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Abstract

The use of forward-looking information from option prices attracted a lot of
attention after the 2008 financial crisis, which highlighting the difficulty of using
historical data to predict extreme events. Although a considerable number of
papers investigate extraction of forward-information from cross-sectional option
prices, Figlewski (2008) argues that it is still an open question and none of the
techniques is clearly superior.

This thesis focuses on getting information from option prices and investigates
two broad topics: applying machine learning in extracting state price density
and recovering natural probability from option prices. The estimation of state
price density (often described as risk-neutral density in the option pricing litera-
ture) is of considerable importance since it contains valuable information about
investors’ expectations and risk preferences. However, this is a non-trivial task
due to data limitation and complex arbitrage-free constraints. In this thesis, I
develop a more efficient linear programming support vector machine (L;-SVM)
estimator for state price density which incorporates no-arbitrage restrictions and
bid-ask spread. This method does not depend on a particular approximation
function and framework and is, therefore, universally applicable. In a parallel
empirical study, I apply the method to options on the S&P 500, showing it to be
comparatively accurate and smooth. In addition, since the existing literature has
no consensus about what information is recovered from The Recovery Theorem, I

empirically examine this recovery problem in a continuous diffusion setting. Us-

il



Abstract

ing the market data of S&P 500 index option and synthetic data generated by
Ornstein—Uhlenbeck (OU) process, I show that the recovered probability is not
the real-world probability. Finally, to further explain why The Recovery Theorem
fails and show the existence of associated martingale component, I demonstrate

a example bivariate recovery.
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Notation and Abbreviations

Items Description

(Q,F,P) Probability space

S Underlying asset price, S; is the price at time t, S7 is the price
at maturity date

r Interest rate, in option pricing theory, it can be assumed as
constant, deterministic function or zero

T Option maturity date
Option strike price

T Forward Price

Z(Sr) Option payoff

k Forward moneyness %
T Time to maturity of Option, it usually is calculated as %
o Volatility of underlying

C(k,1) Call option price with strike £ and time to maturity 7

P(k,T) Put option price with strike k& and time to maturity 7

IT™M In the money, which refers strike price is less than underlying
price

ATM At the money, which refers strike price is equal than underlying
price

Continued on next page




Notation and Abbreviations

Items Description

OTM Out the money, which refers strike price is great than
underlying price

SDF Stochastic discount factor

EMH Efficient market hypothesis

ARCH Autoregressive conditional heteroskedasticity

GARCH  Generalized autoregressive conditional heteroskedasticity

Al Artificial intelligence

AIC Akaike Information Criterion

SVM Support vector machine

QP Quadratic Programming

LP Linear Programming

P Real-world probability measure, probability density under P is
f(57)

Q Risk neutral measure, the risk neutral density is p*(Sr), risk
neutral distribution is F'(St)

QT Forward measure

E() Expectation under real-world probability

K(xz,z)  Kernel function

k Vector of forward moneyness

T Vector of time to maturity

o Coefficient of L;-SVM approximation

C,\ Trade-off parameters balance the estimated error and no
arbitrage conditions

a,e,& Bound parameters of L;-SVM approximation

Continued on next page
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Notation and Abbreviations

Items Description

r(x) Derivatives vector of kernel function
Yi(Zy) Vector of target value y

® Kernel product of two matrix

S State Price matrix

P Real-world transition matrix

Q Transition matrix
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Chapter 1

Introduction

In this chapter, I outline the research background, motivations, and main contri-
butions and findings. Section 1.1 briefly introduces the history of options. Section
1.2 summaries research gaps and motivation. An overview of the main findings of

this thesis is presented in Section 1.3. Section 1.4 provides the thesis structure.

1.1 Overview and Background

We live in a world full of contradiction and paradox, a fact of which
perhaps the most fundamental illustration is this: that the existence
of a problem of knowledge depends on the future being different than
the past, while the possibility of the solution of the problem depends

on the future being like the past.
—Knight (1921)*

An option is a financial contract that gives a buyer (or a seller) a right to buy
(or sell) a certain amount of something which I name the underlying at specific

price on a specified date?. The earliest example of using options can be traced

'Page 313

2The key insight of option contact is: it gives the right but not the an obligation to exercise
contract. This intuition is easy to understand as instead of an obligation, people always have a
choice (option) in real life



1.1. Overview and Background

Figure 1.1.1: Number of Contracts and Trading Volume on CBOE
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Note: The top panel plots the number of contracts traded on CBOE from 2000
to 2016. The bottom panel reports the average daily trading volumes and dollar
volume of call and put options on CBOE in the same period. The orange line
represents the dollar volume of call option while the blue line plots the dollar
volume of put options. The gray areas plot shows the average daily volume
changes. The data is available at http://www.cboe.com/data/historical-options-
data/annual-market-statistics
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back to ancient Greece®, when Thales of Miletus made a successful speculation
by designing an olive presses option contact. According to Aristotle 4, Thales
could predict weather conditions. Using this information, Thales successfully
forecasted a rich harvest of olives in a particular year and paid a low deposit
(option premium) to pre-book all olive presses in advance. This deposit gave him
the right to use the olive-presses if he so choose. When the season came and
the demand of olive-presses surged, he rented the olive presses to farmers at a
higher price (excising his options). This is a classic example of using call options
to make a profit. However, not all people seeing similar opportunities got lucky.
Thompson (2007) remarks that tulip-mania in 1637 was associated with the use
of options. On 24th February 1637, Dutch florists announced a new trading
rule which transformed the tulip-bulb forward contract into an option contract.
Under the new rule, investors did not need to pay in the forward or spot market
to buy tulip bulbs. They could pay only 3 percent of the forward contract price
to reserve a right (without obligation) to buy tulip bulbs in the future. If the
market soared, they profited like Thales of Miletus. If the market slipped, they
would have lost just 3 percent. This announcement resulted in a massive rise in
tulip options prices and many people invested their lifes” savings in tulip options.
In the next few months, the strike price of tulip option traded as high as 10 times
the spot price. Then the bubble burst and many went bankrupt as the tulip fever
suddenly ended. This tulip disaster set a bad image of options over decades®. For
a century, options trading was illegal in Great Britain. On the other hand, options

trading in the US began and develop rapidly afterward. In 1872, an American

3Some researchers believe that the story (the marriage between Jacob and Laban’s daughter)
in The Bible is the first record option transaction

1Please refer to Aristotle (1999) for more detail. The original record is in Aristotle, Politics
1.1259a, Book I, Chapter 11, sections 5-10

5The other famous derivative disaster is Baring Bank in 1995, Nick Lesson traded aggres-
sively in Nikkei 225 and SIMEX futures and options and lost 827 million pounds.
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businessman, Russel Sage, created call and put options. In 1973, a remarkable
year in option history, the first official traded options market - Chicago Board
Options Exchange (CBOE) was opened and Fischer Black, Myron Scholes and
Robert Merton(Black and Scholes (1973); Merton (1973)) published their option
valuation model. Since then, the option market has grown explosively. Exchanges
were opened all over the world and products such index option, spread option,
VIX options and Long-term Equity Anticipation Securities (LEAPS) began to be
traded.

Nowadays, with introduction of electronic trading platforms and increased
computation power, the trading of options has become more popular and easier.
According to the Bank for International Settlements(BIS)® and the Futures In-
dustry Association(FIA)?, traded option contracts account for 10% of the global
OTC (over-the-counter; i.e, not traded on an exchange but directly) derivative
market and 40% of exchange traded contracts in 2017. Furthermore, both the
number of tradable option contracts and trading volumes have soared since 2005.
As shown in Figure 1.1.1, the number of options contracts has climbed from less
than 400 million to more than 1200 million from 2000 to 2016. In particular,
the number of contracts increased dramatically from 2005 to 2006. This signifi-
cant change corresponds with the introduction of weekly, short-term options and
VIX options in 2005 and 2006%. In addition, the daily trading volume and dollar
volume maintained an historically high level during the past 16 years with more

than 4 million options traded daily on the CBOE over 8 years.

bsee https://www.bis.org/statistics /derstats.htm for more detail
"see https://fia.org/categories/exchange-volume for more detail
8see http://www.cboe.com /aboutcboe/history for more detail
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1.2 Motivations and Research Gaps

This thesis focuses on extracting information from options market data: more
precisely, the risk neutral density(RND), underlying natural probability and in-
vestors’ risk preferences. As the earlier section has described, both Thales of
Miletus and Dutch saw a similar money-making opportunity. However, one prof-
ited but the others’ hopes ended badly. The main difference between them is
underlying movement and investor’s risk preference. Obviously, if any investors
have true foresight about either item, they could make handsome profits (or avoid
unnecessary speculation). However, this is impossible in real markets. How to
forecast future underlying movement has been a fundamental concern of both
scholars and practitioners for many years. There are numerous business, equity,
financial analysts in Wall Street writing market outlook reports and thousands of
researchers using sophisticated financial forecasting models every day. As Granger
(2005) states “more likely the results are fragile, once you try to use them, they
go away’.

From time series econometrics and rational expectations perspective, schol-
ars and practitioners always try to draw on insights from historical data (such
as using autoregressive conditional heteroskedasticity (ARCH) and generalized
autoregressive conditional heteroskedasticity (GARCH) model). However, this
approach is directly challenged by prominent economists like Knight (1921)° and
the famous efficient market hypothesis (EMH) by Fama (1970). Fama (1970)
argues that all available information in the market has already been reflected
in the current asset price. Future asset price movements are only influenced by
new information. Knight’s and Fama’s comments gained renewed interest after

2008 when conventional risk management techniques have been questioned for

9see quote before this chapter
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their inability to manage tail risk and black swan events. Historical time series
data do not offer many guidelines in predicting extreme events. Recently re-
searchers have shifted their attention to inferring underlying probability densities
from options markets. As an option is a forward-looking instrument, the benefits
of focussing on cross-sectional option data seem obvious in principle. First, an
option contains information on expectations about underlying future movement.
Second, unlike traditional time series econometrics, inferring probabilities from
option prices requires no prior guesses about the underlying distribution.
Starting with the remarkable Black-Scholes-Merton model (Black and Scholes
(1973); Merton (1973)), a large body of option pricing literature has developed
to calculate the fair value of an option price. Wilmott (2006) classifies the option
pricing methods into four catalogues: Lattice(tree) method (Cox et al. (1979)),
Monte Carlo method (Boyle (1977)), Finite Difference method (Brennan and
Schwartz (1977)) and Numerical Integration (Andricopoulos et al. (2003, 2007);
Chen et al. (2014))1°. All of these are based on the risk neutral measure Q.
Following this theoretical framework, a number of studies have concentrated on
developing techniques to extract the risk neutral probability density (RND) from
option prices (see Figlewski (2018) and Chapter 5 for a brief review), but none
shows superior performance. This is not a surprise since estimating the risk

neutral density poses five challenges (see Chapter 5 for more detail).

e The estimation of RND is based on continuous strike price while the strike

price in the real market is discrete

e The estimation of RND ignores the information contained in the bid-ask

spread

10Because this thesis focus on the inverse problem of option pricing( a.k.a estimate underly-
ing probability density from option price), I recommend reader refer Chapter2 and textbooks
Wilmott (2006) and Hull and Basu (2016) for more information.
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e Market option data contains noise from various sources which may lead to

multimodal RND

e Theoretical RND lies in [0, oo] while the market option data can only esti-

mate RND within bounds
e The estimation of RND suffers the ’curse of differentiation’.

Unlike the estimation of RND, how to separately recovery underlying real-world
probabilities from option prices is a new topic. Prior to Ross (2015) | who
proposes The Recovery Theorem (hereafter TRT), there is no model-free method
that could uniquely recovery real-world probabilities of underlying from option
prices'?. This break-through work seems to challenge the traditional option pric-
ing framework under the risk neutral measure Q and provide a new insight to
re-examine or build all pricing, risk management frameworks under the recov-
ered probability. However, until now, existing studies have reached no consensus
on what information is recovered by Ross’s theory. The original TRT provided
by Ross has argued that the recovered probability is the real-world probability,
namely the P probability of the underlying asset. This argument is theoretically
supported by Carr and Yu (2012), who provide an alternative way to derive TRT
from a numeraire portfolio. However, Borovicka et al. (2016) point that the since
there is always a martingale component contained in the recovered probability,
the recovered probability is between Q and P ( They call this probability as
natural probability).

Although researchers and practitioners have demonstrated a strong interest

in using forward-looking information from option prices, two main problems are

" The working paper is available online in 2012.
12To my best knowledge, there are only several studies try to solve this problem assuming
particular stochastic discount factor(Jackwerth and Rubinstein (1996))
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associated with extracting this information.
e How to extract a well-behaved RND from option prices?

e What information do I recovery from TRT, the real-world probability or

natural probability?

Motivated by these two problems and using a data-driven approach, in particular,

I investigate the following questions:

e Can I estimate the RND using machine learning technique?, If the answer

is yes, which technique could I use? ( Chapter 3 and 5)

e How do I incorporate the no-arbitrage constraints in the machine learning

framework? (Chapter 4 and 5)

e Compare to existing non-parametric method, whether my approach shows

a better performance? (Chapter 5)

e Differ from previous discretization approach, if I examine TRT in a contin-

uous time setting, what information do I recovered? (Chapter 6)

1.3 Findings and Contributions

Differing from many existing approaches that extract RND using specific para-
metric model, in this thesis, I try to solve the first problem from a machine
learning perspective. In Chapter 5, I develop a data-driven estimator using a
support vector machine(SVM). Including the bid-ask spread and no-arbitrage
conditions, I modify the standard SVM into a linear programming framework.
Compare with other methods, my approach yields four advantages. First, it is a

fully nonparametric method and does not rely on the assumption of a prior
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distribution. Second, by setting trader’s own error tolerance, it incorporates
the information of bid-ask spread into an estimation framework. Third, it is
a universal approach that incorporates all arbitrage-free constraints. Fourth,
compared to the neural network, my approach could easily produce a smooth
RND due to the explicit complexity control. The top panel of Figure 1.3.1 displays
the estimation results of L;-SVM on July 2, 2013. Consistent with option pricing
theory, my state price density estimator yields a unimodal, smooth and positive
surface.

To solve the second problem, I empirically implement Walden (2017)’s un-
bounded diffusion Recovery Theorem using S&P 500 index option. As shown in
the bottom panel of Figure 1.3.1, T find that the recovered probability exhibits
thinner left tails than its risk-neutral counterparts. Using Audrino et al. (2015)
’s quadratic loss function in my L;-SVM framework, I show that the quadratic
loss function in state price estimation does not guarantee a well-recovered result.
Finally, to further explain why The Recovery Theorem fails, I apply a bivariate
unbounded recovery and confirm the existence of the martingale component in
Ross’s pricing kernel assumption.

