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Abstract

This paper introduces the retrial CPP/M/c queue, which is the general-
ization of the M/M/c retrial queue. The arrival process of jobs into the queue
follows the Compound Poisson Process (CPP). We present an efficient and
numerically stable computational algorithm for the steady state probabilities.
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1. Introduction

Retrial queues have formed one of intensive research topics in the queueing
theory [1, 2, 3, 4, 8, 10, 12, 14, 16, 17]. The popularity of retrial queues is explained
by the fact that retrial queues can be used to model various problems in real systems
such as telecommunication networks, wireless networks and computer systems.

It is well-known that the main M/M/c retrial queue (where the retrial rate
depends on the number of customers in the orbit) with c > 2 is mathematically
untractable. The stationary distributions of the main M/M/c retrial queue with
c > 2 can be computed using approximation techniques [8]. Falin and Templeton
proposed a truncation model and a numerical tractable with a threshold in their
book [8].

This paper generalizes the numerical tractable M/M/c retrial queue (where the
retrial rate is independent of the number of customers in the orbit). We introduce
the retrial CPP/M/c queue with batch arrivals following the Compound Poisson
Process (CPP), where the interarrival times have the Generalized Exponential (GE)
distribution. Note that the GE is the only distribution of least bias [9], if only the
mean and variance are reliably computed from the measurement data. It has been
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shown in the recent work [7] that the CPP is accurate enough to model Internet
traffic (i.e.: CPP parameters were estimated from the captured Internet traffic)
and to be used for the performance evaluation in telecommunication systems. We
provide a stable computational algorithm for the proposed queue.

In Section 2 we give a description for the CPP/M/c retrial queue. In Section 3
we provide a computational algorithm. In Section 4 we show that our proposed
algorithm finds the eigenvalue when the existing approach fails.

2. The CPP/M/c Retrial Queue

Request arrivals follow the CPP with parameter (λ, ω) (0 6 ω < 1). That is,
the inter- arrival time probability distribution function is 1 − (1 − ω)e−λt. Thus,
the arrival point-processes can be seen as batch-Poisson, with batches arriving at
each point having geometric size distribution. The probability that a batch is of
size s is (1 − ω)ωs−1.

The following notations are introduced.

• c is the number of servers.

• I(t) denotes the number of busy servers at time t. Note that I(t) varies
within interval [0, c].

• J(t), which takes a value from 0 to ∞, represents the number of requests in
the orbit at time t.

Service times are exponentially distributed with parameter µ. Clients which
wait in the orbit retrial with rate ν (i.e.: the inter-repetition times are expo-
nentially distributed with parameter ν). As a consequence, the system is mod-
eled by Continuous Time Markov Chain (CTMC) Y = {I(t), J(t)} with state
space {0, 1, . . . , c} × {0, 1, . . .}. We denote the steady state probabilities by πi,j =
lim
t→∞

Prob(I(t) = i, J(t) = j), and introduce vj = (π0,j , . . . , πc,j).

The evolution of Y is driven by the following transitions.

(a) Aj(i, k) denotes a transition rate from state (i, j) to state (k, j) (0 6 i, k 6

c; j = 0, 1, . . .), which is caused by either the departure or the arrival of
customers. Matrix Aj is defined as the matrix with elements Aj(i, k).

Aj = A =















0 λ(1 − ω) λ(1 − ω)ω . . . λ(1 − ω)ωc−1

µ 0 λ(1 − ω) . . . λ(1 − ω)ωc−2

...
...

...
...

...
...

...
0 0 . . . (c− 1)µ 0 λ(1 − ω)
0 0 . . . 0 cµ 0















∀j > 0.
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(b) Bj,s(i, k) represents s-steps upward transition from state (i, j) to state (k, j+
s) (0 6 i, k 6 c; s > 1; j = 0, 1, . . .), which is due to the arrival of customers.
In the similar way, matrix Bj,s (Bs) with elements Bj,s(i, k) is defined as

Bj,s = Bs =















0 0 0 . . . 0 0 λ(1 − ω)ωs+c−1

0 0 0 . . . 0 0 λ(1 − ω)ωs+c−2

...
...

