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Abstract 

Modelling complex electromagnetic devices incorporating inhomogeneous magnetic fields 

typically requires computationally intensive solutions based on numerical methods. Simple 

magnetic path problems are often solved using less computationally intensive analytical techniques 

such as equivalent circuit approximations. Deciding upon which model to use depends on device 

complexity and involves a tradeoff between accuracy and computational efficiency.   

By expanding upon existing magnetic circuit theory, considering stored magnetic energy and 

vector analysis, it is possible to use magnetic circuit analysis to accurately model complex 

electromagnetic devices. The focus on energy facilitates the ability to incorporate inhomogeneous 

magnetic fields into magnetic circuit analysis that would traditionally require the use of numerical 

methods. This thesis derives closed form equations to describe electromagnetic device 

characteristics for a toroid, solenoid and a case study induction machine. By considering stored 

magnetic field energy, this approach allows the relationship between electrical, magnetic and 

kinetic energy to be quantified and analyzed in ways that allows improved accuracy compared 

with conventional magnetic circuit modeling methods. This thesis also provides insights into how 

geometric parameters impact energy transfer and operational characteristics of electromagnetic 

devices. 
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Chapter 1 

 

1 Introduction 

 Introduction 

Choosing a modeling technique to predict the operational characteristics of electromagnetic 

devices often involves a tradeoff between computational complexity and required accuracy. High 

level abstract models such as electrical and magnetic equivalent circuits require relatively minimal 

computational time as they can be solved using closed form equations. When modelling complex 

electromagnetic interactions or when a high level of accuracy is required, more computationally 

intensive techniques such as numerical methods are commonly used.  

One significant factor in the discrepancy between computational efficiency of different modelling 

techniques is the ability to derive closed form equations. Closed form equations such as those used 

by equivalent circuits can be solved with considerably less computations than arrays of linear or 

differential equations such as those used by numerical methods. Due to this, much of the current 

electromagnetic device modelling research involves achieving an optimum balance between 

accuracy and computational efficiency.  

The research presented in this thesis considers derivation of magnetic circuit parameters for non-

homogenous magnetic field distributions in complex geometries. Magnetic circuit analysis 

focused on stored energy is used to describe the operational characteristics of electromagnetic 

devices without the need for empirically derived parameters. This also allows electromagnetic 

devices incorporating spatially varying material properties, complex magnetic field distributions 

and constituent motion to be modelled without computationally intensive numerical methods. 

Vector applications of energy based magnetic circuit equations are used to model electromagnetic 

devices incorporating circular motion. This allows magnetic flux-based models to be developed 

that describe the relationships between electrical, magnetic and mechanical parameters of 

electromagnetic devices incorporating circular motion.  
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 Literature review 

The research presented in this thesis covers areas of electromagnetic theory relating to modelling 

the characteristics of electromagnetic devices. Considerable research has been conducted in these 

fields over for over a century resulting in a vast body of knowledge upon which the analytical 

techniques are developed in this thesis.  

1.2.1 Electrical Equivalent Circuits 

Equivalent models provide a simple and intuitive technique to analyze the operation of an 

electromagnetic device. One common equivalent circuit technique involves electrical circuit 

equivalents comprised of networks of linear passive elements such as resistors, inductors and ideal 

transformers. Simple electromagnetic devices such as inductors and transformers can be 

effectively modeled using these techniques that account for their non-ideal characteristics. 

Electromagnetic devices incorporating constituent motion such as linear actuators and rotating 

machines can also be modeled using electrical equivalent circuits. This is achieved by making 

component parameters a function of the position and velocity of individual components. 

Electrical equivalent circuit are often used to model electrical motors. This allows for simple 

implementation of control using either open loop or closed loop control algorithms. The simplest 

electrical equivalent model assumes that the motor is series parallel L and R circuit representing 

magnetization, copper losses, core losses and a Back Electro-Motive Force (Back-EMF) [1]. A 

common application of this technique is for simple open loop voltage frequency control of an 

induction motor [2]. 

A more comprehensive circuit equivalent model for the induction motor is the Steinmetz 

equivalent circuit model. This model was first proposed by Charles Proteus Steinmetz in 1897 by 

analyzing an induction motor as a rotating transformer [3]. Since then, this model, also called the 

T equivalent circuit, has become such a common model in textbooks that it is referred to as the 

‘Universal Induction Motor Model’ [4]. The circuit consists of resistive and inductive elements 

with the resistor 𝑅𝐿 in figure 1.1 being a function of the rotor speed and synchronous frequency. 

 

Figure 1.1, A Steinmetz equivalent circuit of an induction motor  
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This circuit with appropriately chosen parameters can be used to plot the characteristic speed 

torque curve of an induction motor with sufficient accuracy to enable basic control and simulation 

[5]. It is also possible to add additional capacitors and resistors into this circuit to improve its 

accuracy at higher frequencies [4]. However, it oversimplifies the operation of the induction motor 

and can be improved upon using more complicated equivalent circuits. To achieve this more 

complex networks of electrical components are used with more complex component parameters 

[6]. 

1.2.2 Magnetic Equivalent Circuits 

Magnetic equivalent circuits are the oldest technique used to analyze electromagnetic devices. The 

foundations for this analytical technique date back to June 1828 when Joseph Henry demonstrated 

that there was a relationship between the magnetic field strength of an electromagnet and the 

number of electrical turns [7]. This discovery paved the way for the practical invention of the 

telegraph.  In 1885 John Hopkinson in his article “Magnetization of Iron” published by the Royal 

Society demonstrated the relationship between current and magnetic flux in an electromagnet [8]. 

This allowed the development of a simple linear model called Hopkinson’s law linking the 

Magneto Motive Force (MMF) to magnetic flux. The value used to scale the magnetic flux as a 

function of MMF was first referred to as reluctance by Oliver Heaviside [9]. 

This linear model between MMF, reluctance and magnetic flux offers a simple method to analyze 

magnetic path problems in a technique that is analogous to using Ohm’s law for electrical circuits. 

For example, consider the simple magnetic circuit path problem as shown in figure 1.2. 

 

 

 

 

 

 

 

Figure 1.2, A simple magnetic circuit path  

In figure 1.2, the MMF will be the product of winding current 𝑖 and the number of turns 𝑁. The 

magnetic path reluctance ℛ can be calculated to be equation (1.1) where 𝑙 is the average path 

𝐴𝑐𝑠𝑎 

𝑙 
Φ 

𝑖 

𝑛 
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length and 𝐴𝑐𝑠𝑎 is the cross-sectional area of the magnetically permeable material and 𝜇𝑟 is the 

relative permeability of the magnetic material. 

ℛ =
𝑙

𝜇0𝜇𝑟 × 𝐴𝑐𝑠𝑎
 

The equation (1.1) value of reluctance can be substituted into Hopkinson’s law to calculate the 

relationship between the electric current 𝑖 and the magnetic flux Φ. 

𝑖𝑛 = ℛΦ 

Magnetic equivalent circuits are useful for analyzing simple magnetic path problems as shown in 

figure 1.2. This linear model is only an approximation as it does not account for the non-linear 

magnetization properties of the material and it assumes a uniform magnetic flux distribution 

throughout the material. Despite these limitations, the simplicity and relative accuracy in simple 

magnetic path problems has kept this model relevant [10]. 

1.2.3 Equivalent Models for Rotating Fields 

Alternating Current (AC) motors operate on the underlying principle of a rotating magnetic field. 

Mathematically describing the properties of a rotating magnetic field is therefore an important 

factor in describing the operations of AC machines. Scientific study into rotating magnetic fields 

first started in 1824 when Francois Arago demonstrated that a rotating copper disc could have a 

magnetizing effect on a magnetized needle [11]. This effect would cause the needle to rotate in the 

same direction as the copper disc when placed near the spinning copper disc. Although there were 

many theories proposed to explain this motion, it was eventually shown by Michael Faraday in 

1831 to be caused by eddy currents in the copper disc caused by electromagnetic induction [11]. 

Despite the interest of the academic community, rotating magnetic fields caused by 

electromagnetic induction had no practical applications at the time and therefore no significant 

research was undertaken for the next few decades. 

The first workable rotating magnetic field was demonstrated to the physical society of London on 

28th June 1879 by Walter Baily. In his paper “A mode of producing Arago’s rotation” he 

demonstrated how to use two batteries and a hand cranked communicator to produce a rotating 

magnetic field that could cause a copper disc to rotate [12]. This model was improved upon by 

Galileo Ferraris who in 1885 used two alternating currents energizing two separate coils with an 

angular displacement of 90° to generate a rotating magnetic field capable of rotating a copper disc 

[13]. Ultimately it was Nicola Tesla’s design of producing a rotating magnetic field using 

alternating current, patented in 1888 that was commercially successful [14]. 

Although Tesla described the induction motor and rotating magnetic fields in detail in his patent, 

his analysis was more descriptive than mathematical. It was no until 1929 that Robert H Park first 

(1.1) 

(1.2) 
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described how to analyze a rotating magnetic field caused by a poly phase induction motor that a 

mathematical description of a rotating magnetic field was derived [15]. Park used a rotating frame 

of reference to view the magnetic field that allows a complicated AC circuit to be analyzed like a 

DC circuit of reduced complexity. The Clarke transformations (also known as Alpha – beta 

transformations) as first described by Edith Clarke can also be used to model a rotating magnetic 

field albeit from a stationary frame of reference.  

A combination of the Park and Clarke transformation are used to implement a model called the 

Direct Quadrate (D-Q) model for analyzing rotating magnetic fields. The D-Q allows an AC motor 

incorporating a rotating magnetic field to be analyzed using a similar technique to that used for 

Direct Current (DC) motor analysis. 

There are two specific parameters required to be measured using the D-Q model. These are flux 

producing currents and torque producing currents. Flux producing currents are referred to as direct 

and are at in phase with the stator flux. Torque producing currents are referred to as quadrate and 

are at right angles to the stator flux [16]. 

To control a motor using the D-Q model, the required torque and flux needs to be calculated.  Then, 

either Field Oriented Control or Direct Torque Control can be used to adjust the motor voltage and 

frequency. Measuring the stator voltage, current and rotor speed then allows the controller to 

estimate the actual magnetic flux and torque. This is compared to the pre-set values and the output 

voltage can be adjusted to minimize the error between the required and measured values of flux 

and torque. Independent equivalent circuits made up of resistors, inductors and voltages sources 

are used to calculate the torque and flux based on output measurements [17]. 

1.2.4 Lumped Parameter Model 

Numerical methods involve dividing the geometry of the electromagnetic device into many 

discrete elements. One common technique used to achieve this is the Lumped Parameter Model 

(LPM). LPMs involve representing a physical system as an interconnected spatially distributed 

mesh of discrete elements that approximate the behavior of each individual elemental component. 

When applied to the analysis of electromagnetic devices, LPM typically involves using many 

sources of MMF and reluctance elements distributed within the geometry of the device to form an 

interconnected mesh.   

LPM is a natural progression of basic magnetic circuit analysis as it allows more complex magnetic 

field distributions to be modeled using the underlying concepts of reluctance, magnetic flux and 

MMF. This reduces the approximations and assumptions inherent to the application of basic 

magnetic circuit analysis to practical situations that inevitably incorporate complex geometries and 

non-uniform magnetic flux density distributions  
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LPM has seen many variations in its application to modelling electromagnetic devices. Common 

LPM techniques used today include Reluctance Mesh Modelling (RMM) [18] and Magnetic 

Equivalent Circuits (MEC) [19]. Both techniques involve analyzing the electromagnetic device as 

being comprised of many interconnected reluctance components and sources of MMF. Basic 

implementations of LPM can only model linear behavior of magnetic fields. However, variations 

of RMM and MEC can be used to simulate and detect faults in rotating machines [20] and account 

for the nonlinear behavior of magnetic fields under specific circumstances [21].  

As with all LPM models, they require detailed knowledge of the construction of the individual 

motor being controlled and are more computationally intensive that electrical equivalent circuits.  

The underlying assumptions of LPM make it inherently difficult to model complex magnetic field 

behavior such as saturation, leakage and skewing effects [19]. Therefore, simulation results 

obtained using other modelling techniques or from direct measurements are required to accurately 

simulate complex electromagnetic devices. 

1.2.5 Finite Element Modelling 

Finite Element Modelling (FEM) is a numerical method that involves directly solving Maxwell’s 

equations as partial differential equations at the boundaries of each elemental component. As such, 

it is similar to LPM in that the electromagnetic device is represented as an interconnected mesh of 

elementary components. However, FEM does not require the use of linear modelling 

approximations to calculate the state of each elementary component as is the case for LPM. This 

results in a highly accurate model capable of modelling magnetic fields in complex geometries 

and accommodating a wide range of magnetic field behaviors.   

FEM as a mathematical analysis technique was first proposed by Richard Courant in 1943 for 

solving engineering problems [22]. Due to the computational complexity required to solve 

engineering problems, it was not until the late 1950’s that computers became fast enough to make 

this technique viable. In 1965 Alan Winslow was the first to apply FEM to simulating magnetic 

fields within a magnetically permeable material [23]. This paved the way for greater uptake of 

FEM to analyze electromagnetic devices during the 1970’s [24]. Due to the computational power 

of modern computers and many CAD implementations, FEM is considered the industry standard 

magnetic field modelling technique used today [19]. 

Although FEM is usually considered the most accurate magnetic field modelling technique 

available, it still has some limitations. The major limiting constraint preventing the universal 

uptake of this model is its computational complexity [25]. This primarily restricts it use to design 

purposes only, as solving the complete FEM model for real time control of a device is not practical 

with available computing power. To apply FEM for use in real time control applications typically 

involves combining it with other modelling techniques or using a partial or low-resolution 

implementation [26].   
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Another observed limitation of FEM is its accuracy when modelling force and magnetic losses 

[19]. These limitations mean that an FEM simulation cannot be used to definitively prove the 

behavior of a magnetic field without experimental evidence to confirm its predictions. Despite 

these limitations, the overall high level of accuracy of this model makes it a useful benchmark 

when assessing the accuracy of other modelling techniques such as that which is presented in this 

thesis. 

1.2.6 Research Gap 

The electromagnetic device modelling techniques described thus far can be broadly classified as 

either numerical methods based, or closed form equation based. Generally, numerical methods-

based models will result in high accuracy at the expense of high computational intensity relative 

to closed form equations. Deriving a model that has a high level of accuracy with moderate or low 

levels of mathematical computations is a desirable goal of current electromagnetic research due to 

the applications of such models to real time control and optimization. 

Numerical methods are often used instead of reduced complexity models when an electromagnetic 

device incorporates in-homogeneous magnetic flux distributions and time varying reluctances.  

The research presented in this thesis demonstrates how existing magnetic circuit theory can be 

extended using energy and vector-based equations to derive closed form solutions for these 

situations.  In doing so it is possible to calculate the dynamic behavior of electromagnetic devices 

that would typically require the use of numerical methods.  

The analytical technique presented in the thesis will also be applied to electromagnetic devices 

incorporating rotating magnetic fields. Magnetic flux-based models, such as the D-Q model seek 

to achieve an optimal balance between accuracy and computational intensity.  Despite the D-Q 

model incorporating greater detail than simple magnetic circuit path models, it is still requires a 

high level of abstraction.  This is due to the requirement to convert AC parameters to their DC 

equivalent where only selected currents either produce flux or experience torque. 

The proposed magnetic circuit modelling technique uses vector-based relationships between 

rotating magnetic fields to simplify their analysis. This simplifies the analysis of an induction 

motor without the need for converting AC circuit parameters to their DC equivalent such as occurs 

with the D-Q model. Using these vector-based relationships also allows for magnetic flux based 

models of rotating magnetic fields to be derived where all electric currents contribute to the 

magnetic flux and experience torque. 
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 Research Questions 

1.3.1 Research Question 1. How does magnetic circuit modelling of a 

stationary magnetic device consisting of an inhomogeneous magnetic 

field distribution compare to Finite Element Modelling? 

Traditional applications of magnetic circuit theory to electromagnetic devices assume a uniform 

magnetic flux density and uniform material permeability. In simple magnetic path problems this 

can yield satisfactory results. However, as magnetic field distributions and material magnetic 

properties become more varied these assumptions result in reduction in accuracy. 

Accounting for variations in magnetic flux density and relative permeability when deriving 

magnetic circuit parameters results in improved accuracy. It also allows magnetic circuit equations 

to more accurately describe the relationship between electric current and magnetic fields over a 

wide range of geometric parameter variations. This increase in accuracy can be achieved without 

incurring any significant increase in computation times.   

In this thesis, magnetic circuit equations that model dynamically stored energy will be used to 

calculate the magnetic reluctance of a simple electromagnetic device accounting for the non-

uniform distribution of the magnetic field and inhomogeneous material properties. FEM 

simulations are then used as a benchmark to assess the accuracy of results obtained with and 

without accounting for inhomogeneous field distributions.  

1.3.2 Research Question 2. How can magnetic circuit modelling be applied 

to the transient analysis of variable reluctance devices incorporating 

inhomogeneous magnetic field distributions? 

Magnetic circuit analysis in its basic implementation is usually applied to simple magnetic path 

problems. Deriving transient electrical, magnetic and mechanical electromagnetic device behavior 

usually requires more complex modelling techniques such as LPM. An example of such a situation 

involves the transient modelling of a linear actuator such as a solenoid. 

Existing magnetic circuit analysis can be used to calculate force experienced by the armature as a 

function of armature position and winding current for simple solenoid configurations. However, 

practical solenoids incorporate diverging magnetic fields and complex B-H field relationships that 

can be difficult to model using conventional magnetic circuit modelling techniques. Due to this, 

computationally intensive FEM is usually required for real world transient simulation of a 

solenoids electric and magnetic characteristics. 
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A compromise between accuracy and computational intensity can be achieved by considering 

dynamic stored energy in the magnetic circuit to model solenoid transient behavior. This is because 

energy based magnetic circuit equations can account for changes in reluctance and the effect of 

non-aligned B-H fields on magnetic field energy. 

To assess the accuracy of energy based magnetic circuit modelling, a FEM simulation of a solenoid 

will be used to establish a benchmark against which predictions can be assessed for their accuracy. 

An effective MMF and reluctance can be calculated by analyzing the contribution of each segment 

of the solenoid to their respective parameter. This analytical technique allows for a single source 

of MMF and reluctance to be used to derive transient equations to describe electric current, 

magnetic flux and force as a function of winding voltage.  

1.3.3 Research Question 3. How can magnetic circuit modelling be applied 

to the analysis of rotating magnetic fields incorporating 

inhomogeneous magnetic field distributions? 

Electromagnetic devices incorporating rotating magnetic fields are inherently difficult to describe 

using simple modelling techniques. This is because these devices comprise of multiple materials 

with different electrical and magnetic properties that form complex geometries. When electrical 

equivalent circuits are used to model electromagnetic devices incorporating rotating magnetic 

fields such as that in an induction machine, parameters are either derived using numerical methods 

such as the finite element model or via direct measurements. One reason for this is that electrical 

circuit elements were originally derived to describe electrical components with no internal motion. 

It is therefore necessary to make the properties of these electrical components a function of a 

motors electromagnetic structure. 

An alternative to this technique is to describe the operation of an induction motor using a vector-

based application of magnetic circuit theory. Electrical currents in both the rotor and stator induce 

a magnetic field that can be represented in vector form. By representing the net magnetic flux and 

its time derivative as rotating vectors, it is possible to relate all electrical currents and induced 

voltages to these quantities. This allows operational parameters such as efficiency, torque, power 

factor and supply current to be calculated. 

The main advantage of this technique is that closed form equations can be derived to model the 

operation of the induction motor. Closed form equations are known to result in reduced 

computation times relative to numerical method techniques. Such an advantage is necessary when 

using a model for real time calculations. Existing commonly used models for real time control 

include the Steinmetz model and the Direct Quadrate model. The Steinmetz model is an inherently 

abstract model as it is comprised of equivalent electrical circuit components. Even though the 

Direct Quadrate model is more detailed than the Steinmetz model, it still incorporates a high-level 
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of abstraction as it assumes that only some currents contribute to magnetic flux while others 

contribute to torque. 

Predictions made by the proposed vector based magnetic circuit model are benchmarked against 

those derived using FEM. As FEM is usually considered the most accurate simulation model of 

magnetic fields, this comparison will provide useful insights into the accuracy of vector based 

magnetic circuits.  

 Contribution of Research 

The research presented in this thesis contributes to the analysis of electromagnetic devices by 

providing an alternative analytical technique that aims to achieve an optimal balance between 

computational efficiency and accuracy.  This contribution is summarized in the following dot 

points. 

• Modelling of electromagnetic devices incorporating non-uniform magnetic flux 

distributions. 

Traditional magnetic circuit analysis assumes uniform magnetic flux densities for simple 

magnetic path applications. More complex field distributions typically require the use of 

numerical methods such as lumped parameter models.  The analytical technique presented 

in this thesis demonstrates how energy based magnetic circuit analysis can be used to 

calculate magnetic circuit parameters for complex field distributions.   

• Using magnetic circuit analysis to calculate electrical, magnetic and mechanical 

properties of a time varying reluctance device. 

