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 1  

ABSTRACT 

Ghrelin and leptin, two important metabolic hormones involved in regulation of 

energy balance in the adult, have recently been shown to have a neurotrophic role 

during early life development in that they regulate neuronal connectivity within 

regions of the hypothalamus responsible for control of energy balance. Disturbances 

to the early life nutritional environment including overnutrition have been highly 

correlated with long-life metabolic problems, such as childhood obesity and its 

complications. (Throughout this thesis the term overnutrition refers to the neonatally 

overfed animal model due to litter manipulation and not as a form of malnutrition, 

which may elicit similar offspring phenotypes.) In addition to their metabolic roles, 

leptin and ghrelin appear to be important for early brain development, with leptin 

stimulating and ghrelin inhibiting the establishment of appetite regulatory circuitry. 

Recent research suggests that the neurodevelopmental actions of leptin and ghrelin are 

restricted to a crucial developmental period that occurs during the first two weeks 

after birth in rodents, which in humans this critical period encompasses the third 

trimester of pregnancy and approximately 1000 days after birth. However, the effects 

of overnutrition on the developing brain during this period and the mechanisms that 

underlie neurodevelopmental actions of leptin and ghrelin are currently unknown. It is 

also unclear whether overnutrition affects brain development in males and females to 

the same extent. The early developmental period is associated with enhanced neuronal 

plasticity, and disturbances during this critical time have the potential to program later 

life health outcomes. It is therefore important to shed further insight into the roles of 

leptin and ghrelin, to develop interventions that alleviate the incidence of childhood 

obesity and associated comorbidities.  
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An animal model of childhood obesity in rats was used to investigate the short- and 

long-term effects of neonatal overfeeding on the leptin and ghrelin system. The 

animal model was achieved by manipulating litter sizes into control litters of 12 pups 

and small litters of 4 pups, the later representing the neonatal overfeeding 

environment. The reduction of litter size immediately after birth, led to a significant 

increase in dietary intake. Consequently, neonatally overfed pups experienced 

accelerated weight gain and disrupted circulating leptin and ghrelin levels in 

comparison to control counterparts. Using this model we examined the short- and 

long-term effects of neonatal overnutrition on the leptin and ghrelin systems in males 

and females. We investigated here the effects of neonatal overnutrition on 

hypothalamic orexigenic and anorexigenic neuronal fibre immunoreactivity and if 

these changes were mediated by leptin in male rats. We also investigated whether 

these effects could be normalised by a leptin antagonist. We found that neonatal 

overnutrition in males was associated with short-term central leptin resistance, altered 

orexigenic neuronal fibre immunoreactivity and no changes in anorexigenic 

immunoreactivity. We also found that short-term neonatal leptin antagonism did not 

reverse excess body weight or hyperleptinemia. Our findings suggest that factors 

other than leptin contribute to the obese phenotype. Most importantly, we found that 

in males the early life effects of neonatal overfeeding are partly resolved in adulthood, 

emphasising the importance of brain plasticity. Interestingly, neonatally overfed 

females, despite an obese phenotype characterised by hyperleptinemia and increased 

body weight compared to controls, did not show the same changes in the central 

feeding circuitry as observed in males. These findings are suggestive of sex 

differences in the effects of neonatal overfeeding and of differences in the ability of 
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the male and female central systems to respond to challenges in the early life 

nutritional environment.  

 

Similarly to leptin, ghrelin along with its appetite-stimulating role in adults is 

involved in the establishment of hypothalamic feeding pathways during neonatal 

development in rodents. Here was investigated long-term effect of neonatal 

overfeeding on the ghrelin system including the ability of both forms of ghrelin (acyl 

ghrelin and des-acyl ghrelin) to access the hypothalamus in male rats. We 

demonstrated that neonatal overfeeding affects the ghrelin system during early life by 

suppressing circulating ghrelin levels and increasing hypothalamic responsiveness to 

exogenous acyl but not des-acyl ghrelin. Neonatal overnutrition also affects the ability 

of acyl ghrelin to reach the hypothalamus. Importantly, the influences of neonatal 

overnutrition observed during early life were resolved in adulthood. In contrast to 

males, where neonatal overnutrition resulted in compromised hypothalamic ghrelin 

signalling, in females, the central ghrelin system and circulating ghrelin remained 

intact. However, neonatal overnutrition in females was associated with long-term 

alterations in the capacity for the pituitary gland to respond to ghrelin. 

 

Ghrelin has recently been shown to have additional properties to those involved in 

satiety signalling, including regulation of hypothalamic-pituitary-adrenal (HPA) axis 

responses to psychological stress, as well as being a potent anti-inflammatory agent. 

Here were investigated both forms of ghrelin (acyl and des-acyl ghrelin) and their 

anti-inflammatory activity hypothesising that this activity is mediated via the HPA 

axis. In experiments where male rats were concomitantly injected with acyl or des-

acyl ghrelin and lipopolysaccharide (LPS) acyl, but not des-acyl ghrelin, suppressed 



 

 4 

the inflammatory cytokine response to LPS. Des-acyl ghrelin also had no effects on 

components of the HPA axis. Acyl ghrelin, despite stimulating neuronal activation in 

the paraventricular nucleus of the hypothalamus in vivo and stimulating 

adrenocorticotropic hormone release from the pituitary in vitro, did not affect the 

HPA axis response to LPS. These findings suggest acyl ghrelin’s anti-inflammatory 

effects are independent of its actions on the HPA axis and have implications for the 

potential use of this peptide for treatment of inflammatory conditions without 

compromising HPA axis activity. 

 

In conclusion, findings from this thesis indicate that metabolic hormones leptin and 

ghrelin have immense importance in the development of central centres of energy 

control and metabolism. Altered nutritional environment during early development 

affects both leptin and ghrelin systems in the rat, however it resolves to a certain 

extent in adulthood. Importantly, these central developmental changes mediated by 

leptin and ghrelin have a strong sex-specific factor. In this thesis we also added to the 

understanding of the mechanisms by which ghrelin exerts its anti-inflammatory 

properties, which is of great importance in development of therapeutic strategies for 

treatment of inflammatory conditions.   
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Childhood obesity 

Childhood obesity is one of the world’s greatest health challenges. The incidence of 

childhood obesity has been increasing during the last decades and there are over 42 

million children under the age of five who are overweight or obese (WHO, 2016). 

Childhood obesity is associated with a series of complications such as type 1 and 2 

diabetes, cardiovascular diseases, some types of cancers, hypertension, early puberty, 

steatohepatitis, sleep apnoea, asthma, musculoskeletal disorders as well as 

psychological problems, amongst other conditions (Figure 1.1. (Barton 2012; Kim, 

Despres, and Koh 2016)), making childhood obesity one of the leading causes of 

death in the United States of America and Europe (Mokdad et al. 2005; Park et al. 

2012). Although, in some countries such as United States of America, Western 

European countries, Japan and Australia included, levels of childhood obesity may 

have reached a plateau in the last 10 years, the prevalence of childhood obesity 

remains very high especially in the low and middle income countries. This represents 

a significant health issue particularly in the more vulnerable groups in the population 

(Ogden et al. 2014; de Onis, Blossner, and Borghi 2010). There is now strong 

evidence that childhood obesity leads to adult obesity and its related comorbidities 

(Kelsey et al. 2014).  
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Figure 1.1 Childhood obesity-related diseases.  
Childhood obesity poses a lifetime risk for other disease conditions including 
cardiovascular, metabolic, and problems with the central nervous system (CNS) 
during both childhood and adulthood. Modified from (Barton 2012). 

 

Similarly to other countries, in Australia percentages of obese children have increased 

dramatically in the last decades with around 20% of children under the age of five 

being overweight and around 5% of them classified as obese (Pearce et al. 2016). 

According to the Centers for Diseases Control and Prevention, a child is considered to 

be overweight between the 85-95th percentile and obese above the 95th percentile (de 

Onis et al. 2013). Based on survey analyses, the World Health Organisation (WHO) 

estimated that the prevalence of children under the age of five years old with a body 

mass index (BMI) of over the 98th percentile, increased from 4.2% in 1990 to 6.7% in 

2010, and is expected to increase to 9.1% by 2020 (Lakshman, Elks, and Ong 2012). 

These increased numbers of obese children result in increased health costs compared 

to those of normal healthy children of the same age (Brown et al. 2017). The 

prevalence of childhood obesity in many countries including Australia continues to 

rise, despite concerted efforts and recognition of the problem, making it a major focus 
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of research.  

 

The interaction of several factors including behavioural, environmental, physiological 

and hereditary has contributed to the increasing prevalence of obesity (Hruby and Hu 

2015). Twin studies, for instance, have estimated a heritability impact on BMI in 

children of between 40-70% (Farooqi and O'Rahilly 2000; Wardle et al. 2008). A 

number of mutations in the leptin receptor gene (LEPR), also known as OBR for 

obese gene, melanocortin 4 receptor (MC4R), as well as reduced methylation of the 

insulin-like growth factor 2 (IGF2) gene are associated with obesity (reviewed in 

(Willyard 2014)). However, the genetic contribution to disease risk has been shown to 

be smaller than the crucial role lifestyle plays in the development of obesity. Studies 

investigating the gene-lifestyle interactions in obesity have suggested that a healthy 

lifestyle may partially or totally eliminate the effects of genetic predisposition 

(Temelkova-Kurktschiev and Stefanov 2012).  

 

Perinatal programming of obesity – animal models  

As is predicted by the strong risk of obesity in children progressing to obesity in later 

life, early life events including the perinatal and postnatal environment can 

significantly contribute to the likelihood of an individual becoming obese later in life 

(Robillard and Segar 2006). A number of animal models of maternal overnutrition or 

under-nutrition during pregnancy or post-pregnancy have been used to study the early 

impact of the nutritional environment. One animal model that allows the study of 

effects of postnatal nutritional status in rodents is by manipulation of litter sizes. 

Larger than normal litter sizes with less access to maternal milk mimics an under-

nutritional environment, whereas a smaller than normal litter size with exposure to 
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excess maternal milk mimics an over-nutritional environment (Fiorotto et al. 1991). In 

rodents one of the main periods of developmental changes to brain pathways 

governing feeding and metabolism is the first two weeks after birth and any 

perturbations to the nutritional status during this time permanently affects their 

metabolic programming (Plagemann 2006). Essential metabolic hormones that 

regulate energy balance via their action in the hypothalamus are leptin, ghrelin, 

insulin and glucose, and during important developmental periods all of these 

hormones have their specific roles in modulating axonal innervation of important sites 

involved in metabolic control (Srinivasan et al. 2008).  

 

Insulin, for instance, inactivates orexigenic neuropeptide Y (NPY) and agouti related 

peptide (AgRP) neurons in the ARC (Benoit et al. 2002) and upregulates the 

anorexigenic proopiomelanocortin (POMC) in order to control energy intake (Qiu et 

al. 2014; Loh et al. 2017). Furthermore, insulin has a neurotrophic role during 

important periods of neurodevelopment (the first three weeks after birth). Plagemann 

and colleagues have shown that hypothalamic injection of insulin to rodents during 

the second or the eighth day of life is associated with long-term changes in weight 

regulation (Plagemann et al. 1992). Vogt and colleagues used an animal model of 

maternal high fat diet during lactation to establish the crucial role of insulin in 

formation of hypothalamic neuronal projections (Vogt et al. 2014). Human studies 

have shown that children from diabetic mothers experience impaired glucose 

tolerance and hyperinsulinemia, which further relates to adult obesity (Plagemann et 

al. 1997; Simerly 2008).  
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The focus of this thesis was on the roles of leptin and ghrelin during development. 

These hormones play an important role in regulation of hypothalamic development in 

the formation of neural circuits (Bouret, Draper, and Simerly 2004b). Leptin, in 

addition to its role in metabolic regulation, has shown to initiate the growth of 

neuronal growth and connectivity within regions of the hypothalamus related to 

feeding and metabolism (Bouret, Draper, and Simerly 2004b). Ghrelin in adulthood 

plays an important role in central control of energy expenditure by controlling 

feeding, adiposity and glucose metabolism (Tschop, Smiley, and Heiman 2000; Wren 

et al. 2001; Druce et al. 2005). In addition to this, ghrelin has an important role in 

programming feeding-related neurocircuitry during development, that of suppressing 

leptin-initiated neuronal outgrowth (Steculorum et al. 2015)  

 

Leptin levels in circulation positively correlate with fat deposition in adults. In 

neonates, naturally occurring increases in levels of leptin (known as the leptin surge) 

are crucial in initiating and supporting hypothalamic developmental changes during 

the first weeks of life in rodents (Ahima, Prabakaran, and Flier 1998). Once 

differentiated, neurons send axonal projections to target cells. Arcuate nucleus of the 

hypothalamus (ARC) neurons have relatively short projections limiting their 

connections within the hypothalamus. Comprehensive research has defined the timing 

of neuronal projections from the ARC towards other regions of the hypothalamus 

responsible for regulation of feeding. The paraventricular nucleus of the 

hypothalamus (PVN) is not innervated from ARC neurons until after postnatal day 

(P)10 (Bouret, Draper, and Simerly 2004a). At this age the leptin receptor is absent 

from PVN neurons and the timing of the appearance of its expression coincides with 

ARC axonal innervation of the PVN (reviewed in (Bouret 2017)). 
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Leptin and ghrelin are both important during these neuronal developmental periods, 

but how they are influenced by early life nutritional environment, the specific effects 

of this on females and if developmental perturbations to this circuitry are permanent 

have not been thoroughly studied. We defined here the role of these hormones in the 

early life overfeeding context. In these studies we consider the possibility that males 

and females respond differently to early life environmental insults. Additionally, the 

roles of different forms of ghrelin, acyl ghrelin (AG) and des-acyl ghrelin (DAG), 

have not been characterized during neonatal life, especially DAG due to the current 

lack of information on its receptor. The studies described in this thesis give insights 

into the role of DAG during development. 

 

The role of leptin in metabolism  

Leptin, discovered in 1994 (Zhang et al. 1994), is secreted mainly by adipocytes in 

white adipose tissue and is found in circulation in proportional amounts to fat stores 

in the organism (Considine et al. 1996). Leptin exerts its effect by binding to its 

receptors, which exist in several isoforms as a result of alternative splicing (LEPR a-

f). LEPR a, the short isoform of the leptin receptor is important in leptin transport 

across the blood-brain barrier (BBB) (Bjorbaek et al. 1998), whereas the long 

isoform, LEPR b, that is mainly expressed in the hypothalamus (the only isoform with 

the full length intracellular domain required for cell signaling) is important in 

mediating signal transduction (Elmquist et al. 1998; Friedman and Halaas 1998). 

Binding of leptin to its receptor activates a series of signal transduction pathways 

including the Janus kinase-signal transducers and activators of transcription 3 (JAK-

STAT3) pathway, important in regulation of energy homeostasis, mammalian target 
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of rapamycin (mTOR), adenosine monophosphate (AMP) activated protein kinase 

(AMPK) and mitogen activated protein kinase (MAPK) as reviewed in (Robertson, 

Leinninger, and Myers 2008). Leptin activates JAK, which leads to the 

phosphorylation of proteins of the JAK family (particularly STATs 1 and 3). In 

hypothalamic neurons, the STATs dimerize and translocate into the nucleus where 

they induce transcription of genes encoding proopiomelanocortin (POMC) and 

decrease transcription of genes encoding neuropeptide Y (NPY) and agouti related 

protein (AgRP) (reviewed in (Gurzov et al. 2016)), collectively resulting in the 

suppression of feeding behavior. 

 

Leptin has an important role in maintaining energy homeostasis via interactions with 

specific regions of the hypothalamus, particularly the ARC, but also the lateral 

hypothalamus (LH), ventromedial hypothalamus (VMH) and dorsomedial 

hypothalamus (DMH), which are all involved in central control of feeding and energy 

expenditure (Myers et al. 2009). In the hypothalamus leptin activates two major 

antagonizing groups of neurons: anorexigenic POMC / cocaine and amphetamine 

regulated transcript (CART) and orexigenic NPY / AgRP neurons (Cowley et al. 

2001; Morrison et al. 2005). These neurons then project to secondary neurons in the 

PVN, LH and VMH (reviewed in (Timper and Bruning 2017; Myers and Olson 2012; 

Waterson and Horvath 2015)).  

 

Leptin-deficient humans and animals develop obesity as a result of a combination of 

reduced energy expenditure and increased calorie intake as a result of aberrant 

signalling of these pathways and this often progresses to diabetes (St-Pierre and 

Tremblay 2012; D'Souza A et al. 2014). Leptin deficiency, furthermore, is associated 
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with infertility due to abnormal synthesis of gonadotropins and hormones related to 

gonadal development (Elias and Purohit 2013). Additionally, leptin deficient animals 

experience increased glucocorticoids levels, contributing to disrupted linear growth 

(reviewed in (Park and Ahima 2015)), and also differences in regulating body 

temperature compared to wild type animals (Fischer et al. 2016). These conditions are 

reversed with administration of exogenous leptin if given during the neonatal period. 

However, obesity in individuals that are not leptin deficient is associated with high 

circulating leptin levels indicating a malfunction at central levels of leptin signaling, 

known as leptin resistance.  

 

Two possible sites at which leptin resistance occurs are the BBB and the leptin 

intracellular signaling pathway. In order to reach the Lepr b receptor in the 

hypothalamus, peripheral leptin needs to pass through the BBB via a saturable 

transporter (Lopez 2016). In obesity, this transporter becomes saturated due to 

continuously high circulating leptin levels, resulting in a reduced capacity to respond 

to further increases in leptin, and thus leptin resistance (Crujeiras et al. 2015). In the 

early stages of obesity, leptin resistance is observed at the level of the BBB as well as 

in the ARC (Munzberg, Flier, and Bjorbaek 2004), whereas in advanced obesity leptin 

resistance occurs in the BBB, ARC as well as in other hypothalamic and extra-

hypothalamic regions such as ventral tegmental area (VTA) (Matheny et al. 2011). 

Obesity-induced leptin resistance at the BBB level can also be mediated by high 

levels of triglycerides. Triglycerides cross the BBB and induce central leptin 

resistance by blocking the ability of leptin to stimulate its receptors in the 

hypothalamus (Banks et al. 2017). Tanycytes, specialized glial cells at the median 

eminence, have an important role in regulating leptin transport through the BBB by 
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activating the extracellular signal-regulated kinase (ERK) pathway. In healthy 

subjects these cells successfully transport leptin towards the mediobasal 

hypothalamus (MBH), where it applies its anorexigenic effects. In diet-induced 

obesity these cells retain leptin, disrupting its entry to and action in the MBH (Balland 

et al. 2014; Gao, Tschop, and Luquet 2014). Megalin, a low-density lipoprotein 

receptor-related protein-2, is also thought to play an important role in leptin transport 

through the BBB. Animals that lack megalin in brain endothelial cells, experience 

hyperleptinemia, increased adiposity and decreased hypothalamic leptin signaling 

(Bartolome et al. 2017). The second contributor to leptin resistance may be a failure 

of leptin signaling pathways in specific neurons. The disruption of JAK-STAT3 

signaling has been shown to be a contributor to leptin resistance. In obesity, leptin has 

an impaired ability to induce STAT3 phosphorylation (reviewed in (Ladyman and 

Grattan 2013)). Leptin signaling is negatively regulated by suppressor of cytokine 

signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B), which are both 

increased during obesity. Leptin signaling is positively regulated by Src Homology 2 

adaptor protein 1 (SH2B1) and genetic deletion of this protein induces severe leptin 

resistance (Ren et al. 2005). 

 

Leptin in neurodevelopment  

Recent literature has brought to light an additional role of this hormone, one that 

occurs during neonatal neuronal development. At this time leptin regulates the growth 

of neuronal connectivity within specific regions of the hypothalamus related to 

feeding and metabolism (Bouret, Draper, and Simerly 2004b). At birth, a rodent’s 

hypothalamic connectivity is functionally immature. As mentioned above, the ARC 

signals feeding information via the DMH, LH, and PVN, and the pathways by which 
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these brain regions communicate do not become fully developed until after the second 

week of life; more specifically between day 12 and 14 in mice (Bouret, Draper, and 

Simerly 2004a) and between day 12 and 17 in rats (Bouret and Simerly 2006; Bouret 

2010); Figure 1.2). During the early neonatal period animals maximize caloric intake 

to ensure growth and survival. At this time, there is a marked increase in circulating 

leptin, originally described as a leptin surge, which occurs from P7 to P14 peaking at 

P10 in mice and P4 to P14 with again a peak at P10, in rats (Ahima, Prabakaran, and 

Flier 1998; Delahaye et al. 2008). During this period, the ARC does not transmit 

leptin signals to the other parts of the hypothalamus. Consistent with this finding, 

administration of leptin during neonatal life does not decrease food intake or body 

weight until after weaning (separation from the dam on postnatal day 21) (Bouret 

2013). Instead, this leptin surge acts on the brain to trigger the maturation of satiety 

communication pathways.  

 

Leptin’s importance in the development of neuronal projections has been studied in 

the leptin-deficient mice (ob/ ob), showing that leptin deficiency causes a significant 

delay in formation of projections from the ARC, especially towards the PVN (Bouret 

and Simerly 2004), with both orexigenic NPY/AgRP and anorexigenic POMC/CART 

projections being affected by leptin deficiency ((Proulx, Richard, and Walker 2002; 

Mistry, Swick, and Romsos 1999); Figure 1.2)). Moreover, leptin treatment in adult 

leptin-deficient mice is ineffective in reversing innervation deficiency, whereas 

supplementation during the neonatal period fully restores the density of ARC 

projections (reviewed in (Bouret et al. 2008)). These results suggest that leptin is a 

very important neurotrophic factor in controlling initiation and maturation of neuronal 

circuitry. 
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Figure 1.2 The main hypothalamic nuclei involved in feeding regulation and 
programming of hypothalamic feeding circuits.  
Neuropeptide Y (NPY), agouti related peptide (AgRP) and proopiomelanocortin 
(POMC) neurofibres projecting from arcuate nucleus of the hypothalamus (ARC) 
towards other hypothalamic nuclei including dorsomedial hypothalamus (DMH), 
ventromedial hypothalamus (VMH) paraventricular nucleus of the hypothalamus 
(PVN) and lateral hypothalamus (LH) and timing in postnatal days (P) of detection of 
these projections (Modified from (Bouret and Simerly 2006))  

 

In the absence of the leptin surge at the crucial time, these signaling pathways do not 

properly develop and the animal is permanently impaired in its ability to regulate 

body weight and adiposity (Bouret and Simerly 2007). Alterations to maternal diet 

during pregnancy or lactation can affect the magnitude and onset of this leptin surge, 

leading to long-term alterations in body weight regulation in the animal (Proulx, 

Richard, and Walker 2002). The mother’s milk is an important source of leptin for 

postnatal rodents. Pups suckled in small litters have greater access to mother’s milk 

and greater than normal amounts of leptin (reviewed in (Spencer 2013)). This early 
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access to excessive amounts of leptin may trigger the leptin surge prematurely, 

leading to permanent differences in how these pathways communicate (Bouret and 

Simerly 2004). In this thesis it is tested whether neonatal overfeeding affects the 

establishment and long-term maintenance of this connectivity by assessing 

hypothalamic NPY, AgRP and POMC fibre density and its functional outputs during 

development.  

 

The role of ghrelin in metabolism 

Ghrelin is a peptide hormone consisting of 28 amino acids and in adults is principally 

synthesised in P/D1-type cells in humans (Rindi et al. 2002) or X/A-like cells in 

rodents in the fundus of the stomach, which account for approximately 20-30% of the 

endocrine cell population of the oxyntic glands (Kojima et al. 1999; Date et al. 2000). 

In adults, ghrelin is also expressed in small amounts in duodenum, jejunum, ileum, 

colon, lung, heart, pancreas, kidney, testis, ovary and pituitary (Ghelardoni et al. 

2006). There are also reports of ghrelin being expressed in the hypothalamus but such 

findings are inconsistent and whether it is produced there in meaningful amounts is 

still not clear (Furness et al. 2011; Abizaid and Horvath 2012)). Ghrelin mediates 

growth hormone (GH) secretion from the pituitary but regulation of GH secretion is 

not dependent on ghrelin’s orexigenic role in the hypothalamus. 

 

The ghrelin gene is located on the short arm of chromosome 3 at position 25-26 and is 

a 7.2kb region consisting of six exons, four (exons 1-4) of which code for the 117 

amino acid peptide preproghrelin, which produces two mature peptides. Within this 

precursor peptide, part of exon 1 encodes for the preproghrelin signaling peptide; the 

remainder of exon-1, along with part of exon-2, codes for the 28 amino-acid-peptide 
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ghrelin; and the reminder of exon 2, with 3 and 4, codes for the C-terminal peptide C-

ghrelin, which contains the sequence for the 23 amino-acid peptide obestatin (Seim et 

al. 2007). In the stomach, ghrelin, derived from preproghrelin, is modified by 

acylation with octanoate (an eight-carbon fatty acid) (Kojima et al. 1999). This 

esterification process is mediated by an acyl-transferase named ghrelin O-

acyltransferase (GOAT), which is part of the membrane-bound O-acyltransferase 

(MBOAT) family (Gutierrez et al. 2008; Yang et al. 2008). The acylated form of 

ghrelin (acyl-ghrelin (AG)), acting via its receptor growth hormone secretagogue 

receptor (GHSR1a), was traditionally thought of as the active form with its effects on 

GH release and energy balance.  

 

Other data suggest that the non-octanoylated form (des-acyl ghrelin (DAG)) has its 

own roles, despite the fact that the receptor(s) through which DAG produces 

biological effects remain unknown. DAG induces short-term food intake when 

centrally administered, but, contrary to AG, it does not activate GHSR1a or NPY, so 

such effects may be orexin mediated (Toshinai et al. 2006). Other studies, however, 

have shown an ability of DAG to reduce food intake and stomach motility under 

fasting conditions (Chen et al. 2005). Human studies have pointed to a role for DAG 

in improving insulin sensitivity. Individuals undergoing an intensive long-term 

exercise intervention have increased levels of DAG and decreased fasting insulin 

(Cederberg et al. 2012). Also, insulin levels are negatively associated with plasma 

DAG levels in individuals with metabolic syndrome (Barazzoni et al. 2007). 

Furthermore, DAG exhibits cardio-protective effects (Li et al. 2006; Baldanzi et al. 

2002), it has vasodilator properties (Ku et al. 2015), and it has recently been shown to 

be involved in activation of the hypothalamic-pituitary-adrenal (HPA) axis responses 
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to stress (Stark et al. 2016b). Therefore, ghrelin exists in circulation in two active 

forms, AG and DAG.  

 

The pathways through which circulating gastric ghrelin signals the hypothalamus, are 

not clearly understood. It is suggested that ghrelin transmits orexigenic signals from 

the stomach to the brain through a vagal pathway. The majority of afferent nerve 

fibres comprising the vagus nerve are connections to the nucleus tractus solitarius 

(NTS), which is one of the main brain regions where feeding related signals from 

gastro-enteric system are integrated (Emond, Schwartz, and Moran 2001). Peripheral 

ghrelin signaling that travels to the NTS via the vagus nerve activates the 

noradrenergic ARC receptors and consequently induces feeding (Date et al. 2006). 

Blockage of vagal afferent pathways or vagotomy (severance of the vagus nerve) 

leads to an insensitivity to the orexigenic effects of ghrelin and suppression of 

ghrelin-induced feeding, including in humans (le Roux et al. 2005). Pharmacokinetic 

studies in mice have shown that ghrelin crosses the BBB by saturable transport. 

Human acyl-ghrelin can cross the BBB, although mouse acyl-ghrelin has a decreased 

ability to do so. This ability is altered by factors such as obesity, serum triglyceride 

levels and fasting (Banks et al. 2002).  

 

Reaching the brain from the periphery, ghrelin activates hypothalamic NPY/AgRP 

neurons, which highly express GHSR1a, to stimulate release of NPY and AgRP, 

leading to an increase in food intake (Kamegai et al. 2001). One of the mechanism by 

which ghrelin activates NPY and AgRP neurons is by increasing intracellular calcium 

via pathways depending on phospholipase C and adenylate cyclase-protein kinase-A 

(Kohno et al. 2007; Coiro et al. 2006). Both routes of ghrelin administration, 
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intracerebroventricular (ICV) or peripheral, induce feeding via activation of NPY and 

AgRP neurons. Administration of ghrelin ICV in mice activates the main 

hypothalamic appetite centres including ARC, PVN, DMH and LH (Lawrence et al. 

2002) and ghrelin-induced feeding is completely abolished in mice lacking both NPY 

and AgRP (Jensen-Seaman et al. 2004). Peripherally injected ghrelin would still exert 

its orexigenic effects by activating hypothalamic NPY and AgRP neurons, however to 

do this it requires intact ARC (Cabral et al. 2014). NPY and AgRP fibres arising from 

the ARC further innervate other hypothalamic appetite centres to convey food related 

signals (Cowley et al. 2003).  

  

Ghrelin is one of the only peripherally produced feeding signals that stimulates food 

intake. Ghrelin levels are high in times of fasting and this is associated with increased 

hunger, with levels decreasing following absorption of nutrients. An increase in 

plasma ghrelin indicates negative energy balance and consequently stimulates feeding 

and low energy expenditure (Cummings et al. 2001). Ghrelin levels are inversely 

correlated with body mass index BMI. As such, human and animal studies have 

shown that ghrelin levels are decreased in the obese compared to normal body weight 

controls (Haqq et al. 2003; Wadden et al. 2012; Uchida et al. 2014).  

