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Abstract and Keywords

This article examines the controversy between Isaac Newton and Gottfried Wilhelm 
Leibniz concerning the priority in the invention of the calculus. The dispute began in 
1708, when John Keill accused Leibniz of having plagiarized Newton’s method of fluxions. 
It will be shown that the mathematicians participating in the controversy in the period 
between 1708 and 1730—most notably Newton, Leibniz, Keill, and Johann Bernoulli—held 
different conceptions of mathematical method. The dispute began in a political climate 
agitated by the Hanoverian succession and was intertwined with tensions dividing the 
Royal Court. It developed into a discussion of technical issues concerning the relation 
between mathematics and natural philosophy and the methods of the integral calculus.

Keywords: method of fluxions, calculus, integral, Gottfried Wilhelm Leibniz, John Keill, Johann Bernoulli, 
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Introduction: On Priority Controversies
Among all the controversies that have punctuated the development of early-modern 
science, few are so infamous as the calculus priority dispute that in the first decades of 
the eighteenth century opposed the president of the Royal Society, Isaac Newton, and the 
counsellor of the Dukes of Hanover, Gottfried Wilhelm Leibniz. The debate was received 
by the Republic of Letters as one concerning priority of invention and, as such, was 
studied by historians until very recently.1 At first sight, such a point of view is 
straightforward and approachable on the basis of factual evidence. The ability to access 
manuscript sources with unprecedented completeness and reliability allows twenty-first 
century historians to reach a consensus. Newton was the first to discover the method of 
series and fluxions, in the mid-1660s. During his stay in Paris in 1672–1676, Leibniz 
independently discovered the differential and integral calculus, which he first printed in a 
journal of his own founding, the Acta Eruditorum, in the 1680s. The heart of the matter 
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consists in these apparently simple facts: Newton was the first discoverer, Leibniz the 
first to publish the discovery.

Yet this simple factual scenario immediately becomes far murkier when we ask ourselves 
questions concerning the equivalence of the two mathematical tools, and indeed the 
range of means of publication available to historical actors. It is far from evident whether 
the two calculi are one and the same thing. Furthermore, Newton, as was customary in 
his age, had circulated information about series and fluxions within his circle of 
correspondents in the 1670s. The discovery and publication of the calculus are highly 
complex historical events: this complexity becomes opaque when the question of priority 
of invention is asked in an overly simplistic, forensic manner.

Questions of credit and merit polarize the attention of scientists, as Robert Merton 
observed long ago, because they are related to norms of intellectual property that are 
accepted as moral obligations within the institution of science (Merton 1957). The priority 
dispute has often been studied by historians who shared these very same moral norms. 
Such an historiographical standpoint is pervasive. We thus have extensive debates—as 
sterile as they are misguided—about who discovered the law of inertia first, who should 
be credited as the first to have introduced the second law of motion, or who first proved 
the fundamental theorem of the calculus.

A historiography polarized on questions of credit attribution constitutes a delusion on two 
grounds. First, it fails to appreciate the semantic complexity of the laws and theorems it 
claims to study, since it reduces them to well-defined items that can be discovered by a 
single individual. And second, it fails to grasp the eminently social dimension of scientific 
discovery. Nowadays, most historians think that there is no single mathematician who can 
be credited with the discovery of the calculus. They would agree that neither Newton nor 
Leibniz “discovered” the calculus. Rather, the accepted view is that both Newton and 
Leibniz contributed, each in his own way, to a process that was begun by earlier 
generations of mathematicians and was concluded by posterity: the result of this long, 
nonlinear process is the calculus as we know it today. Moreover, Newton’s method of 
series and fluxions and Leibniz’s differential and integral calculus are not described in 
current historical narratives as one and the same thing, but rather as two formalisms that 
differ in the definitions of their basic concepts as well as in their algorithmic peculiarities.

Notwithstanding present-day historians’ awareness of such complexities, the “Newton-
Leibniz calculus dispute” is often still studied as a matter of “thrust and parry” between 
two great combatants: one, the first to discover “the” calculus; the other, the first to 
publish it. Thus, the narrative of the calculus priority dispute is often dominated by two 
towering leading figures. In this chapter, we will steer clear of this perspective and 
devote attention not only to Newton and Leibniz, but also to lesser actors, all too often 
described simply as acolytes fighting for one of the two great masters. We will study how 
mathematicians aware of the confrontation between Newton and Leibniz positioned 
themselves with respect to this infamous quarrel, how they used it for their own 
purposes, and how they viewed the object at stake in the controversy. The calculus 
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controversy indeed mobilized the European Republic of Letters at large and was 
discussed—sometimes with passion, sometimes with disenchantment—in salons and 
academies, coffee shops and princely courts. This chapter concentrates on those 
mathematically trained actors who could follow the technicalities of the debate. As we 
shall see, their reactions to the calculus controversy hint at their agendas, and at their 
views concerning mathematical method.

John Keill Attacks Leibniz
The spark that set fire to the priority dispute between Newton and Leibniz was a 
statement published in the September-October 1708 issue of the Philosophical 
Transactions of the Royal Society. The offending passage appeared in a paper by John 
Keill, a Scottish mathematician based in Oxford. Keill, in his letter addressed to Edmond 
Halley, after extensively using the characteristically Newtonian fluxional terminology and 
dot notation, wrote:

All these things follow from the nowadays highly celebrated arithmetic of fluxions, 
which Mr Newton beyond any shadow of doubt first discovered, as any one 
reading his letters published by Wallis will readily ascertain, and yet the same 
arithmetic was afterwards published by Mr Leibniz in the Acta Eruditorum having 
changed the name and the symbolism.

(Keill 1708b, p. 185)2

As we shall see, Leibniz, as a fellow of the Royal Society, felt fully entitled to request a 
formal apology for this “most impertinent accusation” published in the society’s official 
journal (Newton 1959–1977, V, p. 97).

There are two things that are often forgotten about Keill’s infamous letter to Halley. First, 
its main purpose was to provide a fluxional treatment of the inverse problem of central 
forces, a fundamental problem for Newton’s mathematical natural philosophy that was at 
the top of the agenda for the most advanced practitioners of calculus.3 The question of 
how to deal with central force motion mathematically was to be bitterly debated between 
Keill and Johann Bernoulli, among others, in the ensuing years (see the section “The 
Inverse Problem of Central Forces”). Second, the paper on central forces was not the only 
one authored by Keill to appear in the 1708 volume of the Philosophical Transactions.
Keill had already engineered another bombshell that was to arouse criticism, starting 
with a rejoinder from Christian Wolff, the eminent Leibnizian philosopher based in Halle. 
Keill’s first paper (included in the May-June issue) was an attempt to deal with matter 
theory in terms of interparticulate forces (Keill 1708a, 1710; Wolff 1710).

John Keill was born in Edinburgh in 1671. Through his mother, Sarah Cockburn, he was 
related to a family of Scottish Episcopalians who actively opposed the Presbyterian policy 
enforced in Scotland after the Glorious Revolution. Most probably because of the 
unfavorable political situation in Scotland, in 1694, Keill moved to the University of 
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Oxford, where Tories could find a more hospitable environment. Once in Oxford, he 
rejoined David Gregory (a nephew of the great mid-seventeenth century mathematician 
James Gregory), whose teaching in Newtonian philosophy he had already followed at the 
University of Edinburgh. Gregory, who also had left Scotland because of his ties to 
opponents of William and Mary’s accession to the throne, was one of the first to adopt the 
natural philosophy of Newton’s Principia. Early in 1687, he began writing a detailed 
commentary on the magnum opus, just after being appointed Professor of Mathematics at 
the University of Edinburgh.4 It is thanks to Newton’s recommendation that, in 1691, he 
was elected Savilian Professor of Astronomy in Oxford. Gregory and Keill belonged to a 
group—also including John Keill’s younger brother James, John Freind, William Cockburn, 
George Hepburn, John Craig and Colin Campbell—that Anita Guerrini in a classic paper 
dubbed the “Tory Newtonians” (Guerrini 1986). This group displayed a certain political 
and religious homogeneity: in broad brushstrokes, one might say that they shared 
political sympathies for the Tories. Some of them were also united by a certain degree of 
family kinship, and by their common fate of having been compelled to leave Presbyterian 
Scotland. Preeminent witin this group was Archibald Pitcairne, a leading Edinburgh 
physician with strong ties to Leiden, where he had taught medicine for a short time. 
Indeed, a major interest of all the members of Gregory and Pitcairne’s circle was a theory 
of matter based on interparticulate forces aimed at explaining physiology. They were keen 
to identify this theory (known, as “iatro-mathematics”) as Newtonian.