To summarize, this thesis contributes to the previous studies in several three
ways: First, I propose a new a data filter approach based on three principles:
representative, accurate and no arbitrage in Chapter 4. I show that comparing
with Zhang and Xiang (2008) and other studies, my filtered results contain less
noise. Second, I contribute to the RND estimation studies by developing a more
efficient linear programming support vector machine (L;-SVM) estimator. Incor-
porating all no-arbitrage restrictions and bid-ask spread, in Chapter 5, I show
that my method establishes a somewhat better accuracy and is universally appli-

cable. Third, I provide the first empirical evidence for applying Walden (2017)’s
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1.4. Thesis Structure

unbounded diffusion recovery. Using the S&P 500 index option and synthetic
data generated by Ornstein-Uhlenbeck (OU) process, I find consistent evidence
on the recovered probability distributions with Jackwerth and Menner (2017). I

show that the recovered probability is not the real-world probability.

1.4 Thesis Structure

This thesis contains seven chapters. Chapter 1 introduces the research back-
ground and gaps in existing studies. This chapter summarizes the main findings
of the thesis. Chapter 2 gives a brief review of option theory, namely change of
measure technique, Black-Scholes Model and no-arbitrage conditions for option
price. In Chapter 3, I introduce two machine learning techniques and review their
applications in finance. Chapter 4 shows the procedure for constructing option
data panel and outlines the data filter rules. With the knowledge from proceeding
chapters, I propose a new state price density estimator based on support vector
machine (L;—SVM) in Chapter 5. In this chapter, I extend the standard SVM
to incorporate the no-arbitrage conditions and compare its performance with an-
other four models. Chapter 6 investigates the problem of what information is
recovered from TRT. I empirically implement Ross (2015) in the single diffusion
process and bivariate state variables case. Chapter 7 concludes and suggests the

future research direction.
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Chapter 2

A Brief Overview of Option Theory

People like the model because they can easily understand its assump-
tions. The model is often good as a first approximation, and if you
can see the holes in the assumptions you can use the model in more

sophisticated ways.
—Black (1990)

This chapter presents the necessary mathematical finance foundation for this
thesis. In section 2.1, I start by introducing two fundamental theorems in math-
ematical finance. These two theorems are prerequisites to link the no-arbitrage
pricing principle with option pricing. Under no-arbitrage principle, I model the
option price as a stochastic process and derive the Black-Scholes formula. In the
last section, I summarize the sufficient and necessary conditions for incorporating

no-arbitrage directly on a call option price surface.

2.1 Fundamental Theorem in Mathematical
Finance

2.1.1 The First Fundamental Theorem of Asset Pricing

Although it is challenged by behavioral finance literature(e.g. Barberis and

Thaler (2003)), the no-arbitrage principle is still the most important principle

12



2.1. Fundamental Theorem in Mathematical Finance

in financial modeling. The no-arbitrage principle arise from a basic belief about
market behavior. Arbitrage is a trading strategy taking to make money when
two or more securities are mis-priced relative to each other. When expressed in
the mathematical finance literature, I connect the no-arbitrage principle with the
probability measure. More precisely, if the market has no arbitrage opportunity,
then there exists a unique equivalent martingale under which the underlying price
process becomes a martingale.

Following Delbaen and Schachermayer (1994) and Dybvig and Ross (1989),
let us consider a probability space (€2, F,P) . F is a right continuous information
filtration , Q is the risk neutral probability and all possible outcomes are collected

in Q. S, denotes a stochastic process 13 .

Definition 1. (Martingale) Let S = S; for 0 < ¢ < oo is a stochastic process
on (2, F,P) , if for any bounded stop time s (0<s<t<oo), the E(S;|F) = E(S;),

then S is a martingale

Roughly, this means when conditioned on all the information I know today
F, My future expectation of a martingale process S is equal to its current value.
When pricing the option, since the asset price has captured all the information in
the market (EMH), the current expectation is equal to the asset price discounted
by the risk-free rate.
S(T) S(t)

B[ W | F] = {0 (2.1)

The % is a martingale process, where M is called market money account in the

concept of numeraire.

Definition 2. (numeraire) A numeraire can be any asset that has a positive price

process.

13The popular choices in mathematical finance literature are Wiener process and Levy pro-
cess.
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2.1. Fundamental Theorem in Mathematical Finance

In particular, market money account, currency exchange rate and zero-coupon

bond are popular numeraire choices in the mathematical finance literature.

Theorem 1. (The First Fundamental Theorem of Asset Pricing) A market model
in probability space (2, F,P) is no-arbitrage, if and only if there exists a proba-

bility measure that is equivalent to IP.

Proof: please refer to Delbaen and Schachermayer (1998)
Essentially, the First Fundamental Theorem of Asset Pricing implies that un-
der no-arbitrage principle, I could find a unique probability measure that enables

the price process to have a constant expectation.

2.1.2 Change of Measure

It is clear that in real-world probability P, the underlying price process is not
a martingale. To benefit from the properties of a martingale and use the no-
arbitrage principle, I need change the original probability measure P to another
probability measure. This technique is called change of measure (unsurprisingly).

For this, I first define the Radon-Nikodym Derivative.
Definition 3. (Radon-Nikodym Theorem) In probability space (2, F,P), a pos-
itive random variables Z and the probability measure Q is equivalent to P, if

_ 4

7 =
dpP

(2.2)

then 7 is called the Radon-Nikodym derivative.

The Radon-Nikodym derivative can successfully change the measure when we
know what we want to change into, but, in practice, the new probability measure

is usually unknown. Therefore I consider Girsanov’s Theorem.
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2.1. Fundamental Theorem in Mathematical Finance

Theorem 2. (Girsanov’s Theorem) Consider probability space (Q, F,P) and let

L(t) is a adapted bounded process with L(0) =1 ¢(s) is a positive process, if

L(t) = eap( / ()W (1) — 5 / £2(s)ds) (2.3)

Where WE(t) is a standard Brownian Motion under P. The process L(t) also

is the unique solution to
dL(t) = o(t)L{t)WF(t) (2.4)
Then under a new probability Q,

W) = W(t) — /O ' o(s)ds (2.5)

dWQ = dW?¥ — pdt (2.6)
Proof: please refer to Wilmott (2006)

The interesting aspect of theorem is that when changing to a new measure,

the diffusion term of the SDE is unchanged while the drift term is changed.

Theorem 3. (change of numeraire) If two different numeraire N and N* and
associated martingale measure QN and QN°, wusing Radon-Nikodym derivative,
the following relationship holds:

dQY'  NYT)N?(t)
dQN* — N(t)N2(T)

(2.7)

. 1 2 . . . .
Proof. Since QY and Q" are two martingale measures, according to definition

1, I obtain the following equations
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2.2. Option Pricing in a Nutshell

N1 S(T) . S<t>
EQ [Nl(T)LF] - Nl(t)
N2 S(T) - S<t)
5 a1 = v
Dividing these equations, I have
VOB [l 7] = N0 B [ 1
if I define M(T) = ]51(—2) ;
EY [M(T)|F] = xlgz; E¥ ﬁf@jﬁvﬁg) | F]
—E" [M(T)%V:]

(2.8)

(2.9)

(2.10)

(2.11)

Therefore, I can transform QV "to QN 2using a Radon-Nikodym derivative de-

fined by two numeraire assets.

2.2 Option Pricing in a Nutshell

2.2.1 The Black-Scholes Model

tion(PDE).

If T make the following assumptions:

e The market has no-arbitrage.

]

Even though there has been some criticism of the Black-Scholes model, it is,
without doubt, still the most widely used model in the derivative market. The
Black-Scholes model provides a closed-form solution of the European option price

and transforms the option pricing problem to solving partial differential equa-
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2.2. Option Pricing in a Nutshell

The market is frictionless: more precisely, there are no transaction costs on
the underlying and the borrowing and lending interest rates are the same.

All investors can immediately receive any available information.

The underlying price follows a Geometric Brownian Motion( Top panel of

Figure 2.2.1 shows an example of Geometric Brownian Motion prices paths)

dS(t) = rS(t)dt + o S(t)dW* (t) (2.12)

The interest rate r is a function of t and volatility ¢ is constant.

The underlying stock pays no dividends.

Let the M(t) be market money account and dM(t) = rM(t)dt. According to

definition 1, the risk-free discounted option price is a martingale, so

V(T,S)
M(T)

V(t,S) = M(t)E9| Fal (2.13)

Using Ito’s Lemma, I get

ov oV 1 , ,0%V 0
— - z 2.14
av (at+r585+205852)dt+05dw (2.14)

If T define risk-free discounted option price as II = I1(t, S)

M1(t,9) = % _ E@[%m (2.15)

Since the discounted option price depends on underlying price and time t, the

change of portfolio is defined as

Vo1 1% 1 v
Al = d(——) = —dV — ——dM = —dV — r—dt 2.1
G = e v Ty (2.16)
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2.2. Option Pricing in a Nutshell

Therefore
1 ov ov 1, 282V 0 %4
1 oV o 1, 202V oS 0
“aor T0s a7 S s T p W

Since the risk-free discounted option is a martingale, therefore, it is drift-less.
This gives us
oV av 1 02V

A 2y 242027 7 = 2.1
at—l—rSaS—l—?aSaSQ rV =0 (2.18)

The above equation is PDE of Black-Scholes. Consider the payoff condition of
call option price

Ve(T, S) = max(S(T) — K, 0) (2.19)

I get a unique solution for the PDE for call option price(see bottom panel of

Figure 2.2.1 for an example of call price surface using Black-Scholes)

Vo(t, S) = sN(dy) — Ke "N (dy) (2.20)
— S 1 2
d1 —ln(g> + (7’7- + 50’ )T
dg :dl — O'\/F

where 7 = T — ¢,N(.) is cumulative distribution function of a standard normal

distribution. Using put-call parity, I can get the European put option price

Vo(t,S) = Ke " N(—ds) — SN(—d;) (2.21)

Several studies have relaxed the assumptions of Black-Scholes including as-

suming stochastic volatility(e.g. Heston (1993)), allowing different diffusion pro-
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2.2. Option Pricing in a Nutshell

Figure 2.2.1: Geometric Brownian Motion Price Paths and Black-Scholes Call
Price Surface
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Note: The top panel plots the 10 stock price paths which follows the Geometric
Brownian Motion. The price is plot against time step. I divide the time t into
100 steps. The current stock price is 100. The bottom panel displays the call
option price surface based on the Black-Scholes model. The interest rate r is 0.01,
constant volatility is 0.1 and the strike price is 100.
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2.2. Option Pricing in a Nutshell

cess such as Levy process, extending to the commodity market (e.g.Black (1976))

and considering dividend yield (e.g.Merton (1973)).

2.2.2 Numerical Techniques

The objective of option pricing is to determine the “fair value” of the option.
Generally following the idea of Black-Scholes, I could model the underlying with
a specified diffusion process and derive the PDE as in the previous section. Then I
could get the analytical solutions for option price by applying stochastic calculus
and solving the PDE. However, analytical solutions are not always possible and
the case may be more complicated for the exotic options. As a consequence, four
groups of numerical methods are often employed. All four methods are good at
some perspective such as accuracy or easily converge but none of them is suitable
and efficient for all problems. More detailed description of four numerical methods
can be found in Wilmott (2006) and Hull and Basu (2016). I briefly summarize
the advantages and disadvantages of my methods as following: first, Lattice(tree)
method is the most straightforward and easily understood approach. Although
Cox et al. (1979) prove that tree methods will converge to the correct option
values, the convergence rate is relatively poor. The second approach is The
Finite Difference, which is introduced by Brennan and Schwartz (1977) and is a
direct approach to approximate the solution of the PDE. This approach provides
reliable results for early exercise and low dimensional problems and performs
poorly for path-dependent and high dimensional cases. Third, the Monte Carlo
method, which simulates the underlying price path by random sampling and uses
the average as option price. Although relatively slow, it yields excellent results
for high dimensional and path dependent problems. Last but not the least is

Numerical Integration via the quadrature method, which is an effective technique
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2.2. Option Pricing in a Nutshell

in both low and high dimensional problems. Mathematically, the idea behind the
quadrature method(QUAD) is to approximate the areas under curves. In option
pricing, Newton et al. (Andricopoulos et al. (2003, 2007); Chen et al. (2014))
present a series papers to apply QUAD in the classical Black-Scholes-Merton

world, multi-asset and various underlying process.

2.2.3 Link to Equilibrium Pricing Model

As a matter of fact, the risk neutral pricing could connect to neoclassical finance
with the no-arbitrage argument. According to Ross (2009), the no-arbitrage is

equivalent to a positive linear pricing operator in asset pricing model.

Theorem 4. (The Fundamental Theorem of Finance) The following three state-
ments are equivalent:
1. No Arbitrage(NA)
2. The existence of a positive linear pricing operator that prices all assets
3.The existence of a (finite) optimal demand for some agent who prefers more

to less

Please refer to Dybvig and Ross (1989)for proof

The linear pricing operator is the necessary condition for setting up the equi-
librium pricing model. The key idea of the equilibrium pricing model is that if
the economy is characterized by a representative agent and no arbitrage, then the
asset price is represented as a linear pricing operator multiplying future payoffs.
The representative agent assumes that there exists a single agent in the economy
who can represent the preferences of all investors. Strictly speaking, this is a
strong and restrictive assumption. However, it implies a general result because

it independent of an individual’s initial wealth. The general equilibrium pricing

21



2.2. Option Pricing in a Nutshell

model can be shown as

P, = E,[M,Z)] (2.22)

where P, is the asset price, Z; is the future payoff and M, is the linear pricing op-
erator or stochastic discount factor(SDF). In the consumption-based capital asset
pricing model developed by Lucas (1978), restricting the investor’s consumption,

the SDF is usually expressed as the marginal rate of substitution of consumption

between different times. More specifically, M, = (3~ ,C(tc“ , ¢ir1 and ¢ are the
consumption at time t+1 and t, u'(¢;) is marginal utility of consumption and g
is the time preference discount factor. According to the model, I express the op-

tion price as expected value of stochastic discount factor weighted future payoffs.