Calculating the time varying characteristics of electromagnetic devices incorporating 

constituent motion is usually achieved using numerical methods.  This is due to the inherent 

difficulties encountered when modelling complex field distributions and time varying 

reluctances.  The research in this thesis presents an analytical technique using energy based 

magnetic circuit equations that allows closed form equations to be derived for time varying 

electrical, magnetic and mechanical parameters.   

• Describing the properties of rotating magnetic fields using vector based magnetic 

circuit analysis. 

Modeling rotating magnetic is commonly achieved using high level equivalent circuits or 

with computationally intensive numerical methods. An alternative analytical technique can 

be achieved using vector applications of magnetic circuit equations. This allows for 

simulation parameters to be derived directly from the unique geometry of the rotating 

machine without the need for numerical methods.  In doing so, it is possible to derive closed 

form equations without the need for empirical data or correction factors.  
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 Basis of the Research 

In this thesis magnetic circuit analysis focusing on stored energy will be used to derive closed form 

equations that describe the operational characteristics of electromagnetic devices. This analytical 

technique can be used to apply magnetic circuit analysis to non-uniform magnetic field 

distributions in geometrically complex devices. To demonstrate the advantages of energy based 

magnetic circuit analysis, this technique will be applied to three separate situations. These involve 

electromagnetic devices with both constant and time varying reluctances including circular 

motion.   

To achieve the stated outcomes for this thesis, the energy based magnetic circuit equations used 

must be expressed in vector form. These equations can be derived by analyzing the geometry of a 

torus. A torus is the volume enclosed by a circle that is swept around an axis.  The distance between 

the center of the swept circle and the axis is known as the major radius 𝑅𝑡 while the radius of the 

swept circle is the minor radius 𝑟𝑡. Figure 1.3 shows an example of torus made of a magnetically 

permeable material with electric current carrying conductors passing through its center.  
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Figure 1.3. Torus geometry 

The magnetic flux density at the major radius 𝑅𝑡 can be calculated using Amperes law to be 

equation (1.3) by solving Ampere’s law for the red dotted line as shown in figure 1.3. In equation 

(1.3), 𝑖 is the winding current, 𝑛 is the number of current turns and 𝜇𝑟 is the relative permeability 

of the material. 

∮𝐵. 𝑑𝑙 = 𝜇0𝜇𝑟𝑖𝑛 

𝐵 =
𝜇0𝜇𝑟𝑖𝑛

2𝜋𝑅𝑡
 

Multiplying the magnetic flux density at the major radius by the area of the radial cross section of 

the torus allows the approximate value of the magnetic flux Φ to be calculated. 

Φ ≈
𝜇0𝜇𝑟𝑖𝑛𝑟𝑡

2

2𝑅𝑡
 

Hopkinson’s law relates the Magneto Motive Force (MMF) which is defined to be the winding 

current multiplied by the number of turns, with the magnetic flux. For this application, 

Hopkinson’s law can be expressed as shown in equation (1.5). 

𝑛𝑖 = ℛΦ 

Substituting the equation (1.4) value of magnetic flux into Hopkinson’s law as stated to be equation 

(1.5) allows the approximate value of magnetic reluctance to be calculated. 

𝑅𝑡 𝑟𝑡 

(1.3) 

(1.4) 

(1.5) 
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𝑛𝑖 ≈ ℛ
𝜇0𝜇𝑟𝑖𝑛𝑟𝑡

2

2𝑅𝑡
 

ℛ ≈
2𝑅𝑡

𝜇0𝜇𝑟𝑟𝑡2
 

Equation (1.6) is only an approximation as the magnetic flux density within the torus was assumed 

to be constant to derive equation (1.4). However, the magnetic flux density within the torus as 

described by equation (1.3) decreases with radial distance. The difference between the maximum 

and minimum magnetic flux density within the torus as shown in figure 1.3 can be calculated using 

Ampere’s law to be equation (1.7). 

𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛 =
𝜇0𝜇𝑟𝑖𝑛𝑟𝑡

𝜋(𝑅𝑡
2 − 𝑟𝑡2)

 

The difference between the maximum and minimum magnetic flux densities as described by 

equation (1.7) only becomes zero when the minor radius 𝑟𝑡 becomes zero. Therefore, the equation 

(1.6) value of magnetic reluctance that was derived based on the assumption on uniform magnetic 

flux density only becomes exact when the minor radius 𝑟𝑡 becomes zero. This can be expressed 

mathematically as shown in equation (1.8). 

ℛ = lim
𝑟𝑡→0

2𝑅𝑡

𝜇0𝜇𝑟𝑟𝑡2
 

Equation (1.8) cannot be directly evaluated as setting the minor radius to zero results in an infinite 

value of reluctance. This problem can be overcome by describing the energy stored in the torus as 

the minor radius approaches zero. The magnetic field energy within the torus can be described by 

integrating the known formula for magnetic field energy density in terms of the magnetic flux 

density 𝐵 and the magnetic field strength 𝐻 over the volume of the torus. 

𝑈 =
1

2
∭𝐵 ∙ 𝐻 𝑑𝑉 

As the minor radius approaches zero, the magnetic flux density becomes constant allowing 

equation (1.9) to be solved by simply multiplying the magnetic field energy density by the volume 

of the torus. The magnetic field strength 𝐻 can also be expressed in terms of the magnetic flux 

density 𝐵 using the relationship 𝐵 = 𝜇0𝜇𝑟𝐻. This allows the energy within the torus to be 

calculated to be equation (1.10). 

(1.6) 

(1.7) 

(1.8) 

(1.9) 
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𝑈 =  lim
𝑟𝑡→0

𝜋2𝑅𝑡𝑟𝑡
2

𝜇0𝜇𝑟

(𝐵 ∙ 𝐵) 

Magnetic circuit equations are usually expressed in terms of the magnetic flux as opposed to the 

magnetic flux density as shown in equation (1.10). The magnetic flux flowing through the torus Φ 

can be calculated by multiplying the magnetic flux density 𝐵 by the cross-sectional area of the 

torus. 

Φ = Bπ𝑟𝑡
2 

Substituting equation (1.11) into equation (1.10) allows equation (1.12) to be derived. 

𝑈 =  lim
𝑟𝑡→0

𝑅𝑡

𝜇0𝜇𝑟𝑟𝑡2
(Φ ∙ Φ) 

Equation (1.8) and equation (1.12) both contain a 𝑟𝑡
2 term. Therefore, it is possible to express 

equation (1.8) in terms of  𝑟𝑡
2 and substitute the result into equation (1.12) thereby eliminating the 

dependence on both the minor radius 𝑟𝑡 and the major radius 𝑅𝑡. This allows the all geometric 

specific parameters of the magnetic circuit in equation (1.12) to be eliminated resulting in the 

generic magnetic circuit equation (1.13). 

𝑈 =  
1

2
ℛ(Φ ∙ Φ) 

In equation (1.13), the magnetic flux is represented as a vector quantity while the magnetic 

reluctance is a scalar quantity. Differentiating energy with respect to time allows an expression for 

power as represented by the variable 𝑃 to be derived. This is achieved by assuming both magnetic 

reluctance and magnetic flux are implicit functions of time and using the product rule for vector 

quantities. 

𝑃 =
1

2
(
𝑑ℛ

𝑑𝑡
(Φ ∙ Φ) + ℛ (

𝜕

𝜕𝑡
(Φ ∙ Φ))) 

𝑃 = ℛ (Φ ∙
∂Φ

𝜕𝑡
) +

1

2

𝑑ℛ

𝑑𝑡
(Φ ∙ Φ) 

Equation (1.14) allows the rate energy is transferred to a magnetic circuit to be calculated due to 

changes in magnetic reluctance and flux. Another relationship that can be derived from the 

equation (1.13) value of magnetic circuit energy is its implications for magnetic reluctance. 

Magnetic reluctance is defined to be the value magnetic flux must be scaled by to equal the MMF. 

To understand the implications this has on magnetic circuit analysis, consider the simple magnetic 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 
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circuit as shown in figure 1.4 where 𝑙 is the length of the enclosed volume and 𝐴𝑐𝑠𝑎 is the area 

when represented in vector form is parallel to the direction of the magnetic flux density. 

 

 

 

 

 

 

Figure 1.4. Simple magnetic circuit geometry 

Applying the conventional definition of magnetic reluctance to the analysis of the enclosed volume 

in figure 1.4 that has a constant magnetic flux density and magnetic permeability results in the 

equation (1.15) value of reluctance. 

ℛ =
𝑙

𝜇0𝜇𝑟𝐴𝑐𝑠𝑎
 

Equation (1.15) is the commonly used definition of magnetic reluctance as applied to magnetic 

circuit analysis.  This definition as is usually mentioned in textbooks, is derived using Hopkinson’s 

law and Ampere’s law. The reluctance of a magnetic circuit can thus be calculated by breaking it 

down into individual components and solving equation (1.15) for each elemental component. This 

technique is often applied to the derivation of lumped parameter models. Although this works in 

some situations, it is inaccurate where the H and B fields are non-aligned. This can be demonstrated 

by equating the equation (1.9) value of magnetic circuit energy to the derived magnetic circuit 

energy equation (1.13). 

1

2
ℛ(Φ ∙ Φ) =

1

2
∭𝐵 ∙ 𝐻 𝑑𝑉 

ℛ =
∭𝐵 ∙ 𝐻 𝑑𝑉

Φ ∙ Φ
 

By evaluating the total magnetic circuit energy, it is possible to calculate the value of reluctance. 

An alternative way to view equation (1.16) it to describe the contribution each volumetric element 

𝑑𝑉 contributes to the total reluctance as shown by equation (1.17). 

𝐴𝑟𝑒𝑎 = 𝐴𝑐𝑠𝑎 

𝐵 𝑓𝑖𝑒𝑙𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝐿𝑒𝑛𝑡𝑔ℎ = 𝑙 

(1.15) 

(1.16) 
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𝑑ℛ

𝑑𝑉
=

𝐵 ∙ 𝐻

Φ ∙ Φ
 

Integrating equation (1.17) over the entire volume will allow the reluctance to be calculated.  In a 

situation where the magnetic flux is not known or is difficult to calculate, the MMF can be used 

for the reluctance calculation instead. This is achieved by substituting Ampere’s law for the MMF 

term in Hopkinson’s law as shown in equation (1.18). 

∮𝐻 ∙ 𝑑𝑙 = ℛΦ 

Equation (1.18) can be substituted into equation (1.16) to eliminate its dependence on the magnetic 

flux.  Performing this substitution results in equation (1.19): 

ℛ =
(∮𝐻 ∙ 𝑑𝑙)2

∭𝐵 ∙ 𝐻 𝑑𝑉
 

The contour integral of the H field along a path that encloses all current loops as shown in equation 

(1.19) represents the net motion of charge within the system. Therefore, equation (1.19) states that 

magnetic reluctance is the ratio of the square of the net motion of charge to the resulting energy 

caused by this motion. Defining magnetic reluctance this way has implications for how magnetic 

circuit analysis can be interpreted relative to the laws of physics describing motion and 

electromagnetic interactions.  

The following chapter demonstrates how the equations derived in this chapter and the underlying 

principals can be applied to magnetic circuit analysis. This is achieved by first applying these 

equations to the analysis of a static magnetic field. It is also necessary to demonstrate that this 

form of analysis is compatible with existing magnetic circuit analysis.  This will be achieved in 

the next chapter by modelling a toroid to demonstrates the implications of inhomogeneous 

magnetic field distribution on magnetic reluctance calculations. 

  

(1.17) 

(1.18) 

(1.19) 
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Chapter 2 

2 Modelling Magnetic Circuits with Fixed Reluctance 

To demonstrate the ability of magnetic circuits to describe the operation of electromagnetic devices 

incorporating inhomogeneous magnetic flux densities, the magneto static properties of a torus will 

be analyzed in this chapter.  

 Calculation of Reluctance of a torus with consideration of 

inhomogeneous magnetic fields 

A torus is the volume enclosed by a circle that is swept around an axis. The distance between the 

center of the swept circle and the axis is known as the major radius 𝑅𝑡 while the radius of the swept 

circle is the minor radius 𝑟𝑡. This geometry was chosen due to its ease of mathematical modelling 

and FE simulation. 

In the previous chapter, the reluctance of a torus was calculated for the case where the minor radius 

was much less than the major radius.   

 

 

 

 

 

 

Figure 2.1. Torus geometry 

The approximate value of the torus reluctance based on the assumption of homogeneous cross 

section magnetic flux density as calculated in the preceding chapter was calculated to be 

equation (2.1). 

ℛ ≈
2𝑅𝑡

𝜇0𝜇𝑟𝑟𝑡2
 (2.1) 

𝑅𝑡 𝑟𝑡 
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To determine the a more accurate value of magnetic reluctance, the non-uniform nature of the 

magnetic flux needs to be accounted for. This can be calculated by considering the cross section 

of the torus as shown in figure 2.2. In figure 2.2, a small rectangular cross section of the torus is 

shown in red at a distance of 𝑟 from the central axis with a width of 𝑑𝑟.  

 

 

 

 

 

 

 

Figure 2.2. Torus cross section 

The magnetic flux density was calculated in the preceding chapter to be equation (1.3) using 

Ampere’s law. This was a function of the distance from the central axis which is represented in 

figure 2.2 with the variable 𝑟. Using the dimensions shown in figure 2.2, the value of the 

magnetic flux density within the torus becomes equation (2.2). 

𝐵 =
𝜇0𝜇𝑟𝑖𝑛

2𝜋𝑟
 

Multiplying the magnetic flux density by the area shown in figure 2.2 allows the magnetic flux 

for this region of constant magnetic flux density to be calculated. Integrating this value over the 

entire cross section of the torus as shown in figure 2.2 allows the total magnetic flux to be 

calculated. 

Φ = ∫
𝜇0𝜇𝑟𝑖𝑛

𝜋𝑟
√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2

𝑅𝑡+𝑟𝑡

𝑅𝑡−𝑟𝑡

𝑑𝑟 

Φ = 𝜇0𝜇𝑟𝑖𝑛 (𝑅𝑡 − √𝑅𝑡
2 − 𝑟𝑡2) 

𝑟 

𝑑𝑟 

2√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2 

𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 

(2.2) 

(2.3) 
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Hopkinson’s law can be used to calculate the torus reluctance by divining the MMF by the 

equation (2.3) value of magnetic flux. 

ℛ =
𝑛𝑖

Φ
 

ℛ =
1

𝜇0𝜇𝑟 (𝑅𝑡 − √𝑅𝑡
2 − 𝑟𝑡2)

 

It is also possible to derive this same reluctance value by calculating energy stored in the 

magnetic circuit. Consider a small volume of the torus enclosed by the area depicted in figure 2.3 

at a distance of 𝑟 from the central axis, swept around a small angular rotation of 𝑑𝜑. 

 

Figure 2.3. Small volume inside torus with constant magnetic flux density 

The dimensions of the small enclosed volume from figure 2.3 are shown in figure 2.4. 

 

 

 

   

 

Figure 2.4. Dimensions of small volume inside torus with constant magnetic flux density 

(2.4) 

𝑑𝑟 

2√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2 

𝑟𝑑𝜑 
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The stored energy within this small volume as represented by the differential equation term 𝑑𝑈 

can be calculated by substituting the equation (2.2) value of magnetic flux density into the 

equation for magnetic field energy density for a small volume 𝑑𝑉. 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

𝑑𝑈 =
𝜇0𝜇𝑟(𝑖𝑛)2

8𝜋2𝑟2
𝑑𝑉 

Substituting the volume of constant magnetic flux density from figure 2.4 into equation (2.5) and 

integrating over the volume of the torus allows the total magnetic field energy to be calculated. 

𝑑𝑈 =
𝜇0𝜇𝑟(𝑖𝑛)2

4𝜋2𝑟
√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2 𝑑𝜑 𝑑𝑟 

𝑈 = ∫ ∫
𝜇0𝜇𝑟(𝑖𝑛)2

4𝜋2𝑟
√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2

2𝜋

0

𝑅𝑡+𝑟𝑡

𝑅𝑡−𝑟𝑡

 𝑑𝜑 𝑑𝑟 

𝑈 =
𝜇0𝜇𝑟(𝑖𝑛)2

2
(𝑅𝑡 − √𝑅𝑡

2 − 𝑟𝑡2) 

Magnetic reluctance can be calculated using magnetic circuit stored energy by substituting the 

equation (2.6) value of energy and the equation (2.3) value of magnetic flux into equation (1.13). 

As the magnetic flux vector is parallel to itself, the dot product from equation (1.13) can be 

replaced with multiplication. Performing these operations allows the equation (2.7) value of 

magnetic reluctance to be calculated. 

ℛ =
2𝑈

Φ2
 

ℛ =
1

𝜇0𝜇𝑟 (𝑅𝑡 − √𝑅𝑡
2 − 𝑟𝑡2)

 

The magnetic reluctance of a torus calculated using both the conventional approach and the stored 

energy method results in the same equation as demonstrated by equation (2.4) and (2.7).  

 

(2.5) 

(2.6) 

(2.7) 
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 Simulation study on modelling inhomogeneous magnetic 

fields in a torus with uniform permeability 

The advantages of accounting for the non-uniform distribution of the magnetic flux density when 

using magnetic circuit analysis can be demonstrated by comparing predictions made using 

magnetic circuit analysis with those obtained using FEM. This can be demonstrated using a FEM 

simulation of a torus to calculate its magnetic reluctance and then comparing the results to 

predictions made by equation (2.4) and equation (2.7). The FEM simulated torus has the following 

parameters. 

• Relative Permeability μr = 4000 

• Major Radius Rt = 45mm 

• Minor Radius rt = 15mm 

• MMF = 10At 

A cross section of the simulated torus is shown in figure 2.5 with the magnetic material shown in 

grey and the path for the current shown in light brown. 

 

Figure 2.5. FEM simulated torus cross section 

Performing the simulation using the parameters listed above allows the non-uniform distribution 

of the magnetic flux density to be measured. The magnetic flux density for a cross section of the 

magnetic material of the torus is shown in figure 2.6. 
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Figure 2.6. FEM simulated magnetic flux density within cross section of torus 

It can be observed from figure 2.6 that the magnetic flux density varies as a function of distance 

from the central axis. Accounting for this effect should result in a more accurate value of magnetic 

reluctance. This difference in accuracy was calculated by using the FEM simulation as a 

benchmark against which the reluctance values obtained using a constant and variable magnetic 

flux density were measured. Figure 2.7 shows the results of the FEM simulated torus reluctance 

compared to the equation (2.1) reluctance equation derived assuming a constant magnetic flux 

density and the equation (2.7) reluctance equation assuming non-uniform magnetic flux density. 

The simulated and predicted results were compared for different values of the minor radius. The 

MMF, major radius and relative permeability we the same values used for the figure 2.5 torus 

while the minor radius was varied over a range of 37.5mm to 11.25mm. To plot these results, the 

torus aspect ratio is used which is the major radius 𝑅𝑡 divided by the minor radius 𝑟𝑡. 
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Figure 2.7. Simulated and predicted reluctance values 

The percentage difference between the FEM simulated reluctance and reluctance values obtained 

using a fixed and variable magnetic flux density is shown in figure 2.8 for different aspect ratios. 

 

Figure 2.8. Percentage difference between the predicted reluctance and the FEM simulated reluctance 
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Figure 2.8 demonstrates that when the minor radius is large relative to the major radius, as 

represented by a low aspect ratio, not accounting for the variable distribution of the magnetic flux 

density results in significant errors in calculating reluctance. This error is reduced relative to the 

FEM predicted reluctance value as the minor radius is decreased relative to the major radius. The 

reluctance value calculated by accounting for variations in magnetic flux density remains within 

0.5% of the FEM simulated value for all aspect ratios simulated. 

The advantages of factoring in the effect of non-homogenous magnetic field distributions for a 

torus with a low aspect ratio can be quantitively compared in table 2.1.  Table 2.1 lists the FEM 

simulated reluctance of the torus and the predicted values using both a homogeneous and non-

homogenous field distribution.  The percentage difference between the predicted reluctance values 

and FEM simulated values are also shown. 

Torus 

Aspect Ratio 

FEM 

Simulated 

Reluctance 

(H-1) 

Homogeneous Magnetic 

Field Reluctance 

Non-Homogeneous 

Magnetic Field Reluctance 

Value (H-1) % Difference Value (H-1) % Difference 

1.1 20,651 20,667 0.08% 29,178  41.29% 

1.2 24,814 24,713 0.41% 31,831  28.28% 

1.3 28,277 28,259 0.07% 34,484  21.95% 

1.4 31,588 31,563 0.08% 37,136  17.57% 

1.5 34,760 34,723 0.11% 39,789  14.47% 

1.6 37,895 37,786 0.29% 42,441  12.00% 

1.7 40,894 40,780 0.28% 45,094  10.27% 

1.8 43,865 43,723 0.32% 47,746  8.85% 

1.9 46,790 46,626 0.35% 50,399  7.71% 

2.0 49,676 49,498 0.36% 53,052 6.80% 

Table 2.1. Simulated and predicted reluctance values 

It can be observed from table 2.1 that reluctance values calculated using a non-homogenous field 

distribution becomes closer to the FEM simulated value the larger the aspect ratio becomes. This 

is because the difference between the largest and smallest magnetic flux density decreases as the 

aspect ratio increases. Reluctance values calculated accounting for the non-homogenous nature of 
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the magnetic field remain closely aligned with the FEM simulated value even for small aspect 

ratios. 

