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R E V I E W

Abstract: In addition to their role in reverse cholesterol transport, high-density lipoproteins

(HDL) exert several beneficial effects, including the prevention and correction of endothelial

dysfunction. HDL promote endothelium proliferation and diminish endothelial apoptosis; they

play a key role in vasorelaxation by increasing the release of nitric oxide and prostacyclin

through the induction of the expression and the activity of endothelial nitric oxide synthase

and the coupling of cyclooxygenase 2 and prostacyclin synthase. In addition, HDL affect

coagulation, fibrynolisis, platelet adhesion, adhesion molecules, and protease expression, and

they exert antioxidant activity. These effects are achieved at the gene expression level and are

dependent on the activation of several intracellular signaling pathways, including PI3K/Akt,

ERK1/2, PKC, and p38MAPK. The complexity of the signaling pathways modulated by HDL

reflects the different effects of the components of this class of lipoproteins such as

apolipoproteins or lipids on endothelial cell gene expression and the subsequent modulation

of endothelial function observed. The in vivo relevance of these findings to endothelial recovery

during physiological or pathological conditions remains to be addressed; nevertheless, the

results of clinical studies with synthetic HDL, ApoA-I mimetics, and drugs that are becoming

available that selectively affect HDL plasma levels and biological functions support the

importance of the correction of endothelial function by HDL.

Keywords: HDL, endothelium, inflammation, molecular mechanisms, gene expression,

intracellular kinases

Introduction
Numerous clinical and epidemiological studies have demonstrated the inverse

association between high-density lipoprotein cholesterol (HDL-C) and the risk of

coronary heart disease (CHD) events (Gordon and Rifkind 1989; Assmann et al 1996).

Low HDL-C has been identified as the most frequent familial dyslipoproteinemia in

patients with premature myocardial infarction (Genest et al 1992). In angiographic

studies, markers of inflammation had a significant association with CHD, which was

lost upon multivariate analysis taking HDL-C into account (Erren et al 1999). In

several prospective studies, including the prospective ECAT angina pectoris study,

both low serum levels of HDL cholesterol and high serum levels of C-reactive protein

were independent risk factors of a second coronary event in patients with manifest

CHD (Bolibar et al 2000; Ridker 2001). Of note, the results of the Veterans Affairs

High-density Lipoprotein Intervention Trial study showed that raising HDL decreases

the incidence of coronary artery disease events (Robins 2001).

The inverse correlation between HDL cholesterol levels and the risk of CHD is

often explained by the ability of HDL to remove cholesterol from the periphery for

delivery to the liver and excretion in the bile, the process termed reverse cholesterol
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transport (Silver et al 2000). The concept of reverse

cholesterol transport provides the theoretical framework for

understanding body cholesterol homeostasis. Distortion of

reverse cholesterol transport may favor deposition of

cholesterol in the arterial wall and thereby contribute to the

development of arteriosclerosis. The concept of reverse

cholesterol transport is supported by numerous studies in

vitro and in vivo (for a review, see von Eckardstein et al

2001). Several evidences are accumulating to suggest that

in addition to their role in reverse cholesterol transport HDL

positively influence vascular functions including endothelial

responses during atherogenesis (Calabresi 2003). The aim

of this paper is to summarize the existing information on

the role of HDL in preventing and correcting endothelial

dysfunction and to present an overview on the molecular

mechanisms responsible for these effects.

Endothelial dysfunction and
cardiovascular disease
The endothelium is strategically located between the wall

of blood vessels and the blood stream. It senses mechanical

stimuli, such as pressure and shear stress, and hormonal

stimuli, such as vasoactive substances. In response, it

releases agents that regulate vasomotor function, trigger

inflammatory processes, and affect hemostasis. Among the

vasodilator substances produced by the endothelium are

nitric oxide (NO), prostacyclin, various endothelium-derived

hyperpolarizing factors, and C-type natriuretic peptide

(CNP). Vasoconstrictors include endothelin-1 (ET-1),

angiotensin II (Ang II), thromboxane A2 (TXA2), and

reactive oxygen species (ROS). Inflammatory modulators

include intercellular adhesion molecule-1 (ICAM-1),

vascular adhesion molecule-1 (VCAM-1), E-selectin, and

NF-κB. Modulation of hemostasis includes the release of

plasminogen activator, tissue factor inhibitor, von Willebrand

factor, NO, prostacyclin, TXA2, plasminogen-activator

inhibitor-1 (PAI-1), and fibrinogen. The endothelium also

contributes to mitogenesis, angiogenesis, vascular

permeability, and fluid balance (Cines et al 1998).