More formally, the option price at time t with payoff Z(St) is

Pi= e TEMSDZ(SH] = [ MSHZ(SDf(Sdsr (223

Where St is a state variable and f(Sr) is the payoff probability density under P.
To link the real-world probability P with the risk neutral density, I rewrite the

Equation (2.23) as

P = 7TTE*[ /Z ST dSt (2.24)
0

Where p*(St) is the state price density or risk neutral density, which is real-world
probability P discounted by stochastic discount factor. Compare Equation(2.24)
with the option pricing equation under Q (see Chapter 5 for more detail), I can
conclude that risk neutral density is a product of the real-world probability and

stochastic discount factor.
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2.3. No Arbitrage Conditions

2.3 No Arbitrage Conditions

Following Merton (1973) and Carr and Madan (2005), I classify the no-arbitrage
conditions on option prices into two types. Type 1 focusses on arbitrage between
option and risk-free bond. Type 2 emphasizes the arbitrage between different
strikes and maturities. Denote B(t,T) as the price of zero bond with B(T,T') = 1,

I summarize the no arbitrage conditions of option prices as follows

e Type 1: No arbitrage between option and risk-free bond

C(K,0) = maz[0, Sy — K] (2.25)
[OvSt - KB(th)] S C(KvT) S St
C(K,7,5%=0)=0

C(K,7)+ KB(t,T) =P(K, 1) + S

The first equation defines the payoff of call option. The second and third equa-
tions restrict the call option. The last equation states put call parity. According
to section 6 in Merton (1973), if I use Black-Scholes to price the European call
option and the volatility is large than zero, then the Typel no arbitrage con-
straints hold. Actually, as shown in section 2.2, the Black-Scholes equation is

derived from Merton’s definition of no-arbitrage.
e Type 2: No-arbitrage between different strikes and maturities

For the type 2 no arbitrage constraints, I use Carr and Madan (2005)’s idea
of static arbitrage, which means if the call price surface is free from butterfly
and calendar spreads then it is sufficient to define an arbitrage-free option price

surface.
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2.3. No Arbitrage Conditions

Figure 2.3.1: Payoff of Butterfly Spread
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Note: This figure shows the payoff of a butterfly spread, with K; = 100,K, = 125
and K3 = 150

e Absence of butterfly-spread arbitrage (Convexity respect to strike price):
consider three call options C(K7),C2(Ks) and C3(K3) with strike prices
K; < Ky < K3. I can construct a butterfly spread whose payoff is always
positive. For example, Figure 2.3.1 shows a butterfly spread with strike

prices 100, 125 and 150.
By (Ky, Ky, K3) = (K3 — Ky)C(K;) — (K3 — Kp)C(Ky) + (Ko — K1) C(K3) (2.26)
Clearly, the payoff is positive. Arbitrage is possible if I could construct a

butterfly spread with a nonpositive price. Therefore, I need to restrict the map-
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2.3. No Arbitrage Conditions

ping such that K — C(K, 1) is convex. Mathematically, this implies that when I
twice differentiate the call price to strike price, the second derivative of call price
is always greater than or equal to zero.

2
7 s o)

e Absence of calendar-spread arbitrage (increasing respect to time to matu-
rity): Consider two maturities Ty < Ty and with any strike KTtand K72 I
define its forward value at maturity T as F(T3) and F(T3)

KT F(Ty)

R’ = B (2.28)

If T construct a portfolio by buying a call option C(K*2,Ty) and selling

D(T»)F(T»)
D(Ty)F(Ty)

bond expiring at T . The D(T,T) = 1. At time T3, if S(T}) > K1, 1 define

amount a call option C(K™',T}) , where D(.) is the value of zero

the payoff of call option C'(K™',T}) as

F(Th)

S(Ty) — F(Ty)

K™ (2.29)

Otherwise, the payoff of call option C(K*' Ty) is 0. The value of portfolio
for S(T1) > K™ is

D(Ty)F(Ty)
D(Ty)F(T1)

F(Ty)

C(K™ Ty) — K™) (2.30)

According to put-call parity, Equation (2.30) is equal to a put option with
strike K72 and maturity 75. Since the value of portfolio for S (7)) < K 1
is C(K™,T,), therefore in either case, the portfolio is always positive. Ex-

pressed differently, C(K™2,Ty) > C(K™',T}) with T, > T} for any strike
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2.3. No Arbitrage Conditions

price. The call option price is increasing with time to maturity.

e Monotonicity respect to strike price:

_ )< X k) <0 (2.31)

Consider I have two call option prices C(K7) < C(Ky), if I buy C(K;) and
sell C(K»)'", at the time t, I receive C(Ky) — C(K;) > 0. If the payoff is not
monotonically decreasing with respect to the strike price, then at the maturity,
C(K3) — C(K;) > 0. This provides an opportunity for arbitrage. The left-
hand inequality means that a small increase in the strike will cause a risk-free

discounted decrease in the call price. The proof can be found in Hull and Basu

(2016).

e Price bounds: I denote the S is the current price of the underlying and

D(T)F(T) = =97
mazx(0, (D(T)F(T)S(T) — D(T)K)) < C(K,T) < SD(T)F(T)  (2.32)

Where D(T)K is the present value of strike, D(T")F'(T')S is the underlying price-
adjusted dividend.

This right-hand inequality means, when adjusted for the dividend, the value
call option is less than holding an underlying . If the value option call option is
great than underlying, then there is an opportunity for arbitrage by buying the
stock and selling the call option. The left-hand inequality implies that the value
call option is great than a forward at the same strike. Let us consider a portfolio
which contains a call option with strike K and time to maturity T and K amount
zero-coupon bond. When the strike price is greater than K, the value of portfolio

is S(T), otherwise, the value of portfolio is K. Hence, the value of portfolio is

Mbuy low and sell high
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2.3. No Arbitrage Conditions

always greater than S(T'). Following the no-arbitrage principle and discounting
the value to today, the zero-coupon bond is worth D(T)K and D(T)F(T)S(T)
is stock price discounting for the dividend. In addition, the call price cannot be

negative. Therefore, the left-hand inequality holds.
e The final value of the option price is its payoff C'(K,0) = max(0,S — K)

When the time to maturity is zero, I exercise the option right now, the value
of option approaches its payoff. Since this condition is considered in type 1
constraints, please refer Merton(1973) and Hull and Basu (2016)for the detailed
proof.

The above five conditions are summarized in The Theorem 2.1 in Roper (2010)

from a mathematical martingale perspective(see Chapter 5 for more detail).
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Chapter 3

Machine Learning in Finance

If you can’t beat them, join them. Or maybe invest in them.
—Marsh (2018)

Machine learning has attracted a lot of attention over the past decade. From
self-driving cars to speech/image recognition, from virtual assistants to cancer
detection, it provides fruitful applications in many fields. In 2017, We witnessed
an impressive breakthrough for artificial intelligence(AI)>. Google’s AlphaGo,
a machine learning program that plays the notoriously complex ancient board-
game Go, quickly defeated top-ranked players. Training on millions of human
professional games played in the past 3000 years, AlphaGo learned and mastered

the game in the just 40 days!®.

The success of AlphaGo is a big leap forward
for Al and assuredly it points towards the situation in the financial industry.
Not surprisingly, investment banks, who have so much data for both buyers and
sellers in the market, have already used machine learning to improve their perfor-

mance. For example, JPMorgan'” and Citi*® use machine learning to make the

competitive deals and develop trading strategies.

15Strictly speaking, machine learning is a subset of AI. Please see section 3.1 for more infor-
mation

165ee https://deepmind.com/blog/alphago-zero-learning-scratch,/ for more detail.

7see  https://www.bloomberg.com/news/articles/2018-08-20/inside-jpmorgan-a-bond-vet-
builds-a-team-to-digitize-dealmaking for more detail

8see https://www.bloomberg.com/news/articles/2018-09-05 /citi-s-credit-unit-starts-fintech-
investment-group-under-zhang for more detail.
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There is no doubt that finance will be changed by artificial intelligence. How-
ever, how to incorporate machine learning to solve the real financial problems and
how machine learning impacts the structure of the financial industry is of great
interest to both academic researchers and practitioners. In this chapter, I briefly
review algorithms and applications of two of the most popular machine learning
techniques in finance. In Section 3.1, I introduce the basic concepts of machine
learning and provide an overview of the neural network and support vector ma-
chine approaches. Section 3.2 explores how these two techniques can be applied
in solving financial problems such as stock market forecasts, sentiment analysis,
and bankruptcy prediction. Focusing on the options markets, I review important

studies that use machine learning.

3.1 Machine Learning Overview

According to Stefanek (1987), Al is any computer system that exhibits elements
of intelligence also shown in human behavior, such as understanding language,
learning and reasoning. It includes broad approaches such as expert system, fuzzy
system, neural network and support vector machine. Machine learning, as the
most popular subset of Al, includes several statistical techniques that enable a
machine to learn or complete a task. General speaking, “machine learning is using
algorithms to extract information from input data and represent it in some type
of model”(Patterson and Gibson (2017)). Based on the feature of training data,
machine learning can be divided into two types: supervised and unsupervised.
The objective of supervised learning is to find some type of model that maps
inputs to the target value. Supervised learning is usually used in estimation

and classification problems. In supervised learning, the training dataset clearly
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3.1. Machine Learning Overview

labels the input data and the target value. Unsupervised learning starts with
no information about the target value and is a self-adjusted algorithm which
trains itself to discover patterns in data. An example of unsupervised learning is
the The Beatles-style song written by Flow Machine of Sony Computer Science
Laboratory (CSL)™.

According to Goodfellow et al. (2016), the machine learning framework gen-
erally contains four parts: the dataset, a loss function, an optimization algorithm
and the estimated model. The dataset is usually split into training and testing
subsets, with splitting done manually or via cross-validation. The loss function
restricts model error and may be defined as the mean square error (MSE), cross-
entropy loss or mean absolute error. The parameters of the estimated model
are obtained from the training subset and the model’s performance is evaluated
using the testing subset. In practice, there is a trade-off between the quality of ap-
proximation and capability of generalization (Vapnik and Chervonenkis (2015)).
That means, the learning algorithm may perform well in training but exhibit
poor performance in prediction beyond the estimated dataset. From statistical
learning theory, it can shown that a model cannot achieve a perfect fit to the
input data while being flexible enough to predict out-the-sample data. Vapnik
and Chervonenkis (2015) argue that training error and the model complexity
yield a U-shape relationship. This problem is known as bias-variance trade-off or
Vapnik-Chervonenkis (VC) dimension in statistical learning theory. Figure 3.1.1
shows an example of trade-off between model complexity and generalization using
different polynomial orders. Compared with the true function, the left panel that
uses a linear function shows a low learning ability but high generalization ability.

The right panel demonstrates that the 20th-order polynomial estimator has

Ysee https://www.reuters.com/article/us-sony-algorithm-idUSKBN12H1ST for more infor-
mation.
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3.1. Machine Learning Overview

impressive learning ability but poor generalization ability. Usually, the left panel
is regarded as under-fitting and the right panel is called over-fitting. Apparently,
finding the optimal complexity point of the learning algorithm is not easy

because it is determined by the input dataset and pre-defined training error.

3.1.1 Neural Networks in a Nutshell

The neural network is an important technique in machine learning. Inspired by
the human nervous system, McCulloch and Pitts (1943) first describes mathe-
matically a simple neural network based on a threshold logic algorithm. This
work exhibits a parallel estimating architecture and is considered a milestone in
Artificial Neural Network(ANN). Slightly later, Rosenblatt (1958) conducts the
first valid neural network implementation on an IBM computer. Defining a “per-
ceptron” structure, Rosenblatt (1958) successfully classifies a pattern set in the
input using a single-layer perceptron. Follow this research direction, Minsky and
Papert (1960) empirical test the learning ability of a perceptron structure. They
show that no matter how long it is trained, the perceptron structure is inca-
pable of learning a non-linear function. This limitation is resolved by Rumelhart
et al. (1986) who extend the previous ’single-layer’ network to multi-layers. By
introducing so-called hidden layers in network structure, they show that a neu-
ral network can be a universal approximator and learn any function. However,
because of the difficulty of training multi-layer network, although neural network
performs well in prediction and classification tasks, it became unpopular for sev-
eral years. The age of the neural network actually begins again in last decade or
so. Hinton et al. (2006) rebrand the neural network as deep learning.

A standard neural network consists of three elements: neurons, layers and
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3.1. Machine Learning Overview

connections between layers. Figure 3.1.2 illustrates a typical structure of a neural
network. The input layer connects the input data z; and the hidden layer. As
shown in Figure 3.1.2, the neurons in the input layer receive input data and
assign weights w; plus a bias term b; to them ( gray lines in Figure 3.1.2). Taking
these as input, the hidden layer that contains the transformation function (or
activation function) maps a nonlinear transformation for weighted input. This
layer is the most important and criticized part of the neural network. Since
its values are not shown either in input and output data, mathematically, it is
difficult to prove the resulting output in output layer is optimal. Obviously, in the
prediction problem, the output layer only has one node but in the classification
problem, the output layer contains many nodes (the number of nodes is equal
to the number of classes). Figure 3.1.2 includes two hidden layers, therefore, the
output from first hidden layer is further weighted by neurons and passed to the
next hidden layer. The weights between different layers are updating repeatedly
during the training process.

The neural network framework can be described as follows. Consider X
{1, 29, ...... z,} as input vector, Y {y1,¥s,......yn} as output vector. fi, fo....f]
are the univariate transformation function for each hidden layer. The multilayer
neural network can readily be defined as a chain structure f(z) = f......(f2(f1))-
The length of the chain gives the depth of the neural network and the maximum
number of neurons in hidden layers determines the width. If I express the problem

in matrix form, the input data weighted by neurons defined as follows

Y =XT"W +b (3.1)
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3.1. Machine Learning Overview

The three-layer neural network shown in Figure 3.1.2 is
Y = f(XTW + D)W +b (3.2)

Where Y is estimated vector, X is the input vector. {W, W} is a weight matrix
and {b, b} bias terms. f(.) is the transformation function (or activation function)
in each hidden layer. The common choices of f(.) are the polynomial function,
radial basis function (RBF), spline function (see the next section for details) and
sigmoid function?. The weight matrix is initialized with random values or prior
information before training the neural network. The process of training the neural

network is to solve the optimization problem

A

1 1 e -
argmin@NZ(Y, V)= argmm@Nl(Y, f(XTW +b)W +b) (3.3)

Where [(.) is a loss function that measures the deviation between the predicted
value and target value. © = {W, W, b, Z;} is the parameters set.

