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Human beings are exposed to a variety of different pathogens, which induce tailored
immune responses and consequently generate highly diverse populations of pathogen-
specific T cells. CD4+ T cells have a central role in adaptive immunity, since they provide
essential help for both cytotoxic T cell- and antibody-mediated responses. In addition, CD4+

regulatory T cells are required to maintain self-tolerance and to inhibit immune responses
that could damage the host. Initially, two subsets of CD4+ helper T cells were identi-
fied that secrete characteristic effector cytokines and mediate responses against different
types of pathogens, i.e., IFN-γ secreting Th1 cells that fight intracellular pathogens, and
IL-4 producing Th2 cells that target extracellular parasites. It is now well established that
this dichotomy is insufficient to describe the complexity of CD4+ T cell differentiation,
and in particular the human CD4 compartment contains a myriad of T cell subsets with
characteristic capacities to produce cytokines and to home to involved tissues. Moreover,
it has become increasingly clear that these T cell subsets are not all terminally differen-
tiated cells, but that the majority is plastic and that in particular central memory T cells
can acquire different properties and functions in secondary immune responses. In addi-
tion, there is compelling evidence that helper T cells can acquire regulatory functions upon
chronic stimulation in inflamed tissues. The plasticity of antigen-experienced human T cell
subsets is highly relevant for translational medicine, since it opens new perspectives for
immune-modulatory therapies for chronic infections, autoimmune diseases, and cancer.
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INTRODUCTION
Human CD4+ T cells are critical regulators of the immune
system, as drastically demonstrated by HIV-infected individuals
that develop susceptibility to opportunistic infections and cancer
when virus-dependent depletion reduces CD4+ T cell counts
below critical thresholds (1). CD4+ T cells are very heteroge-
neous in human adults, because they have been generated in
response to a high number of different pathogens and belong to
a progressively increasing number of different subsets with spe-
cialized functions (2). Helper T cell subsets are defined by the
production of cytokines and/or the expression of characteristic
lineage-defining transcription factors (Table 1). Five principal
subsets or lineages of CD4+ T cells have been identified so far:
T helper (Th)1, Th2, and Th17 cells that target specific classes of
pathogens (3–5), regulatory T cells that are required to maintain
self-tolerance (6) and follicular helper T cells (TFH) that pro-
vide help to B cells for antibody production (7). Heterogeneity
is generated upon T cell priming, since naïve T cells have stem-
cell-like properties and can differentiate into virtually all different
types of effector, memory, or regulatory cells (Table 1). Antigen-
experienced T cells are less flexible, but many subsets retain some
plasticity and can acquire additional cytokine producing capac-
ities upon antigenic re-stimulation, while others appear to be
terminally differentiated (8). In some cases, T cell functions can
even completely change from helper to regulatory functions (9) or
vice versa (10). A caveat of these findings in particular in humans
is the enormous heterogeneity of T cells (2), making it difficult to

exclude a selective outgrowth of rare pre-existing precursor cells.
Several excellent reviews on the plasticity of mouse T cells have
been published in recent years (11–13), while human T cell plas-
ticity is less understood, but highly relevant for new therapeutic
strategies in immune-mediated diseases (14).

TERMINALLY DIFFERENTIATED TH1 AND TH2 EFFECTOR
CELLS: THE TIP OF THE ICEBERG
Seminal studies have established that CD4+ T cells can differ-
entiate into two types of effector cells with different cytokine
producing capacities and functions in humans and mice (3, 4).
Uncommitted naïve T cells that are activated by specialized den-
dritic cells that produce IL-12 (15, 16) acquire IFN-γ producing
capacities. These so-called T helper 1 cells (Th1) are induced upon
infections with intracellular pathogens like bacteria or viruses
and can activate macrophages to destroy intracellular bacteria. In
contrast, naïve T cells primed in the presence of IL-4 undergo a dif-
ferent fate and start to produce IL-4, IL-5, IL-10, and IL-13, but not
IFN-γ. These Th2 cells are required to fight extracellular parasites
like helminths, but since they induce IgE from B cells they are also
involved in allergies (17). Importantly, it was shown that Th1 ver-
sus Th2 differentiation was a crucial decision to resist infections,
since BL/6 mice that mount a Th1 response to leishmania were pro-
tected, while BALB/c mice that instead induce a Th2 response were
highly susceptible (18). The characteristic cytokines produced by
Th1 and Th2 cells, IFN-γ, and IL-4, were further shown to inhibit
the differentiation to the opposite differentiation lineage and thus