Although this example has demonstrated that using energy based magnetic circuit analysis is a 

valid analytical technique, it also required more calculations to derive the reluctance of the torus 

compared to only using Hopkinson’s law based on the magnetic flux. For more complex magnetic 

path problems such as those that incorporate materials with varying magnetic permeability this is 

not the case. 

 Simulation study on modelling inhomogeneous magnetic 

fields in a torus with permeability that varies axially 

To demonstrate the modelling of materials with varying magnetic permeability, consider a torus 

with an angular dependent relative permeability that varies axially. This can be achieved by 

varying the fill grade of the material. Figure 2.9 shows a cross section cut perpendicular to the 

central axis of such a torus, where increased relative permeability of the material is shown as a 

darker region within the torus. 

 

Figure 2.9. Cross section of a variable fill grade torus cut perpendicular to the central axis 

The magnetic permeability of the torus is a function of the angle 𝜑 as shown in figure 2.8 and 

defined by equation (2.8). 

Magnetic permeability = 𝜇0𝜇𝑟(1 + 𝜀 sin(𝜑)) 

In equation (2.8), 𝜇𝑟 is the average relative permeability and 𝜀 is the fill grade modulation index 

which is a number between 0 and 1. If the fill grade modulation index is 0 then the material 

(2.8) 
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permeability will be a constant. As the fill grade modulation index increases, so does the axial 

variations in material permeability. 

To calculate the magnetic reluctance of the torus using the same geometric parameters as shown 

in figure 2.1, the relationship between the B and H field must be defined as stated in equation (2.9). 

𝐵 = 𝜇𝑒𝑞𝐻 

Equation (2.9) will be true for the variable fill grade torus as the B field will still be assumed to be 

linearly proportional to the H field for magnetic circuit analysis. Amperes law can be used to 

calculate the H field value at a distance of 𝑟 from the central axis using the figure 2.1 torus 

geometry. This value of the H field can be substituted into equation (2.9) to calculate the magnetic 

flux density at a distance of 𝑟 from the central axis inside the torus to be equation (2.10). 

𝐵 =
𝜇𝑒𝑞𝑖𝑛

2𝜋𝑟
 

Integrating the equation (2.10) value of magnetic flux density over the radial cross section of the 

torus as shown in figure 2.2 allows the magnetic flux to be calculated to be equation (2.11). 

Φ = ∫
𝜇𝑒𝑞𝑖𝑛

𝜋𝑟
√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2

𝑅𝑡+𝑟𝑡

𝑅𝑡−𝑟𝑡

𝑑𝑟 

Φ = 𝜇𝑒𝑞𝑖𝑛 (𝑅𝑡 − √𝑅𝑡
2 − 𝑟𝑡2) 

Hopkinson’s law cannot be used to calculate the reluctance of the torus using only the magnetic 

flux in this case as the value of 𝜇𝑒𝑞 is unknown. One way to find the value of 𝜇𝑒𝑞 is to calculate 

the total energy within the torus caused by magnetic flux. The energy of a small segment of the 

torus 𝑑𝑈 with a volume of 𝑑𝑉 can be calculated using the equation for magnetic field energy 

density. 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟(1 + 𝜀 sin(𝜑))
𝑑𝑉 

Inserting the equation (2.10) value of magnetic flux density into equation (2.12) and integrating 

over the volume of the torus allows the total magnetic field energy to be calculated. 

𝑑𝑈 =
(𝜇𝑒𝑞𝑖𝑛)

2
√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2

4𝜋2𝜇0𝜇𝑟𝑟(1 + 𝜀 sin(𝜑))
 𝑑𝑟 𝑑𝜑 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Eq. 2.13 
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𝑈 = ∫ ∫
(𝜇𝑒𝑞𝑖𝑛)

2
√𝑟𝑡2 − (𝑟 − 𝑅𝑡)2

4𝜋2𝜇0𝜇𝑟𝑟(1 + 𝜀 sin(𝜑))

𝑅𝑡+𝑟𝑡

𝑅𝑡−𝑟𝑡

 𝑑𝑟

2𝜋

0

𝑑𝜑 

𝑈 =

(𝜇𝑒𝑞𝑖𝑛)
2
(𝑅𝑡 − √𝑅𝑡

2 − 𝑟𝑡2)

2𝜇0𝜇𝑟√1 − 𝜀2
 

Substituting the equation (2.13) value of energy and the equation (2.11) value of magnetic flux 

into the equation for magnetic circuit energy allows the magnetic circuit reluctance to be 

calculated. 

ℛ =
2𝑈

Φ2
 

ℛ =
1

2𝜇0𝜇𝑟√1 − 𝜀2 (𝑅𝑡 − √𝑅𝑡
2 − 𝑟𝑡2)

 

Hopkinson’s law can now be used to calculate the equivalent permeability value 𝜇𝑒𝑞 using the 

equation (2.11) value of magnetic flux and the equation (2.14) value of magnetic circuit reluctance. 

𝜇𝑒𝑞 = 𝜇0𝜇𝑟√1 − 𝜀2 

Equation (2.14) can be verified by comparing its reluctance predictions to those calculated using 

a FEM simulation of a torus with a variable material permeability as defined by equation (2.8). To 

simulate this situation, a torus was divided into 100 segments with material permeability defined 

by equation (2.8). The resulting torus as rendered by the FEM simulation software is shown in 

figure 2.10. 

  

(2.14) 

(2.15) 

(2.13) 
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Figure 2.10 - Simulated torus with angular variation of permeability 

For this simulation the magnetic and geometric following parameters were used. 

• Major Radius Rt = 45mm 

• Minor Radius rt = 15mm 

• Magneto Motive Force = 10At 

• Average relative permeability μr = 2500  

• Fill grade modulation index 0 ≤ ε ≤ 0.6 

By setting the average relative permeability to 2500 and the maximum fill grade modulation index 

𝜀 to 0.6, the maximum simulated relative permeability will be 4000 and its minimum value will 

be 1000. This keeps the relative permeability to within realistic values, thereby ensuring the 

simulated data is limited to describing practical situations. Based on these values, the fill grade 

modulation index of the torus from figure 2.10 was simulated over a range of values between 0 

and 0.6. The simulated reluctance values and those predicted using equation (2.14) are shown in 

figure 2.11. 
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Figure 2.11 - Simulated and predicted torus reluctance as a function of fill grade modulation index 

The simulated and predicted reluctance values are within 0.5% of each other for the range of fill 

grade modulation index values simulated. This demonstrates that the equation (2.14) value of 

magnetic reluctance yields results comparable to that obtained using FEM simulation.   

 

 Conclusion 

In this chapter of this thesis, it has been demonstrated how stored energy-based analysis of 

magnetic field can be used to model inhomogeneous magnetic field distribution in devices such as 

a toroid. Although due to the simple geometric nature of the torus being analyzed, there was no 

significant advantage of using stored energy-based analysis compared to conventional methods. 

Further advantages of energy based magnetic circuit analysis can be observed when analyzing 

more complex magnetic field distributions with nonaligned B and H fields. In a torus, the B and 

H fields are aligned throughout the entire volume resulting in the same outcome using conventional 

and energy based magnetic circuit analysis. In the next chapter, a more geometrically complex 

situation will be considered involving time varying reluctance and nonaligned B and H fields to 

demonstrate advantages of using energy based magnetic circuit analysis compared to conventional 

techniques. 
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Chapter 3 

3 Modelling Magnetic Circuits with Variable Reluctance 

and Inhomogeneous Magnetic Field Distribution 

In this chapter, stored magnetic energy-based analysis is applied to a case that exhibits 

inhomogeneous magnetic field distributions and variable reluctance. A solenoid is an example of 

a time varying reluctance magnetic circuit as the magnetic reluctance will be a function of armature 

displacement. Although a simple solenoid can be analyzed using magnetic circuit analysis, the 

transient analysis of a more complex solenoid would typically require the use of LPM or FEM. In 

this chapter, a transient analysis of a solenoid incorporating diverging magnetic fields will be 

analyzed and the modelling results compared to those obtained using FEM. 

 Mathematical Analysis of Magnetic Circuits with Variable 

Reluctance 

For a transient analysis of a variable reluctance magnetic circuit, it is necessary to define the rate 

of energy transfer to a magnetic circuit as a function of reluctance and magnetic flux. The magnetic 

circuit energy and the rate of energy transfer to the magnetic circuit was derived in the introduction 

(equations (1.13) and (1.14)). For the case of a solenoid, the magnetic flux of the magnetic circuit 

will not change its orientation during operation. As the magnetic flux does not rotate, the magnetic 

flux and its time derivative will be parallel to each other. Therefore, the dot product of the magnetic 

flux with its partial time derivative can be replaced with the multiplications of the magnetic flux 

with its time derivative and the dot product of the magnetic flux with itself can be replaced by the 

square of the magnetic flux. Applying these simplifications to the vector equations (1.13) and 

(1.14) results in the equation (3.1) for energy and the equation (3.2) for power as: 

𝑈 =
1

2
ℛΦ2 

𝑃 = ℛΦ
𝑑Φ

𝑑𝑡
+

1

2
Φ2

𝑑ℛ

𝑑𝑡
 

Equation (3.2) consists of two product terms. The first term describes the rate of energy transfer 

to the magnetic field and the second term describes that converted into kinetic energy. This 

statement can be verified by considering a tightly wound conductive helix with 𝑛 turns. Faraday’s 

law of induction can be used to calculate the change in magnetic flux caused by an externally 

applied voltage 𝑣: 

(3.1) 

(3.2) 
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𝑣 = 𝑛
𝑑Φ

𝑑𝑡
 

Multiplying both sides of this equation by the current flowing in the coil 𝑖, the power transferred 

to the magnetic field to be calculated as: 

𝑣𝑖 = 𝑛𝑖
𝑑Φ

𝑑𝑡
 

Using Hopkins law to replace the MMF term 𝑛𝑖 from equation (3.4) and replacing the product of 

voltage and current with power 𝑃𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐_𝑓𝑖𝑒𝑙𝑑 allows the calculation of the rate of energy transfer 

to the magnetic field as: 

𝑃magnetic_field = ℛΦ
𝑑Φ

𝑑𝑡
 

Since no electrical losses were considered, all the energy transfer as described by equation (3.5) 

must be transferred to the magnetic field, thereby identifying the power transfer described by the 

first product term of equation (3.2). 

To determine the function of the second product term from equation (3.2), it is necessary to 

consider a magnetic circuit in motion. If the magnetic reluctance is path dependent, a change in 

position will result in a change in reluctance. This will impact the energy stored in the magnetic 

field.  To calculate the change in energy caused by a change in position, consider the derivative of 

the equation (3.1) value of energy with respect to reluctance while keeping the magnetic flux 

constant. 

𝑈 =
1

2
ℛΦ2 

𝑑𝑈

𝑑ℛ
=

1

2
Φ2 

Assuming reluctance is a continuous function of displacement, there will be a defined derivative 

of reluctance as a function of position. Multiplying both sides of equation (3.6) by the derivative 

of reluctance with respect to position allows the chain rule to be used to calculate the derivative of 

energy with respect to position: 

𝑑𝑈

𝑑𝑥
=

1

2
Φ2

𝑑ℛ

𝑑𝑥
 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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where the displacement is represented by the variable 𝑥. Equation (3.7) describes the derivative of 

energy with respect to position. This is the definition of force. Therefore, equation (3.7) can be 

used to calculate changes in motion. If the magnetic circuit is in motion, the change in kinetic 

energy can be calculated by multiplying the force by velocity. This allows equation (3.8) to be 

derived by multiplying equation (3.7) by velocity, as represented by the time derivative of the 

magnetic circuit’s position. 

𝑑𝑈

𝑑𝑥
×

𝑑𝑥

𝑑𝑡
=

1

2
Φ2

𝑑ℛ

𝑑𝑥
×

𝑑𝑥

𝑑𝑡
 

𝑃reluctance =
1

2
Φ2

𝑑ℛ

𝑑𝑡
 

As the power transfer described by equation (3.8) was calculated by only accounting for changes 

in position, it can be concluded that it describes energy transferred into kinetic energy. 

 Modelling of a Solenoid with inhomogeneous magnetic fields 

and variable reluctance 

A solenoid consists of a moving rod called the armature and a stationary frame for the return 

magnetic flux called the yoke. Both the armature and yoke will form a cylindrical shape around a 

central axis in this example as this will result in a non-uniform magnetic flux within the yoke and 

the air gap between the armature and yoke. A cross section of this solenoid as it appears above the 

central axis that has not been drawn to scale is shown in figure 3.1 showing relevant dimensions 

from the central axis. 

 

 

 

 

 

 

Figure 3.1 – Solenoid cross section 

In figure 3.1, the blue lines represent the boundaries of the yoke and armature and the black arrows 

define the dimensions used. Magnetic flux will travel through the armature and form a closed loop 

by returning through the yoke. To complete this path, the magnetic flux will need to pass through 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐴𝑥𝑖𝑠 

𝐴 𝐴 7𝐴 

𝑟1 𝑟2 
𝑟3 𝑟4 

𝐴 3𝐴 

𝑟5 𝑟2 

𝐴𝑖𝑟 𝑔𝑎𝑝 1 𝐴𝑖𝑟 𝑔𝑎𝑝 2 

(3.8) 
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two air gaps. The left air gap in figure 3.1 will be referred to as air gap 1 and the right air gap as 

air gap 2. 

The armature forms a cylindrical shape and is shown in figure 3.2 in its left most position.  In this 

position, air gaps 1 and 2 have the same depth of 𝐴. When the solenoid is energized, the armature 

will move to the right for a maximum distance of 4𝐴 resulting in the length of air gap 2 to be 5𝐴. 

The armature is long enough to ensure that air gap 1 has a constant length. This motion will result 

in a reduction in magnetic path reluctance caused by air gap 2 resulting in a magnetic circuit with 

an armature position dependent reluctance. 

Magnetic circuit analysis will be used to analyze this solenoid with the results being compared to 

a FEM based computer simulation. The cross section of this solenoid is shown in figure 3.2 that 

will be used to for FEM simulations. 

 

Figure 3.2 – Computer rendered cross section of solenoid 

In figure 3.2, the red area is the solenoid windings, the dark grey area is the armature and the light 

grey area is the yoke. Rotating this geometry around the central axis results in a cylindrical shaped 

solenoid as shown in figure 3.3. 

 

Figure 3.3 – 3D Computer rendered image of solenoid 
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This solenoid can be modelled as a magnetic circuit comprising of a source of MMF and the series 

connection of reluctances due to the yoke, armature and two air gaps. To calculate the reluctance 

of the armature, it is necessary to break it into 3 segments as shown in figure 3.4. 

 

Figure 3.4 – Solenoid armature divided into segments 

3.2.1 Stored energy in armature segment-1 

The first segment is the section of the armature parallel to air gap 1. The magnetic flux density in 

this section is not a constant as magnetic flux is leaving the armature and flowing into the yoke. 

Assuming the magnetic flux leaving the armature in this section has a constant magnetic flux 

density, the integration variables can be shown as depicted in figure 3.5. 

 

Figure 3.5 – Cross section of armature segment 1 

Magnetic flux remaining in this segment will be linearly proportional to the depth 𝑎. The magnetic 

flux density within segment 1 of the armature at a depth of 𝑎 will be equation (3.9). 

Magnetic flux at depth 𝑎: = Φ
𝑎

𝐴
 

Equation (3.9) can be used to calculate the magnetic flux present in the armature segment at a 

distance of 𝑎 as shown in figure 3.5. Assuming the magnetic flux is not a function of radial distance 

from the central axis, the magnetic flux density can be calculated by dividing the equation (3.9) 

value of magnetic flux by the grey cross-sectional area shown in figure 3.5. This results in the 

equation (3.10) value of magnetic flux density. 

(3.9) 
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Magnetic flux density =
𝑎Φ

𝜋𝑟12𝐴
 

The energy due to the equation (3.10) value of magnetic flux density can be calculated using the 

magnetic flux energy density as: 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

𝑑𝑈 =
(𝑎Φ)2

2𝜇0𝜇𝑟(𝜋𝑟1
2𝐴)2

𝑑𝑉 

Integrating the equation (3.11) value of energy over the volume of segment 1 allows its total energy 

to be calculated. To perform this integration, cylindrical coordinates will be used where 𝑟 is the 

radial distance from the axis, 𝑎 is the distance parallel to the axis as per figure 3.5 and 𝜃 is the 

rotational angle around the axis. The region enclosed by a small change in these three variables is 

the volume enclosed by solid blue lines shown in figure 3.6. 

 

 

 

 

 

 

 

 

 

Figure 3.6 – Integration volume used for cylindrical coordinates integration 

Integrating the equation (3.11) value of energy over the entire volume of armature segment 1 using 

the integration variables as shown in figure 3.6 allows the total armature segment 1 energy to be 

calculated as: 

(3.10) 

𝑑𝜃 

𝑟𝑑𝜃 

𝑟 

𝑑𝑟 

𝑑𝑎 

(3.11) 
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Armature segment 1 energy = ∫∫ ∫
(𝑎Φ)2

2𝜇0𝜇𝑟(𝜋𝑟12𝐴)2

2𝜋

0

𝑟1

0

𝐴

0

 𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑎 

Armature segment 1 energy =
𝐴Φ2

6𝜇0𝜇𝑟𝜋𝑟12
 

3.2.2 Stored energy in armature segment-2 

Segment 2 of the armature as shown in figure 3.4 has a constant radius and depth. No magnetic 

flux enters of leaves this segment resulting in a constant magnetic flux density throughout the 

segment. Therefore, the energy of this segment can be calculated by multiplying the magnetic field 

energy density by the segment volume. 

 

Figure 3.7 – Cross section of armature segment 2 

The magnetic flux density in the armature segment 2 is the magnetic flux Φ divided by the cross-

sectional area of the armature as shown in grey in figure 3.7. 

Magnetic flux density =
Φ

𝜋𝑟12
 

The energy density can be calculated using the equation (3.13) value of magnetic flux density and 

the magnetic field energy density equation. 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

𝑑𝑈 =
Φ2

2𝜇0𝜇𝑟(𝜋𝑟12)2
𝑑𝑉 

Multiplying the energy density of segment 2 of the armature by its volume allows its total energy 

to be calculated. 

(3.13) 

(3.12) 

(3.14) 
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Armature segment 2 volume = 3𝐴𝜋𝑟1
2 

Armature segment 2 energy =
3𝐴Φ2

2𝜇0𝜇𝑟𝜋𝑟12
 

3.2.3 Stored energy in armature segment-3 

The third segment of the armature is a cylindrical shape where the magnetic flux is transferred 

from the armature to the yoke. The depth of this segment is initially 𝐴 and increases by the distance 

the armature is moved to the right 𝑥. Figure 2.16 shows this segment of the armature with the 

integration variables. 

 

Figure 3.8 – Cross section of armature segment 3 

It will be assumed that the magnetic flux density of air gap 2 is constant as the gap between the 

armature and yoke is constant. Therefore, the magnetic flux remaining in the armature will 

decrease linearly with depth, reducing to zero by the end of the armature. Based on this assumption, 

the magnetic flux passing through the armature at a depth of 𝑎 as shown in figure 3.8 can be 

calculated as: 

Armature segment 3 magnetic flux = Φ
𝑎

𝐴 + 𝑥
 

The magnetic flux density at a depth of 𝑎 within segment 3 can be calculated by dividing the 

equation (3.16) value of magnetic flux by the cross-sectional area of the armature. 

Magnetic flux density =
𝑎Φ

𝜋𝑟12(𝐴 + 𝑥)
 

The energy density due to the equation (3.17) value of magnetic flux density within this segment 

of the armature can be calculated using the magnetic field energy density equation. 

(3.16) 

(3.17) 

(3.15) 
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𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

𝑑𝑈 =
(𝑎Φ)2

2𝜇0𝜇𝑟(𝜋𝑟12)2(𝐴 + 𝑥)2
𝑑𝑉 

Integrating the equation (3.18) value of energy density over the entire volume of the armature 

segment 3 as shown in figure 3.8 allows the total energy of this segment to be calculated. This 

integration is performed using cylindrical coordinates as shown in figure 3.6. 

Armature segment 3 energy = ∫ ∫ ∫
(𝑎Φ)2

2𝜇0𝜇𝑟(𝜋𝑟12)2(𝐴 + 𝑥)2

2𝜋

0

𝑟1

0

𝐴+𝑥

0

𝑟 𝑑𝜃 𝑑𝑟 𝑑𝑎 

Armature segment 3 energy =
(𝐴 + 𝑥)Φ2

6𝜇0𝜇𝑟𝜋𝑟12
 

Magnetic energy within the yoke can also be calculated using a similar process by dividing the 

yoke into segments. These five segments are shown in figure 2.17. 