Based on Equation(3.3), I argue that training the network is an unconstrained
nonlinear minimization problem. The goal of training the network is to find
the weight matrix in Equation(3.3) which gives minimal error measure such as
MSE . This is usually achieved using back-propagation optimization developed
by Werbos (1974). Back-propagation optimization is a gradient descent method
with constant step size and the procedure can be summarized in the following way.
First, with the initialized weight matrix, calculate the gradient of the loss function
Y -v|

Y
L for mean absolute error. Second,

with respect to each weight, such as =5—

adjust the weight according to the calculated error. If the error is increasing

with weights, reduce weights; otherwise increase the weights. This adjustment is

20These functions are reported in the Appendix.
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3.1. Machine Learning Overview

Figure 3.1.2: Three-layer Neural Network Structure

Input Layer

X

W
X
X0
=\

"

ol
XA

J
¥
A

P‘o ER |
S R N\

A

[
%
ORA

\
s

%

N7

Output Layer

Note: This figure shows a structure of three-layer neural network. The green
points are input layer, which contains 7 input features. The blue points represent
the hidden layer that learning the input information. Gray lines denotes weights.
The red point is output layer that gives the estimated value.
propagated backward; for instance, first correct the weights for the second hidden
layer in Figure 3.1.2 and then the first hidden layer. After all weights are updated,
the whole process starts over until the error meets the pre-determined threshold.
The neural network approach has been criticized for the stochastic weight
initialization. The above optimization procedure generally leads to a minimum
error. However, when the weight space exists and there are local and global min-
ima, the optimal solution of the weight matrix is sensitive to the starting point.
This effect is illustrated in Figure 3.1.3, where the blue points are local minima

and the red point is global minimum. Simply, if the initial weight is between the

first and second blue points, back-propagation moves the result to a local mini-
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3.1. Machine Learning Overview

Figure 3.1.3: Weight Adjustment based on Back-propagation

Error

Weight

Note: This figure shows the weight adjust. The x-axis is weight and the y-axis
is the error between the target and the neural network predicted output. There
are two local minimum and one global minimum in this search space. The blue
points represent the local minimum and red point shows global minimum.
mum. If the initial weight is after the second blue point, the back-propagation
finds the global minimum. Obviously, the global minimum is the preferred so-
lution for Equation (3.3). However, with random initializing the starting weight
matrix, there is no guarantee that guarantee the finding minimum is global. In
particular, in the Figure 3.1.3, the probability of finding the minimum point is
proportional to the distance between starting point to the relevant minimum
points.

Another criticism of the neural network is that it is an ambiguous model.

As shown in Figure 3.1.2, selecting the optimal model complexity, which is the

degree in the polynomial estimated model, the number of knot for splines, is an
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3.1. Machine Learning Overview

essential issue in machine learning. For the neural network, the optimal model
complexity could be controlled by choosing the width and depth of the neural
network, which determines the number of connections in the network. For a
given problem, a neural network with limited connections tends towards under-
fitting while one with too many connections will over-fit. The optimal depth and
width of a neural network are typically determined based on prior information
or training dataset. Although Konishi and Kitagawa (2008)) try to identify the
optimal number of connections using AIC (Akaike Information Criterion), Ding
et al. (2013) argue that AIC shows inconsistent performance and tends to overfit
the model. Consequently, I argue there is no general principle for finding the
optimal model complexity of the neural network and the performance of the

network is highly dependent on network design.

3.1.2 Support Vector Machines in a Nutshell

The other important technique in machine learning is the support vector machine
(SVM). In contrast with the neural network, SVM always yields global minima
and has explicit model complexity control. The SVM is also a universal approx-
imator (Hammer and Gersmann (2003)) and the optimal model complexity can
be restricted via regularization. The idea of support vector machines originates
in statistical learning theory, which deals with drawing effective statistical esti-
mation from small samples. The initial theoretical work of SVM is developed by
Vapnik and Lerner (1963) and extended to regression by Vapnik et al. (1997).
The key idea of SVM is the support vector. As shown in Figure 5.3.1, only these
points that lie on the margin (dash line) define the estimated model. Therefore,
the estimated model is determined by number and weights of support vectors.

Define a high dimensional feature space as ¥ € RY and there exists a function
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3.1. Machine Learning Overview

¢ that maps a random input vector X € R? from R¢ to R". In this space, if I

consider the estimated function as a class of linear functions
Fog ={f: f(X) =w"¢(X) + b} (3.4)

where w € R? and b € R? is weight and bias respectively.

Even if the estimated function is in high-dimensional feature space, I do not
need to treat the high-dimensional problem directly. Replacing the inner product
of two data points X}, X; with the corresponding kernel K (X, X;), I can trans-
form the estimated problem into a low-dimensional feature space. This is known

as “kernel trick” and guaranteed by Mercer’s condition (Mercer (1909)).

Theorem 5. (Mercer Condition) Let K € L*(C) and g € L*(C), where C is
compact subset of RY. The K(t,z) describes an inner product of two feature

space. If it is necessary and sufficient that

/ /C K(t,2)g(t)g(z)dtdz > 0

where t,z € R and g € L*(C), the continuous symmetric function K has an

expansion

K(t,2) = S a(t)un(z)
i=1
Proof: please refer to Mercer (1909)
Using the Mercer condition and defining ¢(t) = /a;9;(t) and ¢(z) = \/a;¢;(2),
the kernel can be expressed as
K(t, 2) = o(t)¢i(2) (3.5)
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Following Vapnik et al. (1997), the objective of SVM is to find a function
that allows edeviation from the target value (see Section 5.3 for more detail).
Therefore, given the training data {(x1,v1), (2, ¥2),...(Tn, yn)}, | minimize the

empirical risk in the feature space
1 n
iy Z Vi — w" ¢(X;) — bl (3.6)
1=
where |.|. is the € insensitive loss function

0 Y —F(X)|<¢
Y - F(X)]. = { (3.7)
Y — F(X)| —¢ otherwise
To ensure the estimated function is as flat as possible, I seek a small w that
satisfies the Equation(3.6). If T consider minimizing?! the ||w||?, the optimization

problem becomes

1
7m'n§HwH2 (3.8)

subject to

Y, —wlo(X;) —b <e¢
wlop(X;))+b-Y; <¢
By introducing the slack variables &; and £ and using Lagrange multipliers, Equa-

tion(3.6) can be transformed into following dual problem??

1 . * * . * - *
MaT{aaty ~ 5 D (i —af)(a; — o)) K(Xi, Xj) = Y (ai—af)+ > Yi(ai — o)
i,5=1 i=1 i=1

(3.9)

21Please see Chapter 5 for the case of |w|
221 recommend reader to refer Schélkopf and Smola (2002) for detailed derivation.
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3.1. Machine Learning Overview

subject to

a;, af €[0, ]

where «; and o are optimal solution of Equation(3.9), which can be considered as
Quadratic Programming (QP) problem. The dual representation of the estimated

model is
n

F(z)=> (a;—a})K(z,X;) + b (3.10)

i=1
The data points with non-zero «; are considered as support vectors. K(z, X;) is
the symmetric kernel that satisfies the Mercer’s condition.

Although there are many programming packages such as quadprog in Matlab
and Cvxopt in Python to solve the QP problem, Andersen et al. (2011) find
that their performance varies with their algorithms. To get rid of the influence of
different algorithm, in this thesis, I further simplify the optimization problem into
a linear programming (LP) problem (see Section 5.3) and use Python Cvxopt.

Since previous studies usually apply the spline function to approximate the
call option price, following Birkhoff and de Boor (1965), I define the Spline and

B-spline kernel as 23:

Definition 4. (Spline) Consider a continuous function s(x) with x € [a, b]. If for
each connection point x5 € [a,b] (or called knots), if a spline function’s g-1 order
derivatives exists, then this piecewise polynomial approximation s(z) is called a

spline function with order q.

The top panel of Figure 3.1.4 displays an example of a cubic spline which

23 Another kernels are introduced in the Appendix
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Figure 3.1.4: Spline Kernel
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Note: The top panel shows an example of cubic spline kernel. The knot points
are shown as red points. The bottom panel plots a B-spline(or tensor product
spline) kernel.
has the form s(z) = a,x® + B,2? + .o + ¢ in interval [0,1]. The second-order
derivatives of s(x) exist in each knot point (red points). If T further define this
second derivative as equal to zero, then the spline function is called a natural
spline. Extending the univariate spline to the bivariate case, I define the B-spline
as follows.

Let the U = {upu;...up} and V = {vgv;...v5} be the knot vectors in u and
v direction and the knot points are p; ;, where 0 < i < m and 0 < j < n, the
B-spline kernel with degree p in the u direction and the degree q in the v direction

is defined as the tensor product of two spline functions
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k(u,v) = Z ¢i i Kip(u) K 4(v) (3.11)

where K; ,(u) and K ,(v) are basis spline functions of degree p and q, respectively.

If T define the tensor product spline as matrices of RMx >Nk

K(X)KM) .. K(X)K(Y,)

Kmn =

KX )K(Y,) ... K(X,)K(Y,)

Then the matrix K € RMrxMe)x(NexXNk) ig gimply defined as

Kll .. KlNT

Ky oo Kygng
The bottom panel of Figure 3.1.4 shows an example of B-spline (or tensor product
spline) kernel. As illustrated in the Figure 3.1.4, the B-spline kernel is a surface.
Thus, compared with a univariate spline, it is a good way to avoid extrapolation
in one direction when approximating a surface. Overall, following Bishop (2006),
I compare the neural network and SVM in terms of ability in handling noisy data,
processing large datasets, controlling model complexity, predictive accuracy and
ease of operation in Table 3.1.1. Compared with a neural network, the support
vector machine has high ability to handle noisy data, processing large data sest
and controlling model complexity. This is because, as shown in right subplot
in Figure 5.3.1 and suggested by Vapnik et al. (1997), the estimated function is
only influenced by support vectors. Therefore, without considering every data
point, the SVM can easily process a large dataset and control model complexity.

Furthermore, since the outliers do not affect either the shape or slope of the
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3.2. Machine Leaning in Finance

Table 3.1.1: Characteristics of Neural Network and SVM

Neural Network SVM

Ability to handle noisy data poor good
Process large data set poor good
Model complexity control poor good
Predictive accuracy high relative high
Ease of operation difficult easy

estimated function, the SVM has high ability to handle noisy data. However,
since the SVM model is highly kernel-dependent, the predictive accuracy is very
sensitive to the selection of kernel function. Therefore, compared with a neural

network, the SVM has relatively lower predictive accuracy.

3.2 Machine Leaning in Finance

Although standard econometrics theory and parametric estimation methods dom-
inated the finance literature for many years, motivated by the data-driven prop-
erty of machine learning, various studies have applied machine learning in solving
stock market forecasting, bankruptcy prediction and investor sentiment analysis.
In this section, I provide a brief review focussing on the application of machine
learning in time series forecasting and classification.

The stock market forecast problem can be regarded as a time series forecast-
ing, which assumes that future outcomes are based (or partly based) on past
observations. Forecasting time series using machine learning exhibits an attrac-
tive feature over standard econometrics tools since it is a data-driven approach.
That said, even if the underlying relationship between input and output is difficult
to specify, the machine learning approach can capture functional relationships.
One of the successful applications of machine learning in the stock market is pre-

dicting stock volatility. GARCH-based volatility models stemming from Engle
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3.2. Machine Leaning in Finance

and Granger (1987)%4, have long served as a benchmark for modeling past return
movement and future volatility in finance. However, with the influence of unex-
pected news, the GARCH family framework may infer incorrect return-volatility
relationships and lead to wrong trading strategies 2°. Using the data-driven prop-
erty and functional flexibility of machine learning, Donaldson and Kamstra (1997)
and Pérez-cruz et al. (2003) use the neural network and support vector machine
to estimate GARCH parameters respectively. They show that both techniques
yield higher predicting ability than the common maximum likelihood estimated
method. Following their studies, others investigate the performance of hybrid
GARCH and machine learning models. For example, Cui et al. (2015) propose a
new statistical arbitrage model based on a combination of a TGARCH model and
a wavelet neural network. Using data from the Chinese metal futures market, they
show that this hybrid model provides more accurate trading thresholds compared
with the back-propagation neural network and simple TGARCH model.

The other application of machine learning in finance is classification. Es-
sentially, the machine learning technique for classification is similar to logit re-
gression, which labels the two possible dependent values as 0 and 1. However,
thanks to its learning from examples, the machine learning technique can explore
potentially “hidden” correlations among the predictive variables non-linear esti-
mated function. Tam and Kiang (1992), estimate the bankruptcy problem and
demonstrated the superiority of the neural network over discriminant analysis in
terms of predictive accuracy and robustness. Later studies apply support vector
machine (Chen et al. (2011)) and hybrid machine learning models (Chen (2014))

in the bankruptcy classification problem. In line with these studies and inspired

13

24Engle received the Nobel price in 2003 for his contribution of “an-
alyzing economic time series with time varying volatility”. Please see
https://www.nobelprize.org/prizes/economics,/2003/engle /facts/ for more detail

25This is called as asymmetry effect in literature.
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by natural language processing, Luss and D’Aspremont (2015) and Pang et al.
(2002) use machine learning to conduct sentiment analysis. Using newspaper arti-
cles and 10-K filings, they successfully estimate the relationship between investor
sentiment and stock returns.

Studies applying machine learning in option markets started with Hutchinson
et al. (1994). Using the S&P 500 index call option prices between 1987 and 1991,
Hutchinson et al. (1994) apply two neural network models ( the RBF network
and multilayer perceptron) to pricing and hedging options. Considering the ho-
mogeneity of price and assuming constant volatility and the risk-free rate, they
demonstrate that the neural network model outperforms the Black-Scholes (BS)
formula. Subsequent studies further improve and extend this work by consid-
ering the stochastic volatility (Buchen and Kelly (1996)), including more input
variables (e.g. interest rate (Qi and Maddala (1996)), investigating other mar-
kets (Bennell and Sutcliffe (2003)) and applying an alternative learning technique
(Liang et al. (2009)).

From Equation(5.5), since risk neutral density is equal to the second derivative
of the call option pricing function, the performance of estimation of state price
density highly depends on the estimated option pricing model. In this thesis, I use
the support vector machine to extract state price density (or risk neutral density)
for two reasons. First, as noted in Section 3.1, the neural network has ambiguous
model complexity control. The width and depth of the neural network, which
determines the number of connections in the network, is selected from experience.
Therefore, compared with SVM, the estimation model using a neural network may
lead an over-fitting or under-fitting of the result. Second, based on the intuition
of SVM (please see Chapter 5), the ¢ insensitive loss function in SVM naturally

considers the bid-ask spread in the estimation model. However, as shown Table
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3.1.1, the support vector machine (SVM) technique is easily affected by noisy

data; therefore I apply a relatively comprehensive data filter in Chapter 4.
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Chapter 4

Option Data Panel

The empirical analysis of this thesis is based on a large daily option panel over
16 years. In section 4.1, I describe the dataset, including general characteristics
and the reason of choosing S&P 500. Section 4.2 provide a detail description of
data filter rules. Based representative, accurate and arbitrage-free principles, I
develop a three levels of filter(data accuracy, liquidity and no arbitrage). Finally,
in section 4.3, I show how to change the estimated framework from risk neutral
measure Q to forward measure Q" and derive the no-arbitrage conditions for call

price under forward measure.