www.frontiersin.org December 2014 | Volume 5 | Article 630 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187943416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00630/abstract
http://community.frontiersin.org/people/u/174925
http://community.frontiersin.org/people/u/104655
http://community.frontiersin.org/people/u/197648
http://community.frontiersin.org/people/u/138634
http://community.frontiersin.org/people/u/49629
mailto:geginat@ingm.org
mailto:abrignani@ingm.org
http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


Geginat et al. Plasticity of human CD4 T cells

Table 1 | Phenotype, characteristics and functions of relevant human T cell subsets.

T cell subset Phenotype Characteristic

cytokines

Characteristic

transcription

factors

Function

Naïve CD45RA+CCR7+ IL-2 Precursor cells, protection against new pathogens

TCM (central memory) CD45RA−CCR7+ IL-2, IL-21 Secondary expansions, help

TEM (effector memory) CCR7− IFN-γ, IL-4, IL-5, IL-17 Protection in tissues, help

TRM (tissue-resident memory) CD103+CD69+ IFN-γ Immediate protection in tissues

TFH (follicular helper) CXCR5+ICOS+ IL-21 BCL6 B cell help

Th1 CXCR3+ IFN-γ T-bet Protection against intracellular pathogens

Th2 CRTH2+ IL-4, IL-5, IL-13 GATA-3 Protection against extracellular parasites

Th9 ? IL-9 PU.1 Protection against extracellular parasites

Th17 CCR6+CD161+ IL-17, IL-22, IL-26 RORC2 Protection against extracellular bacteria and fungi

Treg CD25+CD127− TGF-β FOXP3 Maintenance of self-tolerance

Tr1 (type 1 regulatory) CD25−CD127− or

CD49b+LAG3+
IL-10 ? Inhibition of immunopathology

reinforced the original fate decision. The capacity to produce either
IFN-γ or IL-4 is stably imprinted by epigenetic modifications
like DNA methylation and histone acetylations, ensuring that the
cytokine profile of T helper cells is preserved upon cellular division
independently of the inducing polarizing cues (19–21). Moreover,
the generation of Th1 and Th2 cells was shown to depend on the
“master” transcription factors T-bet and GATA-3, which induced
not only the characteristic cytokines of Th1 and Th2 cells, but
also inhibited the differentiation to the alternative lineage. Based
on this evidence, it was initially assumed that the differentiation
to Th1 and Th2 cells are mutually exclusive and irreversible fate
decisions.

TH1 AND TH2 CELLS CAN ACQUIRE NEW PROPERTIES AND
FUNCTIONS IN SECONDARY OR CHRONIC IMMUNE
RESPONSES
Early studies with human T cell clones showed that IFN-γ and
IL-4 production were not necessarily two exclusive features, since
some T cells co-produced IFN-γ and IL-4 (22). Notably, human
Th1 memory cells are responsive to IL-4 stimulation, and acquire
IL-4 producing capacities upon TCR stimulation in the presence
of IL-4 without losing IFN-γ production in vitro (23).

In addition, some T cells in human blood co-express the Th1
and Th2 markers CXCR3 and CCR4 (24) or CRTh2 as well as
the lineage-defining transcription factors GATA-3 and T-bet (25).
Consistently, it was shown in mice that histones of these tran-
scription factor genes had both repressive and permissive marks
in opposing T cell lineages (13, 26). In mice, in vivo primed Th2
cells can acquire IFN-γ producing capacities in addition to IL-4
in response to IFN and IL-12 (27), while human blood Th2 cells
seem to be less plastic (23). Moreover, the pathogens and the phys-
iological conditions that induce Th1/2 cells in humans and their
role in immune responses remain to be fully defined (25).

