E=$ $E(G)$. The order $|V|$ of $G$ is denoted by $n=n(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of $v$ is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V(G)$ is $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)=|N(v)|$. The minimum and maximum degree of a graph $G$ are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$, and the closed neighborhood of $S$ is the set $N[S]=N(S) \cup S$. The complement of a graph $G$ is denoted by $\bar{G}$. We write $K_{n}$ for the complete graph of order $n$ and $C_{n}$ for a cycle of length $n$. Consult [4, 15] for the notation and terminology which are not defined here.

Let $k$ be a positive integer. A subset $S$ of vertices of $G$ is a $k$-dominating set if $\left|N_{G}(v) \cap S\right| \geq k$ for every $v \in V(G)-S$. The $k$-domination number $\gamma_{k}(G)$ is the minimum cardinality of a $k$-dominating set of $G$. A $k$-domatic partition is a partition of $V$ into $k$-dominating sets, and the $k$-domatic number $d_{k}(G)$ is the largest number of sets in a $k$-domatic partition. The $k$-domatic number was introduced by Zelinka [16]. Further results on the $k$-domatic number can be found in the paper [5] by Kämmerling and Volkmann. For a good survey on the domatic numbers in graphs we refer the reader to [1]. Recently more domatic parameters are studied (see for instance $[10,11,12]$ ).

Let $k \geq 1$ be an integer. Following Kämmerling and Volkmann [6], a Roman $k$ dominating function (briefly RkDF) on a graph $G$ is a labelling $f: V(G) \rightarrow\{0,1,2\}$ such that every vertex with label 0 has at least $k$ neighbors with label 2. The weight of a Roman $k$-dominating function is the value $f(V(G))=\sum_{v \in V(G)} f(v)$. The minimum weight of a Roman $k$-dominating function on a graph $G$ is called the Roman $k$-domination number, denoted by $\gamma_{k R}(G)$. Note that the Roman 1domination number $\gamma_{1 R}(G)$ is the usual Roman domination number $\gamma_{R}(G)$. A $\gamma_{k R}(G)$-function is a Roman $k$-dominating function of $G$ with weight $\gamma_{k R}(G)$. A Roman $k$-dominating function $f: V \rightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ (or $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer to $f$ ) of $V$, where $V_{i}=\{v \in V \mid$ $f(v)=i\}$. In this representation, its weight is $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$. Since $V_{1}^{f} \cup V_{2}^{f}$ is a $k$-dominating set when $f$ is an RkDF , and since placing weight 2 at the vertices of a $k$-dominating set yields an RkDF , in [6], it was observed that

$$
\begin{equation*}
\gamma_{k}(G) \leq \gamma_{k R}(G) \leq 2 \gamma_{k}(G) \tag{1.1}
\end{equation*}
$$

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct Roman $k$-dominating functions on $G$ with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 2 k$ for each $v \in V(G)$ is called a $\operatorname{Roman}(k, k)$ dominating family (of functions) on $G$. The maximum number of functions in a

Roman ( $k, k$ )-dominating family (briefly $\mathrm{R}(k, k) \mathrm{D}$ family) on $G$ is the Roman $(k, k)$ domatic number of $G$, denoted by $d_{R}^{k}(G)$. The Roman $(k, k)$-domatic number is well-defined and

$$
\begin{equation*}
d_{R}^{k}(G) \geq 1 \tag{1.2}
\end{equation*}
$$

for all graphs $G$ since the set consisting of any RkDF forms an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$ and if $k \geq 2$, then

$$
\begin{equation*}
d_{R}^{k}(G) \geq 2 \tag{1.3}
\end{equation*}
$$

since the functions $f_{i}: V(G) \rightarrow\{0,1,2\}$ defined by $f_{i}(v)=i$ for each $v \in V(G)$ and $i=1,2$ forms an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$ of order 2 . In the special case when $k=1, d_{R}^{1}(G)$ is the Roman domatic number $d_{R}(G)$ investigated in [8] and has been studied in [9].

The definition of the Roman dominating function was given implicitly by Stewart [14] and ReVelle and Rosing [7]. Cockayne et al. [3] as well as Chambers et al. [2] have given a lot of results on Roman domination.

Our purpose in this paper is to initiate the study of the Roman $(k, k)$-domatic number in graphs. We first study basic properties and bounds for the Roman $(k, k)$ domatic number of a graph. In addition, we determine the Roman $(k, k)$-domatic number of some classes of graphs.

The next known results are useful for our investigations.
Proposition A (Kämmerling, Volkmann [6] 2009). Let $k \geq 1$ be an integer, and let $G$ be a graph of order $n$. If $n \leq 2 k$, then $\gamma_{k R}(G)=n$. If $n \geq 2 k+1$, then $\gamma_{k R}(G) \geq 2 k$.

Proposition B (Kämmerling, Volkmann [6] 2009). Let $G$ be a graph of order n. Then $\gamma_{k R}(G)<n$ if and only if $G$ contains a bipartite subgraph $H$ with bipartition $X, Y$ such that $|X|>|Y| \geq k$ and $\operatorname{deg}_{H}(v) \geq k$ for each $v \in X$.