...
...

...
...

...
0 0 . . . 0 0 λ(1 − ω)ωs

0 0 . . . 0 0 λ(1 − ω)ωs−1















∀j > 0; s > 1.

(c) Cj(i, k) is the transition rate from state (i, j) to state (k, j − 1) (0 6 i, k 6

c; j = 0, 1, . . .), which is due to the successful retry from the orbit. Matrix
Cj (∀j > 1) with elements Cj(i, k) is written as

Cj = C =















0 ν 0 . . . 0 0 0
0 0 ν . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 ν
0 0 . . . 0 0 0















∀j > 1.

DA and DC denotes diagonal matrices whose diagonal elements are the sum of
the elements in the row of A and C. The following matrices are also introduced,

A∗ = A−DA,

Λ = Diag[λωc, . . . , λω, λ].

3. A Computational Procedure

For j > 1, the balance equations are written as follows

j
∑

s=1

vj−sBs + vj

[

A∗ − Λ −DC
]

+ vj+1C = 0.

For j > 2, we have

j−1
∑

s=1

vj−1−sBs + vj−1

[

A∗ − Λ −DC
]

+ vjC = 0,

therefore,

vj−1B1 + vj

[

A∗ − Λ −DC
]

+ vj+1C − vj−1

[

A∗ − Λ −DC
]

ω − vjCω = 0,

vj−1(B1 −
[

A∗ − Λ −DC
]

ω) + vj(
[

A∗ − Λ −DC
]

− Cω) + vj+1C = 0.
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So, we arrive at the Quasi-Birth-and-Death (QBD) form as follows

vj−1Q0 + vjQ1 + vj+1Q2 = 0 (j > 2), (3.1)

where Q0 = (B1 −
[

A∗ − Λ −DC
]

ω), Q1 = (
[

A∗ − Λ −DC
]

− Cω), Q2 = C.
Note that Q(x) = Q0 + Q1x + Q2x

2 is defined as the characteristic matrix poly-
nomial associated with equations (3.1). Due to the QBD form, the steady state
probabilities can be obtained with the existing methods like the matrix-geometric
and its variants [6, 11, 15], and the spectral expansion [13]. However, the existing
methods have the numerical problem (no results due to a very long-running time
of computer programs implementing these methods) when c is large (the problem
starts when c reaches a value of several hundreds). Therefore, in what follows we
present a fast computational procedure to find the steady state probabilities.

We have

Q(x) =








q11(x) (ω − x)(λ(−1 + ω) − νx) . . . λ(−1 + ω)ωc−2(ω − x)
µ(x − ω) q2,2(x) . . .

0 2µ(x − ω) (ω − x)(λ(−1 + ω) − νx)

.

.

.

.

.

.

.

.

.

.

.

.

0 (c − 1)µ(x − ω) qc,c(x) x(λ − λω + ν(−ω + x))
0 0 cµ(x − ω) qc+1,c+1(x)









where

q1,1(x) = (λ+ ν)(ω − x),

qi,i(x) = (λ+ iµ+ ν)(ω − x) (i = 2, . . . , c),

qc+1,c+1(x) = λ+ cµ(ω − x) − λx.

The steady state probabilities are closely related to the eigenvalue-eigenvector pairs
(x,ψ) of Q(x), which satisfy ψQ(x) = 0 and det[Q(x)] = 0 (c.f. [13]). Thus, the
straightforward way to obtain the steady state probabilities is to find the eigenval-
ues of Q(x) (see [5] for the methodology to find the eigensystem of the characteristic
matrix polynomial). However, there exists an efficient method.