The members of the group who most actively contributed to mathematics were Craig, 
Gregory, and John Keill. Their mathematical production is often a hybrid of Newtonian 
and Leibnzian influences, or more broadly of English and Continental ones.5 The period 
between the 1690s and early 1700s was one in which Newtonian mathematics was an 
extremely volatile concept. Newton had circulated his ideas via correspondence, and 
some of his work on fluxions had appeared in print in Wallis’s Opera (1693–1699), but it 
was difficult to grasp in what his contribution consisted, whereas Leibniz’s calculus was 
accessible in print in the Acta Eruditorum and the Mémoires of the Paris academy, to 
which the brothers Bernoulli had already contributed several papers. Consequently, many 
mathematicians in Britain, and especially in Scotland, relied upon the Leibnzian calculus 
as published in the Acta. Most notably, in 1685, John Craig had published a short treatise, 
written in Leibniz’s notation, on the quadrature of curvilinear figures in which Newton’s 
contributions were mentioned only in passing (Craig 1685). Craig continued to use the 
differential and integral notation in papers published in the Philosophical Transactions
until 1708. Meanwhile, David Gregory was claiming for himself a theorem on quadratures 
that Newton had privately communicated to Leibniz in the epistola posterior, dated 
October 24, 1676, and to Craig, who had visited Newton in his rooms at Trinity in 1685. It 
seems likely that it was through Craig that the theorem had passed into Gregory’s hands. 
In 1688, Archibald Pitcairne had published the theorem attributing it to Gregory 
(Pitcairne 1688).6

This notwithstanding, Gregory was able to maintain more than cordial relations with 
Newton: after a momentous visit to Cambridge in May 1694, he became one of Newton’s 
most faithful acolytes. After May 1694, for reasons that are still unclear, Gregory was 
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allowed unlimited access to Newton’s most secret manuscripts, including those 
pertaining to the wisdom of the ancients. As a mathematician and astronomer, Gregory 
showed particular interest—as his Memoranda reveal—in two topics of Newtonian 
research: quadratures and the project for a second edition of the Principia. These are two 
related fields of enquiry, as Newton was thinking of adding an appendix on quadratures to 
the Principia where the reader was to be given details on how the squaring and 
rectification of curves could be used in the mathematization of natural philosophy.7 For a 
while, Gregory entertained hopes to be the editor of the second edition.

His Newtonian inclinations notwithstanding, Gregory based much of his mathematical 
research on the papers by the Bernoullis published in the Acta. Indeed, the manuscript 
treatise on fluxions that Gregory circulated in the mid-1690s reveals, even from the title, 
the hybrid character of his mathematical background.8 Because of his first-hand 
knowledge of Newton’s still largely unpublished mathematical work, his Notæ to the 

Principia, his mid-1690s treatise on fluxions and his treatise on astronomy (Gregory 
1702), Gregory acquired a high mathematical reputation. Yet he suffered a setback when, 
in a paper published in the Philosophical Transaction for 1697 (Gregory 1697), he 
attempted an alternative solution of the catenaria problem posed by Jacob Bernoulli in 
1690.9 This is the topic Johann Bernoulli chose in 1691 when, on a visit to Paris, he 
positively impressed the French Oratorians gathered around Nicolas Malebranche by 
determining the shape of a free-hanging chain (the catenaria) via the integration of a 
differential equation. The solution of the catenaria problem was a typical instantiation of 
the power of the Leibnizian algorithm: the problem had been attempted unsuccessfully 
since Galileo’s times. The Pisan’s suggestion that the solution might be approximated by 
a parabola was deemed unsatisfactory. Bernoulli showed that by introducing a 
representation of the forces acting on an element of the curve in terms of infinitesimals 
and by employing Leibniz’s notation, one could get a differential equation. He obtained 
the solution in terms of transcendental curves (see Figure 1). The above characteristics of 
Bernoulli’s solution should be underlined: Leibniz’s nova methodus showed all its strength 
in the integration of differential equations in terms of what nowadays we would call 
transcendental functions. The fact that Gregory’s solution was faulty (he achieved the 
correct differential equation but via the wrong reasoning) was stigmatized, albeit in a 
polite form, by Leibniz in an anonymous review in the Acta.10 Leibniz opined that 
Gregory’s failure was due to the inferiority of Newton’s method compared to his own, and 
Gregory attempted a rebuttal (Leibniz 1699, Gregory 1699).
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Figure 1  Tav. VII, Figure 1 in (Leibniz 1691, 278). A 
modernized solution of the catenaria problem 
inspired by Johann Bernoulli’s lengthy calculation is 
provided in (Hairer and Wanner 2008, 136–137). One 
seeks the shape of a flexible, non-extensible, 
homogeneous chain subject to constant gravitation. 
The chain will be in equilibrium when cdy = sdx, 
where x and y are the abscissa and the ordinate of 
the curve, and s is the arc-length calculated from the 
lowest point. Introducing the variable p = dy/dx, 
after differentiation one obtains cdp=ds=1+p2dx, a 
differential equation whose variables p and x are 
separable. The integration is now easy: p = sinh((x − 
x )/c) and y = K + ccosh((x − x )/c). The figure here 
reproduced is taken from Leibniz’s paper in Acta 
Eruditorum (1691). One can see the shape of the 
catenaria and the exponential curve.

Thus, behind Keill’s attack 
one may discern a complex 
web of motivations, all 
pointing against Leibniz. 
Keill, as a faithful student 
of Gregory, might have had 
the catenaria setback in 
mind when he decided to 
launch an anti-Leibnzian 
attack with his paper on 
central forces. The paper 
on matter theory was 
instead meant to provide 
mathematical support for 
Pitcairne’s and his brother 
James Keill’s iatro-
mathematical theories, 
which were at odds with 
Leibniz’s and Wolff’s 
philosophy and physiology. 
Lastly, one should not 
forget that the group Keill 
belonged to had good 
reasons to frown upon the 
political events preceding 
the Hanoverian 
succession. Leibniz, as we 
shall see in the section 
“Newton engineers the 

Commercium”, was close to the German Elector destined after the Act of Settlement 
(1701) to ascend to the throne of Great Britain and Ireland (1714).

Newton Engineers the Commercium
On December 18/29, 1711, Leibniz demanded that the Royal Society protect him from the 
“empty and unjust braying” of such an “upstart” as Keill (Newton 1959–1977, V, p. 207). 
Consequently, a committee of the Royal Society, appointed on March 6, 1712, and secretly 
guided by its president, Isaac Newton, produced a detailed report based on letters in the 
custody of Newton, of the Royal Society and of the manuscript collector and mathematics 
tutor William Jones. The Commercium Epistolicum ([Newton] 1712) was sketched just 50 
days after the committee’s nomination and distributed free of cost only in January–
February 1713 (N.S.). The committee concluded the Commercium with a “sententia” 
declaring that Newton was the “first inventor” and that “[Leibniz’s] Differential Method is 
one and the same with the Method of Fluxions, excepting the Name and Mode of 

0 0
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Notation.” It was also strongly suggested that Leibniz, after his visits to London in 1673 
and 1676, and after receiving letters and other material from Newton’s friends, and in 
1676 from Newton himself, had gained sufficient information about the method of 
fluxions to allow him to publish the calculus as his own discovery, after changing the 
symbols.11

It is documented by compelling manuscript evidence that Newton was the principal 
author of the Commercium: he wrote the opening “Ad lectorem”; he selected the excerpts 
from the available correspondence; and he wrote the highly tendentious accompanying 
footnotes. What did Newton claim in the Commercium? What’s the thesis he strived to 
substantiate in this infamous collection of letters? These are questions historians are just 
beginning to ask themselves. Since it is far from obvious what one should understand by 
“discovering the calculus”, these questions open some interesting historiographical 
issues. By reading the Commercium and its accompanying anonymous review, the 
“Account” ([Newton] 1715), one learns a great deal about Newton’s point of view in the 
dispute with Leibniz: most notably, one learns what Newton thought about his own 
contribution to mathematics.