Endothelial dysfunction was initially identified as

impaired vasodilation to specific stimuli such as acetyl-

choline or bradykinin. A broader understanding of the term

would include not only reduced vasodilation but also a

proinflammatory and prothrombic state associated with

dysfunction of the endothelium.

Endothelial dysfunction has been proposed to be an early

event of pathophysiologic importance in the atherosclerotic

process (Ross 1999; Libby 2002) and provides an important

link between diseases such as hypertension, chronic renal

failure, and diabetes and the high risk of cardiovascular

events that patients with these conditions exhibit. Low NO

bioavailability can up-regulate VCAM-1 in the endothelial

cell layer via induction of NF-κB expression (Khan et al

1996). ROS, CD40 ligand, lectin-like oxidized LDL

receptor-1 (LOX-1) and lipoproteins such as VLDL or

oxidized-LDL (Ox-LDL) also up-regulate endothelial

expression of adhesion molecules (Mach et al 1997; Libby

2002; Norata, Pirillo, et al 2003). The expression of

VCAM-1, ICAM-1, and E-selectin plays a role in the

initiation of the inflammatory process (Ross 1999).

VCAM-1 binds monocytes and T lymphocytes, the first step

of invasion of the vessel wall by inflammatory cells (Libby

2002). NO inhibits leukocyte adhesion (Kubes et al 1991).

Reduction in NO results in induction of monocyte-

chemoattractant protein-1 expression, which recruits

mononuclear phagocytes (Zeiher et al 1995). Monocytes

are then transformed to lipid-loaded foam cells. Ox-LDL,

for example, are scavenged through LOX-1 (Yoshida et al

1998), which is highly expressed in blood vessels in

hypertension, diabetes, and dyslipidemia (Mehta and Li

2002). Ox-LDL trigger a variety of actions: they reduce

eNOS (endothelial nitric oxide synthase) expression (Mehta

and Li 2002) and further stimulate adhesion molecule

expression (Libby 2002), apoptosis (Norata et al 2002), and

release of proinflammatory prostaglandins (Norata, Pirillo,

et al 2004) (Figure 1).

As the atherosclerotic plaque progresses, growth factors

secreted by macrophages in the plaque stimulate vascular

smooth muscle cell growth and interstitial collagen synthesis

(Libby 2002). The event that initiates the majority of

myocardial infarctions is the rupture of the fibrous cap of

the plaque, inducing thrombus formation. Decreased NO

and oxidative excess may activate matrix metalloproteinases

(MMP) (Eberhardt et al 2000; Uemura et al 2001), namely

MMP-2 and MMP-9, which weaken the fibrous cap.

Endothelial NOS has been indicated as the main enzyme

that contributes to NO production in the arterial wall

(Kawashima and Yokoyama 2004). Experimental studies in

vitro have revealed that NO from eNOS constitutes an anti-

atherogenic molecule and that a deficiency of eNOS

accelerates atherosclerotic lesion formation in eNOS

knockout mice (Kawashima and Yokoyama 2004).

Nevertheless, under conditions in which vascular tissue

levels of tetrahydrobiopterin (BH4), a cofactor for NOS,

are deficient or lacking, eNOS becomes dysfunctional and
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produces superoxide rather than NO. eNOS overexpression

with hypercholesterolemia may promote atherogenesis via

increased superoxide generation from dysfunctional eNOS

(Ozaki et al 2002). Thus, eNOS may have 2 faces in the

pathophysiology of atherosclerosis depending on tissue BH4

metabolisms.

Recent works indicate that vascular inflammatory

responses can be limited by antiinflammatory

counteregulatory mechanisms that maintain the integrity and

homeostasis of the vascular wall (Uyemura et al 1996; Mallat

et al 1999). These mechanisms include antiinflammatory

signals such as HDL (Tedgui and Mallat 2001).

HDL effects on the endothelium
Several effects account for the endothelial protection by

HDL, including: the control of cell proliferation; the

inhibition of apoptosis; the modulation of the secretory

functions; the regulation of coagulation, fibrinolysis, and

platelet adhesion; and the inhibition of inflammatory

processes (Table 1).