4.1 Data Overview

This thesis examines a large daily cross-sectional option panel from January 5,
2000 to April 30, 2016. These were the latest available data when chapter 5 was
the written. I investigate closing Standard & Poor’s 500 (S&P 500) option price
from OpionMetrics via Wharton Research Data Services(WRDS). The S&P 500
index option (option symbol SPX) is traded in the Chicago Board of Trade’s
Option Exchange (CBOE) between 8:30 to 15:15 CST in every trading day. An

option on the S&P 500 is cash settled?® in the morning on the third Friday of

26Option holder /writer pay the difference between strike and underlying price when the option
expires
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4.1. Data Overview

Figure 4.1.1: Daily Trading Volume of S&P 500 Index Option in my Sample
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Note: This figure plots the daily trading volume of S&P 500 index option between
January 5, 2000 to April 30, 2016
every month?”. There are up 12 maturities available for each trading date and
the strike interval is $5. The underlying S&P 500 index is a value-weighted index
that contains top 500 companies according to market capitalization. It is usually
treated as a leading benchmark of the American equity market. In the sample
period, there are 915 firms in the S&P 500 index because the constructed firms
are updated over time as market capitalization changed. The companies list is
in Appendix. The S&P 500 index price, trading volume, risk-free rate are also
downloaded from OptionMetrics.

Figure 4.1.1 depicts the trading volume of S&P 500 index options in my
sample. It is evident that put options are more active than call options. The
trading volume of put options has several peaks during the sample period. For

example, one peak point is near the 2008 financial crisis; I suggest that this

27See  http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse /s-p-500-index-
options for more details
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Figure 4.1.2: Time Series of S&P 500 Index and Risk-free Rate
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Note: This figure reports the monthly average of S&P 500 index and risk-free
rate over the period January 5, 2000 to April 30, 2016. Both data are from
OptionMetrics. The average dividend rate is 2.53% and the interest rate is 1.17%
in this period.

overtrading of put options is caused by investor sentiment. Investors rushed to
purchase put options so as to lock in current profits and protect themselves from
the future market crash.

In Figure 4.1.2, T plot the monthly average of the S&P 500 index and the
risk-free rate from 2000 to 2016. The S&P 500 index price dropped significantly
in the 2008 financial crisis and the risk-free rate maintained a near zero value
over the period from 2008 to 2016. The corresponding monthly average call price
is plotted in Figure 5.4.1. As the S&P 500 includes a broad range of industries
such as technology, retail, and financial services, its price is popular in previous
literature as an indicator of consensus among market participants. Therefore, the
corresponding S&P 500 index option reflects most investors’ expectations about

future market movements and the average attitude of market participants. That
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said, economically, investors in the S&P 500 index comprise a good indicator of

the representative agent.

4.2 Data Filter

In this section, I present the data filters rule and process. The option price se-
lected in this thesis is inspired by three principles: representative, accurate and
arbitrage-free. To infer the general properties of call option prices, a represen-
tative dataset should be estimated. I construct my dataset with daily European
option written on the S&P 500 index as an economically representative market
portfolio. I use only the out of the money (OTM) options because these have
higher liquidity and therefore the quoted price are closer to theoretical prices.
The OTM option is defined as K < Fy*® for put option and K > Fy for call

option. To increase the data quality and assuming put-call parity holds

C—P=c(F-K) (4.1)

Taking advantage of this relationship, I need to get the daily interest rate as close
as possible to market to transform the OTM put prices to I'TM call prices. There
are two ways to deal with the issue.

1. Interpolation

The interest rate is intuitively determined by the interest rate yield curve;
therefore, I can linear interpolate the curve to get the daily interest rate. For

example, if the interest rate for 1-month maturity is 0.97%, 3-month maturity is

28 [y is at the money(ATM) forward
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0.95%, the interest rate for maturity at 24 days is computed as:

30 — 24

61

30 —24
61

" = T1imth — (r3mth - rlmth) *

= 0.97% — (0.95% — 0.97%) * = 0.9720% (4.2)

2. Simple Regression
If T use the put call parity relationship and consider a linear regression of at
least 4 put-call option pairs, the put call parity of Equation (4.1) can be expressed

as:

Where o = Fe ™, 3 = e " and interest rate r = _MT@, dividend yield is ﬁ
This approach enables us to back out the daily interest rate and dividend at the
same time.

To ensure my dataset is close to the market, in this thesis, I adopt both
approaches. I first linearly interpolate the yield curve to get daily interest rate
because I can get zero coupon rate from OptionMetrics database. I use this as my
interest rate. Subsequently, I use Equation (4.3) to compute the daily dividend.
Last but not least, I modify the data filters of Constantinides et al. (2013) and
apply three levels of filter designed to obtain accurate and arbitrage-free S&P 500

option prices.

1. Data Accuracy Filter

e Identical observations: I drop all duplicated observations. When obser-
vations have the same identical terms (start date, expiration date, strike,
option type ) but differ in price, I keep the quotes whose implied volatility

is significantly away from its moneyness neighbors.
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. Liquidity Filter
e Zero bid price : I remove quotes with zero bid prices to avoid illiquid options.
e Zero volume: in the same spirit, I remove quotes with zero volume.

e Days to maturity <7 or >365 : I remove data with maturity less than 7
days or more than 1 year. According to Constantinides et al. (2013), quotes
with shorter maturity will tend to move erratically and quotes with longer
maturity lack volume. I modify this filter with longer durations® because,

from Figure 4.2.1, S&P 500 options are still active before 1 year.

e Moneyness<(0.8 or >1.2: Constantinides et al. (2013) argue that option
quotes in this range are thinly traded. As shown in Figure 4.2.1, T also
observe this feature in my dataset. Therefore I remove option quotes with

moneyness (the ratio of strike price to index price) below 0.8 or above 1.2.

e Implied volatility <5% or >100%: I remove all quotes with implied volatility
lower than 5% or higher than 100% because as suggested by Constantinides

et al. (2013) , option quotes in this range can be considered as illiquidity.
. No arbitrage Filter

e Negative Implied interest rate: I remove quotes with negative put-call parity
implied interest rate. For each available date and maturity, I use put call

pairs with at least six strike prices to calculate implied interest rate®.

e Negative Time Value: I discard quotes that have negative time value. Op-
tion prices consist of two components: intrinsic value and time value. Op-

tion quotes with negative time value show little information about investor’s

2 Constantinides et al.(2013) choose 0.5 years as days to maturity upper bound.
30T use put call parity to get implied interest that minimize implied forward pricing errors.
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expectation because time value representing the amount of risk premium

that investor is willing to pay.

IV filter: T remove quotes whose implied volatility is one standard deviation
away from the average among peers. 1 define peer group by the different
levels of moneyness. More precisely, for each date and maturity, I fit the log
implied volatiles in entire sample via a quadratic curve (separately for call
and put options). I compute the relative distance of all observed IV from
fitted IV and then I truncate the fitted curve to bins of moneyness with a
width of 0.05(0.8, 0.85, ..., 1.2). After calculating the standard deviation
for each moneyness bin, I discard quotes whose observed IV is one standard

deviation apart from the fitted IV.

Put-call parity filter: I remove any quote whose the put-call parity implied
interest rate is more than one standard deviation away from the average
among the peers. Peer group is defined as quotes with the same (date,
time to maturity) pairs. I trim outliers in a similar way as with the IV
filter. Specifically, I use the whole sample of distances of the put-call parity
implied interest rates from the corresponding daily median implied interest

rate to find the standard deviation of the corresponding distances.

Table 4.2.1 records the number of observations at each filtering level that are

removed. Before the filters, I have a total of 8,261,170 observations. Level 1

filters remove 10 observations. The zero volume criteria in the Level 2 filters

eliminate the most observations (5,433,167) and level 3 filters eliminate 8.3% of

observations. The final number of observations in this thesis is 498,778, which is

reasonable for three reasons. First, compared with Chiang et al. (2016),who also

follows Constantinides et al. (2013) and gets total 404,822 observations on S&P
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4.2. Data Filter

Figure 4.2.1: Trading Volume of S&P 500 on 2016
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Note: This figure shows the trading volume of S&P 500 options. The data period
is from 01 January 2016 to 30 April 2016.
500 options between 1996 and 2011, my dataset is relative large. Second, the
No Arbitrage assumption is a strong assumption about option price observations
in this thesis because the real traded option prices are determined in the real
market, in which there are arbitrage opportunities. Third, as discussed in section
4.2, four No Arbitrage (NA) filters are supported by option pricing theory. Figure
4.2.1 plots the trading volume of the first 4-month in 2016 and the number of
trading volume is indicated by color. Based on the liquidity filter, I remove the
option whose days to maturity are greater than 365. Also, the trading volume
for options with moneyness before 0.8 and days to maturity greater than 100 are
scarce and I select the options between 0.8 and 1.2 moneyness and option that
expire after 1 year.

I consider a sample of option price data on 27 August 2008 to illustrate the

filter process and check the no-arbitrage property of the processed result. The
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4.2. Data Filter

Table 4.2.1: Number of Observations

Deleted Remaining
Calls 4,130,624
Starting Puts 4,130,546
All 8,261,170
Accuracy Filters Identical Terms 10
All 8,261,160
Zero Bid /Ask 708,202
Zero Volume 5,433,167
Liquidity Filters Days to Expiration Boundaries 262,388
Moneyness Boundaries 254,545
IV Boundaries 417,832
All 1,185,026
Negative Implied Interest Rate 289,542
Negative Time Value 232
NA validation IV Outlier 173,725
Implied Interest Rate Outlier 222,749
All 498,778
OTM Options 390,320

Note: Table 4.2.1 presents the number of observations after each filter. The
sample period is from 01,/01/2000 to 04/30/2016. The moneyness is defined as
the ratio of strike price to index price. IV is implied volatility, NA is no arbitrage
and OTM is out the money. Implied interest rate is calculated based on linear
regression(Equation 4.3). The time value of option is defined in Equation(4.4)

and (4.5).
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4.2. Data Filter

raw option data and calculated call price are shown in Table 4.2.2. The forward
price is $1465.40 and the S&P 500 index price is $1281.66, which means that the
S&P 500 index dividend rate is higher than the risk-free interest rate. This is
confirmed by statistics of my full dataset. The average dividend rate is 2.53%
and the interest rate is 1.17%. Figure 4.2.2 displays the distribution of call prices
after filters. I note that there are three maturities available on this trading date.
Clearly, the options trading of deep OTM is very thin even for S&P 500 index
options®!. Although the dataset does not have a large coverage of call prices as
high-frequency data, I argue my dataset is efficient enough to cover the call price
surface. Compare with Chiang et al. (2016), who gets total 404,822 observations,
my dataset is relative large. Also as shown in Figure 5.4.1, my dataset is large
enough to plot a well-defined call price surface.

Furthermore, to compare my no arbitrage filter with Zhang and Xiang (2008),
I plot the time value of call option price on 04/11/2003 in Figure 4.2.3 and check
whether the dataset shows no arbitrage. The time value of an option is defined

as

Ctime(k, 7) = c(k,7) — e "'max(Fy — K, 0) (4.4)

Prime(k, 7) = p(k,7) — e "'maz (K — Fy,0) (4.5)

If the put call parity relationship in Equation (4.1) holds, this means that time
value of call price cyme(k,7) and put price pyme(k, T) are equal. Compare Fig-
ure 4.2.3 with Figure 2 in Zhang and Xiang (2008), I argue that my dataset is

arbitrage free and the time value of call and put prices almost coincide. The

31The deep of OTM option means the strike price is far away from current index price.
Consequently, buying a deep OTM option is expecting that a extreme increase of index price.
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4.2. Data Filter

Figure 4.2.2: Distribution of Call Option Price after Filters on August 27, 2008
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Note: This figure shows the S&P 500 index call option price across different strike
and time to maturity on 27/08/2008. The S&P 500 index price is $1281.66.

Figure 4.2.3: Time Value of S&P 500 Option Price on November 04, 2003
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Note: This figure shows the time value of S&P 500 index call and put options on
04/11/2003. The days to maturity is 17 and the S&P 500 index price is $1053.25.
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4.3. Change of Measure for Estimated Framework

Table 4.2.2: Option Data Panel on August 27, 2008

Options Strike Bid Ask Volume Call
Option
Price
1435 20 22.2 3177 51.40
1440 20.9 23.5 7168 47.52
1445 22.4 25 5322 44.03
Put 1450 24.2 25.3 25947 40.10
1455 25.6 28.2 2594 37.26
1460 27.5 29.9 3339 34.08
1465 29.2 31.8 10440 30.89
ATM 1465.40
1470 26.5 29.1 142 27.80
1475 25 25.8 4931 25.40
1480 22 23.5 2574 22.75
Call 1485 18.5 20.9 355 19.70
1490 16.1 18.5 888 17.30
1495 13.9 16.3 265 15.10
1500 12.4 13.5 29721 12.95

Note: Table 4.2.2 shows the market data on 27/08/2007. The days to maturity
is 24. The computed ATM forward price is $1465.40 and S&P 500 index price is
$1281.66. To give reader a general idea, this table only presents a part of data.

difference in peak time value of call price in Zhang and Xiang (2008) is signifi-
cantly higher than mine. That said, my dataset contains less noise than Zhang

and Xiang (2008).

4.3 Change of Measure for Estimated Framework

4.3.1 Change to Forward Measure

To compare my L;-SVM estimator with other models in Chapter 5, I investi-
gate the estimated call price problem under the forward measure (from Q to

Q"). Define F(t,T) as the forward measure and F(T,T) = 1. According to
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4.3. Change of Measure for Estimated Framework

equation(2.11),

E°V(T)|F] = EY[V(T) 7] (4.6)

d@’]l‘ esz r(t)dt
dQ — F(t,7)

(4.7)

Previous studies have different assumptions regarding interest rate and dividends.
Some studies allow constant interest rate and some for a deterministic rate (see
Chapter 5 Table 5.5.1 for summary). To compare existing estimators with the
proposed estimator, I normalize the call price to eliminate the influence of interest
rate and dividend. Recall Merton(1973)’s model, which includes dividends in the
Black-Scholes framework. I define forward price F(t,T) = se"=97 and simplify

the efi Tdt 5g ert,

C(K,7) =5 "N(d,) — Ke™""N(d,) (4.8)
C(K,7)e™  se” " N(dy)e™ e Ke " N(dy) 19
ser=8)r se(r—0)T o se(r—0)T (4.9)
C(K,T) Ke ""N(ds)
=N(dy) — ——= 4.10
se—0T ( 1) se—0T ( )
If T define the forward moneyness k = F(fT) = Se<ff 5= » then the Black-Scholes-
Merton formula can transform to
C(K,T)e™
=N — kN 4.11
g — In(£) + (re; — 6 + 30°)7 _ In(3) + 30°71 (4.12)
o\T o\/T
d2 == d1 - O'\/? (413)
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4.3. Change of Measure for Estimated Framework

Compare Equation(4.8) with Equation(4.11), the Equation(4.11) is equivalent
to a European call option price with underlying is 1, interest rate r and dividend
yield 6 equal to 0. Hence, by transforming the estimating framework to forward

measure, | eliminate the influence the interest rate and dividend yield.

