
Annales Mathematicae et Informaticae

37 (2010) pp. 211–223
http://ami.ektf.hu

C++ exam methodology

Norbert Pataki, Zalán Szűgyi

Department of Programming Languages and Compilers

Eötvös Loránd University

Submitted 20 October 2009; Accepted 9 March 2010

Abstract

The C++ programming language supports multiparadigm programming.
We can write programs in procedural, object-oriented, generic way at the
same time.

However, it is difficult to figure out exercises for the terminal examinations
since not easy to separate the algorithmic cogitation from the knowledge of
the programming language. There are some basic elements that programmer
students have to know: constructors, parameter passing, objects, inheritance,
standard library, handling constants, copying objects, functions and member
functions, etc. Exercises must be multiparadigm according to the C++ lan-
guage. Using only one paradigm in C++ is not enough. This results in that
we have to distinguish the different linguistic constructs on the basis of its
complexity.

Many questions are arisen in connection with the exercises of terminal
examinations. How can we gauge the procedural, the object-oriented, and
the generic paradigms at the same time? How can we gauge students’ C++
knowledge when we do not lay stress on the algorithmic cogitation? What
kind of exercises may be interesting by the Standard Template Library?
Which C++ constructs are reckoned to be more difficult and which ones
considered to be easier? What are the most important ones? In this paper
we give answers to the previous questions, we describe our methodology to
assessment of students’ C++ knowledge in a semi-automatic grading way. We
also present exercise examples that worked out according to our methodology.
We take stock of students’ results in the paper.

Keywords: C++, exam, teaching, multiparadigm programming

MSC: 68N19

211

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EKE Repository of Publications

https://core.ac.uk/display/188019029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


212 N. Pataki, Z. Szűgyi

1. Introduction

In software technology a paradigm represents the directives in creating abstractions
[21]. The paradigm is the principle by which a problem can be comprehended and
decomposed into manageable components. A paradigm directs us in identifying
the elements in which a problem will be decomposed. The paradigm sets up the
rules and properties, but also offers tools for developing applications.

C++ is usually considered as an object-oriented programming language, but it
is not completely true. C++ supports multiparadigm programming [24]. Structured
programming features come from C legacies with better parameter-passing oppor-
tunities and features of overloading. Classes may be created in a sophisticated way,
for example the C++ programming language distinguishes between three different
variants of inheritance based on access control. Templates are also supported.
Generic and generative programming have become available with C++’s template
construct. The C++ Standard Template Library (STL) was the very first library
based on generic programming and its usage is similar to the functional program-
ming approach [2], [18].

C++ is considered as a language that hard to teach. C legacies must be known
because of their hazard but Stroustrup argues for a use of C++ as a higher-level
language that relies on abstraction to provide elegance without loss of efficiency
compared to lower-level styles [23]. Many paradigms and approaches should be
taught at the same time. By the way, C++’s standard library is roomy. Standard
Template Library (STL) includes more than sixty algorithms and seven actual
containers and three adaptors. STL is just a part of the standard library.

Multiparadigm software design and its implementation in the C++ program-
ming language are deeply investigated by James Coplien [7]. One of his most
important conclusions is that different kind of domain problems should be targeted
using different programming paradigms. The domain analysis, especially identify-
ing positive and negative variability helps to select the most appropriate paradigm.

We work with only standard C++, so we do not deal with multithreaded C++
programs, sockets, graphical user interfaces. This can ease the teaching process
as well as the examination. For example, we do not have to work with graphical
forms, inputs and outputs which could not be integrated to our framework easily.

However, gauging students’ C++ knowledge is much more harder. Students’
attainments must be examined from many aspects.

Many elementary constructs can be found in the C++ programming language.
All students should know these features: functions, classes, methods, templates.
Students must use these constructs in a sophisticated way. Constructs like pa-
rameter passing, constructors, constants, copying objects, inheritance are also very
important. Contrarily, importance of algorithmic cogitation should be minimalized
because we gauge the C++ knowledge.