HDL and cell proliferation
Rapid regeneration through the migration and proliferation

of endothelial cells as well as diminished apoptosis have

been described as key mechanisms in preventing endothelial

damage by HDL. HDL stimulate the proliferation of bovine

(Cohen et al 1982) and human endothelial cells (Darbon et

al 1986), and enhance endothelial cell migration (Murugesan

et al 1994). Initially, it was proposed that apolipoproteins

A-I and C-I were responsible for the mitogenic effects

(Tournier et al 1984; Darbon et al 1986); latest data suggest

that lysosphingolipids, namely sphingosine 1-phosphate

(S1P), sphingosylphosphorylcholine (SPC), and lyso-

sulfatide (LSF), could also enhance endothelial cell

proliferation (Nofer et al 2000; Kimura et al 2001).

Apart from the mitogenic activity, HDL prevent

endothelial cell death. Suc et al (1997) showed that both

HDL and apolipoprotein A-I diminish the induction of

cell death by Ox-LDL. This activity was not related to

the interaction between these two lipoproteins or to

Figure 1 Effects of pro-atherogenic factors on the vascular wall and biological actions of HDL (high-density lipoproteins) on the endothelium. ET-1 (endothelin-1),
AngII (angiotensin II), TXB2 (tromboxane B2), VLDL (very low-density lipoprotein), IL-6 (interleukin 6), TNF-α (tumor necrosis factor alpha), LPS (lipopolysaccharides),
NO (nitric oxide), PGI2 (prostacyclin), MCP-1 (monocyte chemoattractant protein-1), ROS (radical oxygen species), Ox-LDL (oxidized low-density lipoprotein)
promote endothelial dysfunction by inducing adhesion molecule expression and chemotactic factor release. Once recruited, monocytes migrate and differentiate to
macrophages in the vascular wall. Activated endothelium can also promote the migration and proliferation of smooth muscle cells. Both macrophages and smooth
muscle cells scavenge Ox-LDL and become foam cells. HDL interact with endothelium (1) and induce NO and prostacyclin release (2a and 2b). HDL, directly and via
NO and PGI2, can inhibit chemokine secretion (3) and adhesion molecule expression (4). In addition, HDL decrease oxygen radical production (5) and smooth muscle cell
migration and proliferation (6). These mechanisms counteract the progression of atherosclerosis in the vascular wall.
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antioxidative properties of HDL. The inhibition of death of

endothelial cells by HDL or apolipoprotein A-I (ApoA-I) was

most evident after 24-h incubation. The antiapoptotic effect

of HDL was abolished by protein synthesis inhibitors. Thus,

it seems that weakening of the cytotoxic effect of

Ox-LDL in the presence of HDL or ApoA-I is related to the

expression of still unknown factors that prevent cell death.

Also, triglyceride-rich lipoproteins have been shown to

promote endothelial cell death (Norata, Pirillo, et al 2003),

and HDL reduce endothelial necrosis induced by remnants

of triglyceride-rich lipoproteins (Speidel et al 1990). In

addition, Sugano et al (2000) found protective effects of

HDL and ApoA-I against endothelial apoptosis induced by

tumor necrosis factor alpha (TNF-α). HDL also prevent

endothelial cell damage and necrosis resulting from the

activation of the complement system. The C5a–C9 terminal

complement complex was shown to be inversely correlated

with HDL-C, but not total cholesterol, in dyslipidemic

subjects (Pasqui et al 2000). Rosenfeld et al (1983) have

shown that HDL inhibits complement-mediated cell lysis.

HDL and vascular tone
Several clinical studies have demonstrated a close

association between plasma levels of HDL and endothelium-

dependent flow-mediated dilation (O’Connell and Genest

2001). Recently, administration of reconstituted HDL was

shown to restore abnormal endothelial function in

hypercholesterolemic men (Spieker et al 2002). Several

mechanisms underlying the effects of HDL on endothelial

reactivity have been suggested, including synthesis of

vasorelaxing prostanoids such as prostacyclin (PGI2) as well

as activation of eNOS via SR-BI (Yuhanna et al 2001).

Incubation of cultured endothelial cells with HDL activates

eNOS in a process that involves the binding of ApoA-I to

the scavenger receptor-BI (SR-BI) (Yuhanna et al 2001;

Mineo et al 2003). However, eNOS is not activated by lipid-

free ApoA-I. A recent study showed that lysosphingolipids

present in HDL are responsible for these effects (Nofer et

al 2004), while ApoA-I is fundamental for the binding to

the membrane of endothelial cells.