Two things should be emphasized. First, Newton did not depict himself as the discoverer 
of a new notation or of the rules of the “direct method of fluxions” (the differential 
calculus). The message that Newton apparently wished to deliver was that the notation 
and the rules of the direct method of fluxions were in essence already the possession of 
mathematicians to which both Newton and Leibniz were indebted: the names of James 
Gregory, Pierre de Fermat, René- François de Sluse, and Isaac Barrow are cited in this 
context (Guicciardini 2009, pp. 377–379).

Second, Newton claimed that his mathematical prowess and superiority over Leibniz 
consisted in having found new rules for the quadrature of figures via infinite series and in 
having applied these rules to the solution of the “higher problems” (see Figure 2). Briefly: 
in his confrontation with Leibniz, Newton played down the importance of notation and of 
the differential calculus; rather, he stressed the importance of “quadratures” (integration) 
and its applications to natural philosophy.12
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Figure 2  In this footnote to the Commercium
(Newton 1712, p. 86), in commenting on his rules for 
the squaring of curves via infinite series, Newton 
states: “no one doubts that Newton is the first 
discoverer of these rules.” This is the strongest claim 
of priority in the Commercium and might be taken as 
indicative of what was at stake for Newton in his 
confrontation with Leibniz. He communicated one of 
these rules to Leibniz in the epistiola posterior of 
October 24, 1676 (Newton 1959–1977, II, p. 134). 
This method of quadrature was proposed to Leibniz 
as the first of a series of theorems devised in order to
simplify the “speculations concerning the squaring of 
curves”; it is thus known in the literature as the 
prime theorem (the “theorema primum”) on 
quadratures. It was communicated privately to John 
Craig in 1685 and thus reached David Gregory, who 
published it as his own discovery in Pitcairne (1688). 
Fatio communicated it to Huygens in the early 1690s.
The manuscript annotation in Newton’s hand for this 
footnote is in Add. 3968.41: 33r (Cambridge 
University Library).

Newton’s Acolytes Defend Their Master
The position Newton upheld in the Commercium was a shared one within the circle of his 
closest acolytes. For example, Fatio de Duillier, in his correspondence with Huygens, had 
aroused the interest of the great Dutch polymath by communicating Newton’s new 
results on quadratures (see Figure 2), and his emendations and projects for a second 
edition of the Principia. The inverse method of fluxions applied to problems in natural 
philosophy was also the topic Fatio chose to address in the Lineæ Brevissimi Descensus 
Investigatio Geometrica Duplex (1699), which dealt—in terms of Newton’s fluxional 
techniques—with the brachistochrone problem and, in an appendix, with the solid of least 
resistance (a topic Newton broached in Book 2 of the Principia).13 Fatio’s Investigatio also 
contained a rude accusation of plagiarism directed at Leibniz. This episode was dealt with 
diplomatically, and the case was soon silenced. Via Wallis, Leibniz received reassurance 
from the president of the Royal Society, Hans Sloane, that Fatio had obtained the 
imprimatur of the Royal Society by means of trickery (Hall 1980, p. 121).
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The case of Abraham De Moivre can also be cited in this context. The Huguenot refugee 
entertained a rather tense correspondence with Johann Bernoulli concerning a formula 
for central force motion, a Newtonian contribution that appeared particularly promising 
for dealing with central forces in fluxional terms via the representation of the radius of 
curvature of the orbit (see Figure 3).

During the 1690s and the early 1700s, Newton and his acolytes were circulating an image 
of their mathematical contribution that gave pride of place to quadratures and 
applications of the fluxional method to natural philosophy.

Leibniz vs. Newton

Leibniz Reads the Commercium

When Leibniz managed to get his hands on the Commercium, he was simply mystified. In 
his opinion, the authors of the collection of letters had provided no evidence whatsoever 
of Newton’s knowledge of calculus. By this he meant an efficient notation and an 
algorithm for the differential calculus. Leibniz held a completely different viewpoint 
compared to Newton’s concerning the essence of his own contribution to mathematics. In 
an attempt to provide an answer to the Commercium, he wrote:

They have changed the whole point of the controversy, for in their publication … 
one finds hardly anything about the differential calculus; instead every other page 
is made up of what they call infinite series…. This is certainly a useful discovery, 
for by it arithmetical approximations are extended to the analytical calculus; but it 
has nothing at all to do with the differential calculus…. Since therefore his 
opponents, neither from the Commercium that they have published, nor from any 
other source brought forward the slightest bit of evidence whereby it might be 
established that his rival used this calculus before it was published by our friend; 
therefore all the things that they have reported may be rejected as extraneous to 
the matter. They have made recourse to the skill of pettifoggers with the purpose 
of diverting attention of judges from the matter on trial to other things, namely to 
infinite series.

(Leibniz (1849–1863), V, pp. 393, 410, my emphasis)
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Figure 3  Diagram for Proposition 6, Book 1, of the 
Principia, 2d ed. (1713). At the turn of the century, 
the Newtonians had achieved a complete 
understanding of how central forces could be 
expressed in terms of fluxions (Guicciardini 1999, pp.
226–228). They employed the following 
representation for a central force F acting on a body 
located at P: F ∝ r/(p  ⋅ ρ), where S is the centre of 
force, r = SP is the radius vector, p = SY is normal to 
the tangent PY at P, and ρ is the radius of curvature 
at P. This formula was systematically employed by 
Newton in the second edition of the Principia, but 
also appears sporadically in the first edition. The 
radius of curvature ρ, expressed in the coordinates r
and p, is: ρ = (r ⋅ ṙ)/ṗ. De Moivre’s formula—as it was 
sometimes called—allows an easy application of 
fluxions to central force motion, since F ∝ ṗ/(p  ⋅ ṙ).
When De Moivre showed the formula to Newton, 
Newton replied that he had already obtained a 
similar formula, as De Moivre wrote to Johann 
Bernoulli (Newton 1967-1981, VI, p. 548) in 1705. In 
1706, in a reply to De Moivre, Johann Bernoulli 
presented his own demonstration of the formula by 
publishing it, without acknowledging De Moivre’s 
priority, in (Bernoulli 1710). Meanwhile, De Moivre 
had communicated his results to the Oxford group 
composed of Edmond Halley, David Gregory, and 
John Keill. David Gregory’s own proof of De Moivre’s 
result is in “Codex E” in Christ Church, Oxford MS 
346 (manuscript dated 1707). Varignon had already 
published an equivalent result in (1701). In his 
(1708b) paper on central forces John Keill made use 
of this fluxional representation of central force.

The argument adopted in 
the Commercium struck 
Leibniz as simply a clever 
way to shift the attention 
to another topic—infinite 
series and quadratures—in 
order to avoid a fair 
confrontation. For Leibniz, 
whose greatest ambition 
was the construction of a 

characteristica universalis
(a general algorithm 
capable of subjecting any 
reasoning to algebraic 
manipulations), it was 
obvious that the issues at 
stake in the “discovery of 
the calculus” were not the 
rules for squaring curves 
via infinite series Newton 
boasted about, but rather 
the notation and the rules 
for the differential calculus 
he had published first in 
1684. One may surmise 
that what must have 
positively struck Leibniz 
about the differential 
calculus is that a whole 
class of problems 
concerning tangents, 
curvatures, and so on, had 
been reduced to an 
algorithm, to a symbolic 
method that could be 

applied blindly by manipulating symbols. The integral calculus was, of course, considered 
by him an important aspect of the new analytic method, but Leibniz was conscious that it 
had not been developed into a general method. There was no general algorithm for the 
integral calculus (and the situation has not changed since). In order to square or rectify 
curves, or in order to integrate differential equations, one had—and still has—to make 
recourse to a plurality of partial strategies in which the inventiveness of the algebraists 
plays an important role. The integral calculus was a craft, not an algorithm. As we shall 
see in the section “ Johann Bernoulli Challenges the ‘English Analysts’”, this 
characteristic of the integral calculus that may have worried Leibniz was exactly what 

3

3
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Bernoulli needed in order to aggrandize himself, as he excelled in Europe precisely 
because of his skill in applying this craft. It was a craft that could be learned by 
corresponding with him, or reverently visiting him (as many did, including the Italian 
Giuseppe Verzaglia, the Genevan Gabriel Cramer, the English John Arnold, and the 
French Pierre de Maupertuis) in order to be schooled by exercise and imitation in 
techniques such as separation of variables or integrating factors.