Teaching the standard library is important in a C++ programming language
course [25]. Therefore the students can use the STL when writing exams. Many ex-
ercises are unusable, like lists, maps, vectors, etc. without significant modification



C++ exam methodology 213

in their specifications.
In Hungary, a five-point grade system is used. 1 is the failing grade and 5 is

the best possible grade. C++’s constructs should be reflected in this grade system.
Which constructs the students must know, and which ones are more difficult?
Which constructs are the most weighty ones?

In this paper we describe our methodology to assessment of students’ C++
knowledge. We present the structure of former exercises that able to grading stu-
dents in a semi-automatic way and an archetypal exercise is detailed.

This paper is organized as follows. In section 2 we describe the general condi-
tions and introduce the frame of exercises. In section 3 we detail a specific exercise.
Other ideas are presented briefly in section 4. We give a brief overview about our
experiences in section 5. We analyze the students’ results in section 6. Finally, we
conclude our issues in section 7.

2. Exams in a nutshell

In this section we describe the general circumstances in connection with the exams.
Students have to write exams in a computer lab. They may use their books,

notes and the world wide web, but they have to work alone. The exams last about 3
and a half hours. An experienced C++ programmer is able to solve these problems
within half an hour.

Five different grades are distinguished in the Hungarian education. The grades
denote in numbers from 1 to 5, where 1 means unsatisfactory and 5 means first.

The exercise is typically the implementation of a class template, with many
member functions. Students receive the client code that instantiates the template.
The client describes the specification of the class template as a sequence of use cases.
For the pass grade the students have to implement some base functionality of class
template. For better marks they need to implement more and more functions. At
the beginning all the code of functional tests are commented. When the students
implement all the necessary functions for a given mark they can uncomment the
corresponding part of client code to see whether their work were correct or not.
On the other hand, these functional and semantical tests are not given proof of the
correctness of implementation but usually a very good feedback to the students
[15].

The program always prints to display the student’s mark, if the program can
be compiled. When students download the exercise program, it displays the unsat-
isfactory mark. In our case students must progress linearly.

The main goal of exercise is usually a template container similar to STL’s
containers. The representation of the class is not determined. Students can freely
choose the representation. The effectiveness is not a primary goal here, however
extremely poor design is rejected.

Students have to write a template class with proper template parameters, a
trivial constructor. Inserting elements must be supported and a basic information
should be obtained from an object and a constant object. Copying object via copy



214 N. Pataki, Z. Szűgyi

constructor and assignment operator is usually also needed to the pass mark. We
reckon that these constructs are essential ones.

Usually the class must be extended for a better grade. The usual constructs for
a fair mark are more difficult methods, like erasing elements, etc..

For a good or an excellent grade iterator or const_iterator inner type is
often required. Iterator objects must work together with the STL algorithms.
Students should use the STL containers and iterators to overcome this exercise,
because they do not know all necessary members for iterator types.

For a good mark operators that overloaded on const are fine. Sometimes usage
of polymorphism appears here.

For excellent grade clearly many constructs can be gauged. Special template
constructors for any iterator types or template copy constructors are ideal. Some-
times generic algorithms are required that are not in the standard, like copy_if.
These template algorithms must be similar to STL’s algorithm. Introduction of a
new template parameter with default value is reasonable. Basic template metapro-
gramming features (like overloading on the returning values according to a template
argument) is also proper. We assume that students can take advantage of the STL.

Our method can be applied when the marking conditions are more complex.
The following excerpt describes the general schema of our exercises:

#include "work.h"

#include <iostream>

// necessary classes and functions

int main()

{

int yourMark = 1;

/* 2

here we use the basic methods of the class: some use cases

...

if the implementation suits the use cases, variable

yourMark is increased

*/

/* 3

here we use more methods: more uses cases

...

after some basic functional test, value of yourMark is 3

*/

/* 4

More difficult methods tested at this block:

...

inasmuch as implementation passes the test, variable



C++ exam methodology 215

yourMark is increased

*/

/* 5

Quite difficult methods required in this block:

...

after successful test cases, value of yourMark is 5

*/

std::cout << "Your mark is " << yourMark << std::endl;

return 0;

}

Students must use this schema, they are only allowed to uncomment the differ-
ent parts. However, the linearity is not necessary, but we apply it. The different
parts could be independent and at the end of parts variable can be increased one
by one.