Another early finding that did not fit well into the fixed
Th1/Th2 paradigma was the fact that IL-12 could induce IL-
10 in Th1 cell clones (28). IL-10 has potent anti-inflammatory
functions and inhibits maturation and T cell stimulatory capaci-
ties of APC (29), thus the concomitant expression of both IFN-γ

and IL-10 by T cells was unexpected (30). Later it was shown
that IL-10 produced by T-bet+ Th1 cells was required to inhibit
lethal immunopathology upon infections with intracellular par-
asites (31, 32), indicating that IL-10-producing Th1 cells prevent
overshooting immune responses and the resulting tissue damage
in a negative feedback loop (9). Interestingly, although these IL-
10 producing Th1 cells inhibited IL-12 production by APC, they
were also able to restrict parasite growth via IFN-γ (31). How-
ever, IFN-γ has also been shown to have some negative effects on
T cell responses (33, 34), providing a possible alternative expla-
nation for IFN-γ production by regulatory T cells. Importantly,
IFN-γ/IL-10 co-producing T cells with regulatory functions are
present at low frequencies in peripheral blood of healthy donors
and respond selectively to persistent pathogens (35), suggesting
that similar to their mouse counterparts they inhibit overshoot-
ing immune responses in chronic infections. Thus, Th1 cells can
switch from pro-inflammatory effector cells to IL-10 producing
type 1 regulatory (Tr1)-like T cells (36, 37), and this switch is
necessary to maintain the integrity of infected tissues in some
infections. Complement receptor stimulation (38), production of
IL-27 (39) or IL-12 (28) by myeloid cells (40), or generation of
AHR ligands (41) are possible inductive cues, but also chronic or
repetitive antigenic stimulation seems to be required to induce
IL-10 production in Th1 cells (35, 42, 43). Interestingly, a recent
paper suggests that IL-10/IFN-γ co-producing T cells can also be
generated from Th17 cells under the influence of IL-12 or IL-27 in
mice (44). If IFN-γ/IL-10 co-producing regulatory T cells are sta-
bly maintained or are short-lived, if they progressively lose IFN-γ
production upon chronic stimulation or revert to Th1 cells upon
pathogen clearance is currently unclear (Figure 1).

More recently, additional plasticity of Th2 cells was docu-
mented. Thus it was shown that TFH cells were derived from Th2
precursor cells in mouse models of helminth infections (45). This
finding is relevant for Th2 stability, because TFH cells are profes-
sional B helper T cells that secrete IL-21 in B cell follicles, express
the transcriptional repressor BCL-6 and are thus distinct from
conventional Th1 and Th2 cells (7, 46, 47). Also in human ton-
sils a fraction of TFH cells express the Th2 marker CRTH2 and
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FIGURE 1 | Plasticity of humanTh1 andTh2 cells. Naive CD4+ T cells are
stem-cell-like cells that under the influence of different cytokines can
differentiate to various types of effector cells including Th1, Th2, Th9, and TFH

cells. Th1 and Th2 central memory cells are arrested at an early stage of

differentiation, are highly plastic and some can still switch lineage. Conversely,
effector memory cells are more differentiated, less plastic, and rather become
polyfunctional. Moreover, Th1 effector cells can acquire IL-10 producing
capacities and regulatory functions in chronically inflammed tissues.

produce IL-4 (48). The relationship of Th1 cells with TFH cells is
less clear in particular in humans (49, 50). Some murine TFH cells
produce IFN-γ (51), which induces IgG2a production by B cells
(52), but TFH cells from human tonsils lack IFN-γ production.