Political Enmities

Leibniz was writing the above lines in Havover, in 1714 on his way back from Vienna, 
where he had spent two years in the service of the Emperor. The philosophical and 
political dimension of the debate between Leibniz and Newton should not escape our 
attention. They disagreed over issues concerning the foundations of the calculus: Newton 
was convinced of the superiority of his method of limits over Leibniz’s mathematical 
practice where infinitesimals occurred.14 They were divided over physical questions such 
as the nature of gravity, time and space, atoms and the void, as well as the issue of which 
quantities are properly conserved by the laws of nature. In short, they were not just 
mathematical opponents: they were philosophical enemies as well. Even in the political 
arena, in which both took on leading roles, their activities only served to fuel their 
intellectual disputes. Little wonder, then, that their purely mathematical differences could 
ignite so much fury (Bertoloni Meli 1993).

Newton had been elected to the Convention Parliament (1689). He was very close to the 
entourage of Charles Montagu (the 1st Earl of Halifax), to the Whigs who had promoted 
the Glorious Revolution. In 1696, he left Cambridge for London, where he became rich 
and powerful as Warden (1696) and Master (1700) of the Mint. In the meantime, Leibniz 
had served as a counsellor to the Emperor and to the Czar, and had long been in the 
service of the Dukes of Hanover. It was also thanks to Leibniz’s diplomatic efforts that 
Duke Ernst August had gained the status of Elector. When his son acceded to the throne 
of Great Britain and Ireland in 1714 as George I, Leibniz planned to cross the English 
Channel. The prospect of having Leibniz—an experienced diplomat and towering 
metaphysician who actively pursued an ecumenical policy of reconciliation between the 
Christian Churches—in London in the capacity of “Historiographer of Great Britain” must 
have been a daunting one for Newton’s party, which rather favored anti-Catholicism and 
an interpretation of the Anglican faith difficult to reconcile with Lutheranism. After 
Sophia’s death in June 1714, Leibniz had the Princess of Wales initially on his side in 
London. But the Newtonian entourage (most notably, Samuel Clarke) could divert 
Caroline’s sympathies. Leibniz was not allowed by the King—who, unlike his mother, 
Sophia, was never on good terms with his polymath courtier—to join the English court 
and died in bitter isolation in 1716. The Leibniz-Clarke correspondence has its origin in 
this context, and the calculus controversy too is intertwined with these manoeuvres at 
court (Bertoloni Meli 2002). Leibniz was certainly aware of the political dimension of his 
polemic with Newton. The public exchange of letters between Leibniz and Clarke indeed 
began with Leibniz expressing his doubts to Caroline about the religious orthodoxy of the 
Newtonians, which he vaguely, at some point, identified as Socinians (Bertoloni Meli 
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1999, 486). In his correspondence with Thomas Burnet, Leibniz shared the conjecture 
that the members of the Royal Society committee had treated him badly because of their 
Tory sympathies (Hall 1980, p. 166). He was, of course, wrong as far as Clarke and 
Newton were concerned, yet the group Keill belonged to had indeed Tory leanings: 
Leibniz’s political radar was not entirely malfunctioning.

Johann Bernoulli Suggests a Strategy to Leibniz

The Basel mathematician Johann Bernoulli was soon to play a major role in the 
confrontation between Newton and Leibniz. He was one of the few mathematicians in 
Europe who could measure up to the two main combatants. As we shall see, he provided 
Leibniz with mathematical expertise that proved crucial in contesting Newton’s claims in 
the Commercium. However, it would be reductive to depict him as Leibniz’s watchdog. 
His ambitions were much higher than that. As we shall see in the section “Bernoulli 
Claims the Integral Calculus”, Bernoulli’s claims concerning the originality and 
importance of his mathematical contributions were immense and expressed in a way that 
even challenged Leibniz’s supremacy in the field of integration.

Born into a family faithful to the principles of the Reformed Church, Bernoulli got 
embroiled in theological issues when he was teaching mathematics in Groningen (1695–
1705). However, in his subsequent dealings with other members of the Republic of 
Letters, he mostly presented himself as a professional mathematician who could promote 
his expertise in the new calculus in different political and religious milieux. Even though 
his correspondence is sometimes colored with Protestant rhetoric, he was consistent in 
bracketing philosophical and theological issues out of the professional interests of the 
mathematician. This does not mean that natural philosophy was extraneous to Bernoulli’s 
intellectual biography. On the contrary, his interests spanned from medicine to cosmology, 
including fields like mechanics, hydrodynamics, ship manoeuvring, barometric light, and 
optics. Nevertheless, Bernoulli was inclined to bracket these interests out when he 
practiced mathematics, and by doing so he was, in effect, defining a new professional role 
for the mathematician.15

Copies of the Commericum Epistolicum were distributed free of cost in the early months 
of 1713. Bernoulli’s nephew, Nicolaus I, carried a copy to Basel in the spring, and Johann, 
after consulting it, wrote a momentous letter to Leibniz, dated June 7, 1713 (Newton 
1959–1977, VI, pp. 1–3). In this letter, Bernoulli maintained that in the Commercium 
Epistolicum there was evidence of Newton’s research on series, but no evidence of his 
advancements in the calculus. Further, Bernoulli continued, there was no trace of dotted 
notation in the letters edited in the Commercium Epistolicum and indeed no trace of this 
notation in the Principia, “where he [Newton] must have had so many occasions for using 
his calculus of fluxions.” This would be a clear proof that Newton had discovered the 
calculus after the publication of the Leibnizian calculus in 1684.

Bernoulli continued his letter by pointing out that Newton did not know “the true way of 
differentiating differentials.” In short: Newton, in his opinion, did not know higher-order 
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differentials. The evidence, in his opinion came from a mistake Newton had made in 
Proposition 10, Book 2, of the Principia. Bernoulli claimed that the mistake he had 
spotted was caused by the following: when Newton applied the binomial theorem 
obtaining

he erroneously thought that the second differential of x  was equal to n(n−1)1∙2xn−2, 
that the third differential was equal to n(n−1)(n−2)1∙2∙3xn−3, and so on. This 
interpretation, which appears an absurdity to anyone knowledgeable about Newton’s 
mathematics, was sincerely believed to be true by Johann and Nicolaus I Bernoulli. They 
found confirmation in the Scholium ending the Tractatus de quadratura curvarum (which 
was appended both to the English (1704) and to the first Latin translation (1706) of the 

Opticks), where one could read the statement that the third term of the above series “will 
be its [of x ] second increment or second difference”, the fourth “its third increment or 
third difference” (Newton 1704, p. 207).