 

Obesity is usually associated with ghrelin resistance, which is explained by a reduced 

NPY/AgRP responsiveness to circulating ghrelin in order to reduce further food 

intake (Briggs et al. 2010), however why this occurs is unclear. It is hypothesised that 

ghrelin resistance is the body’s mechanism of ensuring sufficient energy reserves 

during times of food scarcity (Zigman, Bouret, and Andrews 2016). In support of this 

hypothesis, ghrelin knockout mice have reduced body weight regain after a calorie-
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restricted diet (Briggs et al. 2013). Contrary to its orexigenic effects, circulating 

ghrelin levels after a meal do not decrease in obese humans (English et al. 2002; 

Tschop et al. 2001). Furthermore, obesity in mice is associated with impairments in 

ghrelin transport through the BBB and reduced hypothalamic sensitivity to ghrelin, 

consequently leading to central ghrelin resistance (Banks, Burney, and Robinson 

2008; Briggs et al. 2010). In addition, weight loss is associated with an increase in 

plasma ghrelin levels, with consequent further stimulation of hunger, making it 

difficult to maintain a calorie-restricted diet (Cummings et al. 2002).  

 

Ghrelin in early life neurodevelopment in rodents  

In the rat embryo, ghrelin is expressed as early as the morula stage and continues to 

be expressed in the fetus (Nakahara et al. 2006; Kawamura et al. 2003). In human and 

rodent fetuses, pancreas is the main source of ghrelin, with low levels of ghrelin 

detected in the fetal stomach (Wierup et al. 2002; Chanoine and Wong 2004). 

However, stomach ghrelin increases to reach adult levels by 3-5 weeks after birth 

(Hayashida et al. 2002; Torsello et al. 2003) and pancreatic ghrelin levels decrease 

from birth to weaning becoming almost undetectable in adulthood (Wierup et al. 

2002).  

 

Ghrelin may play a role in development as early as the embryonic stage. It stimulates 

blastocyst development and its receptor, GHSR1a, is also detected in mouse embryos 

as early as the morula stage. In addition, ghrelin is expressed in the uterus and is 

secreted in uterine fluid at levels that are affected by maternal nutrition. As such, 

increased fasting ghrelin levels in the mother are reflected in increased ghrelin levels 

in the fetus (Kawamura et al. 2003). Postnatally, exogenous ghrelin does not 
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significantly promote milk intake nor body weight in the first 2-3 weeks in rats and 

mice (Piao et al. 2008). A possible explanation for this lack of response is that the 

neonatal brain is relatively insensitive to ghrelin and this lack of effect may represent 

ghrelin resistance. However, GHSR1a is found in the nuclei of neurons known to 

regulate feeding, including the ARC, and acute peripheral ghrelin treatment activates 

ARC neurons during early postnatal life (Steculorum et al. 2015). Further supporting 

a functional role of ghrelin in the postnatal rodent ARC, the mRNA levels of POMC 

and NPY mRNA in the ARC are decreased and increased, respectively, following 

acute ghrelin injection to mouse pups at P10 (Steculorum and Bouret 2011). Given 

that ghrelin receptors are present and functional in the developing hypothalamus, 

these results support the hypothesis that ghrelin in early life has different function 

from that in adulthood. A number of in vitro studies have shown that the exposure of 

cultured hypothalamic cells to ghrelin markedly increases cell proliferation and these 

effects are greater when the cells are taken from E17 embryos instead of P2 pups 

(Inoue et al. 2010). Both the AG and DAG forms of ghrelin promote cell proliferation 

and neurogenesis, with AG exerting greater proliferative effects than DAG (Sato et al. 

2006).  

 

As suggested by Steculorum and colleagues, ghrelin may also act as a brake to leptin-

induced axonal growth in the postnatal period, in order to stop the overgrowth and 

maintain optimal functioning of hypothalamic circuitry in appetite regulation 

(Steculorum et al. 2015). Thus, leptin initiates axonal growth during the leptin surge, 

and ghrelin terminates the development of ARC projections (Steculorum et al. 2015). 

Based on the above results, it is suggested that an exacerbated leptin surge and 

disruption of ghrelin’s normal elevation during postnatal life can lead to long-term 



 

 23 

metabolic problems. Despite a large number of studies in this area, there are 

considerable gaps in our knowledge in how the nutritional environment during 

development affects long-term metabolism and what are the specific roles of leptin 

and ghrelin during development. Further studies are also needed to investigate the 

developmental effects of neonatal ghrelin and leptin in extra-hypothalamic brain 

regions such as the pituitary gland. Since ghrelin and leptin receptors are expressed in 

these regions it remains possible that these hormones are involved in cognitive or 

HPA axis functions and behavioral regulation (Llorente et al. 2009). Such suggestions 

need to be verified and the site(s) of action for the developmental effects of ghrelin 

and leptin need to be further investigated.  

 

The role of ghrelin in reproduction, regulation of HPA axis and inflammation  

Ghrelin has recently been shown to have an important role in reproduction (reviewed 

in (Sominsky, Hodgson, et al. 2017)). As a metabolic hormone, ghrelin directly or 

indirectly affects the hypothalamic-pituitary-gonadal (HPG) axis by acting as an 

inhibitory agent (Lebrethon et al. 2007). It informs the hypothalamus when there is 

insufficient energy and consequently disrupts or delays fertility (Martini et al. 2006). 

The hypothalamus is responsible for the release of gonadotropin releasing hormone 

(GnRH) from GnRH neurons located at the anterior hypothalamic area, from where 

they project to the median eminence and stimulate the pituitary gland to release 

luteinizing hormone and follicle stimulating hormone (FSH). The pituitary hormones 

then further regulate gonadal steroidogenesis. Absence or inappropriate release of 

these hormones at any level of the HPG axis is associated with fertility issues 

(reviewed in (Acevedo-Rodriguez et al. 2018)). Both male and female rats, have 

shown a disruption of HPG axis functioning in the presence of high levels of ghrelin 
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(Dupont et al. 2010). Excess ghrelin suppresses luteinizing hormone pulse frequency 

and testosterone secretion (Wang et al. 2011), in both men and women (Lanfranco et 

al. 2008; Kluge et al. 2012) preventing reproduction until sufficient energy is 

available. This suppressive effect of ghrelin on luteinizing hormone pulsatility is 

associated with increased circulating cortisol levels (Vulliemoz et al. 2004), indicative 

of ghrelin’s interactive role between both HPG and HPA axes (Sominsky, Hodgson, 

et al. 2017). 

 

Recent research, including from our group, has indeed shown that ghrelin along with 

its role in regulating metabolism and reproduction has an important role in the HPA 

axis regulation in response to stress. During acute physical or psychological stress, 

cells in the PVN secrete corticotropin-releasing hormone (CRH), which acts on the 

anterior pituitary to stimulate adrenocorticotropic hormone (ACTH) release. Increased 

circulating ACTH levels stimulate the adrenal cortex to synthesise and secrete 

glucocorticoids, which then initiate a series of events to aid the organism to cope with 

the stress (Nicolaides et al. 2015). Ghrelin activates the HPA axis at all levels. At the 

hypothalamus ghrelin activates CRH neurons in the PVN and increases circulating 

glucocorticoid levels without affecting GHSR1a on these neurons, suggestive of 

ghrelin’s indirect effect on the apex of the HPA axis (Cabral et al. 2012; Spencer et al. 

2012). Our group has shown that ghrelin stimulates the HPA axis at the level of the 

pituitary by targeting the GHSR1a to facilitate ACTH release (Spencer et al. 2012). 

Ghrelin can also directly activate pituitary ACTH cells (Stevanovic et al. 2007). In 

humans, ghrelin administration increases ACTH and cortisol release from the adrenal 

gland (Arvat et al. 2001; Takaya et al. 2000; Locatelli et al. 2010). Similarly, ghrelin 

also stimulates increases in circulating ACTH and corticosterone in rodents (Spencer 
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et al. 2012). Under normal conditions the absence of ghrelin (i.e. in ghrelin knockout 

animals) has no effect on adrenal responses to exogenous ACTH and normal PVN 

responses to dexamethasone (agent that mimics glucocorticoid release). However, in 

response to acute stress these animals have exacerbated PVN neuronal activation and 

reduced glucocorticoid secretion from adrenals compared to wild types (Spencer et al. 

2012). Despite some limited knowledge of the role ghrelin plays in the regulation of 

stress responsivity, it remains unknown how nutritional environment during neonatal 

period affects ghrelin’s ability to regulate the HPA axis and whether this is different 

between males and females. 

 

It is important to note that the role of ghrelin as an anti-inflammatory agent has 

recently received great interest. A number of studies have pointed out a potential role 

for ghrelin in pro-inflammatory disease states in humans and animal models including 

sepsis (Maruna et al. 2005), pancreatitis (Kerem et al. 2007), Crohn’s disease (a form 

of inflammatory bowel disease) (Ghomraoui et al. 2017), colitis (Tiaka et al. 2011) 

and rheumatoid arthritis (Koca et al. 2008). The presence of the ghrelin receptor on 

peripheral blood mononuclear cells (PBMC) such as in human lymphocytes (T- and 

B-cells) (Gnanapavan et al. 2002; Dixit et al. 2004) and human and rodent immune 

organs such as thymus and bone marrow (Hattori 2009; Taub, Murphy, and Longo 

2010) suggests that ghrelin may at least partly activate these cells and organs. Indeed, 

Dixit and colleagues have shown that ghrelin suppresses expression of 

proinflammatory cytokines such as interleukin 1 beta (IL-1β), IL-6 and tumor 

necrosis factor alpha (TNF) by human T-lymphocytes and monocytes (Dixit et al. 

2004). The anti-inflammatory role of ghrelin has also been observed in a mouse 

model of colitis where ghrelin administration significantly suppressed a number of 
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inflammatory cytokines including: TNF and several pro-inflammatory interleukins.  

Also, increased anti-inflammatory IL-10 levels in colonic mucosa were associated 

with significant improvement in survival rate (Gonzalez-Rey, Chorny, and Delgado 

2006). One of the suggested mechanisms by which ghrelin exerts its anti-

inflammatory effects is via the vagus nerve, as is seen in animal models of traumatic 

brain injury, where ghrelin administration suppresses circulating TNF and IL-6 

(Bansal et al. 2012). Other suggested mechanisms are via inhibition of high-mobility 

group box 1 (HMGB1) secretion from macrophages. HMGB1 is an important protein 

involved in a number of inflammatory conditions including sepsis. Ghrelin 

significantly inhibits secretion of this protein from macrophages by blocking its 

cytoplasmic translocation (Chorny et al. 2008).  The mechanisms via which ghrelin 

achieves these anti-inflammatory effects however, remain to be further elucidated.  

 

Sex differences in developmental programming of metabolism and stress 

Males and females respond differently to metabolic and stressful situations, making 

sex differences an important, and often under-investigated area of study. For instance, 

fat distribution in women is mainly located in the gluteal and femoral region, whereas 

in men the highest proportion of body fat is accumulated in the abdominal area 

(Karastergiou et al. 2012; Fuente-Martin et al. 2013). A number of studies have 

shown that there is a high correlation between obesity and mood disorders (Doyle et 

al. 2007; Scott et al. 2008) and obese women are more likely to develop emotional 

disorders than obese men (Barry and Petry 2008). We have previously seen that 

neonatal overfeeding in females, alongside an obesigenic phenotype, is associated 

with unique changes in female HPA axis. Females, but not males, have exacerbated 

PVN responses to psychological stress accompanied by increased open arm 
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exploration in the elevated plus maze (Spencer and Tilbrook 2009), potentially related 

to an impaired ability of the female pituitary gland to respond to ghrelin. These 

disorders are not only affected by overfeeding, but also by underfeeding in rodents, 

which also differentially affects males and females (Fuente-Martin et al. 2012; Mela 

et al. 2012; Granado et al. 2014).  

 

Important contributors to stress responses and related disorders include the metabolic 

hormones leptin and ghrelin. As previously mentioned, the leptin surge that initiates 

at approximately P4 and P7 in mice and rats is crucial not only for optimal 

neurodevelopmental function, but also for optimal development of the endocrine 

system (Ahima, Prabakaran, and Flier 1998). The absence or disruption of the leptin 

surge is related to long-term altered HPA axis activity. For instance, rats overfed 

during early life develop hyperleptinemia and show an accelerated maturation of the 

HPA axis compared to normally fed counterparts (Boullu-Ciocca et al. 2005). When 

challenged with physical or psychological stress, these neonatally overfed animals 

display exacerbated HPA axis responses to the challenge (reviewed in (Spencer 

2013)). Other studies have demonstrated that chronic leptin treatment in early life is 

followed by suppressed CRH and increased glucocorticoid receptor expression from 

the PVN (Oates, Woodside, and Walker 2000; Proulx et al. 2001). Very little is 

known about the relationship between stress and metabolic hormones leptin and 

ghrelin during development with regard to sex and nutritional status. However, both 

stress and obesity induce sex-dependent susceptibilities to metabolic disorders 

(Murphy and Loria 2017). In girls and women circulating ghrelin levels differ from 

those in boys and men, such that females have higher total and acyl-ghrelin in 

comparison to males (Hagobian and Braun 2010; Espelund et al. 2005; Ostergard et 
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al. 2003; Soriano-Guillen et al. 2016). Initially, Lutter and colleagues (Lutter et al. 

2008) and later Meyer and Harmatz (Meyer et al. 2014; Harmatz et al. 2017) showed 

that exposure to chronic stress increases circulating ghrelin levels. On the other hand, 

alterations in ghrelin levels can affect behaviour and mood, with recent studies 

showing an anxiolytic and anxiogenic role of ghrelin in regulating anxiety-related 

behaviours in response to acute stress (Spencer et al. 2015; Spencer et al. 2012). 

Ghrelin thus promotes anxiety at low concentrations and suppresses anxiety and stress 

at higher concentrations (Spencer et al. 2012). It is proposed that increased levels of 

ghrelin during stress may be required to prevent excess anxiety and therefore to 

facilitate food-seeking. However, the mechanism by which ghrelin modulates anxiety-

related behaviours in males and females is not fully studied. Despite the clear sex 

differences in many parameters, the majority of current research uses males, mainly to 

avoid the possible influences of the female hormonal cycle. However, it is critical to 

consider both sexes in order to better understand the effects of sex-dependent 

metabolic and stress-related disorders.  

 

In the current work I will address four major aims to assess the roles of leptin and 

ghrelin in developmental programming of obesity and in adult stress and 

inflammation.  

 

Aim 1: To determine the impact of early life overfeeding on the hypothalamic 

circuitry and the long-term role of leptin in hypothalamic programing in male Wistar 

rats.  

To test this aim I will examine the metabolic effects of neonatal overfeeding on body 

weight and circulating leptin. I will also examine central effects of neonatal 
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overfeeding on hypothalamic responsiveness to exogenous leptin and leptin-mediated 

NPY/AgRP and POMC neurons and whether these effects could be normalised by 

neonatal leptin antagonism. It has been previously shown that neonatal overfeeding 

amongst other effects is associated with altered levels of circulating leptin. This, and 

leptin’s neurotrophic effects during neurodevelopment, led us to hypothesise that 

altered leptin levels would be associated with long-term disrupted connectivity within 

hypothalamic regions responsible in controlling metabolism. 

This chapter has been published in the Journal of Endocrinology in 2017, entitled 

“Hypothalamic effects of neonatal diet: reversible and only partially leptin 

dependent”. (Sominsky, Ziko, et al. 2017) 

 

Aim 2:  To examine the effects of neonatal overfeeding on the ghrelin system, 

including acyl and des-acyl ghrelin accessibility to the hypothalamus in male Wistar 

rats. 

To test this aim I will examine whether low circulating ghrelin levels in the neonatally 

overfed rats affected the hypothalamic responsiveness to exogenous ghrelin and 

hypothalamic responsiveness to fluorescently labeled acyl and des-acyl ghrelin. It has 

been previously shown that neonatal overfeeding is associated with altered ghrelin 

levels, however it is not clear whether this alterations are associated with long-term 

disruptions on the central or peripheral ghrelin system. 

This chapter has been published in Neuropharmacology in 2016, entitled “Early life 

disruption to the ghrelin system with over-eating is resolved in adulthood in male 

rats”(Sominsky, Ziko, Nguyen, et al. 2016). (Co-authors Sominsky L. and Ziko I. 

have equally contributed to this publication). 
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Aim 3: To define the role of early life overfeeding on the peripheral and central leptin 

systems in female Wistar rats.  

As the previous studies had shown that neonatal overfeeding in males, along with an 

obesigenic phenotype, were associated with a disruption of hypothalamic orexigenic 

NPY/AgRP circuitry. We hypothesised in this aim that the same outcomes would 

occur in females. 

This chapter has been published in Frontiers in Endocrinology 2017, entitled 

“Hyperleptinemia in neonatally overfed female rats does not dysregulate feeding 

circuitry” (Ziko et al. 2017). 

 

Aim 4:  To examine the effects of neonatal overfeeding on the ghrelin system in 

female Wistar rats long-term.   

Previous studies have demonstrated that ghrelin affects the activity of the HPA axis at 

the pituitary level via activation of its receptor. I hypothesised that neonatal 

overfeeding in females would compromise the pituitary ghrelin system, further 

affecting HPA axis responses to stress.  

This chapter has been published in PLOS One 2017, entitled “Neonatal overfeeding 

disrupts pituitary ghrelin signaling in female rats long-term; implications for the 

stress response” (Sominsky, Ziko, and Spencer 2017). 

 

Aim 5: To examine the contribution of different forms of ghrelin on the anti-

inflammatory responses to an immune challenge. I hypothesised that ghrelin’s anti-

inflammatory activity is mediated via the HPA axis, and acylated and des-acylated 

ghrelin would differently contribute to cytokine suppression in response to an immune 

challenge.  
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This chapter has been published in Brain, Behaviour, and Immunity 2018 entitled 

“Acylated ghrelin suppresses the cytokine response to lipopolysaccharide and does so 

independently of the hypothalamic-pituitary-adrenal axis” (Ziko et al. 2018). 
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Introduction 

The early life nutritional environment affects long-term regulation of body weight 

with both under- and over-nutrition leading to metabolic problems. An unintended 

experiment in humans arose from the Dutch famine, which occurred in the winter of 

1944-45. This tragedy has shown us that the fetus in the mother’s uterus can adapt 

and survive after a minimal and poor nutritional diet, however the challenge imposed 

by the poor nutrition perinatally exposes the offspring to metabolic problems, 

including the inability to control their eating, a preference for high calorie foods, as 

well as a reduction in physical activity later in life (Roseboom, de Rooij, and Painter 

2006; Ravelli, Stein, and Susser 1976). Reflecting these data, the “thrifty gene 

hypothesis” was proposed as early as 1962 by James V Neel, according to which, 

genes that predispose to obesity have a selective advantage in populations that have 

continuously experienced starvation (Neel 1962). 

 

Overnutrition during important developmental periods has also been associated with 

metabolic mal-programming and offspring predisposition to chronic conditions in 

adulthood, such as type two diabetes and increased susceptibility to obesity (reviewed 

in (Carolan-Olah, Duarte-Gardea, and Lechuga 2015; Tarry-Adkins and Ozanne 

2017)). Prenatal under-nutrition followed by postnatal overnutrition in animal models 

is highly associated with obesity and leptin resistance as a result of catch-up growth 

(Dellschaft et al. 2015; Vickers and Sloboda 2012; Sebert et al. 2009). The 

combination can result in significant alterations in neuropeptide Y (NPY), agouti 

related peptide (AgRP) and proopiomelanocortin (POMC) within the hypothalamus 

(Ikenasio-Thorpe et al. 2007).  
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Environmental factors can thus influence the way our metabolism responds to 

nutritional challenges especially when insults happen during important developmental 

periods. As early as 1979 Dobbing and Sands found that major brain growth spurts 

happen at around birth in humans and around postnatal day (P)7 in rats, based on the 

increasing weight of the brain (Dobbing and Sands 1979). This important 

developmental period has been extensively studied ever since. In 1998, Ahima and 

colleagues found that circulating leptin levels are highly increased around P7-P10 in 

mice irrespective of food intake or fat mass, reinforcing the idea that leptin may have 

a developmental role (Ahima, Prabakaran, and Flier 1998). Bouret and Simerly 

thereafter found that this leptin surge coincided with the maturation of neuronal 

projections innervating the hypothalamus and established the particular importance of 

leptin as a trophic factor in formation of these projections (Bouret, Draper, and 

Simerly 2004b).  

 

As previously mentioned in the main introduction of this thesis (Section 1.3: The role 

of leptin in metabolism), leptin in adult males centrally regulates metabolism by 

activation of anorexigenic neurons and inactivation of orexigenic neurons in the 

arcuate nucleus of the hypothalamus (ARC). The leptin surge in neonates, however, 

initiates neuronal maturation, and disruption or exacerbation of this leptin surge (as 

shown with the neonatal overfeeding animal model (Stefanidis and Spencer 2012)) 

may lead to permanent disruption of connections and long-term obesity (Bouret, 

Draper, and Simerly 2004a, 2004b). We observed in our animal model of childhood 

obesity that the hyperleptinemia and body weight increase with neonatal overfeeding 

are maintained throughout the animal’s life (Stefanidis and Spencer 2012). Davidowa 

and colleagues have shown that this hyperleptinemia is associated with reduced ARC 
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responsiveness to leptin, indicative of leptin resistance (Davidowa and Plagemann 

2000). Results from the same group have also shown that neonatal overfeeding 

induces POMC hypermethylation within the hypothalamus (Plagemann et al. 2009). 

A limited number of studies have observed that neonatal overfeeding induces an 

increase in NPY and AgRP gene expression (Lopez et al. 2005) and also suppresses 

NPY responsiveness to ghrelin (Collden et al. 2015). However, it still remains 

unknown how the neonatal over-nutritional environment affects the NPY/AgRP 

wiring and POMC expression in the hypothalamus in the short or long-term, and these 

factors are examined here. We also inspected the early life overnutrition effects on 

hypothalamic responsiveness to leptin and the ability of a leptin antagonist to re-

establish hypothalamic circuitry under neonatal overfeeding conditions.  

 

Materials and methods  

2.1.1 Animals  

All our timed pregnant Wistar rats were obtained from the Animal Resources Centre, 

WA, Australia. The rats were delivered to our facility between E14 and E16. On 

arrival at the RMIT University Animal Facility, they were housed at 22°C on a 12 hr 

light/darkness cycle (07:00–19:00 hr) and provided with standard pelleted rat chow 

and water ad libitum. All procedures were conducted in accordance with the National 

Health and Medical Research Council Australia Code of Practice for the Care of 

Experimental Animals and RMIT University Animal Ethics Committee approval.  

 

2.1.2 Litter size manipulation 

On the day of birth (P0) pups were removed from their dams and numbers were 

recorded. After sex identification, pups were reallocated to litters of 4 (2 males and 2 
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females) called small litter (SL), representing the neonatally overfed model. Sex was 

determined by a larger genital papilla and longer anogenital distance in male pups 

than in female pups. The control litter (CL) consisted of 12 pups (6 males and 6 

females). Care was taken that none of the dams obtained their own pups and the 

procedure was conducted quickly (within 5-10 min) so that pups maintained their 

body temperature. Excess pups were culled or utilized for other research projects. Our 

group has previously shown that this litter size manipulation results in SL pups being 

significantly heavier as early as P7 and they remain heavier throughout their lives 

(Spencer & Tilbrook, 2009; Ziko et al., 2014). Following pup reallocation, the litters 

were weighed as whole litters on P0 (all litters) and P7 (litters culled on P14) and 

individually on the day of the experiment. The pups were otherwise left undisturbed 

with mothers, except for the usual animal husbandry, until experimentation. Only 

male animals were examined in this chapter. All experimental groups were derived 

from three or more litters, using a maximum of two pups from the same litter for an 

experimental treatment to control for maternal effects (Spencer and Meyer 2017).  

 

 

2.1.3 Brain collection  

Neonatally overfed and control animals on P7, P14 and ~P70 were deeply 

anaesthetised with Lethabarb (150 mg/kg sodium pentobarbitone, i.p.) then 

decapitated. Another cohort of animals at P12 and ~P70 were deeply anaesthetised 

with Lethabarb then perfused transcardially with phosphate buffered saline (PBS; 

4°C, pH 7.4) followed by 4% PFA in PBS (4°C, pH 7.4). All brains were removed 

and placed in 4% paraformaldehyde (PFA) in (PBS) for 24 hr then into 20% sucrose 

in PBS at 4°C. Brains were sectioned at 30 μm (adults) or 40 μm (neonates) and 
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stored at 4°C in PBS containing 0.02% sodium azide until further processed for 

immunohistochemistry. 

2.1.4 Immunohistochemistry  

Hypothalamic sections were immunolabelled for a variety of markers as summarised 

in Table 2.1. Samples from different treatment groups were randomly selected and 

processed in batches. To block endogenous peroxidases phospho signal transducer 

and activator of transcription 3 (pSTAT3) sections were incubated with hydrogen 

peroxide (H2O2) in PBS for 15 min. After the primary and secondary antibody 

incubation as detailed in Table 2.1., pSTAT3 sections were then incubated with 

avidin-biotin horseradish peroxidase (HRP) complex (ABC; 45 min; Vector Elite Kit; 

Vector), followed by incubation with diaminobenzidine (DAB), intensified with 1% 

cobalt chloride and 1% nickel sulphate for 10 min. Then 0.05% H2O2 was added to 

the DAB solution to visualise HRP activity. The reaction was stopped when the 

contrast between specific labelling and background was optimal. The sections were 

then mounted on gel-coated slides, dried, dehydrated in a series of increasing 

concentrations of alcohols then cleared in histolene and coverslipped. After blocking 

non-specific protein binding with 3% bovine serum albumin (BSA) in 0.1 M PBS 

with Triton X-100, sections were incubated with NPY, AgRP and POMC primary and 

secondary antibodies as detailed in Table 2.1. Next, sections were counterstained with 

4’,6-diamidino-2-phenylindole (DAPI) for 15 min then mounted on slides with 

DAKO anti-fading solution. Slides were kept in the dark at 4°C until visualised.  
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Table 2.1 Primary and secondary antibodies used in immunohistochemistry 
 

Antigen Primary Antibody Secondary 
Antibody  

Incubation 
Time/Temperature 

Signal transducer 
and activator of 
transcription 3 
(pSTAT3) 

Anti-rabbit 
pSTAT3 (Abcam) 

[1: 5000] 

Biotinylated anti-
rabbit (Vector 
Laboratories, 
Burlingame, CA, 
USA 

[1:500] 

1’ AB: overnight, 4°C 

2’ AB: 1.5 h, Room 
Temperature 

Neuropeptide Y 
(NPY) 

Anti-rabbit NPY 
(Sigma-Aldrich)  

[1:1000] 

Alexa-fluor 488 
goat anti-rabbit 
(Thermo 
Scientific)  

[1:500] 

1’ AB: overnight, 4°C 

2’ AB: 2 h, Room 
Temperature 

Agouti related 
protein (AgRP) 

Anti-goat AgRP 
(Neuromics Inc., 
MN, USA) 

[1:500] 

Alexa-fluor 594 
rabbit anti-goat 
(Thermo 
Scientific)  

[1:200] 

1’ AB: 42 h, Room 
Temperature 

2’ AB: 12 h, Room 
Temperature 

Proopiomelanocortin 
(POMC)  

Anti-rabbit POMC 
(Phoenix 
Pharmaceuticals, 
Burlingame, CA, 
USA) 

[1:5000] 

Alexa-fluor 488 
goat anti-rabbit 
(Thermo 
Scientific)  

[1:500] neonate  

[1:200] adult 

1’ AB: overnight, 4°C 

 

2’ AB: 1h, 
Room 
Temperature 

 

 

An experimenter blinded to treatment groups assessed hypothalamic sections for 

numbers of pSTAT3 positive cells in the ARC and ventromedial hypothalamus 

(VMH). The summed counts of positive cells throughout three sections 120 μm apart 

between 2.76 and 3.48 caudal to bregma were taken according to the Paxinos and 

Watson Rat Brain Atlas (Paxinos and Watson 2009). pSTAT3 immunohistochemistry 

and cell counts were performed by Ms Thai Xinh Nguyen as part of her Honours 

project from sections generated by me and under my supervision. NPY, AgRP and 
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POMC photomicrographs were taken on an upright Nikon Eclipse 90i confocal laser 

microscope using 561 nm lasers (605/75 filter set) for AgRP labeling, 488 nm (513/30 

filter set) for NPY and AgRP and 408 nm laser for DAPI. Images were viewed under 

the 20x magnification lens under Galvano scanner using a 512 x 512 pixels scan size. 

A thresholding method was used with NIS Elements Advanced Research Software in 

order to analyse NPY and AgRP fibre density. After background subtraction, the 

upper and lower threshold limits were defined based on the signal intensity values 

from the control group of animals. NPY and AgRP labelling of the cell bodies was 

only observed in the neonatal ARC and not in the neonatal PVN or adult ARC or 

PVN. The perikaryon labelling of NPY and AgRP was excluded from the neonatal 

ARC analysis as follows. The thresholds for each of the channels were separately 

defined and the program subtracted the DAPI layer from the NPY or AgRP threshold 

layer generating a new layer with the cell bodies excluded. A region of interest 

constant for all the samples was then analysed for fibre density from this layer. 

POMC-positive cells were manually counted using Image J (National Institutes of 

Health) in four brain sections with the summed counts from all brain sections taken as 

our graphed result.  

 

The specificities of the antibodies used in our study have been previously validated by 

manufacturers and other researchers in pre-absorption and Western blotting 

experiments and further supported in our own validation experiments by incubation of 

experimental tissue without a primary or without a secondary antibody. Negligible 

positive labelling was seen in these negative controls. Positive labelling was 

confirmed in the brain regions of interest. More specifically, the NPY antibody 

(N9528) has been validated by the manufacturer and used in (Garcia et al. 2011; 
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Kobelt et al. 2008; Konieczna et al. 2013; Pekala et al. 2011). The AgRP antibody 

(GT15023) has been validated by the manufacturer and used by (Betley et al. 2015; 

Cao et al. 2011; Garfield et al. 2015; Kim et al. 2016; Kobelt et al. 2008; Li et al. 