 

Figure 3.9 – Cross section of yoke with labeled segments 

3.2.4 Stored energy in yoke segment-1 

In segment 1 of the yoke, magnetic flux will enter via the armature with a uniform magnetic flux 

density. As the magnetic flux travels outward and towards segment 2, the area it flows through 

increase thereby reducing the magnetic flux density. While it is possible to model this using 

lumped parameter approximations, the reluctance of this segment with diverging fields can be 

calculated simply using energy based magnetic circuit equations. To quantify these values, 

consider the labeled dimensions in figure 3.10 which will be used for integration. 

(3.18) 

(3.19) 
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Figure 3.10 – Cross section of yoke segment 1 

In segment 1 of the yoke, the magnetic flux will enter at the radial distance of 𝑟2 and travel 

uniformly outwards towards segment 2. As such, the magnetic flux density will only be a function 

of the distance from the central axis as represented by the variable 𝑟 in figure 3.10. Magnetic flux 

density will not be a function of the distance parallel to the central axis as represented by the 

variable 𝑎 in figure 3.10. This means the magnetic flux density as a distance of 𝑟 from the central 

axis in figure 3.10 ca be calculated to be equation (3.20). 

Segment 1 Magnetic flux density =
Φ

2𝜋𝑟𝐴
 

The magnetic field energy due to the equation (3.20) magnetic flux density can be calculated using 

the magnetic field energy density formula. 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

𝑑𝑈 =
Φ2

2𝜇0𝜇𝑟(2𝜋𝑟𝐴)2
𝑑𝑉 

Integrating the magnetic field energy over the volume of segment 1 allows its total energy to be 

calculated. This integration is performed using a cylindrical coordinate system as shown in figure 

3.6. 

Segment 1 energy = ∫ ∫∫
Φ2

2𝜇0𝜇𝑟(2𝜋𝑟𝐴)2
 

2𝜋

0

𝐴

0

𝑟 𝑑𝜃 𝑑𝑎 𝑑𝑟

𝑟4

𝑟2

 

Segment 1 energy =
Φ2

4𝜇0𝜇𝑟𝜋𝐴
log𝑒 (

𝑟4
𝑟2

) 

(3.20) 

(3.22) 

(3.21) 
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3.2.5 Stored energy in yoke segment-2 

When calculating the magnetic field energy within segment 2 it will be assumed that the magnetic 

flux density is constant. This means that only the volume of segment 2 is required to be known.  

To calculate this volume, consider the cross section of segment 2 as shown in figure 3.11. 

 

  

Figure 3.11 – Cross section of yoke segment 2 

The volume of segment 2 is given by: 

Segment 2 volume = 9𝜋𝐴(𝑟5
2 − 𝑟4

2) 

To calculate the magnetic flux density inside segment 2 of the yoke, consider a cross section of 

the yoke as viewed along the central axis as shown in figure 3.12. 

 

 

 

 

 

Figure 3.12 – Cross section of yoke segment 2 as viewed along the central axis 

Assuming the magnetic flux density is constant within this segment, the magnetic flux density can 

be calculated by dividing the magnetic flux by the cross-sectional area of the yoke as shown in 

figure 3.12. 

(3.23) 

𝑟5 

𝑟4 
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Segment 2 magnetic flux density =
Φ

𝜋(𝑟5
2 − 𝑟4

2)
 

The segment 2 magnetic field energy density can be calculated using the equation (3.24) magnetic 

flux density and the formula for magnetic field energy density. 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

Segment 2 energy density =
Φ2

2𝜇0𝜇𝑟𝜋
2(𝑟5

2 − 𝑟4
2)2

 

Multiplying the equation (3.25) value of magnetic field energy density by the volume of segment 

2 allows the total energy of segment 2 to be calculated. 

Segment 2 energy =
9𝐴Φ2

2𝜇0𝜇𝑟𝜋(𝑟5
2 − 𝑟4

2)
 

3.2.6 Stored energy in yoke segment-3 

Segment 3 of the yoke has a similar geometry to segment 1. The only difference is that it has a 

minimum radius of 𝑟3 instead of 𝑟2. This means the energy of segment 3 can be calculated to be 

equation (3.27). 

Segment 3 energy =
Φ2

4𝜇0𝜇𝑟𝜋𝐴
log𝑒 (

𝑟4
𝑟3

) 

3.2.7 Stored energy in yoke segment-4 

Segment 4 of the yoke will have a constant magnetic flux density.  Its energy can therefore be 

calculated similarly to segment 2. The only significant difference is that the length of segment 4 

depends on the position of the armature. This is shown in the cross section of segment 4 in figure 

2.21. 

(3.24) 

(3.25) 

(3.27) 

(3.26) 
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Figure 3.13 – Cross section of yoke segment 4 

The volume of segment 4 can be calculated using Pappus centroid theorem to be equation (3.28). 

Segment 4 volume = 𝜋(4𝐴 − 𝑥)(𝑟3
2 − 𝑟2

2) 

The magnetic flux density can be calculated to be equation (3.29) by dividing the magnetic flux 

by the cross-sectional area of segment 4 perpendicular to the direction of the magnetic flux. 

Segment 4 magnetic flux density =
Φ

𝜋(𝑟3
2 − 𝑟2

2)
 

The segment 4 energy density can be calculated using the equation (3.29) value of magnetic flux 

density and the magnetic field energy density equation. 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

𝑑𝑈 =
Φ2

2𝜇0𝜇𝑟𝜋
2(𝑟3

2 − 𝑟2
2)2

𝑑𝑉 

Multiplying the equation (3.30) energy density by the volume of segment 4 allows its total energy 

to be calculated. 

Segment 4 energy =
(4𝐴 − 𝑥)Φ2

2𝜇0𝜇𝑟𝜋(𝑟3
2 − 𝑟2

2)
 

 

 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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3.2.8 Stored energy in yoke segment-5 

Segment 5 of the yoke is the segment where magnetic flux is transferred between the yoke and 

armature. The dimensions of this segment are shown in figure 3.14. 

 

Figure 3.14 – Cross section of yoke segment 5 

Assuming the magnetic flux leaving the armature is uniformly distributed along the air gap, the 

magnetic flux in segment 5 will increase linearly with depth. Therefore, the magnetic flux within 

segment 5 at a depth of 𝑎 as shown in figure 3.14 can be calculated to be equation (3.32). 

Segment 5 magnetic flux = Φ
𝑎

𝐴 + 𝑥
 

Dividing the magnetic flux by the cross-sectional area of segment 5 perpendicular to the direction 

of the magnetic flux allows the magnetic flux density to be calculated. 

Segment 5 magnetic flux density =
aΦ

𝜋(𝐴 + 𝑥)(𝑟3
2 − 𝑟2

2)
 

The magnetic field energy density due to the equation (3.33) value of magnetic flux density can 

be calculated to be equation (3.34). 

𝑑𝑈 =
𝐵2

2𝜇0𝜇𝑟
𝑑𝑉 

𝑑𝑈 =
(aΦ)2

2𝜇0𝜇𝑟𝜋2(𝐴 + 𝑥)2(𝑟3
2 − 𝑟2

2)2
𝑑𝑉 

Integrating energy density due to the magnetic flux density defined by equation (3.34) over the 

volume of segment 5 using the cylindrical coordinates defined in figure 3.6 allows the total 

segment 5 magnetic field energy to be calculated. 

(3.32) 

(3.33) 

(3.34) 
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Segment 5 energy = ∫ ∫ ∫
(aΦ)2

2𝜇0𝜇𝑟𝜋2(𝐴 + 𝑥)2(𝑟3
2 − 𝑟2

2)2

2𝜋

0

𝐴+𝑥

0

 

𝑟3

𝑟2

𝑟 𝑑𝜃 𝑑𝑎 𝑑𝑟 

Segment 5 energy =
(𝐴 + 𝑥)Φ2

6𝜇0𝜇𝑟𝜋(𝑟3
2 − 𝑟2

2)
 

3.2.9 Stored energy in Air gap-1 

The energy in air gap 1 and 2 is more complicated to calculate due to the magnetic flux lines not 

being parallel to the H field caused by current in the windings. Using energy-based analysis allows 

this effect to be accounted easily. 

To demonstrate this, consider the reluctance of air gap 1 as shown in figure 3.15 where the blue 

shaded areas are the yoke and armature and the red dotted region is the air gap. 

 

 

 

 

 

 

Figure 3.15 – Cross section of air gap 1 

The air gap is narrow compared to the armature and yoke, it will have a much greater reluctance 

due to the absence of high magnetic permeable material. Therefore, magnetic flux will use the 

shortest possible route to travel through this gap resulting in magnetic field lines at an angle to the 

central axis. Magnetic flux will travel radially outward from the armature with magnetic flux 

density only being a function of distance from the central axis. As such, the magnetic flux density 

at a distance of 𝑟 from the central axis can be calculated to be equation (3.36). 

Air gap 1 magnetic flux density =
Φ

2𝜋𝑟𝐴
 

Integrating the energy due to this magnetic flux using the scalar magnetic field energy density 

formula results in the equation (3.37) value of energy in air gap 1. 

(3.36) 

𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 

𝑟 

𝑎 

𝑟1 

𝑟2 

𝐴 

(3.35) 
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𝑑𝑈 =
𝐵2

2𝜇0
𝑑𝑉 

Air gap 1 energy = ∫ ∫∫
Φ2

8𝜇0𝜋2𝑟𝐴2

2𝜋

0

𝐴

0

𝑟2

𝑟1

 𝑑𝜃 𝑑𝑎 𝑑𝑟 

Air gap 1 energy =
Φ2

4𝜋𝜇0𝐴
log𝑒 (

𝑟2
𝑟1

) 

Equation (3.37) can be used to calculate reluctance using the relationship between energy and 

reluctance. 

ℛ =
2𝑈

Φ2
 

Air gap 1 reluctance =
1

2𝜋𝜇0𝐴
log𝑒 (

𝑟2
𝑟1

) 

Due to the position of the windings, the H field at this point will be close to parallel with the central 

axis. As there is no material in the gap containing magnetic dipoles that can be aligned with the 

magnetic flux, the only magnetic energy within this region can be calculated using the vector-

based energy density equation shown in equation (3.39). 

𝑑𝑈 =
1

2
𝐵. 𝐻 𝑑𝑉 

The maximum amount of energy within the field would occur when the B and H fields are parallel. 

This cannot happen as no magnetic flux could be transferred between the yoke and stator if the B 

field was parallel to the central axis. Perpendicular B and H fields results in no energy within the 

air gap. A good approximation for the average magnetic flux angle (angle of 45°) in the air gap 

and will be used to for calculating air gap energy for the remainder of this analysis. 

Assuming the angle between the B and H fields is 45°, the energy calculated to be equation (3.40) 

needs to be divided by √2 to factor in the effect of nonaligned B and H fields: 

Air gap 1 energy =
Φ2

4√2𝜋𝜇0𝐴
log𝑒 (

𝑟2
𝑟1

) 

The energy in air gap 2 can be calculated using a similar process as that considered for air gap 1. 

Air gap 2 is a function of the distance the armature has moved to the right as represented by the 

variable 𝑥.  Figure 3.16 shows the dimensions of air gap 2 used in integration. 

(3.38) 

(3.39) 

(3.40) 

(3.37) 
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Figure 3.16 – Cross section of air gap 2 

The length of this air gap will increase with position of the armature. Taking this into account, the 

magnetic flux in air gap 2 as a function of distance from the central axis as: 

Air gap 2 magnetic flux density =
Φ

2𝜋𝑟(𝐴 + 𝑥 + 𝑟2 − 𝑟1)
 

The energy density within air gap 2 can be calculated to be equation (3.42) taking into account the 

45° angle between the B and H fields. 

Air gap 2 energy density =
Φ2

8√2𝜇0𝜋2𝑟2(𝐴 + 𝑥 + 𝑟2 − 𝑟1)2
 

Integrating the equation (3.42) value of energy over the volume of air gap 2 results in the equation 

(3.43) value of energy. 

Air gap 2 energy = ∫ ∫ ∫
Φ2

8√2𝜇0𝜋2𝑟2(𝐴 + 𝑥 + 𝑟2 − 𝑟1)2

2𝜋

0

𝐴+𝑥+𝑟2−𝑟1

0

𝑟2

𝑟1

𝑟 𝑑𝜃 𝑑𝑎 𝑑𝑟 

Air gap 2 energy =
Φ2

4√2𝜇0𝜋(𝐴 + 𝑥 + 𝑟2 − 𝑟1)
log𝑒 (

𝑟2
𝑟1

) 

The reluctance of each component of the solenoid can be calculated using equation (3.1) to 

calculate reluctance based on energy and magnetic flux. This results in a total armature reluctance 

of equation (3.44). 

Armature reluctance =
13𝐴 + 𝑥

3𝜇0𝜇𝑟𝜋𝑟12
 

(3.41) 

(3.42) 

(3.43) 

𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠 

𝑟 

𝑎 

𝑟1 

𝑟2 

𝐴 + 𝑥 

𝑟3 

(3.44) 
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The total yoke reluctance can be calculated to be equation (3.45). 

Yoke reluctance =
1

𝜇0𝜇𝑟𝜋
(

1

2𝐴
log𝑒 (

𝑟4
2

𝑟2𝑟3
) +

9𝐴

(𝑟5
2 − 𝑟4

2)
+

13𝐴 − 2𝑥

3(𝑟3
2 − 𝑟2

2)
) 

The total air gap reluctance can be calculated to be equation (3.46). 

Total Air gap reluctance =
1

2√2𝜋𝜇0

log𝑒 (
𝑟2
𝑟1

) (
1

𝐴
+

1

𝐴 + 𝑥 + 𝑟2 − 𝑟1
) 

The total reluctance of the solenoid magnetic circuit can be calculated by summing together the 

reluctance of the armature, yoke and air gaps. 

 Validation of the model using finite element results 

To assess the accuracy of these magnetic circuit equations, a FEM simulation was performed of a 

solenoid to determine the magnetic circuit reluctance. This creates a benchmark against which 

these proposed magnetic circuit equations can be measured. For this simulation, the following 

parameters of the geometric variables have been used. 

𝑟1 = 0.008 m 

𝑟2 = 0.0085 m 

𝑟3 = 0.012 m 

𝑟4 = 0.28 m 

𝑟5 = 0.03 m 

𝐴 = 0.01 m 

A computer rendering of both the B and H fields is shown in figures 3.17 and 3.18 using the above-

mentioned geometric parameters. 

 

(3.45) 

(3.46) 
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Figure 3.17 – FEM simulated solenoids magnetic flux density vector field 

 

 

Figure 3.18 – FEM simulated solenoids magnetic field strength vector field 
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3.3.1 Validation of Reluctance Calculations 

Using these parameters, the FEM simulated reluctance values and those predicted by summing 

together equations (3.44), (3.45) and (3.46) as a function of armature displacement is shown in 

figure 3.19. 

 

Figure 3.19 – Simulated and predicted reluctance vs displacement of the solenoid 

Predicted values using energy based magnetic circuit analysis as shown in figure 3.19 are on 

average within 0.99% of those predicted using FEM simulation for this solenoid. As the 

differences between FEM and energy based magnetic circuit analysis are similar to the expected 

error of FEM for this example, it can be concluded that the derived magnetic circuit reluctances 

are valid for the analysis of this solenoid. 

3.3.2 Validation of Transient waveforms 

Both FEM and magnetic circuit analysis can be used to simulate the transient behavior of 

electromagnetic devices. An advantage of lumped parameter magnetic circuit analysis is its ability 

to model transient behavior of electromagnetic devices faster than using FEM. A common tradeoff 

is that FEM is considered to be more accurate than lumped parameter. This difference in accuracy 

needs to be assessed to determine whether an application is suitable for lumped parameter. 

It is possible to assess the compatibility of magnetic circuit analysis with that of FEM by 

performing a transient analysis of the solenoid modeled in this chapter. For this example, the only 

losses to be accounted for will be resistive losses in the solenoid windings. The armature will be 

modeled as travelling at a constant velocity so no energy is converted into kinetic energy. 
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Therefore, energy supplied to the circuit will either be transferred to the magnetic field or 

dissipated as thermal energy in the windings due to resistive losses. 

A step voltage will be applied to the solenoid windings at time 𝑡 = 0 in the simulation with no 

initial winding current and an initial armature displacement of 𝑥 = 0. The following transient 

parameters will be used in addition to those stated for the reluctance calculations. 

• Winding voltage = 12V 

• Winding resistance = 20Ω 

• Armature velocity = 2ms−1 

• Number of turns = 200 

To calculate the winding current and the force experienced by the armature using magnetic circuit 

analysis it is necessary to solve the conservation of energy equation for the solenoid. Each 

individual energy transfer that will occur in the solenoid and the equation that describes it are 

stated below. 

Power in = 𝑣𝑖 

Mechanical energy in = 𝐹
𝑑𝑥

𝑑𝑡
 

Winding resistive losses = 𝑖2𝑅 

Power to magnetic field = ℛΦ
𝑑Φ

𝑑𝑡
 

Power to kinetic energy =
1

2
Φ2

𝑑ℛ

𝑑𝑡
 

Equating the electrical energy supplied to the solenoid is converted into resistive losses and energy 

transferred to the magnetic field. Therefore, equating the electrical input power to equal the sum 

of equations (3.49) and (3.50) allows a differential equation to be derived that describes the 

magnetic flux as a function of time. As the resulting equation is required to describe magnetic flux, 

Hopkinson’s law will be used to substitute the current term 𝑖 with the product of flux and reluctance 

divided by the number of turns 𝑛. 

𝑣𝑖 = 𝑖2𝑅 + ℛΦ
𝑑Φ

𝑑𝑡
 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 
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𝑣
ℛΦ

𝑛
= (

ℛΦ

𝑛
)
2

𝑅 + ℛΦ
𝑑Φ

𝑑𝑡
 

𝑑Φ

𝑑𝑡
=

𝑣

𝑛
−

𝑅ℛΦ

𝑛2
 

As the armature is moving with a constant velocity, the armature’s kinetic energy is constant. 

Therefore, the energy supplied to the system caused by the force applied to the armature must 

equal the force term of the magnetic circuit power equation. 

𝐹
𝑑𝑥

𝑑𝑡
=

1

2
Φ2

𝑑ℛ

𝑑𝑡
 

𝐹 =
1

2
Φ2

𝑑ℛ

𝑑𝑥
 

Using the parameters stated above, the FEM simulation of the winding current and force applied 

to the armature was performed. Both equations (3.52) and (3.53) were solved iteratively using 

discrete time stepping to calculate the armature force and magnetic flux using the reluctance data 

shown in figure 3.19. Equation (3.52) was used to calculate the magnetic flux which can be 

converted into current using Hopkinson’s law. Based on this data, the winding current predicted 

using magnetic circuit analysis and the simulated winding current can be compared as shown in 

figure 3.20. 

 

Figure 3.20 – Simulated and predicted winding current vs time 
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The simulated and predicted winding current as shown in figure 3.19 differ by 0.25%. This level 

of similarity is to be expected as the simulated and predicted reluctances differ on average by less 

than 1%, and the winding resistance is defined exactly in the simulation.  

Force applied to the armature can be calculated using equation (3.53) and compared to the FEM 

simulation.  This comparison is shown in figure 3.21. 

 

Figure 3.21 – Simulated and predicted armature force vs time 

Differences between the predicted and simulated force are more significant than between 

reluctances and winding current. This is because the force is a function of the reluctance derivative 

with respect to position. While the simulated and predicted reluctance values are close, any sudden 

change in reluctance caused by local variations will have a large impact on force due to this 

derivative term. These local variations are caused by differences in FEM mesh between samples 

and the complex geometry of the solenoid resulting in small changes in reluctance that are difficult 

to predict. Increasing the resolution of the FEM simulation and dividing the solenoid into more 

segments for the magnetic circuit analysis will improve this. Although both options will increase 

computational complexity.  

Another way to compare the simulated and predicted armature force is to integrate the force with 

respect to distance to calculate energy transfer. This integration reduces the impact of the 

reluctance derivative term. Performing this integration results in a simulated mechanical energy 

transfer of 2.214mJ and a predicted energy transfer of 2.216mJ to the armature. These values are 

within 0.09% which demonstrates that the magnetic circuit model presented is accurate.  
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An advantage of using closed form equations over numerical methods is they are inherently faster 

to compute. A mathematical model such as the one used in this chapter can produces results within 

milliseconds. The FEM solenoid model considered in this chapter consists of approximately 

400,000 mesh elements and took 22 hours to compute. The mathematical model also provides 

insight into the effect of parameter variations on other variables. Therefore, the proposed model 

provides an advantage to design engineers to rapidly produce results for optimization. 

 Conclusion 

This thesis chapter has demonstrated how accounting for non-uniform magnetic field distributions 

and non-aligned B-H field configurations allows magnetic circuit analysis to yield results 

comparable to those achieved using FEM.  

