The impact of hydrogenation conditions on the temperature and strain discrimination of type I and type IA Bragg grating sensors

Kyriacos Kalli, A. George Simpson, Kaimin Zhou, Lin Zhang, Ian Bennion
The impact of hydrogenation conditions on the temperature and strain discrimination of Type I and Type IA Bragg grating sensors

Kyriacos Kalli 1*, A George Simpson 2, Kaimin Zhou 2, Lin Zhang 2 and Ian Bennion 2
1 Higher Technical Institute, C. Kavafi Street, Nicosia, 2152 Cyprus
2 Photonics Research Group, Aston University, Birmingham B4 7ET United Kingdom

ABSTRACT

We report experimental findings for tailoring the temperature and strain coefficients of Type I and Type IA fibre Bragg gratings by influencing the photosensitivity presensitisation of the host optical fibre. It is shown that by controlling the level of hydrogen saturation, via hot and cold hydrogenation, it is possible to produce gratings with lower thermal coefficients. Furthermore, there is a larger difference between the Type I and Type IA thermal coefficients and a significant improvement in the matrix condition number, which impacts the ability to recover accurate temperature and strain data using the Type1-1A dual grating sensor.

Keywords: Optical fibre sensors, fibre Bragg gratings, Type IA grating, photosensitivity, temperature and strain sensors

1. INTRODUCTION

Type IA fibre Bragg gratings have attracted interest within the sensor community based on their unique spectral and physical characteristics. They are readily identified by their spectral attribute of a large red shift in the Bragg wavelength \(\lambda_B\) of the grating during inscription that accompanies an increase in the mean core index \(n_0\). It is recognised that this red shift is dependent on fibre type and hydrogenation conditions, and for a highly doped fibre, such as B/Ge codoped fibre, is typically 15-20nm, whereas the wavelength shift for SMF28 is lower at 5-8nm. The maximum wavelength shift translates to an increase in the mean index of up to \(2 \times 10^{-2}\). We have previously shown a strong correlation between the growth of the OH absorption band formation in the optical fibre during prolonged UV exposure and the increase in the mean index change of the fibre grating. This change results from the hydrogen combining with Si and Ge centres in the fibre to form stable SiOH and GeOH groups, the latter of which has the greater impact on the strength and peak location of the 1400nm absorption band. As a result of this fundamental material modification Type I and Type IA gratings have been written in the same fibre with a common phase mask, yet with central reflecting peaks more than 14nm apart after annealing. More importantly, this change in the mean index of the fibre core results in their key physical attribute, that they exhibit the lowest temperature coefficient of all grating types reported to date; this makes them attractive for use in a temperature compensating, dual grating sensor.

Here we focus on the effect of hydrogenation on the thermal coefficients of Type I and Type IA grating sensors and how this affects the recovery of accurate temperature and strain data. We control the degree of photosensitivity presensitisation of the host optical fibre by controlling the level of hydrogen saturation, via hot and cold hydrogenation. We will show that it is possible to produce Type IA gratings with low thermal coefficients, particularly when compared to Type I gratings. Furthermore, tailoring a large difference between the Type I and Type IA thermal coefficients leads to a significant improvement in the matrix condition number, this impacts the ability to recover accurate temperature and strain data when using a Type1-1A dual grating sensor. We will show that the improvement is significant and makes this dual grating scheme well suited to dual measurand applications, performing well compared with other, more elaborate techniques schemes that utilize multiple Bragg gratings to simultaneously decouple temperature and strain.

2. HYDROGENATION CONDITIONS AND GROWTH CURVES

It is well documented that optical fibres hydrogenated at lower temperatures achieve a higher hydrogen concentration within the core but require significantly longer saturation times. The concentration of hydrogen molecules and the rate at which these molecules diffuse into the core of the optical fibre depend on the temperature and pressure at which the...
The concentration of hydrogen molecules in the optical fibre core at saturation (the equilibrium solubility), κ_{sat}, is given by:

$$\kappa_{sat} = 3.3481p \exp \left(\frac{8670 J / mol}{RT} \right) \text{ [ppm]} \quad (1)$$

where p is the pressure of the hydrogen in atmospheres, T is the temperature in Kelvin, and R is the gas constant (8.31451 JK$^{-1}$mol$^{-1}$). The saturated hydrogen concentration increases linearly with pressure and decreases as the temperature increases. The variance in κ_{sat} for changes of p and T is shown in figure 1 (a). The diffusivity of hydrogen molecules in silica is given by 4:

$$d_{H_2} = 2.83 \times 10^{-4} p \exp \left(\frac{-40190 J / mol}{RT} \right) \text{ [cm}^2\text{s}^{-1}] \quad (2)$$

and increases with both pressure and temperature.