Mouse Th2 cells can also switch from IL-4 to IL-9 production
upon stimulation with TGF-β (53). These Th9 cells express the
PU.1 transcription factor (54) and can also be directly induced
from naïve and memory T cells upon stimulation with TGF-β
and IL-4 in humans and mice (55, 56). Th9 cells can have a
pro-inflammatory role in allergic asthma (57) and respond to
helminth antigens and allergens in humans (58, 59). However,
IL-9 induction by TGF-β is not restricted to Th2 cells (60).

Collectively, these findings indicate that both Th1 and Th2 cells
can acquire different cytokine producing capacities and functional
properties upon antigenic re-stimulation under the influence of
cytokines, and are thus much more flexible than originally thought
(Figure 1).

STABILITY OF FOXP3+ TREGS IS DEBATED
CD25+ regulatory T cells are required to maintain self-tolerance.
They were first identified in mice (61) and later in humans (62),
and the Foxp3 transcription factor was shown to be required for
their generation and function (63, 64). Consistently, IPEX patients,
who suffer from a devastating autoimmune disease, were found
to have mutations in the Foxp3 gene (65). Although so-called
natural or thymic Foxp3+ Tregs acquire regulatory lineage com-
mitment already upon maturation in the thymus (66), adaptive,

or peripheral Foxp3+ Tregs can be induced from mature CD4+

helper T cells in the periphery under the influence of TGF-β (67,
68). The transcription factor Helios was proposed to distinguish
between these two subsets of natural and induced Foxp3+ Treg,
but this concept was not confirmed by others (69–71). In humans,
CD45RA+CD25+Foxp3+ cells represent a population of bona fide
“naïve” and thus thymus-derived Tregs, while CD45RA− Tregs
are a mixed population that contain antigen-experienced Tregs of
both thymic and peripheral origin (72). The stability of Foxp3+

Tregs is debated (73). Lineage tracing of Foxp3+ T cells in mice
has lead to conflicting interpretations, since in several studies only
very small fractions of Foxp3+ Tregs were found to lose Foxp3
and regulatory functions in vivo (74). In humans, CD45RA+ but
not CD45RA− Tregs could be stably expanded in vitro (72, 75),
suggesting different stabilities of thymic and peripheric Tregs.
However, since human Tregs have to be purified according to
surface marker expression, it is difficult to exclude a selective out-
growth of Foxp3− cells or of activated effector T cells that have
transiently up-regulated Foxp3 upon stimulation (73).

The functional specialization of Foxp3+ Treg is shaped by the
tissue microenvironment (76), and the induction of transcrip-
tion factors characteristic for helper T cell lineages in mice allows
Tregs to suppress the corresponding T helper cell responses (74).
Thus, STAT3 in Tregs is required to suppress Th17 cells (77),
IRF4 to control Th2 responses (78) while Tregs that regulate
TFH cells and antibody responses express BCL-6 (79, 80). Foxp3+

Tregs also acquire T-bet and IFN-γ producing capacities upon
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stimulation with IL-12, and these Th1regs might be specialized to
suppress Th1 responses (14, 74). Tregs also inhibit anti-tumor CTL
responses (81), and interestingly they can acquire cytotoxic prop-
erties in tumor-draining lymph nodes in mice (82) and in vitro
in humans (83), and tumor-infiltrating Tregs are consequently
cytotoxic (84). Similar to helper T cells, Tregs that secrete dif-
ferent types of effector cytokines can be identified according to
chemokine receptor expression (2), and these Treg subsets might
specifically suppress different types of immune responses (85).
Human Foxp3+ T cells that produce IL-17 or IFN-γ can be isolated
(86, 87), but while IL-17 producing Treg cells were normally sup-
pressive (88), IFN-γ producing Tregs had reduced suppressive
functions (87). The conditions that induce human Foxp3+ Tregs
to secrete different effector cytokines and the role of these cells
in infections, cancer, and autoimmune diseases remain to be fully
established.