2012; Shibata et al. 2016). The POMC antibody (H-029-30) specificity has been 

confirmed by (Wittmann, Hrabovszky, and Lechan 2013) and used by (Cheng, Chu, 

and Chow 2011; Evans et al. 2007; Gotoh et al. 2006; Pandit et al. 2016; Reyes et al. 

2006; Singru et al. 2012; Tavares, Maldonado, and Minano 2013; Zhan et al. 2013). 

The pSTAT3 antibody (ab76315) has been previously validated by the manufacturer 

by Western blotting in HeLa cell lysate and used in the following publications (Desai 

et al. 2007; Mao et al. 2016; McGuckin et al. 2013).  

 

2.1.5 Effects of neonatal overfeeding on hypothalamic gene expression  

Quantitative real-time PCR (qRT-PCR) was used to assess neonatal overfeeding 

effects on hypothalamic gene expression of the leptin receptor (Lepr) in the ARC and 

hypothalamus from the animals described above (see Table 2.2 for primer details). 

Brains were immediately removed and the hypothalamus was isolated with razor 

blade from the fresh brain. Initially a coronal cut was made anterior to the optic 

chiasm and another coronal cut was made 4mm caudal to the first cut. Then the slice 

was placed with its posterior surface upside and two lateral cuts were made above the 

optic tracts. Finally, a horizontal cut above the third ventricle finalised the 

hypothalamic dissection. This isolation technique was adapted by (Reyes et al. 2003) 

and it can also be found at (Udvari et al. 2017). The arcuate nucleus was dissected at 

the base of the hypothalamus using a small dissecting knife. The brain was dissected 

into the ARC and hypothalamus that does not contain the ARC. These samples were 

immediately snap-frozen in liquid nitrogen and stored at -80 °C until use. RNA was 
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purified using QIAzol reagents and RNeasy Mini Kits (QIAGEN, Valencia, CA, 

USA). The RNA concentration was determined by spectrophotometer measurements 

at 260nm and 280nm (NanoDrop 2000/2000c, Thermo Scientific, Waltham, MA, 

USA). 1 μg RNA was transcribed to cDNA using iScript cDNA synthesis kits 

(QIAGEN) according to the manufacturer’s instructions. A qRT-PCR Taqman Gene 

Expression Assay (Applied Biosystems, Mulgrave, VIC, Australia) was performed on 

a Rotor-Gene Q instrument (Qiagen GmbH) and the relative quantitative measure of 

the target gene expression was compared with an endogenous control, 18s. RNA 

expression was determined using the double delta (C(t)) equation 2-ΔΔC(t), where 

threshold cycle (C(t)) values were the values at which fluorescence was first detected 

significantly above background, as previously described. Minus reverse-transcriptase 

(-RT), with omitted reverse transcriptase reactions, and no template controls (NTC), 

with omitted primer reactions, were run simultaneously with the samples in order to 

verify that no genomic DNA contamination was present. The mean C(t) value of our -

RT test samples for 18s was more than ten cycles different from the mean C(t) value 

of our test samples, indicative of a 2-fold difference in the initial template amount, 

therefore allowing us to assume 100% efficiency and the presence of negligible 

genomic DNA. NTC were undetermined (>40 C(t)), suggesting there was no genomic 

DNA contamination. Data are presented as fold increase relative to P7 CLs (neonates) 

or adult CLs (adults). We initially tested both of the housekeeping genes 18S and β-

actin, and based on the analysis of variability, β-actin was chosen as an endogenous 

control due to its stability in the neonatal hypothalamus. We can confidently confirm 

the reliability of our reference gene in this study. 
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Table 2.2 Primer details for qRT-PCR 
 
Primer name NCBI Reference Sequence TaqMan Assay ID Product size 

18s X03205.1 4319413E 187 

Lepr NM_012596 Rn01433205_ml 94 
 

 

2.1.6 Effects of neonatal overfeeding on food intake and hypothalamic 

responsiveness to exogenous leptin  

To assess whether neonatal overfeeding affected the ability of the hypothalamus to 

control feeding and body weight after an exogenous stimulus with leptin (3 mg/kg of 

leptin i.p. (PeproTech, Rocky Hill, NJ, USA)) nocturnal, diurnal and 24 hr food intake 

were measured. In order to assess neonatal overfeeding acute (neonatal) and long-

term (adulthood) effects on hypothalamic responsiveness to exogenous leptin P12 and 

~P70 CL and SL animals were injected with 1 mg/kg i.p. leptin (PeproTech, Rocky 

Hill, NJ, USA) or 0.9% sterile saline and pSTAT3 immunoreactive cells in the ARC 

and VMH were assessed. ~P70 animals were given 7 days of normalisation before a 

second injection of 1 mg/kg leptin. Body weight measurements were also conducted 

before and 45 min post injection. All of the experiments were conducted between 

09:00 and 13:00 hr to avoid potential effects of circadian rhythms on any of the 

parameters measured. 

 

2.1.7 Leptin ELISA  

Leptin concentrations were determined using a standard commercially available rat-

specific leptin ELISA, following the manufacturer’s instructions (Millipore, Ballerica, 

MA, USA). Leptin ELISAs were conducted by Dr Luba Sominsky from samples 

generated by me. Intra-assay variability was 1.9-2.5% CV, inter-assay variability 3.0-
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3.9% CV, and lower limit of detection 0.04 ng/mL. All compared samples were 

assayed in duplicate and processed in the same assay.  

 

2.1.8 Leptin antagonist  

Super rat leptin antagonist (SRLA) (SLAN-4; Protein Laboratories Rehovot Lt. 

Rehovot, Israel) used in this study was prepared similarly to super mice leptin 

antagonist (SMLA) described in (Shpilman et al. 2011). SRLA is a polypeptide chain 

containing 146 amino acids, with mutations D23L, L39A/D40A/F41A, resulting in a 

powerful antagonist with high affinity for the leptin receptor. To assess whether 

antagonising the exacerbated leptin surge at its onset (~P4) would ameliorate the 

disruption in NPY/AgRP neuronal fibre density, body weight, and circulating leptin 

levels long-term in our neonatally overfed animals compared to controls, 5 mg/kg 

leptin antagonist (i.p.) or saline was injected daily to a cohort of CL and SL animals 

from P4 to P7. These animals were allowed to grow into adulthood (~ P70) and body 

weight and circulating leptin were assessed. We also assessed POMC positive cells as 

well as hypothalamic NPY/AgRP fibre density as described above.  

 

2.1.9 Statistical analysis 

Statistical analyses were performed separately based on age. For neonates, pre-

weaning body weights, leptin receptor expression and hypothalamic responses to 

leptin were compared using multifactorial analyses of variance (ANOVA)s (using 

SPSS software) with age (P7/P14) and litter size manipulation (CL/SL) as between 

factors. For neonatal NPY, AgRP, POMC and pSTAT3 immunoreactivity, and for the 

adults Student’s unpaired t-tests (one variable) or two-way ANOVAs (more than one 

variable) were used, also including treatment factors where appropriate (saline/leptin 
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or saline/SRLA). Where significant interactions were found, Tukey post hoc tests 

were performed. Data are presented as the mean ± SEM. Statistical significance was 

assumed when p ≤ 0.05. All data were tested for homogeneity of variance and 

normality, using the Levene’s test for Equality of Variance and the Shapiro-Wilks 

test, respectively, complemented by the assessment of skewness and kurtosis. These 

assessments and all other statistical analyses were conducted using SPSS. Outliers 

were determined using the Grubbs’ test (α = 0.05) in GraphPad Prism. 

 

 
 Results 

2.1.10 Neonatal overfeeding effects on the peripheral and central leptin 

systems 

Our group has previously shown that overfeeding during early life is associated with 

increased body weight (Smith and Spencer 2012; Spencer and Tilbrook 2009; 

Stefanidis and Spencer 2012). Here it is shown again that neonatally overfed male 

pups have significantly increased body weight at P14 compared to normally fed pups 

of the same age (F(2,28) = 20.75, p < 0.001; n = 8; Figure 2.1 A). This increase in body 

weight is associated with a significant increase in circulating leptin levels at P14 as 

previously described (Stefanidis and Spencer 2012). While there were no differences 

in the expression of the receptor in the hypothalamus excluding the ARC, in the ARC, 

there was a significant increase in the leptin receptor mRNA expression at P14 

compared to P7 (significant effect of age: F(1,23) = 51.37, p < 0.001; n = 6-8; Figure 

2.1 C).  
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To test the effects of neonatal overfeeding on the hypothalamic responsiveness to 

exogenous leptin, P12 pups were given a leptin injection and measured leptin’s ability 

to activate pSTAT3 cells in the ARC and VMH. Leptin significantly increased 

numbers of pSTAT3 positive cells in both ARC (significant effect of leptin: F(1,15) = 

8.54, p = 0.011; n = 3-6; Figure 2.1 D, F) and VMH (significant effect of leptin: F(1,15) 

= 18.82, p = 0.001; n = 3-6; Figure 2.1 E) of normally fed pups, but failed to do so in 

the overfed ones, indicative of central leptin resistance.  
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Figure 2.1 Neonatal overfeeding effects on the peripheral and central leptin 
systems.  
(A) Pre-weaning body weights of rats raised in control (CL) and small (SL) litters (n 
= 8). (B) Hypothalamic and (C) arcuate nucleus of the hypothalamus (ARC) leptin 
receptor expression (n = 6 - 8). (D) Neuronal activation in response to leptin injection 
at P12; numbers of phosphorylated signal transducer and activator of transcription 
(pSTAT3) positive cells in the ventromedial hypothalamus (VMH) (n = 3 - 6) and (E) 
in the ARC (n = 3 - 6). (F) Representative photomicrographs showing leptin-induced 
pSTAT3 positive cells in the ARC of CL and SL rats (n = 3 - 6). Data are mean ± 
SEM. * p < 0.05. Scale bars = 200 μm. 
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2.1.11 Neonatal overfeeding affects hypothalamic orexigenic NPY and 

AgRP, but not the anorexigenic POMC  

To determine whether the effects of neonatal overfeeding on circulating leptin levels 

and body weight were associated with modification of key hypothalamic 

neuropeptides such as anorexigenic POMC and orexigenic NPY and AgRP, numbers 

of POMC-positive cells and NPY/AgRP fibre density in the ARC and PVN of overfed 

and normally fed pups at P12 were measured. Neonatal overfeeding had no effects on 

ARC POMC positive cells (Figure 2.2 B, E), however it significantly increased both 

NPY (t(10) = 2.33, p = 0.042; n = 6 per group Figure 2.2 D, G) and AgRP (t(9) = 5.18, p 

= 0.001; n = 5-6 per group Figure 2.2 C, F) fibre density when compared to controls. 

In the PVN neonatal overfeeding did not affect AgRP fibre density (Figure 2.2 I, K) 

and in contrast to the ARC it suppressed NPY fibre density in comparison to controls 

(t(10) = 2.3, p = 0.044; n = 6 per group Figure 2.2 J, L).  
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Figure 2.2 Neonatal overfeeding affects the hypothalamic neuropeptide Y (NPY) 
and agouti related peptide (AgRP) fibre density, but not proopiomelanocortin 
(POMC) immunoreactivity.  
(A, H) schematic diagram illustrating the region of interest analysed for NPY, AgRP 
and POMC. (B) NPY (n = 6), (C) AgRP (n = 6) and (D) POMC immunolabeling in 
the arcuate nucleus (ARC) (n = 6). Representative photomicrographs of (E) NPY (n = 
6), (F) AgRP (n = 6) and (G) POMC labeling in the ARC of control (CL) and small 
litter (SL) animals on postnatal day (P)12 (n = 5 - 6). (I) NPY and (J) AgRP labelling 
in the paraventricular nucleus of the hypothalamus (PVN). Representative 
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photomicrographs showing NPY (K) and AgRP (L) labelling the PVN. Data are mean 
± SEM. * p < 0.05. Scale bars = 100 μm. 

 

2.1.12 Neonatal overfeeding effects on the leptin system long-term 

To determine the long-term peripheral and central effects of neonatal overfeeding on 

the leptin system leptin parameters were measured in adult animals that were overfed 

during the first weeks of their life and compared them to control animals. Neonatally 

overfed animals remained overweight despite weaning them onto a normal diet (t(21) = 

2.24, p = 0.036; n = 11-12; Figure 2.3 A). Previous data from our group (Stefanidis 

and Spencer 2012) have shown that, similar to body weight, neonatal overfeeding 

affects circulating leptin levels long-term. Therefore, hypothalamic gene expression 

of the leptin receptor was measured. We observed that adult animals that were 

overfed during neonatal life had similar levels of Lepr expression in the hypothalamus 

compared to controls (Figure 2.3 B). Since we observed that neonatal overfeeding 

was associated with a disruption of neonatal NPY and AgRP neurons in the ARC and 

PVN, we assessed whether these changes were maintained until adulthood. Neonatal 

overfeeding did not affect ARC (Figure 2.3 D) or PVN (Figure 2.3 G) AgRP fibre 

density in adult rats. Neonatal overfeeding not only did not induce an increase in adult 

ARC NPY fibre density, but it significantly suppressed it (t(10) = 2.32, p = 0.043; 

Figure 2.3 C). No effects of neonatal overfeeding on the adult PVN NPY fibre density 

(Figure 2.3 F) or ARC POMC positive cells (Figure 2.3 E) were seen. Overall, the 

above results indicate that neonatal overfeeding effects on NPY/AgRP fibre density 

observed during neonatal life are resolved by adulthood.  
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Figure 2.3 Long-term effects of neonatal overfeeding on the leptin system.  
(A) Body weight of adult control (n = 11 – 12) (CL) and small litter (SL) animals. (B) 
Leptin receptor expression in the hypothalamus (n = 6 - 10). (C) Neuropeptide Y 
(NPY) (n = 6), (D) agouti related peptide (AgRP) (n = 5 - 6) and (E) 
proopiomelanocortin (POMC) immunolabeling in the arcuate nucleus (ARC) (n = 5). 
Representative photomicrographs of (H) NPY, (I) AgRP and (J) POMC labeling in 
the ARC. Representative photomicrographs of (K) NPY and (L) AgRP labelling in 
the PVN. Data are mean ± SEM. * p < 0.05. Scale bars = 100 μm. 
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Given the neonatal leptin resistance in the ARC with neonatal overfeeding, it would 

be expected a long-term hypothalamic inability to respond to exogenous leptin. There 

was an overall suppression of nocturnal (significant effect of leptin: F(1,46) = 3.97, p = 

0.052; Figure 2.4 A) and 24 hr (main effects of leptin: F(1,46) = 4.42, p = 0.041; Figure 

2.4 C) food intake with exogenous leptin. However, no effects of exogenous leptin on 

diurnal food intake (Figure 2.4 B), or any effects of litter size manipulation were 

observed. Similarly, neonatal overfeeding had no effect on hypothalamic 

responsiveness to leptin in adulthood, as seen in similar numbers of pSTAT3 positive 

cells in the ARC of both CL and SL animals (significant effect of leptin: F(1,18) = 4.92, 

p = 0.040; Figure 2.4 D and E). These results overall indicate that leptin resistance 

observed during neonatal life with neonatal overfeeding does not persists into 

adulthood. 
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Figure 2.4 Neonatal overfeeding effects on long-term leptin responsiveness.  
Nocturnal (A) (n = 8 - 17), diurnal (B) and 24 hr (n = 8 - 17) (C) food intake after 
exogenous leptin in control (CL) and small litter (SL) animals (n = 8 - 17). (D) 
Numbers of phosphorylated signal transducer and activator of transcription (pSTAT3) 
positive cells in the arcuate nucleus of the hypothalamus (ARC) (n = 5 - 6). (E) 
Representative photomicrographs showing leptin-induced pSTAT3 positive cells in 
the ARC of CL and SL rats. Data are mean ± SEM. * p < 0.05. Scale bars = 100 μm. 

 

2.1.13 Short- and long-term effects of early-life leptin antagonist  

The neonatal leptin antagonist was not able to normalise neonatal body weight at P21 

(main effect of litter size: F(1,18)= 34.50, p < 0.001; n = 5-6, Figure 2.5 A) or 
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adulthood (main effect of litter size: F(1,18)= 9.54, p = 0.006; n = 5-6, Figure 2.5 B) in 

animals that were overfed during their neonatal life. The leptin antagonist also failed 

to normalise circulating leptin (main effect of litter size: F(1,15)= 11.13, p = 0.005; n = 

5-6, Figure 2.5 C). Neonatal leptin antagonist was also not able to affect POMC 

positive cells in the ARC (Figure 2.5 D). It significantly suppressed AgRP fibre 

density in the ARC irrespective of litter size (main effect of leptin antagonist: F(1,19)= 

6.82, p = 0.017; n = 5-6, Figure 2.5 F), however it did not affect ARC NPY fibre 

density (main effect of litter size: F(1,19)= 5.31, p = 0.033; n = 5-6, Figure 2.5 E) or 

PVN NPY and AgRP fibre density (Figure 2.5 G and H). These leptin antagonist data 

suggest that there are possibly metabolic factors other than hyperleptinemia affecting 

long-term body weight in the neonatally overfed rat.  
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Figure 2.5 Long-term effects of a leptin antagonist on neonatal overfeeding-
induced changes in the leptin system.  
Body weight on (A) postnatal day 21 (n = 5 - 6) and (B) adulthood in control (CL) 
and small litter (SL) animals given leptin antagonist as neonates (n = 5 - 6). (C) 
Circulating leptin levels (n = 5 - 6). (D) Numbers of proopiomelanocortin (POMC) 
positive cells in the arcuate nucleus of the hypothalamus (ARC) (n = 5 - 6). 
Neuropeptide Y (NPY) immunolabeling in the ARC (n = 5 - 6) (E) and 
paraventricular nucleus of the hypothalamus (PVN) (n = 6) (G). Agouti related 
peptide (AgRP) immunolabeling in the ARC (n = 5 - 6) (F) and PVN (n = 6) (H). 
Data are mean ± SEM. * # p < 0.05. * indicates post hoc effects (* in B, C, and E 
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indicates main effect of litter size and no post hoc group differences. # in F indicates 
main effect of leptin antagonist and no post hoc group differences). 

 
 

Discussion 

Here, for the first time, it is observed that neonatal overfeeding along with an increase 

in body weight and an exacerbated leptin surge was associated with an acute 

(neonatal) disruption of the NPY and AgRP fibre density in the ARC and PVN as 

well as acute hypothalamic leptin resistance. These changes being specific to the early 

life period and being resolved by adulthood emphasise the brain’s plasticity and 

ability to adapt to environmental changes. Encouraging evidence from this study 

shows that in adulthood, the neonatally overfed animals not only have recovered into 

optimal NPY/AgRP fibre density, but they show significant reduction in ARC NPY 

fibre density when compared to their control counterparts. Alongside these changes, 

neonatally overfed adults show recovered hypothalamic leptin resistance despite 

maintaining elevated leptin levels (Stefanidis and Spencer 2012). Antagonising leptin 

activity during neurodevelopment in neonatally overfed pups, despite the inability to 

ameliorate body weight or hyperleptinemia, led to suppressed ARC NPY fibre density 

in CL animals to levels similar to those seen in SL.  

 

POMC in the ARC is critical in maintaining energy homeostasis and the inability of 

leptin to optimally activate POMC neurons leads to obesity. It is demonstrated here 

that overfed pups with hyperleptinemia do not show the expected increase in 

hypothalamic POMC immunoreactivity or gene expression. Similarly, a study by 

Plagemann and colleagues’ (Plagemann et al. 2009) showed that neonatal overfeeding 

was associated with no differences in hypothalamic POMC gene and protein 

expression, despite hyperleptinemia which is expected to lead to increased POMC 
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expression (Elias et al. 1999). The results from Plagemann are inversely correlated to 

POMC promoter methylation (epigenetic modification resulting in transcriptional 

repression) leading to lack of upregulation in POMC gene expression in a setting of 

hyperleptinemia. These and our results may reflect an altered capacity of the system 

to respond to different energy balance conditions.  

 

Work from Ahima and colleagues has highlighted the importance of the leptin surge 

during the first weeks of development in rodents (Ahima, Prabakaran, and Flier 

1998). Others (Schmidt et al. 2001; Lopez et al. 2007) and our group (Stefanidis and 

Spencer 2012) have shown that neonatal overfeeding is associated with an 

exacerbation of this leptin surge during the neonatal period and persistent 

hyperleptinemia throughout life. The leptin surge, as explained by Bouret and 

colleagues (Bouret, Draper, and Simerly 2004b; Bouret and Simerly 2007) is not 

involved in feeding during this P7-P10 neurodevelopmental window, but it is crucial 

in maturation of hypothalamic wiring that controls feeding in the long-term. 

Therefore it is expected that an exacerbated leptin surge would be associated with an 

increase in NPY/AgRP fibre density. Indeed, here we observed that both ARC NPY 

and AgRP fibre density are increased with neonatal overfeeding. We also observed a 

decrease in PVN NPY, but not AgRP in neonatally overfed pups. While NPY and 

AgRP are highly co-localised (99%) in the ARC (Hahn et al. 1998), they do not co-

localise to the same degree in the PVN. The PVN, apart from ARC-derived neurons is 

innervated by (~50%) NPY fibres derived elsewhere (Sawchenko et al. 1985). 

Furthermore, NPY and AgRP neurons of the PVN differently respond to certain 

stimuli (Kas et al. 2005).  
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Overweight and obesity are associated with leptin resistance, here we examined 

whether neonatal overfeeding affected hypothalamic responsiveness to exogenous 

leptin at P12. We observed that despite no changes in the gene expression of the 

hypothalamic leptin receptor, neonatal overfeeding suppressed the ARC and VMH 

neurons’ ability to respond to exogenous leptin determined as the number of neurons 

positive for pSTAT3 in response to this stimulus. This finding is consistent with other 

studies showing that neonatal overfeeding leads to acute leptin resistance (Glavas et 

al. 2010; Bouret et al. 2008). 

 

It has been shown in a number of studies that neonatally overfed adults maintain 

increased body weight and hyperleptinemia despite being fed a normal diet after 

weaning (Lopez et al. 2007; Schmidt et al. 2001; Stefanidis and Spencer 2012). This 

hyperleptinemia is usually associated with long-term leptin resistance (Glavas et al. 

2010). However, here we saw that despite this increased body weight and 

hyperleptinemia, neonatal leptin resistance observed in ARC and VMH in response to 

overfeeding is resolved by adulthood. A study from Lopez and colleagues further 

supports our finding (Lopez et al. 2007). It is important to mention our observation 

here of a reduction in NPY fibre density in adult rats that were overfed during early 

life. This is likely indicative of an adaptation to the neonatal overfeeding with a 

compensatory response in this orexigenic circuitry. In this regard, previous studies 

have shown that NPY and AgRP are particularly able to adapt to the effects of 

overfeeding in genetic models of impaired leptin signalling (Bouret et al. 2012), 

neonatal overfeeding (Lopez et al. 2007) and diet-induced obesity (Ziotopoulou et al. 

2000), with a compensatory response to conditions of positive energy balance.  
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Despite a resolution of the central effects of neonatal overfeeding adulthood, these 

adult neonatally overfed rats remain overweight and maintain hyperleptinemia 

throughout life. We therefore hypothesised that a leptin antagonist introduced at the 

initiation of the leptin surge would ameliorate the long-term effects related to the 

neonatal overfeeding. The naturally occurring leptin surge initiates at around P4 and 

peaks at around P7 – P10 (Delahaye et al. 2008). At P14 there is a greater than ten-

fold increase in leptin levels in SL animals compared to controls, as previously shown 

(Stefanidis and Spencer 2012), indicating that neonatal overfeeding exacerbates or 

disrupts this naturally occurring leptin surge.  It is observed that while the leptin 

antagonist did not normalise body weight or hyperleptinemia in adult animals that 

were overfed in early life, it reduced AgRP density in both overfed and control 

animals. This outcome may depend on the dosage and timing of administration of the 

leptin antagonist. Previous studies have administered the same leptin antagonist for a 

slightly prolonged period of time compared to the study reported here (P2 - P13) 

(Attig et al. 2008; Benoit et al. 2013), but this regimen was associated with leptin 

resistance and negative effects on development and maturation of many organs (Attig 

et al. 2011). A study from our group using the same leptin antagonist dose and 

injection regime showed that the antagonist was able to reverse hyperleptinemia and 

rescue the decline of primordial follicles caused by neonatal overfeeding in female 

rats (Sominsky, 2016).  

The low animal numbers in some of the groups are explained by tissue loss and 

exclusion of statistical outliers (Grubb’s test; no more than one per group). The 

criteria of outlier exclusions are described below. The exclusion of outliers, however, 

has not compromised the effect sizes. For instance, for data depicted on Fig. 2.1 D, F 

we have seen that although the control group consisted of n = 3, these data show a 
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strong and significant interaction between the effects of litter size and drug (F(1,15) = 

8.54, p = 0.011), with a partial ETA squared of 0.363 and observed power of 0.78, 

indicating that these data explain over 36% of the overall variance (effects and error), 

with a power of 78% to detect these effects. Similarly, pStat3 expression in the VMH 

was not affected by any outlier exclusion, so that a strong and significant effect of 

leptin (F(1,15) = 18.82, p = 0.001) was seen, with a partial ETA squared of 0.56 and 

observed power of 0.982, indicating that these data explain over 56% of the overall 

variance, with a power of 98% to detect these effects. Original studies from the 

Spencer group where the neonatal overfeeding model was first described (Stefanidis 

and Spencer 2012; Clarke, Stefanidis, and Spencer 2012), provided extensive 

observations of changes in body composition. I have referred to this study where this 

was necessary.    

Overall our results suggest that neonatal overfeeding along with a permanent increase 

in body weight and hyperleptinemia acutely alters central leptin systems related to 

metabolic control, with most of this disrupted functionality being resolved by 

adulthood. Attenuating the effects of hyperleptinemia at this time with a leptin 

antagonist failed to reverse the acute or long-term weight gain and hypothalamic 

effects suggestive of contributions of other factors in the effects of neonatal 

overfeeding on satiety pathways.  
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Introduction  

Developmental programming of homeostatic feeding behaviour occurs during the first 

weeks of development in rodents and is integrated within the hypothalamus. As 

previously discussed in this thesis (Chapter 1, Introduction: “Leptin in development”), 

the main nuclei that regulate energy intake and expenditure within the hypothalamus 

are the arcuate nucleus of the hypothalamus (ARC), the paraventricular nucleus of the 

hypothalamus (PVN), the ventromedial nucleus of hypothalamus (VMH), 

dorsomedial nucleus of the hypothalamus (DMH) and the lateral hypothalamus (LH) 

(Gao and Horvath 2008). These nuclei are important integration sites for a number of 

peripheral hormones such as insulin, leptin and ghrelin, as well as nutrients such as 

glucose and free fatty acids (reviewed in (Bouret 2017)). In the previous chapter we 

discussed the role of leptin in developmental programming. The role of insulin is also 

very well established. Unlike the roles of insulin (Plagemann et al. 1997) (previously 

explained under Chapter 1,  “Perinatal programming of obesity – animal models”) 

and leptin (Chapter 2), little is known of the role of ghrelin in developmental 

programming of the hypothalamus. The main focus here is on the role of ghrelin in 

particular, as one of the most important metabolic hormones that, not only regulates 

homeostatic food intake, but may also act as a neurotrophic factor in 

neurodevelopment.  

 

Ghrelin is mainly secreted from the fundus of the stomach where ghrelin O-acyl 

transferase (GOAT) acylates ghrelin on the third serine residue (Goitein et al. 2012). 

This acylated form of ghrelin is crucial for ghrelin’s biological function via its growth 

hormone secretagogue receptor (GHSR). The two different forms of circulating 
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ghrelin: acyl ghrelin and des-acyl ghrelin, have separate contributions to physiology. 

Des-acyl ghrelin does not have any effect on GHSR function, however it is known to 

antagonise acyl ghrelin’s effects on feeding (as reviewed on (Delhanty, Neggers, and 

van der Lely 2012)). Des-acyl ghrelin is also able to stimulate proliferation of rat 

spinal cord and hypothalamic fetal cells, suggesting its involvement in neurogenesis 

and neurodevelopment (Inoue et al. 2010; Sato et al. 2006). 

 

In adulthood acyl ghrelin plays an important role in central control of energy 

expenditure by controlling feeding, adiposity and glucose metabolism. Adult humans 

and rodents injected acutely with ghrelin, increase their food intake and body weight 

(Tschop, Smiley, and Heiman 2000; Wren et al. 2001; Druce et al. 2005). Aside from 

ghrelin’s role in regulating feeding and metabolism in the adult, evidence from 

Bouret’s group has demonstrated an important role of ghrelin in programming 

feeding-related neurocircuitry during development, that of suppressing leptin-initiated 

neuronal outgrowth (Steculorum et al. 2015). Ghrelin significantly suppresses neurite 

projections from neonatal ARC explants in vitro. In vivo, anti-ghrelin compounds 

stimulate an increased density of neuronal projections initiating from the ARC and 

migrating towards the PVN (Steculorum et al. 2015) further supporting ghrelin’s 

function in suppressing excessive axon development. This exclusive maturation of 

hypothalamic pathways occurs during very precise developmental periods of time - 

during the first postnatal weeks after birth in rodents. During this time, the leptin 

surge that initiates at P4 and peaks at P7-P10 is followed by a gradual increase of 

circulating ghrelin levels that curtails leptin’s neurotrophic effects on axonal growth 

and prevents over-growth of these projections (Steculorum et al. 2015).  
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Overnutrition during postnatal life may contribute to the onset of obesity and 

metabolic-related diseases later in life (Cruz et al. 2005; Taveras et al. 2011). For 

instance, in an animal model of childhood obesity where rat pups are over-nourished 

during the first weeks of development, there is an increase in body weight, which is 

maintained throughout life (Clarke et al. 2013; Ziko et al. 2014; Collden et al. 2015). 