The variance in d_{H_2} for changes of p and T is shown in figure 1 (b). Figure 1 shows the trade off that must be made when hydrogenating optical fibres; higher temperatures mean that it is possible to hydrogenate fibres relatively quickly, but only at the expense of the final concentration of hydrogen in the core of the fibre.

![Figure 1. (a) (left) The variance in the hydrogen saturation levels of a silica fibre core for changes of p and T, and (b) (right) The variance in the diffusivity of hydrogen in silica for changes of p and T.](https://www.spiedigitallibrary.org/conference-proceedings-of-spie)

The solution on the axis for outward diffusion in cylindrical geometry is conveniently given by Crank 5 as:

$$\frac{C}{\kappa_{sat}} = 1 - \exp \left(- \frac{a^2}{4d_{H_2}t} \right) \quad (3)$$

where C is the concentration of hydrogen in the fibre and a is the fibre radius.
In order to determine how the type of hydrogenation affects the formation of fibre Bragg gratings, we prepared two identical batches of fibre into which were inscribed Type I and Type IA gratings. Each batch consisted of Corning SMF-28 standard telecommunications fibre and Verillion B/Ge co-doped fibre. One batch was hydrogenated at 80°C, 190Bar for 93 hours and cooled to room temperature over 24 hours by which time the pressure was 160Bar; the other batch was hydrogenated in excess of four months at 180Bar and at room temperature. Both samples were hydrogenated for times well in excess of the equilibrium time and we calculated the hydrogen concentration within the fibre samples using equation 1 based on the hydrogenation conditions outlined above. These results are shown in Table 1.

Table 1. A summary of the hydrogenation conditions for the hot and cold hydrogenated samples, showing the time, temperature and pressure of hydrogenation and the calculated saturation level within the fibre core

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Pressure (Atmosphere)</th>
<th>Time (Hours)</th>
<th>K_{sat} (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot</td>
<td>353</td>
<td>178</td>
<td>93</td>
</tr>
<tr>
<td>Cold</td>
<td>298</td>
<td>188</td>
<td>>384</td>
</tr>
</tbody>
</table>

Gratings were inscribed using the scanning phase mask technique illuminated with a cw UV laser source operating at 244nm. A 1-mm aperture ensured an accurate top-hat exposure profile along the length of the grating. The stage was scanned at 1mms$^{-1}$ with 130mW optical power delivered to the fibre. Figure 2 shows the growth rate for the hot and cold samples in the different fibre types. There is a clear trend showing that the fibres hydrogenated at room temperature grow faster than those heated during the hydrogenation process.

Figure 2. Growth rate of Type IA gratings in the indicated fibre types, for hot (grey) and cold (black) hydrogenation conditions.

In order that the Type IA gratings would have a reference grating whose properties are well understood, a 1-mm Type I grating was written within the same section of each fibre. Figure 3 shows the spectra of each sample before (upper) and after (lower) annealing at 80°C for 96 hours, and highlights a number of differences between the fabricated gratings; notable examples are the gratings written in Verillion IF01001410101 B/Ge co-doped fibre, where both the IA and I gratings differ significantly in amplitude and the Type I grating would seem to be slightly offset in wavelength. The gratings in SMF-28 are comparable in hot and cold hydrogenated samples and do not exhibit any significant spectral characteristics other than the anticipated short wavelength losses associated with the hydrogenation. The wavelength difference between Bragg resonances of the Type I and IA gratings is summarised in Table 2 for the pre- and post-annealed gratings.
3. TEMPERATURE AND STRAIN COEFFICIENTS

The thermal and strain coefficients of the gratings were measured by placing individual gratings on a temperature controlled block within an insulated chamber and mounted on translation stages. The temperature was controlled by means of a Peltier device connected to a standard, computer operated temperature controller. Temperature feedback was made possible by the placement of a calibrated thermistor and the Bragg wavelength was measured by passing broadband IR radiation from a powerful ASE source through the fibre to an OSA with 0.06nm resolution. The centroid-fitting algorithm (CFA) was used to locate the Bragg wavelength peak recorded by the OSA. A computer was used to set and record the temperature of the grating and the OSA traces; plotted in Figure 3 for each grating and fibre type, as indicated. The thermal coefficients are summarised in Table 2. The values we have measured may be compared with independent studies on Type I and IA grating temperature coefficients (although no strain responsivities are quoted)\(^6\).

Table 2. A summary of the data highlighting the differences between hot and cold hydrogenation in the different fibre types.