After receiving Bernoulli’s incendiary letter, Leibniz circulated a flysheet, the notorious 

Charta volans, dated July 29, 1713 (Newton 1959–1977, VI, pp. 15–17). This was his 
anonymous reply to the Commercium epistolicum. It included the judgement of a “leading 
mathematician most skilled in these matters and free from bias.” The judgement, of 
course, was a slightly edited version of Bernoulli’s technical critique of Newton’s 
supposed misunderstandings of higher-order infinitesimals evinced by Proposition 10, 
Book 2, of the Principia, and from the Scholium to De quadratura.16

Johann Bernoulli Challenges the “English 
Analysts”

Keill’s and Taylor’s Challenges

After the publication of the Commercium and Leibniz’s reply to it, the Charta volans, the 
polemic continued with an intense exchange of papers mostly published in the Journal 
Littéraire and the Acta Eruditorum. As already noted, Wolff criticized James and John 
Keill’s theory of interparticulate forces, a theory that extended Newton’s controversial 
conception of action at a distance to the level of microscopic phenomena.17 In the years 
1713–1720, John Keill conducted a violent campaign to defend Newton against Johann 
Bernoulli’s systematic criticism of the mathematical methods employed in the Principia.
He was backed by Brook Taylor, Abraham De Moivre, and Newton himself (most notably, 
Keill 1714, 1716, 1719; Taylor 1719).

The controversy between Bernoulli and the British was fought mostly behind the scenes, 
via correspondence and private conversations. When it emerged in print, it was often in a 
disguised form: through the circulation of fly-sheets as well as anonymous papers. These 
were often signed by pupils but drafted by their masters, and appeared in several 

(x+o)n=x+n1xn−1o+n(n−1)1∙2xn−2o2+n(n−1)(n−2)1∙2∙3xn−3o3+…,

n

n
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journals, whose editors were far from unbiased. The Acta Eruditorum was, of course, in 
the hands of the Leibnizian party, and Bernoulli corresponded with Johann Burkhard 
Mencke extensively about his remonstrations against Taylor and Keill, whereas Willem ‘s 
Gravesande most probably was responsible for the philo-Newtonian role played by the 

Journal Littéraire.

The debate came close to its end in 1717–1718, when Taylor and Keill, via the 
intermediation of Pierre Remond de Montmort, confronted Bernoulli with two challenges. 
The first concerned an integral of an irrational function that was found in Cotes’s 
Nachlass.18 The second challenge (the ballistic problem) required the determination of 
the trajectory traversed by a projectile fired close to the earth’s surface and assuming a 
resistance proportional to the square of the speed. Bernoulli not only answered both 
challenges, but his (and Nicolaus I’s) solutions to the ballistic problem were clearly 
superior to those (in fact, nonexistent) of the two British mathematicians (J. Bernoulli 
1719, 1721; N. Bernoulli 1719).

The Inverse Problem of Central Forces

Since 1710, Bernoulli had noted (in Bernoulli 1710) that in the Principia a proof that conic 
sections are necessary orbits for a body accelerated by an inverse-square central force is 
lacking. Of course, the so-called inverse problem of central forces is a fundamental one 
for Newton’s gravitation theory. What Newton proved in Section 3, Book 1, is that if the 
orbit is a conic section and the force is directed toward one focus, then the force is 
inverse-square. A proof of the converse is lacking in the first edition of the magnum opus. 
Bernoulli and Jacob Hermann (a pupil of Jacob Bernoulli’s then employed by the 
University of Padua) achieved a proof by integrating the pertinent differential equation 
(see Figure 4) (Bernoulli 1710, Hermann 1710). Bernoulli’s equation was derived from the 
study of central-force motion provided by Newton in Proposition 41, Book 1, as Keill did 
not fail to remark. It is interesting to remark that in the Corollary 3 to this proposition 
Newton provided a geometrical construction of the orbits traversed by a body accelerated 
by an inverse-cube force. As he explained to David Gregory, he had obtained this 
construction by a calculus procedure that closely resembles that deployed by Bernoulli 
for the inverse-square case. The application of quadratures (integration) to central force 
motion was not that foreign to Newton (Guicciardini 2016).
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Figure 4  Detail from Bernoulli (1710), p. 539. 
Translating into algebraic symbols Proposition 41, 
Book 1, of the Principia, Johann Bernoulli obtained 
the differential equation in polar coordinates for 
central-force motion. Today, we are accustomed to 
writing polar coordinates with the symbols r and θ, 
whereas Bernoulli’s coordinates are x = r and z/a = θ
(a constant). If we introduce this more familiar 
notation, taking l to be the angular momentum and E
the energy, then we can rewrite Bernoulli’s equation 
as follows: dθ=ldr/2Er4+2r4∫r∞Fdr−l2r2. For an 
inverse square force ϕ = a g/x , (where g is a 
constant) Bernoulli obtained the following 
differential equation: dz=(a2cdx)/
(xabx2+a2gx−a2c2), which he could integrate by 
substituting variables x=a2/y,  and y=a2g/2c2−w. 
The integral, of course, is the equation for conic 
sections in polar coordinates. It should be noted that 
in the eighteenth century no notation for vectors was 
known. Mathematicians (such as Johann Bernoulli, 
Leonhard Euler, or Joseph-Louis Lagrange) who 
applied calculus to analytic mechanics, by suitably 
choosing the components of motion, obtained scalar 
differential equations.

Bernoulli’s statement that 
a solution of the inverse 
problem was lacking in the
Principia was a 
devastating one. Keill’s 
replies—engineered with 
Newton’s help—are highly 
interesting, since they 
reveal something about 
the values and aims 
adopted by Newton and 
his acolytes and how these 
values contrast with those 
pursued by Bernoulli. Keill 
stated that Bernoulli’s 
integration was long and 
inelegant compared to 
Newton’s geometric 
approach expounded in 
Corollary 1 to Proposition 
13 (expanded in the 
second edition, 1713) and 

Proposition 17, Book 1 (see Figure 5) (Keill 1714, 1716, 1719). Newton had assumed the 
solution as given (i.e., that the orbit was a conic) and then had shown how the parameters 
of the conic orbit could be geometrically determined as a function of initial conditions 
(position and velocity). While Keill stressed that the aim Newton had set himself was the 
construction of an orbit whose nature was assumed as given, Bernoulli replied that only 
the integration of a differential equation provides a method that does not assume the 
solution sought for as given and that can be generalized to other force laws ([Bernoulli] 
1716) (see Guicciardini, 1995).

The Ballistic Problem

Proposition 10, Book 2, was another crux of the Principia that was bitterly debated 
between Keill, Taylor and Bernoulli. In this proposition, Newton dealt with the motion of a 
projectile acted on by constant gravity and moving in a rare fluid exerting a resistance 
proportional to the square of the speed. Johann and Nicolaus I Bernoulli were working 
hard in order to find mistakes in the Principia. A joint paper was soon submitted to the 
Paris Academy: in the main paper by Johann, a mistake in Newton’s proposition was 
noted and an alternative calculus solution was given; in the appendix by Nicolaus I, it was 
stated that this mistake (as we have seen in the section "Johann Bernoulli Suggests a 
Strategy to Leibniz") was due to Newton’s misunderstanding of the meaning of the 
higher-order infinitesimals occurring in the coefficients of a Taylor series (Bernoulli 
1711). Johann’s integration of the differential equation for motion in resisting media 

2 2
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Figure 5  Diagram for Proposition 17, Book 1, of the 
Principia (1687). Newton considers a body of a given 
mass accelerated by a centripetal inverse square 
force directed toward S. The body is fired at P, in the 
direction PR with a given initial speed. Newton 
assumes that the orbit is a conic section and that one 
of the foci is located at the force center S. He 
determines the unique conic that satisfies the given 
initial conditions (position and velocity). This is a 
geometric constructive procedure that allows 
Newton to determine for any initial conditions the 
conic that satisfies the equations of motion. Since for 
any initial conditions such a conic can be 
constructed, and since for any initial conditions the 
orbit is unique, Newton concluded that conics are 
necessary orbits for an inverse-square force. The 
condition of uniqueness was assumed as intuitively 
true: that is, it was taken for granted that if a body is 
fired from a given place with a given velocity, only 
one orbit is possible. Newton and his contemporaries 
were used to tackling geometrical problems through 
the method of analysis, in which one assumes the 
sought-for results as given. Bernoulli accepted the 
cogency of Newton’s reasoning, but favored what he 
called an “a priori” approach in terms of differential 
equations: in this case—Bernoulli contended—the 
solution is found without assuming that the orbits 
are conics. Further, Bernoulli added, the approach in 
terms of differential equations can be generalized to 
other force laws ([Bernoulli] (1716)).

made full use of the techniques in the integral calculus developed some ten years before 
by his brother Jacob and himself (see Figure 6).