In a solenoid, the magnetic field was always aligned with the central axis. Due to this, the magnetic 

circuit energy and power transfer equations could be evaluated in scalar form. However, when 

magnetic fields do not remain aligned to a single axis such as occurs during rotational motion, it 

is necessary to use vector applications of energy based magnetic circuit theory. Applying magnetic 

circuit analysis to rotating magnetic fields requires different analytical techniques than what was 

covered in this chapter. This will be explored further in the next chapter. 

Modelling the solenoid in this chapter was sufficient to demonstrate the ability of magnetic circuit 

equations to model energy transfers caused by changes in magnetic reluctance. However, 

additional energy transfers can occur due to different sources of MMF being in motion relative to 

each other. Vector based magnetic circuit analysis can be applied to this situation to calculate 

energy transfers. This will also be considered in the next chapter by applying magnetic circuit 

analysis from different frames of reference in an induction motor. 
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Chapter 4 

4 Modelling of Rotating Magnetic Fields Magnetic Circuits 

with Inhomogeneous Magnetic Field Distribution 

In this chapter, vector-based magnetic circuit equations will be used to determine the steady state 

electrical, magnetic properties of an induction motor. To achieve this, the chapter is divided into 

the following subsections: 

1. Properties of Rotating Magnetic Flux Vectors 

This section describes how magnetic flux induced by electric currents in the rotor and stator 

result in energy being converted into kinetic energy. The relationship between the net 

magnetic flux and its time derivative are also defined in this section. This establishes the 

underlying mathematical principals behind the derivation of the proposed induction motor 

model. 

2. Calculation of rotor and stator flux 

This section describes and quantifies the induced magnetic flux due to currents in the rotor 

and stator. A homogenized model of the rotor bar region of the rotor is used to calculate 

the induced magnetic flux due to the presence of a rotating magnetic field. Magnetic flux 

vector addition is used to calculate the total stator induced magnetic flux accounting for 

the motor specific stator winding distribution.  

3. Modelling of the induction motor flux path reluctance 

The magnetic reluctance of the induction motor is required to transfer electrical quantities 

such as current and voltage to magnetic circuit quantities such as magnetic flux and its time 

derivative. Magnetic reluctance is calculated as a function of material properties and the 

distribution of magnetic flux due to rotor and stator currents. 

4. Evaluation of power transfer in the magnetic circuit 

In this section, all the derived properties of magnetic flux and reluctance are combined 

using the vector equations described in the first section. Current induced magnetic flux 

vectors are used to define one set of equations and voltage dependent magnetic flux 

derivative vectors define another set of equations. Combining these equations with the 

vector properties of rotating magnetic fields allows energy transfer equations to be derived. 

5. Finite element model-based validation 

Results predicted using magnetic circuit analysis will be benchmarked against those 

derived using FEM based simulations. Confirming that the derived magnetic circuit 
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analysis predictions are comparable to existing high accuracy models will be used to 

validate this analytical technique.  

By undertaking these steps, magnetic circuit-based model of an induction motor has been 

developed without the need for numerical methods. The resulting model describes the operation 

of the induction motor at a fundamental level. In doing so, it is possible to describe how electrical, 

magnetic and mechanical properties of the induction motor relate to each other. 

 Properties of Rotating Magnetic Flux Vectors 

To analyze rotating magnetic fields such as those found in induction machines, it is first necessary 

to define the mathematical relationship between the magnetic flux and its time derivative when 

observed from a rotating frame of reference. In the previous example involving a solenoid, the 

magnetic flux was always orientated in the same direction with only its magnitude changing. 

Therefore, the scalar version of the magnetic circuit power transfer equation was sufficient. The 

same is not true for rotating magnetic fields. To describe the unique properties of rotating magnetic 

fields, consider the vector representation of a magnetic field as shown in figure 4.1 shown using 

<i, j> vector notation. 

 

Figure 4.1 – Vector representation of a rotating magnetic field 

In figure 4.1, the flux vector can be described mathematically as: 

Φ⃗⃗⃗ = |Φ⃗⃗⃗ | cos(𝜔𝑡 + 𝜑) 𝑖̂ + |Φ⃗⃗⃗ | sin(𝜔𝑡 + 𝜑) 𝑗̂ 

Differentiating equation (4.1) with respect to time allows the derivative of the magnetic flux to 

be expressed in vector form. For the general case, both the magnitude |Φ⃗⃗⃗ | and the phase 𝜑 will 

be considered implicit functions of time and the radian frequency 𝜔 will be a constant. Using 

these definitions, the time derivative of equation (4.1) can be calculated as: 

𝑑Φ⃗⃗⃗ 

𝑑𝑡
= (

𝑑|Φ⃗⃗⃗ |

𝑑𝑡
cos(𝜔𝑡 + 𝜑) − |Φ⃗⃗⃗ | (𝜔 +

𝑑𝜑

𝑑𝑡
) sin(𝜔𝑡 + 𝜑)) 𝑖̂ + (

𝑑|Φ⃗⃗⃗ |

𝑑𝑡
sin(𝜔𝑡 + 𝜑) + |Φ⃗⃗⃗ | (𝜔 +

𝑑𝜑

𝑑𝑡
) cos(𝜔𝑡 + 𝜑)) 𝑗 ̂

(4.1) 

(4.2) 
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Taking the vector cross and dot product of the magnetic flux and its time derivative are given by: 

Φ⃗⃗⃗ ×
𝑑Φ⃗⃗⃗ 

𝑑𝑡
= |Φ⃗⃗⃗ |

2
(𝜔 +

𝑑𝜑

𝑑𝑡
) 

Φ⃗⃗⃗ ∙
𝑑Φ⃗⃗⃗ 

𝑑𝑡
= |Φ⃗⃗⃗ |

𝑑|Φ⃗⃗⃗ |

𝑑𝑡
 

It is also possible to use the fundamental properties of the dot and cross product to derive an 

equation that is independent of the angle between the magnetic flux and its time derivative. This 

involves squaring both sides of equation (4.3) and equation (4.4), then adding them together 

resulting in equation (4.5). 

|
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|

2

= (
𝑑|Φ⃗⃗⃗ |

𝑑𝑡
)

2

+ |Φ⃗⃗⃗ |
2
(𝜔 +

𝑑𝜑

𝑑𝑡
)
2

 

If the magnitude of the magnetic field is constant, the derivative of its magnitude will be zero 

irrespective of rotational frequency. In this situation, the right-hand side of equation (4.4) will 

equal zero. As the magnitude of the magnetic flux and its time derivative will be non-zero, the 

angle between these two vectors must be 90° for their dot product as described by equation (4.4) 

to equal zero. If the phase variable 𝜑 is constant, then solving equation (4.3) for this situation 

results in a value of the magnitude of the derivative of the magnetic flux to equal the product of 

the magnetic flux and radian frequency. This relationship between the magnetic flux and its time 

derivative is shown in figure 4.2 for a constant magnitude magnetic flux. 

 

Figure 4.2 – Constant magnitude magnetic flux and its time derivative 

(4.3) 

(4.5) 

(4.4) 
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Although equations (4.3) to (4.5) can be combined with the vector power transfer equation to 

describe variable reluctance and magnetic flux magnitude situations, for this analysis, only a 

constant reluctance and magnetic flux magnitude will be analyzed. 

An important observation that can be made from figure 4.2 is that the magnitude of the derivative 

of the magnetic flux is a function of the rotational frequency. Observing this quantity from a 

rotating frame of reference will change this value. Computing the magnetic circuit power transfer 

equation from this rotating frame of reference will result in different value compared to a stationary 

reference frame. To determine the effect of computing the magnetic circuit power transfer equation 

from different frames of reference, consider the situation where magnetic flux induced by currents 

in the rotor of an induction motor are combined with magnetic flux induced by currents in the 

stator. This is shown in figure 4.3 where Φ𝑟
⃗⃗⃗⃗  ⃗ is the magnetic flux induced by rotor currents and Φ𝑠

⃗⃗⃗⃗  ⃗ 

is magnetic flux induced by stator currents and are separated by an angle of 𝜑. 

 

Figure 4.3 – Stator and rotor magnetic flux vectors 

Figure 4.3 is a graphical way to represent the magnitude and direction of magnetic flux caused by 

electric currents in the rotor and stator of the motor. The magnetic flux caused by rotor currents 

Φ𝑟
⃗⃗⃗⃗  ⃗  and stator currents Φ𝑠

⃗⃗⃗⃗  ⃗ can be described in vector form as equation (4.6) and equation (4.7) 

respectively from the stator’s frame of reference where 𝜔𝑓 is the rotational velocity and 𝑡 is time. 

Φ𝑟
⃗⃗ ⃗⃗  ⃗|

𝑠𝑡𝑎𝑡𝑜𝑟
= |Φ𝑟

⃗⃗ ⃗⃗  ⃗| cos(𝜔𝑓𝑡 + 𝜑) 𝑖̂ + |Φ𝑟
⃗⃗ ⃗⃗  ⃗| sin(𝜔𝑓𝑡 + 𝜑) 𝑗̂ 

Φ𝑠
⃗⃗ ⃗⃗  ⃗|

𝑠𝑡𝑎𝑡𝑜𝑟
= |Φ𝑠

⃗⃗ ⃗⃗  ⃗| cos(𝜔𝑓𝑡) 𝑖̂ + |Φ𝑠
⃗⃗ ⃗⃗  ⃗| sin(𝜔𝑓𝑡) 𝑗̂ 

The magnetic flux induced by rotor and stator currents sum together to form the net magnetic 

flux Φ⃗⃗⃗  as described by equation (4.8). 

(4.6) 

(4.7) 
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Φ⃗⃗⃗ |
𝑠𝑡𝑎𝑡𝑜𝑟

= (|Φ𝑠
⃗⃗ ⃗⃗  ⃗| cos(𝜔𝑓𝑡) + |Φ𝑟

⃗⃗ ⃗⃗  ⃗| cos(𝜔𝑓𝑡 + 𝜑)) 𝑖̂ + (|Φ𝑟
⃗⃗ ⃗⃗  ⃗| sin(𝜔𝑓𝑡 + 𝜑) + |Φ𝑠

⃗⃗ ⃗⃗  ⃗| sin(𝜔𝑓𝑡)) 𝑗̂ 

 

The time derivative of the net magnetic flux as observed from the stators frame of reference 

𝜕Φ⃗⃗⃗ 

𝜕𝑡
|
𝑠𝑡𝑎𝑡𝑜𝑟

 can be calculated to as: 

𝜕Φ⃗⃗⃗ 

𝜕𝑡
|
𝑠𝑡𝑎𝑡𝑜𝑟

= 𝜔𝑓(−|Φ𝑠
⃗⃗⃗⃗  ⃗| sin(𝜔𝑓𝑡) − |Φ𝑟

⃗⃗ ⃗⃗  ⃗| sin(𝜔𝑓𝑡 + 𝜑))𝑖̂ + 𝜔𝑓(|Φ𝑠
⃗⃗⃗⃗  ⃗| cos(𝜔𝑓𝑡) + |Φ𝑟

⃗⃗ ⃗⃗  ⃗| cos(𝜔𝑓𝑡 + 𝜑))𝑗̂ 

 

Equation (4.9) is the derivative of the net magnetic flux as observed from the stator’s frame of 

reference. The magnetic flux power transfer equation can be used to calculate power transferred 

from the stator, from the stators frame of reference 𝑃𝑠𝑡𝑎𝑡𝑜𝑟_𝑠 using the equation (4.7) value of 

magnetic flux and the equation (4.9) value of the derivative of the net magnetic flux. As the 

reluctance is assumed to be constant, only the first product term of the magnetic circuit power 

transfer equation is required. 

𝑃𝑠𝑡𝑎𝑡𝑜𝑟_𝑠 = ℛΦ𝑠
⃗⃗⃗⃗  ⃗|

𝑠𝑡𝑎𝑡𝑜𝑟
∙
𝜕Φ⃗⃗⃗ 

𝜕𝑡
|
𝑠𝑡𝑎𝑡𝑜𝑟

 

𝑃𝑠𝑡𝑎𝑡𝑜𝑟_𝑠 = −𝜔𝑓ℛ|Φ𝑠
⃗⃗⃗⃗  ⃗||Φ𝑟

⃗⃗⃗⃗  ⃗| sin(𝜑) 

The same technique can be used to calculate power transferred to the rotor from the stators frame 

of reference 𝑃𝑟𝑜𝑡𝑜𝑟_𝑠. 

𝑃𝑟𝑜𝑡𝑜𝑟_𝑠 = ℛΦ𝑟
⃗⃗⃗⃗  ⃗|

𝑟𝑜𝑡𝑜𝑟
∙
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|
𝑠𝑡𝑎𝑡𝑜𝑟

 

𝑃𝑟𝑜𝑡𝑜𝑟_𝑠 = 𝜔𝑓ℛ|Φ𝑠
⃗⃗⃗⃗  ⃗||Φ𝑟

⃗⃗⃗⃗  ⃗| sin(𝜑) 

Equation (4.11) has the same magnitude as equation (4.10), the only difference is that one value is 

negative while the other is positive. This is because energy is transferred from the stator to the 

rotor. Thus, solving the magnetic circuit power transfer equation from the stator's frame of 

reference for both the rotor and the stator, allows the energy transferred to the rotor to be 

calculated. 

A discrepancy arises when using this analytical technique to calculate the energy transferred to the 

rotor from the rotor's frame of reference. In the rotor's frame of reference, the magnitude of the net 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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magnetic flux is the same, however its rotational velocity is different. The rotational velocity of 

the magnetic flux from the rotor's frame of reference is the slip frequency 𝜔𝑠 which is the 

difference between the synchronous frequency 𝜔𝑓 and the rotational frequency 𝜔𝑟. Therefore, 

evaluating the rotor’s magnetic flux vector from the rotor’s frame of reference results in equation 

(4.12). 

Φ𝑟
⃗⃗ ⃗⃗  ⃗|

𝑟𝑜𝑡𝑜𝑟
= |Φ𝑟

⃗⃗ ⃗⃗  ⃗| cos(𝜔𝑠𝑡 + 𝜑) 𝑖̂ + |Φ𝑟
⃗⃗ ⃗⃗  ⃗| sin(𝜔𝑠𝑡 + 𝜑) 𝑗̂ 

Evaluating the time derivative of the net magnetic flux from the rotor’s frame of reference 

𝜕Φ⃗⃗⃗ 

𝜕𝑡
|
𝑟𝑜𝑡𝑜𝑟

 results in: 

𝜕Φ⃗⃗⃗ 

𝜕𝑡
|
𝑟𝑜𝑡𝑜𝑟

= 𝜔𝑠(−|Φ𝑠
⃗⃗⃗⃗  ⃗| sin(𝜔𝑠𝑡) − |Φ𝑟

⃗⃗ ⃗⃗  ⃗| sin(𝜔𝑠𝑡 + 𝜑))𝑖̂ + 𝜔𝑠(|Φ𝑠
⃗⃗⃗⃗  ⃗| cos(𝜔𝑠𝑡) + |Φ𝑟

⃗⃗ ⃗⃗  ⃗| cos(𝜔𝑠𝑡 + 𝜑))𝑗 ̂

 

Using these definitions to solve the magnetic circuit power transfer equation from the rotor's 

rotating frame of reference results in the equation (4.14) value of power transferred to the rotor as 

represented by the variable 𝑃𝑟𝑜𝑡𝑜𝑟_𝑟. 

𝑃𝑟𝑜𝑡𝑜𝑟_𝑟 = ℛΦ𝑟
⃗⃗⃗⃗  ⃗|

𝑟𝑜𝑡𝑜𝑟
∙
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|
𝑟𝑜𝑡𝑜𝑟

 

𝑃𝑟𝑜𝑡𝑜𝑟_𝑟 = 𝜔𝑠ℛ|Φ𝑠
⃗⃗⃗⃗  ⃗||Φ𝑟

⃗⃗⃗⃗  ⃗| sin(𝜑) 

Equation (4.14) states that a stationary observer relative to the rotor's frame of reference, will 

calculate a different value of energy being transferred to the rotor compared to a stationary 

observer from the stator's frame of reference. The difference in power transfers evaluated from 

different frames of references determines the rotor electromechanical power as: 

𝑃𝑟𝑜𝑡𝑜𝑟_𝑠 − 𝑃𝑟𝑜𝑡𝑜𝑟_𝑟 = 𝜔𝑟ℛ|Φ𝑠
⃗⃗⃗⃗  ⃗||Φ𝑟

⃗⃗⃗⃗  ⃗| sin(𝜑) 

where 𝜔𝑟 is the difference between the synchronous frequency 𝜔𝑓 and the slip frequency 𝜔𝑠 and 

is the rotational velocity of the rotor. 𝑃𝑟𝑜𝑡𝑜𝑟_𝑟 is therefore the rotor losses incurred at a given slip 

𝜔𝑠. It can be demonstrated that the power transfer referred to in equation (4.15) describes 

electromechanical power conversion. This can be achieved by calculating the torque required to 

change the rotor's angular position. To calculate torque, consider the energy stored in the net 

magnetic field using magnetic circuit analysis from the stator’s frame of reference. 

𝑈 =
1

2
ℛ |Φ⃗⃗⃗ |

𝑠𝑡𝑎𝑡𝑜𝑟
|
2

 

(4.13) 

(4.14) 

(4.15) 

(4.12) 
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𝑈 =
1

2
ℛ [(|Φ𝑠

⃗⃗⃗⃗  ⃗| cos(𝜔𝑓𝑡) + |Φ𝑟
⃗⃗⃗⃗  ⃗| cos(𝜔𝑓𝑡 + 𝜑))

2
+ (|Φ𝑟

⃗⃗⃗⃗  ⃗| sin(𝜔𝑓𝑡 + 𝜑) + |Φ𝑠
⃗⃗⃗⃗  ⃗| sin(𝜔𝑓𝑡))

2
] 

 

Rotor torque 𝑇𝑟 can be calculated using the derivative of energy with respect to rotor position. 

𝑇𝑟 =
𝑑𝑈

𝑑𝜑
 

𝑇𝑟 = ℛ|Φ𝑟
⃗⃗⃗⃗  ⃗||Φ𝑠

⃗⃗⃗⃗  ⃗| sin(𝜑) 

Power can be calculated by multiplying torque by the rotational velocity, which in this case is 𝜔𝑟. 

Therefore, the power transfer caused by rotor torque 𝑃𝑇 in this example can be calculated to be 

equation (4.18). 

𝑃𝑇 = 𝜔𝑟ℛ|Φ𝑠
⃗⃗⃗⃗  ⃗||Φ𝑟

⃗⃗⃗⃗  ⃗| sin(𝜑) 

The equation (4.18) is equivalent to equation (4.15) and is therefore referring to electromechanical 

power conversion. 

This theory can be used to derive a magnetic circuit model of an induction motor which can be 

verified using FEM based simulations. To use magnetic circuit theory to model an induction motor 

it is necessary to calculate the relationship between stator currents and the magnetic flux they 

induce in the rotor. Although there are numerous configurations of stator windings that can be 

implemented, it is possible to derive a generic equation that can be used for all possible 

configurations. Assuming the current in each AC phase has the same amplitude, and the motor has 

been sinusoidal wound distributed winding configuration, the magnetic flux induced by stator 

currents will be proportional to the amplitude of the stator phase current. If the stator phase current 

amplitude is 𝑖𝑠 then the stator currents induced magnetic flux is therefore given by: 

|Φ𝑠
⃗⃗⃗⃗  ⃗| = 𝐾𝑖𝑖𝑠 

where 𝐾𝑖 is a motor specific constant. 

The voltage induced in the stator windings due to the rotating magnetic field will be proportional 

to the derivative of the net magnetic flux as per Faraday’s law of induction. Therefore, a generic 

representation of the winding voltage is shown in equation (4.20) where 𝑉𝑠 is the stator winding 

voltage and 𝐾𝑣 is a motor specific constant: 

|
𝑑Φ⃗⃗⃗ 

𝑑𝑡
| = 𝐾𝑣𝑉𝑠 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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 Calculation of rotor and stator flux 

4.2.1 Calculation of rotor flux 

The rotor’s magnetic flux is caused by induced currents flowing through the rotor bars. To 

calculate these currents, it is necessary to know the induced voltages due to a rotating magnetic 

field and the resistance of the current path. For this analysis, a standard squirrel cage induction 

motor rotor which consists of a magnetically permeable cylindrical volume with electrically 

conductive rotor bars running parallel to the axis of rotation has been considered. Currents will be 

induced in these rotor bars caused by the derivative of the net magnetic flux. These currents will 

induce magnetic flux that needs to be quantified to calculate the operational characteristics of the 

motor. To calculate the magnetic flux induced in the rotor caused by the rotating magnetic field, 

consider the rotor as shown in Figure 4.4. 

 

Figure 4.4 – Induction motor rotor with superimposed magnetic flux vector 

In figure 4.4 the dark grey area is the magnetically permeable material and the rotor bars are light 

grey. Electric current flowing through the red rotor bars in figure 4.4 will induce magnetic flux in 

the direction of the induced magnetic flux vector shown. Faraday’s law of induction can be used 

to determine the voltage around the current path enclosed by the red rotor bars from figure 4.4 by 

calculating the dot product of the magnetic flux derivative vector and the surface normal vector. 