Students present their solution at the end of the exams. One of the teachers
analyzes someone’s code and asks the student to make sure cheatless. The teacher
gives the grade based on the program’s output, but he can give different grade. So,
the students do not achieve the program’s output as a grade automatically. This is
important because the tests are not all-inclusive ones and it could be eluded. The
structure of the exam makes much more easier the teacher’s work and he or she
can focus on the details and it is also a good feedback to the students.

In this section we introduced the general frame of exercises. We categorized
the different linguistic constructs to gauge. Hereinafter we paraphrase a specific
example that describes an exercise of sorted list template.

3. A detailed example

In this example a sorted list container must be implemented which is template.
It keeps its elements ordered. Its public interface is quite similar to STL’s list
container, but STL’s list container is not ordered.

The test file includes a functor class that called Compare for a user-defined
comparison:

#include "sl.h"

#include <deque>

#include <iostream>

#include <string>

#include <numeric>

#include <functional>

#include <vector>



216 N. Pataki, Z. Szűgyi

struct Compare: std::binary_function<int, int, bool>

{

bool operator()(int a, int b) const

{

return a > b;

}

};

Students must working in the file called sl.h. They must know that templates
do not compose compilation units.

The following part must work to pass the exam. If this part does not work,
then the student fails.

/* 2

SortedList<int> li;

SortedList<double> ls;

ls.insert(5.6);

ls.insert(3.2);

li.insert(7);

li.insert(2);

li.insert(5);

const SortedList<int> cli = li;

if (3 == cli.size())

yourMark = cli.front();

*/

Default constructor must be callable. Inserting elements is required, and it
should be an actual template: insert must work proper according to the template
argument. Creating copy via copy constructor must be supported. This not a prob-
lem, if the standard list container is used for representation, because the default
copy constructor calls the members’ copy constructors to create copies. Further-
more. two more methods must be implemented: the size method that returns how
many elements are in the list, and the front method the returns the list’s very first
element. These two methods called on constant list, so these are const methods
according to the features of C++’s constant correctness. The very first element
is least element in the ordered list, therefore value of yourMark variable will be 2.
This part should not be a real challenge for prepared students: it is a very basic
linked list. Of course, some students present worser accomplishment because of
jitter. We try to help these students with more help or comment.

/* 3

li.insert(8);

li.remove(5);

if (7 == cli.back())

yourMark = cli.size();



C++ exam methodology 217

*/

Two more methods needed for fair grade: a remove method that erases a given
element from the list, and a back method that returns list’s last element.

Overload on const is not good in this specific example because an overloaded
function would violate the constraint of orderness.

/* 4

const int N = std::accumulate(cli.begin(), cli.end(), 0);

yourMark += (14 == N);

*/

An iterator type is required for good grade. We call STL’s accumulate algorithm
with SortedList’s iterator. Accumulate adds together the elements in the container.
Therefore iterator’s proper work is needed, because students cannot modify the
accumulate algorithm. If accumulate returns 14, yourMark variable is increased.
Implementation of an iterator class is not easy because many operators must be
implemented and many special members are needed. But when STL’s list is used
for the representation this implementation is unnecessary, because we can use list’s
iterator instead of a handcrafted one.

/* 5

std::deque<int> d;

d.push_back(2);

d.push_back(1);

d.push_back(3);

const SortedList<int, Compare> lc1(d.begin(), d.end());

std::vector<int> v;

v.push_back(3);

v.push_back(7);

const SortedList<int, Compare> lc2(v.begin(), v.end());

if (7 == lc2.front())

yourMark = lc1.front() + lc2.size();

*/

Two special features needed for the best grade. Arbitrary ordering can be
passed as template argument by functor class. All previous code must be compiled
with this feature, therefore the new template parameter needs default parame-
ter. With the introduction of this parameter the list’s behaviour must remain the
same. std::less<T> is a standard functor class template to describe the normal
behaviour of list ordering. The operator() of this template functor class calls the
operator< of T. Implementation of less is quite easy, but can be found in the



218 N. Pataki, Z. Szűgyi

STL. This functor class must be the default argument to the new template pa-
rameter. Another feature is the special template constructor for arbitrary iterator
types. In the example we use this constructor with vector<int>::iterator and
deque<int>::iterator. All standard containers offer this kind of constructor.
Nevertheless, overloading is not allowed to overcome this situation.