Limited research has shown that neonatal overfeeding suppresses circulating total and 

acyl ghrelin levels, which leads to a lack of central responsiveness to exogenous 

ghrelin (Collden et al. 2015). There is also some limited evidence for a role of des-

acyl ghrelin during development, at least during the very early phases. Des-acyl 

ghrelin is able to stimulate proliferation of rat spinal cord and hypothalamic fetal 

cells, suggesting its involvement in neurogenesis and neurodevelopment (Inoue et al. 

2010; Sato et al. 2006). However, the role of desacyl in later development has not yet 

been investigated, and acyl-ghrelin’s contribution to hypothalamic programming in 

the rat is similarly unknown. 

 

Here we hypothesised that neonatal overfeeding would affect the ghrelin system 

acutely (during postnatal development) and long-term (until adulthood) and that acyl 

and des-acyl ghrelin might be differentially affected. To test this hypothesis we 

examined early life overfeeding’s effects on the peripheral and central ghrelin systems 

including acyl and des-acyl ghrelin’s ability to access the hypothalamus. Our results 

showed that neonatal overfeeding acutely affected the ghrelin system by reducing 

circulating ghrelin, increasing hypothalamic Ghsr expression and hypothalamic 

responsiveness to exogenous acyl but not des-acyl ghrelin. Interestingly, while acyl 

ghrelin’s ability to access the ARC was not affected by neonatal overfeeding, acyl 

ghrelin’s ability to reach the PVN was attenuated. Importantly, however, these acute 
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effects of neonatal overfeeding on ghrelin’s ability to signal the brain were resolved 

by adulthood. 

 

Materials and methods  

3.1.1 Animals  

As described in Chapter 2, we obtained timed pregnant Wistar rats from the Animal 

Resources Centre, WA, Australia. On arrival at the RMIT University Animal Facility, 

we housed them at 22°C on a 12 hr light/dark cycle (07:00–19:00 hr) and provided 

them with standard pelleted rat chow and water ad libitum. We conducted all 

procedures in accordance with the National Health and Medical Research Council 

Australia Code of Practice for the Care of Experimental Animals and RMIT 

University Animal Ethics Committee approval.  

 

3.1.2 Litter size manipulation   

Litter size manipulation was performed as previously described in Chapter 2 

(Materials and Methods: “Litter size manipulation”) to create the neonatally overfed 

animal model. Only male animals were used in this study, which were culled at 

postnatal day (P) 7, 12, 14 and at ~P70. Females were kept for use in other 

experiments (as described in Chapter 4). The adult animals, after separation into same 

sex littermate pairs at weaning (P21), were left undisturbed until experimentation. 

 

3.1.3 Neonatal overfeeding effects on circulating ghrelin  

On the day of experimentation ~P70, a cohort of rats were deeply anesthetized with 

Lethabarb (150 mg/kg sodium pentobarbitone, i.p.). P70 is a period of young 

adulthood in rats; ~4 weeks past the attainment of reproductive maturity. Animals at 
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P7 or P14 were decapitated and trunk blood was collected for later assessment of 

serum ghrelin. To accurately measure plasma acyl and des-acyl ghrelin, blood 

collection tubes that contained no anticoagulant were treated with Pefabloc (Roche 

Applied Science) to achieve a final concentration of 1 mg/mL. Blood was left to clot 

at room temperature for 30 min then centrifuged at 2500 g for 15 min at 4 °C ± 2 °C. 

The collected serum was transferred into a fresh tube then acidified with HCl to a 

final concentration of 0.05 N. The samples were mixed, aliquoted, and stored at -20 

°C avoiding freeze-thaw cycles. Serum acyl and des-acyl ghrelin concentrations were 

determined using a standard ghrelin enzyme-linked immunoassay (ELISA) for total 

and acyl ghrelin (Millipore, Billerica, MA, USA) following the manufacturer’s 

instructions. The intra-assay variability was 0.3-7% and 0.7-1.3% CV, inter-assay 

variability 1-10% and 1.8-4.5% CV, and lower limit of detection 0.8 pg/mL and 0.04 

ng/mL for acyl and total ghrelin respectively. Samples were assayed in duplicate and 

were randomized across two plates. Acyl ghrelin concentrations were subtracted from 

total ghrelin concentrations to derive a value for serum desacyl ghrelin (Hosoda et al. 

2004).  

 

3.1.4 Neonatal overfeeding effects on hypothalamic gene expression  

To assess changes in expression of genes involved in ghrelin central pathways brains 

were collected and were then dissected into ARC and hypothalamus not containing 

the ARC. Samples were immediately snap-frozen into liquid nitrogen and stored at -

80 °C until use. RNA was purified and qRT-PCR was performed. The specific primer 

details are shown in Table 3.1. A relative quantitative measure of the target gene 

expression, compared with endogenous control 18s mRNA expression, was analysed 
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as fully described in Chapter 2 (Materials and Methods: “Effects of neonatal 

overfeeding on hypothalamic gene expression”). 

 

Table 3.1 Primer details for qRT-PCR 
 
Primer name NCBI Reference Sequence TaqMan Assay ID Product size 

18s X03205.1 4319413E 187 

Agrp NM_033650.1 Rn01431703_g1 67 

Ghsr NM_032075.3 Rn00821417_m1 61 

Mboat4 NM_001107317.2 Rn02079102_s1 93 

Npy NM_012614.2 Rn00561681_m1 63 

Pomc NM_139326.2 Rn00595020_m1 92 
 

 

3.1.5 Weight assessment in response to exogenous ghrelin  

Weight changes in response to 1 mg/kg i.p. acyl ghrelin, des-acyl ghrelin (or saline) in 

CL and SL neonatal and adult animals were assessed. Body weight was taken 

immediately before and 2 hr after injection for all animals, food intake was assessed 

at this time in adults only. 2 hr post-injection all animals were deeply anaesthetised 

with 150 mg/kg sodium pentobarbitone (i.p.) then transcardially perfused as described 

in Chapter 2 (Materials and methods: “Brain collection”).  

 

3.1.6 Neonatal overfeeding effects on neuronal activation in response to 

ghrelin c-Fos immunohistochemistry 

Sections through the hypothalamus were immunolabelled for c-Fos. Randomly 

selected sections from each treatment group (a single one in five series of 30 μm 

sections from each animal) were processed at the same time in batches. Briefly, 

sections were pre-treated with H2O2, treated with blocking solution and then 
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incubated in primary antibody (overnight; 4 °C; 1:10 000; rabbit; Santa Cruz 

Biotechnology, Santa Cruz, CA, USA). This was followed by secondary antibody (1.5 

hr; 1:500, biotinylated anti-rabbit; Vector Laboratories, Burlingame, CA, USA) and 

an avidin-biotin horseradish peroxidase (HRP) complex (ABC; 45 min; Vector Elite 

kit; Vector). The tissue was then incubated in diaminobenzidine (DAB) intensified 

with nickel to visualize the HRP activity. The reaction was stopped when the contrast 

between specific cellular and non-specific background labelling was optimal. Air-

dried brain sections were dehydrated in a series of alcohols, cleared in histolene and 

coverslipped. Hypothalamic sections were assessed by an experimenter blinded to 

treatment groups for the numbers of c-Fos-positive cells in the ARC and PVN. Four 

sections 120 μm apart between 2.76 and 3.48 mm caudal to the bregma per animal 

were analysed and the summed counts of the four sections was taken as our sampled 

result.  

 

3.1.7 Fluorescently labelled ghrelin  

To determine if the ability of ghrelin to reach the brain was affected by neonatal 

overfeeding P12 pups were injected subcutaneously with 1 mg/kg (x 2, 90 min apart) 

of Cyanine5 (Cy5)-labelled acyl or desacyl ghrelin dissolved in saline (0.9% NaCl). 

The Cy5 fluorescently labelled ghrelins were synthesized as previously detailed 

(Douglas et al. 2014; McGirr et al. 2011) and provided by Dr. Leonard Luyt from the 

Department of Chemistry, The University of Western Ontario, Canada. Brains were 

collected 2 hr after the first injection via decapitation, were immersion-fixed in 4% 

paraformaldehyde for 24 hr and incubated in 20% sucrose in PBS until processed for 

fluorescence microscopy. 40 μm brain sections were mounted on slides with DAKO 

mounting medium and constantly protected from light. Fluorescence images were 
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acquired on an A1R+ confocal laser scanning microscope (Nikon, Tokyo, Japan) 

using 640 nm excitation and detection using a 700 ± 37.5 band-pass filter. Through-

focus series (z-stacks) of ARC and PVN images were taken under 40 x magnification 

lenses (photoactivation, perfect focus system), under a Galvano scanner, spectral 

image of 512 x 512 pixels, 2 μm z-stacks. Negative controls that did not have 

injections of fluorescently labelled ghrelin had no signal under the same conditions. 

To estimate the total number of Cy5 fluorescently labelled acyl and desacyl ghrelin-

positive cells in the ARC and PVN, cell numbers and intensity signal were quantified. 

Fluorescently labelled acyl and desacyl ghrelin-positive cell numbers were manually 

counted using Image J (National Institutes of Health, Bethesda, MD, USA) in four 

brain sections per animal covering the bregma levels -1.44 mm to -3.60 mm 

throughout all the z-stacks and total cell numbers were summed. NIS Elements 

Advanced Research Software (Nikon, Tokyo, Japan) was used to estimate 

fluorescence signal intensity in the ARC and PVN. The fluorescence signal from 

blood vessels was manually excluded from the intensity analysis based on shape. 

Finally, the mean fluorescence intensity was quantified per cell throughout the whole 

ARC and PVN.  

 

3.1.8 Data Analysis 

Neonatal and adult changes were analysed separately. For neonates weights, serum 

ghrelin, gene expression, fluorescently labelled cells and hypothalamic responses to 

ghrelin were compared using multi-factorial analyses of variance (ANOVA)s with 

neonatal nutritional environment (CL/SL) and age (P7/12/14) as between factors. 

Treatment was also included where appropriate (saline/acyl/desacyl ghrelin). Where 

significant interactions were found, Tukey post hoc tests were performed. For the 
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adults Student’s unpaired t-tests or two-way ANOVAs were used. Data are presented 

as the mean ± SEM. Statistical significance was assumed when p ≤ 0.05. All data 

were tested for homogeneity of variance and normality, using the Levene’s test for 

Equality of Variance and the Shapiro-Wilks test, respectively, complemented by the 

assessment of skewness and kurtosis. These assessments and all other statistical 

analyses were conducted using SPSS. Outliers were determined using the Grubbs’ test 

(α = 0.05) in GraphPad Prism. 

 

Results  

3.1.9 Neonatal overfeeding effects on circulating ghrelin 

Neonatal overfeeding significantly reduced serum ghrelin at P7 (significant effect of 

litter size: F(1,28) = 8.2, p = 0.008 and age: F(1,28) = 14.56, p = 0.001; Figure 3.1 A), 

specifically due to a decrease in des-acyl ghrelin levels (significant effect of litter 

size: F(1,28)  = 9.17, p = 0.005 and age: F(1,28) = 17.72, p < 0.001; Figure 3.1 B, C). 

Significant increase in the AG /DAG ratio at P7 (significant litter size by age 

interaction: F(1,28) = 4.90, p = 0.035; Figure 3.1 D) was also observed. By P14 

however, ghrelin levels and AG/DAG ratio were no longer different between groups.  
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Figure 3.1 Neonatal overfeeding effects on circulating ghrelin.  
(A) Total ghrelin serum concentration (n = 8), (B) acyl ghrelin (n = 8) (AG) 
concentration and (C) des-acyl ghrelin (DAG) concentration in the control (CL) and 
small litter (SL) rats on postnatal day (P) 7 and 14 (n = 8). (D) Ratio of ghrelin at P7 
and P14 in CL and SL animals (n = 8). Data are mean ± SEM. * p < 0.05. 

 

3.1.10 Effects of neonatal overfeeding on the hypothalamus 

To test neonatal overfeeding effects on the hypothalamus mRNA expression of a 

number of genes (as described in Table 3.1) was measured. In the ARC, neonatal 

overfeeding significantly increased Ghsr expression at P7 (significant effect of litter 

size: F(1,25) = 9.003, p = 0.006 and age: F(1,25) = 11.52, p = 0.002; Figure 3.2 A) and 

also significantly increased Mboat4 (Goat) expression at P7 (significant litter size by 

age interaction: F(1,25) = 5.127, p = 0.032; Figure 3.2 B), indicating a potential for 

neonatal overfeeding to enhance hypothalamic responsiveness to endogenous ghrelin. 
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Similarly to circulating ghrelin levels, ARC gene expression of Ghsr and Mboat4 was 

normalised by P14. No effects of neonatal overfeeding were observed on Ghsr 

(Figure 3.2 C) or Mboat4 (Figure 3.2 D) expression in the hypothalamus not 

containing the ARC. Apart from an increase on Agrp (main effect of age: F(1,25) = 

26.15, p < 0.001, Figure 3.2 F) and an increase on Pomc (main effect of age: F(1,25) = 

15.16, p = 0.001 Figure 3.2 G) expression in the ARC, neonatal overfeeding was not 

associated with any changes in Npy, Agrp or Pomc gene expression in this region or 

in the hypothalamus not containing the ARC.  
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Figure 3.2 Hypothalamic gene expression in response to neonatal overfeeding.  
Growth hormone secretagogue receptor (Ghsr) gene expression in the arcuate nucleus 
of the hypothalamus (ARC) (n = 6 - 8) (A) and the hypothalamus not contain the 
ARC (HY) (n = 5 - 7) (C) of control (CL) and small litter (SL) animals at postnatal 
day (P) 7 and 14. Ghrelin O-acyl transferase (Goat) expression in the ARC (n = 6 - 8) 
(B) and HY (n = 4 - 7) (D). Gene expression of neuropeptide Y (Npy) (n = 6 - 8) (E), 
agouti related protein (Agrp) (F), proopiomelanocortin (Pomc) (G) in the ARC and 
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HY Npy (n = 6 - 8) (H), Agrp (n = 6 - 8) (I) and Pomc (n = 5 - 7) (J). Data are mean ± 
SEM. * p < 0.05. 

 
3.1.11 Effects of neonatal overfeeding on hypothalamic responsiveness to 

exogenous ghrelin  

Overfeeding-induced changes in the availability of ghrelin associated with increased 

Ghsr expression in the ARC, and hence a potential for increased responsiveness to 

ghrelin, prompted us to test whether neonatal overfeeding also affected hypothalamic 

ability to respond to an exogenous stimulus. Exogenous acyl ghrelin significantly 

increased neuronal activation in the ARC of P12 pups compared to controls 

(significant effect of litter size: F(1,28) = 5.88, p = 0.02; and drug F(2,28) = 7.51, p = 

0.002; Figure 3.3 A). Similarly, acyl ghrelin stimulated an increase in neuronal 

activation in the PVN of SL pups compared to CLs (significant litter size by drug 

interaction: F(2,30) = 3.55, p = 0.041; Figure 3.3 B). However, exogenous ghrelin did 

not affect body weight (as a neonatal proxy for food intake) (Figure 3.3 C). No effect 

of neonatal overfeeding after exogenous des-acyl ghrelin was observed on neuronal 

activation or body weight. 
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Figure 3.3 Effects of neonatal overfeeding on the weight change and 
hypothalamic responsiveness after exogenous ghrelin.  
c-Fos positive cells in the arcuate nucleus of the hypothalamus (ARC) (n = 4 - 7) (A) 
and paraventricular nucleus of the hypothalamus (PVN) (n = 5 - 7) (B) of control 
(CL) and small litter (SL) rats on postnatal day (P) 12. (C) Body weight change 2h 
after 1 mg/kg acyl ghrelin (AG), des-acyl ghrelin (DAG) or saline injection (n = 5 - 
7). Data are mean ± SEM. * p < 0.05. 

 

3.1.12 Neonatal overfeeding effects on ghrelin’s accessibility to the 

hypothalamus 

We observed here that neonatal overfeeding exacerbates hypothalamic responsiveness 

to exogenous ghrelin. The possibility that neonatal overfeeding affects the blood brain 

barrier (BBB) permeability as a potential mechanism for this effect by assessing 

numbers and intensity of cells labeled by fluorescently-labeled acyl and des-acyl 

ghrelin in the ARC and PVN was tested. Neonatal overfeeding had no effects on the 

ability of acyl or des-acyl ghrelin to reach the ARC, since there were similar numbers 
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of positive cells (Figure 3.4 A-D, I, J) and intensity of labelling per cell (Figure 3.4 E-

H) in the CL and SL animals at P12. In the PVN, however, there were fewer 

fluorescently labeled acyl ghrelin cells in SL animals compared to CLs (t (11) = 2.22, p 

= 0.049, Figure 3.4 K, O) and lower fluorescence intensity per cell (t (11) = 4.59, p = 

0.0008, Figure 3.4 L). No effects of neonatal overfeeding were observed on the 

fluorescently labeled des-acyl ghrelin positive cells or intensity per cell in PVN 

(Figure 3.4 M, N, P).  
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Figure 3.4 Neonatal overfeeding effects on peripheral ghrelin’s ability to access 
the hypothalamus.  

(A, B) Number of fluorescently labeled acyl ghrelin (AG) positive cells in the arcuate 
nucleus of the hypothalamus (ARC) of control (CL) and small litter (SL) animals on 
postnatal day (P) 12 (n = 6 - 8). (C, D) Number of fluorescently labeled des-acyl 
ghrelin (DAG) positive cells in the ARC of CL and SL animals on P12 (n = 5 - 7). (E, 
F) Intensity per cell of AG positive cells in the ARC (n = 6 - 8). (G, H) intensity per 
cell of DAG positive cells in the ARC (n = 6 - 7). (I) Photomicrographs of AG 
positive cells and (J) DAG positive cells in the ARC. (K) Number, (L) intensity (n = 6 
- 7) and (O) photomicrographs of AG positive cells in the paraventricular nucleus of 
the hypothalamus (PVN). (M) Number, (N) intensity (n = 6 - 7) and (P) 
photomicrographs of AG positive cells in the PVN. Scale bars = 50 μm. Data are 
mean ± SEM. * p < 0.05. 
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3.1.13 Long-term effects of neonatal overfeeding on the ghrelin system  

Optimal functioning of the ghrelin system during the early life developmental period 

is important for long-term metabolism (Steculorum et al. 2015). Therefore, we tested 

here whether changes in the ghrelin system with neonatal overfeeding were reflected 

in adulthood. Our group has previously shown that neonatally overfed rats remain 

significantly heavier than controls as adults (Smith and Spencer 2012; Spencer and 

Tilbrook 2009). Despite a permanent weight change with neonatal overfeeding and 

suppressed des-acyl ghrelin levels on P7, circulating ghrelin levels in adulthood were 

no longer different between groups (Figure 3.5 A). Similarly, hypothalamic Ghsr 

expression in adulthood was not different between groups (Figure 3.5 B). However, 

Mboat mRNA expression was significantly increased in the neonatally overfed adult 

animals relative to controls (t (12) = 2.70, p = 0.019, Figure 3.5 C). Interestingly, 

hypothalamic Npy mRNA expression was suppressed in the neonatally overfed adults 

(t (11) = 2.21, p = 0.049, Figure 3.5 D), without any effects on the hypothalamic Agrp 

and Pomc gene expression (Figure 3.5 E, F).  
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Figure 3.5 Neonatal overfeeding effects on adult ghrelin system.  
(A) Circulating total, acyl ghrelin (AG) and des-acyl ghrelin (DAG) in control (CL) 
and adult animals overfed (SL) during neonatal life (n = 6 - 7). Hypothalamic growth 
hormone secretagogue receptor (Ghsr), (B) ghrelin O-acyl transferase (Goat) Mboat 
(n = 6 - 8), (D) neuropeptide Y (Npy) (n = 6 - 7), (E) agouti related peptide (Agrp) (n 
= 6 - 8) and proopiomelanocortin (Pomc) gene expression (n = 6 - 8). Data are mean ± 
SEM. * p < 0.05. 
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on weight (Figure 3.6 A) or food intake (Figure 3.6 B). Acyl but not des-acyl ghrelin 

mediated an increase in c-Fos positive cells in the ARC, but without any effect of 

neonatal overfeeding (significant effect of ghrelin: F(2,27) = 26.31, p < 0.001, Figure 

3.6 C). In the PVN, there was no effect of neonatal overfeeding on Fos expression, 

but only an effect of drug (F(2,29) = 25.44, p < 0.001, Figure 3.6 D) and, interestingly 

an effect of des-acyl along with acyl ghrelin in increasing c-Fos positive cells 

compared to controls (Figure 3.6 D).  
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Figure 3.6 Neonatal overfeeding effects on body weight change and hypothalamic 
responsiveness to exogenous (1mg/kg) acyl ghrelin (AG), des-acyl ghrelin (DAG) 
or saline in adulthood.  
(A) Body weight change (n = 5 - 7) and (B) food intake 2 hr after injection in control 
(CL) and small litter (SL) adult animals (n = 5 - 6). (C) Arcuate nucleus of the 
hypothalamus (ARC)  (n = 5 - 6) and (D) paraventricular nucleus of the hypothalamus 
(PVN) c-Fos positive cells (n = 5 - 6). Photomicrographs of (E) ARC and (F) and 
PVN. Scale bars = 100 μm. Data are mean ± SEM. * p < 0.05. 
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Discussion  

Ghrelin, traditionally known for its role in appetite stimulation and energy balance 

(Tschop, Smiley, and Heiman 2000), has recently been implicated in other roles, 

including neurodevelopment (Collden et al. 2015). It has been thought likely that acyl 

ghrelin acts as a brake to the leptin surge-initiated growth of neuronal connectivity 

within regions of the hypothalamus that regulate feeding and metabolism (Steculorum 

et al. 2015). Des-acyl ghrelin, on the other hand, has not been studied extensively due 

to lack of knowledge about the receptor through which it acts. In the present study we 

show that postnatal overnutrition (during the first three weeks after birth) in the rat 

alters endogenous ghrelin’s ability to act on the hypothalamus during an important 

developmental period. Neonatal overfeeding suppresses des-acyl ghrelin levels during 

the first week after birth, increases the ratio between acyl ghrelin and des-acyl ghrelin, 

increases hypothalamic expression of ghrelin (Ghsr) and the enzyme that breaks down 

ghrelin into its active form (Goat) and, more importantly, decreases accumulation of 

acyl ghrelin in the PVN, which may be due to decreased ability to reach the PVN. 

 
We, and others have previously shown that early life overnutrition is associated with 

long-term weight gain (Cai et al. 2016; Clarke et al. 2013; Lopez et al. 2007; 

Stefanidis and Spencer 2012; Ziko et al. 2014; Glavas et al. 2010). Here we aimed to 

understand whether the permanent body weight change associated with neonatal 

overnutrition was a consequence of an acute or long-term disruption to the ghrelin 

system. Our results indicate that neonatal overfeeding has pronounced effects on 

suppressing circulating ghrelin levels during the first week of development. A similar 

reduction of acyl ghrelin levels has been reported in neonatally overfed mice (Collden 

et al. 2015; Soares et al. 2012). It is important to note that these studies have not 

considered whether des-acyl ghrelin measurements have been affected by early life 
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overnutrition. It is also important to consider the differences between species in 

regards to ghrelin des-acylation by the responsible enzymes, such as 

butyrylcholinesterase in humans and carboxylesterase in rodents (De Vriese et al. 

2004). Furthermore, carboxylesterase blood levels, differ greatly between mice and 

rats (Rudakova, Boltneva, and Makhaeva 2011). 

 

Similarly to what observed here, decreased des-acyl ghrelin levels, unchanged levels 

of acyl ghrelin and a higher acyl ghrelin to des-acyl ghrelin ratio are reported in obese 

individuals (Delhanty et al. 2013; St-Pierre et al. 2007; Longo et al. 2008; Pacifico et 

al. 2009). An increase in the acyl ghrelin to des-acyl ghrelin ratio may explain the 

increased sensitivity to acyl ghrelin’s effects, such as increased hypothalamic gene 

expression of Ghsr and Goat, that was observed in our study. Additionally our 

neonatally overfed pups exhibited exacerbated hypothalamic responses to exogenous 

acyl ghrelin, but not des-acyl ghrelin. Given the suppressive effect of des-acyl ghrelin 

on acyl ghrelin’s functions (Delhanty et al. 2013; Ozcan et al. 2014) the reduced des-

acyl ghrelin levels seen in neonatally overfed animals could attenuate acyl ghrelin’s 

usual “brake” on hypothalamic neurite outgrowth and lead to acyl ghrelin-mediated 

hyper-activation of hypothalamic neuronal growth.  

 

We showed here that there was no effect of neonatal overfeeding on the ability of 

ghrelin to access the hypothalamus based on the similar numbers of fluorescently 

labeled acyl or des-acyl ghrelin-positive cells seen in the ARC. However, neonatal 

overfeeding affected PVN accessibility of circulating, fluorescently-labeled acyl 

ghrelin as shown by the reduced positive cell numbers and intensity per cell in this 

region of the hypothalamus. These results contrasted with the observation of an 
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exacerbated neuronal activation in the PVN by the same acyl ghrelin dose in 

neonatally overfed pups compared to normally fed counterparts. A potential 

explanation for this discrepancy is that the PVN can be remotely activated, for 

example by ARC and DMH glutamatergic neuronal projections (Ziegler and Herman 

2000; Csaki et al. 2000). Furthermore, the PVN is innervated by different populations 

of neurons and despite the fact that the ghrelin receptor is expressed in PVN neurons, 

these neurons are a different population from those activated by stress (Spencer et al. 

2012). In support of these findings, Cabral and colleagues have shown that 

corticotropin releasing factor (CRF) neurons not containing Ghsr show increased 

neuronal activation in colchicine treated animals, although indirectly activated by 

ghrelin (Cabral et al. 2012).  

 

Taken together our results suggest that neonatal overfeeding exacerbates 

hypothalamic sensitivity to endogenous acyl ghrelin, possibly due to the lack of des-

acyl ghrelin’s antagonising effects on acyl ghrelin. Importantly, these neuroendocrine 

defects are restricted to the early life developmental period without life-long effects. 

The only long-term effect with neonatal overfeeding observed in our study was an 

increased expression of hypothalamic Mboat4, however this was not sufficient to 

affect circulating ghrelin levels or hypothalamic responsiveness to exogenous ghrelin. 

Mboat4 can be locally produced and regulated depending on relevant metabolic states 

(Gahete, Cordoba-Chacon, et al. 2010) and so it is possible that this difference in 

Mboat4 expression could lead to differences in coping with a metabolic challenge, but 

this remains to be determined. Ghrelin has also been shown to affect feeding not only 

via the ARC, but also via other extra-hypothalamic sites such as the paraventricular 

thalamus, amygdala and brainstem (Faulconbridge et al. 2003; Kanoski et al. 2013). 
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Further investigations are needed to define the role of neonatal overfeeding on extra-

hypothalamic influence of ghrelin long-term. Nonetheless, our results here further 

support those seen with the impact of neonatal overfeeding on leptin-mediated 

regulation of the hypothalamus in that many of the major effects resolve by 

adulthood. These findings are potentially encouraging for people having had poor 

diets in early life. 
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Introduction 

The early life nutritional environment can permanently affect homeostatic pathways, 

therefore programming an individual’s life-long health. Over- or under-nutrition in 

utero and during the neonatal period in male humans and rodents is associated with 

increased risks of developing metabolic disorders later in life (as reviewed in 

(Spencer 2012)). The nutritional environment in early life also alters sensitivity to the 

metabolic hormones leptin and ghrelin in males (Bouret 2010; Collden et al. 2015; 

Davidowa, Li, and Plagemann 2003; Plagemann 2006). We have seen that the 

nutritional environment during postnatal development in males leads to a permanent 

disruption of metabolic parameters such as body weight, circulating leptin and 

ghrelin, with central changes to the leptin and ghrelin systems (Sominsky, Ziko, et al. 

2017; Sominsky, Ziko, Nguyen, et al. 2016). However, whether similar effects are 

present in females is much less well known.  

 

Obesity affects women as much, if not more than men. Despite a great variability 

between and within countries, globally there are more obese women than men (Kanter 

and Caballero 2012). In boys the relation between body mass index (BMI) and 

puberty is non-linear. Being overweight in boys is associated with early puberty, 

whereas severe obesity is associated with late puberty. In girls, obesity is always 

associated with early puberty (Wang 2002; Rasmussen et al. 2015). Aside from the 

myriad diseases and disorders common to both sexes that are caused or precipitated 

by obesity, there are several obesity-related complications that are particular to 

females. Thus, it is established that being overweight and obese during childhood in 

girls leads to fertility problems including polycystic ovarian syndrome (Lee et al. 

2007; Maisonet et al. 2010; Teede, Deeks, and Moran 2010). Being overweight and 
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obese increases the risk of pregnancy complications such as gestational diabetes 

mellitus (Chu et al. 2007). Obesity also differentially affects circulating leptin levels 

in males and females with the latter having significantly increased leptin compared to 

males after controlling for BMI, age and percentage of body adiposity indicating that 

more leptin is released from the same adipose mass in women compared to men (Azar 

et al. 2002). In the context of mood, anxiety and depression there is a positive 

relationship between the above disorders and obesity (defined by BMI) in women but 

not in men (de Wit et al. 2010; Barry, Pietrzak, and Petry 2008).  