Proposition C (Kämmerling, Volkmann [6] 2009). If $G$ is a graph of order $n$ and maximum degree $\Delta \geq k$, then

$$
\gamma_{k R}(G) \geq\left\lceil\frac{2 n}{\frac{\Delta}{k}+1}\right\rceil .
$$

Proposition D (Sheikholeslami, Volkmann [8] 2010). If G is a graph, then

$$
d_{R}(G)=1
$$

if and only if $G$ is empty.
Proposition E (Sheikholeslami, Volkmann [8] 2010). If $G$ is a graph of order $n \geq 2$, then $d_{R}(G)=n$ if and only if $G$ is the complete graph on $n$ vertices.

Proposition F (Sheikholeslami, Volkmann [8] 2010). Let $K_{n}$ be the complete graph of order $n \geq 1$. Then $d_{R}\left(K_{n}\right)=n$.

Proposition G (Sheikholeslami, Volkmann [13]). Let $K_{p, q}$ be the complete bipartite graph of order $p+q$ such that $q \geq p \geq 1$. Then $\gamma_{k R}\left(K_{p, q}\right)=p+q$ when $p<k$ or $q=p=k, \gamma_{k R}\left(K_{p, q}\right)=k+p$ when $p+q \geq 2 k+1$ and $k \leq p \leq 3 k$ and $\gamma_{k R}\left(K_{p, q}\right)=4 k$ when $p \geq 3 k$.

We start with the following observations and properties. The first observation is an immediate consequence of (1.3) and Proposition D.

Observation 1.1. If $G$ is a graph, then $d_{R}^{k}(G)=1$ if and only if $k=1$ and $G$ is empty.

Observation 1.2. If $G$ is a graph and $k \geq 2$ is an integer, then $d_{R}^{k}(G)=2$ if and only if $G$ is trivial.

Proof. If $G$ is trivial, then obviously $d_{R}^{k}(G)=2$. Now let $G$ be nontrivial and let $v \in V(G)$. Define $f, g, h: V(G) \rightarrow\{0,1,2\}$ by

$$
\begin{aligned}
& f(v)=1 \text { and } f(x)=2 \text { if } x \in V(G)-\{v\}, \\
& g(v)=2 \text { and } g(x)=1 \text { if } x \in V(G)-\{v\},
\end{aligned}
$$

and

$$
h(x)=1 \text { if } x \in V(G)
$$

It is clear that $\{f, g, h\}$ is an $\mathrm{R}(k, k) \mathrm{D}$ family of $G$ and hence $d_{R}^{k}(G) \geq 3$. This completes the proof.

Observation 1.3. If $G$ is a graph and $k \geq \Delta(G)+1$ is an integer, then $d_{R}^{k}(G) \leq$ $2 k-1$.

Proof. If $d_{R}^{k}(G)=1$, then the statement is trivial. Let $d_{R}^{k}(G) \geq 2$. Since $k \geq$ $\Delta(G)+1$, we have $\gamma_{k R}(G)=n$. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$ such that $d=d_{R}^{k}(G)$. Since $f_{1}, f_{2}, \ldots, f_{d}$ are distinct, we may assume $f_{i}(v)=2$ for some $i$ and some $v \in V(G)$. It follows from $\sum_{j=1}^{d} f_{j}(v) \leq 2 k$ that $\sum_{j \neq i} f_{j}(v) \leq 2 k-2$. Thus $d-1 \leq 2 k-2$ as desired.

Observation 1.4. If $k \geq 2$ is an integer, and $G$ is a graph of order $n \geq 2 k-2$, then $d_{R}^{k}(G) \geq 2 k-1$.

Proof. If $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then define $f_{j}: V(G) \rightarrow\{0,1,2\}$ by $f_{j}\left(v_{j}\right)=2$ and $f_{j}(x)=1$ for $x \in V(G)-\left\{v_{j}\right\}$ and $1 \leq j \leq 2 k-2$ and $f_{2 k-1}: V(G) \rightarrow\{0,1,2\}$ by $f_{2 k-1}(x)=1$ for each $x \in V(G)$. Then $f_{1}, f_{2}, \ldots, f_{2 k-1}$ are distinct with $\sum_{i=1}^{2 k-1} f_{i}(x)=2 k$ for each $x \in\left\{v_{1}, v_{2}, \ldots, v_{2 k-2}\right\}$ and $\sum_{i=1}^{2 k-1} f_{i}(x)=2 k-1$ otherwise. Therefore $\left\{f_{1}, f_{2}, \ldots, f_{2 k-1}\right\}$ is an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$, and thus $d_{R}^{k}(G) \geq 2 k-1$.

The last two observations lead to the next result immediately.
Corollary 1.5. Let $k \geq 2$ be an integer. If $G$ is a graph of order $n \geq 2 k-2$ and $k \geq \Delta(G)+1$, then $d_{R}^{k}(G)=2 k-1$.

Observation 1.6. If $k \geq 3$ is an integer, and $G$ is a graph of order $n \geq 2 k-4$, then $d_{R}^{k}(G) \geq 2 k-2$.
Proof. If $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then define $f_{j}: V(G) \rightarrow\{0,1,2\}$ by $f_{j}\left(v_{j}\right)=2$ and $f_{j}(x)=1$ for $x \in V(G)-\left\{v_{j}\right\}$ and $1 \leq j \leq 2 k-4, f_{2 k-3}: V(G) \rightarrow\{0,1,2\}$ by $f_{2 k-3}(x)=1$ for each $x \in V(G)$ and $f_{2 k-2}: V(G) \rightarrow\{0,1,2\}$ by $f_{2 k-2}(x)=2$ for each $x \in V(G)$. Then $f_{1}, f_{2}, \ldots, f_{2 k-2}$ are distinct with $\sum_{i=1}^{2 k-2} f_{i}(x)=2 k$ for each $x \in V(G)$. Therefore $\left\{f_{1}, f_{2}, \ldots, f_{2 k-2}\right\}$ is an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$, and thus $d_{R}^{k}(G) \geq 2 k-2$.