HETEROGENEITY AND UNSTABILITY OF TH17 CELLS AND ITS
RELEVANCE FOR AUTOIMMUNE DISEASES
The discovery of IL-17 producing helper T cells (Th17) in mice
(89, 90) and humans (91) and their relative instability (11, 92) has
led to a profound re-evaluation of the concept of two terminally
differentiated helper T cell subsets. The fact that human CD4+ T
cells produce IL-17 was known for a long time (93). However, it
took a decade to realize that these cells represented an independent
differentiation lineage (89, 90), which have unique differentiation
requirements and express the lineage-defining transcription factor
ROR-γt in mice and RORC2 in humans (94, 95). Th17 cells are
important to fight extracellular bacteria and fungi, since patients
that lack Th17 cells have uncontrolled infections with Candida
albicans (C. albicans) and Staphylococcus aureus (96). The dis-
covery of Th17 cells has been complicated by the fact that T
cell differentiation to Th1 and Th17 cells relies on shared com-
ponents of cytokines and their receptors. Thus, it was known
that IL-12p40 and IL-12Rβ1 hetero-dimerize with respectively
IL-12p35 and IL-12Rβ2 to induce Th1 cells, but later it was
realized that they can also associate with respectively IL-23p19
and the IL-23R to promote Th17 responses (97). The IL-23/IL-
23R pathway is involved in many different autoimmune diseases
(98–100) and IL-23-induced Th17 cells are thought play a promi-
nent pathogenic role (101–104). Conversely, the contribution of
Th1 cells, which were initially thought to drive autoimmune
diseases, is now debated. The requirements for Th17 differen-
tiation are more complex than for Th1 and Th2 cells, because
IL-17 production in CD4+ T cells can be induced by different
cytokine combinations. Initially, TGF-β plus IL-6 was identified
in mice (105), while IL-1β, IL-6, and/or IL-23 were proposed
in humans (106, 107). The de novo Th17 differentiation is very
inefficient in humans, and therefore it was suggested that only
a cocktail with all four cytokines induces significant Th17 dif-
ferentiation (108). Although the role of TGF-β in human Th17
differentiation has been a subject of debate (109), it was shown
in mice that TGF-β induces ROR-γt, while pro-inflammatory
cytokines are required to inhibit TGF-β-induced Foxp3 expres-
sion and thus Treg generation (110). The presence of CD4+

T cells co-expressing Foxp3, RORC2, and/or IL-17 in humans
is consistent with a role for TGF-β in human Th17 and Treg

development (86, 88). An alternative explanation for the posi-
tive role of TGF-β in Th17 differentiation is that TGF-β indirectly
favors Th17 cell differentiation by inhibiting Th1 cell develop-
ment (111). Indeed, in the absence of TGF-β1 (106, 107, 112),
or in the presence of TGF-β3 in mice (113), pathogenic Th17
cells that co-produce IL-17 and IFN-γ are generated. These
Th1/17 cells co-express RORC2 and T-bet, are enriched in autoim-
mune patients and are specific for both Th1 and Th17-inducing
pathogens (114, 115).

In vitro stability experiments and fate reporter mice suggested
that Th17 cells are partially unstable and can switch completely
from IL-17 producing Th17 to IFN-γ producing Th1 cells in
chronic immune responses (92, 116). IL-12 can induce this Th17-
to-Th1 switch (117), and CD161 was proposed as a marker that
distinguishes these ex-Th17 cells from conventional Th1 cells
in humans (118). However, ex vivo isolated human Th17 cells
exhibited stable epigenetic marks at cytokine and transcription
factor loci (119), suggesting that in vivo generated human Th17
cells are not necessarily unstable. Finally, also a very rare pop-
ulation of human T cells that co-produces IL-17 and IL-4 was
identified (120). These Th2/17 cells were proposed to be highly
pro-inflammatory in allergic asthma, but their role in immune
responses against pathogens remains to be understood.