Performing this operation results in the equation (4.21) value of voltage around the current loop 

incorporating the rotor bars shown in red. 

Induced loop voltage = |
𝑑Φ⃗⃗⃗ 

𝑑𝑡
| cos(𝜎) (4.21) 
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The current flowing through the two rotor bars shown in red can be calculated by dividing the loop 

voltage by the loop resistance. Defining the loop resistance to be 𝑅𝑙𝑜𝑜𝑝 the current can be calculated 

using ohms law to be equation (4.22). 

Induced loop current = |
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|
cos(𝜎)

𝑅𝑙𝑜𝑜𝑝
 

Dividing equation (4.22) by the magnetic reluctance allows the amount of magnetic flux caused 

by currents in the red rotor bars to be calculated. However, this process needs to be repeated for 

each pair of rotor bars in an inhomogeneous magnetic field distribution. This process requires the 

number of rotor bars to be known and the total induced magnetic flux caused by rotor currents to 

be then determined by the vector sum of all flux components.   

An alternative technique to calculate magnetic flux independent of the number of rotor bars is to 

express the rotor resistance in terms of ohm radians resulting in a homogenized representation of 

the cage rotor. 

4.2.2 Homogenized representation of the cage-rotor 

A homogenized representation of the cage rotor is developed in this section and uses the concept 

‘Ohm radians’ in a way to define the relationship between voltage and current when working in 

cylindrical coordinates. To understand this concept and why it is useful, consider the figure 4.5 

diagram of two opposite rotor bars from an induction motor connected by two end caps. 

 

Figure 4.5 – Two induction motor rotor bars with end caps 

The induced voltage around the conductive loop can be calculated using Faraday’s law of 

induction. Ohms law can then be used to calculate the induced current based on the loop resistance. 

Equation (4.22) allows the loop current to be calculated based on induced voltage due to the 

changing magnetic flux flowing through the loop. However, to solve equation (4.22) it is necessary 

(4.22) 



 

63 

 

to know the number of rotor bars in the rotor. As this number is rotor specific, it would be useful 

to define a parameter that allows the rotor current and magnetic flux to be calculated independent 

of the number of rotor bars. 

This parameter can be calculated by multiplying the loop resistance of two opposite rotor bars 

𝑅𝑙𝑜𝑜𝑝 as shown in figure 4.5 by the angular displacement between each rotor bar. As there are 18 

rotor bars in this example, their angular displacement will be 2𝜋 divided by 18. Therefore, the 

rotor resistance in ohm radians will be equation (4.23). 

𝑅𝑜𝑡𝑜𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝜋

9
𝑅𝑙𝑜𝑜𝑝 

Now consider the case where the resistance of two pairs of opposite rotor bars is measured. These 

rotor bar pairs are shown in figure 4.6 where one pair is colored red while the other pair is brown.  

 

Figure 4.6 – Rotor bar cross section 

The parallel connected resistance of two pairs of rotor bars will be half that of a single rotor bar 

pair defined previously to be 𝑅𝑙𝑜𝑜𝑝. However, the angular displacement of the two pairs of rotor 

bars will be twice that of a single rotor bar pair. Therefore, the rotor resistance in ohm can be 

calculated as: 

𝑅𝑜𝑡𝑜𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (
1

2
𝑅𝑙𝑜𝑜𝑝) × (

2𝜋

9
) =

𝜋

9
𝑅𝑙𝑜𝑜𝑝 

Calculating the rotor resistance in ohm radians using two pairs of rotor bars resulted in the same 

value as using only one pair of rotor bars. This is because measuring the rotor resistance in ohm 

radians is only a function of the total rotor bar cross sectional area and length. Changing the number 

of rotor bars while keeping the total rotor bar length and cross-sectional area constant will result 

(4.23) 

(4.24) 
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in the same ohm radian resistance value. Therefore, multiplying the total resistance of two rotor 

bar pairs by their angular displacement results in the same value.  

By defining the rotor resistance in terms of ohm radians, it is possible to define equations to 

calculate induced currents and magnetic flux using terms independent of the number of rotor bars. 

This allows calculus to be used to derive an expression for the induced magnetic flux. To 

demonstrate this, consider a segment of the rotor enclosed by a small angular displacement 𝑑𝜎 at 

an angle of 𝜎 to the time derivative of the magnetic flux vector. Assuming the rotor resistance in 

ohm radians is 𝑅𝑟, the resistance of this current loop can be calculated by dividing the rotor 

resistance in ohm radians by the angular displacement 𝑑𝜎. 

 

Figure 4.7 – Rotor segment enclosed by a small angular segment 𝑑𝜎 

The current enclosed by this small angular displacement can be calculated using ohms law by 

dividing the loop voltage by the loop resistance. 

Induced loop current = |
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|
sin(𝜎)

𝑅𝑟
 𝑑𝜎 

The magnetic flux caused by this current can be calculated using Hopkinson's law by dividing the 

current by the magnetic path reluctance ℛ. 

Induced loop magnetic flux = |
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|
sin(𝜎)

𝑅𝑟ℛ
 𝑑𝜎 

Each angular segment of the rotor will produce magnetic flux that when combined, will constitute 

the total rotor’s induced magnetic flux.  

(4.25) 

(4.26) 
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4.2.3 Magnetic Flux Vector Addition 

To calculate the total rotor induced magnetic flux consider the magnetic flux caused by a single 

rotor bar as shown in figure 4.8. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 – Rotor with superimposed magnetic flux lines 

As shown in figure 4.8, the magnetic flux induced by currents in the rotor will be spread 

approximately evenly across the air gap between the rotor and stator. Magnetic flux directions out 

of the rotor is shown with purple arrows and magnetic flux returning to the rotor is shown with 

black arrows. The magnetic flux will form this distribution as it naturally tracks the path of least 

energy due to the presence of the magnetic flux. However, the rotor is comprised of multiple rotor 

bars and the magnetic flux induced by some currents will be canceled out by other currents. To 

illustrate this, consider the magnetic flux induced in the same rotor from figure 4.8 with two rotor 

bars. 

  

𝜎 
𝑖 

𝑗 
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Figure 4.9 – Rotor with superimposed magnetic flux lines 

Figure 4.9 depicts rotor bars with equal current and the resulting induced magnetic flux. The 

resulting magnetic flux will either have twice the magnetic flux density as a single rotor bar or 

cancel out depending on the location. By limiting the range of the angle variable 𝜎 to between 0 

and 
𝜋

2
, the total magnetic flux caused by a differential current pair will be given by: 

Differential pair magnetic flux =
4𝑖𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝜎

𝜋ℛ
 

where 𝑖𝑠𝑒𝑔𝑚𝑒𝑛𝑡 is the current flowing through each rotor bar shown in figure 4.9. 

The current 𝑖𝑠𝑒𝑔𝑚𝑒𝑛𝑡 as a function of the angle 𝜎 was previously calculated to be equation (4.25). 

Substituting the equation (4.25) value of current into equation (4.27) and integrating for all induced 

currents in the rotor allows the total magnetic flux induced by rotor currents Φ𝑟 to be calculated 

as: 

Φ𝑟 = ∫ |
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|
4𝜎 sin(𝜎)

𝜋ℛ𝑅𝑟
 𝑑𝜎

𝜋
2

0

 

Φ𝑟 =
4

𝜋ℛ𝑅𝑟
|
𝑑Φ⃗⃗⃗ 

𝑑𝑡
| 

𝜎 

𝑖 

𝑗 

𝜎 

𝐹𝑖𝑒𝑙𝑑𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 

𝐹𝑖𝑒𝑙𝑑𝑠 𝑐𝑎𝑛𝑐𝑒𝑙 𝑜𝑢𝑡 

(4.27) 

(4.28) 
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As equation (4.27) was calculated using the rotor resistance in ohm radians, it is independent of 

the number of rotor bars and is therefore valid for all rotors. However, the magnetic flux induced 

by stator currents is dependent on the winding configuration. The following section studies an 

example stator with a 2-pole winding configuration. 

4.2.4 Calculation Stator Magnetic Flux  

For this analysis, the magnetic flux induced by a 2 pole, 3 phase induction motor with 24 rotor 

slots is considered as a case study. The stator winding configuration is shown in figure 4.10 with 

phases labeled A, B and C. 

 

Figure 4.10 – Stator winding configuration 

Assuming all three stator phases have the same current amplitude of 𝑖𝑠 and have 𝑛 turns per phase 

winding per stator slot, the combined current amplitude flowing through each stator slot will be 

equation (4.29). 

Stator slot combined current amplitude = √3𝑖𝑠𝑛 

The combined current amplitude flowing into slot 1 and 2 are equivalent as they contain the same 

number of turns of the same phase windings. Each sequential group of two stator slots will have 

the same combined amplitude. The phase difference of the combined current amplitude for each 

group of two stator slots will differ by a phase angle of 30°. Based on this winding configuration, 

the magnetic flux caused by a differential combined current pair for one quadrant (slots 7-12 and 

slots 19-24) is shown in figure 3.10 when the net stator magnetic flux is aligned with the 𝑖 axis. 

 

 

  

(4.29) 
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Figure 4.11 – One quadrant of induced magnetic flux vectors  

Each quadrant will have the same magnitude of magnetic flux vectors as shown in figure 4.11 

when the net stator induced magnetic flux is aligned with the 𝑖 axis. The vector sum of all the flux 

components result in the total magnetic flux Φ𝑠: 

Φ𝑠 =
√3𝑖𝑠𝑛

ℛ
× (

11

6
cos(0) +

9

6
cos (

𝜋

6
) +

7

6
cos (

𝜋

6
) +

5

6
cos (

𝜋

3
) +

3

6
cos (

𝜋

3
) +

1

6
cos (

𝜋

2
)) 

Φ𝑠 ≈ 8.3301
𝑖𝑠𝑛

ℛ
 

To calculate the value of the rotor and stator current induced magnetic flux it is necessary to 

calculate the reluctance of the induction motor. This is undertaken in the following section. 

  

𝑖 

𝑗 

√3𝑖𝑠𝑛

ℛ
cos(0) 

√3𝑖𝑠𝑛

ℛ
cos(

𝜋

6
) 

√3𝑖𝑠𝑛

ℛ
cos(

𝜋

6
) 

√3𝑖𝑠𝑛

ℛ
cos(

𝜋

3
) 

√3𝑖𝑠𝑛

ℛ
cos(

𝜋

3
) 

√3𝑖𝑠𝑛

ℛ
cos(

𝜋

2
) 

(4.30) 
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 Modelling of the Induction Motor Flux Path Reluctance 

Modelling of the induction motor flux path reluctance can be achieved using the same technique 

as for the solenoid presented in the previous chapter. This involves calculating the amount of 

magnetic field energy caused by the presence of magnetic flux. To achieve this, the induction 

motor has been divided into 5 separate cylindrical segments as shown in figure 4.12. 

 

 

 

 

 

 

 

 

 

Figure 4.12 – Induction motor segments  

Each segment of the induction motor will have a different magnetic field distribution and 

therefore a different amount of magnetic field energy. 

4.3.1 Energy stored in the inner rotor region 

The first segment of the induction motor to be analyzed is the inner rotor region. This is the region 

of the rotor where there are no rotor bars. Although in a practical rotor there will be a shaft made 

of a low permeability material in this region, for this analysis the region will be assumed to be 

homogenously filled with a high permeability material. This assumption has a negligible impact 

on overall accuracy as this region does not contribute much to the total reluctance. 

In this region, the magnetic flux will be assumed to be uniformly distributed with all magnetic flux 

vectors pointing in a single direction. This region is cylindrical in shape with a radius of 𝑟𝑖 and a 

length of 𝑙 as shown in figure 4.13 with blue superimposed magnetic field lines.  

𝑆𝑡𝑎𝑡𝑜𝑟 𝑏𝑎𝑐𝑘𝑝𝑙𝑎𝑛𝑒 

𝑆𝑡𝑎𝑡𝑜𝑟 𝑠𝑙𝑜𝑡 𝑟𝑒𝑔𝑖𝑜𝑛 

𝑎𝑖𝑟 𝑔𝑎𝑝 𝑟𝑒𝑔𝑖𝑜𝑛 

𝑟𝑜𝑡𝑜𝑟 𝑏𝑎𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 

𝑖𝑛𝑛𝑒𝑟 𝑟𝑜𝑡𝑜𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 

𝑟𝑖 

𝑟𝑜 
𝑠𝑖 

𝑠𝑚 

𝑠𝑏 



 

70 

 

 

 

 

 

 

Figure 4.13 – Induction motor inner rotor region  

All the net magnetic flux Φ will pass through the black dotted line shown in figure 4.13. Therefore, 

the magnetic flux density of this region can be calculated by dividing the net magnetic flux by the 

cross-sectional area of the inner rotor if cut along the black dotted line in figure 4.13. 

𝐵𝑖𝑛𝑛𝑒𝑟 𝑟𝑜𝑡𝑜𝑟 =
Φ

2𝑟𝑖𝑙
 

Multiplying the energy density caused by the equation (4.31) magnetic flux density by the 

cylindrical volume of the inner rotor allows the inner rotor energy to be calculated. 

Inner rotor energy =
𝜋Φ2

8𝜇0𝜇𝑟𝑙
 

4.3.2 Energy stored in the outer rotor region 

The outer rotor area comprises of magnetically permeably material referred to as the rotor tooth 

area and low electrical resistivity rotor bars referred to as rotor slot area. Magnetic flux will pass 

through both the rotor slot and tooth area, although most magnetic flux will pass through the tooth 

area. The ratio of the area of the rotor slot and tooth area of a cross section of the rotor in this 

region needs to be defined as it will be rotor specific. Therefore, a new variable will be defined 𝐶𝑟 

which is the cross-sectional area of the rotor slot area in the outer rotor divided by the total cross-

sectional area of the outer rotor. 

𝐶𝑟 =
rotor slot area

outer rotor total area
 

Using the variable 𝐶𝑟 a small angular section 𝑑𝜎 of the outer rotor at a distance of 𝑟 from the 

central axis with a length of 𝑑𝑙 and an angle of 𝜎 from the net magnetic flux direction can be 

described as shown in figure 4.14. 

𝑟𝑖 

𝑙 

(4.31) 

(4.32) 

(4.33) 
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Figure 4.14 – Induction motor outer rotor region segment  

In figure 4.14, the area with the rotor slot is colored blue and the rotor tooth area is colored grey. 

The boundary between the inner rotor and the rotor bar region occurs at a distance of 𝑟𝑖 as shown 

in figure 4.12. At this boundary the magnetic flux enters at an angle of cos(𝜎). Therefore, the 

magnetic flux flowing through the rotor bar region as shown in figure 4.12 bounded by the small 

angle 𝑑𝜎 can be calculated using equation (4.31) to be equation (4.34). 

Flux in rotor bar segment =
Φ

2𝑙
cos(𝜎)  𝑑𝜎 𝑑𝑙 

Some of the magnetic flux entering the rotor bar region will travel through the rotor slot area and 

some will travel through the rotor tooth area. The ratio of the magnetic flux passing through the 

rotor tooth area compared to the rotor slot area can be determined by calculating the magnetic 

reluctance of these respective regions. These two reluctance values will be connected in parallel 

to form the total reluctance of the small angular segment shown in figure 4.14. Using this 

reluctance model of the rotor bar region, the total magnetic flux passing through the rotor slot and 

tooth region as shown in figure 4.14 can be calculated to be equation (4.35) and (4.36). 

Magnetic flux entering rotor slot area = (
Φ

2𝑙
 𝑑𝜎 𝑑𝑙)

𝐶𝑟 cos(𝜎)

𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟)
 

Magnetic flux entering rotor tooth area = (
Φ

2𝑙
 𝑑𝜎 𝑑𝑙)

𝜇𝑟(1 − 𝐶𝑟) cos(𝜎)

𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟)
 

As the magnetic flux travels radially outwards in the rotor bar region, the amount of magnetic flux 

for a given angular displacement remains the same. However, the cross-sectional area of the 

angular segment increases as distance from the central axis increases, thereby decreasing the 

magnetic flux density. Therefore, the magnetic flux density within the small rotor bar segment as 

shown in figure 4.14 can be calculated to be equation (4.37) for the rotor tooth area and 4.38 for 

the rotor slot area. 

(4.34) 

(4.35) 

(4.36) 
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Rotor slot magnetic flux density =
Φcos(𝜎)

2𝑙 𝑟(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
 

Rotor tooth magnetic flux density =
Φ𝜇𝑟 cos(𝜎)

2𝑙 𝑟(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
 

The magnetic flux density from equation (4.36) can be used to calculate the energy within the 

electrical conductor of the rotor segment shown in figure 4.14. Integrating this energy over the 

cylindrical volume of the rotor bar region allows the energy within the electrical conduction area 

of the rotor bar region to be calculated. 

Rotor slot energy = ∫∫ ∫
Φ2 cos2(𝜎) 𝐶𝑟

8𝜇0𝑙2 𝑟(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
2  𝑑𝑟 𝑑𝜎 𝑑𝑙

𝑟𝑜

𝑟𝑖

2𝜋

0

𝑙

0

 

Rotor slot energy =
𝜋Φ2𝐶𝑟

8𝜇0𝑙(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
2 log𝑒 (

𝑟𝑜
𝑟𝑖

) 

The same process can be utilized to calculate the magnetic field energy within the rotor tooth area 

of the rotor bar region. Integrating the magnetic field energy within the rotor tooth segment as 

shown in figure 3.12 over the entire rotor bar region allows the total magnetic conductor energy to 

be calculated. 

Magnetic conductor energy = ∫∫ ∫
Φ2 cos2(𝜎) 𝜇𝑟(1 − 𝐶𝑟)

8𝜇0𝑙2 𝑟(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
2  𝑑𝑟 𝑑𝜎 𝑑𝑙

𝑟𝑜

𝑟𝑖

2𝜋

0

𝑙

0

 

Magnetic conductor energy =
𝜋Φ2𝜇𝑟(1 − 𝐶𝑟)

8𝜇0𝑙(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
2 log𝑒 (

𝑟𝑜
𝑟𝑖

) 

Summing together the rotor slot and tooth energy in the rotor bar region allows the total magnetic 

field energy for the rotor bar region to be calculated as: 

Rotor bar region energy =
𝜋Φ2

8𝜇0𝑙(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
log𝑒 (

𝑟𝑜
𝑟𝑖

) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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4.3.3 Energy stored in the air gap region 

Energy in the air gap region between the stator and rotor can be calculated using a similar technique 

to that used for the rotor bar region. To calculate the energy in the air gap region, consider the 

small segment of this region bounded by the small angular displacement of 𝑑𝜎. 

 

 

 

 

 

 

Figure 4.15 – Induction motor air gap region segment  

As the magnetic flux is travelling radially outward in this region, the magnetic flux bounded by 

the angular displacement 𝑑𝜎 in the air gap region will be the same as that bounded by the same 

angular displacement in the rotor bar region. Therefore, the magnetic flux entering the segment in 

the air gap region as shown in figure 4.15 will be the same as that defined by equation (4.34). This 

allows the magnetic flux density of the segment shown in figure 4.15 at a distance of 𝑟 from the 

central axis to be calculated to be equation (4.42). 

Air gap segment magnetic flux density =
Φ

2𝑙𝑟
 cos(𝜎) 

Integrating the magnetic field energy over the air gap region as shown in figure 4.15 allows its 

total energy to be calculated. 

Air gap region energy = ∫ ∫∫
Φ2 cos(𝜎)

8𝜇0𝑙
2𝑟

2𝜋

0

𝑙

0

 𝑑𝜎 𝑑𝑙 𝑑𝑟

𝑠𝑖

𝑟𝑜

 

Air gap region energy =
𝜋Φ2

8𝜇0𝑙
log𝑒 (

𝑠𝑖

𝑟𝑜
) 

𝑟 

𝑟 𝑑𝜎 

𝑑𝜎 

𝑑𝑙 

𝑑𝑟 

𝜎 

𝑁𝑒𝑡 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑙𝑢𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

(4.42) 

(4.43) 



 

74 

 

4.3.4 Energy stored in the stator slot region 

Energy within the stator slot region can be calculated using the same technique used to calculate 

magnetic field energy within the rotor bar region. In the stator slot region, the stator slot area is 

where the stator windings are, and the stator tooth area is where the material with high magnetic 

permeability is. As the ratio of these areas will differ from that of the rotor, a new variable needs 

to be defined. This variable is 𝐶𝑠 and is defined to be the cross-sectional area of all stator slots 

where the stator windings are located divided by the total cross-sectional area of the stator slot 

region as defined in figure 4.12. 

𝐶𝑠 =
total stator slot area

stator slot region total area
 

Using the variable 𝐶𝑠, a small segment of the stator bounded by the angular displacement 𝑑𝜎 is 

shown in figure 4.16.

 

Figure 4.16 – Induction motor stator slot region segment  

In figure 4.16, the blue area represents where the stator slot area is, while the grey area represents 

the area where the stator tooth is. If all the magnetic flux from the rotor bar region travels into the 

stator slot region, the energy within this region can be calculated with the same method used for 

the rotor bar region. This is because the magnetic flux from the inner rotor flows radially outwards 

in the rotor bar, air gap and stator slot region. Therefore, the magnetic flux bounded by any given 

angular displacement will be the same for all these regions. 