4.3.2 No Arbitrage Conditions of Call Price under

Forward Measure

There are two ways to restrict the arbitrage free call price. One is from the state
price density perspective and the other is from the option strategies perspective
(see Chapter 2 section 2.3). In this section, I show how to get the similar no
arbitrage conditions of Roper (2010) under the forward measure. First, recall the
no arbitrage conditions under the risk neutral measure Q. The call price is the

numerical integration of the payoff and risk neutral density (RND).

C(Sy, K,7,7,6) = e ""E®[maz(Sr — K, 0)] = / max(Sy — K, 0)¢*(S7)dSr
(4.14)
Following Equation(4.7) and define k = 3 T)
C (St ky1,7,0) = EtQT[max( S max( —k‘ ,0)¢?" (Sr)dSt
F(t,T)
(4.15)
Take the first order derivative
oC(k, * or
BT [T snydse = —(1 - F(b) (4.16)
0
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4.3. Change of Measure for Estimated Framework

Where F(k) is cumulative distribution function of the transition probability q?"

under forward measure

k
S ORT) gy — 1y (4.17)
ok
As F(k) is always greater than zero:
= F(k) >0
Lk S (4.18)

ok —

Since qQT is transition probability, based on a generic property of probability
density, it is non-negative.

= QQT(ST) >0 (4.19)

Based on Equation (4.16),

N oC (k, 1)

<
ok =0

Therefore, recalling Equation (4.18), T get

aC(k,T)
—-1<——=<0 4.20
< 20D (4.20
Further differentiate the Equation (4.16),
8C<k, T) QT T
- 7 = > .
52 g (S7)>0 (4.21)
Since C(Sy, k,7,7,0) = EtQT [max(%—%, 0)], by Jensen’s inequality(Jensen
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(1906)), the max function is convex, thus

St

C(St7 ka T, T, 5) Z ma"r(EtQT[(F(t T)

—k,0)]) = max(1 — k,0) (4.22)

This result can also be obtained by setting D(T)F(T) = 1 and S(T) =1

in Equation(2.27) and (2.32). When k = 0,C(S,. k = 0,7,7,0) = B [35] =

1.Intuitively, following Equation(4.19), the price bounds under forward measure
is

0<C(k,7) <1 (4.23)

Similarly, I can prove (C3) that k& — oo, the option becomes worthless. From
practical point of view, investor would not buy this option because it is impossible
to exercise it. C(5) is easy to prove follow the convexity and monotonicity of call
option price.

Following Ait-Sahalia and Duarte (2003) and Fengler and Hin (2015), I argue
that using the homogeneity assumption, C(1),C(2) and C(4) are sufficient to
restrict an arbitrage free call price surface. Therefore in Equation(5.30), I only

consider incorporate C(1),C(2) and C(4) in machine learning framework L; —

SV M.

4.4 Summary

In this chapter, I present a new approach of data filter based on three principles:
representative, accurate and no arbitrage. Interestingly, as argue by Constan-
tinides et al. (2013), previous studies seem relatively arbitrary because they only
consider part of filters. For example, Bakshi et al. (2003) only consider the zero

bid price and volatility arbitrage. Jiang and Tian (2005) and Polkovnichenko and
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Zhao (2013) restrict the average of bid and ask price. Christoffersen et al. (2013)
rule out the zero trading volume. My dataset include S&P 500 option prices
January 5, 2000 to April 30, 2016. Since there are no market data for the daily
dividend yield, I first use a linear regression to back out the dividend. Although
my estimated framework under forward measure is independent from dividend
and interest rate, I need them to calculate the forward price and filter dataset.
After applying three levels of filter, my dataset ends with 390,320 quotes and 915
firms in sample period.

In addition, I change the measure of the estimated framework. Using Radon-
Nikodym derivative, I show that under forward measure, the estimated framework
is independent of dividend yield and interest rate. Also, in the last section,
I provide the no arbitrage conditions of call option price from the state price

density perspective.
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Chapter 5

Universal Arbitrage-free Estimation

of State Price Density

5.1 Introduction

“The future has to be based on more a dynamic belief in how mar-
kets work and how distributions unfold. Most of risk management
technology is based on looking backwards not looking forwards and I
do believe that there’s huge amounts of information in market prices,
in particular in option market prices, about what the forward distri-
bution of risks are, at least as gleaned by the market, and so risk
management systems . . . . have to move in the direction of for-
ward information which is contained in derivative contracts and not

so much in looking in back.”
—Myron Scholes (2016)

Although both practitioners and academics are content with pricing securities
based on models that make specific assumptions about the evolution of underly-
ing prices (such as the Black-Scholes-Merton model), they also realize that these
models do not always completely conform to the facts of the real world. For
example, Rubinstein (1985) documented the phenomenon of the implied volatil-

ity smile before the crash of 1987, after which researchers detected pronounced
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5.1. Introduction

deviations from previous smile shapes®?. The fact that the real world has richer
information than is modeled seems obvious, but only recently has this perspective
shifted from an assumed underlying process towards observed market prices and
implied distributions.

Thanks to the availability of options data and greatly increased computa-
tional power, estimating state price density (SPD) using a data-driven approach
has gained attention. Due to its forward-looking nature, this density provides
information about market participants’ expectations on the evolution of the un-
derlying assets as well as their risk preferences. This is helpful in applications
such as managing risk (Ait-Sahalia and Lo, 2000), selecting portfolio (Bali and
Murray (2013) and DeMiguel et al. (2013)), studying policy events (Jondeau and
Rockinger, 2000), and inferring the empirical stochastic discount factor (Jackw-
erth, 2000 and Bliss and Panigirtzoglou, 2004).

Broadly, the existing approaches for estimating the SPD can be roughly clas-
sified into two strands: parametric and non-parametric (see Jackwerth (1999),
Yatchew and Hardle (2006) and Figlewski (2008) for comprehensive reviews).
The parametric approach first specifies the SPD as a known distribution (e.g.
lognormal distribution) with several unknown parameters then calibrates the un-
known parameters by minimizing the discrepancy between the fitted and observed
data3®. Three groups of literature have been developed to add flexibility to the
fitting process. First are the Expansion methods which introduce correction terms
to a known distribution function (e.g. Rosenberg (1998), Jondeau and Rockinger
(2001) and Rompolis and Tzavalis (2009)). Second are Generalized distribution

methods which use more flexible distribution functions with skewness and kurto-

32 According to Black and Scholes(1973), the implied volatility should be constant. In other
word, when plot implied volatility against to strike, the implied volatility surface is flat.
33Usually this can be achieved by assuming the underlying dynamics.
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sis parameters (e.g. Corrado (2001), Lim et al. (2005) and Fabozzi et al. (2009)).
Third are the Mizture methods which construct a distribution function as a com-
bination of several simple functions (e.g. Melick and Thomas (1997) and Gi-
acomini et al. (2008)). The non-parametric approach, instead of relying on a
specific parametric form, interpolates the SPD between the points and selects
the best fit from the possible distributions using set criteria. Specifically, Kernel
regression methods construct the SPD estimator based on neighboring observa-
tions using a kernel function and selected bandwidth (e.g. Ait-Sahalia and Lo
(1998)). Curve fitting methods fit the observed prices or implied volatility by
least squares with flexible functions such as spline, and then derive the SPD via
the result of Breeden and Litzenberger (1978). Additionally, there are approaches
such as the Mazimum entropy methods (e.g. Rockinger and Jondeau (2002)) and
neural network (Ludwig (2015)), that do not properly fit into either strand and
are non-parametric in nature.

Although a considerable number of papers has investigated SPD using vari-
ous methods, Figlewski (2008) nevertheless argues that estimating SPD is still an
open question and none of the techniques is clearly superior. As noted by Cont
(1998), each method has drawbacks. The expansion and generalized distribution
methods may lead to negative tails in SPD. The Mixture methods exhibit thin
tails and Maximum entropy methods gives multimodal SPD estimates because
they fail to consider constraints on the smoothness. While the kernel regression
methods yield a smooth SPD, the estimator converges slowly and is sensitive to
bandwidth choice. The curve fitting methods work well for interpolation but of-
ten break down when used for extrapolation. These difficulties are not surprising
because estimating SPD poses five challenges. First, unlike theoretical options

with continuous strike prices, the options are only traded at discrete strikes. For
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example, strikes for the S&P 500 Index options are usually spaced $5 apart.
Second, Hentschel (2003) suggests that market option data contain noise from
various sources, such as the non-synchronous prices. The index prices are mea-
sured fifteen minutes apart from option prices. This makes some noise sensitive
methods unattractive. Also, there is an issue with matching market prices with
average bid and ask prices. Although most papers® use these as true option
prices, in practice, it is not obvious how to specify the true price since options are
traded within the bid-ask spread. Third, since the SPD lies in [0, +o¢], the range
of observable data is insufficient to recovery the information in tails. Fourth,
SPD should satisfy no-arbitrage constraints across maturities and strikes. For
example, the estimated density should be positive and integrate to one. Finally,
the estimation of SPD is afflicted by the “curse of differentiation”. This means the
quality of the SPD estimator will be much worse than the quality of the option
price estimator because the differentiation has an amplifying effect on local irreg-
ularities. The small irregularities in observed option prices can easily translate
into serious irregularities in the SPD, including negative probabilities.

This chapter relies on a machine learning framework to address four chal-
lenges®. 1 first apply a new data filter to eliminate the noise from market data
and then propose a more effective approach to estimating the option price via
support vector machine (SVM), a method based on statistical learning theory
(Vapnik (2000), Schélkopf and Smola (2002)). Rather than attempting to solve
the least squares problem, I use a ¢ insensitive loss function to incorporate bid-ask

spread naturally and estimate the SPD by differentiating fitted call option prices

34Except Figlewski (2008) considers a weighting function to incorporate the bid-ask spread,
Monnier (2013) incorporates bid-ask spread constraints and Glaser and Heider (2012)use Gaus-
sian random variables from bid and ask as input call price.

35The third challenge involves extrapolate technique which is not discussed in this thesis,
Please see Section 7.2.1 for more detail.
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to avoid the “curse of differentiation”.

My approach improves upon other methods in several aspects. First, it is
a fully nonparametric and has no strong assumption on the prior distribution
compared with a parametric approach. Second, it naturally accommodates the
information contained in the bid-ask spread by setting an up-bound predicted
error, which allow traders to specify according to their own needs. Third, it
is possible to incorporate all arbitrage-free constraints into SVM and give an
arbitrage free estimator. Fourth, my approach could easily produce a smooth
risk neutral density due to the explicit complexity control and has much better
generalization capability compared to other non-parametric approaches. Finally,
unlike neural network that need a large amount of input and output data to
properly train the network, the SVM has a well-known ability of working well in
small sample cases. Finally, this is a universal method. The cubic spline (Fengler
(2009)) and tensor product estimator (Fengler and Hin (2015)) are special case
of my method using cubic spline and B-spline kernel respectively.

The rest of chapter is organized as follows. Section 2 gives an overview of SPD
as well as theoretical no-arbitrage constraints. Section 3 introduces briefly SVM
and recasts it in no arbitrage context. An example of application is provided
in section 4, where I show how to obtain reliable S&P 500 index options data
and apply my approach to recovery a well defined call option prices. Section 5
outlines a framework to compare my approach with three other methods. Section

6 concludes.
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5.2 SPD and Option Prices

The SPD is an important link and fundamental block in the economics. It can
be obtained from either consumption-based asset pricing models 3¢(such as Lu-
cas(1978)) or the no-arbitrage asset pricing models. In the consumption-based
asset pricing model, the SPD is characterized by marginal rates of substitution
(often called stochastic discount factors). In the no-arbitrage asset pricing mod-
els, the SPD is refereed as risk-neutral density(RND). Breeden and Litzenberger
(1978) show that SPD can be obtained by differentiating the call option pricing

function twice with respect to strike price.

5.2.1 SPD overview

Suppose I are given a probability space (€2, F,P) with a filtration (F;), to which
a stock price process S; is adapted. According to the consumption based asset
pricing model , the price of an asset today is equal to the net present value of
future payoffs. In these models, the risk free rate r is used to map the future
random payoffs to today and the current price can be calculated as the expected
value of the stochastic discount factor weighted future payoffs. More formally,

the asset price at time t with payoff Z(Sr) is

R= e TEM(SHZ(SH) = [ MSDZ(SHf(Sdsr (5.)

Where FE; denotes the expectation under real-world probability P. The stochastic

discount factor of Lucas (1978) can be represented as M (Sr) = % and

36 A consumption based asset pricing model focus on demand and supply and is a state
dependent function. It usually is characterized by a representation of investor’s preference
and probability of future outcomes in the model. However, arbitrage-free model do not have
a specific form. It considers the arbitrage possibly in the market and widely used in option
pricing theory.
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reflects the investor’s willings of substituting consumption. Z(Sr) is the payoff
at time T. St is a state variable that drives all the changes in the entire economy.
f(St) is the payoff probability density under P. To link the real-world probability
P with the state price density, I rewrite the Equation (5.1) as:

o0

P=e B2 = [ 2(Snp(Sr)dsy (52)

0
Where p*(S7) is the state price density, which is real-world probability P dis-
counted by investor’s preference. As a consequence, SPD is a product of the
real-world probability and investor preferences?”.

The other way to construct the SPD is using no-arbitrage model and op-
tion pricing theory. By the fundamental theorem of asset pricing, no-arbitrage
is equivalent to the existence of a martingale measure (risk-neutral probability
measure ( equivalent to P) under which the discounted stock price process is a

martingale. Therefore, the call price of an European option can be written as a

discounted expectation of its terminal payoff.

C(Sy, K,7,1,0) = e "TEX[(Sp — K)*] = e_”/maX(ST — K,0)¢*(Sr)dSt (5.3)
0

Where S; is the underlying asset price at time ¢, Efg denotes the risk-neutral
expectation. ¢*(St) is the risk neutral probability density of underlying asset. K
is the strike price, T" is the expiry date and 7 = T" — ¢ is time to maturity, ¢ is
the corresponding dividend yield. Compare Equation (5.2) and Equation (5.3),
q*(St) and p*(Sr) are equal. The state price density is also called risk neutral

density in option pricing theory.

3TIndeed, the 'real-world probability’ can be recovered from SPD estimator (see Chapter 6
for more information).

70



5.2. SPD and Option Prices

With respect to this Equation(5.3), Bredden and Lizenberger(1978) show that
q*(St) can be obtained from the continuum of all European call option prices by
differentiation of the strike twice. Differencing Equation(5.3) with respect to the

strike price K. the risk neutral distribution F'(S7) yields :

0C (S, K,7,71,0) T /Oo ¢ (Sr)dSr = —e~""(1 — F(Sr)) (5.4)

oK «

Further differentiating Equation (5.4) respect to strike price, the risk neutral

density(or state price density) can be written as

L PC(K,T)

q(K) = By

(5.5)

Since the state price density is the second derivatives of European call price
function, the major step in estimating state price density is to interpolate a

smooth and arbitrage free two dimensional call surface.