Observation 1.7. Let $k \geq 2$ be an integer. If $G$ is a graph of order $n \leq 2 k-3$ and $k \geq \Delta(G)+1$, then $d_{R}^{k}(G) \leq 2 k-2$.
Proof. If $n=1$, then $d_{R}^{k}(G)=2 \leq 2 k-2$. Assume now that $n \geq 2$. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$ such that $d=d_{R}^{k}(G)$. Since $k \geq$ $\Delta(G)+1$, we observe that $f_{i}(x) \geq 1$ for each $1 \leq i \leq d$ and each $x \in V(G)$. Suppose to the contrary that $d \geq 2 k-1$. Since $f_{1}, f_{2}, \ldots, f_{d}$ are distinct, there exists a vertex $u \in V(G)$ such that $f_{s}(u)=f_{t}(u)=2$ for two indices $s, t \in\{1,2, \ldots, d\}$ with $s \neq t$. However, this leads to

$$
\sum_{i=1}^{d} f_{i}(u) \geq \sum_{i=1}^{2 k-1} f_{i}(u) \geq 4+2 k-3=2 k+1
$$

a contradiction. Therefore $d_{R}^{k}(G) \leq 2 k-2$, and the proof is complete.
Theorem 1.8. Let $k \geq 1$ be an integer, and let $G$ be a graph of order $n$. If $k \geq 3 \cdot 2^{n-2}$, then $d_{R}^{k}(G)=2^{n}$.
Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be the set of all pairwise distinct functions from $V(G)$ into the set $\{1,2\}$. Then $f_{i}$ is a Roman $k$-dominating function on $G$ for $1 \leq i \leq d$, and it is well-known that $d=2^{n}$. The hypothesis $k \geq 3 \cdot 2^{n-2}$ leads to

$$
\sum_{i=1}^{d} f_{i}(v)=\sum_{i=1}^{2^{n}} f_{i}(v)=2^{n-1}+2^{n}=3 \cdot 2^{n-1} \leq 2 k
$$

for each vertex $v \in V(G)$. Therefore $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$ and thus $d_{R}^{k}(G) \geq 2^{n}$.

Now let $f: V(G) \longrightarrow\{0,1,2\}$ be a Roman $k$-dominating function on $G$. Since $k \geq 3 \cdot 2^{n-2}>n>\Delta(G)$, it is impossible that $f(x)=0$ for any vertex $x \in V(G)$. Hence the number of Roman $k$-dominating functions on $G$ is at most $2^{n}$ and so $d_{R}^{k}(G) \leq 2^{n}$. This yields the desired identity.

Observation 1.9. If $k \geq 1$ is an integer, then $\gamma_{k R}\left(K_{n}\right)=\min \{n, 2 k\}$.
Proof. If $n \leq 2 k$, then Proposition A implies that $\gamma_{k R}\left(K_{n}\right)=n$.
Assume now that $n \geq 2 k+1$. It follows from Proposition A that $\gamma_{k R}\left(K_{n}\right) \geq 2 k$. Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and define $f: V\left(K_{n}\right) \rightarrow\{0,1,2\}$ by $f\left(v_{1}\right)=f\left(v_{2}\right)=$ $\ldots=f\left(v_{k}\right)=2$ and $f\left(v_{j}\right)=0$ for $k+1 \leq j \leq n$. Then $f$ is an RkDF on $K_{n}$ of weight $2 k$ and thus $\gamma_{k R}\left(K_{n}\right) \leq 2 k$, and the proof is complete.

## 2. Properties of the Roman (k,k)-domatic number

In this section we present basic properties of $d_{R}^{k}(G)$ and sharp bounds on the Roman ( $k, k$ )-domatic number of a graph.

Theorem 2.1. Let $G$ be a graph of order $n$ with Roman $k$-domination number $\gamma_{k R}(G)$ and Roman ( $k, k$ )-domatic number $d_{R}^{k}(G)$. Then

$$
\gamma_{k R}(G) \cdot d_{R}^{k}(G) \leq 2 k n
$$

Moreover, if $\gamma_{k R}(G) \cdot d_{R}^{k}(G)=2 k n$, then for each $R(k, k) D$ family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on $G$ with $d=d_{R}^{k}(G)$, each function $f_{i}$ is a $\gamma_{k R}(G)$-function and $\sum_{i=1}^{d} f_{i}(v)=2 k$ for all $v \in V$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$ such that $d=d_{R}^{k}(G)$ and let $v \in V$. Then

$$
\begin{aligned}
d \cdot \gamma_{k R}(G) & =\sum_{i=1}^{d} \gamma_{k R}(G) \\
& \leq \sum_{i=1}^{d} \sum_{v \in V} f_{i}(v) \\
& =\sum_{v \in V} \sum_{i=1}^{d} f_{i}(v) \\
& \leq \sum_{v \in V} 2 k \\
& =2 k n .
\end{aligned}
$$

If $\gamma_{k R}(G) \cdot d_{R}^{k}(G)=2 k n$, then the two inequalities occurring in the proof become equalities. Hence for the $\mathrm{R}(k, k) \mathrm{D}$ family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on $G$ and for each $i, \sum_{v \in V} f_{i}(v)=\gamma_{k R}(G)$, thus each function $f_{i}$ is a $\gamma_{k R}(G)$-function, and $\sum_{i=1}^{d} f_{i}(v)=2 k$ for all $v \in V$.