It is easy to see that Q(x) has c eigenvalues of value ω. The corresponding inde-
pendent eigenvectors for c eigenvalues are ψ1 = {1, 0, . . . , 0}, ψ3 = {0, 1, 0, . . . , 0},
. . ., ψc = {0, 0, . . . , 1, 0}. Note that if the system is ergodic, then the number of
eigenvalues of Q(x), which are inside the unit disk, is c+1. Therefore, Q(x) should
have another eigenvalue called x0 inside the unit disk. Let ψ0 the corresponding
left-hand-side eigenvector of Q(λ) for the eigenvalue x0.

As a consequence, the steady state probabilities can be expressed as follows

vj = b0ψ0x
j
0 + ωj

c
∑

i=1

biψi (j > 1)

= b0ψ0x
j
0 + ωjb, (3.2)

where bi are the coefficients to be determined and b =
c

∑

i=1

biψi = {b1, b2, . . . , bc, 0}.
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Since the probabilities are greater than or equal to zero, 0 < x0 < 1 holds.
Furthermore, x0 6= ω should hold to ensure that (c, j) states are reachable. It is
observed that the key step towards the steady state probabilities is to determine
x0 and the corresponding eigenvector ψ0.

Theorem 3.1. 0 < x0 < 1 is the root of lc+1(x), the last diagonal element of L(x)
when we make the LU decomposition of Q(x) = L(x)U(x).

Proof. Since Q(x0) is a tridiagonal matrix and qi,i(x0) 6= 0, the component ma-
trices of the LU decomposition of Q(x0) are written as

L(x0) =















l1(x0) 0 0 . . . 0 0 0
µx0 l2(x0) 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . (c− 1)µx0 lc(x0) 0
0 0 . . . 0 cµx0 lc+1(x0)















,

U(x0) =















1 u1,2 . . . u1,c−2 u1,c u1,c+1

0 1 u2,3 . . . u2,c u2,c+1

...
...

...
...

...
...

...
0 0 . . . 0 1 uc,c+1

0 0 . . . 0 0 1















,

where

l1(x0) = q1,1(x0) = (λ+ ν)(ω − x),

u1,i = q1,i(x0)/l1(x0) (i = 2, . . . , c+ 1),

uj,i = (qj,i(x0) − qj,j−1(x0)uj−1,i)/lj(x0); (i = 2, . . . , c+ 1; j = 2, . . . , i− 1),

li(x0) = qi,i(x0) − qi,i−1ui−1,i (i = 2, . . . , c+ 1).

Therefore, the determinant of Q(x0) is expressed as

Det[Q(x0)] = Det[L(x0)]Det[U(x0)] =

c+1
∏

i=1

li(x0) (3.3)

As the consequence of equation (3.3), we have li(x0) 6= 0 (1 < i 6 c). Hence,
Det[Q(x0)] = 0 follows lc+1(x0) = 0. �

It is also easy to prove that lc+1(0) is positive and lc+1(1) is negative. Therefore,
a bisection algorithm in Figure 1 can be proposed to determine x0 and ψ0 =
{ψ0,1, ψ0,2, . . . , ψ0,c+1}.

In what follows, we present a method to determine b and b0. First, we prove
that b = 0 holds. We have ψ0Q(x0) = 0 because (x0,ψ0) is a eigenvalue/vector
pair of Q(x). This means,

ψ0(B1 − [A∗ − Λ −DC ]ω + x0([A
∗ − Λ −DC ] − Cω) + x2

0C) = 0.
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Algorithm 1 Bisection algorithm to determine x0 and the calculation of ψ0

Initialize the required accuracy ǫ
x0,u = 1.0, x0,d = 0
repeat

x0 =
x0,u+x0,d

2
calculate lc+1(x0) based on equation (3.3)
if lc+1(x0) > 0 then

x0,d = x0

else

x0,u = x0

end if

until |lc+1(x0)| < ǫ
ψ0,1 = 1
for i = 1 to c do

ψ0,i+1 =
∑

i
j=1 ψ0,iqj,i(x0)

iµ(ω−x0)

end for

return x0, ψ0

After a simple algebra, we obtain

ψ0B1 + (x0 − ω)ψ0([A
∗ − Λ −DC ] + Cx0) = 0. (3.4)

ψ0B1 is a row vector with the first c zero-elements because B1 is the matrix with
the last nonzero-column. Therefore, due to (3.4), vector ψ0([A

∗ −Λ−DC ] +Cx0)
should have the first c elements equal to zero.