5.2.2 Practical Considerations

Although the mathematical relationship between call price function and SPD is
clear, the practical implementation of calculating SPD involves three problems.
First, it is difficult to find a best fitting parametric SPD estimator since it will be
highly sensitive to assumptions on the six variables C'(S;, K, 7,7,9). For example,
if the dynamics of the stock price S; follows the arithmetic Brownian motion®®,
then the SPD will be inconsistent with those following a classic geometric Brow-
nian motion. Second, without any restrictions or assumptions on variables, there

are too many variables to consider in the nonparametric estimator. From a non-

38for example, it is reasonable to assumes the spread options whose underlying spread is
positive follows the arithmetic brownian motion.

71



5.2. SPD and Option Prices

parametric statistics point of view, high dimensional regression is hardly able to
achieve asymptotic consistency in practice. Third, both consumption-based as-
set pricing models and no-arbitrage asset pricing models assume the no-arbitrage
condition, a set of no-arbitrage constraints is needed in estimator.

To overcome the first problem, in this chapter I change the risk neutral nu-
meraire Q to forward measure Q"3°. From the first fundamental theorem of asset
pricing, the absence of arbitrage means that there is a numeraire pair, (N, Qy),
where a new probability measure can be introduced by choosing a different N.
To be more specific, the Radon-Nikodym derivative that changes Q to Q" can be

introduced as:
dQT eftTr(t)dt
dQ — F(t,7)

(5.6)

where F(t,T') is forward measure. This transformation enables the estimating
framework in this chapter to consider a zero interest and zero dividend rate
case and avoid comparing estimating methods on the ability to deal with input
parameters (see Chapter 4 for detail). Further, this chapter applies the dimension
reduction method of Ait-Sahalia and Lo (1998). By transforming an option on
a stock to a option on future?’, I use the forward price F(t,T) = S, to
represent the information of stock price S;, interest rate r and dividend 0 then
the call price function can be converted into C(F; -, K, 1, ). Also, by assuming the
homogeneity of strike and asset price, the call price function can be reformulated
as C(k,7), where k = % is called forward moneyness. In conclusion, the call
option price is estimated in the forward-money k and time to maturity 7 space

and the call price is changed to

39see Jarrow(1987) and Geman et al(1995) for change of numerarie method. Also, Gope and
Fries (2011)called this step as normalization of call price

40 According to Ait-Sahalia and Lo (1998), if the future and option have the same maturity,
then the European option price on stock is equal to the European option on future.
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C(K,1)e'm

Ck,7)= FLT)

(5.7)

where F'(t,T) is forward price. C(k, ) is called the pre-processed call price.
Finally, for ensuring that the estimating framework is independent of arbi-
trage, next I derive the no-arbitrage constraints for the pre-processed call price.

The main results are summarized in Proposition 1 and 2.

Proposition 1. Let S; > 0. Define the function C : [0,00) x [0,00) — R, such
that if C(K,T) satisfies following conditions
(C1) (convezity in strike price K) C(K, T)is convex function in K for all T > 0
(C2)(monotonicity in time to maturity ) C(K,T)is non-decreasing in T for
all K >0

(C8) (The call price is limit as strike approach to infinity) limg _C(K,T) =
0 for all T

(C4) (Price bounds) for all K > 0,7 >0

maz (0,5 — K) < C(K,7) < S (5.8)

(C5) has expiry value C(K,0) = max(S — K) for all K
Then

there exists a non-negative Markov martingale M, such that for all K, 7 > 0

C(K,7) = E[(Mr — K)"| Fo (5.9)

that M is a non-negative martingale

Following the conditions of Roper (2010) and assuming that r = § = 0, I

derive the no arbitrage conditions of pre-processed call prices as follows:
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5.3. Support Vector Machine Framework

Proposition 2. Under the pre-processed call prices framework, it is evident that

(C1), (C2) and (C4) imply

0<C(k,7)<1 (5.10)
oC (k, 1)

— < — ~ 7 K X
1< = <0 (5.11)
0?C(k,T)

- > .
952 >0 (5 12)

see Chapter 4 section 4.3.2.

Existing studies have reached a consensus on the necessary and sufficient
conditions to guarantee that option prices are arbitrage free and two papers offer
a good insight into how to derive the no-arbitrage conditions of the call price
surface. From the option strategy perspective, Carr and Madan (2005) show the
idea of static arbitrage, which means there is no arbitrage opportunity on the
option price surface. They show that excluding the opportunities of gaining from
butterfly spread, calendar spread and other conditions are sufficient to define
an arbitrage-free option price surface. From the classical mathematical finance
perspective, Roper (2010) helpfully summaries the no-arbitrage condition for a
call price surface based on the properties of a martingale. I sketch Theorem 2.1
of Roper (2010) in Proposition 8, then simplify the conditions for a pre-processed

call price.

5.3 Support Vector Machine Framework

Suppose the market price data set is {(x1(k, 7),c1(k, 7)), ..., (x;(k,7),¢;(k, 7)) C
R?x R}, where i denotes the number of observations and d indexed the dimension

of the input space. If I consider the (vectored) call price C'(k,7), the call price
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function approximation problem becomes finding a function f such that
Ck,7)= f(k,7)+e¢ (5.13)

where f(k,7) is an estimated function, and € in an error term. In practice, as
long as the estimated call price is in the bid ask range®! (or trader-specified error
tolerance), I can consider the estimated price as precise. Thus, ideally a trader-
specified error tolerance is preferable in the estimation framework. This intuition

coincides with the key idea of support vector machine.

5.3.1 Support Vector Machine

Theoretically, the input call price C(k,7) could be approximated by a linear
combination of any continuous function. Put simply, I can use any continuous

unknown function to connect the known call price dots.

flk,7) = Zﬁi@bi(k)cbi(ﬂ +b (5.14)

Where ¢;(.) is basis function such as spline, polynomials, sigmoid function etc.
B; and b are associated coefficients. Motivated by statistical learning theory, the
input call price C'(k,7) can be mapped into a linear feature space by a kernel

function. I define the kernel function K (k,7) as

K(k,7) = ¢i(k)di(T) (5.15)

The intuition of SVM is shown in Figure 5.3.1. The left subplot presents the

original input space and the right subplot shows the input space after mapping

“nsider the [bid price, ask price| range.
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5.3. Support Vector Machine Framework

Figure 5.3.1: Intuition of Support Vector Machine

Note: The left subplot illustrates the intuition of support vector machine. The
right subplot presents the input space after mapping by a kernel function.

by a kernel function. As suggested by the left subplot, the estimated values are
allowed have ¢ discrepancy from the actual call price, or put it another way, I ac-
cept the estimated call price inside the gray arca*?. After changing the estimation
space via kernel function, as shown on the right in Figure 5.3.1, the estimated
function is only influenced by the points near the dashed line. These points are
called support vectors. Clearly, a small perturbation of data points away from
the dashed line will not affect the slope and shape of the estimated function.

Consequently, I can numerically truncate the Equation (5.14) into

flk,7) =Y oK(k7)+b (5.16)

€SV

42The actual call prices are shown by orange points in the left subplot
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5.3. Support Vector Machine Framework

Where the support vector defines as input pair of (k, 7) which has non-zero asso-
ciated a and N is the number of support vectors. This remarkable feature turns
an estimation problem of finding infinity coefficients (; to specify a small number
of ;. Moreover, from a practical point of view, I wish the call price function to
be explained as simply as possible. Mathematically, this means that f(k,7) be as

flat as possible and finding the smallest ’ly seminorm’ of «; , which has the form

man||a;||o (5.17)

However, Elad (2010) argues that a better way to address the ’ly seminorm’
minimization problem is to minimize the /; norm because the current algorithm
to solve the ’ly seminorm’ problem is not efficient; thus in my support vector

machine framework, my aim turns to finding

min||o; |1 (5.18)

subject to

\f(k,7)—C(k,7)| <€ (5.19)

Where € can be controlled and bound depending on a trader’s need. Further-
more, in practice, a perfect mapping from input data to linear feature space is
unobtainable since the true values contain outliers and noise; hence I apply an
¢ insensitive loss function to penalize the deviation between estimated and true

value. As I discussed before, only if a predicted value is outside the bid ask range
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5.3. Support Vector Machine Framework

do I consider it as mis-priced. Formally, the loss function is

0 <
€l = { K <e (5.20)

|£| — e otherwise

The approximation problem is given by

N
mingyllally+C Y |f (k) = C(k,7)| (5.21)
=1
subject to
—{<aK+b—-C(k 1) <¢ (5.22)

Where K is a vector of kernel function, the constant C' > 0 balances the trade-off
between the flatness of the estimated model and the amount of deviation allowed.
¢ determines the error insensitive zone of the estimated model (the gray tube on
the right panel of Figurel). If C is too large, then the objective function (19) is
considered to minimize the empirical risk only that means only caring about how
well the function approximates the input data. On the other hand, if the £ is too
large, I may get a flat estimated function. In my case, it may result in a noisy call
price surface, which entails a multimodal state price density. Thus, the selection
of C and ¢ is highly important and is usually obtained from gridsearch and cross-
validation technique in machine learning theory. In this chapter, I search C from
le — 3 to 1e3 and error tolerance ¢ from [0, ispread].

Now I reformulate the estimated problem into matrix form and replacing

C(k,7) with y, it becomes

Minpenl’a+ C17E (5.23)

78



5.3. Support Vector Machine Framework

subject to

—§{<Ka+bl-y<¢
—a<ac<a (5.24)
0<1e <€

Where a is a vector of coefficients of ||a||;.
The linear programing optimization program(5.23) and (5.24) serves as my
basic call price SVM estimator. Since the call price function exhibits no arbitrage,

further constraints are added in the next section.

5.3.2 No arbitrage Constrained L;-SVM

As has been seen in section 2.2, the arbitrage free pre-processed call price can be
obtained through restrict the first or second order derivatives and output bound
of price. In this section, I show that these constraints can be incorporated into

the L;-SVM framework without changing its linear programming nature.

Remark 1. The form of the support vector machine implies that all derivatives

of the estimated model are linear.

Asnoted in Equation (5.16), the estimated call price is linear in the parameters
a, if T take first order derivative of the call price respect to the jth component k7

of k € R? | the result is

of(k) _ 3 OK (k. ki)

o A = ri(z) o (5.25)

7

Where 7 (z) = [%ﬁ”...akgﬁi)...%gck’flv 7 Similarity, if I take the kth order
derivative of the call price respect to the jth component k7 of k € R? | the result

is still linear and only depends on the kernel function and input data
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5.3. Support Vector Machine Framework

) = re(z) ' a (5.26)

Where ri(z) is the coefficients for the kth order derivative. Let the corresponding
value of call price write as vector Y, The matrix form of monotonicity and

convexity constraints I (Zy) is

re(x)t 0

0i(Zk) = | ri(z,)” 0 (5.27)

_Tk(l’|Zk‘)T 0

.
"

Yi(Z) = |y (5.28)

(k)
Y12

Where Z;, = {k17k27._,_k| Zk\} contains interesting points regarding derivative con-

straints. The choice of Z, may be vary and depend on a trader’s judgement.

T

In my case, I argue that 0 should be included as ¢(0,7) = ;: . For the spline

kernel, 7, is called knot*?. Furthermore, consider the price bounds constraints as

a restriction on the zero order derivative of the call price, I establish the general

43Please referred Fengler and Hin (2015)for choosing ideal knots using Akaike Information
Criterion(AIC).
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no arbitrage constrained SVM

Nsc

minpeal’a+CLE+Y ATz (5.29)
k=1

subject to

—{<Ka+bl—-y<¢§

—a<a<a
(5.30)

0<1e<¢

Le(Z1)0 — Yi(Zy) < 2

5.4 Empirical Analysis

5.4.1 Data Description

To illustrate the effectiveness of my method, I use daily prices for S&P 500 index
options from OptionMetrics. The S&P 500 index is taken as a good indicator for
the U.S. market portfolio, and the corresponding options are therefore expected
to infer the consensus between market participants. The dataset includes closing
index price and interest rate. As regards the option price, I collect the bid and
ask price, trading volume and strike price. The dataset run from January 5, 2000
to April 30, 2016, which yields 4,025 trading dates and 412 expiration dates. The
average daily trading volume of each contract is 1321.35. My dataset contains
total 8,261,170 quotes with time to maturity varying from 7 days to 365 days. I
use the average of the bid and ask price as ’true’ call price, but I set € in Equation
(5.30) as a quarter of bid and ask spread to consider the information within the
bid and ask range.

Unlike a parametric method, my non-parametric L;-SVM estimator is data-

driven and requires arbitrage-free input data. Therefore, my dataset poses three
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5.4. Empirical Analysis

Figure 5.4.1: Scatter Plot of Pre-processed Call Option Price

o
N
s}

0.15

re-processed Option Price

0.05 &

Note: This figure plots the pre-processed call price from 01/01/2016 to

31/04/2016. The x-axis is forward moneyness and y-axis is time to maturity.

challenges. First, the option prices are imprecise because tick sizes, bid-ask
spread, and non-synchronicity of index and option prices constitute a source of
error (Hentschel (2003)). The true trade price is not always centered between the
bid and ask prices. Second, there are no observable data for the daily dividend
yield. Third, in the money (ITM) options are less liquid than out the money
(OTM) options, with a potential impact of differential liquidity on prices.

To ensure that I have reliable option quotes and solve the above challenges, I
apply three levels of the filter in Chapter 4 to eliminate the influence of liquidity
and errors. I first remove identical observations from the OptionMetrics database
then select liquidity data using certain criteria. Finally, I delete outliers based
on the value of implied volatility and implied interest rate. To solve the second
challenge and increase data quality, I first linearly interpolate the interest rate and

use the put-call parity relationship to derive the implied dividend (see Chapter 4
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for details). Over the sample period, the average risk-free rate and implied divi-
dends were 1.17% and 2.53%, respectively. After calculating the implied contin-
uous dividend, I compute the Black-Scholes implied volatility using the Bisection
approach. Finally, I obtain 390,320 observations**. The resulting processed call
prices are free of assumptions on interest rate and dividend yield.

Figure 5.4.1 shows the pre-processed call price of final dataset from 01,/01/2016
to 31/04/2016. Clearly, my final dataset yields a well-defined call option price
surface. Panel A in Table 5.4.1 presents descriptive statistics for my sample of
S&P 500 daily prices and Panel B reports the statistics of call prices and im-
plied volatility by time to maturity and forward-moneyness groups. As expected,
implied volatility shows a clear smile pattern and call price decreases as for-
ward moneyness increases. Figure 5.4.2 compares the behavior of the monthly
average of 1 month S&P 500 option prices over different froward moneyness.
Consistent with Barletta et al. (2017), not surprisingly, the I'TM options exhibit
non-stationary behavior, whereas the OTM options are stationary. Barletta et al.
(2017) further explain this as the price of ITM option mainly associated with the
underlying index since holding a price of the call option is equal to holding an
underlying index strike price approaching zero. In other words, the behavior of

the ITM option price is similar to the S&P 500 trend to some extent.