Theorem 2.2. Let $G$ be a graph of order $n \geq 2$ and $k \geq 1$ be an integer. Then $\gamma_{k R}(G)=n$ and $d_{R}^{k}(G)=2 k$ if and only if $G$ does not contain a bipartite subgraph $H$ with bipartition $X, Y$ such that $|X|>|Y| \geq k$ and $\operatorname{deg}_{H}(v) \geq k$ for each $v \in X$ and $G$ has $2 k$ or $2 k-1$ connected bipartite subgraphs $H_{i}=\left(X_{i}, Y_{i}\right)$ with $\left|X_{i}\right|=\left|Y_{i}\right|$, $\operatorname{deg}_{H_{i}}(v) \geq k$ for each $v \in X_{i}$ and $\left|\left\{i \mid u \in Y_{i}\right\}\right|=\left|\left\{i \mid u \in X_{i}\right\}\right|=k$ for each $u \in V(G)$.

Proof. Let $\gamma_{k R}(G)=n$ and $d_{R}^{k}(G)=2 k$. It follows from Proposition B that $G$ does not contain a bipartite subgraph $H$ with bipartition $X, Y$ such that $|X|>|Y| \geq k$ and $\operatorname{deg}_{H}(v) \geq k$ for each $v \in X$. Let $\left\{f_{1}, \ldots, f_{2 k}\right\}$ be a Roman $(k, k)$-dominating family on $G$. By Theorem 2.1, $\gamma_{k R}(G)=\omega\left(f_{i}\right)=n$ for each $i$. First suppose for each $i$, there exists a vertex $x$ such that $f_{i}(x) \neq 1$. Assume that $H_{i}$ is a subgraph
of $G$ with vertex set $V_{0}^{f_{i}} \cup V_{2}^{f_{i}}$ and edge set $E\left(V_{0}^{f_{i}}, V_{2}^{f_{i}}\right)$. Since $\omega\left(f_{i}\right)=n$ and $f_{i}$ is a Roman $k$-dominating function, $\left|V_{2}^{f_{i}}\right|=\left|V_{0}^{f_{i}}\right|$ and $\operatorname{deg}_{H_{i}}(v) \geq k$ for each $v \in V_{0}^{f_{i}}$. By Theorem 2.1, $\sum_{i=1}^{2 k} f_{i}(v)=2 k$ for each $v \in V(G)$ which implies that $\left|\left\{i \mid v \in V_{2}^{f_{i}}\right\}\right|=\left|\left\{i \mid v \in V_{0}^{f_{i}}\right\}\right|=k$ for each $v \in V(G)$. Now suppose $f_{i}(x)=1$ for each $x \in V(G)$ and some $i$, say $i=2 k$. Define the bipartite subgraphs $H_{i}$ for $1 \leq i \leq 2 k-1$ as above.

Conversely, assume that $G$ does not contain a bipartite subgraph $H$ with bipartition $X, Y$ such that $|X|>|Y| \geq k$ and $\operatorname{deg}_{H}(v) \geq k$ for each $v \in X$ and $G$ has $2 k$ or $2 k-1$ connected bipartite subgraphs $H_{i}=\left(X_{i}, Y_{i}\right)$ with $\left|X_{i}\right|=\left|Y_{i}\right|$ and $\operatorname{deg}_{H_{i}}(v) \geq k$ for each $v \in X_{i}$. Then by Proposition B, $\gamma_{k R}(G)=n$. If $G$ has $2 k$ connected bipartite subgraphs $H_{i}$, then the mappings $f_{i}: V(G) \rightarrow\{0,1,2\}$ defined by

$$
f_{i}(u)=2 \text { if } u \in Y_{i}, f_{i}(v)=0 \text { if } v \in X_{i} \text {, and } f_{i}(x)=1 \text { for each } x \in V-\left(X_{i} \cup Y_{i}\right)
$$

are Roman $k$-dominating functions on $G$ and $\left\{f_{i} \mid 1 \leq i \leq 2 k\right\}$ is a Roman $(k, k)$ dominating family on $G$. If $G$ has $2 k-1$ connected bipartite subgraphs $H_{i}$, then the mappings $f_{i}, g: V(G) \rightarrow\{0,1,2\}$ defined by $g(x)=1$ for each $x \in V(G)$ and

$$
f_{i}(u)=2 \text { if } u \in Y_{i}, f_{i}(v)=0 \text { if } v \in X_{i} \text {, and } f_{i}(x)=1 \text { for each } x \in V-\left(X_{i} \cup Y_{i}\right)
$$

are Roman $k$-dominating functions on $G$ and $\left\{g, f_{i} \mid 1 \leq i \leq 2 k-1\right\}$ is a Roman ( $k, k$ )-dominating family on $G$.

Thus $d_{R}^{k}(G) \geq 2 k$. It follows from Theorem 2.1 that $d_{R}^{k}(G)=2 k$, and the proof is complete.

The next corollary is an immediate consequence of Proposition C, Observation 1.3 and Theorem 2.1.