The functional tests in the previous code fragments do not ensure the correctness
of the implementation. However, most problems can be discovered by this method.

This example is not too difficult from the view of algorithmic cogitation, but it
is more and more difficult from the view of C++ language. This example presents
our conception aright.

4. Other examples

We create our exercises according to our methodology. The previous example
presents our ideas. We expect an implementation of a template class with ever
more difficult features. We keep track the student’s grade in a variable. This
variable depends on the correct implementation of the exercise.

Many ideas can be found in [18]. The usual exercise is based on STL’s flaws.
Containers for pointers are not supported by the standard library. Containers of
pointers cause many problems (for example, copying is not trivial and avoiding
memory leaks).

Another flaw is STL’s multimap container does not define the relative order of
elements at the same key. A multimap container that defines the relative order of
element at the same key is a fine exercise.

STL does not include hashing containers. Hashtables, hashmaps are also ideal
containers for exams.

Caching associative containers are similar to the standard associative contain-
ers. They are sorted, they can take advantage of sortedness, ensure iterators, but
they have a special invariant, their size is limited. If the container would be over-
sized, it erases the oldest element from the container. Any kind of these containers
is good for exams.

Graph types also cannot be found in the standard library. Graphs are worth
considering, because they can be gauged in many different ways.

Union of akin containers (for instance set and multiset, or stack and queue)
can be worked out. The behaviour of union’s container based on a bool template
argument.

In this section we present some more examples in a nutshell. These ideas were
the basis of former exams.

5. Experiences in general

In this section we present our general experiences in connection with students,
exercises and C++ itself.



C++ exam methodology 219

Typically, every kind of grades is achieved. The grades are harmonized with
the students’ capability. The main approach (selection of the representing object)
determines the obtainable grades considerably.

One of the major experiences that STL mightily makes the examination’s solu-
tion easier. STL allows students concentrating on linguistic challenges. This is the
very same experience when STL allows professional programmers concentrating on
runtime complexity and different optimizations. The better grades are reached al-
most only with the STL. For the best mark we assume that students use the STL,
and no student can solve the last part without the library.

Strictly speaking, some of the students do not use the standard library, and
implement a handcrafted linked list class (or other node-based container). These
approaches often fail on small pitfalls. Special analysis tools (like valgrind) are
not necessary to avoid memory related bugs. Typically handcrafted containers are
makeshift and should be avoided in this situation.

6. Quantitative Results

In this section we present the results of students. First, we give an overview about
the results of given semester chronologically regardless of resits. We also present
the results in graphical way (see Figure 1, Figure 2 and Figure 3). These charts
present the number of students who achieved the given grade.

7–10 students failed on every examinations in the examined semester. In addi-
tion there were some students who applied for an exam, but did not come.

Twenty-five students gained rather good (excellent and good) grades and eight
students failed on the first occasion from fourty-six students. Presumably we
claimed typical constructs for these marks. Generally, the more talented students
come on the very first occasions. However, when a new series of datastructues
are introduced we work out a lighter exam (easier member methods with easier
algorithms) to focus on the new features. We keep our exams available on the local
network.

Figure 1: The results on the first time in a semester

The results of second occasion differ from the first one. Fifty-five students came
to the exam, nine students failed. Twenty students reached the best grade. The
differences became sharper, because the students could prepare for the examination



220 N. Pataki, Z. Szűgyi

on the grounds of the previous exam and some of the students practiced with the
previous exam, and some of them do not. These two exercises were similar, but
the second one was more difficult. This approach results in this far cry.