The dramatic succession of 
events related to Johann 
Bernoulli’s discovery of a 
mistake in Proposition 10 
has been described many 
times (Newton 1967–1981, 
VIII, p. 48ff). In September 
1712, Nicolaus I Bernoulli, 
Johann’s nephew, arrived 
in London. He met Newton 
and informed him that 
Johann had detected a 
mistake in Proposition 10. 
Newton recognized 
immediately that Nicolaus 
I was right. He was busy 
preparing the second 
edition of the Principia.
Since Roger Cotes had not 
noticed any error in 
Proposition 10, the pages 
with the unaltered 1687 
version were already 
printed. Newton worked 
strenuously in order to 
reach an understanding of 
his mistake and produce a 
correct demonstration. 
Contrary to what the 
Bernoullis thought, his 
mistake was not related to 
a lack of understanding of 
the Taylor coefficients. 

Newton’s mistake consisted in equating two infinitesimal lengths which differ by a third-
order differential: it was a mistake with the geometry of higher-order infinitesimals, not 
with the algebra of the Taylor coefficients.
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Figure 6  Diagram from Bernoulli (1711), 48. In 
1711, Johann Bernoulli studied the motion of a body 
(the mass of which is assumed unitary, m = 1) acted 
upon by a central force F directed toward A and 
moving in a medium exerting a resistance R
proportional to some power of the speed v. In order 
to write the differential equation of motion, Bernoulli 
decomposed the central force into a tangential F
and a normal F  component (the former directed 
along the tangent CE, the latter along the orthogonal
—not so well rendered by the engraver—direction 
Ee). As noted in Figure 4, such decompositions 
allowed eighteenth-century mathematicians to write 
scalar equations of motion (with no need for vector 
magnitudes). For the normal component the equation 
is FN=ν2/ρ, since no resistance acts normally to the 
direction of motion. For the tangential component 
Bernoulli wrote −dν=FTdt±Rdt. For a resistance 
proportional to a power of the speed, R=ςνn, the 
resulting nonlinear equation (still called Bernoulli 
equation) could be integrated by seeking a solution 
in the form of the product of two unknown functions 
v = m(r)n(r). This powerful integration technique 
gives a measure of the excellency of the Basel school 
in the theory of differential equations. For details see
Guicciardini (2013), pp. 257–259.

Keill replied to the 
Bernoullis’ attack 
concerning Proposition 10 
by attempting to prove 
that it was Leibniz who 
had made mistakes with 
higher-order infinitesimals 
in the Tentamen de 
motuum coelestium causis
(1689). Further, Keill 
inflamed Newton’s anger 
by insinuating in his 
correspondence with the 
President of the Royal 
Society that Leibniz’s 
mathematical treatment of 
planetary motions in the 

Tentamen was just the 
result of the skillful 
German philosopher’s 
reverse engineering of the 

Principia. Leibniz always 
denied that he had read 
the Principia before 
writing his essay in which 
he tried to offer a 
mathematical treatment of 
the planetary system 
based not on distant-action 
gravitation, but on the 
contact-action of a 
planetary vortex. Nico 
Bertoloni Meli has proven 
that Keill and Newton 
were indeed right in being 

suspicious (Bertoloni Meli 1993). It was important for them to prove that Leibniz—whom 
they considered just a plagiarist—had got the mathematics wrong.19 Leaving the 
technical details of this dispute aside, it is certainly noteworthy that so much interest was 
shown in the techniques for handling higher-order infinitesimals. The ability to deal with 
second- and third-order infinitesimals was perceived by both parties as a way to identify 
those who were in possession of the “new” method. The moral of this debate is that 
geometrical intuition can be a source of errors in dealing with higher (especially higher 
than second-order) infinitesimals (see Figure 7). The control of the level of approximation 

T
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Figure 7  Diagram for Proposition 10, Book 2, of the 
Principia, 2d ed. (1713). In the study of projectile 
motion in resisting media, Newton needed to take 
into consideration third-order infinitesimal elements 
of the trajectory. In the corrected version of this 
proposition (1713), he subdivided the abscissa into 
equal intervals BC = CD = DE = o. The infinitesimal 
arcs GH and HI, are first-order infinitesimals. The 
deviation from inertial motion NI is a higher-order 
infinitesimal. In his study of central motion in a void 
(Book 1), a second-order approximation of NI was 
sufficient, thus any curve that makes second-order 
contact with the trajectory (for example, the 
osculating circle) can be substituted for the actual 
trajectory. Such an approximation can be achieved 
geometrically (e.g., by constructing the osculating 
circle). In the case of motion in a resisting medium, 
the approximation must be pushed to third-order, 
and it is unclear how to proceed by geometrical 
means in this case. Indeed, Newton’s geometrical 
intuition (in the 1687 edition) was—in this particular 
instance—faulty. In the second edition (1713), 
Newton carefully re-expressed all the infinitesimal 
elements of the trajectory in terms of Taylor series 
truncated to third order in o .

guaranteed by algebraic techniques in this regard suggests that geometry was not after 
all as powerful as the Newtonians often liked to claim.

3
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Figure 8  Two families of orthogonal trajectories, 
corresponding to equations (i) y  + x  = my, and (ii) 
x  + y  = cx. In general, a one-parameter family of 
plane curves will be expressed by f(x, y, a) = 0. A 
general method for finding orthogonal trajectories 
was sought in the first decades of the eighteenth 
century. Leibniz, Jacob and Johann Bernoulli, but 
especially Nicolaus I Bernoulli and Alexis Fontaine 
des Bertins, contributed important results, in which 
the concept of multivariate function and partial 
derivative were developed. See Engelsman (1984)
and Greenberg (1995).

Orthogonal Trajectories

Equally instructive for the historian of mathematics is the debate on orthogonal 
trajectories, since it throws into relief a difference between the British and the 
Continental algorithmic practices that is seldom appreciated. This is the topic Leibniz 
chose to propose as a challenge in a letter to Antonio Schinella Conti dated November 25, 
1715, after having received some suggestions from Johann Bernoulli, in order to “feel the 
pulse of our English analysts” (Newton 1959–1977, VI, p. 253). The challenge Leibniz 
posed to the English mathematician was to find the plane curves that intersect at right 
angles all of the members of a given one-parameter family of curves that lie in the same 
plane (see Figure 8). The problem was understood as a way to compare the Newtonian 
and the Leibnizian versions of the calculus in relation to a particularly difficult problem. 
The interesting feature of this problem is that a family of curves is defined by a functional 
relationship in which three variables occur: the abscissa x, the ordinate y, and one 
parameter a. Basically, in order to deal with the orthogonal trajectories problem, one 
needs to differentiate both as a function of a coordinate, x, and as a function of the 
parameter a (this was called “differentiating from curve to curve”). Some prototype 
notions of a function in more variables and of partial derivative are necessary: these 
notions can be discerned in the works on orthogonal trajectories by Leibniz, Jacob and 

2 2
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Johann Bernoulli, and Jacob Hermann. The attempts to solve this problem are a chapter 
of the discovery of partial differential calculus, a technique that remained largely 
untouched by British mathematicians until the work of Edward Waring in the second half 
of the eighteenth century. Leibniz and Bernoulli had indeed chosen a problem that was 
quite hard for Newton and his followers.

Bernoulli Claims the Integral Calculus

In 1716, Johann Bernoulli carried out a systematic attack against Keill and Taylor in a 
long anonymous paper entitled “Epistola pro Eminente Mathematico” ([Bernoulli] (1716). 
The fact that at some point the phrase “meam formulam” was used to refer to a formula 
occurring in one of Bernoulli’s papers, thus revealing that the “eminent mathematician” 
was Bernoulli himself, was to arouse as much hilarity in the Republic of Letters as it did 
embarrassment in Basel.