PGI2 is a potent endothelium-derived vasodilator that

binds IP receptors on vascular smooth muscle cells (SMC)

and acts synergistically with NO to induce smooth muscle

relaxation. PGI2 is synthesized from arachidonate derived

from phospholipids of cellular membranes or from

exogenous sources as phospholipids and cholesteryl esters

present in circulating lipoproteins. The enzyme responsible

for PGI2 production is cyclooxygenase (Cox), which exists

Table 1 HDL effects on the endothelium

Mimicked Mimicked by
HDL  by ApoA-I  lysosphingolipids Key references

Cell proliferation
↑ proliferation Yes Yes Darbon et al 1986
↓ apoptosis Nofer et al 2000

Vascular tone
↑ NO No Yes Yuhanna et al 2001

Nofer et al 2004
↑ PGI2 Yes ? Pomerantz et al 1985

Norata, Pirillo, et al 2004
↓ endothelin 1 ? ? Unoki et al 1999
↑ CNP ? ? Sugiyama et al 1995

Coagulation, fibrinolysis, platelet adhesion
↓ factor X activation Yes ? Carson 1981
↓ tissue factor ? ? Kaneko et al 1994
↓ PAF ? ? Sugatani et al 1996
↓ prothrombinase complex Yes ? Epand et al 1994
↑ activated protein C and protein S ? ? Griffin et al 1999

Inflammation
↓ VCAM-1 No Yes Ashby et al 1998
↓ ICAM-1 ? ? Barter et al 2004
↓ E-selectin ? Yes Nofer et al 2003
↓ MMP-9 ? ? Xu et al 1999
↓ ADAMT-s 1 ? ? Norata, Bjork, et al 2004
↑ TGF-β2 No Yes Norata et al 2005

Abbreviations are listed at the end of the paper.
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as 2 different isoforms: a constitutive form (Cox-1) and an

inducible form (Cox-2). Cox-2 has been implicated in

several inflammatory processes including the induction of

PGE2 (Norata, Pirillo, et al 2004) a proinflammatory prosta-

glandin that modulates MMPs production in the athero-

sclerotic plaque (Cipollone et al 2001).

Incubation of cultured endothelial cells with HDL causes

a dose-dependent increase of PGI2 release, which is

prevented by a Cox-2 inhibitor, suggesting a major role of

this enzyme in HDL-mediated PGI2 synthesis; indeed, HDL

have shown to induce Cox-2 expression (Norata, Callegari,

et al 2004). Delipidated HDL apolipoproteins also enhance

PGI2 production but to a lower extent than intact HDL

(Pomerantz et al 1985). This suggests that different

mechanisms could account for this effect, including the

possibility that HDL can provide endothelial cells with

arachidonate, which then acts as substrate for Cox-mediated

PGI2 synthesis (Pomerantz et al 1985).

The role of Cox-2 in cardiovascular disease is of great

interest, and several clinical trials have reported that selective

Cox-2 inhibitors can increase the relative risk of myocardial

infarction (Juni et al 2004; Furberg et al 2005), probably by

decreasing prostacyclin production (McAdam et al 1999).

Thus, it will be of interest to investigate whether HDL-

dependent Cox-2 induction and prostacyclin release can in

part rescue from Cox-2 inhibitors side effects, and whether

subjects with high HDL levels are less susceptible to the

coronary side effects of Cox-2 inhibitors.

HDL also affect endothelin-1 (ET-1) synthesis (Hu et al

1994). ET-1 is a potent vasoconstrictor peptide that binds

to specific G protein-coupled receptors on SMCs to reverse

the response to NO. Previous studies have shown that

subphysiological concentrations of native HDL increases

ET-1 production in endothelial cells (Hu et al 1994). These

findings are in contrast with those of a study where

incubation of human endothelial cells cultured with HDL

on a 2-chamber model system (a model reproducing the

physiological state where ET-1 is released toward the

underlying intimal smooth muscle in a polar fashion)

inhibited the secretion of ET-1 on the opposite side of the

culture on which they where applied (Unoki et al 1999),

suggesting that HDL may indeed prevent the vasoconstrictor

effects of ET-1.