Using the same technique used to calculate the rotor bar region energy, the stator slot region energy 

as defined in figure 4.12 can be calculated to be equation (4.45). 

Stator slot region energy =
𝜋Φ2

8𝜇0𝑙(𝐶𝑠 + 𝜇𝑟(1 − 𝐶𝑠))
log𝑒 (

𝑠𝑚

𝑠𝑖
) (4.45) 

(4.44) 
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4.3.5 Energy stored in the stator backplane region 

Magnetic flux travelling out of the stator slot region will travel through the stator backplane region 

before returning to the rotor via the stator slot region. In this region, the magnetic flux will be a 

function of angular displacement from the direction of the net magnetic flux. For this analysis, it 

will be assumed that the magnetic flux density in this region is not a function of radial distance 

from the central axis or displacement parallel to the central axis. 

Magnetic flux will enter the stator backplane at a distance of 𝑠𝑚 from the central axis as shown by 

the grey area in figure 4.17 for a small angular displacement of 𝑑𝜎. 

 

Figure 4.17 – Induction motor stator backplane segment  

The magnetic flux entering the stator backplane through this angular displacement of 𝑑𝜎 will be 

the same the magnetic flux leaving the inner rotor for the same angular displacement. This was 

previously calculated to be equation (4.34). Magnetic flux entering the stator backplane through 

this small angular displacement will add to the magnetic flux that entered the backplane at different 

angles. Therefore, to calculate the magnetic flux in the stator backplane as a function of the angle 

𝜎, it is necessary to integrate the contribution of all angular segments to the total magnetic flux. 

Stator backplane magnetic flux = ∫
Φ 𝑑𝑙

2𝑙
cos(𝜎)

0

𝜎

𝑑𝜎 

Stator backplane magnetic flux =
Φ

2𝑙
sin(𝜎) 𝑑𝑙 

The magnetic flux density in the stator backplane can be calculate by dividing the magnetic flux 

by the cross-sectional area of the backplane. This cross-sectional area is shown as the grey area in 

figure 4.18. 

(4.46) 
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Figure 4.18 – Induction motor stator backplane segment 

The magnetic flux density in the grey area shown in figure 4.18 can be calculated to be equation 

(4.47). 

Stator backplane magnetic flux density =
Φ

2𝑙(𝑠𝑜 − 𝑠𝑚)
sin(𝜎) 

Integrating the energy due to the presence of this magnetic field over the entire stator backplane 

region using cylindrical coordinates allows the total energy of this region to be calculated. 

Stator backplane energy = ∫ ∫ ∫
Φ2𝑟

8𝜇0𝜇𝑟𝑙2(𝑠𝑜 − 𝑠𝑚)2
sin2(𝜎)

𝑠𝑜

𝑠𝑚

𝑙

0

2𝜋

0

𝑑𝑟 𝑑𝑙 𝑑𝜎 

Stator backplane energy =
𝜋Φ2(𝑠𝑜 + 𝑠𝑚)

16𝜇0𝜇𝑟(𝑠𝑜 − 𝑠𝑚)𝑙
 

The contribution to total induction motor reluctance of each region can be calculated as per the 

energy equation (1.13) by multiplying the region’s energy by 2 and then dividing by the square of 

the magnetic flux. Performing this operation to the derived energy values for each region allows 

the following magnetic reluctance values to be calculated. 

Inner rotor reluctance =
𝜋

4𝜇0𝜇𝑟𝑙
 

(4.47) 

(4.48) 

(4.49) 

Eq. 3.46 
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Rotor bar region reluctance =
𝜋

4𝜇0𝑙(𝐶𝑟 + 𝜇𝑟(1 − 𝐶𝑟))
log𝑒 (

𝑟𝑜
𝑟𝑖
) 

Air gap region reluctance =
𝜋

4𝜇0𝑙
log𝑒 (

𝑠𝑖

𝑟𝑜
) 

Stator slot region reluctance =
𝜋

4𝜇0𝑙(𝐶𝑠 + 𝜇𝑟(1 − 𝐶𝑠))
log𝑒 (

𝑠𝑚

𝑠𝑖
) 

Stator backplane reluctance =
𝜋(𝑠𝑜 + 𝑠𝑚)

8𝜇0𝜇𝑟(𝑠𝑜 − 𝑠𝑚)𝑙
 

The total induction motor reluctance can be calculated by summing together equations (4.49) to 

4.53. These reluctance equations are expressed in terms of geometric and material properties that 

do not change during motor operation. It is therefore possible to calculate this parameter without 

knowing any time dependent variables such as the state of the magnetic or electric fields. 

 Evaluation of power transfer in the magnetic circuit 

As the stator magnetic flux, rotor magnetic flux and motor reluctance have been defined, it is 

possible to calculate the net magnetic flux. The net magnetic flux will be the sum of the rotor and 

stator magnetic flux. As these are both vector quantities, their relative phase angle needs to be 

accounted for when summing these two quantities together. The magnetic flux induced by both 

the rotor and stator will be approximately sinusoidally distributed in the air gap region thereby 

allowing vector addition to be used to calculate the net magnetic flux. 

It was shown in figure 4.2 that the derivative of the net magnetic flux vector will be at a 90° angle 

to the net magnetic flux. The rotor’s magnetic flux will have the same phase angle to the derivative 

of the net magnetic flux as it is caused by induced currents. This can be observed from figure 4.7 

and equation (4.26) that states the maximum induced magnetic flux will be in the direction of the 

derivative of the net magnetic flux. 

Based on this information, the relationship between the rotor magnetic flux Φ𝑟, stator magnetic 

flux Φ𝑠 and net magnetic flux Φ is shown in figure 4.19 where 𝜆 is the angle between the net and 

stator magnetic flux.  

 

 

 

(4.50) 

(4.51) 

(4.53) 

(4.52) 
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Figure 4.19 – Magnetic flux vectors 

The rotor magnetic flux is perpendicular to the net magnetic flux and the sum of the rotor and 

stator magnetic flux must equal the net magnetic flux. This vector relationship allows the equation 

(4.54) relationship between the stator magnetic flux and net magnetic flux to be calculated. 

Φ = Φ𝑆 cos(𝜆) 

Substituting equation (4.19) Φ𝑆 into equation (4.54) allows the equation (4.55) relationship 

between the stator current amplitude 𝑖𝑠 and the net magnetic flux Φ to be expressed as: 

Φ = 𝐾𝑖𝑖𝑠 cos(𝜆) 

It is also possible to represent the externally applied winding voltage in vector form. This stator 

voltage vector is shown in figure 4.20 where 𝜃 is the angle of this vector relative to the direction 

of the net magnetic flux. 

 

Figure 4.20 – Stator magnetic flux and voltage vectors 

The voltage induced in the stator windings caused by the time derivative of the net magnetic flux 

vector will equal the negative of externally applied voltage minus the current induced voltage as 

per Faraday’s law of induction. This value will equal the stator’s voltage vector due to an externally 

applied voltage minus the current induced voltage vector. The voltage drop in the stator winding 

Φ𝑠 

Φ𝑟 

𝜆 

𝜋

2
 

Φ 

(4.54) 

(4.55) 
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due to electrical resistance can be calculated using ohms law to be 𝑖𝑠𝑅𝑠 where 𝑅𝑠 is the stator 

winding resistance. 

In an AC circuit, the phase of the voltage and current are not necessarily aligned. The induced 

voltage in the stator windings due to resistive losses will be in phase with the current, not the 

voltage. Therefore, to calculate the derivative of the net magnetic flux due to the stator voltage, a 

vector addition of the applied voltage and any induced voltages needs to be performed. 

To convert voltages from the electrical domain into the magnetic domain requires the voltage to 

be multiplied by 𝐾𝑣 as per equation (4.20). To transfer current from the electrical domain to 

magnetic flux in the magnetic domain requires current to be multiplied by 𝐾𝑖 as per equation (4.19). 

Therefore, the stator voltage vector as represented in the magnetic domain has an amplitude of 

𝐾𝑣𝑉𝑠 where 𝑉𝑠 is the stator voltage amplitude and the voltage induced by stator currents has an 

amplitude of 𝐾𝑣𝑖𝑠𝑅𝑠. The voltage vectors in the magnetic domain must equal |Φ⃗⃗⃗ |𝜔 as per figure 

4.2.  This can be represented on a vector diagram shown in figure 4.21 from the stators frame of 

reference when the rotational frequency is the synchronous frequency 𝜔𝑓. 

 

Figure 4.21 – Stator voltage vectors accounting for resistive voltages 

Not all the magnetic flux from the stator windings will pass through the rotor as there will be some 

leakage flux from the stator. These stray fields will act like an inductor placed in series with the 

mutually coupled section of the stator’s windings. To incorporate these effects into the induction 

motor model, the voltage and phase shift caused by these induced voltages in the stator windings 

needs to be calculated. Assuming the stator winding current is sinusoidal with a magnitude of 𝑖𝑠 

and frequency of 𝜔𝑓, the magnitude of the voltage caused by resistive losses 𝑖𝑠𝑅𝑠 and stray fields 

inductance can be calculated as:  

𝑆𝑡𝑎𝑡𝑜𝑟 𝑤𝑖𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑖𝑠√𝑅𝑠
2 + (𝜔𝑓𝐿)

2
 (4.56) 
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where 𝐿 is the stator winding stray inductance. The effect of leakage inductance will also change 

the phase of the combined voltage caused by the resistive losses and stray fields. This change in 

phase relative to a resistive only loss is represented by the variable 𝜌 can be calculated to be 

equation (4.56). 

𝜌 = tan−1 (
𝜔𝑓𝐿

𝑅𝑠
) 

Incorporating this information into the vector diagram from figure 4.21 allows the vector 

diagram shown in figure 4.22 to be derived. 

 

Figure 4.22– Stator voltage vectors accounting for resistive and inductive voltages 

The vectors geometry from figure 4.22 allows two important relationships to be calculated.   

𝑉𝑠 sin(𝜃) = 𝑖𝑠√𝑅𝑠
2 + (𝜔𝑓𝐿)

2
sin(𝜆 + 𝜌) +

𝜔𝑓

𝐾𝑣
Φ 

𝑉𝑠 cos(𝜃) = 𝑖𝑠√𝑅𝑠
2 + (𝜔𝑓𝐿)

2
cos(𝜆 + 𝜌) 

Using equation (4.58), equation (4.59) and the formula for AC power incorporating displacement 

power factor, it is possible to calculate the rate of energy transfer from the voltage supply to the 

motor i.e. 𝑃𝑠𝑢𝑝𝑝𝑙𝑦. This is because the phase angle between the stator windings AC voltage and 

current is the same as that between the stator voltage and current vectors as depicted in figure 4.20.  

𝑃𝑠𝑢𝑝𝑝𝑙𝑦 =
3

2
𝑉𝑠𝑖𝑠 cos(𝜃 − 𝜆) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 
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Substituting equations (4.58) and (4.59) into equation (4.60) allows the value of power supplied to 

the motor 𝑃𝑠𝑢𝑝𝑝𝑙𝑦 to be expressed in terms independent of the angle 𝜃.  

𝑃𝑠𝑢𝑝𝑝𝑙𝑦 =
3

2
𝑖𝑠

2𝑅𝑠 +
3𝜔𝑓

2𝐾𝑣
𝑖𝑠Φsin(𝜆) 

The equation (4.55) relationship between the net magnetic flux and stator winding current 

amplitude 𝑖𝑠 can be used to express the second product term of equation (4.61) in terms 

independent of 𝑖𝑠.  

𝑃𝑠𝑢𝑝𝑝𝑙𝑦 =
3

2
𝑖𝑠

2𝑅𝑠 +
3𝜔𝑓

2𝐾𝑖𝐾𝑣
Φ2 tan(𝜆) 

Equation (4.62) contains the product of the scaling factors 𝐾𝑣 and 𝐾𝑖. These two scaling factors 

are not independent of each other and their product can be calculated using the conservation of 

energy. The magnetic circuit vector power transfer equation is very versatile and can be applied to 

the vectors shown in figure 4.20. By equating the power supplied to the motor using electrical 

circuit analysis to the value predicted using magnetic circuit analysis allows for the product of 𝐾𝑣 

and 𝐾𝑖 to be calculated. To equate the magnetic circuit parameters to electrical circuit paramteres, 

the equation (4.19) value of stator magnetic flux and the equation (4.20) value of the derivitive of 

the magnetic flux is used. 

3

2
𝑉𝑠𝑖𝑠 cos(𝜃 − 𝜆) = ℛΦ𝑠

⃗⃗⃗⃗  ⃗ ∙
𝑑Φ⃗⃗⃗ 

𝑑𝑡
 

3

2
𝑉𝑠𝑖𝑠 cos(𝜃 − 𝜆) = ℛ|Φ𝑠

⃗⃗⃗⃗  ⃗| |
𝑑Φ⃗⃗⃗ 

𝑑𝑡
| cos(𝜃 − 𝜆) 

3

2
𝑉𝑠𝑖𝑠 = ℛ𝐾𝑖𝑖𝑠𝐾𝑣𝑉𝑠 

𝐾𝑖𝐾𝑣 =
3

2ℛ
 

Substituting equation (4.63) into equation (4.62) allows equation (4.64) to be derived.  

𝑃𝑠𝑢𝑝𝑝𝑙𝑦 =
3

2
𝑖𝑠

2𝑅𝑠 + ℛ𝜔𝑓Φ
2 tan(𝜆) 

Equation (4.64) describes the energy transferred to the motor from an external power supply. 

However, this equation is in terms of the angle between the stator’s current induced magnetic flux 

and the net magnetic flux λ and the net magnetic flux magnitude Φ. These parameters cannot be 

determined by an observer external to the motor. For an equation to have practical applications it 

(4.61) 

(4.62) 

(4.63) 

(4.64) 
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will need to be expressed in terms of stator voltage amplitude 𝑉𝑠 and frequency 𝜔𝑓 and the rotor 

slip frequency 𝜔𝑠 as these are externally observable quantities. The value of λ can be expressed in 

terms of known values by equating equation (4.64) with the total power transfers within the motor. 

The first product term of equation (4.64) is the energy lost due to resistive losses in the stator’s 

windings. Therefore, the second product term of equation (4.64) must equal inductive energy 

transfers. 

4.4.1 Consideration on magnetic losses 

One component of inductive energy transfers are magnetic losses. The dominant component of 

magnetic losses is eddy current losses. Eddy current losses can be modelled using the Steinmetz's 

equation as being proportional to the square of both the magnetic flux and frequency. Using these 

magnetic loss approximations, the stator magnetic losses 𝑃𝑠𝑚 can be calculated to be equation 

(3.65) where 𝑀𝑠𝑒 is the coefficient of stator eddy current losses. 

𝑃𝑠𝑚 = 𝑀𝑠𝑒𝜔𝑓
2Φ2 

The rotor magnetic losses 𝑃𝑟𝑚 can be calculated using this same technique. The only difference is 

that the observed rotational speed of the magnetic field will be proportional to the slip frequency 

𝜔𝑠 from the rotor’s frame of reference. This allows equation rotor magnetic losses to be derived 

as: 

𝑃𝑟𝑚 = 𝑀𝑟𝑒𝜔𝑠
2Φ2 

where 𝑀𝑟𝑒 is the coefficient of rotor eddy current losses. 

4.4.2 Consideration on rotor resistive losses 

Rotor resistive losses can be determined by calculating the magnetic flux induced by electric 

currents in the rotor bars. This can be determined by substituting the magnitude of the derivative 

of the net magnetic flux as observed from the from the rotor’s frame of reference into equation 

(4.28).  

Φ𝑟 =
4𝜔𝑠Φ

𝜋ℛ𝑅𝑟
 

The magnetic circuit vector power transfer equation can be used to calculate the power loss due to 

rotor currents 𝑃𝑟𝑒 by substituting in the equation (4.67) value of magnetic flux and the derivative 

of the net magnetic flux as observed from the rotor’s frame of reference. As the rotor’s magnetic 

flux has the same phase angle as the derivative of the net magnetic flux, the dot product can be 

replaced with magnitude multiplication operation as:  

(4.65) 

(4.66) 

(4.67) 
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𝑃𝑟𝑒 = ℛΦ𝑟 ∙
𝑑Φ⃗⃗⃗ 

𝑑𝑡
|
𝑟𝑜𝑡𝑜𝑟

 

𝑃𝑟𝑒 =
4

𝜋𝑅𝑟
𝜔𝑠

2Φ2 

The equation (4.66) and equation (4.68) rotor power loss equations have both been evaluated from 

the rotor’s frame of reference. From this frame of reference, the magnetic flux rotational speed is 

the slip frequency 𝜔𝑠. However, to calculate inductive power transfer from the stator, the magnetic 

circuit vector power transfer equation must be evaluated from the stator’s frame of reference. This 

can be achieved by substituting the equation (4.66) and (4.68) power loss equations into the 

magnetic circuit vector power transfer equation to calculate the impact these losses have on 

magnetic flux. The resulting magnetic flux vector can then be substituted into the magnetic flux 

vector power transfer equation and evaluated from the stator’s frame of reference. 

Converting a power loss from the rotors frame of reference to the stator’s using the afore mentioned 

technique results in the rotor losses being scaled by the synchronous frequency 𝜔𝑓 divided by the 

slip frequency 𝜔𝑠. Converting energy transferred to the rotor from the stator’s frame of reference 

to the rotor’s can be achieved by multiplying by the slip frequency 𝜔𝑠 divided by the synchronous 

frequency 𝜔𝑓. This process is shown graphically in figure 4.23. 

 

 

 

 

 

 

 

 

Figure 4.23 – Converting power transfers between rotating reference frames 

Applying this process to the total rotor power loss from equation (4.66) and (4.68) can be 

calculated to be equation (4.69) from the rotor’s frame of reference and equation (4.70) from the 

stator’s frame of reference. 

(4.68) 

Rotor reference frame power loss Stator reference frame power transfer 

×
𝜔𝑓

𝜔𝑠
 

×
𝜔𝑠

𝜔𝑓
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𝑃𝑟|𝑟𝑜𝑡𝑜𝑟 = 𝜔𝑠
2Φ2 (

4

𝜋𝑅𝑟
+ 𝑀𝑟𝑒) 

𝑃𝑟|𝑠𝑡𝑎𝑡𝑜𝑟 = 𝜔𝑠𝜔𝑓Φ
2 (

4

𝜋𝑅𝑟
+ 𝑀𝑟𝑒) 

The difference between the rates of energy transfer from the stator to the rotor minus the rotor 

losses is the electromechanical power developed in the cage rotor. This power transfer due to rotor 

torque 𝑃𝜏 can be calculated to be equation (4.71) where 𝜔𝑟 is the rotational speed of the rotor and 

the difference between the synchronous and slip frequencies. 

𝑃𝜏 = 𝜔𝑠𝜔𝑟Φ
2 (

4

𝜋𝑅𝑟
+ 𝑀𝑟𝑒) 

4.4.3 Complete power transfer equation 

Equation (4.70) describes the inductive energy transfer to the rotor and equation (4.65) describes 

the inductive losses in the stator. Equating these power transfers to the second product term of 

equation (4.64) allows the angle between the stator’s current induced magnetic flux and the net 

magnetic flux 𝜆 to be calculated. 

ℛ𝜔𝑓Φ
2 tan(𝜆) = 𝜔𝑠𝜔𝑓Φ

2 (
4

𝜋𝑅𝑟
+ 𝑀𝑟𝑒) + 𝑀𝑠𝑒𝜔𝑓

2Φ2 

tan(𝜆) =
𝜔𝑠

ℛ
(

4

𝜋𝑅𝑟
+ 𝑀𝑟𝑒) +

𝑀𝑠𝑒𝜔𝑓

ℛ
 

It is also necessary to express the net magnetic flux Φ in terms of the stator voltage amplitude 𝑉𝑠. 

This involves squaring both sides of equations (4.58) and (4.59) and summing them together to 

eliminate their dependency on the angle 𝜃.   

𝑉𝑠
2 = 𝑖𝑠

2 (𝑅𝑠
2 + (𝜔𝑓𝐿)

2
) +

𝜔𝑓
2

𝐾𝑣
2 Φ2 + 2𝑖𝑠√𝑅𝑠

2 + (𝜔𝑓𝐿)
2
sin(𝜆 + 𝜌)

𝜔𝑓

𝐾𝑣
 

Substituting equations (4.55), (4.57) and (4.63) into equation (4.73) allows the stator current 

amplitude term 𝑖𝑠, the phase angle 𝜌 and the voltage scaling factor 𝐾𝑣 to be eliminated. 

𝑉𝑠
2

Φ2
=

(𝑅𝑠
2 + (𝜔𝑓𝐿)

2
)

𝐾𝑖
2

(tan2(𝜆) + 1) + (
2ℛ𝐾𝑖𝜔𝑓

3
)
2

+
4ℛ

3
𝜔𝑓(𝑅𝑠 tan(𝜆) + 𝜔𝑓𝐿) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 

(4.74) 
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Substituting the equation (4.72) value of tan(𝜆) into equation (4.74) allows the net magnetic flux 

Φ to be expressed in terms of known and observable variables. 