 

Early life events including nutrition or exposure to stress also affect females and 

males differently. Both male and female offspring born from mothers exposed to the 

Dutch Hunger Winter during pregnancy had increased BMI and adiposity, however 

females were affected to a greater extend compared to males (Stein et al. 2007). A 

number of animal studies have shown that maternal obesity is associated with 

hypothalamic gene dysregulation in both males and females, however this 

dysregulation in males is greater than in females (Dearden and Balthasar 2014). 

Likewise, male offspring overfed during the neonatal period develop higher 

hypothalamic inflammation compared to females (Argente-Arizon et al. 2018). Other 

early life perturbations, including stress, are associated with significantly increased 

risk of developing post-traumatic stress disorders, depression and anxiety in females 

compared to males (Pratchett, Pelcovitz, and Yehuda 2010; Olino et al. 2010; Breslau 

2009). As such it seems likely that females are equally if not more vulnerable than 

males to the early programming effects of diet on later metabolic function.  
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Unfortunately, most of the key animal studies elucidating the programming effects of 

early diet and the roles of hormones such as leptin have been performed in males 

without consideration of females. Bouret and colleagues have shown that large litter 

rearing in female rats bred to develop diet-induced obesity ameliorates central leptin 

sensitivity and protects from adverse metabolic effects of obesity in comparison to 

normal litter rearing females (Patterson et al. 2010). Furthermore, our group and 

others have shown that males that are neonatally overfed also have disruptions in both 

circulating ghrelin and the ability of ghrelin to act at the hypothalamus to regulate 

feeding circuitry (Sominsky, Ziko, Nguyen, et al. 2016; Collden et al. 2015); an effect 

that is present during the neonatal period but partly normalised by adulthood. Like 

males, neonatally overfed females are hyperleptinemic in juvenile and adult life 

(Stefanidis and Spencer 2012; Sominsky, Ziko, Soch, et al. 2016). Our group also 

shown that increased prepubertal weight and hyperleptinemia are associated with 

earlier puberty onset in female (Sominsky, Ziko, Soch, et al. 2016), but not male rats 

(Smith and Spencer 2012). However, it is currently unknown whether 

hyperleptinemia in females leads to disruptions in hypothalamic feeding circuitry as it 

does in males (Sominsky, Ziko, et al. 2017), and the precedent for major sex 

differences in hypothalamic outcomes after neonatal overfeeding (Spencer and 

Tilbrook 2009) suggests a similarity to male responses cannot be assumed for 

females. We therefore aimed to determine if neonatal overfeeding-induced 

hyperleptinemia would compromise hypothalamic connectivity and hypothalamic 

responsiveness to leptin in females as it does in males.  
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Materials and Methods  

4.1.1 Animals 

In these experiments time-mated pregnant Wistar rats were used, obtained from the 

Animal Resources Centre, WA, Australia. On arrival at the RMIT University Animal 

Facility at day 14-16 of gestation, they were housed at 22 °C, 12 hr light/dark cycle 

(0700 – 1900 hr). Ad libitum pelleted standard rat chow and water was provided to 

them. All procedures described here were conducted in accordance with National 

Health and Medical Research Council Australia Code of Practice for the Care of 

Experimental Animals and the RMIT University Animal Ethics Committee approval. 

 

4.1.2 Litter size manipulation  

As previously described in Chapter 2: Materials and Methods “Litter size 

Manipulation” and (Smith and Spencer 2012; Spencer and Tilbrook 2009; Stefanidis 

and Spencer 2012) manipulation of litter sizes was performed. Experimental animals 

were culled at P7, P12 or P14. Only females were used in the experiments described 

here. Data from the males of the same litters were used in other publications 

(Sominsky, Ziko, et al. 2017; Sominsky, Ziko, Nguyen, et al. 2016). All experimental 

groups were derived from three or more litters, using a maximum of two pups from 

the same litter for an experimental treatment to control for maternal effects (Spencer 

and Meyer 2017).  

 

4.1.3 Effects of neonatal overfeeding on neonatal circulating leptin and 

triglycerides  

On P7 or P14 the animals were rapidly decapitated and trunk blood was collected for 

later assessment of plasma leptin and triglycerides. Whole blood was collected in 
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EDTA-coated tubes, kept on ice and quickly centrifuged to separate the plasma. The 

plasma samples were aliquoted and stored at -20 °C avoiding freeze-thaw cycles until 

use.  

 

To determine leptin concentrations in our samples a standard commercial leptin 

ELISA was performed, following the manufacturer’s instructions (Millipore, 

Ballerica, MA, USA). Intra-assay variability was 1.9-2.5% CV, inter-assay variability 

3.0-3.9% CV, and lower limit of detection 0.04 ng/mL. All compared samples were 

assayed in duplicate and processed in the same assay.  

 

To determine triglyceride concentration in our samples a triglyceride assay (Cayman, 

Ann Arbor, MI, USA) was performed according to the manufacturer’s instructions. 

Intra-assay coefficient of variation was 1.34%, inter-assay coefficient of variation was 

3.17% and the lower limit of detection for this assay was 0.5 mg/dL. All samples 

were assessed in duplicate and under the same conditions. (This ELISA was 

conducted by Dr Simone De Luca from samples generated by me). 

 

4.1.4 Effects of neonatal overfeeding on hypothalamic gene expression 

Quantitative real-time PCR (qRT-PCR) was used in order to assess whether neonatal 

overfeeding alters hypothalamic gene expression of the neuropeptide Y (Npy), agouti 

related peptide (Agrp), proopiomelanocortin (Pomc) or leptin receptor (Lepr) in the 

arcuate nucleus of the hypothalamus (ARC) and hypothalamus from the animals 

described above (See Table 4.1 for primer details). These methods are extensively 

described in Chapter 2 (Materials and Methods: “Effects of neonatal overfeeding on 

hypothalamic gene expression”). Since POMC cell bodies are found exclusively in 



 

 91 

two central nervous system (CNS) nuclei, the ARC and the nucleus tractus solitarius 

(Joseph, Pilcher, and Bennett-Clarke 1983; Cone 2005), POMC gene expression was 

not examined in the hypothalamic tissue that did not contain the ARC.  

 

Table 4.1 Primer details for quantitative real-time PCR. 
 
Primer name NCBI Reference Sequence TaqMan Assay ID Product size 

Actb NM_031144.2 4352340E 91 

Lepr NM_012596 Rn01433205_ml 94 

Npy NM_012614.2 Rn00561681_m1 63 

Agrp NM_033650.1 Rn01431703_g1 67 

Pomc NM_139326.2  Rn00595020_m1 92 
 

 

4.1.5 Neuronal activation in response to exogenous leptin  

To assess if neonatal overfeeding influences the ability of the hypothalamus to 

respond to circulating leptin, neuronal activation in response to 3 mg/kg i.p. leptin or 

an equivalent volume of 0.9% sterile saline at P12 was assessed. Pups were weighed 

immediately before and 45 min after injection. For immunohistochemistry and 

analysis of phosphorylated signal transducer and activator of transcription 3 

(pSTAT3) as a marker of leptin-induced neuronal activation, NPY, AgRP and POMC 

please see Chapter 2: Materials and Methods: “Brain collection” and 

“Immunohistochemistry”. pSTAT3 immunohistochemistry and cell counts were 

performed by Ms Thai Xinh Nguyen as part of her Honours project from sections 

generated by me and under my supervision and training. In order to exclude POMC 

cytoplasmic labelling from the fibre density analysis, area restriction was applied. 
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This allows for the NIS program to exclude labeling of any objects that were larger 

than the fibres.  

 

4.1.6 Data analysis 

All data were analysed using multi-factorial analyses of variance (ANOVA)s with 

neonatal nutritional environment (CL/SL) and age (P7/14) or leptin treatment 

(saline/leptin) as between factors. Where significant interactions were found, we then 

performed Tukey post hoc tests. Immunoreactivity results were analysed with 

Student’s unpaired t-tests. Data are presented as the mean ± SEM. Statistical 

significance was assumed when p ≤ 0.05. All data were tested for homogeneity of 

variance and normality, using the Levene’s test for Equality of Variance and the 

Shapiro-Wilks test, respectively, complemented by the assessment of skewness and 

kurtosis. These assessments and all other statistical analyses were conducted using 

SPSS. Outliers were determined using the Grubbs’ test (α = 0.05) in GraphPad Prism. 

 

Results  

4.1.7 Neonatal overfeeding leads to accelerated weight gain 

In this cohort of rats, neonatal overfeeding led to early weight gain. Neonatally 

overfed (SL) female rats were thus significantly heavier than controls (CL; significant 

age by litter size interaction: F(1, 32) = 30.37, p < 0.001; n = 8-10; Figure 4.1 A). Post 

hoc analyses indicated that by P14 the SL were significantly heavier than CL. These 

findings are similar to those in males (as in Chapter 2: Figure 2.1) and to our 

previously published data in females (Smith and Spencer 2012; Spencer and Tilbrook 

2009; Stefanidis and Spencer 2012).  
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4.1.8 Neonatal overfeeding effects on circulating leptin 

We have previously seen that circulating leptin levels are higher in neonatally overfed 

than in control female (and male) rats during the neonatal period, and into adulthood 

(Stefanidis and Spencer 2012; Sominsky, Ziko, et al. 2017; Sominsky, Ziko, Soch, et 

al. 2016) and we replicated the neonatal findings here (significant effect of litter size: 

F (1, 20) = 25.35, p < 0.001; significant effect of age: F (1, 20) = 6.01, p = 0.024, n = 6 per 

group, Figure 4.1 B). 

 

Figure 4.1 Effects of neonatal overfeeding on the neonatal leptin system.  
(A) Body weights of control (CL) and small litter (SL) rats at postnatal day (P) 7 and 
14. (B) Plasma leptin concentrations at P7 and P14. Data are mean ±S.E.M. n = 6 – 11 
per group. * Tukey’s post hoc. # significant main effect of litter size. $ significant 
main effect of age. p < 0.05.  

 

4.1.9 Neonatal overfeeding effects on neonatal hypothalamic feeding-

related gene expression  

Neonatal overfeeding did not affect the hypothalamic satiety-related genes measured 

here. However, significant age-related changes in these genes were observed. 

Expression of Lepr mRNA was significantly increased at P14 compared to P7 in the 

ARC (significant effect of age: F(1, 21) = 23.07, p < 0.001; n = 5-6; Figure 4.2 A) and 

the hypothalamus (significant effect of age: F(1, 21) = 13.83, p < 0.001; n =5-7; Figure 

4.2 B) in both groups. Npy mRNA expression in the ARC was not affected by 

0

5

10

15

20

25
L

ep
ti

n
 n

g
/m

L

0

5

10

15

20

25

30

35

40

W
ei

g
h

t 
(g

)

A B 
* 

* 

#$ 

  CL              SL            CL            SL 
           P7                               P14 

CL            SL             CL            SL 
        P7                              P14 

* 



 

 94 

neonatal overfeeding, but it was significantly increased at P14 compared to P7 

(significant effect of age: F(1, 19) = 5.84, p = 0.026; n = 5-6; Figure 4.2 C). In the 

hypothalamus, neonatal overfeeding had no effect on Npy expression (Figure 4.2 D). 

Agrp mRNA expression in the ARC was not affected by neonatal overfeeding, 

however, like Npy, it was significantly increased at P14 compared to P7 (significant 

effect of age: F(1, 19) = 12.86, p = 0.002; n =5-6; Figure 4.2 E). Neonatal overfeeding 

also did not affect Pomc mRNA expression in the ARC. However, again, there was a 

significant increase of Pomc mRNA in P14 ARC compared to P7 (significant effect of 

age: F(1, 17) = 6.16, p = 0.024; n = 5-6; Figure 4.2 F).  
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Figure 4.2 Neonatal overfeeding effects on neonatal hypothalamic feeding-
related gene expression.  
(A) Leptin receptor expression in the arcuate nucleus of the hypothalamus (ARC) and 
(B) hypothalamus (HY) of control (CL) and small litter (SL) rats at postnatal day (P) 
7 and P14. (C) Neuropeptide Y (NPY) gene expression in the ARC and (D) in the 
HY. (E) Agouti-related peptide (AgRP) gene expression in the ARC. (F) Pro-
opiomelanocortin (POMC) gene expression in the ARC. Data are mean ± S.E.M. n = 
5 – 6 per group. $ significant main effect of age. p < 0.05. 
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4.1.10 Neonatal overfeeding effects on neonatal hypothalamic NPY, AgRP, 

POMC 

To determine if the elevated leptin in neonatally overfed females was associated with 

a disruption of hypothalamic NPY, AgRP and POMC as previously described in 

males (Sominsky, Ziko, et al. 2017), we examined NPY fibres (ARC: Figure 4.3 A, B, 

PVN: Figure 4.3 C, D), AgRP fibres (ARC: Figure 4.3 E, F, PVN: Figure 4.3 G, H), 

POMC positive cells in the ARC (Figure 4.3 I, J) and POMC fibres in the PVN 

(Figure 4.3 K, L) at P12. Neonatal overfeeding did not affect NPY, AgRP and POMC 

immunoreactive fibres or POMC immunoreactive cells in these regions (n = 5-6 per 

group).  
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Figure 4.3 Neonatal overfeeding effects on neonatal hypothalamic circuitry.  
(A, B) Neuropeptide Y (NPY) labelling in the arcuate nucleus of the hypothalamus 
(ARC) and (C, D) paraventricular nucleus of the hypothalamus (PVN) of control (CL) 
and small litter (SL) rats at postnatal day (P) 12. (E, F) Agouti-related peptide (AgRP) 
labelling in the ARC and (G, H) PVN. (I, J) Proopiomelanocortin (POMC) positive 
cells in the ARC. (K, L) POMC labelling in the PVN. Representative 
photomicrographs showing NPY labelling in the (B) ARC and (D) PVN, AgRP 
labelling in the (F) ARC and (H) PVN, POMC labelling in the (J) ARC and (L) PVN. 
Scale bars = 100 µm. Data are mean ± S.E.M. n = 5 – 6 per group. 
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4.1.11 Neonatal overfeeding effects on neonatal hypothalamic responses to 

leptin 

We next tested if neonatal overfeeding alters the ability of the neonatal hypothalamus 

to respond to a leptin signal by giving the pups a single injection of leptin or saline on 

P12 and measuring weight changes as well as hypothalamic pSTAT3 expression. 

Leptin stimulated an increase in the number of pStat3 positive cells in the ARC, as 

expected (F (1, 17) = 101.30, p < 0.001; n = 5-6). There was also a significant increase 

in the number of pStat3 positive cells in the ARC by litter size (main effect of litter 

size (F(1, 17) = 7.36, p = 0.015; Figure 4.4 A, D) but no interaction. In the ventromedial 

hypothalamus (VMH) however, leptin injection also induced a significant increase in 

pSTAT3 positive cells (main effect of leptin: F(1, 17) = 42.84, p < 0.001; n = 5-6; 

Figure 4.4 B, E).  
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Figure 4.4 Neonatal overfeeding effects on neonatal hypothalamic responses to 
leptin.  
(A) Arcuate nucleus of the hypothalamus (ARC) and (B) ventromedial hypothalamus 
(VMH) neuronal activation in response to leptin injection at postnatal day (P) 12 in 
control (CL) and small litter (SL) rats as assessed by numbers of signal transducer and 
activator of transcription (pSTAT3) positive cells. The sum of cell counts in four 
sections was plotted. (C) Schematic diagram adapted from Paxinos and Watson 
illustrating the regions of interest (Paxinos and Watson 2009). Thick-line boxes are 
representative of analysed regions, dotted-line boxes are representative of the 
photomicrographs. Representative photomicrographs of pSTAT3 after a saline or 
leptin injection in the (D) ARC (scale bars = 100 µm) and (E) VMH (scale bars = 200 
µm). Data are mean ± S.E.M. n = 5 – 6 per group. # significant main effect of litter 
size. % significant main effect of leptin. p < 0.05. 
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Since neonatal overfeeding has minimal effects on hypothalamic feeding circuitry in 

female rats despite inducing pronounced neonatal hyperleptinemia we next examined 

circulating triglyceride levels. Triglycerides have been shown to mediate leptin 
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transport to the brain and thus reduce the effects of hyperleptinemia. In this regard, 

neonatal overfeeding led to an increase in circulating triglyceride levels (significant 

effect of litter size: F (1, 20) = 5.43, p = 0.030; n = 6 per group, Figure 4.5), without a 

main effect of age.  

 
Figure 4.5 Neonatal overfeeding effects on neonatal circulating triglycerides.  
Plasma triglyceride concentration at P7 and P14. Data are mean ± S.E.M. n = 6 – 10 
per group. # significant main effect of litter size. p < 0.05. 

 

Discussion 

The early life nutritional environment plays a crucial role in metabolism and 

neurodevelopment. Here, for the first time, we show that neonatal overfeeding in 

females, despite hyperleptinemia and a corresponding increased body weight, does 

not affect NPY, AgRP and POMC mRNA or protein in the hypothalamic circuitry 

responsible for feeding and metabolic control. These observations are different from 

findings previously shown in neonatally overfed males, where overfeeding leading to 

hyperleptinemia and increased body weight are associated with early life disruption of 

hypothalamic neuronal wiring responsible for metabolic regulation (Sominsky, Ziko, 

et al. 2017; Collden et al. 2015). 

 

Naturally occurring high circulating levels of leptin are seen at approximately P4 to 

P16 in mice (Ahima and Hileman 2000) and P4 to P14 in rats (Cottrell et al. 2009) 
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with a peak at P10 (Delahaye et al. 2008). They then decrease towards adult levels 

after weaning (Ahima, Prabakaran, and Flier 1998). Such an increase in leptin levels 

is not associated with acute changes in food intake, but is reflective of leptin’s 

neurodevelopmental role in stimulating the growth of hypothalamic connections 

between the ARC and other hypothalamic regions that are ultimately responsible for 

controlling energy balance (Bouret, Draper, and Simerly 2004b). Disruptions to this 

leptin surge can permanently impact upon the development of these hypothalamic 

connections and lead to aberrant feeding behaviour and metabolism throughout life 

(Bouret, Draper, and Simerly 2004a, 2004b). Being suckled in a small litter during the 

first three weeks of life in mice and rats can similarly disrupt hypothalamic circuitry. 

Thus, early life overfeeding increases body weight, fat mass, and circulating leptin in 

comparison to the normally-fed. In males, this hyperleptinemia is associated with a 

disruption in NPY and AgRP fibres and leads to an obese phenotype that is 

maintained throughout life (Stefanidis and Spencer 2012; Plagemann, Harder, Rake, 

et al. 1999; Plagemann et al. 2009; Lopez et al. 2007).  

 

It is important to note that most of the current knowledge in regards to the effects of 

postnatal overfeeding on hypothalamic neuronal development derives from 

observations in male rodents. However, changes in the neonatal leptin availability as a 

result of overfeeding appear to induce sex-dependent effects on the development of 

hypothalamic neuronal connectivity. We observe here that in females, similarly to 

males, neonatal overfeeding is associated with exacerbated hyperleptinemia during 

the neonatal leptin surge period, and this is followed by an increase in body weight. 

However, neonatally overfed females are still responsive to leptin and, importantly, 

there is no effect of female neonatal overfeeding on the mRNA levels of the leptin 
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receptor, or in gene or protein expression of NPY, AgRP, or POMC in the 

hypothalamus. The ARC of small litter animals showed decreased sensitivity to 

leptin, although there was no interaction between litter size and leptin. However, the 

magnitude of this difference is small, of the order of 15% of the response in the case 

of the leptin-treated. We also do not see this difference in the VMH. Is observed here 

that neonatally overfed females have increased circulating triglyceride levels relative 

to controls. It is thus possible that hyperleptinemia in females is compensated for by 

elevated blood triglycerides restricting leptin’s access to the brain in the neonatally 

overfed (Banks et al. 2004), which may also account for the minor reduction in the 

number of pSTAT3 positive cells in the ARC of these animals. However, this 

observation does not explain why males are not also resistant to the effects of excess 

leptin, since we would expect males to also have increased circulating triglyceride 

levels when neonatally overfed. There is some evidence of sex differences in 

triglyceride levels in adults after an early food restriction. For instance, there are 

elevated triglycerides in perinatally food-restricted females relative to males (Lee et 

al. 2013), while other perinatal insults, such as maternal deprivation, have been shown 

to increase circulating triglycerides in adult males, but decrease them in females 

(Mela et al. 2016). However, no direct sex comparison has yet been made during the 

neonatal phase. 

 

Previous results from our group have demonstrated sex differences in the way that 

neonatally overfed rats control energy expenditure. Female rats that are overfed as 

neonates remain obese into adulthood and they do this not by overeating, but by 

reducing energy expenditure, probably due to reduced activation of brown adipose 

tissue (BAT) during the first half of the dark phase (Stefanidis and Spencer 2012). 



 

 103 

BAT is responsible for the conversion of energy from food into heat primarily via 

uncoupling protein in mitochondria (Commins et al. 1999), and neonatally overfed 

females are unable to optimally convert BAT into energy and show reduced energy 

consumption at the juvenile stage, with normalisation of function in adulthood. BAT 

uncoupling protein is capable of short-circuiting the electron transport chain and 

allowing for conversion of mitochondrial membrane potential to heat. This disruption 

of BAT function at the juvenile stage is not evident in the neonatally overfed males 

(Stefanidis and Spencer 2012). BAT thermogenesis is reduced in neonatally overfed 

females until P30 but by adulthood BAT thermogenesis normalises to controls levels 

(Stefanidis and Spencer 2012); a possible explanation for how these females retain an 

elevated body weight without any changes in their hypothalamic feeding networks.  

 

Another potential reason for these sex-dependent effects of neonatal overfeeding may 

lie in the way the male and female brain is wired. Sex steroid hormones such as 

estrogen and testosterone, in combination with neurotrophins, regulate formation of 

sexually dimorphic circuits by affecting axonal guidance and synaptogenesis 

(reviewed in (McCarthy and Arnold 2011)). Significant hormonal changes in the 

central nervous system in rodents happen partly due to the gonadal steroid hormones 

during sexual differentiation (Ikeda et al. 2003). For instance, sexually dimorphic 

nucleus, a cluster of cells in the preoptic area of the hypothalamus responsible for 

controlling sexual behaviour by affecting sex hormones such as testosterone and 

estrogens in rats, develops from as early as P1. By P8 this region is almost twice the 

size in males as that of females (reviewed in (He et al. 2013)). Conversely, the 

anteroventral periventricular nucleus, a region of the hypothalamus responsible for the 

pulsatile release of gonadotropin releasing hormone, covers a larger area and consists 
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of a larger number of neurons in females than in males (reviewed in (McCarthy and 

Arnold 2011)). Testosterone and estrogens influence energy homeostasis at least 

partially via hormone receptors, which are co-localised with hunger or satiety 

neuropeptides located in the hypothalamus (Frank, Brown, and Clegg 2014). This 

suggests that sexual dimorphism affects the development of hypothalamic regions that 

control energy balance, and thus may also be reflected in the differential effects of 

neonatal overfeeding on hypothalamic appetite-regulatory circuitry. 

 

Overall our results suggest females overfed during early life, despite being 

hyperleptinemic and experiencing an obesogenic phenotype, are not acutely affected 

in their central neuronal connectivity responsible for metabolic control. These results 

contrast with our and others’ previous findings in males. These findings are 

potentially reflective of differences in how females and males adapt to early life 

environmental dietary challenges. Our work further highlights that it is important not 

to assume female physiology from male data and that different physiological 

mechanisms may lead to a similar phenotypic outcome, in this case excess body 

weight. 
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Introduction 

In the previous chapters (Chapters 2-4) we showed that in males, an early life 

overnutritional environment was associated with peripheral and central alterations to 

the leptin and ghrelin systems. However, neonatally overfed females despite their 

obese phenotype, were not affected in terms of the central neuronal connectivity 

responsible for metabolic control. Despite these findings, the female hypothalamus is 

still likely to be vulnerable to early life challenge since we have previously shown 

that females exposed to an over-nutritional environment during the first weeks of life 

have exacerbated responses to psychological stress later in life. Notably, such 

responses are unaffected in males (Spencer and Tilbrook 2009).  

 

Both physical and psychological stressors rapidly activate the hypothalamic-pituitary-

adrenal (HPA) axis by stimulating release of corticotropin releasing hormone (CRH) 

from the paraventricular nucleus of the hypothalamus (PVN; the apex of the HPA 

axis). CRH stimulates the anterior pituitary into synthesizing adrenocorticotropic 

hormone (ACTH), which in return acts via melanocortin 2 receptors in the adrenal 

cortex to stimulate and secrete glucocorticoids such as corticosterone and cortisol in 

rodents and humans, respectively. Glucocorticoids negatively feed back at the 

hypothalamus, hippocampus and pituitary to inhibit secretion of CRH and ACTH and 

therefore stop further activation of the HPA axis (Papadimitriou and Priftis 2009). 

Human studies have shown that dysregulation of the HPA axis, especially during 

development, has been strongly linked to long-term disease risk (Reynolds 2013; 

Edwards et al. 1993). For instance, low birth weight due to an adverse prenatal 

environment is associated with increased HPA axis reactivity including increased 

morning cortisol levels, increased cortisol responses to ACTH challenge, 
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cardiovascular, metabolic and cognitive disorders long-term (Reynolds 2013; 

Reynolds et al. 2001). Moreover, girls and women are more likely to display greater 

stress reactivity than boys and men. As such, preterm females have higher morning 

cortisol levels compared to preterm and full-term males (Quesada et al. 2014). 

Likewise, in a study from Yong Ping et al, prenatal maternal stress programs greater 

stress responsivity, as evidenced by increased salivary cortisol after a brief maternal 

separation in female toddlers compared to male toddlers (Yong Ping et al. 2015). 

These findings indicate that it is particularly important to consider sex differences in 

HPA axis responses to stress. 

 

Ghrelin, along with its roles in regulating energy balance and neurodevelopment, has 

recently been shown to be involved in HPA axis regulation (as reviewed in (Spencer 

et al. 2015)). Ghrelin is modulated by exposure to stressful situations (Lutter et al. 

2008; Zheng et al. 2009). Under stress, circulating ghrelin levels are highly increased, 

possibly via sympathetic activation of gut ghrelin cells (Mundinger, Cummings, and 

Taborsky 2006). High ghrelin levels due to ghrelin subcutaneous injection or calorie 

restriction are associated with anxiolytic-like behaviours, which in turn may help the 

animals to cope with stress (Lutter et al. 2008; Spencer et al. 2012). Furthermore, 

ghrelin affects the HPA axis at all its levels. In the hypothalamus, ghrelin indirectly 

activates the PVN (Cabral et al. 2012); in the anterior pituitary we have shown that 

ghrelin stimulates ACTH release by recruiting the growth hormone secretagogue 

receptor (GHSR) (Spencer et al. 2012); and in the adrenal gland ghrelin enhances 

adrenal cortical cell proliferation (Andreis et al. 2003). 
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It remains largely unknown how the postnatal nutritional environment affects 

ghrelin’s ability to regulate the HPA axis during development and long-term and 

whether these effects are sex-dependent. We ((Sominsky, Ziko, Nguyen, et al. 2016) 

and Chapter 2) and others (Collden et al. 2015) have previously shown that neonatal 

overfeeding disrupts the ghrelin system in males. However, the effects of early life 

overnutrition on the ghrelin system and ghrelin’s ability to control the HPA axis in 

females are currently unknown. Here we hypothesised that neonatal overfeeding 

affects ghrelin’s ability to regulate the HPA axis in females and consequently their 

responses to stress. To test this hypothesis we assessed ghrelin’s ability to signal the 

hypothalamus and the pituitary gland in neonatally overfed female rats. We observed 

that neonatal overfeeding had no effect on ghrelin signaling in the hypothalamus, 

however it significantly suppressed the ability of ghrelin to stimulate the pituitary 

gland, which may be a contributing factor to the exacerbated HPA axis responses to 

stress we see in these females. 

 

Materials and methods  

5.1.1 Animals 

As described in Chapter 2, we obtained timed pregnant Wistar rats from the Animal 

Resources Centre, WA, Australia. On arrival at the RMIT University Animal Facility, 

we housed them at 22°C on a 12 hr light/dark cycle (07:00–19:00 h) and provided 

them with standard pelleted rat chow and water ad libitum. We conducted all 

procedures in accordance with the National Health and Medical Research Council 

Australia Code of Practice for the Care of Experimental Animals and RMIT 

University Animal Ethics Committee approval.  
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5.1.2 Litter size manipulation  

To derive our neonatally overfed animal model we performed manipulation of litter 

sizes as previously described in Chapter 2 (Materials and methods: “Litter size 

manipulation”). In this study, the animals were culled at postnatal day (P) 7, 12, 14 

and at ~P70. The animals that were allowed to grow to adulthood were separated into 

same sex littermate pairs at weaning (P21) and were fed a standard chow diet until 

experimentation. The experimental groups were derived from 3 or more litters. 

Females only were used in these experiments, results collected from males were 

published in (Sominsky, Ziko, Nguyen, et al. 2016) and reported in Chapters 2 and 3.   

 

5.1.3 Ghrelin assays  

Female animals were used in these experiments on P7, P14 and ~P70. Animals were 

euthanised and blood was collected and processed as previously described in Chapter 

3 (Materials and Methods: “Neonatal overfeeding effects on circulating ghrelin”).  

 

5.1.4 Real-time qPCR analysis  

To assess neonatal overfeeding effects on genes involved in ghrelin-sensitive central 

pathways we collected pituitaries and brains from which hypothalami were dissected. 