Finally, HDL was shown to modulate the synthesis of

CNP, which causes vasodilatation, inhibits proliferation of

smooth muscle cells, and inhibits ET-1 secretion (Sugiyama

et al 1995). Moreover, suppression of CNP synthesis in the

presence of Ox-LDL is antagonized by HDL.

HDL, coagulation, fibrinolysis, and
platelet adhesion
In contrast to atherogenic lipoproteins, like LDL and very

low-density lipoprotein (VLDL), which stimulate both the

secretion of tissue factor (TF) and the activation of extrinsic

tenase, HDL per se does not stimulate the secretion of TF

from endothelial cells or monocytes (Kaneko et al 1994).

TF synthesis stimulated by VLDL is rather inhibited by HDL

(Rosenson and Lowe 1998). Furthermore, HDL inhibit

thrombin-induced human endothelial TF expression through

inhibition of RhoA and activation of PI3K but not Akt/eNOS

(Viswambharan et al 2004). In addition, HDL antagonize

the activation of factor X induced by extrinsic tenase (Carson

1981). Besides HDL, ApoA-I also inhibits the activation of

factor X. Recent studies have shown that the inhibitory effect

of HDL may be related to the presence of tissue pathway

factor inhibitor (TPFI) in this lipoprotein (Lesnik et al 1993).

Both HDL and ApoA-I inhibit the calcium ionophore-

induced production of the pro-thrombinase complex on the

surface of platelets (Epand et al 1994). HDL may affect the

blood coagulation process via the regulation of activated

protein C (APC), which is the crucial element regulating

blood coagulation by the proteolytic inactivation of Va and

VIIIa factors. The anticoagulatory effect of APC is enhanced

by protein S. HDL augment APC-induced inactivation of

Va and VIIIa factors (Griffin et al 1999). HDL also augment

the activity of protein S to stimulate APC. This activity of

HDL may arise from anticoagulants such as cardiolipin

and phosphatidylethanolamine, which are present in

these lipoproteins. It has been shown that not only

coagulation but also fibrinolysis is regulated by HDL.

Hypercholesterolemia and hypertriglyceridemia are

associated with increased secretion of PAI-1 from

endothelial cells (Stiko-Rahm et al 1990; Norata, Pirillo, et

al 2003). By contrast, HDL cholesterol levels are negatively

correlated with plasma levels of PAI-1 and tissue

plasminogen activator (tPA) (Juhan-Vague et al 1996). This

correlation may reflect the in vitro inhibitory effect of HDL

on tPA and PAI secretion by the endothelium (Ren and Shen

2000). Of note, when HDL are oxidized, the resulting

Ox-HDL have been reported to induce PAI-1 mRNA

expression and protein release in endothelial cells via a

p38MAPK-dependent pathway that promotes mRNA

stabilization (Norata, Banfi, et al 2004).

In addition to coagulation and fibrinolysis, HDL also

affect platelet adhesion. NO and prostacyclin have an

antitrombotic effect besides being regulators of the vascular

tone. HDL inhibit agonist-induced production of platelet-
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activating factor (PAF), a bioactive phospholipid that

stimulates cell adhesion, platelet aggregation, and vascular

permeability in endothelial cells (Sugatani et al 1996). Von

Willebrand factor (vWF) is another protein expressed by

endothelial cells that plays an essential role in platelet

adhesion and aggregation; the circulating vWF levels are

inversely correlated with plasma HDL (Conlan et al 1993),

suggesting that HDL may inhibit vWF production.

Therefore, by modulating the production/activity of a variety

of endothelium-derived factors such as NO, PGI2, PAF,

and vWF, HDL may affect both vascular tone and

thrombogenicity.

HDL, angiogenesis, and cell migration
Two new aspects of the interaction between HDL and

endothelial cells are stimulation of angiogenesis and cell

motility and migration. An in vitro model of human coronary

artery endothelial cell (HCEC) tube formation on a matrix

gel has been used to explore the possible angiogenic effect

of HDL (Miura et al 2003). The results have shown that

HDL induce angiogenesis and have identified Ras as a key

player in the angiogenic action of HDL (Miura et al 2003).