Th17 cells are highly heterogeneous and produce several effec-
tor cytokines besides IL-17. IL-22, a cytokine that promotes epithe-
lial proliferation and barrier function (121), is produced by some
Th17 cells (122, 123), and IL-22 and IL-17 co-operate to con-
trol gram-negative bacteria in the lung (124). However, a subset of
human skin-homing IL-22 producing cells was identified that were
distinct from Th17 cells (125, 126). Indeed, in contrast to IL-17,
IL-22 is inhibited by TGF-β (127) and thus how Th17 cells acquire
IL-22 producing capacities and if they can even switch from IL-17
to IL-22 production is unclear. Some Th17 and Th22 cells also
produce IL-26, a pro-inflammatory cytokine that is not expressed
in mice (128) and that also acts selectively on non-hematopoietic
cells. A particular relevant cytokine in the pathogenesis of exper-
imental autoimmunity is GM-CSF, which is induced by IL-1β,
IL-23, and ROR-γt in mice (102, 129). Conversely, GM-CSF is
inhibited by IL-1β and IL-23 in humans, and is produced by both
Th1 and Th17 cells (130, 131).

Th17 cells also produce high levels of IL-21. IL-6 induces IL-
21 in naive T cells upon priming (132), and IL-21 can induce
its own expression (133) and promotes Th17 differentiation in
an autocrine manner (131, 134–136). Importantly however, IL-
21 inhibits GM-CSF and IFN-γ production and promotes instead
IL-10 secretion in developing Th17 cells. Consequently, IL-21 pro-
motes the generation of conventional (137) or regulatory Th17
cells (138), but inhibits the generation of pathogenic Th1/17 cells
(131). Finally, a subset of skin-homing T cells produces IL-9 and
responds to C. albicans (139). Some of these cells co-produce IL-9
and IL-17 (60), while others appear to represent Th9 cells. IL-9
production seems however to be transient, suggesting that these
skin-homing Th9 cells are largely unstable (139).

In summary, the current knowledge indicates that human Th17
cells are highly heterogeneous and partially unstable (Figure 2),
and much remains to be learned on the role of different Th17
subsets in immune-mediated diseases.
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FIGURE 2 | Heterogeneity and plasticity of humanTh17 cells. Th17 cells
are highly heterogeneous and produce various types of other cytokines in
addition to IL-17, including the Th1 and Th2 marker cytokines IFN-γ and IL-4.

Some IL-17 producing T cells express Foxp3 and/or IL-10 and are suppressive.
Moreover, Th17 cells are partially unstable and can become Th1 cells upon
chronic inflammation.

REGULATION OF HUMAN T CELL PLASTICITY IN TISSUES:
THE NEW FRONTIER
The complex regulation of T helper subsets by cytokines raises the
questions where T cells are re-educated and also why this might be
important to successfully resist pathogens, since this was a major
evolutionary pressure that shaped the human immune system. It
was soon realized that stable T cell differentiation often requires
repetitive in vitro TCR stimulation in the appropriate cytokine
condition, suggesting that immature T cells might be more plastic
than more differentiated ones (12, 140). In vivo primed T cells that
are at an intermediate stage of differentiation are central memory
T cells (TCM), which similar to naïve T cells have maintained the
capacity to home to lymph nodes, produce only low levels of effec-
tor cytokines, but produce high levels of IL-2 and IL-21 (131), and
expand rapidly to generate secondary waves of effector cells (8).
Conversely, effector memory T cells (TEM) are more differenti-
ated cells since they produce high levels of effector cytokines and
home preferentially to inflamed non-lymphoid tissues (8). Con-
sistent with the view that plasticity is progressively reduced upon
T cell differentiation, pre-committed Th1CM cells are more plastic
than fully differentiated Th1EM cells, since Th1CM cells generate a
substantial population of bona fide Th2 cells upon re-stimulation
with IL-4, while Th1EM cells do not revert to Th2 cells, but some
acquire IL-4 in addition to IFN-γ producing capacities (24). This
plasticity requires TCR stimulation, since antigen-independent
proliferation with homeostatic cytokines resulted exclusively in
the generation of Th1 effector cells (24). Based on these findings
it can be speculated that pre-committed TCM cells that cross-react
with a different pathogen can be still partially re-educated to a
different lineage in lymph nodes, while TEM cells do not easily
switch cytokine production, but rather become polyfunctional