Samples were processed as previously described in Chapter 2 (Materials and 

Methods: “Effects of neonatal overfeeding on hypothalamic gene expression”) using 

the primers described in Table 5.1. 
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Table 5.1 Primer details for qRT-PCR 
 
Primer name NCBI Reference Sequence TaqMan Assay ID Product size 

18s X03205.1 4319413E 187 

Ghsr NM_032075.3 Rn00821417_m1 61 

Mboat4 NM_001107317.2 Rn02079102_s1 93 
 

 

5.1.5 Hypothalamic responsiveness to exogenous ghrelin  

To assess if neonatal overfeeding affects hypothalamic responsiveness to exogenous 

ghrelin, we injected 1 mg/kg of acyl ghrelin (AG), des-acyl ghrelin (DAG) or saline 

to control (CL) and small litter (SL) animals on P12. 2 hr post-injection the animals 

were deeply anaesthetized then transcardially perfused as previously described in 

Chapter 2 (Materials and methods: “Brain collection”) and the tissue was processed 

for c-Fos immunohistochemistry as described in Chapter 3 (Materials and Methods: 

“Neonatal overfeeding effects on neuronal activation in response to ghrelin c-Fos 

immunohistochemistry”).  

 

5.1.6 Neonatal overfeeding affects pituitary responses to AG and CRH in 

vitro 

To assess the in vitro effects of AG and CRH on the anterior pituitary release of GH 

and ACTH, we excised the anterior pituitaries from CL and SL adult female rats and 

stored them in ice-cold Dulbecco’s modified Eagle’s medium/Nutrient mixture F-12 

(DMEM/F-12; Thermo Fisher Scientific, Scoresby, Victoria, Australia) containing 

0.1% bovine serum albumin (BSA) until all tissues were collected. Each anterior 

pituitary was bisected, weighed and pre-incubated for two x 1 hr incubations in 1 mL 

of DMEM/F-12 at 37 °C in a 95% O2/5% CO2 atmosphere. After the pre-incubation 

period, we refreshed the medium and collected samples every 15 min for 1 hr to 
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obtain basal release profiles of growth hormone (GH) and ACTH from the anterior 

pituitary. To assess the pituitary responsiveness to secretagogue stimuli, AG (10-6 M) 

and CRH (100 ng/mL)-containing media were added in the second fraction. After 

each 15 min interval, the medium was collected and stored at -20 °C until assayed. 

GH and ACTH levels were assessed by ELISAs following the manufacturers’ 

instructions. Intra assay variability for the GH ELISA (Millipore, Ballerica, MA, 

USA) was 1.7 - 4.3% coefficient of variation (CV), inter assay variability was 3.2 – 

4.9% CV and the lowest level of detection was 0.07 ng/mL. For the ACTH ELISA 

(MD Biosciences, St. Paul, MN, USA), intra-assay variability was 3.1 - 4.2% CV, 

inter-assay variability, 5.8 - 6.2% CV, and lowest limit of detection, 0.46 pg/mL. 

Samples from all treatment groups were assayed together in duplicate. Data are 

expressed as percentage of the basal ACTH or GH secretion as measured at the end of 

the first 15 min period, and set to 100% as previously described in (Cai et al. 2016) 

and Figure 5.1 (Dr Luba Sominsky assisted me with running the in vitro studies and 

she conducted the ELISAs, which were analysed by me).  
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Figure 5.1 Study design.  
At postnatal day (P) 0 litter size manipulation was conducted and 12 pups (6 males 
and 6 females) were allocated to dams to form a control litter and 4 pups (2 males and 
2 females) to serve as a small litter. Only female offspring were used in this study. At 
P7, P14 and ~P70 circulating ghrelin concentration, hypothalamic and pituitary 
mRNA expression of growth hormone secretagogue receptor (Ghsr) and ghrelin O-
acyl transferase (Goat) were measured in CL and SL animals. At P12, hypothalamic 
responsiveness to exogenous acyl ghrelin (AG), des acyl ghrelin (DAG) or saline was 
assessed. Another cohort of CL and SL adult animals was used for the in vitro study. 
After collection of fraction 1 (0 min), pituitaries were either stimulated with 
corticotropin releasing hormone (CRH: 10-10 M) or AG (10-6 M); or left unstimulated 
with media only being refreshed and collected every 15 min. Pituitary growth 
hormone (GH) and adrenocorticotropic hormone (ACTH) secretion were measured in 
the media collected every 15 min (for 45 min). 
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5.1.7 Data analysis  

Neonatal and adult data were analysed separately in this study. Neonatal overfeeding 

effects on ghrelin, gene expression and hypothalamic responses to ghrelin in early life 

were analysed using multifactorial analysis of variance (ANOVA)s with litter size 

(CL/SL), age (P7/P14) or treatment (saline/ghrelin) as between factors where 

appropriate. At P12 data analysis was conducted using Student’s unpaired t-tests. For 

adults we used Student’s unpaired t-tests or two-way ANOVAs. When significant 

interactions were found, Tukey post hoc tests were performed. p values of less than 

0.05 were considered to be statistically significant. We used repeated measures 

ANOVAs to analyse in vitro pituitary GH and ACTH with AG/CRH and litter size as 

between factors, and time as the repeated measure. When the assumption of sphericity 

was violated, we used the Greenhouse-Geisser correction. A Bonferroni correction 

was applied to adjust for multiple comparisons. We followed this analysis by two-way 

ANOVA and Tukey post hoc tests, where significant interactions were found (p < 

0.05). Data are presented as the mean ± SEM. All data were tested for homogeneity of 

variance and normality, using the Levene’s test for Equality of Variance and the 

Shapiro-Wilks test, respectively, complemented by the assessment of skewness and 

kurtosis. These assessments and all other statistical analyses were conducted using 

SPSS. Outliers were determined using the Grubbs’ test (α = 0.05) in GraphPad Prism. 

 

Results  

5.1.8 Neonatal overfeeding effects on the female ghrelin system in early life 

It has been previously demonstrated in females and males ((Spencer and Tilbrook 

2009; Stefanidis and Spencer 2012; Sominsky, Ziko, Soch, et al. 2016) and Chapter 2, 

3 and 4), and here that neonatal overfeeding is associated with significantly increased 
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body weight at P12 (t(9) = 3.89, p = 0.004, Figure 5.2 A). However, no effects of 

neonatal overfeeding on circulating total, AG or DAG levels were observed in P7 or 

P14 female pups. There was a significant litter size by age interaction so that P14 

control, but not neonatally overfed animals had increased DAG levels compared to P7 

(significant litter size by age interaction, F(1,26) = 4.48, p = 0.044, Figure 5.2 D). 

Neonatal overfeeding did not affect the hypothalamic gene expression of growth 

hormone secretagogue receptor (Ghsr) or ghrelin O-acyl transferase (Goat; Figure 5.2 

F). However, there was an increase in Ghsr expression on P14 compared to P7, 

irrespective of litter size (significant effect of age; F(1,27) = 42.82, p < 0.001, Figure 

5.2 E).  
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Figure 5.2 Neonatal overfeeding effects on ghrelin system short-term.  
(A) Body weights in control (CL) and small litter (SL) female animals at P12. (B) 
Circulating total ghrelin, (C) acyl ghrelin and (D) des-acyl ghrelin at postnatal day (P) 
7 and P14 in CL and SL animals. Hypothalamic gene expression of (E) growth 
hormone secretagogue receptor (Ghsr) and (F) ghrelin O-acyl transferase (Goat) in 
CL and SL animals at P7 and P14. Data are mean ± SEM. * p < 0.05. n = 5 – 8 per 
group. 
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ARC neuronal activation as shown by similar numbers of c-Fos positive cells 

activated in the ARC of CL and SL animals in response to exogenous ghrelin (Figure 

5.3 A). In the PVN, neonatal overfeeding also failed to affect hypothalamic 

responsiveness to exogenous ghrelin, however AG (significant effect of ghrelin; F(2,31) 

= 16.45, p < 0.001), but not DAG, induced a significant increase in neuronal 

activation compared to saline and DAG injected animals, irrespective of litter size 

(Figure 5.3 B, C). It is important to note that here was used the same AG dosage that 

induced a significant increase in PVN neuronal activation in SL males compared to 

CL males (Chapter 3, Figure 3.3 B).  

 

 

Figure 5.3 Early life overfeeding effects on hypothalamic responsiveness to 
exogenous acyl ghrelin (AG), des-acyl ghrelin (DAG) or saline.  
Number of c-Fos positive cells activated by AG, DAG or saline in control (CL) and 
small litter (SL) females at postnatal day (P) 12 in the (A) arcuate nucleus of the 
hypothalamus (ARC) and (B) paraventricular nucleus of the hypothalamus (PVN). 
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(C) Photomicrographs of the PVN. Scale bar = 100 μm. Data are mean ± SEM. * p < 
0.05. 

 

5.1.9 Long-term effects of neonatal overfeeding on the ghrelin system in 

females 

To assess peripheral and central effects of neonatal overfeeding on the ghrelin system 

long-term we measured circulating ghrelin, hypothalamic gene expression of Ghsr 

and Goat, as well as body weights. Neonatal overfeeding did not affect circulating 

ghrelin levels in adult females (Figure 5.4 A) or hypothalamic Ghsr and Goat gene 

expression (Figure 5.4 B, C). However, the body weight of neonatally overfed 

animals remained significantly increased in adulthood relative to controls (t(10) = 4.36, 

p = 0.001; Figure 5.4 D). These results indicate that long-term increased body weight 

with neonatal overfeeding is not likely due to the central ghrelin effects.  
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Figure 5.4 Long-term effects of neonatal overfeeding on the ghrelin system.  
(A) Circulating total, acyl and des-acyl ghrelin in control (CL) and small litter (SL) 
female adult rats. Gene expression of hypothalamic (B) growth hormone secretagogue 
receptor (Ghsr) and (C) ghrelin O-acyl transferase (Goat) of CL and SL animals. (D) 
Body weights of CL and SL adult females. Data are mean ± SEM. * p < 0.05. n = 5 – 
7 per group. 

 

5.1.10 Acute and long-term effects of neonatal overfeeding on pituitary 

ghrelin signaling  

To assess overfeeding effects on ghrelin signaling at the pituitary level we measured 

gene expression of pituitary Ghsr and Goat. In the juveniles, was observed that 

neonatal overfeeding significantly increased pituitary Ghsr at P14 relative to normal 

feeding (significant effect of litter; F(1,25) = 6.89, p = 0.015, Figure 5.5 A). There was 

no effect of overfeeding on pituitary Goat gene expression in juveniles (Figure 5.5 B). 

In the adults, neonatal overfeeding significantly suppressed pituitary Ghsr (t(12) = 

2.29, p = 0.041, Figure 5.5 C) and Goat (t(12) = 2.61, p = 0.023, Figure 5.5 D) gene 
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expression. These results indicate that females that are overfed during the neonatal 

period may have a suppressed ability to respond to ghrelin at the pituitary level in 

adulthood. 

 

 

Figure 5.5 Acute and long-term effects of neonatal overfeeding on potential for 
pituitary ghrelin signaling.  
Pituitary (A) growth hormone secretagogue receptor (Ghsr) and (B) ghrelin O-acyl 
transferase (Goat) gene expression at postnatal day (P) 7 and P14 of control (CL) and 
small litter (SL) female rats. Adult Ghsr (C) and Goat (D) gene expression at the 
pituitary of CL and SL rats. Data are mean ± SEM. * p < 0.05. n = 5 – 8 per group. 
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To test whether neonatal overfeeding affects the ability of the pituitary to release GH 

and ACTH, we first measured GH and ACTH release from CL and SL non-stimulated 
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0.0

0.2

0.4

0.6

0.8

1.0

G
o

at
 m

R
N

A
(f

o
ld

 c
h

an
g

e)

0.0

0.5

1.0

1.5

2.0

2.5

G
h

sr
 m

R
N

A
(f

o
ld

 c
h

an
g

e)

0

1

2

3

G
o

at
 m

R
N

A
(f

o
ld

 c
h

an
g

e)
0

1

2

3

4

5

G
h

sr
 m

R
N

A
(f

o
ld

 c
h

an
g

e)

A - pituitary B - pituitary 
* 

C - pituitary 

* 

D - pituitary 
* 

CL       SL       CL       SL 
      P7                   P 14 

  CL                SL   CL               SL 

CL       SL      CL       SL 
      P7                  P14 



 

 120 

When stimulated with AG, CL and SL pituitaries again released similar levels of GH 

(Figure 5.6 C). However, pituitaries from neonatally overfed rats that were stimulated 

with AG showed significantly suppressed levels of ACTH secretion at 15 and 30 min 

time-points relative to controls given AG (Figure 5.6 D), a suppression that was not 

observed after stimulation with CRH (Figure 5.6 E). The above results indicate that 

neonatal overfeeding affects the pituitary’s ability to respond to AG without affecting 

its responses to CRH.  
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Figure 5.6 Neonatal overfeeding effects on adult female pituitary responsiveness 
to acyl ghrelin (AG) and corticotropic-releasing hormone (CRH).  
(A) Pituitary growth hormone (GH) release under basal conditions from control litter 
(CL) and small litter (SL) animals. (B) Basal adrenocorticotropic hormone (ACTH) 
release from pituitaries of CL and SL animals. (C) AG-induced GH release from CL 
and SL pituitaries. (D) AG-induced ACTH release from CL and SL pituitaries. (E) 
CRH-induced ACTH release from CL and SL pituitaries. Data are mean ± SEM. * p < 
0.05. n = 4 – 11 per group. 
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Discussion 

We have shown in this study that neonatal overfeeding in females, in contrast to 

findings previously shown in males, did not affect circulating ghrelin or the 

hypothalamic responsiveness to exogenous ghrelin in the neonatal or adult periods. 

However it alters long-term pituitary Ghsr and Goat expression. In an in vitro setting, 

neonatal overfeeding did not affect basal or AG-stimulated GH secretion from the 

pituitary. It also did not affect basal or CRH-induced ACTH secretion. However, 

neonatal overfeeding significantly suppressed pituitary ACTH’s responsiveness to 

AG indicating that early life nutritional environment permanently affects the female 

pituitary ghrelin system and consequently ghrelin-induced HPA axis function.  

 

Ghrelin, traditionally known for its role in centrally controlling energy metabolism, is 

the only peripherally produced peptide that induces feeding (Nakazato et al. 2001; 

Wren et al. 2001). It does this, in part, by centrally activating ARC NPY/AgRP 

neurons via GHSR expressed by these neurons, and inactivating POMC/CART by 

initiating gamma-aminobutyric acid (GABA) release from NPY/AgRP/GABA 

neurons. GABA directly inhibits nearby POMC/CART neurons (reviewed in 

(Edwards and Abizaid 2017)). Ghrelin also induces feeding by acting at the PVN, 

where it initiates AgRP secretion, which antagonizes α-melanocyte-stimulating 

hormone (α-MSH) and β-MSH at melanocortin receptors to abolish anorectic effects 

from this region (Aponte, Atasoy, and Sternson 2011). Cabral et al. have 

demonstrated that ghrelin indirectly activates PVN CRH neurons, which lack GHSR, 

consequently activating the HPA axis (Cabral et al. 2012). The mechanism by which 

ghrelin activates PVN CRH neurons does not necessarily require an intact ARC 

(Cabral et al. 2016). Studies from our group and others have shown that neonatal 
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overfeeding at least in males is associated with a disruption of hypothalamic Ghsr 

expression (Soares et al. 2012; Collden et al. 2015; Sominsky, Ziko, Nguyen, et al. 

2016). In the present study we show that neonatally overfed females however, in 

contrast to males, display similar hypothalamic Ghsr and Goat expression compared 

to normally fed animals, further emphasizing that there are sex-dependent effects of 

neonatal overfeeding on the ghrelin system and that females are resistant to the 

ghrelin-perturbing effects of this early life diet, at least in terms of the hypothalamic 

appetite regulatory circuitry.  

 

The early life nutritional environment is crucial not only for regulating metabolic 

programming but, also anxiety and stress responses later in life (Delpierre et al. 

2016). We have previously observed that neonatal overfeeding affects anxiety and 

stress responses with overfed females exhibiting reduced anxiety and increased 

responses to restraint stress compared to normally fed counterparts (Spencer and 

Tilbrook 2009). We have also shown that under stress conditions ghrelin specifically 

stimulates pituitary ACTH release in order to activate HPA axis to consequently 

suppress stress and anxiety (Spencer et al. 2012). Ghrelin’s role in the HPA axis 

regulation, including after exposure to stress, implies that any abnormality in the 

ghrelin system may be a contributor to the abnormal functioning of the HPA axis 

(Spencer et al. 2012; Patterson et al. 2013). Ghrelin stimulates secretion of hormones 

involved in the stress response, including ACTH and glucocorticoids. In humans and 

rodents, ghrelin stimulates ACTH and glucocorticoid release, indicating it has effects 

on both the pituitary (Spencer et al. 2012; Shimon, Yan, and Melmed 1998) and 

adrenal glands (Barreiro et al. 2002; Rucinski et al. 2009; Andreis et al. 2003). The 

mechanisms by which ghrelin affects stress, anxiety and mood disorders remain to be 
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fully elucidated. In this regard, recent work from Goosens’ laboratory demonstrates 

that ghrelin and its stress-induced increased circulating levels are involved in stress-

associated fear learning. Interestingly, stress-induced increase in ghrelin, specifically 

AG, persists long after the cessation of the stress exposure, in both rodents and 

humans. These elevated AG levels in turn mediate prolonged susceptibility to 

exhibiting stress-enhanced fear behaviours (Yousufzai et al. 2018). These fear-

enhancing actions of AG are likely to occur in the amygdala and are independent of 

the traditional HPA axis activation (Meyer et al. 2014). Another possible mechanism 

through which ghrelin is likely to modulate stress-related behaviours is through its 

potential dual role in promoting neophobia under conditions of positive energy 

balance (i.e. under low ghrelin levels), and anxiolytic effects at high concentrations 

(Spencer et al. 2012; Lutter et al. 2008). This adaptation might occur in order to 

promote food-seeking behaviour when food is scarce and minimize exploratory 

behaviour when not necessary. In the current study we observe that neonatal 

overfeeding significantly alters pituitary Ghsr and Goat expression. It exacerbates 

Ghsr during the second week after birth, and then significantly suppresses both 

pituitary Ghsr and Goat expression in adulthood. While we have not assessed stress-

induced changes in ghrelin or stress responsivity in the current study, these findings 

suggest that our previously reported exacerbated PVN responses to restraint stress in 

neonatally overfed females (Spencer and Tilbrook 2009) could at least partly be due 

to the suppressed ability of the pituitary to respond to stress-induced ghrelin and 

hence diminished HPA axis negative feedback.  

 

A number of studies have demonstrated sexual dimorphism in circulating ghrelin 

levels, with females having higher ghrelin than males and ghrelin levels being 
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inversely related to body mass index (BMI) in girls/women, but not in boys/men 

(Soriano-Guillen et al. 2016; Makovey et al. 2007). In animal studies, fasting induces 

higher ghrelin levels in female adult rats compared to males (Gayle et al. 2006). In 

terms of the impact of the early life environment on the ghrelin system, little is known 

about the influences of sex. In male rats, studies have revealed that early life 

overnutrition greatly affects circulating ghrelin (Soares et al. 2012; Collden et al. 

2015; Sominsky, Ziko, Nguyen, et al. 2016), but such studies have not been reported 

in females. Interestingly, we observe here that neonatal overfeeding in females has no 

effect on the levels of any of the forms of circulating ghrelin (AG or DAG).  

 

Exposure to nutritional challenges during early life development is associated with 

long-term complications including metabolic diseases in both sexes (reviewed in 

(Dearden, Bouret, and Ozanne 2018)). However, females in particular are more likely 

to experience increased adiposity as well as anxiety behaviours compared to males 

(Sullivan et al. 2010; Samuelsson et al. 2013; Oostvogels et al. 2017). As reviewed in 

(Carpenter, Grecian, and Reynolds 2017), not only nutrition but also stress during 

prenatal life in humans is associated with altered HPA axis responses to stress in a 

sex-specific manner, with females being more vulnerable than males to stressors later 

in life. As such, there are sex-differences in depression and major depressive 

disorders (MDD) with women being more vulnerable to depressive disorders 

compared to men (Goldstein et al. 2016; Kessler et al. 1993), corresponding with our 

previous findings indicating increased stress responsivity in neonatally overfed 

female, but not male rats.  
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In conclusion, our current results suggest that neonatal overfeeding in females, unlike 

in males, does not affect hypothalamic ghrelin system, however it suppresses the 

pituitary’s ability to respond to ghrelin long-term. These results are important in 

further understanding the role of ghrelin in the regulation of HPA axis responses to 

stress in a sex-specific manner.  
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Introduction 

In Chapter 5 we looked at the effects of ghrelin in the regulation of the hypothalamic-

pituitary-adrenal (HPA) axis in females. Very recently, additional functions for the 

peptide have come to light, including its anti-inflammatory properties (reviewed in 

(Baatar, Patel, and Taub 2011)). Thus, ghrelin decreases mortality in septic shock 

(Chang, Zhao, et al. 2003; Chang, Du, et al. 2003) and morbidity in models of colitis 

(Gonzalez-Rey, Chorny, and Delgado 2006; Konturek et al. 2009) and other 

inflammatory challenges (Collden, Tschop, and Muller 2017). Ghrelin likely does 

this, at least in part, by acting directly on immune cells, including microglia, 

macrophages and T-cells, to reduce the pro-inflammatory cytokine response to 

immune challenge (Waseern et al. 2008; Dixit et al. 2004; Moon et al. 2009). 

 

Ghrelin also regulates HPA axis responses to stress and may thus modify cytokine 

responses to immune challenge via this mechanism. During acute physical or 

psychological stress, cells in the paraventricular nucleus of the hypothalamus (PVN) 

secrete corticotropin-releasing hormone (CRH), which acts on the anterior pituitary to 

stimulate adrenocorticotropic hormone (ACTH) release. Increased circulating ACTH 

levels stimulate the adrenal cortex to synthesise and secrete glucocorticoids, which 

then initiate a series of events to aid the organism to cope with the stress (Nicolaides 

et al. 2015). In addition to its other roles, glucocorticoids also act to suppress nuclear 

factor (NF)κB-mediated cytokine transcription in immune cells (Auphan et al. 1995; 

Scheinman et al. 1995). Ghrelin’s role in regulating the HPA axis is still imprecisely 

described. However, exogenous ghrelin strongly activates CRH neurons in the PVN 

and increases circulating glucocorticoid levels without affecting growth hormone 

secretagogue receptors (GHSR) expression on these neurons, suggestive of ghrelin’s 
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indirect effect on the apex of the HPA axis (Cabral et al. 2012). Thus, stress induces 

high levels of glucocorticoid release in proportion with increased circulating ghrelin 

(Lutter et al. 2008; Azzam et al. 2017). We have shown that ghrelin stimulates the 

HPA axis at the level of the pituitary by targeting the GHSR to facilitate ACTH 

release (Spencer et al. 2012). Ghrelin can also directly activate pituitary ACTH 

expressing cells (Stevanovic et al. 2007). Therefore, we hypothesized here that 

ghrelin’s anti-inflammatory actions on the cytokine response to an immune challenge 

(with lipopolysaccharide (LPS)) may be mediated by activation of the HPA axis. 

 

As discussed in previous chapters, ghrelin exists in at least two biologically active 

isoforms: acylated ghrelin (AG), which is the result of ghrelin-o-acyl-transferase 

(GOAT)-mediated acylation of pro-ghrelin at serine-3; and des-acylated ghrelin 

(DAG), which is the unacylated and most abundant form. AG confers its activity via 

GHSR, and is now known to have important roles in feeding, reward, memory, 

immune responses, cardiovascular activity, reproduction, and a host of other 

physiological functions and behaviours, including in regulating the stress response 

(Spencer et al. 2012; Spencer et al. 2015; Sominsky, Hodgson, et al. 2017). AG 

appears to have a dual role in stress and anxiety (Spencer et al. 2015; Spencer et al. 

2012). It likely promotes neophobia and timely responses to stress at low 

concentrations, such as occur under conditions of positive energy balance, but 

suppresses anxiety and stress at high concentrations, as occur with negative energy 

balance (Lutter et al. 2008; Spencer et al. 2012). This fine interplay would ensure that 

food-seeking behaviour is promoted when necessary, without encouraging 

unnecessary exploration and risk under high stress conditions if food is not scarce. 

DAG has been less well investigated, and its receptor(s) has not yet been identified. 
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However, our own work has recently suggested DAG also contributes to stress 

responses and can promote anxiety (Stark et al. 2016a). With these studies, we have 

shown AG and DAG may have opposing roles in regulating hypothalamic circuitry in 

response to stress. Since DAG is the most abundant form of ghrelin and AG is quickly 

metabolized to DAG in vivo (Bayliss et al. 2016; Chen et al. 2015), elucidating DAG 

and AG’s relative roles in HPA axis function is crucial. Here we hypothesized that 

AG and DAG would differentially modulate the HPA axis response to an immune 

challenge with LPS. 

 

To test this, we gave adult male Wistar rats a concomitant injection of LPS and either 

AG or DAG and assessed circulating cytokine and HPA axis responses. Circulating 

pro- and anti-inflammatory cytokines stimulated by LPS were significantly 

suppressed in the presence of AG, but not DAG. DAG also had no effect on any HPA 

axis component assessed. In vitro, high AG stimulated the release of ACTH from the 

anterior pituitary and, in vivo, AG stimulated HPA axis activation, but the in vivo 

ACTH, glucocorticoid, and PVN responses to LPS were not influenced by AG. These 

data suggest that AG markedly suppresses the circulating cytokine response to LPS 

but probably does not do this by modulating the HPA axis response. 

 

Materials and methods 

6.1.1 Animals 

In these experiments, we used adult male Wistar rats obtained from the Animal 

Resources Centre, WA, Australia. After arrival at the RMIT University Animal 

Facility, at approximately postnatal day (P) 63, they were housed at 22 °C on a 12 hr 

light/dark cycle (0700 – 1900 hr) and acclimatised for approximately one week prior 
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to the experiment. We provided them with ad libitum pelleted rat chow and water. All 

procedures were conducted in accordance with the National Health and Medical 

Research Council Australia Code of Practice for the care of experimental animals and 

RMIT University Animal Ethics Committee approval.   

 

6.1.2 Responses to exogenous AG and DAG after an immune challenge with 

LPS  

To assess how exogenous AG and DAG alter the hypothalamic and extra-

hypothalamic components of the HPA axis after an immune challenge with LPS in 

vivo, we gave the rats a single injection of AG or DAG (1 mg/kg s.c.; PolyPeptide 

Group, Strasbourg, France), combined with a concomitant injection of LPS (E. coli, 

serotype 0127:B8; Sigma, St Louis, MO, USA; 100 μg/kg i.p.) or pyrogen-free saline 

(0.9% NaCl Figure 6.1). Immediately after lights on (0700), rats were singly housed 

and fasted for 2.5 hr prior to ghrelin injection in order to allow for endogenous ghrelin 

levels to normalise without inducing negative energy balance. A pre-weighed amount 

of rat pelleted chow was given to the animals immediately after AG, DAG or saline 

injection. At 2 hr post-injection the weight of the remaining food was recorded and 

the difference between remaining and received taken as the amount consumed. Body 

weights were also recorded immediately before and 2 hr after injections. All the 

experiments were conducted between 0900 and 1300 to limit the potential effects of 

circadian rhythms on any parameters measured. 
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Figure 6.1 Study design 
Male adult rats were concomitantly injected with LPS and acyl ghrelin (AG), des-acyl 
ghrelin (DAG) and/or saline and after 2 hr blood and brains were collected. Pituitaries 
and adrenals from saline and AG injected animals were collected to be stimulated in 
vitro with corticotropin-releasing hormone (CRH; 10-10 M) and adrenocorticotropic 
hormone (ACTH; 10-7 M) accordingly. After collection of fraction 1, AG/DAG (10-6 
M) alone, the stimulus alone (CRH/ACTH) or the combination of the two were added 
to the media and samples were collected every 15 min up to 1 hr to test ACTH and 
corticosterone (CORT) responses of pituitaries and adrenals respectively. 
 

6.1.3 Effects of AG and DAG on circulating cytokine responses to LPS  

To assess the effects of ghrelin on peripheral markers of inflammation in response to 

LPS, we collected cardiac blood into ethylenediaminetetraacetic acid (EDTA) coated 

tubes, which were kept on ice until the end of the experiment, then centrifuged at 

1000 g for 15 min at 4 °C. Plasma was collected, aliquoted and stored at -20 °C until 

processed for cytokine analysis. Relative concentrations of granulocyte-macrophage 

colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), interleukin-1α (IL1-

α), IL1-β, IL-2, IL-4, IL5, IL-6, IL-10, IL-12, IL-13 and tumor necrosis factor-α 

(TNFα) in plasma samples were quantified using a 12-plex rat cytokine Bio-Plex 

Th1/Th2 assay (#171K1002M; Bio-Rad California, USA) and a Bio-Plex MAGPIXTM 

instrument (Bio-Rad) according to the manufacturer’s instructions. Results from 

samples (in duplicate), blank and standards (in triplicate) were extracted using Bio-
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Plex Manager software and analysed by asymmetric sigmoidal, 5PL, X log 

concentration of mean fluorescence intensity values minus background in Prism 

(GraphPad Software, Inc.). GM-CSF, IFN-γ, IL-4, IL-12 and IL-13 values are not 

reported due to their levels being undetectable in this assay.  