The signaling pathway in HDL-induced tube formation is

through pertussis toxin (PTX)-sensitive G-protein coupled

receptors (GPCRs) and may be partly through receptors for

S1P such as EDG-1 and EDG-3 (Miura et al 2003). This

model assumes that lipoproteins induce angiogenic signals

through PTX-sensitive GPCRs. HDL signaling through

cholesteryl ester donation is an exciting possible route to

the induction of angiogenesis. The scavenger receptor

SR-BI mediates the selective cellular uptake of cholesterol

from HDL. Consistent with this idea is the observation that

HDL maintains the appropriate cellular localization of

eNOS by replenishing endothelial cellular membranes

with cholesteryl esters in an SR-BI–dependent fashion

(Uittenbogaard et al 2000).

Endothelial genes implicated in angiogenesis and cell

proliferation include matrix-degrading proteases. Proteases

including MMPs have been shown to play a central role in

endothelial dysfunction (Libby 2002). HDL inhibit MMP-9

expression induced by Ox-LDL in monocytes (Xu et al

1999) and the expression of ADAMTs-1 induced by

lipopolysaccharide (LPS) on TNF-α in endothelial cells

(Norata, Bjork, et al 2004).

ADAMTS-1, a disintegrin and metalloproteinase with

thrombospondin motif, has been shown to inhibit endothelial

cell proliferation by direct binding and sequestration of

vascular endothelial growth factor (Luque et al 2003). It is

thus possible that HDL can influence angionenic processes

through proteases modulation (Norata, Pellegatta, et al

2003).

Although it is not clear whether HDL in its relation to

angiogenesis induces the progression of atherosclerosis, the

strong and specific angiogenic effect of HDL deserves

attention in the development of therapeutic strategies to

elevate plasma levels of these lipoproteins.

Control of the inflammatory response
As mentioned above, endothelial dysfunction promotes

adhesion of leukocytes to endothelial cells sustaining the

inflammatory processes during atherogenesis. Interaction

of monocytes with endothelial cells is mediated by adhesion

molecules located on the surface of these cells, which

include VCAM-1, ICAM-1, and E-selectin. VCAM-1 and

ICAM-1 mediate adhesion of mononuclear cells, including

monocytes and lymphocytes. E-selectin enables tethering

and rolling of monocytes and lymphocytes on the surface

of endothelial cells. All three adhesion molecules are

abundantly expressed in the atherosclerotic plaque (van der

Wal et al 1992; Libby 2002).

Expression of VCAM-1 is induced by lysophosphat-

idylcholine present in Ox-LDL and by products of lipolysis

(Kume et al 1992; Saxena et al 1992). Expression of VCAM-

1, ICAM-1, and E-selectin is induced also by cytokines such

as TNF-α, interleukin-1 (IL-1), and LPS (Libby 2002;

Norata, Bjork, et al 2004). HDL inhibits the interaction of

monocytes with endothelial cells and smooth muscle cells

as well as the adhesion of monocytes to endothelial cells

induced by Ox-LDL (Barter et al 2002). Recent studies have

shown that cytokine-induced expression of VCAM-1,

ICAM-1, and E-selectin is inhibited by HDL (Cockerill et

al 1995; Ashby et al 1998; Nofer et al 2003; Barter et al

2004). The most pronounced inhibition of the expression

of these proteins was observed at physiological HDL

concentrations. Inhibition of VCAM-1 and E-selectin

expression on endothelial cells is also induced by

reconstituted HDL and depends strongly on the phospholipid

composition of reconstituted particles as the inhibitory

effects were not exerted by lipid-free apoproteins A-I and

A-II (Ashby et al 1998; Calabresi et al 2003; Nofer et al

2003). Because the inhibitory effect of HDL is observed

even after removal of these lipoproteins from the endothelial

cell culture, it seems not to be related to the scavenging of

free radicals by antioxidants contained in HDL.

HDL has also been shown to affect cytokines,

chemokine, and chemokine receptor expression; using a
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cDNA microarray approach, it has been shown that under

basal conditions, transforming growth factor-β2 (TGF-β2)

is the only gene within a panel of 96 genes involved in

inflammation that is significantly induced upon incubation

with HDL in endothelial cells (Norata et al 2005). The effect

of HDL is specific for TGF-β2, as neither TGF-β1 nor

TGF-β3 expression is modulated by HDL. TGF-β possesses

antiinflammatory properties and stabilizes the plaque

(Grainger 2004), thus suggesting a novel target for the

antiatherosclerotic effect of HDL. Also, IL-18 receptor and

MIP1β expression appear to be modulated by HDL (Norata

et al 2005), but the relevance of this finding needs further

investigation.