Corollary 2.3. For every graph $G$ of order $n, d_{R}^{k}(G) \leq \max \{\Delta, k-1\}+k$.
Let $A_{1} \cup A_{2} \cup \ldots \cup A_{d}$ be a $k$-domatic partition of $V(G)$ into $k$-dominating sets such that $d=d_{k}(G)$. Then the set of functions $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ with $f_{i}(v)=2$ if $v \in A_{i}$ and $f_{i}(v)=0$ otherwise for $1 \leq i \leq d$ is an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$. This shows that $d_{k}(G) \leq d_{R}^{k}(G)$ for every graph $G$. Since $\gamma_{k R}(G) \geq \min \left\{n, \gamma_{k}(G)+k\right\}$ (cf. [6]), for each graph $G$ of order $n \geq 2$, Theorem 2.1 implies that $d_{R}^{k}(G) \leq \frac{2 k n}{\min \left\{n, \gamma_{k}(G)+k\right\}}$. Combining these two observations, we obtain the following result.

Corollary 2.4. For any graph $G$ of order $n$,

$$
d_{k}(G) \leq d_{R}^{k}(G) \leq \frac{2 k n}{\min \left\{n, \gamma_{k}(G)+k\right\}}
$$

Theorem 2.5. Let $K_{n}$ be the complete graph of order $n$ and $k$ a positive integer. Then $d_{R}^{k}\left(K_{n}\right)=n$ if $n \geq 2 k, d_{R}^{k}\left(K_{n}\right) \leq 2 k-1$ if $n \leq 2 k-1$ and $d_{R}^{k}\left(K_{n}\right)=2 k-1$ if $k \geq 2$ and $2 k-2 \leq n \leq 2 k-1$.

Proof. By Proposition F, we may assume that $k \geq 2$. Assume that $V\left(K_{n}\right)=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. First let $n \geq 2 k$. Since Observation 1.9 implies that $\gamma_{k R}\left(K_{n}\right)=$ $2 k$, it follows from Theorem 2.1 that $d_{R}^{k}\left(K_{n}\right) \leq n$. For $1 \leq i \leq n$, define now $f_{i}: V\left(K_{n}\right) \rightarrow\{0,1,2\}$ by

$$
f_{i}\left(x_{i}\right)=f_{i}\left(x_{i+1}\right)=\ldots=f_{i}\left(x_{i+k-1}\right)=2 \text { and } f_{i}(x)=0 \text { otherwise }
$$

where the indices are taken modulo $n$. It is easy to see that $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is an $\mathrm{R}(k, k) D$ family on $G$ and hence $d_{R}^{k}\left(K_{n}\right) \geq n$. Thus $d_{R}^{k}\left(K_{n}\right)=n$.

Now let $n \leq 2 k-1$. Then Observation 1.9 yields $\gamma_{k R}\left(K_{n}\right)=n$, and it follows from Theorem 2.1 that $d_{R}^{k}\left(K_{n}\right) \leq 2 k$. Suppose to the contrary that $d_{R}^{k}\left(K_{n}\right)=$ $2 k$. Then by Theorem 2.1, each Roman $k$-dominating function $f_{i}$ in any $\mathrm{R}(k, k) \mathrm{D}$ family $\left\{f_{1}, f_{2},, \ldots, f_{2 k}\right\}$ on $G$ is a $\gamma_{k R}(G)$-function. This implies that $f_{i}(x)=1$ for each $x \in V\left(K_{n}\right)$. Hence $f_{1} \equiv f_{2} \equiv \cdots \equiv f_{2 k}$ which is a contradiction. Thus $d_{R}^{k}\left(K_{n}\right) \leq 2 k-1$.

In the special case $k \geq 2$ and $2 k-2 \leq n \leq 2 k-1$, Observation 1.4 shows that $d_{R}^{k}\left(K_{n}\right) \geq 2 k-1$ and so $d_{R}^{k}\left(K_{n}\right)=2 k-1$.

In view of Proposition G and Theorem 2.1 we obtain the next upper bounds for the Roman ( $k, k$ )-domatic number of complete bipartite graphs.

Corollary 2.6. Let $K_{p, q}$ be the complete bipartite graph of order $p+q$ such that $q \geq p \geq 1$, and let $k$ be a positive integer. Then $d_{R}^{k}\left(K_{p, q}\right) \leq 2 k$ if $p<k$ or $q=p=k, d_{R}^{k}\left(K_{p, q}\right) \leq \frac{2 k(p+q)}{k+p}$ if $p+q \geq 2 k+1$ and $k \leq p \leq 3 k$ and $d_{R}^{k}\left(K_{p, q}\right) \leq \frac{p+q}{2}$ if $p \geq 3 k$.

For some special cases of complete bipartite graphs, we can prove more.
Corollary 2.7. Let $K_{p, p}$ be the complete bipartite graph of order $2 p$, and let $k$ be a positive integer. If $p \geq 3 k$, then $d_{R}^{k}\left(K_{p, p}\right)=p$. If $p<k$, then $d_{R}^{k}\left(K_{p, p}\right) \leq 2 k-1$. In particular, if $p=k-1$, then $d_{R}^{k}\left(K_{p, p}\right)=2 k-1$, and if $p=k-2$, then $d_{R}^{k}\left(K_{p, p}\right)=2 k-2$.