 

6.1.4 Effects of AG and DAG on pituitary and adrenal gland responses to 

stimulation in vitro  

To assess the in vitro effects of AG and DAG on the anterior pituitary release of 

ACTH and adrenal gland release of corticosterone (CORT), we excised the anterior 

pituitaries and the adrenal glands from the AG- and DAG-treated rats that had been 

given saline only and treated as previously described in Chapter 5 (Materials and 

methods: Neonatal overfeeding affects pituitary responses to AG and CRH). To assess 

the pituitary responsiveness to secretagogue stimuli, AG or DAG (10-6 M) and CRH 

(10-10 M)-containing media were added in the second fraction. To assess the adrenal 

gland responsiveness to secretagogue stimuli AG or DAG (10-6 M) and ACTH (10-7 

M)-containing media were added in the second fraction. CORT levels were measured 

with a standard CORT assay (Abnova Corp., Taipei, Taiwan) with intra-assay 

variability 5.5% CV and inter-assay variability of 10.4% CV. The lower limit of 

detection for this assay was 0.35 ng/mL. Samples from all treatment groups were 

assayed together in duplicate. Data are expressed as percentage of the basal ACTH or 

CORT secretion as measured at the end of the first 15 min period, and set to 100% as 

previously described in (Cai et al. 2016; Sominsky, Ziko, and Spencer 2017). 
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6.1.5 Effects of exogenous AG and DAG on circulating ghrelin after LPS 

To assess if exogenous AG or DAG had an effect on circulating ghrelin after an 

immune challenge with LPS we collected cardiac blood for later assessment of serum 

ghrelin, as well as for plasma CORT and ACTH (assayed as for the media, above). 

For ghrelin, blood was treated with Pefabloc as previously described in Chapter 3 

(Materials and methods: Neonatal overfeeding effects on circulating ghrelin).  

 

6.1.6 c-Fos immunohistochemistry  

To assess the effects of AG and DAG on hypothalamic neuronal activation after an 

immune challenge with LPS we examined PVN c-Fos expression. Brains were 

hemisected into left and right-hand sides. From the left-hand sides, the hypothalami 

were dissected and immediately snap-frozen in liquid nitrogen to be further processed 

for mRNA expression analysis. The right-hand side of each brain was immersion-

fixed in 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS; 4 °C, pH 

7.4). These brains were then processed as previously described in Chapter 2, 

Materials and methods: “Brain collection”. Sections throughout the PVN were 

immunolabelled for c-Fos. Immunofluorescently labeled c-Fos sections were 

incubated in (1:5 000; ABE 457, MERK Millipore) in a solution of 3% BSA, 0.3% 

Triton X-100 in PBS with 0.1% Tween-20 for 2 days at 4 °C, after an antigen 

retrieval (10 mM sodium citrate solution, pH 6.0, 70°C for 10 min) and blocking step 

(3% BSA, 0.3% Triton X-100, PBS Tween-20, 3 hr at room temperature). Sections 

were further incubated with secondary antibody (1:500, Alexa-fluor 488 goat anti-

rabbit; Thermo Scientific, Rockford, IL, USA) in a solution of 3% BSA, 0.3% Triton 

X-100, PBS Tween-20 for 2 hr at room temperature. After five washes at 5 min 

intervals, sections were mounted on slides and coverslipped with DAPI anti-fading 
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mounting medium (Sigma-Aldrich, St Louis, MS, USA) to be later examined with a 

confocal microscope. Brain sections were visualised under a 488 nm laser and a 

515/30 filter set for c-Fos labeling and under a 408 nm laser for DAPI on an A1 

upright confocal laser microscope (Nikon, Tokyo, Japan).  

 

6.1.6.1 Cell counts 

An experimenter blinded to treatment groups assessed PVN sections for the numbers 

of cells positive for c-Fos. Through-focus series (z-stacks) of PVN images were taken 

under 20x magnification lenses and one cumulative image of all the z-planes was 

analysed for each section. c-Fos positive cells were manually counted using ImageJ 

(National Institutes of Health, Bethesda, MD, USA), which places a number over 

each counted cell to prevent over- or under- counting. Positive cells were determined 

by eye, based on the size and round shape, allowing for exclusion of blood vessel 

staining, which is distinctive (continuous lines of positive staining). Magnocellular 

(MG) and parvocellular (MP) regions were delineated by overlaying one of two 

dotted line templates adapted from (Buller, Dayas, and Day 2003) to the images to be 

analysed, according to the rostrocaudal level. We analysed four sections 120 μm apart 

between 1.56 and 1.92 mm caudal to the bregma (according to the Paxinos and 

Watson Rat Brain Atlas (Paxinos and Watson 2009)) for each animal and recorded a 

mean of c-Fos positive cells from these four sections.  

 

6.1.7 Real-time quantitative PCR array 

We used a custom RT2 profiler PCR array (Qiagen, Carlsbad, CA, USA) to examine 

the mRNA expression from the dissected hypothalami of four genes as in Table 6.1, 

according to manufacturer’s instructions. The RNA (400 ng) was transcribed to 
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complimentary DNA using an RT2 First Strand Kit (Qiagen). Samples were diluted in 

RT2 SYBR Green Mastermix, loaded onto 384-well PCR array plates and amplified 

on an Applied BiosystemsTM QuantStudioTM 7 Flex qPCR System instrument (Life 

Technologies, Carlsbad, Ca, USA). The relative quantitative measure of the target 

gene expression was compared with an endogenous control, β-actin. RNA expression 

was determined using the double delta (C(t)) equation 2-ΔΔC(t), where threshold 

cycle (C(t)) values were the values at which fluorescence was first detected 

significantly above background, as previously described (Sominsky, Ziko, et al. 

2017).  

 

Table 6.1 Gene details for RT-PCR array. 
 
Gene 
symbol 

Gene name NCBI Assay catalog # 

Actb Actin beta PPR06570 

Nr3c1 Nuclear receptor subfamily 3 group C member 
1 

PPR52805 

Nr3c2 Nuclear receptor subfamily 3 group C member 
2 

PPR44413 

Crhr1 Corticotropin-releasing hormone receptor 1 PPR44886 
 

 

 

6.1.8 Statistical Analyses 

Data were analysed using multi factorial analyses of variance (ANOVA)s with 

immune challenge (saline, LPS) and ghrelin (saline, AG or DAG) treatment as 

between factors. We used repeated measures ANOVAs to analyse in vitro pituitary 

and adrenal responses to stimulation, with stress hormones (CRH or ACTH, 

respectively) and AG or DAG treatment as between factors, and time as the repeated 

measure. When the assumption of sphericity was violated, we used the Greenhouse-

Geisser correction. A Bonferroni correction was applied to adjust for multiple 
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comparisons. We followed the analysis by two-way ANOVAs and Tukey post hoc 

tests, where significant interactions were found. Data are presented as the mean ± 

SEM. Statistical significance was assumed when p < 0.05. All data were tested for 

homogeneity of variance and normality, using the Levene’s test for Equality of 

Variance and the Shapiro-Wilks test, respectively, complemented by the assessment 

of skewness and kurtosis. These assessments and all other statistical analyses were 

conducted using SPSS. Outliers were determined using the Grubbs’ test (α = 0.05) in 

GraphPad Prism. 

 

Results 

6.1.9 Effects of AG on pituitary and adrenal responses to stimulation 

As previously reported from our group AG stimulates pituitary ACTH release in 

female rats (Sominsky, Ziko, and Spencer 2017) and in psychologically stressed male 

mice (Spencer et al. 2012) so we tested if the pituitary ACTH and adrenal CORT 

response to AG is sensitized in the presence of stress signals CRH and ACTH, 

respectively. Consistent with our mouse and female rat data, AG treatment robustly 

affected pituitary ACTH production. CRH at the dose used in these experiments was 

insufficient to stimulate an increase in pituitary ACTH in the media-alone group. 

Similarly, there was no effect of CRH and AG combined on ACTH release. However, 

AG alone stimulated significant ACTH secretion within 15 min. As such, repeated 

measures ANOVA indicated there were significant fraction x CRH treatment and 

fraction x AG treatment interactions (F(3,72) = 5.46, p = 0.002; F(3,72) = 4.19, p = 

0.009), as well as a significant main effect of CRH (F(1,24) = 6.56, p = 0.017; Figure 

6.2 A; n = 6-8). Post hoc tests revealed ACTH was increased in the AG-alone group 

in the 15 min (second) fraction compared with the other groups at this time-point.  
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ACTH at this dose stimulated an increase in CORT released from the adrenal gland in 

AG-treated tissue. Repeated measures ANOVA indicated there was a significant 

fraction x AG treatment interaction (F(3,66) = 8.08, p < 0.001) and a significant main 

effect of AG (F(1,22) = 12.14, p = 0.002; Figure 6.2 B; n = 6-7). Post hoc tests revealed 

CORT was specifically increased in the AG-ACTH group in the 30 and 45 min (third 

and fourth) fractions compared with the AG-alone group. These data suggest that AG 

has the capacity to stimulate pituitary ACTH release and to potentiate the effect of 

ACTH on CORT in male rats but has minimal direct effect on adrenal CORT release. 

 

 
 
Figure 6.2 Acyl ghrelin (AG) effects on pituitary and adrenal responses to 
stimulation in vitro. 
(A) AG’s effect on corticotropin-releasing hormone (CRH)-induced 
adrenocorticotropic hormone (ACTH) release from anterior pituitaries of adult male 
rats. AG (10-6 M) and CRH (10-10 M) were added to the media after collection of 
fraction 1. B) AG’s effect on ACTH-induced corticosterone release from adrenals. 
Data are mean ± SEM. A) * AG compared with the other groups; p < 0.05 (n = 6-8 
per group). (B) * ACTH group compared with AG-alone group. p < 0.05 (n = 6-7). 

 

6.1.10 Effects of exogenous AG on LPS-induced anorexia and circulating 

cytokines 

To test how AG affects HPA axis responses to immune challenge in vivo, we next 

tested if the pro- and anti-inflammatory cytokine responses to LPS were affected by 
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elevated AG. Exogenous AG did not significantly affect 2 hr food intake or the 

anorexic response to LPS (Figure 6.3 A; n = 6-8 per group). However, AG did 

decrease the levels of several circulating cytokines induced by LPS (n = 5-8 per 

group). Thus, LPS increased the concentrations of TNF, IL-1, IL-1, and IL-10 

under otherwise-untreated conditions, but not when the rats were concomitantly 

treated with AG. There was a significant interaction between immune challenge and 

AG on TNF (F(1,24) = 11.15, p = 0.003; Figure 6.3 B), IL-1 (F(1,23) = 4.31, p = 

0.049; Figure 6.3 C) and IL-10 (F(1,27) = 8.55, p = 0.007; Figure 6.3 H) and a 

significant effect of immune challenge on IL-1 (F(1,22) = 6.34, p = 0.02; Figure 6.3 

D). There was no effect of either immune challenge or AG on IL-2 (Figure 6.3 E), IL-

5 (Figure 6.3 F) or IL-6 (Figure 6.3 G). The latter were compared using a t-test 

between the Sal-LPS and AG-LPS groups since no IL-6 was detectable in the saline-

treated rats. IL-4, IL-12, IL-13, GM-CSF and IFN were not detectable in any groups 

with this assay.  
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Figure 6.3 Effects of exogenous acyl ghrelin (AG) on lipopolysaccharide (LPS)-
induced anorexia and circulating cytokines 
(A) AG did not affect 2 hr food intake or the anorexigenic effect of LPS. LPS induced 
a significant increase in circulating cytokines: (B) tumor necrosis factor  (TNF), 
(C) interleukin (IL)-1, (D) IL-1 and (H) IL-10. AG significantly suppressed the 
response of TNF (B) and (H) IL-10 to LPS. There was no effect of immune 
challenge or AG on (E) IL-2, (F) IL-5 or (G) IL-6. # main effect of immune 
challenge. * significant differences with post hoc tests. Data are mean ± SEM, p < 
0.05 (n = 5-8 per group). 
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6.1.11 Effects of exogenous AG on PVN responses to LPS in vivo 

AG is able to indirectly modulate PVN activation in response to psychological stress 

(Spencer et al. 2012), in mice, so we next sought to identify if it could influence PVN 

responses to immune challenge with LPS in rats (Figure 6.4 A-D). As expected, LPS 

increased neuronal activation in the MP region (significant effect of LPS: F(1, 20) = 

7.14, p = 0.015; Figure 6.4 B; n = 5-7 per group), but there was no significant effect 

of AG. Treatment with AG significantly activated the MG region of the PVN 

(significant effect of AG: F(1, 22) = 10.97, p = 0.003; Figure 6.4 C; n = 5-8 per group) 

and did not affect the MG response to LPS. Total PVN neuronal activation was driven 

by the effect of AG (significant effect of AG: F(1, 21) = 5.83, p = 0.025; Figure 6.4 D; n 

= 5-8 per group). Exogenous AG, or LPS, also did not affect Crhr1 mRNA in the 

hypothalamus (Figure 6.4 E; n = 4-8) together indicating AG does not affect the 

central HPA axis response to LPS.  
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Figure 6.4 Exogenous acyl ghrelin (AG) does not affect central hypothalamic 
pituitary adrenal (HPA) axis responses to immune challenge in vivo. 
(A) Representative photomicrographs of Fos-positive cells in the paraventricular 
nucleus of the hypothalamus (PVN). (B) Lipopolysaccharide (LPS) increased 
numbers of Fos-positive cells in the medial parvocellular (MP) region of the PVN 
without any effect of AG. C) AG significantly activated the magnocellular (MG) 
region of the PVN without any effect of LPS. D) Total PVN neuronal activation was 
driven by the effect of AG. E) Hypothalamic mRNA expression of corticotropin-
releasing hormone Crhr1 receptor. # main effect of immune challenge, $ main effect 
of AG. Data are mean ± SEM, p < 0.05. n = 4-8 per group. 
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(F(2, 65) = 5.34, p = 0.007; Figure 6.5 A; n = 5 - 7 per group), but the only relevant 

effect revealed with the post hoc tests was a reduction in ACTH at 2 hr compared 

with 15 min in the saline-saline group. There was no indication at any time point that 

AG was suppressing the ACTH response to LPS.  

 

 

Figure 6.5 Effects of exogenous acyl ghrelin (AG) on adrenocorticotropic 
hormone (ACTH), corticosterone (CORT), glucocorticoid receptor (Nr3c1) and 
mineralocorticoid receptor (Nr3c2) expression in vivo. 
(A) AG’s effects on circulating ACTH responses to lipopolysaccharide (LPS) at 15 
min, 30 min and 120 min. (B) AG’s effects on CORT responses to LPS at 15 min, 30 
min and 120 min. (C) Hypothalamic Nr3c1 and Nr3c2 gene expression. * significant 
differences with post hoc tests. Data are mean ± SEM, p < 0.05. n = 4-8 per group. 
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both the PVN and pituitary to do so directly. There was a significant interaction 

between time and LPS on circulating CORT (F(2, 71) = 13.37, p < 0.001; Figure 6.5 B; 

n = 5 - 9 per group), but no indication that AG could suppress the response to LPS. 

Post hoc tests revealed CORT was significantly elevated by LPS at 2 hr compared 

with the LPS-treated groups at 15 min and compared with the saline-treated groups at 

2 hr, irrespective of AG treatment. AG and LPS also did not affect expression of 

Nr3c1 (glucocorticoid receptor) or Nr3cr2 (mineralocorticoid receptor) mRNA in the 

hypothalamus at 2 hr (Figure 6.5 C; n = 4-8). Together these data suggest that the 

AG-induced cytokine suppression we see after LPS stimulation is not likely due to 

AG’s effects on the HPA axis.  

 

6.1.14 Effects of exogenous AG and LPS on circulating ghrelin 

AG has a relatively short half-life of 30 min (De Vriese et al. 2004). Our analyses of 

the in vitro and acute ACTH and CORT responses to AG and LPS were therefore 

likely to be in the context of high circulating AG whereas the AG concentrations were 

likely to have dissipated at 2 hr, the time at which we measured cytokine levels. We 

therefore next tested if there was significant circulating AG still present at 2 hr after 

AG and LPS administration, to account for the cytokine suppression at this time. 

Treatment with AG led to a significant increase in circulating total ghrelin levels even 

at 2 hr after injection in both the saline and LPS-injected groups (significant effect of 

AG: F(1,27) = 463.3, p < 0.001; Figure 6.6 A; n = 7-8), with no notable effect of LPS 

on ghrelin either under basal or AG-injected conditions. Unexpectedly, this increase 

in total ghrelin was accounted for by DAG, with elevated DAG after AG irrespective 

of LPS treatment (significant effect of AG: F(1,24) = 586.0, p < 0.001; Figure 6.6 C; n 

= 6-8). Circulating AG was even suppressed in those rats that had been given AG 
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(significant effect of AG: F(1,25) = 8.50, p = 0.007; Figure 6.6 B; n = 6-8), indicating 

that exogenous AG is metabolized to DAG and DAG can inhibit AG release (Inhoff 

et al. 2008). 

 
 
Figure 6.6 Effects of acyl ghrelin (AG) and lipopolysaccharide (LPS) on 
circulating ghrelin.  
Exogenous AG is readily metabolized to des-acyl ghrelin (DAG) at 2 hr post-
injection. (A) Exogenous AG significantly increased circulating total ghrelin, due to 
increased circulating DAG levels (C). (B) Exogenous AG significantly suppressed 
circulating AG without any effect of LPS. # main effect of AG. Data are mean ± 
SEM, p < 0.05. n = 6-8 per group. 

 

6.1.15 Effects of exogenous DAG and LPS on circulating ghrelin 

As our results showed exogenous AG is fully metabolized to DAG by 2 hr after 

injection, it seemed possible that the suppressive effect of AG on the circulating 

cytokine response to LPS is actually due to an acute effect of DAG at or before the 2 

hr time point. As with AG, treatment with DAG also led to a significant increase in 

circulating total ghrelin levels in both the saline and LPS-injected groups (significant 

Sal/Sal Sal/LPS AG/Sal AG/LPS
0

20000

40000

60000

D
es

ac
yl

 g
h

re
lin

 (
p

g
/m

L
)

Sal/Sal Sal/LPS AG/Sal AG/LPS
0

400

800

1200

A
cy

l g
h

re
lin

 (
p

g
/m

L
)

Sal/Sal Sal/LPS AG/Sal AG/LPS
0

20000

40000

60000

To
ta

l g
h

re
lin

 (
p

g
/m

L
)

B A 

C 
$ 

$ $ 



 

 146 

effect of DAG: F(1,28) = 3283.4, p < 0.001; Figure 6.7 A; n = 8 per group), with, again, 

no notable effect of LPS on ghrelin either under basal or DAG-injected conditions. 

This increase in total ghrelin was again exclusively due to DAG, with elevated 

circulating DAG after exogenous DAG irrespective of LPS treatment (significant 

effect of DAG: F(1,27) = 3135.22, p < 0.001; Figure 6.7 C; n = 7-8). Circulating AG 

was suppressed to undetectable levels after exogenous DAG in both saline and LPS-

treated rats. Since these levels were undetectable, the comparison of the effects of 

LPS on AG levels under otherwise untreated conditions (Sal-Sal versus Sal-LPS) was 

assessed for significance using Student t-test and there was a resultant suppression of 

AG with LPS alone (t(13) = 3.37, p = 0.005; Figure 6.7 B; n = 7-8), consistent with the 

trend seen in the exogenous AG experiment.  

 

6.1.16 Effects of exogenous DAG on LPS-induced anorexia  

There was no effect of DAG on food intake, but there was a significant main effect of 

LPS in this experiment such that those exposed to LPS consumed less than the saline-

treated rats, consistent with the expected anorexigenic effect of LPS (F(1,22) = 7.30, p 

= 0.013; Figure 6.7 D; n = 6-8).  

 

6.1.17 Effects of DAG on pituitary and adrenal responses to stimulation  

Neither CRH nor DAG had a significant effect on ACTH release from the pituitary 

gland (Figure 6.7 E; n = 7-8). In the adrenal gland, there was a significant interaction 

between fraction, DAG, and ACTH treatments (F(3,69) = 2.816, p = 0.045; Figure 6.7 

F; n = 5-8) on CORT levels. The effect of ACTH on CORT release was not 

statistically significant with post hoc tests, but the magnitude of the difference 

between the ACTH-alone and media-alone groups was similar to that seen in the AG 
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experiment. In the presence of DAG, however, ACTH markedly and significantly 

increased CORT in the 30 and 45 min (second and third) fraction with no effect of 

DAG alone. Together these results indicate AG has some minimal effect on CORT 

release from the adrenal gland, slightly potentiating it in the presence of ACTH, while 

DAG is able to strongly potentiate the effects of ACTH.  

 

6.1.18 Effects of exogenous DAG on HPA axis responses to LPS 

Despite this strong in vitro effect of DAG on ACTH-induced CORT release, there 

was no effect of DAG on the central HPA axis response to LPS in vivo. LPS 

significantly increased neuronal activation in the MP (significant effect of LPS: F(1,24) 

= 24.42, p < 0.001; Figure 6.7 G; n = 5-8) and MG regions (significant effect of LPS: 

F(1,24) = 10.24, p = 0.004; Figure 6.7 H; n = 6-8) of the PVN, as well as in both 

regions combined (significant effect of LPS: F(1,24) = 23.20, p < 0.001; Figure 6.7 I; n 

= 6-8), both under otherwise-untreated conditions and after concomitant treatment 

with DAG, with no further effect of DAG. Exogenous DAG, or LPS, did not change 

expression of Crhr1 (Figure 6.7 J). CORT was elevated at 2 hr in response to LPS, 

but this was not affected by DAG (significant effect of LPS: F(1,28) = 46.92, p < 0.001; 

Figure 6.7 K; n = 8) and neither DAG nor LPS altered Nr3c1 or Nr3cr2 mRNA in the 

hypothalamus (Figure 6.7 L; n = 5-6), except that there was a significant main effect 

of immune challenge on Nr3c1 (F(1,20) = 4.90, p = 0.039) with LPS suppressing 

expression of this gene.  
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Figure 6.7 Effect of exogenous des-acyl ghrelin (DAG) and lipopolysaccharide 
(LPS) in vivo and in vitro.  
(A) Circulating total ghrelin. (B) Circulating acyl ghrelin (AG). (C) Circulating DAG. 
(n = 7-8 per group). (D) Food intake. (E) Neither corticotropin-releasing hormone 
(CRH) nor DAG had an effect on the in vitro adrenocorticotropic hormone (ACTH) 
release from the anterior pituitary. (F) In the presence of DAG, ACTH significantly 
increased CORT in the 30 min and 45 min fractions without any effects of DAG or 
ACTH alone. (G) Centrally, LPS induced a significant increase in numbers of Fos-
positive cells in the G) medial parvocellular (MP) and (H) magnocellular (MG) 
regions of the paraventricular nucleus of the hypothalamus (PVN) as well as in both 
regions combined (I). Neither DAG nor LPS had any effect on hypothalamic (J) 
corticotropin-releasing hormone receptor (Crhr1), (L) glucocorticoid receptor (Nr3c1) 
or mineralocorticoid receptor (Nr3cr2) mRNA expression. (K) LPS significantly 
increased circulating CORT in vivo without any further effects of DAG. # main effect 
of immune challenge, $ main effect of DAG, Data are mean ± SEM, p < 0.05. (n = 5-
8 per group. 
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6.1.19 Effects of exogenous DAG on circulating cytokine responses to LPS 

Finally, we tested if the ability of DAG to potentiate the CORT response to ACTH, 

observed in vitro, would lead to a suppression of the cytokine response to LPS such as 

we saw with AG. As expected, LPS lead to elevated circulating cytokines at 2 hr (n = 

5-7), but there were no effects of DAG on this response. There was a significant main 

effect of immune challenge on TNF (F(1,24) = 6.33, p = 0.019; Figure 6.8 A) and IL-

1 (F(1,24) = 16.81, p < 0.001; Figure 6.8 C). There was also a significant effect of 

DAG on IL-5 (F(1,25) = 7.08, p = 0.013; Figure 6.8 E), but no effects on IL-1, (Figure 

6.8 B), IL-2 (Figure 6.8 D), or IL-6 (t-test; Figure 6.8 F). The p value for IL-10 was p 

= 0.058 (Figure 6.8 G). There were no detectable levels of IL-4, IL-12, IL-13, GM-

CSF or IFN. Although we saw a significant effect of LPS on IL-1 in the AG 

experiment (C) and not here (Figure 6.8 B), this effect was small in the former and the 

absolute IL-1 levels were very similar between experiments. Together these data 

suggest that AG, but not DAG, can suppress cytokine secretion and can influence 

HPA axis function, and that the AG-induced cytokine suppression we see after LPS is 

not due to AG’s HPA axis effects but is also not due to a predominant role for DAG.  
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Figure 6.8 Effects of des-acyl ghrelin (DAG) on circulating cytokine responses to 
lipopolysaccharide (LPS) in vivo.  
LPS significantly increased circulating (A) tumor necrosis factor  (TNF) and (C) 
interleukin (IL)-1, without any further effects of DAG. (E) DAG significantly 
suppressed IL-5 without any effects of LPS. No effect of LPS or DAG was observed 
on (B) IL-1, (D) IL-2, (F) IL-6, or (G) IL-10. # main effect of DAG, $ main effect of 
immune challenge. Data are mean ± SEM, p < 0.05. n = 5-7 per group. 
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Discussion 

Ghrelin’s role in the HPA axis response to psychological stress is well-reported 

(Lutter et al. 2008; Spencer et al. 2015; Spencer et al. 2012). However, its impact on 

the HPA axis responses to an immune challenge is less well-characterized. Similarly, 

research has been lacking into DAG’s function in the neuroimmune response. Here 

we show that AG, but not DAG suppresses LPS-induced pro- and anti-inflammatory 

circulating cytokines at 2 hr after injection, despite AG being fully metabolized to 

DAG by this time. However, although AG can clearly stimulate HPA axis activation, 

this suppressive effect of AG on cytokine release is not likely to be due to its HPA 

axis effects.  

 

LPS induces a pro-inflammatory response by interacting with cell surface receptors of 

immune cells such as monocytes/macrophages, neutrophils and lymphocytes 

(reviewed in (Newton and Dixit 2012)). LPS is transported to pattern recognition 

receptors toll-like receptor (TLR) 4 and 2 (Kawai and Akira 2011). TLR4 activation 

initiates a cascade of cell processes including activation of myeloid differentiation 

primary response gene 88 (MyD88), MyD88 adaptor-like (Mal) and toll-like receptor 

(TRIF) -related adaptor molecule (TRAM)), which further activate pro-inflammatory 

transcription factors such as NFκB and extracellular signal-regulated kinase (ERK), 

initiating transcription of pro- and anti-inflammatory genes, resulting in production of 

pro- and anti-inflammatory cytokines (Newton and Dixit 2012). This cytokine 

response then leads to the cyclo-oxygenase 2-mediated conversion of arachidonic acid 

into prostaglandins, including PGE2 that then act at E-prostanoid receptors 

throughout the brain to activate the HPA axis (reviewed in (Ricciotti and FitzGerald 

2011)). CRH and arginine vasopressin (AVP) cells in the parvocellular region of the 
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PVN are stimulated to secrete CRH, which reaches the anterior pituitary through the 

hypothalamo-hypophysial portal blood vessel system from the median eminence and 

stimulates the release of ACTH. ACTH acts at melanocortin 2 receptors in the adrenal 

cortex to stimulate release of glucocorticoids that negatively feed back onto 

glucocorticoid and mineralocorticoid receptors to suppress further activation of the 

HPA axis (Jacobson and Sapolsky 1991). Glucocorticoids also act to inhibit NFκB-

mediated cytokine transcription (Auphan et al. 1995).  

 

At least in psychological stress, AG is known to interact with the HPA axis in order to 

regulate stress-related behaviours, making this a candidate mechanism for cytokine 

suppression (Spencer et al. 2015). It has been documented that ghrelin activates the 

HPA axis at the hypothalamic level, activating hypothalamic explants in vitro (Wren 

et al. 2002; Mozid et al. 2003). Ghrelin also indirectly activates the HPA axis via 

brainstem inputs to the PVN (reviewed in (Spencer and Tilbrook 2011)) and via 

indirect activation of CRH neurons of the PVN (Cabral et al. 2012). In humans, 

ghrelin administration increases ACTH and cortisol release (Arvat et al. 2001; Takaya 

et al. 2000; Locatelli et al. 2010). Similarly, in rodents ghrelin also stimulates 

increases in circulating ACTH and CORT (Spencer et al. 2012). As was seen 

previously (Sominsky, Ziko, and Spencer 2017), we here again show that AG alone is 

able to stimulate robust ACTH production from the pituitary in an in vitro setting. 

However, in the case of an immune challenge with LPS it seems AG’s effects on the 

HPA axis are insufficient to affect cytokine release.  

 

In support of the idea that AG influences the cytokine response independently of the 

HPA axis, we saw no significant effects of AG on LPS-induced ACTH levels in vivo. 
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There was even an apparent reduction in ACTH over time. It is likely this is due to a 

mild effect of the stress associated with handling and injection (Viau et al. 1993) but 

it is notable that there was no significant effect of LPS or AG on ACTH release. AG 

also lacked suppressive effects on LPS-induced CORT. Interestingly, an earlier study 

showed that a much lower dose of ghrelin (0.1 mg/kg) could potentiate the CORT 

response to LPS (Soriano et al. 2011). In our study, LPS gradually increased CORT 

release over time, as expected, inducing the highest CORT levels at 120 min, but no 

AG effects were observed at any time. Centrally, AG alone stimulated a significant 

increase in neuronal activation in the PVN, including in the magnocellular region of 

the PVN. Magnocellular neurons are mainly responsible for secretion of oxytocin and 

AVP into the peripheral circulation via the posterior pituitary. AVP and CRH are both 

produced in the parvocellular neurons projecting to the anterior pituitary and other 

brain regions (Ludwig and Leng 2006). Levels of both AVP and CRH are inversely 

related to glucocorticoid levels, with a role in feedback regulation (Ludwig et al. 