In the opening lines of the “Epistola”, Bernoulli claimed the discovery of the integral 
calculus for himself. A better example cannot be found to show that Bernoulli used the 
polemic between Newton and Leibniz in order to aggrandize (not without reason) himself, 
rather than simply defend Leibniz. He wrote:

He who assures you, famous Sir, that Mr John Bernoulli gained the invention of 
the integral calculus by his own efforts, speaks nothing but the truth; especially if 
we mean to distinguish this calculus from the differential calculus which even 
according to Bernoulli himself is, beyond all controversy, owed entirely to the 
great Leibniz.

(Newton 1959–1977, VI, pp. 302–303)

Bernoulli’s opinions concerning the issue at stake in the calculus controversy constitute a 
third position within the debate, which can be identified neither with Leibniz’s nor with 
Newton’s. While Leibniz insisted on the algorithm and rules of the differential calculus, 
and Newton on quadratures via infinite series, Bernoulli claimed the discovery of the 
integral calculus. The sequel of the “Epistola” allows one to appreciate Bernoulli’s claims 
in finer detail. In reviewing his polemic with Keill and Taylor, Bernoulli insisted on the 
generality of his integration methods, on the use of transcendental curves to come up 
with solutions, on the techniques aimed at finding integrals in closed form rather than as 
infinite series approximations, on his ability to deal with higher-order infinitesimals and 
to differentiate from curve to curve. These features of calculus, which Bernoulli eulogized 
in the “Epistola”, were to dominate the scene of European mathematics in the eighteenth 
century.

The European Reception
The position upheld by Johann Bernoulli in his polemic with Keill and Taylor was echoed 
by many eighteenth-century European mathematicians. The evaluations of two French 
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mathematicians, Pierre Rémond de Montmort (Feigenbaum 1992) and Pierre-Louis 
Moreau de Maupertuis (Terrall 2002), can be cited, in conclusion, as examples of the 
successful reception on the Continent of the techniques elaborated by Leibniz and by the 
Bernoullis and their acolytes (most notably Hermann and Euler) in Basel.

In 1718, Montmort, a correspondent of Nicolaus I Bernoulli’s and an eminent figure on 
account of his contributions to the calculus of probability, in writing to his friend Brook 
Taylor, summarized the results of Leibniz and the brothers Johann and Jacob Bernoulli as 
follows:

[I]t is untenable to say that Leibniz and the brothers Bernoulli are not the true and 
almost unique promoters of these calculi [the differential and the integral 
calculus]…. It was they who first expressed mechanical curves by means of 
equations, who taught us to separate the variables in differential equations, to 
reduce their dimensions, and to construct them by means of logarithms, or by 
means of rectification of curves when that is possible; and who by pretty and 
numerous applications of these calculi to the most difficult problems of mechanics, 
such as those of the catenaria, the sail, the elastic, the curve of quickest descent, 
the paracentric, have put us and our successors on the path to the most profound 
discoveries. Those are facts not to be contradicted. To convince oneself of them it 
suffices to open the journals of Leipzig [i.e., the Acta Eruditorum].

(Newton 1959–1977, VII, pp. 21–22)

These long lists of results attributed to the Basel school and Leibniz are often to be found 
in Johann Bernoulli’s correspondence.20 Yet, such perorations—convincing as they may 
sound to us with the benefit of hindsight—did not impress the mathematicians belonging 
to the core group of Newton’s acolytes. For example, John Keill, while comparing his 
researches on central forces and matter theory to Bernoulli’s mathematical results, 
stated: “what I have demonstrated are more useful matters for the understanding of 
[natural] philosophy compared to all the great discoveries that you [Bernoulli] have 
made” (Keill (1719), p. 285). During his challenge to Bernoulli via Montmort), Keill 
restated the same concept: he lampooned Bernoulli for having “a particular genius 
adapted for trifles, the only part of Newton’s philosophy which is of no moment and which 
signifies nothing to explain the phenomena of nature, he [Bernoulli] has most diligently 
studied and examined.”21 Yet, for the Leibnizians these problems—notwithstanding their 
weak significance for Newtonian natural philosophy—were important for a reason that 
escaped the Newtonians: they were exercises that proved tremendously useful for the 
development of integration, in particular the theory of differential equations.

It is also worth noting one significant difference between the study in integration pursued 
by Jacob and Johann Bernoulli and their pupils, Hermann and Euler, and that pursued by 
Newton, Cotes, and Taylor: the Newtonians preferred integration via infinite series to 
integration in closed form.22 Most of Newton’s methods of quadrature (with the notable 
exception of the tables included in De quadratura (1704)) were in terms of series 
expansions. His methods of quadrature celebrated by Fatio and Gregory and in the 
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Commercium Epistolicum (see Figure 2), provide only a local solution (they can be 
calculated in the interval of convergence of the series solution).

An elementary example of a Newtonian solution of a fluxional (i.e., differential) equation 
can help explain this feature (Giusti 2007, pp. 45–46). Let us consider the fluxional 
equation y˙=1−3x+y+x2+xy, with initial condition y(0) = 0. An approximation in the 
vicinity of the origin is ẏ = 1 (we retain only terms of zero-degree on the right-hand side). 
Squaring (i.e., integrating), we obtain y = x. Substituting this value in the original 
equation and retaining only terms of first-degree on the right-hand side, we get an 
approximation in the vicinity of the origin: ẏ = 1 − 2x. Squaring, we obtain y = x − x . 
Substituting this value in the original equation and retaining only terms of second-degree 
on the right-hand side, we get an approximation in the vicinity of the origin: ẏ = 1 − 2x + 

x . Squaring, we obtain y = x − x  + x /3. This process can be reiterated so that one 
stepwise obtains the higher-order terms of the series. Such a method allows a numerical 
approximation of the solution in the interval of convergence of the series, in this case in 
the vicinity of the origin, but does not deliver any information on the global features of 
the solution (in modern terms, we can approximate the graph in the vicinity of the origin).

Leibniz and the Basel mathematicians instead searched for integrations of ordinary 
differential equations in closed form, in terms of elementary or transcendental curves. 
Their program proved to be fruitful. The modernized example of the solution of the 
catenaria problem can illustrate the advantage of closed solutions over series expansions 
(see Figure 1). The solution obtained, y(x)=K+ccosh((x−x0)/c), provides information on 
the global character of the solution (in modern terms: we can plot a graph over the 

R-axis). Another example might be the solution of the differential equation for damped 
oscillations. Getting a solution in the form y(t)=Aexp−ζω0tsin(1−ζ2 ω0t+ϕ) provides 
information on the global characteristics of the solution (its initial amplitude A and phase 

ϕ, the undamped angular frequency ω , the damping ratio ζ, the decay time τ = 1/(ζω )). 
These solutions, of course, emerged much later, roughly at the end of the eighteenth 
century, when mathematicians learnt to express solutions of differential equations in 
terms of functions (rather than constructions, as was still the case with Leibniz and 
Bernoulli), and when they began using dimensional constants endowed with a physical 
meaning.

The difference between the Newtonian and the Leibnizian programs in integration is 
correlated with the difference in the programs in mechanics they investigated. Newton 
was exploring the mathematization of mechanical problems of unthinkable difficulty for 
his age (from the study of planetary perturbations to that of tidal motions). The 
mathematical models he required were non-integrable in closed form: the best he could 
do was to devise numerical approximations, and his integration techniques via infinite 
series provided just that. One might note, for example, that the important problem of 
central force motion can be integrated in closed form in terms of elementary (circular and 
hyperbolic) functions for only a handful of force laws (F = kr , for n = 1, –2, –3), exactly 
those covered by Newton in the Principia.23 The Newtonians were interested in 
integration via infinite series because in most cases this was the only viable choice, given 
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the imperfect knowledge of integration techniques at the time. Leibniz and the Basel 
mathematicians, instead, devoted their attention to problems (such as the 
brachistochrone, the catenaria, and orthogonal trajectories) that—as we have just seen—
were considered rather dull questions to ask in Newton’s milieu; yet they led to 
interesting problems in integration in closed form. This difference between the 
Newtonian and the Leibnizian integration methods was emphasized by one of Johann 
Bernoulli’s most gifted pupils, Maupertuis, who in 1731 wrote:

It is true that this method of series that we owe to M. Newton is general, and the 
only absolutely general method that the integral calculus has; but it is also true 
that the solutions gotten by using it are very far from the elegance of the solutions 
found by integration or quadratures; one should only consider it as the last resort 
in the hopeless cases.24

(Greenberg 1995, p. 253)

Conclusion
The dispute between Newton and Leibniz, which began in the murky philosophical and 
theological waters agitated by the Hanoverian succession, developed into a bitter 
confrontation between Keill, Taylor, and De Moivre on one side of the English Channel, 
and Johann Bernoulli, Nicolaus I Bernoulli, and Hermann on the other—to mention just 
the main actors. We know quite a great deal about the events surrounding the calculus 
priority controversy, the making of the Commercium, and how the controversy developed 
into a wide-ranging philosophical confrontation between Newton and Leibniz (Hall 1980; 
Bertoloni Meli 1993). The debate between the younger generation of mathematicians is 
known to historians of mathematics, but it is still an open field of research. In the 
concluding sections of this chapter, I have tried to render the mathematical content of the 
debate between Johann Bernoulli and some British mathematicians, such as Keill and 
Taylor, accessible to the general reader. It is an important but much-neglected debate in 
which we witness the birth of mathematical techniques and programs in the 
mathematization of mechanics that rendered obsolete the quadrature methods employed 
(often implicitly) by Newton in the Principia and expounded in De quadratura. The theory 
of ordinary and partial differential equations, an essential tool for the development of 
rational mechanics, became the specialty of Continental mathematicians. It is this 
progress in calculus and mechanics that allowed the mathematicians active in the mid-
eighteenth century, such as Alexis-Claude Clairaut, Jean-Baptiste Le Rond D’Alembert, 
and Euler, to more forcefully tackle some of the problems, such as the determination of 
the moon’s motion and the shape of the earth, which had been left open by Newton’s 
magnum opus (Blay 1992; Truesdell 1960).
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Notes:

(1) Classic works on the subject include Hall (1980) and Derek Tom Whiteside, 
“Introduction” in Newton (1967–1981), VIII, pp. 469–538.

(2) Transl. in Hall (1980), 145. Keill was referring to the letters and material provided by 
Newton that Wallis had published in volumes 2 and 3 of his Opera. Most notably, the full 
text of the two epistolæ that Newton had addressed to Oldenburg for Leibniz in 1676 was 
printed in the third volume (Wallis 1693–1699, III, pp. 622–629, 634–645).

(3) Today this problem is usually called the “direct” problem of central forces: to 
determine the motion of a particle under the influence of a single central force.

(4) “Notæ in Newtoni Principia Mathematica Philosophiæ Naturalis.” Royal Society 
Library (London).

(5) This openness toward Continental influences can be traced back to James Gregory, 
whose mother was an Anderson, a family that comprised several mathematicians—one of 
whom had been an assistant to François Viète. Further, James had studied in Padua under 
Stafano degli Angeli, a pupil of Bonaventura Cavalieri.
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(6) “Gregory’s” method of quadrature was also printed in Wallis 1693–1699, II, pp. 337–
380. On this episode, see the commentary by Whiteside in Newton 1967–1981, VII, pp. 3–
13.

(7) This project fell through, even though a calculus treatment of two propositions of the 

Principia was published in an appendix to Motte’s English translation (1729). See Newton 
(1726/1972) for changes to the Principia through its three editions; Newton (1999) is now 
the standard English translation.

(8) “Isaaci Newtoni Methodus Fluxionum Ubi Calculus Differentialis Leibnitij, et 
Methodus Tangentium Barowij Explicantur, et Exemplis Quamplurimis Omnis Generis 
Illustrantur” (Christ Church, Oxford).

(9) Johann Bernoulli’s, Leibniz’s, and Huygens’s solutions appeared in Acta Eruditorum
(1691), pp. 274–276, 277–281, and 281–282.

(10) Gregory did not realize that it is the difference between tensions applied on each 
endpoint of an infinitesimal element of the chain that balances its gravity, thus 
guaranteeing equilibrium. This mistake notwithstanding, after writing the correct 
equation, Gregory dealt with its integration faultlessly. See Newton (1967–1981), V, p. 
522.

(11) As demonstrated in Hall (1980), this accusation was unjust.

(12) In Newton’s epistola posterior the first theorem is expressed as follows: “For any 
curve let dzθ×(e+fzη)λ be the ordinate, standing normal at the end of z of the abscissa or 
the base, where the letters d, e, f denote any given quantities [N.B d is a constant!], and θ, 
η, λ are the indices [N. B. they can be rational numbers] of the powers of the quantities to 
which they are attached. Put (θ+1)/η=r, λ+r=s, (d/(ηf))×(e+fzn)λ+1=Q,rη−η=π then the 
area of the curve will be 

Q×{zπs−r−1s−1×eAfzη+r−2s−2×eBfzη+r−3s−3×eCfzη+r−4s−4×eDfzη,  etc} the 
letters A, B, C, D, etc., denoting the terms immediately preceding; that is A the term z  /s, 
B the term ‒(r−1)/(s−1)×(eA)/(fzη),etc. This series, when r is a fraction or a negative 
number, is continued to infinity; but when r is positive and integral it is continued only to 
as many terms as there are units in r itself; and so it exhibits the geometrical squaring of 
the curve.” (Newton 1959–1977, II, p. 134).

(13) The brachistochrone problem requires to find the shape of the curve down which a 
body sliding from rest and accelerated by gravity will slip (without friction) from one 
point to another in the least time. The solid of least resistance is the solid of revolution 
that experiences the least resistance in moving through a medium.

(14) Newton developed a theory of limits that he first published as the “method of first 
and ultimate ratios” in Section 1, Book 1, of the Principia. Leibniz, notwithstanding his 
practice, in which differentials were freely deployed, had developed a rather deep 
understanding of limiting procedures. See Leibniz (1993).

π
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(15) “Barometric light” is emitted when a mercury-filled barometer tube is shaken. 
Bernoulli studied the phenomenon while in Groningen. Newton was much interested in 
this and promoted Francis Hauksbee’s experiments.

(16) The Charta volans was printed and circulated by Wolff in the form of a fly-sheet. A 
French translation of it also appeared in print in Journal literaire (1713), pp. 448–53 and 
in Nouvelles Literaires (1715), pp. 413–414; a Latin one in Acta Eruditorum 19 (1713), pp. 
591–594.

(17) It should be noted that the Oxford group Keill belonged to had been in possession of a 
copy of Newton’s “De natura acidorum” since 1692. The opposition between Wolff and 
the iatro-mathematicians inspired by Pitcairne was spelled out in his review of Freind 
(1710) (Rowlinson 2007); Clark 1999).

(18) Cotes’s work on integration was actually superb, and the British were right in 
stressing its importance. The challenge concerned the integration of y=∫x(δλ)q−1/
(e+fxq+gz2q)dx, where δ is a positive or negative integer, and λ a power of 2 (Gowing 
1983, pp. 75–79). Replies came from Johann Bernoulli in (1719) and Jacob Hermann in 
(1719). Hermann’s paper also included a solution of the ballistic problem.

(19) One should note that, even though the physics in the Tentamen is problematic, to say 
the least, Leibniz obtained a beautiful differential equation for radial acceleration.

(20) See, for example, Johann Bernulli to Leibniz (July 29, 1713) in Leibniz (1849–1863), 
III(2), p. 916.

(21) Universitätsbibliothek (Basel) L Ia 665, Nr.16*.

(22) This should be read as a tendency, not as a rule. It is true that Cotes and Colin 
Maclaurin, for example, contributed to techniques of integration in closed form. Of 
course, series solutions were studied also in the Bernoullis’ school.

(23) In propositions I.10, I.11–13, I.41 (Cor. 3). For a limited number of other exponents n, 
closed solutions in terms of elliptic functions (not available to Newton’s contemporaries) 
are possible.

(24) Maupertuis’s statement remained unpublished (it can be found in the minutes of the 
Academy of Sciences), yet it must have reached Jean E. Montucla, who included it in 

Montucla (1799–1802, III, p. 165).
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