Figure 2: The results on the second time in a semester

Completely different result is yielded on the third time. Figure 3 looks like
normal distribution, this result denotes correct exercise: only nine students were
able to carry through the exam of fifty-five people, and ten of them cannot do the
examination. Most of them – fourteen to be exactly – reached the better grade.
The main reason of this incident is that we cannot continue of the previous series
but we worked out a new exercise, that had a good difficulty level.

Figure 3: The results on the third time in a semester

Next, we consider results of more then thousand students from the last four
years. We compare students’ results to their results of Ada programming language.
This couse is similar to ours, but students get the grade in a more classical way,
teachers read through the student’s code in the course of Ada programming lan-
guage. Fails are not taken into account.

We divide the students into six groups. The first group is the students, who
have rather good grades (excellent or good marks) from C++ as well as from Ada.
This group includes 281 students. The second group is the students, who have
rather bad grades (pass or fair marks). There are 421 people in this group. The
third group includes the students who have rather good grades from C++ but have
rather bad grades from C++. This group includes 192 students. The fourth group
is just the opposite of the third one, this group contains the students, who have
rather good grades from Ada but have rather bad grades from C++. 119 students
are in this group. However, the third and fourth group contain students who have



C++ exam methodology 221

fair mark from the either of the courses and better from the other one. This is not
a significant difference. The students with significant difference can be found in
the fifth and sixth group. Students who have excellent mark from C++ but have
only pass mark from Ada are in the fifth group. This group contains 32 people.
Students who have excellent mark from Ada but have pass grade from C++ are
in the sixth group. 18 people belong to this group. The following chart presents
these numbers in a graphical format.

Figure 4: Connection between Ada and C++ grades

These numbers ensure our methodology is fair. About half of the students get
similar grades from C++ and Ada but the exam methodology is quite different.
Only few students have achieved completely different grades from the two courses.
Special prolegomena (e.g. industrial experience) may causes these incidents.

In this section we argued for our methodology in a quantitative manner. We
counted how many students achieved different marks in an entire semester. We
compare our methodology to an other similar course’s methodology. Our method-
ology has been confirmed by the computation.

7. Conclusion

The C++ programming language is difficult to teach and to learn. C++ supports
multiparadigm programming. Functions, classes, generative constructs can be used
in an orthogonal way.

However, contrive exams is much more harder process. In Hungary a five-grade
system is used. We present our methodology based on this grading system. Our
methodology supports multiparadigm programming. Our examples take advantage
of STL’s flaws and supports a semi-automatic grading system. This semi-automatic
system means that our client code offers a mark that we check at the end of
examination. The offered mark is based on test cases. The test cases are not
all-inclusive but we give a feedback to the student as well to the teachers.

We presented our general framework to gauging students’ knowledge and a spe-
cific example is detailed. We defined classification of C++ constructs based on



222 N. Pataki, Z. Szűgyi

their difficulty and essentiality. We outlined students’ results in a given semester.
We compared the results of our excercises to the results of the course Ada pro-
gramming language that applies a more classical method. Our charts confirm that
our framework is fair.

References

[1] Assassa, G., Mathkour, H., Al-Ghafees, B., Automated Software Testing in
Educational Environment: A Design of Testing Framework for Extreme Program-
ming, First National IT Symposium (NITS2006), Bridging the Digital Divide: Chal-
lenges and Solutions (2006).

[2] Austern, M. H., Generic Programming and the STL, Addison-Wesley (1999).

[3] Cardelli, L., Wegner, P., On Understanding Types, Data Abstraction, and Poly-
morphism, ACM Computing Surveys, 17(4), (1985) 471–522.

[4] Cifuentes, C., Brannan, B., Teaching C/C++ to Computer Science Students
with Pascal Programming Experience, Proceedings of the 1st Australasian conference
on Computer science education (1996) 189–196.

[5] Colton, D., Fife, L., Thompson, A., A Web-based Automatic Program Grader,
Information Systems Education Journal, Vol 4, Number, 114, (2006).