We can write the balance equation for level 0 as

v0 [A∗ − Λ] + v1C = 0,

which follows

v0 = v1C[Λ −A∗]−1 (3.5)

= (b0ψ0x0 + ωb)C[Λ −A∗]−1.

Substituting (3.5) into the balance equation for level J = 1,

v0B1 + v1

[

A∗ − Λ −DC
]

+ v2C = 0,

we obtain
v1(C [Λ −A∗]

−1
B1 +

[

A∗ − Λ −DC
]

) + v2C = 0.

Using (3.2), we get the following expression for b after some algebraic steps

(b0ψ0x0 + ωb)(C[Λ −A∗]−1B1 +
[

A∗ − Λ −DC
]

) + (b0ψ0x
2
0 + ω2

b)C = 0,

b0ψ0x0(C [Λ −A∗]
−1
B1 +

[

A∗ − Λ −DC
]

+ x0C)+
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ωb(C [Λ −A∗]−1B1 +
[

A∗ − Λ −DC
]

+ ωC) = 0,

−b0ψ0x0(C[Λ −A∗]−1B1 +
[

A∗ − Λ −DC
]

+ x0C) =

ωb(C[Λ −A∗]−1B1 +
[

A∗ − Λ −DC
]

+ ωC),

b = −(b0/ω)ψ0x0(C[Λ −A∗]−1B1 +
[

A∗ − Λ −DC
]

+ x0C)

(C(Λ −A∗)−1B1 + (A∗ − Λ −DC) + ωC)−1.

It is observed that ψ0x0C[Λ − A∗]−1B1 is a row vector with the first c elements
equal to zero because B1 is the matrix with the last nonzero-column and recall
that vector ψ0([A

∗ − Λ − DC ] + Cx0) has the first c elements equal to zero. As
consequence b is the vector with the first c elements equal to zero, which means b

is a zero-vector.
To determine coefficient b0, we use the normalisation equation

1 =

c
∑

i=0

∞
∑

j=0

πi,j = v0e +
b0x0

1 − x0
ψ0e = b0x0ψ0C[Λ −A∗]−1

e +
b0x0

1 − x0
ψ0e.

4. Numerical Example

The proposed procedure is implemented in Mathematica (http://www.wolfram.
com). We compare our algorithm and the solution of equation det[Q(x)] = 0 (i.e.:
the direct way to determine the eigenvalues of the characteristic polynomial) with
the following parameter values ν = 20, ω = 0.26, λ = 2.3 and µ = 1.0. It is observed
that our algorithm gives a correct result for root x0 for all cases, while the direct
solution of equation det[Q(x)] = 0 in Mathematica using a built-in function is not
always correct.

• The built-in function of Mathematica finds that det[Q(x)] has roots x→ 0.26,
x→ 0.26, x→ 0.26, x→ 0.26, x→ 0.859258, x→ 1 and x→ 10.3527 when
c = 4 holds. Our algorithm finds x0 equal to 0.859258.

• With the built-in function of Mathematica det[Q(x)] has roots x → 0.26 −
1.63875 · 10−7i, x → 0.26 + 1.63875 · 10−7i, x→ 0.26, x→ 0.26, x→ 0.26,
x→ 0.736433, x→ 1, x→ 5.93992 and x→ 55.9869 when c = 5 holds. Note
that Q(x) does not have a complex eigenvalue in this case. Our algorithm
results in x0 = 0.736433.

The numerical results confirm a claim that we have developed a numerically stable
algorithm for the solution the CPP/M/c retrial queue.
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