<table>
<thead>
<tr>
<th>Fibre type</th>
<th>Hydrogenation conditions</th>
<th>Manufacturer</th>
<th>(\lambda_{BR}^I(T))</th>
<th>(\lambda_{BR}^{IA}(T))</th>
<th>(\lambda_{BR}^I(T) - \lambda_{BR}^{IA}(T))</th>
<th>(\lambda_{BR}^I - \lambda_{BR}^{IA})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMF28</td>
<td>hot</td>
<td>Corning</td>
<td>10.54</td>
<td>10.427</td>
<td>1.084</td>
<td>5.848</td>
</tr>
<tr>
<td>SMF28</td>
<td>cold</td>
<td>Corning</td>
<td>10.28</td>
<td>9.958</td>
<td>3.233</td>
<td>6.076</td>
</tr>
<tr>
<td>B/Ge</td>
<td>hot</td>
<td>Verillion</td>
<td>9.146</td>
<td>8.27</td>
<td>10.592</td>
<td>13.474</td>
</tr>
<tr>
<td>B/Ge</td>
<td>cold</td>
<td>Verillion</td>
<td>8.531</td>
<td>7.403</td>
<td>15.237</td>
<td>13.375</td>
</tr>
</tbody>
</table>

Figure 4 shows that both the hot and cold hydrogenated fibres display an unambiguous trend, the cold samples possess a lower temperature coefficient (\(\lambda_{BR}(T)\)). Moreover the difference between the \(\lambda_{BR}(T)\) values for Type I and IA gratings is larger when the samples are hydrogenated at 25°C in preference to 80°C. It is unclear from this experiment alone whether the effect is a result of an increased hydrogen level caused by the longer term, lower temperature hydrogenation, but we believe that this is a reasonable assumption. Regardless, this is almost certainly related to the presence of increased GeOH centres that are formed during the UV treatment of the fibre. The wavelength to strain responsivity displays a smaller but measurable difference that results primarily from differences in the initial centre wavelengths rather than any variation in the material properties.
Figure 4. Plots showing the thermal coefficients for Type I (left-hand traces) and Type IA (right-hand traces) gratings written in various fibre types (as indicated) for hot (grey) and cold (black) hydrogenation conditions.

We can compare errors in the derived measurements with those of the ideal case. Ideally, the errors in strain ($\delta \varepsilon$) and temperature (δT) are given by 7:

$$\begin{pmatrix} \delta T \\ \delta \varepsilon \end{pmatrix} = \begin{pmatrix} \frac{\delta \phi_1}{K_{1T}} \\ \frac{\delta \phi_2}{K_{2\varepsilon}} \end{pmatrix}$$

(4)

where $\delta \phi_1$ and $\delta \phi_2$ are the measurement errors of parameters ϕ_1 and ϕ_2, in this case the wavelength. The error increases for strain and temperature according to 8:

$$\delta \varepsilon = \frac{K_{2\varepsilon}}{K_{1T} K_{2\varepsilon} - K_{2\varepsilon} K_{1T}} \left| \delta \phi_1 \right| + \frac{K_{1T}}{K_{1T} K_{2\varepsilon} - K_{2\varepsilon} K_{1T}} \left| \delta \phi_2 \right|$$

(5)

and,

$$\delta T = \frac{K_{1T}}{K_{1T} K_{2\varepsilon} - K_{2\varepsilon} K_{1T}} \left| \delta \phi_1 \right| + \frac{K_{2\varepsilon}}{K_{1T} K_{2\varepsilon} - K_{2\varepsilon} K_{1T}} \left| \delta \phi_2 \right|$$

(6)