Proof. Assume first that $p \geq 3 k$. Let $X=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and $Y=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ be the partite sets of the complete bipartite graph $K_{p, p}$. For $1 \leq i \leq p$, define $f_{i}: V\left(K_{p, p}\right) \rightarrow\{0,1,2\}$ by

$$
f_{i}\left(u_{i}\right)=f_{i}\left(u_{i+1}\right)=\ldots=f_{i}\left(u_{i+k-1}\right)=f_{i}\left(v_{i}\right)=f_{i}\left(v_{i+1}\right)=\ldots=f_{i}\left(v_{i+k-1}\right)=2
$$

and $f_{i}(x)=0$ otherwise, where the indices are taken modulo $p$. It is a simple matter to verify that $\left\{f_{1}, f_{2}, \ldots, f_{p}\right\}$ is an $\mathrm{R}(k, k) D$ family on $K_{p, p}$ and hence $d_{R}^{k}\left(K_{p, p}\right) \geq p$. Using Corollary 2.6 for $p=q \geq 3 k$, we obtain $d_{R}^{k}\left(K_{p, p}\right)=p$.

Assume next that $p<k$. Since $k>p=\Delta\left(K_{p, p}\right)$, it follows from Observation 1.3 that $d_{R}^{k}\left(K_{p, p}\right) \leq 2 k-1$.

Assume now that $p=k-1$. Then $k \geq 2$ and $n\left(K_{p, p}\right)=2 k-2$, and we deduce from Observation 1.4 that $d_{R}^{k}\left(K_{p, p}\right) \geq 2 k-1$ and so $d_{R}^{k}\left(K_{p, p}\right)=2 k-1$.

Finally, assume that $p=k-2$. Then $k \geq 3$ and $n\left(K_{p, p}\right)=2 k-4$. It follows from Observation 1.6 that $d_{R}^{k}\left(K_{p, p}\right) \geq 2 k-2$ and from Observation 1.7 that $d_{R}^{k}\left(K_{p, p}\right) \leq 2 k-2$ and thus $d_{R}^{k}\left(K_{p, p}\right)=2 k-2$.

Theorem 2.8. If $G$ is a graph of order $n \geq 2$, then

$$
\begin{equation*}
\gamma_{k R}(G)+d_{R}^{k}(G) \leq n+2 k \tag{2.1}
\end{equation*}
$$

with equality if and only if $\gamma_{k R}(G)=n$ and $d_{R}^{k}(G)=2 k$ or $\gamma_{k R}(G)=2 k$ and $d_{R}^{k}(G)=n$.

Proof. If $d_{R}^{k}(G) \leq 2 k-1$, then obviously $\gamma_{k R}(G)+d_{R}^{k}(G) \leq n+2 k-1$. Let now $d_{R}^{k}(G) \geq 2 k$. If $\gamma_{k R}(G) \geq 2 k$, Theorem 2.1 implies that $d_{R}^{k}(G) \leq n$. According to Theorem 2.1, we obtain

$$
\begin{equation*}
\gamma_{k R}(G)+d_{R}^{k}(G) \leq \frac{2 k n}{d_{R}^{k}(G)}+d_{R}^{k}(G) \tag{2.2}
\end{equation*}
$$

Using the fact that the function $g(x)=x+(2 k n) / x$ is decreasing for $2 k \leq x \leq \sqrt{2 k n}$ and increasing for $\sqrt{2 k n} \leq x \leq n$, this inequality leads to the desired bound immediately.

Now let $\gamma_{k R}(G) \leq 2 k-1$. Since $\min \left\{n, \gamma_{k}(G)+k\right\} \leq \gamma_{k R}(G)$, we deduce that $\gamma_{k R}(G)=n$. According to Theorem 2.1, we obtain $d_{R}^{k}(G) \leq 2 k$ and hence $d_{R}^{k}(G)=2 k$. Thus

$$
\gamma_{k R}(G)+d_{R}^{k}(G)=n+2 k .
$$

If $\gamma_{k R}(G)=n$ and $d_{R}^{k}(G)=2 k$ or $\gamma_{k R}(G)=2 k$ and $d_{R}^{k}(G)=n$, then obviously $\gamma_{k R}(G)+d_{R}^{k}(G)=n+2 k$.

Conversely, let equality hold in (2.1). It follows from (2.2) that

$$
n+2 k=\gamma_{k R}(G)+d_{R}^{k}(G) \leq \frac{2 k n}{d_{R}^{k}(G)}+d_{R}^{k}(G) \leq n+2 k
$$

which implies that $\gamma_{k R}(G)=\frac{2 k n}{d_{R}^{k}(G)}$ and $d_{R}^{k}(G)=2 k$ or $d_{R}^{k}(G)=n$. This completes the proof.

The special case $k=1$ of the next result can be found in [8].
Theorem 2.9. For every graph $G$ and positive integer $k$,

$$
d_{R}^{k}(G) \leq \delta(G)+2 k
$$

Moreover, the upper bound is sharp.
Proof. If $d_{R}^{k}(G) \leq 2 k$, the result is immediate. Let now $d_{R}^{k}(G) \geq 2 k+1$ and let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be an $\mathrm{R}(k, k) \mathrm{D}$ family on $G$ such that $d=d_{R}^{k}(G)$. Assume that $v$ is a vertex of minimum degree $\delta(G)$. Let $\ell$ be the number of sums $\sum_{u \in N[v]} f_{i}(u)=1$ and let $m$ be the number of those sums in which $\sum_{u \in N[v]} f_{i}(u)=2$. Obviously, $l+2 m \leq 2 k$.