(Figure 1). Another example of functional plasticity in lymphoid
organs is the generation of follicular Foxp3+BCL-6+ Tregs, which
are specialized Tregs that control B cell responses (79, 80). Also
Tregs in non-lymphoid tissues acquire tissue-specific properties
that are important for their functions (76). TEM helper cells that
are activated by antigen in non-lymphoid tissues can up-regulate
CCR7 (141) and home to inflamed lymph nodes (142) where they
can influence the secondary immune response and are exposed
to a different cytokine milieu. Conversely, tissue-resident mem-
ory (TRM) cells have lost sphingosine-1 phosphate receptors and
thus also the capacity to re-circulate through the blood to sec-
ondary lymphoid organs (143). TRM belong predominantly to the
CD8 compartment, but influenza virus-specific CD4+ TRM can
be identified in the lung of humans and mice (144). If tissue-
resident CD4+ T cells are terminally differentiated effector cells or
still possess the plasticity to acquire additional cytokine producing
capacities remains to be established (145).

A central organ for the generation of different subsets of
Th17 cells is the intestine (146). Thus, upon self-limiting colitis
induced by anti-CD3 injections in mice predominantly IL-10 pro-
ducing Th17 cells with regulatory functions are induced (138).
Conversely, under conditions that induce IL-23 in the intestine
pathogenic IFN-γ and GM-CSF producing Th17 cells are gener-
ated that induce colitis (147, 148). IFN-γ and IL-17 co-producing
Th1/17 cells have also been observed in patients with IBD (92),
but very little is known about the regulation of Th17 responses
in the human intestine. Th1/17 cells that produce IL-17, IFN-γ,
and GM-CSF also drive central nervous system (CNS) inflam-
mation in EAE, a standard mouse model of multiple sclerosis
(MS) (149). The CNS is separated from pro-inflammatory T
cells by the blood–brain barrier (150), but spontaneous JC Virus
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re-activations and progressive multifocal leukoencephalopathy in
MS patients treated with anti-VLA-4 antibodies, which block lym-
phocyte extravasation to the CNS, suggest nevertheless a constant
immune surveillance by T cells (151). How the microenvironment
of the CNS influences the properties of CD4+ T cells is the focus
of intensive research in mice, but is largely unknown in humans
given the difficulties to analyze T cells in the human CNS.

Thus, accumulating evidence underlines the role of the tissue
microenvironment in T cell plasticity, and the identification of
tissue-specific factors that control T cell functions is likely to have
a major impact on translational medicine.

CONCLUSION AND PERSPECTIVE
The original concept of two terminally differentiated subsets of
Th1 and Th2 cells has been substituted by the view that many dif-
ferent T cell subsets with specific cytokine profiles are required to
protect us from the different pathogenic insults that were are con-
tinuously exposed to. These various T cell subsets possess different
degrees of plasticity to acquire new characteristics and functions in
secondary or chronic immune responses. In particular, while the
stability of Tregs is debated, it is widely accepted that Th17 cells
are largely unstable, although exceptions might exist. In addition,
human Th17 cells are highly heterogeneous, but the functions of all
these different types of Th17 effector cells in protective immune
responses and their roles in autoimmune diseases remain to be
understood. Another important but poorly understood aspect of
T cell plasticity is how different tissue microenvironments impact
on human T cell differentiation and stability. The definition of the
relative plasticities or stabilities of human T cell subsets in different
tissues is highly relevant for future therapeutic interventions in so
different immune-related pathologies as chronic viral infections,
cancer, and autoimmune diseases.
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