Signaling pathways modulated by
HDL
Several intracellular signaling pathways account for the

effects of HDL on the endothelium (see Figure 2 and

Table 2). Both ApoA-I and the lysosphingolipids SPC, LSF,

and sphingosine 1-phosphate present in the HDL are

responsible for intracellular signaling activation. ApoA-I

binding to the scavenger receptor-BI (SR-B1) is required

for HDL activation of eNOS (Yuhanna et al 2001); however,

eNOS is not activated by lipid-free ApoA-I. This discrepancy

was elegantly solved by Nofer et al (2004), which showed

that the interaction of ApoA-I with SR-B1 is required for

localizing the HDL particles at the membrane level where

lysosphingolipids interact with specific receptors as

EDG1/3 (also called S1P3) activating several intracellular

signaling cascades. Moreover, deficiency of the lyso-

phospholipid receptor S1P3 (also known as LPB3 and

EDG3) abolishes the vasodilatory effects of SPC, S1P, and

LSF and reduces the effect of HDL by approximately 60%.

In endothelial cells from S1P3-deficient mice, Akt

phosphorylation, and HDL-dependent calcium increase is

severely reduced. In vivo, intra-arterial administration of

HDL or lysophospholipids lowered mean arterial blood

pressure in rats (Nofer et al 2004). A second mechanism

has been proposed by Mineo et al (2003), which suggests

that HDL via interaction with SR-B1 activate a tyrosine

kinase most likely belonging to the src family kinase that

phosphorylate both Akt and MAPK. The PI3K/Akt pathway

plays a central role in the modulation of HDL-induced eNOS

expression and activity (Mineo et al 2003; Nofer et al 2004).

The activation of the PI3K/Akt pathway by HDL also

maintains mitochondrial integrity by inhibiting cytochrome C

Figure 2 Intracellular signaling pathways activated by high-density lipoprotein (HDL). HDL interact with several membrane proteins, including scavenger receptor-B1
(ApoA-I), EDG1/3 G-coupled receptor (lysosphingolipids S1P, SPC, and LSF) and other putative receptors LRP8 (ApoE), GpIIa/IIIb, CD36 or membrane proteins,
caveolin-1, thus resulting in the phopshorylation of several kinases, MAPK, PI3K/Akt, PCK, p38MAPK, and the modulation of transcription factor activity.
(Abbreviations are listed at the end of the paper.)
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release, caspase 3 and 9 activation, and apoptosis (Nofer,

Levkau, et al 2001). PI3K/Akt activation by HDL has also

been involved in the modulation of the expression of TGF-β2

(Norata et al 2005), a cytokine with antiinflammatory

properties (Mallat and Tedgui 2002). HDL have been shown

to activate also the protein kinase network Raf-1, MEK1/2,

and ERK1/2 (Nofer, Junker, et al 2001; Norata, Callegari,

et al 2004) that is responsible for the cell cycle entry and

for eNOS activation (Nofer, Junker, et al 2001; Mineo et al

2003). ERK1/2 activation leads to the expression of cyclin

D1 and c-fos, resulting in the phosphorylation of the

retinoblastoma protein (pRb), which initiates the progression

of the cell cycle (Nofer, Junker, et al 2001).

The activation of other signaling pathways has been

implicated in HDL-dependent endothelial cell proliferation.

Initially, it was proposed that HDL-induced proliferation

occurs through a protein kinase C-mediated pathway, and

HDL apolipoproteins were required for this effect (Darbon

et al 1986). More recent data suggest that the mitogenic

effect of HDL is mediated by a rise in intracellular pH and

calcium (Tamagaki et al 1996), initiated by phospholipase

C activation (Honda et al 1999), and that the lipid fraction

of HDL is responsible for the rise of intracellular calcium.

These observations suggest that activation of two different

signaling pathways by HDL apolipoproteins and lipids may

ultimately enhance proliferation of endothelial cells.

Furthermore, the rise in calcium and subsequent activation

of calcium/calmodulin kinase has been implicated in the

activation of the PI3K/Akt pathway leading to increased

eNOS expression and activity (Nofer et al 2004). HDL also

induce the phosphorylation of p38MAPK, which is

implicated in the activation of CREB and subsequent HDL-

dependent Cox-2 induction and prostacyclin release in

endothelial cells (Norata, Callegari, et al 2004).