We may assume, without loss of generality, that the equality $\sum_{u \in N[v]} f_{i}(u)=1$ holds for $i=1, \ldots, \ell$, if any, and the equality $\sum_{u \in N[v]} f_{i}(u)=2$ holds for $i=$ $\ell+1, \ldots, \ell+m$ when $m \geq 1$. In this case $f_{i}(v)=1$ and $f_{i}(u)=0$ for each
$u \in N(v)$ and $i=1, \ldots, \ell$ and $f_{i}(v)=2$ and $f_{i}(u)=0$ for each $u \in N(v)$ and $i=\ell+1, \ldots, \ell+m$. Thus $f_{i}(v)=0$ for $\ell+m+1 \leq i \leq d$, and thus $\sum_{u \in N[v]} f_{i}(u) \geq 2 k$ for $\ell+m+1 \leq i \leq d$. Altogether we obtain

$$
\begin{aligned}
2 k(d-(\ell+m))+\ell+2 m & \leq \sum_{i=1}^{d} \sum_{u \in N[v]} f_{i}(u) \\
& =\sum_{u \in N[v]} \sum_{i=1}^{d} f_{i}(u) \\
& \leq \sum_{u \in N[v]} 2 k \\
& =2 k(\delta(G)+1)
\end{aligned}
$$

If $m=0$, then the above inequality chain leads to

$$
d \leq \delta(G)+1+\ell-\ell /(2 k)
$$

Since the function $g(x)=x+x /(2 k)$ is increasing for $0 \leq x \leq 2 k$, we deduce the desired bound as follows

$$
d \leq \delta(G)+1+\ell-\ell /(2 k) \leq \delta(G)+1+2 k-(2 k) /(2 k)=\delta(G)+2 k
$$

Now let $m \geq 1$. Then we obtain

$$
d \leq \delta(G)+(\ell+m)+\frac{2 k-\ell-2 m}{2 k}
$$

Since the last fraction in the sum is a rational number in $[0,1]$ and since $m \geq 1$, we deduce that
$d \leq \delta(G)+(\ell+m)+\frac{2 k-\ell-2 m}{2 k} \leq \delta(G)+(\ell+m)+1 \leq \delta(G)+\ell+2 m \leq \delta(G)+2 k$ as desired.

To prove the sharpness of this inequality, let $G_{i}$ be a copy of $K_{k^{3}+(2 k+1) k}$ with vertex set $V\left(G_{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{k^{3}+(2 k+1) k}^{i}\right\}$ for $1 \leq i \leq k$ and let the graph $G$ be obtained from $\cup_{i=1}^{k} G_{i}$ by adding a new vertex $v$ and joining $v$ to each $v_{1}^{i}, \ldots, v_{k}^{i}$. Define the Roman $k$-dominating functions $f_{i}^{s}, h_{l}$ for $1 \leq i \leq k, 0 \leq s \leq k-1$ and $1 \leq l \leq 2 k$ as follows:

$$
\begin{gathered}
f_{i}^{s}\left(v_{1}^{i}\right)=\cdots=f_{i}^{s}\left(v_{k}^{i}\right)=2, f_{i}^{s}\left(v_{(i-1) k^{2}+(s+1) k+1}^{j}\right)=\cdots=f_{i}^{s}\left(v_{(i-1) k^{2}+(s+1) k+k}^{j}\right)=2 \\
\text { if } j \in\{1,2, \ldots, k\}-\{i\} \text { and } f_{i}^{s}(x)=0 \text { otherwise }
\end{gathered}
$$

and for $1 \leq l \leq 2 k$,

$$
h_{l}(v)=1, h_{l}\left(v_{k^{3}+l k+1}^{i}\right)=\ldots=h_{l}\left(v_{k^{3}+l k+k}^{i}\right)=2(1 \leq i \leq k),
$$

and $h_{l}(x)=0$ otherwise.
It is easy to see that $f_{i}^{s}$ and $g_{l}$ are Roman $k$-dominating function on $G$ for each $1 \leq i \leq k, 0 \leq s \leq k-1,1 \leq l \leq 2 k$ and $\left\{f_{i}^{s}, g_{l} \mid 1 \leq i \leq k, 0 \leq s \leq k-1\right.$ and $1 \leq$ $l \leq 2 k\}$ is a Roman $(k, k)$-dominating family on $G$. Since $\delta(G)=k^{2}$, we have $d_{R}^{k}(G)=\delta(G)+2 k$.

For regular graphs the following improvement of Theorem 2.9 is valid.
Theorem 2.10. Let $k$ be a positive integer. If $G$ is a $\delta(G)$-regular graph, then

$$
d_{R}^{k}(G) \leq \max \{2 k-1, \delta(G)+k\} \leq \delta(G)+2 k-1
$$

Proof. If $k>\Delta(G)=\delta(G)$ then by Observation 1.7, $d_{R}^{k}(G) \leq 2 k-1$ and the desired bound is proved. If $k \leq \Delta(G)$, then it follows from Corollary 2.3 that

$$
d_{R}^{k}(G) \leq \delta(G)+k
$$

and the proof is complete.
As an application of Theorems 2.9 and 2.10, we will prove the following Nord-haus-Gaddum type result.