An alternative description has been provided in 9 where the errors in ϕ_1 and ϕ_l have been converted to an error ellipse in the (ε, T) plane.
For the case of the Verillion B/Ge fibre the strain coefficients for the Type I and Type IA gratings are $\lambda_{IB}(\varepsilon) = 0.818 \text{pm/µε}$ and $\lambda_{IA \beta}(\varepsilon) = 0.828 \text{pm/µε}$, respectively. The strain and temperature errors associated with their respective coefficients are $\pm 15.3 \text{µε/pm}$ and $\pm 1.44 \degree \text{C/pm}$, for the hot hydrogenation in Verillion B/Ge fibre and $\pm 11.2 \text{µε/pm}$ and $\pm 1.15 \degree \text{C/pm}$ for the cold hydrogen loading in the same fibre type. These values compare with errors of $\pm 12 \text{µε/pm}$ and $\pm 1.3 \degree \text{C/pm}$ measured by Xu et al. 10 for two superimposed gratings at markedly different wavelengths. Therefore the approach of controlling the degree of hydrogenation to affect the temperature coefficients of a photosensitive fibre can prove to be very useful for a dual grating sensor used to differentiate between strain and temperature. Furthermore, a useful mathematical tool for quickly assessing the accuracy of a dual sensor arrangement is to calculate the condition number of the sensor matrix 11. The condition number of a matrix measures the sensitivity of the solution of a system of linear equations to errors in the data. It gives an indication of the accuracy of the results from matrix inversion and the linear equation solution. This is easily calculated in Matlab using $\text{cond}(c,1)$ or MathCad using $\text{cond1}(c)$ where c is the sensor matrix in question. For the ideal case the condition number of the matrix is 1 indicating a perfectly conditioned matrix. For a mathematical explanation for the procedure of calculating the condition numbers of matrices see, for example 11,12. Table 3 shows a comparison of condition numbers for different methods used to separate temperature and strain based on Bragg grating sensors, from which we observe that the cold hydrogenation produces a well-conditioned matrix that compares favourably with other more elaborate techniques.

Table 3. Matrix condition numbers of dual grating temperature-strain isolation configurations – a comparison. The table is ordered with the most effective method (as defined by the lowest condition number) first.

<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
<th>Condition Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bragg gratings in different diameter fibres</td>
<td>James et al, [13]</td>
<td>48</td>
</tr>
<tr>
<td>Type IIA and Type IA grating pair</td>
<td>Shu et al, [14]</td>
<td>68</td>
</tr>
<tr>
<td>Superimposed grating pair</td>
<td>Xu et al, [10]</td>
<td>123</td>
</tr>
<tr>
<td>Type I and Type IA grating pair – Cold / Hot hydrogenation</td>
<td>Kalli et al, [This work]</td>
<td>147 / 214</td>
</tr>
<tr>
<td>Gratings in germanosilicate and Er,Yb doped germanosilicate fibres</td>
<td>Guan et al, [15]</td>
<td>169</td>
</tr>
<tr>
<td>Gratings in germanosilicate and B doped germanosilicate fibre</td>
<td>Cavalerio et al, [16]</td>
<td>173</td>
</tr>
<tr>
<td>Type IA and Type I grating pair</td>
<td>Simpson et al, [3]</td>
<td>188</td>
</tr>
<tr>
<td>First and second order Bragg resonances</td>
<td>Kalli et al, [9, 17]</td>
<td>203</td>
</tr>
<tr>
<td>Type IIA and Type I grating pair</td>
<td>Frazao et al, [18]</td>
<td>272</td>
</tr>
<tr>
<td>Type I and IIA gratings in Ge-doped / B–Ge co-doped fibres</td>
<td>Pal et al, [19]</td>
<td>637 / 615</td>
</tr>
<tr>
<td>Type-I and type-IIA gratings – no hydrogen loading, high germanium doping</td>
<td>Pal et al, [20]</td>
<td>750</td>
</tr>
</tbody>
</table>
4. CONCLUSIONS

Work has been presented detailing the fabrication and characterisation of dual grating sensors that may be used to simultaneously decouple temperature and strain. The sensor head comprises a standard Type I grating fabricated directly adjacent to a Type IA grating, having a lower temperature coefficient and slightly higher strain coefficient. We have shown for two different fibre types that the concentration of hydrogen within the core directly affects the rate at which Type IA gratings form and the thermo-optic coefficient of the mature Type IA grating; gratings inscribed in fibre samples with a higher hydrogen concentration form faster and have lower temperature coefficients. The degree of photosensitisation and hydrogen levels is controlled by the hydrogenation conditions, and typical hot and cold conditions for hydrogenation are implemented.

Using a standard matrix technique it is possible to interrogate the sensor head and decouple strain and temperature with a matrix condition number better than 150. In the case of low temperature hydrogenation there is a significant improvement in the matrix inversion errors and the condition number. This improvement is important as it augments the existing advantages of the Type1-IA dual grating sensor, namely two Bragg wavelengths having good wavelength proximity thereby avoiding costly multiplexing schemes; quick and efficient inscription using a single phase mask, common annealing cycles and the precise placement of sensors located in a common sensor head.

ACKNOWLEDGEMENTS

The authors acknowledge the UK DTI-EPSRC LINK project EMPIRE. KK and AGS respectively acknowledge Higher Technical Institute – Promotion of Research Fund and studentship of the UK EPSRC and BAE Systems.

REFERENCES

* kkalli@cytanet.com.cy; phone 35722406537; fax 35722406545