Φ2 =
𝑉𝑠

2

((
𝑅𝑠

𝐾𝑖
)
2

+ (
𝜔𝑓𝐿
𝐾𝑖

)
2

) ((
𝜔𝑠

ℛ
(

4
𝜋𝑅𝑟

+ 𝑀𝑟𝑒) +
𝑀𝑠𝑒

ℛ
𝜔𝑓)

2

+ 1) +
4
3
𝜔𝑓

2 (𝑅𝑠 (
𝜔𝑠

𝜔𝑓
(

4
𝜋𝑅𝑟

+ 𝑀𝑟𝑒) + 𝑀𝑠𝑒) + 𝐿ℛ +
(ℛ𝐾𝑖)

2

3
)

 

 

Substituting the equation (4.75) value of net magnetic flux into the equation (4.71) rate energy is 

converted into kinetic energy and dividing by the rotor rotational speed 𝜔𝑟 allows the rotor 

torque 𝑇𝑟 to be calculated. 

𝑇𝑟 =
𝜔𝑠 (

4
𝜋𝑅𝑟

+ 𝑀𝑟𝑒)

((
𝑅𝑠

𝐾𝑖
)
2

+ (
𝜔𝑓𝐿
𝐾𝑖

)
2

)((
𝜔𝑠

ℛ
(

4
𝜋𝑅𝑟

+ 𝑀𝑟𝑒) +
𝑀𝑠𝑒

ℛ
𝜔𝑓)

2

+ 1) +
4
3
𝜔𝑓

2 (𝑅𝑠 (
𝜔𝑠

𝜔𝑓
(

4
𝜋𝑅𝑟

+ 𝑀𝑟𝑒) + 𝑀𝑠𝑒) + 𝐿ℛ +
(ℛ𝐾𝑖)

2

3
)

 

 

The equation (4.75) value of the net magnetic flux and the equation (4.72) value of tan(𝜆) can be 

used to determine parameters such as stator winding current amplitude and efficiency.   

 Finite element model based validation 

4.5.1 Case study induction motor description 

The equations and parameters derived in this chapter can be simulated using FEM to establish a 

benchmark against which the accuracy of these equations can be compared. A computer rendering 

of the induction motor simulated using FEM used to assess the accuracy of these equations is 

shown in figure 4.24. 

(4.75) 

(4.76) 
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Figure 4.24 – FEM simulation rendering of induction motor 

Radius variables from figure 4.12 and 4.13 used in this simulation are listed below in meters. The 

ratio of the rotor slot area to total area in the outer rotor region 𝐶𝑟 and the ratio of the stator slot 

area to total inner stator region area 𝐶𝑠 are also listed.  

• 𝑟𝑖 = 0.038𝑚 

• 𝑟𝑜 = 0.05𝑚 

• 𝑠𝑖 = 0.0508𝑚 

• 𝑠𝑚 = 0.075𝑚 

• 𝑠𝑏 = 0.09𝑚 

• 𝑙 = 0.12𝑚 

• 𝐶𝑟 = 0.55 

• 𝐶𝑠 = 0.45 

Using these dimensions, the motor reluctance from equations (4.49) to (4.53) is as follows. 

• Inner rotor reluctance = 1302 H−1 

• Rotor bar region reluctance = 794 vH−1 

• Air gap region reluctance = 82,674 H−1 

• Stator slot region reluctance = 922 H−1 

• Stator backplane reluctance = 7,161 H−1 

Summing these reluctance values together results in a total motor reluctance of 92,853𝐻−1. 

The simulated induction motor has the same winding configuration as shown in figure 4.10 with 

50 turns per slot per phase. This allows the value of 𝐾𝑖 with units of Henry to be calculated as 

defined in equation (4.19) by substituting the calculated motor reluctance and 𝑛 = 50 into equation 

(4.30). 
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𝐾𝑖 = 4.485628 × 10−3𝐻 

4.5.2 Leakage inductance calculation 

The only remaining parameter that needs to be calculated is the value of the stator leakage 

inductance 𝐿. Calculating this value requires the magnetic flux induced by stator currents that does 

not mutually couple with the rotor to be determined. This can be achieved using a lumped 

parameter approximation of the stator slot and air gap region. To illustrate how the parameters of 

this leakage model are determined, consider the magnetic path of the leakage flux from stator 

currents as shown in figure 4.25. 

 

Figure 4.25 – Stator leakage magnetic flux 

To calculate the reluctance the leakage magnetic flux encounters, the region around the air gap is 

divided into 9 segments as shown in figure 4.26. 

 

Figure 4.26 – Air gap and surrounding region labels 

Each labeled region in figure 4.26 represents an area of magnetic reluctance through which leakage 

magnetic flux can flow. The reluctance of the stator backplane and the inner rotor are considered 

(4.77) 
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too small to impact this model and will therefore be assumed to be zero. Using the region labels 

as shown in figure 4.26, a reluctance mesh can be derived as shown in figure 4.27. 

 

 

 

 

 

 

Figure 4.27 – Reluctance mesh for leakage induction calculation 

Reluctance values 1 and 3 from figure 4.27 can be calculated using the conventional reluctance 

formula, assuming the stator tooth has a width of 7.5mm, a height of 14mm, a length of 120mm 

and relative permeability of 4000. 

Reluctance 1 and 3 =
length

μ0μr × Area
 

Reluctance 1 and 3 =
0.014

4000μ0 × 0.0075 × 0.12
 

Reluctance 1 and 3 = 3094.7H−1 

Region 2 and 7 from figure 4.27 have a width of 1.5mm, a height of 2.1mm and length of 

120mm resulting in the equation (4.78) value of reluctance. 

Reluctance 2 and 7 =
0.0015

μ0 × 0.0021 × 0.12
 

Reluctance 2 and 7 = 4.737 × 106 

Region 5 from figure 4.26 has a width of 1.5mm, a height of 0.8mm and length of 120mm 

resulting in the equation (4.80) value of reluctance. 

Reluctance 5 =
0.0015

μ0 × 0.0008 × 0.12
 

Reluctance 5 = 1.243 × 107 

1 

3 

2 5 

4 

6 

7 

(4.78) 

(4.79) 

(4.80) 
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Region 4 and 6 from figure 4.26 have a width of 11.59mm, a height of 0.8mm and length of 

120mm resulting in the equation (4.81) value of reluctance. 

Reluctance 4 and 6 =
0.0008

μ0 × 0.0115 × 0.12
 

Reluctance 4 and 6 = 4.577 × 105 

The reluctance value for areas 4 and 6 as calculated to be equation (4.81) is total reluctance of their 

respective air gap region. This reluctance is divided into two equal values for the reluctance mesh 

as shown in figure 4.27. 

As shown in figure 4.10, each pole phase winding is spread over 8 stator slots. Four slots for the 

current in one direction and four slots for the current in the opposite direction. This configuration 

will result in the stray magnetic flux being canceled out in the stator teeth between windings of the 

same phase and polarity. Only the magnetic flux flowing through the stator teeth adjacent to the 

first and last winding of the same phase and polarity will not cancel out. This can be modeled by 

inserting the MMF source into the reluctance mesh from figure 4.27 in series with reluctance 

element 1 and 3 for the total value of the MMF per phase per pole. In this situation, there are four 

stator slots with 50 turns each per phase resulting in an MMF of 200At. 

The total leakage inductance as seen by the current flowing through 4 stator slots can be calculated 

using the reluctance mesh shown in figure 4.27 with the reluctance values of equations (4.78) to 

(4.81). This reluctance as seen by the source of MMF is 2.583 × 106𝐻−1 and the number of turns 

is 200. Inductance can be calculated by dividing the square of the number of turns by the 

reluctance.  

Stray inductance for 4 stator slots =
2002

2.583 × 106
 

Stray inductance for 4 stator slots = 15.48𝑚𝐻 

Each phase winding for the two-pole motor being analyzed has four groups of four windings as 

shown in figure 4.10 that result in stray magnetic fields. Summing the total of these inductances 

together allows the equation (4.83) value of inductance caused by magnetic flux from the stator 

not coupled to the rotor to be calculated. 

𝐿 = 61.93𝑚𝐻 

 

(4.81) 

(4.82) 

(4.83) 
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4.5.3 Rotor resistance calculation 

Another parameter that needs to be calculated in the rotor resistance. Each rotor bar has a cross 

sectional area of 7 × 10−5𝑚2 and a length of 0.12𝑚. Therefore, each aluminum rotor bar will 

have a resistance of 4.543 × 10−5𝛺. The rotor end ring has an average radius of 40𝑚𝑚 and a 

cross sectional area as seen by electric current to be 1 × 10−4𝑚2. Current flowing out of a rotor 

bar into the end ring will flow via two paths to the opposite rotor bar. Therefore, the resistance of 

the rotor end ring is half the resistance of a 180° segment of the rotor ring. In this situation, the 

rotor end ring resistance will be 1.666 × 10−5𝛺. 

The electrical circuit for this current path is shown in figure 4.28. 

 

 

 

 

 

 

Figure 4.28 – Electrical circuit for current flowing through the rotor bars 

The total resistance of this path will be 1.242 × 10−4𝛺. Multiplying this resistance value by the 

angular displacement between rotor bars, which in this case is 
𝜋

12
 radians allows the rotor 

resistance 𝑅𝑟 to be calculated. 

𝑅𝑟 = 3.2515 × 10−5𝛺𝑟𝑎𝑑 

The remaining parameters needing to be calculated are listed below based on the simulation 

settings and geometry. 

• Stator winding resistance Rs = 2.54Ω 

• Line to neutral voltage amplitude Vs = 325V 

• Sychronous frequency ωf = 100π rad s−1 

4.5.4 Finite element simulation results 

A FEM simulation was undertaken to simulate the electrical, mechanical and magnetic 

characteristics of the induction motor to be compared to those predicted using magnetic circuit 

analysis. The simulated and predicted mechanical characteristics of the induction motor can be 

(4.84) 

𝑅𝑜𝑡𝑜𝑟 𝑏𝑎𝑟𝑠 𝐸𝑛𝑑 𝑐𝑎𝑝 1 𝐸𝑛𝑑 𝑐𝑎𝑝 2 
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4.54 × 10−5𝛺 

4.54 × 10−5𝛺 



 

91 

 

compared by simulating the output power of the induction motor as a function of rotor’s rotational 

speed. This comparison is shown in figure 4.29 where the predicted values were obtained by 

multiplying the equation (4.76) value of torque by rotational speed. 

 

Figure 4.29 – Simulated and predicted induction motor output power 

Figure 4.29 demonstrates that magnetic circuit analysis does result in values that are comparable 

to those obtained using FEM simulations. The average difference between the FEM simulated and 

predicted output power is 28.4W which is 0.97% of the maximum output power. Most of this 

discrepancy between the FEM simulation and predicted values occurs for rotational speeds 

between 150 𝑟𝑎𝑑 𝑠−1  and 250 𝑟𝑎𝑑 𝑠−1 with an average difference of 39.7W in this region. For 

rotational speeds above 300𝑟𝑎𝑑 𝑠−1 where the motor will most likely be operating in, FEM and 

magnetic circuit analysis yield almost identical results. 

To compare the electrical characteristics of the induction motor as predicted by FEM and magnetic 

circuit analysis, the RMS stator phase current was simulated using FEM. This was then compared 

to magnetic circuit analysis by solving equation (4.72) to calculate the angle between the stator 

magnetic flux and the net magnetic flux 𝜆. This value was then substituted into equation (4.74) to 

calculate the magnitude of the net magnetic flux and equation (4.55) to calculate the stator current 

amplitude 𝑖𝑠. Figure 4.30 shows the comparison between the FEM simulated stator current and 

that predicted using magnetic circuit analysis. 
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Figure 4.30– Simulated and predicted induction motor phase current 

There is an average difference between the FEM simulated and predicted current of 0.054A over 

the range of speeds simulated. The most significant observable difference occurs for rotational 

speeds between 200 𝑟𝑎𝑑 𝑠−1  and 270 𝑟𝑎𝑑 𝑠−1 with and average difference of 0.080A in this 

region. As was the case for output power, rotational speeds above 300 𝑟𝑎𝑑 𝑠−1 FEM and magnetic 

circuit analysis yield almost identical results. 

Comparisons between both electrical and mechanical operational characteristics of the induction 

motor can be observed when analyzing efficiency. This is achieved by dividing the output power 

as shown in figure 4.29 by the predicted electrical input power from equation (4.64).  Figure 4.31 

shows the comparison between efficiency predicted by magnetic circuit analysis and that which 

was derived using FEM simulation. 
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Figure 4.31 – Simulated and predicted induction motor efficiency 

The magnetic circuit predicted efficiency is slightly greater than that predicted by FEM for most 

rotational speeds with the discrepancy being greatest for rotational speeds above 300 𝑟𝑎𝑑 𝑠−1. 

Average difference between the FEM simulated and predicted efficiency was 0.82% with a 

difference of up to 9.8% at 313 𝑟𝑎𝑑 𝑠−1. This was unexpected as both output power and stator 

phase current calculated using magnetic circuit analysis was closest to FEM simulated values for 

rotational speeds above 300 𝑟𝑎𝑑 𝑠−1. Despite this discrepancy, the overall difference between 

both the FEM simulated and magnetic circuit results was only minimal with no significant 

diverging trend. 

In addition to electrical and mechanical motor operational characteristics, magnetic parameters 

such as the angle between the stator and net magnetic flux. As this is not a commonly used 

parameter for induction motor design, it’s value as a function of rotor speed cannot be readily 

obtained using commonly used FEM design software. This value is however a critical component 

of the magnetic circuit induction motor model presented in this thesis. It is also an important 

parameter to quantify to understand the relationship between stator currents and torque. This angle 

between the stator’s current induced magnetic flux and the net magnetic flux as represented by the 

angle 𝜆 and defined in figure 4.19 is shown in figure 4.32. 
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Figure 4.32 – Magnetic circuit predicted angle between the stator’s and the net magnetic flux 

Figure 4.32 shows that the angle between the stator’s current induced magnetic flux and the net 

magnetic flux starts at close to 90° and reduces to 0° when the rotor’s rotational speed reaches the 

synchronous speed. As the rotor’s current induced magnetic flux as shown in figure 4.32 is at a 

90° angle to the net magnetic flux, the stator’s magnetic flux will be close to 180° out of phase 

with the rotor’s magnetic flux for low rotational speeds. This means that the net magnetic flux will 

be much less than the stator’s magnetic flux as much of the stators magnetic flux will be cancelled 

out by to rotor’s magnetic flux.   

Therefore, despite a large amount of stator winding current at low rotational speeds as depicted in 

figure 4.30, the net magnetic flux will be at a minimum in this operating area. This can be verified 

by plotting the net magnetic flux as a function of rotational speed as shown in figure 4.33. 
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Figure 4.33 – Magnetic circuit predicted net magnetic flux magnitude 

Figure 4.33 demonstrates that the net magnetic flux increases with rotational speed between 

stationary and the synchronous rotational speed. However, it was demonstrated in figure 4.30 that 

stator current which is directly proportional to the stators current induced magnetic flux decreases 

as a function of rotational speed over the same range. This difference can be explained using the 

figure 4.32 value of the angle between the stator’s current induced magnetic flux and the net 

magnetic flux. As this angle decreases, less stator flux is canceled out by the rotor magnetic flux 

resulting in a greater value of net magnetic flux. 

 Conclusion 

This chapter of the thesis has demonstrated how it is possible to apply magnetic circuit analysis to 

describe the operation of the induction motor without the need for empirically derived parameters. 

By modelling the magnetic flux and the time derivative of the magnetic flux in vector form it is 

possible to calculate both electrical and magnetic parameters. Combining this with the magnetic 

circuit energy transfer equation results in a magnetic flux based induction motor model with 

comparable accuracy to that obtained using FEM based simulations. 

Modelling the rotor, stator and net magnetic flux as separate vectors, differentiates this magnetic 

flux model from other magnetic flux models such as the D-Q model. The D-Q model states that 

there should be two relevant magnetic flux quantities at right angles to each other without 

justifying why this would be the case for an AC motor. This research demonstrates that the rotor 

magnetic flux will be at right angles to the net magnetic flux under steady state operating 
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conditions. This provides some justification to the underlying assumptions of the D-Q model, 

although it is worth noting that this only occurs during steady state conditions.  Another advantage 

to this approach is that induction motor operational characteristics can be described using closed 

form equations. As closed form equations can be solved in less time than numerical method 

techniques, it is possible to use models based on this magnetic circuit analysis for both design 

optimization and real time control. 

Therefore, based on this research, the advantages of using vector applications of magnetic circuit 

analysis can be summarized in the following points. 

• It can be derived from the geometry and material properties of the induction motor as 

opposed to equivalent circuits where parameters need to be matched with empirical data. 

• It has been derived at a lower level of abstraction relative to other magnetic flux models 

such as the D-Q model. 

• As closed form equations have an inherent computational speed advantage compared to 

numerical methods giving this model and advantage relative to FEM and LPM 

• The vector based magnetic circuit equations could match FEM predictions without the need 

for additional empirical correction factors as is sometimes required for LPM induction 

motor models. 
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Chapter 5 

5 Conclusion 

This thesis has demonstrated how it is possible to use magnetic circuit analysis to model complex 

magnetic path problems without the need for numerical methods. The presented analytical 

technique allows for closed form equations to be derived directly from the electromagnetic 

device’s geometry and material properties. This approach can expand the applications of magnetic 

circuit analysis thereby reducing the need for computationally intensive modelling techniques in 

some situations.  

The magnetic circuit modelling was achieved in this thesis using an energy-based approach. This 

allowed the contribution that individual components of an electromagnetic device to the total 

magnetic reluctance to be calculated in the presence of non-homogeneous magnetic fields. As 

energy based magnetic circuit analysis only required the magnitude of the magnetic flux to be 

known, the direction of the magnetic flux in most situation was not required to be known. 

It was demonstrated in this thesis that when the B and H fields do not align in an electromagnetic 

device, the underlying assumptions need to be accurate or otherwise will result in significant 

errors. By accounting for the difference in magnetic field energy in these situations, it was 

demonstrated that magnetic circuit analysis can calculate results with high accuracy. 

The energy based magnetic circuit equations presented in this thesis were calculated in vector 

form. Combining these vector-based energy transfer equations with vector equations relating the 

magnetic flux and its time derivative when experiencing rotation allowed an advanced model of 

the induction motor to be derived. This model was derived without the need for high level 

assumptions on the relative angles between magnetic flux vectors. In doing so it was possible to 

define the relative angle between magnetic flux vectors as a function of the rotor’s rotational speed 

and stator winding voltage. 

To summarize the findings of this research, it was demonstrated that, 

• Energy based analysis of magnetic field can be used to model inhomogeneous magnetic 

field distribution and is compatible with existing magnetic circuit theory. 

• Accounting for non-uniform magnetic field distributions and non-aligned B-H field 

configurations allows magnetic circuit analysis to yield results comparable to those 

achieved using FEM. 

• Modelling the magnetic flux and the time derivative of the magnetic flux in vector enabled 

electrical and magnetic parameters to be calculated with comparable accuracy to that 

obtained using FEM based simulations. 
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Overall, the energy based magnetic circuit modelling presented in this thesis offers a compromise 

between computational intensity and accuracy relative to existing techniques. The application of 

this theory requires the use of more complex equations compared to simple linear models derived 

from traditional magnetic circuit analysis. However, these equations can model inhomogeneous 

fields in complex geometries that would typically require the use of more computationally 

intensive numerical methods. This research also presented an alternative way to calculate magnetic 

reluctance based on the total amount of energy due to the presence of electric current. In so doing, 

it was possible to use an alternative approach to calculate dynamic energy transfers due to changes 

in magnetic reluctance and circular motion. 

The magnetic flux model of the induction motor derived in chapter 4 of this thesis demonstrates 

how to apply magnetic circuit analysis to inductive energy transfers due to rotating fields.  

Therefore, only eddy current losses were included in the calculations.  Future research could 

improve on the magnetic loss section of the model to include non-linear losses such as hysteresis 

losses.  This research could also be used to derive the coefficients of eddy current losses directly 

from the motor geometry. 

Future research can also be conducted on transient behavior of the induction motor.  The magnetic 

flux vector equations were only used to derive the steady state solution in this thesis, although they 

are versatile enough to be used for transient analysis.  A transient analysis could result in 

improvements to magnetic flux modelling compared to the D-Q model. This is because the rotor 

magnetic flux and net magnetic flux will not necessarily be at a 90° angle to each other as is 

assumed in the D-Q model. 

In this thesis an induction motor model was derived to describe the characteristics of the induction 

motor. However, this model has not yet been applied to deriving control algorithms for induction 

motor operations. As this is a magnetic flux-based model, it would be possible to use it to 

implement a flux vector control system or equivalent. This future research could be used to 

determine any advantages this model possesses relative to existing models used for real time 

control of rotating machines that operate on the principle of electromagnetic induction. 
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