Of interest, studies have shown that HDL can modulate

the activity of proteins present in plasma membrane

microdomains, known as caveolae, including eNOS and PGI

synthase (PGI-S) (Frank et al 2003). These effects are

achieved both through the maintenance of cholesterol

content in caveolae for eNOS (Uittenbogaard et al 2000;

Everson and Smart 2001) and the phosphorylation of

caveolin1 (the main protein of the caveolae) and subsequent

PGI-S shuttling and Cox-2 coupling in the perinuclear area

of endothelial cells (Norata, Callegari, et al 2004).

Despite the activation of all these intracellular signaling

pathways, the molecular mechanisms by which HDL exert

their antiinflammatory effects are poorly understood. As the

activation of the nuclear factor kappa B (NF-κB) is

responsible for TNF-α–dependent adhesion molecule

expression, it has been proposed that it may act by inhibiting

NF-κB activation. HDL block the TNF-α–induced nuclear

translocation and DNA binding of NF-κB by interrupting a

sphingosine kinase signaling pathway upstream of NF-κB

activation (Xia et al 1999) and inhibiting NF-κB and AP-1

Table 2 The HDL-induced intracellular signaling

Signaling type Resulting effect Key references

Membrane interaction
Interaction with SR-B1 Akt, eNOS phosphorylation Yuhanna et al 2001
Interaction with EDG1/3 Akt, eNOS phosphorylation Nofer et al 2004
Interaction with LRP8 eNOS phosphorylation Riddell 1999
Interaction with GpIIa/IIIb Possible antagonism Nofer 1998
Interaction with caveolae eNOS phosphorylation Uittenbogaard et al 2000

PGI-synthase shuttling Norata, Callegari, et al 2004
Kinase phosphorylation
MEK1/2-ERK1/2 eNOS phopshorylation Mineo et al 2003

Cell cycle entry Nofer, Junker, et al 2001
PI3K/Akt eNOS phopshorylation Nofer et al 2004

↓ apoptosis/caspases Nofer, Levkau, et al 2001
↑ TGF-β2 Norata et al 2005

PI-PLC/PKC Cell cycle entry Darbon et al 1986
P38MAPK Cox-2 synthesis Norata, Callegari, et al 2004
RhoA ↓ phopshorylation / ↓TF Viswambharan et al 2004
Transcription factors
NF-κB ↓ activity Xia et al 1999; Park et al 2003
AP-1 ↓ activity Park et al 2003
CREB ↑ activity-Cox-2 expression Norata, Callegari, et al 2004

Abbreviations are listed at the end of the paper.
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translocation and transactivation (Park et al 2003). Some of

the inflammatory effects of HDL may also result from the

induction of TGF-β2 expression (Norata et al 2005).

Conclusion
Endothelial dysfunction plays a key role during athero-

genesis, and HDL have been shown to protect the

endothelium through the modulation of the expression of

several genes leading to increased cell proliferation,

diminished apoptosis, increased vasorelaxation, and

decreased inflammation. Apolipoproteins, lipids, and

enzymes associated with HDL are implicated in these effects

in vitro. Injection of reconstituted HDL (Badimon et al 1990)

or ApoA-I mimetics in animal models (Chiesa et al 2002;

Chiesa and Sirtori 2002) and humans (Nissen et al 2003)

provide protection against atherosclerosis; however, the

specific effects on the endothelium have not yet been

determined.

The effects of HDL on endothelial cells depend on the

activation of several intracellular pathways. The PI3K/Akt

pathway has been implicated in many of the effects of HDL

on the endothelium; furthermore, mice overexpressing

ApoA-I present an increased Akt phosphorylation in the

arterial wall (Norata et al 2005) and mice lacking one of

the lysosphingolipid receptors show a reduced Akt

phosphorylation in the arterial wall (Nofer et al 2004).

Other signaling pathways, including ERK1/2, calcium/

calmodulin kinase, PKC, and p38MAPK, are activated by

HDL and are involved in the effects of HDL on the

endothelium.

A body of evidence thus suggests that in addition to their

role in reverse cholesterol transport, HDL positively affect

endothelial function in vitro; further studies are needed to

address the pleiotropic effects of HDL in vivo and the

molecular mechanisms involved.
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