2002). AVP, as an ACTH secretagogue, potentiates CRH’s effects on ACTH release 

from the anterior pituitary. However, AG neither significantly attenuated the LPS-

induced activation of the PVN, nor significantly stimulated in vivo stress hormone 

secretion despite this PVN activation.    

 

It thus seems clear that AG’s suppressive effects on the cytokine response to LPS are 

independent of its influence on the HPA axis. However, AG clearly suppressed this 

component of the immune response. Limited literature suggests AG is able to 

suppress immune activation via the vagus nerve in animal models of traumatic brain 

injury, sepsis or stroke where ghrelin administration suppressed serum TNF and IL-

6 (Wu, Dong, et al. 2007; Cheyuo et al. 2011; Bansal et al. 2012). However, these 
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studies did not account for the fluctuation of ghrelin levels based on feeding status or 

any potential anti-inflammatory role of DAG. Also, the exact neuronal connectivity 

and involved neurotransmitters that mediate communication between ghrelin and 

vagus nerve remain to be determined (Veedfald et al. 2018). Another possible 

mechanism by which ghrelin suppresses inflammatory cytokines is by inhibiting high-

mobility group box 1 (HMGB1) release. HMGB1 is an important protein in initiating 

inflammation in a number of inflammatory diseases including sepsis. It is expressed 

in almost all cell types, however ghrelin greatly inhibits HMGB1 secretion from 

macrophages by blocking its cytoplasmic translocation (Chorny et al. 2008). This 

study, however, tested the delayed effect of ghrelin after endotoxemia was established 

for a period of more than 2 hr. Whether ghrelin plays an acute role in this regard 

remains to be tested. Ghrelin can also directly suppress the inflammatory response of 

a number of immune cells including peripheral macrophages, T-cells and activated 

microglia (as reviewed in (Hattori 2009)). It is proposed that it does this via a dual 

effect in reducing pro-inflammatory mediators but also enhancing activation of the 

anti-inflammatory p38 MAPK pathway through GHSR in order to mediate Th1 and 

Th2 responses simultaneously (Waseem et al. 2008). The exact cell mechanisms via 

which ghrelin suppresses inflammation however, need further elucidation.  

 

In the present study, we have shown that unlike AG, DAG does not suppress LPS-

induced cytokine activation. It also has limited effect on the HPA axis. These findings 

are particularly notable given AG is completely metabolized to DAG within 2 hr after 

injection and suggest that the anti-inflammatory effects of AG on the LPS response 

are indeed due to an acute AG action and not to excessive accumulation of DAG over 

the 2 hr. Studies have shown that in the arcuate nucleus DAG exerts its biological 
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effects via a non-GHSR receptor by impairing AG’s orexigenic effect (Fernandez et 

al. 2016). Here we show that the involvement of DAG in the HPA axis is limited to a 

potentiating effect on ACTH in vitro, resulting in high CORT levels at 30 and 45 min. 

Otherwise DAG was unable to suppress any LPS-induced effects in vivo at any level 

of the HPA axis. Mozid et al (Mozid et al. 2003) have also shown that DAG has no 

effect on the HPA axis. We did see a suppressive effect of DAG on IL-5, but this was 

independent of LPS and not seen with any other tested cytokine. DAG, but not AG, 

can exert anti-apoptotic effects in cultured neuronal cells (Hwang et al. 2009) and can 

suppress IL-6 secretion from amyloid- stimulated microglia (Bulgarelli et al. 2009). 

Taken together these results indicate that DAG has limited anti-inflammatory effects 

and, again, does not influence circulating cytokines via the HPA axis. Our findings 

suggest AG’s anti-inflammatory effects are independent of its actions on the HPA 

axis and are not due to excessive accumulation of DAG. While the exact mechanisms 

by which ghrelin influences the immune response remain to be determined, the 

apparent separation between ghrelin’s effects on HPA axis responses to psychological 

versus immune challenges raise the possibility of targeting this peptide for treatments 

of inflammatory conditions without compromising HPA axis activity. 
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General discussion   
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In this thesis I investigated the effects of neonatal overfeeding on the metabolic 

hormones leptin and ghrelin and their role in brain development and long-term 

function. In terms of developmental programming, it is well established that the early 

life nutritional environment is crucial in shaping long-term health in humans (Barker 

2003). However, the importance of nutrition in programming the developing brain 

with regards to the metabolic hormones leptin and ghrelin has only recently been 

addressed and has been largely ignored for females. In this thesis I examined the 

importance of the early life nutritional environment in establishing optimal neuronal 

connections in the developing brain, particularly in those regions that are responsible 

for controlling metabolism. 

 

An over- or under-nutritional environment during important developmental periods 

leads to metabolic and emotional disorders such as obesity and stress in a sex specific 

manner, with females having a tendency to experience more stress-related disorders 

than males (Dearden, Bouret, and Ozanne 2018). However, the effects of an altered 

nutritional environment during early life development and its impact on the 

hypothalamic pituitary adrenal (HPA) axis and stress responses remain to be further 

studied. Along with its role in metabolism, ghrelin is involved, in the adult animal, in 

modulating stress and anxiety as well as immunity and inflammation (Spencer et al. 

2015; Spencer et al. 2012; Pereira, da Silva, and de Moraes-Vieira 2017). However, 

ghrelin’s effects in modulating responses to early life adverse nutrition, its effects in 

programming the HPA axis, and whether these effects vary in males and females 

remain largely unstudied. Furthermore, the mechanisms involved in ghrelin’s anti-

inflammatory roles are not well defined. Leptin, similarly to ghrelin, has been 
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implicated in the early regulation of neuronal connectivity in hypothalamic regions 

responsible for feeding and metabolism (Bouret, Draper, and Simerly 2004b). 

However, there are significant gaps in our knowledge with regards to an altered early 

life nutritional environment and leptin’s role in programming the brain long-term.  

 

To study the effects of nutritional environmental adversity in early life, we used an 

animal model of litter size manipulation where pups on the day of birth were 

redistributed into control litters of 12 pups and small litters of 4 pups, with small litter 

pups having greater access to the dam’s milk and consequently having an increased 

body weight compared to controls. The animal model used in this thesis leads to a 

long-lasting moderately overweight phenotype, which significantly differs from other 

animal models of genetic or adult diet-induced obesity. In our model, neonatally 

overfed animals, when adults, have increased body weight compared to controls 

despite consuming the same standard diet for most of their lives. 

 

In Chapter 2, is demonstrated for the first time that neonatal overfeeding, along with 

the obese phenotype characterised by elevated body weight, increased the magnitude 

of the leptin surge and elevated leptin levels long-term. These effects were associated 

with early life disruptions to hypothalamic neuropeptide Y (NPY) and agouti related 

peptide (AgRP) fibre density as well as acute hypothalamic insensitivity to leptin. 

However, in adulthood, central control of appetite regulation was normalised even 

though the body weight and circulating leptin levels remained elevated in neonatally 

overfed rats (Sominsky, Ziko, et al. 2017). This persistently elevated leptin and 

increased body weight in neonatally overfed adult animals could be due to other 

permanently altered metabolic factors that we have not measured here. For instance, 



 

 160 

disturbances to the nutritional environment during development, is associated with 

disruptions in circulating insulin levels in parallel this with a prolonged leptin surge 

(Kirk et al. 2009). Furthermore, it has been shown that maternal high fat diet impairs 

hypothalamic neurocircuitry formation due to affected neonatal insulin levels (Vogt et 

al. 2014). When in elevated levels, during perinatal life, insulin may program the 

development of obesity. Similarly to neonatal leptin, malprogramming of neonatal 

insulin system especially ARC resistance to the insulin satiety signals may explain 

acquired long-term metabolic problems, including obesity (Plagemann 2008).  

 

Obesity causes a form of low-grade inflammation involving elevated adipocytokines 

such as leptin, interleukin (IL)-1, IL-6 and tumor necrosis factor alpha (TNFα) 

secretion from adipocytes (Pereira and Alvarez-Leite 2014). Our group has previously 

shown that neonatal overfeeding permanently affects the hypothalamic 

neuroinflammatory profile manifested in increased numbers of microglia, one of the 

primary immune cells of the central nervous system (CNS), indicating increased 

central inflammation long-term (Ziko et al. 2014). Douglass et al have shown that 

increased hypothalamic inflammation is associated with weight gain (Douglass et al. 

2017). It is also important to note that metabolic inflammation in the peripheral 

tissues can be independent of the CNS, as was demonstrated by Valderacos and 

colleagues in a model of diet induced obesity and microglia ablation, potentially 

explaining the long-lasting peripheral metabolic disturbances despite the fact that 

there were no differences in gene expression in central leptin sensitivity in adulthood 

(Valdearcos et al. 2018). 
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It has been previously shown that there is a high interrelation between leptin and 

ghrelin during early life neurodevelopment with ghrelin suppressing the overgrowth 

of hypothalamic neuronal connections stimulated by leptin in order to fine-tune 

metabolic central control (Steculorum et al. 2015). In this chapter we examined 

whether an early life overnutritional environment, in addition to alterations to the 

leptin system (Chapter 2), would affect the ghrelin system in male rats. Indeed, 

neonatal overfeeding altered the peripheral and central ghrelin system short-term and 

this effect was partially ameliorated by adulthood (Chapter 3) (Sominsky, Ziko, 

Nguyen, et al. 2016). We have largely focused here on the metabolic hormones leptin 

and ghrelin however it should be noted that some of the effects could be mediated by 

insulin and glucose. Plagemann’s studies, for instance, in newborn rats injected with 

insulin from P8-P11, demonstrate life-long increased body weight, impaired glucose 

tolerance and increased vulnerability to a sub-diabetogenic dose of streptozotocin 

(Harder et al. 1999). In another study from the same group, gestational diabetes (GD) 

was induced in mothers on the day of conception with the hypothesis that prenatal 

hyperleptinemia would affect hypothalamic regulators of body weight and 

metabolism. It was demonstrated that on P21 offspring of GD mothers were 

overweight, hyperinsulinemic and they had disrupted differentiation of nuclei within 

the paraventricular nucleus of the hypothalamus (PVN) and ventromedial 

hypothalamus (VMH) (Plagemann, Harder, Janert, et al. 1999). These results 

emphasise the importance of optimal insulin levels during critical periods of postnatal 

life in hypothalamic regulation of body weight and metabolism and susceptibility to 

diabetes in later life due to temporary early life hyperinsulinemia. 
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As observed in Chapter 2, neonatal overfeeding in males was associated with acute 

disruption to hypothalamic metabolic control, changes that had not been studied in 

females in relation to the early life nutritional environment. Therefore, in Chapter 4 

we aimed to examine whether the same metabolic changes accompanying the early 

life nutritional status in males would be observed in females; given the importance of 

sex differences in many aspects. We observed in this chapter that neonatally overfed 

females, experiencing long-term increased body weight and circulating leptin, had no 

changes in the central control of feeding circuitry compared to normally fed 

counterparts (Ziko et al. 2017). Sex-differences in brain structures between males and 

females have been observed from before birth, with males having larger brain mass 

than females (Dean et al. 2018). The hypothalamus, being the main energy-regulating 

brain region, is highly sexually dimorphic. It has been suggested that female sex 

hormones are responsible for regulating neurogenesis and cell death during the 

development of the hypothalamus and the absence or overexpression of these 

hormones during key developmental periods is associated with permanent neuronal 

changes (Budefeld et al. 2008). Sex hormones are also responsible for regulation of 

feeding. For instance, male mice have decreased numbers of proopiomelanocortin 

(POMC) neurons within the arcuate nucleus of the hypothalamus (ARC), which may 

explain their higher calorie intake and increased body weight when compared to 

females (Nohara et al. 2011). These changes are at least partially mediated by 

testosterone during hypothalamic development and, as shown by Nohara and 

colleagues, female mice injected with testosterone have decreased number and density 

of POMC neurons within the ARC relative to control females (Nohara et al. 2011). 

We have previously mentioned that males and females also differ in the location of fat 

deposition, with males being characterised by abdominal fat deposition whereas 
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females preferentially deposit subcutaneous fat (Karastergiou et al. 2012). This 

phenomenon could be explained by the sexually dimorphic way in which the 

sympathetic nervous system innervates peripheral adipose tissues, with males having 

more afferent projections to abdominal fat and females having more projections to 

subcutaneous fat (Frank, Palmer, and Clegg 2018). The above findings suggest that 

males and females are differently wired not only centrally, but also peripherally, 

explaining the changes in responses to nutritional challenges in early life. 

Furthermore, these findings suggest that peripheral factors, including innervation of 

adipose tissue, may aid the fact that males and females behave differently in the way 

they centrally control appetite.  

 

In Chapter 4 we observed that neonatal overfeeding in females, in contrast to males, 

was not associated with any changes in the central control of energy intake. However, 

we have previously reported that neonatally overfed females, but not males, display 

exacerbated HPA axis responses to restraint stress (Spencer and Tilbrook 2009). We 

have also demonstrated that ghrelin directly affects the anterior pituitary in secreting 

adrenocorticotropic hormone (ACTH) in order to aid the stress response and help the 

organism cope with stress (Spencer et al. 2012). In Chapter 5 we observed that 

neonatally overfed females have altered ghrelin receptor and Goat expression in the 

pituitary as well as a suppressed ability of the anterior pituitary to respond to ghrelin 

when stimulated in an in vitro setting, indicating that neonatal overnutrition affects at 

least partly the HPA axis responses to stress in females (Sominsky, Ziko, and Spencer 

2017). It has long been shown that the HPA and hypothalamic-pituitary-gonadal 

(HPG) axis are closely connected (as reviewed in (Goel et al. 2014; Sominsky, 

Hodgson, et al. 2017)). It has been suggested that sex-specific changes to HPA axis 
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activity are affected by sex hormones (estrogen, progesterone and testosterone), the 

end products of the HPG axis, that are produced in significant quantities after the 

onset of puberty (Panagiotakopoulos and Neigh 2014). However, differences between 

boys and girls in HPA axis activity are already observed in early childhood, with boys 

under the age of eight having high salivary cortisol compared to girls of the same age. 

This pattern is reversed after the age of eight years (van der Voorn et al. 2017). The 

early life environment including maternal exposure to medications used to treat 

postpartum stress is an important factor in the neurodevelopmental outcomes of 

children. For instance, postpartum maternal exposure to fluoxetine (a pharmacological 

antidepressant used to treat postpartum depression) differently affects male and 

female offspring in adulthood. Maternal postpartum exposure to fluoxetine induces 

HPA axis negative feedback in adult male but not female rats, whereas maternal 

exposure to exercising is associated with increased hippocampal neurogenesis in both 

sexes, however maternal exposure to exercising impairs HPA axis activity in female 

offspring (Gobinath et al. 2018). In humans, early life stress, such as with child abuse 

and neglect, is also associated with impairments in neuronal development and may be 

one of the leading causes of psychiatric disorders in adulthood (Lajud et al. 2012). 

There are clear patterns for sex-specific prevalence rates of mental disorders, with 

conditions such as post-traumatic stress disorder (PTSD) and major depressive 

disorder (MDD) being more common among women, whereas aggressive behaviour 

and drug abuse are more common among men (Lundberg 2005; Keane, Marshall, and 

Taft 2006; Nestler et al. 2002).  

 

The human brain undergoes immense functional and structural transformations 

between week 24 and 44 after conception (Pomeroy 2004) and also during neonatal 
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life, early childhood and adolescence (as reviewed in (Karatsoreos and McEwen 

2013)). Any alteration to the nutrient state during these times not only affects brain 

neuroanatomical features, but also its chemistry and physiology, and this can be 

associated with long-term detrimental effects on physical and mental health (Anda et 

al. 2010). Having said this, the young brain is also extremely plastic and therefore it 

may optimise some repair after nutrient alterations. Nutritional insults result in brain 

dysfunction only when they outbalance brain plasticity. It has been shown that not 

only the young brain, but also the adult brain has considerable capacity for resilience 

(Karatsoreos and McEwen 2011). The adult brain has the ability for long-term change 

and in humans it is altered by behavioural interventions such as cognitive behavioural 

therapy, which reduces amygdala volume in anxiety disorders and increases grey 

matter in the prefrontal cortex in chronic fatigue patients (Seminowicz et al. 2013; 

Mansson et al. 2016). Furthermore, physical activity increases hippocampal volume in 

elderly people (Erickson et al. 2011). Similarly, in this thesis we observed that adult 

brain, in our rat model that had been challenged with early life poor nutrition, 

demonstrates resilience.  

 

Ghrelin, along with its neurotrophic role in regulating neuronal connectivity within 

energy-controlling hypothalamic centres at early times after birth, has shown a major 

involvement in regulation of the immune system in adulthood. Acute or chronic 

inflammatory complications influence ghrelin levels. Increased circulating ghrelin 

levels have been correlated not only with disease severity, but also with expression of 

pro-inflammatory cytokines (as reviewed in (Baatar, Patel, and Taub 2011)). In 

Chapter 6 we looked at ghrelin’s involvement in the endocrine regulation of the 

immune system as an anti-inflammatory agent. Ghrelin has shown its anti-
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inflammatory properties in a number of conditions such as sepsis, inflammatory 

bowel disease, rheumatoid arthritis and, experimentally, with high dose 

lipopolysaccharide (LPS) (Baatar, Patel, and Taub 2011; Pereira, da Silva, and de 

Moraes-Vieira 2017)). Ghrelin’s presence in all of the above conditions leads to 

reduction of serum levels of TNFα and a number of interleukins including IL-6 and 

IL-8. However, the mechanisms by which ghrelin exerts its anti-inflammatory 

properties remain to be further elucidated. In Chapter 6 we aimed to define the 

mechanism by which ghrelin is suppresses LPS-induced circulating pro- and anti-

inflammatory cytokines, hypothesising that ghrelin exerts these effects via the HPA 

axis (Ziko et al. 2018). Examining the effects of both forms of ghrelin, acylated (AG) 

and desacylated (DAG) at all of the levels of the HPA axis we observed that des-acyl 

ghrelin (DAG) was unable to suppress any LPS-induced effects in vivo at any level of 

the HPA axis. Despite AG’s ability to stimulate HPA axis activation, our study 

showed that its suppressive effect on cytokine release was clearly not due to its HPA 

axis effects.  

 

Some of the mechanisms by which ghrelin suppresses inflammation have been 

discussed below, however, further studies are crucial in understanding beneficial 

effects of ghrelin as an anti-inflammatory agent. Initial work suggested that ghrelin 

may exert its anti-inflammatory effects via the vagus nerve. It is well recognized that 

ghrelin stimulates the vagus nerve (Okada et al. 2018; Date 2012) and such 

stimulation has shown to be beneficial in anti-inflammatory complications including 

sepsis and traumatic brain injury (Jacob, Wu, et al. 2010; Bansal et al. 2012). In 

support of this, Shah and colleagues have shown that in a rat model of radiation-

combined injury and sepsis ghrelin administration significantly reduced plasma TNFα 
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and IL-6 levels only in non-vagotomized, but not in vagotomized animals (Shah et al. 

2009). These studies, however, did not account for fluctuation of ghrelin levels based 

on feeding status or any effects of desacyl ghrelin on the anti-inflammatory role. 

Ghrelin has also shown anti-inflammatory effects by suppressing the sympathetic 

nervous system. Increased cytokine levels, at least partly, are mediated by 

norepinephrine (NE) release from the gut during sepsis and ghrelin suppresses gut-

derived NE release (Jacob, Rajan, et al. 2010). Furthermore, ghrelin has been shown 

to inhibit activation of nuclear factor-κB (NF-κB), a well-known transcription factor 

involved in production of pro-inflammatory cytokines during inflammatory insults 

(Newton and Dixit 2012).  

 

Another potential mechanism by which ghrelin may suppress inflammation is via 

recruitment of P38 mitogen-activated protein kinase (MAPK). LPS is one of the most 

well-known stimulators of toll-like receptor (TLR) 4 and TLR4 activation initiates a 

series of intracellular processes including stimulation of myeloid differentiation 

primary response (MYD) 88, which further triggers activation of the P38 MAPK 

cascade (Lamon et al. 2010). MKP-1, the first identified MAPK phosphatase, 

deactivates P38 MAPK after LPS stimulation (Chen et al. 2002). Increased activation 

of P38 MAPK leads to overproduction of inflammatory cytokines from the liver and 

ghrelin upregulates MKP-1 to suppress inflammation (Jacob, Rajan, et al. 2010). In 

addition, in a study from Slomiany and colleagues, LPS induced increased 

phosphorylation of P38 in gastric mucosal cells, whereas ghrelin significantly 

suppressed this LPS effect, indicating that ghrelin counteracts the pro-inflammatory 

consequences of Helicobacter pylori derived LPS (Slomiany and Slomiany 2013).  
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Ghrelin receptors are largely expressed by macrophages and ghrelin’s presence 

suppresses inflammatory cytokine expression (Chowen and Argente 2017). In 

contradiction with what previous studies have shown, work from Wu et al, 

demonstrated that LPS treatment alone of Kupffer cells (the resident macrophages of 

the liver) and peritoneal macrophages, dramatically increases TNFα and IL-6 levels. 

Ghrelin co-incubation with LPS, however, was unable to further affect the elevated 

LPS-induced cytokine levels, suggesting that the anti-inflammatory effects of ghrelin 

may not be due to its direct effect on ghrelin receptors expressed on macrophages 

(Wu, Dong, et al. 2007). Despite the above-proposed anti-inflammatory mechanisms 

of ghrelin, its role in the HPA axis responses to an immune challenge has been less 

well characterised, indicating that further research is necessary to define ghrelin’s 

mechanisms in inflammatory complications as a promising anti-inflammatory agent.  

 

Future directions  

In this thesis we have contributed to the existing knowledge of the importance of the 

metabolic hormones ghrelin and leptin in the development of hypothalamic feeding 

circuits (Steculorum and Bouret 2011; Bouret and Simerly 2006; Bouret, Draper, and 

Simerly 2004a; Steculorum et al. 2015). We further expanded on the effects of an 

early life over-nutritional environment on such development considering the 

observations that males and females respond differently to early life nutritional 

challenges. It is important to note that a direct comparison between sexes of the 

parameters measured in this thesis needs to be considered for future studies. Despite 

the work described here, there are considerable gaps in our knowledge with regards to 

the effects of early life nutritional disturbances centrally; in long-life stress, cognition 

and whether other extra-hypothalamic regions are involved in such systems. Postnatal 
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overfeeding and consequently altered leptin and ghrelin levels, are involved in 

regulation of many systems including endocrine system, reproductive function, HPA 

axis, adipose tissue, glucose and insulin homeostasis, modification of plasma lipids 

and proteins, adipocytokines, oxidative stress, kidney and cardiovascular function (as 

reviewed in (Habbout et al. 2013; Lean and Malkova 2016)).  

 

Of particular interest would be to determine the role of neonatal nutritional insults on 

the structure and function of adipose tissue. In Chapters 2, 3, 4 and 5 we saw that 

early life overnutrition was associated with long-term weight gain consisting of 

excess adipose tissue. Excessive caloric intake and positive energy imbalance related 

to the obese phenotype are associated with not only over-accumulation of adipose 

tissue either as subcutaneous or intra-abdominal, but also with adipose tissue 

dysfunction including increased cell density, lipolysis and inflammatory cytokine 

production (from adipocytes and immune cells) and decreased adipose sensitivity to 

insulin as well as decreased lipogenesis (Ortega and Fernandez-Real 2013)). 

Inflammation and oxidative stress on the other hand further influences fat 

accumulation, leading to a continuous positive feedback (Fresno, Alvarez, and Cuesta 

2011). Many studies have shown a close relationship between immune and metabolic 

systems (Schaeffler et al. 2009; Wolowczuk et al. 2008) and leptin, one of the most 

studied adipokines, exerts both metabolic and anti-inflammatory properties (Fresno, 

Alvarez, and Cuesta 2011; DiAngelo et al. 2009). However, it is not known whether 

early life development in combination with nutritional challenges influences this low-

grade inflammation by affecting leptin levels. In this thesis we observed that neonatal 

overfeeding was associated with elevated leptin levels throughout life. Therefore, it 

will be important in future studies to measure molecular markers of inflammation 
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including IL-6, IL-1β, c-reactive protein, serum amyloid A and fibrinogen in the 

metabolically active organs such as adipose tissue, liver and muscle in the neonatally 

overfed and control animals during development and in adulthood. The presence of 

these markers has been shown in association with obesity and insulin resistance in the 

following rodents and human studies (Chou et al. 2014; Shoelson, Lee, and Goldfine 

2006; Kwon and Pessin 2013). Furthermore, since recent studies have been 

suggesting that peripheral inflammation is a result of central inflammation in obesity 

(Weisberg et al. 2003; Thaler et al. 2012; Mori et al. 2010), it will be important to 

measure inflammatory markers centrally in the hypothalamus.    

 

Ghrelin and leptin receptors are expressed in extra-hypothalamic regions, including in 

the hippocampus, and adult rodent studies have demonstrated a direct effect of both 

these hormones on synaptic plasticity and cognitive function (Beck and Pourie 2013; 

Harvey 2013). Previous studies have shown that early life exposure to imbalanced 

nutritional environment or stress can lead to long-life cognitive dysfunctions (as 

reviewed in (Spencer 2017). Alterations in leptin levels for instance, are associated 

with emotional and cognitive disorders as observed in pre-clinical and clinical studies 

(Guo et al. 2013; Milaneschi et al. 2016). Similarly, a reduced ability for local brain 

ghrelin production, especially in the temporal lobe, has been observed in Alzheimer’s 

Disease (AD) patients (Gahete, Rubio, et al. 2010). In contrast, in animal studies, 

ghrelin administration in a mouse model of AD is associated with enhanced 

hippocampal synaptic plasticity and consequently improved learning and memory 

(Diano et al. 2006). However, the effects of an imbalanced nutrition during early life 

with regards to ghrelin and leptin’s influence on cognitive development long-term 

remain to be further elucidated. We observed in Chapter 3 that neonatal overfeeding 
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was associated with suppressed circulating ghrelin levels, and increased ghrelin 

receptor expression in the ARC during the first week after birth in male pups. If 

perturbations to the ghrelin system extend to higher order brain regions involved in 

cognitive processing this may suggest insufficient ghrelin levels to be associated with 

increased chances of the offspring developing AD later in life. We indeed have 

previously seen that neonatally overfed adult rats perform poorly in cognitive 

behavioural tests and demonstrate impaired sensitivity to learning (De Luca et al. 

2016). This is important even if ghrelin levels resolve since the insults have occurred 

during an important developmental window and may potentially be associated with 

long-term detrimental effects.  

 

As mentioned in Chapter 6 and here in Chapter 7, ghrelin suppresses inflammation 

via a number of mechanisms including inhibiting NF-κB pathway (Wu, Zhou, et al. 

2007; Tsubouchi et al. 2014), directly suppressing pro-inflammatory cytokines in 

monocytes and T-cells (Dixit et al. 2004) and through other suggested pathways 

mentioned in this thesis. Recent research has shown DAG’s ability to reverse the pro-

inflammatory effects of chronic high fat diet (Gortan Cappellari et al. 2016). Also, 

DAG is involved in adipose lipid accumulation and suppression of adipose tissue 

inflammation (Pereira, da Silva, and de Moraes-Vieira 2017). A mechanism via which 

DAG exerts these effects has been suggested by Au et al.. They examined the effects 

of DAG on breast adipose tissue inflammation in obesity, where the capacity of 

human adipose tissue macrophages in stimulating aromatase (the enzyme involved in 

the biosynthesis of estrogens) expression in primary human breast cells (ASCs) was 

measured. Breast adipose tissue inflammation in obesity is associated with elevated 

expression of aromatase. DAG treatment significantly suppressed macrophage-
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dependent induction of aromatase in ASCs, identifying a new mechanism for DAG in 

modulating inflammation. However, these studies have not taken into account the 

expression of the enzymes that hydrolase AG to DAG, such as butyrylcholinesterase, 

in order to rule out which form of ghrelin is exerting the effects. Altered levels of 

butyrylcholinesterase are observed in obesity, insulin resistance, hypertension (Chen 

et al. 2017) and inflammatory diseases (Xu et al. 2018). Understanding the 

mechanisms via which AG and DAG exert their anti-inflammatory properties would 

be very important extending to the effects of both forms of ghrelin as promising 

therapeutic strategies for treatment of inflammatory conditions. 

 

Based on our results we conclude that leptin and ghrelin are two metabolic hormones 

with great importance in the developmental origins of adult diseases. Nutritional 

disturbances during early life development alter the levels of these hormones and the 

systems they control long-term and are associated with long-life metabolic 

disturbances such as a permanent increase in body weight, despite at least partial 

central resilience in orexigenic/anorexigenic circuitry as measured here.  

 

Here we also emphasise the importance of studying sex differences. Cellular and 

molecular changes triggered by steroid hormones and sex chromosomes throughout 

development define specific physiological functions and behaviours in males and 

females. Therefore, is very important to consider both sexes to avoid assumption of 

equal behaviours between sexes without specific assessment.  

 

Important developmental windows that can alter metabolism long-term in humans are 

the prenatal period, early infancy, 5-7 years of age (known as adiposity rebound 
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period) and puberty (Power, Kuh, and Morton 2013). Our findings provide further 

insight into how leptin and ghrelin can affect central and peripheral feeding circuitry 

during development, which in humans corresponds approximately to the third 

trimester (Semple et al. 2013), under nutritional challenges. This information could be 

used to inform the public of the importance of the nutritional environment during 

important developmental windows in humans in order to minimize the risk of 

childhood obesity and associated metabolic and cognitive disorders. Therefore, the 

early life developmental period studied here is not only a period of high vulnerability, 

but also a very important window for therapeutic interventions. 
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