[6] Colton, D., Fife, L., Thompson, A., Building a Computer Program Grader,
Information Systems Education Journal, Vol 3, Number, 6, (2005).

[7] Coplien, J. O., Multi-Paradigm Design for C++, Addison-Wesley (1998).

[8] Harris, J. A., Adams, E. S., Harris, N. L., Making program grading easier: but
not totally automatic, Journal of Computing Sciences in Colleges Vol 20, Issue 1,
(2004) 248–261.

[9] Helmick, M. T., Interface-based Programming Assignments and Automatic Grad-
ing of Java Programs, Proceedings of the 12th annual SIGCSE conference on Inno-
vation and technology in computer science education, (2007) 63–67.

[10] Hernyák, Z., Király, R., Teaching programming language in grammar schools,
Annales Mathematicae et Informaticae, Vol 36, (2009) 163–174,

[11] Hext, J. B., Winings, J. W., An automatic grading scheme for simple program-
ming exercises, Commun. ACM, 12(5), (1969) 272–275.

[12] Hitchner, L. E., An automatic testing and grading method for a C++ list class,
ACM SIGCSE Bulletin Vol. 2, Issue 2, (1999) 48–50.

[13] Hitz, M., Kögeler, S., Teaching C++ on the WWW, Proceedings of the 2nd
conference on Integrating technology into computer science education, (1997) 11–13.

[14] Horwitz, S., Addison-Wesley’s Review for the Computer Science AP Exam in C++,
Addison-Wesley (1999).

[15] Juhász, Z., Juhás, M., Samuelis, L., Szabó, Cs., Teaching Java programming
using case studies, Teaching Mathematics and Computer Science 6/2, pp. 245–256,
2008

[16] Karlsson, B., Beyond the C++ Standard Library: An Introduction to Boost,
Addison-Wesley Professional (2005).



C++ exam methodology 223

[17] Kozma, L., Frohner, Á., Kozsik, T., Porkoláb, Z., Beyond 2000, Beyond
Object-Orientation, Proceedings of 5th International Conference on Applied Infor-
matics, (2001) 125–134

[18] Meyers, S., Effective STL, 3rd Edition, Addison-Wesley (2001).

[19] Nordquist, P., Providing accurate and timely feedback by automatically grading
student programming labs, Journal of Computing Sciences in Colleges Vol 23, Issue
2, (2007) 16–23

[20] Placer, J., The Promise of Multiparadigm Languages as Pedagogical Tools, Pro-
ceedings of the ACM conference on Comp. Sci., (1993) 81–86.

[21] Porkoláb, Z., Zsók, V., Teaching Multiparadigm Programming Based on Object-
Oriented Experiences, Tenth Workshop on Pedagogies and Tools for the Teaching
and Learning of Object Oriented Concepts (TLOOC) (2006).

[22] Saikonnen, R., Malmi, L., Korhonen, A., Fully Automatic Assessment of Pro-
gramming Exercises, Proceedings of the 6th annual conference on Innovation and
technology in computer science education, (2001) 133–136.

[23] Stroustrup, B., Learning Standard C++ as a New Language, C/C++ Users Jour-
nal, (May 1999) 43–54.

[24] Stroustrup, B., The C++ Programming Language, Special Edition, Addison-
Wesley (2000).

[25] Stroustrup, B., Programming, Principles and Practice Using C++, Addison-
Wesley (2008).

[26] Tremblay, G., Labonte, E., Semi-automatic marking of java programs using ju-
nit, Proceedings of International Conference on Education and Information Systems:
Technologies and Applications (EISTA ’03), (2003) 42–47.

[27] Westbrook, D. S., A Multiparadigm Language Approach to Teaching Principles
of Programming Languages, 29th ASEE/IEEE Frontiers in Education Conference,
(1999) 11b3–14.

[28] Zave, P., A Compositional Approach to Multiparadigm Programming, IEEE Soft-
ware VI(5), (1989) 15–25.

Norbert Pataki

Zalán Szűgyi

Department of Programming Languages and Compilers

Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

e-mail:

patakino@elte.hu

lupin@ludens.elte.hu