Theorem 2.11. Let $k \geq 1$ be an integer. If $G$ is a graph of order $n$, then

$$
\begin{equation*}
d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq n+4 k-2, \tag{2.3}
\end{equation*}
$$

with equality only for graphs with $\Delta(G)-\delta(G)=1$.
Proof. It follows from Theorem 2.9 that
$d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq(\delta(G)+2 k)+(\delta(\bar{G})+2 k)=(\delta(G)+2 k)+(n-\Delta(G)-1+2 k)$.
If $G$ is not regular, then $\Delta(G)-\delta(G) \geq 1$, and hence this inequality implies the desired bound $d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq n+4 k-2$. If $G$ is $\delta(G)$-regular, then we deduce from Theorem 2.10 that

$$
d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq(\delta(G)+2 k-1)+(\delta(\bar{G})+2 k-1)=n+4 k-3,
$$

and the proof of the Nordhaus-Gaddum bound (2.3) is complete. Furthermore, the proof shows that we have equality in (2.3) only when $\Delta(G)-\delta(G)=1$.

Corollary 2.12 ([8]). For every graph $G$ of order $n$,

$$
d_{R}(G)+d_{R}(\bar{G}) \leq n+2,
$$

with equality only for graphs with $\Delta(G)=\delta(G)+1$.
For regular graphs we prove the following Nordhaus-Gaddum inequality.

Theorem 2.13. Let $k \geq 1$ be an integer. If $G$ is a $\delta$-regular graph of order $n$, then

$$
\begin{equation*}
d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq \max \{4 k-2, n+2 k-1, n+3 k-2-\delta, 3 k+\delta-1\} . \tag{2.4}
\end{equation*}
$$

Proof. Let $\delta(G)=\delta$ and $\delta(\bar{G})=\bar{\delta}$. We distinguish four cases.
If $k \geq \delta+1$ and $k \geq \bar{\delta}+1$, then it follows from Observation 1.7 that

$$
d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq(2 k-1)+(2 k-1)=4 k-2
$$

If $k \leq \delta$ and $k \leq \bar{\delta}$, then Corollary 2.3 implies that

$$
d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq(\delta+k)+(\bar{\delta}+k)=\delta+2 k+n-1-\delta=n+2 k-1
$$

If $k \geq \delta+1$ and $k \leq \bar{\delta}$, then we deduce from Observation 1.7 and Corollary 2.3 that
$d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq(2 k-1)+(\bar{\delta}+k)=3 k-1+n-1-\delta=n+3 k-2-\delta$.
If $k \leq \delta$ and $k \geq \bar{\delta}+1$, then Observation 1.7 and Corollary 2.3 lead to

$$
d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq(\delta+k)+(2 k-1)=3 k+\delta-1
$$

This completes the proof.
If $G$ is a $\delta$-regular graph of order $n \geq 2$, then Theorem 2.13 leads to the following improvement of Theorem 2.11 for $k \geq 2$.

Corollary 2.14. Let $k \geq 2$ be an integer. If $G$ is a $\delta$-regular graph of order $n \geq 2$, then

$$
d_{R}^{k}(G)+d_{R}^{k}(\bar{G}) \leq n+4 k-4
$$

## References

[1] Bouchemakh, I., Ouatiki, S., Survey on the domatic number of a graph, Manuscript.
[2] Chambers, E. W., Kinnersley, B., Prince, N., West, D. B., Extremal problems for Roman domination, SIAM J. Discrete Math., 23 (2009) 1575-1586.
[3] Cockayne, E. J., Dreyer Jr., P. M., Hedetniemi, S. M., Hedetniemi, S. T., On Roman domination in graphs, Discrete Math., 278 (2004) 11-22.
[4] Haynes, T. W., Hedetniemi, S. T., Slater, P. J., Fundamentals of Domination in graphs, Marcel Dekker, Inc., New york, 1998.
[5] Kämmerling, K., Volkmann, L., The $k$-domatic number of a graph, Czech. Math. J., 59 (2009) 539-550.
[6] Kämmerling, K., Volkmann, L., Roman $k$-domination in graphs, J. Korean Math. Soc., 46 (2009) 1309-1318.
[7] Revelle, C. S., Rosing, K. E., Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly, 107 (2000) 585-594.
[8] Sheikholeslami, S. M., Volkmann, L., The Roman domatic number of a graph, Appl. Math. Lett., 23 (2010) 1295-1300.
[9] Sheikholeslami, S. M., Volkmann, L., The Roman $k$-domatic number of a graph, Acta Math. Sin. (Engl. Ser.), 27 (2011) 1899-1906.
[10] Sheikholeslami, S. M., Volkmann, L., Signed ( $k, k$ )-domatic number of a graph, Ann. Math. Inform., 37 (2010) 139-149.
[11] Sheikholeslami, S. M., Volkmann, L., The $k$-rainbow domatic number of a graph, Discuss. Math. Graph Theory, (to appear)
[12] Sheikholeslami, S. M., Volkmann, L., The $k$-tuple total domatic number of a graph, Util. Math., (to appear)
[13] Sheikholeslami, S. M., Volkmann, L., On the Roman $k$-bondage number of a graph, AKCE Int. J. Graphs Comb., 8 (2011), (to appear).
[14] Stewart, I., Defend the Roman Empire, Sci. Amer., 281 (1999) 136-139.
[15] West, D. B., Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
[16] Zelinka, B., On $k$-ply domatic numbers of graphs, Math. Slovaka, 34 (1984) 313318.


[^0]:    *This research was in part supported by a grant from IPM (No. 90050043).