5.4.2 Performance Measures

When comparing the proposed L;-SVM method with other nonparametric meth-
ods (Fengler (2009) and Fengler and Hin (2015)), I assess with regard to three
aspects: accuracy of estimation, running speed and smoothness of call price sur-

face with respect to forward-moneyness and time to maturity. Although the mean

4 This is a reasonable number compares with Chiang etc(2016) who get total 404,822 obser-
vations using the same filters on S&P 500 options between 1996 and 2011.
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squared error (MSE) is a general accuracy indicator, in this thesis, I use relative
distance to measure the goodness of fit. This is because the total estimated num-
ber of my L;-SVM method is different from (Fengler (2009) and Fengler and Hin
(2015). As proposed in Section 5.4, T use a 5 fold cross-validation process to
determine the optimal parameter and calculate the estimated error, and so the
final estimated number equals the number of its training subset. Put simply, if
I choose 5 fold cross-validation, the number of total estimated option price only
accounts 20% of the whole data size. Considering this size effect, I use a relative

error to measure the estimated goodness.
e Accuracy

I define the relative error as relative distance

N N

Relative Distance = Z(C(k’g(; f)(k’T))z (5.31)

n=1
where C/(k,7) is pre-processed call price from market and C(k,7) estimated by

different methods. IV is the number of total estimated option price.
e Smoothness

I use the absolute value of second order derivative for both dimensions to mea-
sure the smoothness of the surface. I use a numerical differentiation approach,

applying the central finite difference approximation.

aQO(k) T) ~ O<km+17 T) — 2C<km) T) + O(k’m—la T)
ok2 (km — k1) (kg1 — Km)

(5.32)

0*C(k,7) _ C(k,Toms1) — 2C(k, 7)) + C(k, 1) (5.33)

oT2 (T = Ton—1) (Timt1 — Tin)
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Where 1 < m < N. The smaller the second order derivatives, the smoother the

call option price surface is.

5.4.3 Empirical Results

Using the pre-processed S&P 500 option prices, I first compare the proposed L;-
SVM method using a radial basis function (RBF) and a spline kernel?*. The
algorithm for the full estimating process is summarized in Algorithm 1. As noted
in Section 3.1, the algorithm’s performance is determined by the parameter choice
for the kernel function. I apply a grid search with 5-fold cross validation®to find
the optimal parameters that minimize Equation(5.28). Table 5.4.3 reports the
mean relative distance of specific kernel functions. I test the univariate and
bivariate approximation using RBF and cubic spline kernel in 3 sub-periods (the
period before the financial crisis, financial crisis period and the period after the
financial crisis). In each case, I report the relative distance of L;-SVM. The cubic
spline and tensor product B-spline function is introduced in Section 3.1.2.

I expect intuitively that the relative distance for the financial crisis period is
higher because the financial market is highly volatile in this period. Therefore, the
L1-SVM needs additional effort to fit these observations. However, as shown in
Table 5.4.3, when comparing the relative distance of the L;-SVM across different
periods, the relative distance turns out to be decreased in the financial crisis
period for both kernels in univariate and bivariate cases. This suggests that
my L1-SVM method is not affected by volatility in the market. The smallest
relative distance is obtained by using the univariate cubic spline kernel. Also,

consistent with Fengler and Hin (2015), I find that the tensor product kernel (or

45The kernel function is reported in Section 3.1.2 and Appendix.
46T yse the Python library GridSearchCV and Cvxopt to program the code and the laptop
conducts the codes is an Intel Core i7 and 2.9 GHz.
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Algorithm 1: Approximation call price surface use support vector ma-
chine
(1) Initial ;
Input: Observed forward moneyness x;, 1 = 1,...N
Observed maturity 7,1 = 1,...N
Observed European call price ¢;(k;, 7;)
a. Applying the three levels data filters in Chapter 4
b. Transform option prices ¢;(K;,7;) to pre-processed call prices(under
forward measure) ¢;(k;, 7;)
c. Estimate and compare call price under forward measure
d. Transform the estimated call price under risk neutral measure Q
e. Estimate the state price density
Output: Estimated call price ¢;(, 7)

Estimate the call price under forward measure ¢;(%, 7)
(1) Randomly split data D into 5 "folds" of equal size: Dy, Ds....Ds
(2) Fori = 1,....5,

minia, b, &,a) 1Ta+ C1TE+ > M7z,

subject to Equation(5.30)
fit above model use defined parameters set of C, € and ~ (for different
kernel parameters)
(3) Return optimal parameters of C, £ and ~y, which lead the minimal
test error
(4) Use optimal parameters to fit the call option price function

called surface estimator in Fengler and Hin (2015)) seems to underperform the
univariate kernel (a slice by slice approach). In my result, the relative distances
for the bivariate kernel approximation are 2.732 and 2.359 for RBF and cubic
spline in the period after the financial crisis respectively, which is significantly
higher than the corresponding univariate case. Fengler and Hin (2015) argue
that without considering calendar-spread arbitrage (Equation(2.28)-(3.30)), the
surface estimator does not improve the fitting quality. In other words, without
using calendar-spread constraints, using a surface estimator only increases the
fitting difficulty since it uses a base surface to fit the call option price surface.

Figure 5.4.3 displays an example of the estimated arbitrage free call option
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Figure 5.4.3: Estimated Call Option Price and Its First-order Derivative
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Note: Figure 5.4.3 plots the estimated call price and its first-order derivative on
02/07/2013. The index price is 1614.08. The top panel shows the estimated call
price. The bottom panel displays the first-order derivative of estimated call price

respect to forward-moneyness.
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Table 5.4.3: Empirical Results with RBF and Spline Kernel

Period Univariate Bivariate
RBF Cubic Spline RBF Cubic Spline
2000-2007 4.664 2.894 5.114 3.086
2008-2009 3.934 1.737 3.945 2.645
2010-2016 2.805 1.032 2.732 2.359

Note: This table compares the performance of L;-SVM of radial basis func-
tion(RBF) and cubic spline kernel. For each kernel, I compare the relative dis-
tance of the univariate and bivariate case. Univariate refers as using a kernel
function of forward-moneyness to fit each maturity slice. Bivariate refers as us-
ing a tensor product kernel function of forward-moneyness and maturity to the
pre-processed call price surface.

price and its first order derivative. Consistent with Equation(5.10) and (5.11),
the call option price under the forward measure is greater than 0 and less than
1. Its first-order derivative monotonically increases with forward-moneyness. If
I reverse the change of measure (Equation(5.6), this first-order derivative under

risk neutral density is called delta, which measures the sensitivity of option price

to change in the underlying value.

5.5 Comparison of nonparametric methods

In the previous sections, I test the proposed method using different kernels and
show the cubic spline kernel yields the smallest relative distance. To asses my
machine learning based framework with another nonparametric methods, I first

summarize the differences between these nonparametric methods into two aspects:

e Assumptions of input variables: as shown in Section 5.2.2, the call price
function can be expressed as C(S;, K, 7,7,d), in which the variables S;, K

and 7 can be easily obtained from the market while r and § are difficult
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to calibrate. Without using the forward measure as in this thesis, previ-
ous studies have different assumptions regards these two variables (such as

Glaser and Heider (2012) assume they are both constant).

e Choice of approximation method includes two important parts: choice of

kernel function and kernel dimension.

— Various kernel functions have been applied to approximate the call
option price surface in previous studies such as low order polynomial
(Kundu et al. (2016)), radial basis function (Lai (2011)) and cubic
spline kernel (Fengler (2009)). In this chapter, since the smallest rela-
tive distance is obtained by using a cubic spline kernel, I compare my

method with Fengler (2009).

— In terms of kernel dimension, Fengler and Hin (2015) is the only study
that uses the bivariate kernel approximation. In contrast with this
thesis, they incorporate the no-arbitrage constraints in the control net
of the tensor product B-spline and solve a quadratic programming to

fit the call option price surface.

To compare my L;-SVM method with Fengler (2009) and Fengler and Hin (2015),
I first summarize the difference between two methods in Table 5.5.1. Since my
estimated framework is independent of interest rate and dividend yield, the per-
formances of these three models are mainly determined by their optimization
procedure. I briefly review the key optimization function of Fengler (2009) and

Fengler and Hin (2015) as follows.

e Maturity Slice by Slice ( Fengler (2009) )

Dividing the call option price surface into several maturity slices, Fengler (2009)
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proposes a method that estimates the call option price using a cubic spline func-
tion. To make the call option price surface as smooth as possible, Fengler (2009)
first develops a smooth technique in implied volatility space. After obtaining the
smoothed data, he transforms them back to the option price space. Using the
no-arbitrage conditions on the option price, he simplifies the estimation problem
as follow:

For each maturity

M k"m
ming, > wplc(km, ) — g(kn)]* + A / (9" (k))*dx (5.34)
m=1 ke

Where ¢(k,,) is spline series, ¢(k,,7) is the observed call price. ¢”(k) is a reg-
ularization term introduced by Green and Silverman (1994). The optimization
problem Equation( 5.31) is solved with respect to the no-arbitrage conditions. I

present the matrix form of final estimation problem in Algorithm 2.
e Two dimensional Tensor Product Kernel (Fengler and Hin (2015))

Fengler and Hin (2015) extends the earlier method using a two univariate spline
kernel. This method represents the call option price surface as a linear combina-
tion of tensor product B-spline surface. By minimizing a penalized least squares
, the estimated problem becomes

1 N

mingﬁ Z(c(mi, 7)) — s(ki, 7))* + An|0)? (5.35)

i=1
where s(k;, 7;) is tensor product spline, c¢(k;, 7;) is the observed call price. @ is
vector of the tensor product B-spline coefficients. Without directly considering
no-arbitrage in the quadratic programming framework, Fengler and Hin (2015)

establish no-arbitrage conditions on an artificial kernel surface (which is called

4TPlease refer to Fengler (2009) for more detail

92



5.5. Comparison of nonparametric methods

the control net of the B-spline). This approach involves a complex knot search
and relocate process, which is highly time consuming. I present the matrix form

of this method in Algorithm 3.

5.5.1 Comparison Results and State Price Density

Table 5.5.2 reports the comparison results for these three methods. Not surpris-
ingly, my L;-SVM method shows similar result to those of Fengler (2009) because
they both apply a univariate cubic spline kernel. This similar result strongly indi-
cates that my L;-SVM method is a universal approach. Previous studies that use
different kernel and optimization procedures can be replicated by my method. As
shown in the table, compared to Fengler (2009), although my L;-SVM method is
slow, it shows a somewhat better accuracy. I argue that this can be attributed to
my comprehensive data filter approach, simple linear programming framework,

incorporating the bid-ask spread information or all of them.
e Analysis of computation time

In Figure 5.5.1, I show the evolution of computation time during the estimated
period. It is evident that Fengler and Hin (2015)’s running time far exceeds the
others. As shown in Algorithm 3, this is because it searches simultaneous opti-
mizations for forward-moneyness and maturity. Unlike the other two methods,
which are completely unfazed by the financial crisis period, I observe a significant
peak of Fengler and Hin (2015) around the financial crisis period, which implies
that Fengler and Hin (2015) may need additional effort to calculate more volatile
data. In the recent period, my method and Fengler (2009) both highlight two
notable peaks, and, as both methods are based on the maturity slice approach,

I argue that these may be caused by the market microstructure; for example,

48Please refer to Fengler and Hin (2015) for more detail
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possible price manipulation through controlling order size, or my data filter does

not eliminate all possible arbitrary data. I suggest this for future research.
e Analysis of relative distance

For the relative distance, as shown in Tale 5.1.2, the mean of relative distance
for Fengler and Hin (2015), Fengler (2009) and my L;-SVM method is 18.734,
2.368 and 2.363 respectively. My L;-SVM method produces the smallest relative
distance and Fengler and Hin (2015) displays the worst performance with the
mean of relative distance almost 8 times higher. Figure 5.5.2 shows the changes
of relative distance over time. My L;-SVM method shows the similar pattern

with Fengler (2009) but with slightly lower value.
e Analysis of smoothness

When comparing the smoothness of call price surface in the forward-moneyness
direction, my L;-SVM method stands out by having a stable result. As illustrated
in Figure 5.5.3, without considering the data around 2016, my L;-SVM method
exhibits stable behavior with a lower absolute second-order derivative with respect
to forward-moneyness. Another interesting comparison among the three methods
is to compare the surface smoothness in the time to maturity direction: it can
be seen in Table 5.1.2 that there are no significant differences in their ability
to interpolate across time. Except the max value and standard deviation, my
method shows the same result as Fengler (2009). This finding provides empirical

evidence for Fengler and Hin (2015)’s simulation result, which shows the calendar
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Algorithm 2: Fengler(2009): Approximation of the call price surface

with cubic spline

(1) Calculate pre-estimated call price surface;
Input: Observed forward moneyness level x;, 1 = 1,...N
Observed maturity level 7;, i = 1,...N
Observed Black Schole implied volatility o;(k;, 7;)
a. Define a regular grid as & x 7 C [k;, ;] with 100 grid points
b. Get pre-estimted implied volaitlity
0;(R,7) = Interpolate(o;(k;, 7;))
Output: Estimated call price ¢;(&,7) )

(2) Fitted the call price surface slice by slice(from last to the frist
maturity), and solve the quadratic program. For ¢,,, solve

[ 0 0 0 0 |
1 1
(_h_ll_ =) e 0 0 0
oo ) 0
o 0 e 0
B : 0 0
0 0 0 ... thlﬂ 1
0 0 0 0 (—5m=—7m)
0 0 0 0 "
3 (h1 + ho) the 0 0 0
thy s(ha +h3)  Ghs 0 0
R = 0 . 0
0 0 %th:a %(ths, + har—2) %hMﬂ
0 0 0 1har—s Y(har—2 + har—1)

Define A = (Q, —R") and set Wy, = diag(wy, ws...wys),where

hm = RKm+1 — KEm

For each time to maturity:
Set: z = (¢7,7")" and y = (wic(K1, 71), .., warc(Kar, 71), 0, ...0)T
ming —y! + %XTBX

Subject to ATX =0
¢k, 1) = g5,

(W O
B_(O ’

)
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Algorithm 3: Fengler and Hin(2013): Approximation of the call price
surface with tensor product B spline

(1) Initial ;
Input: Observed forward moneyness k;, 1 = 1,...N
Observed maturity 7, i = 1,...N
Smoothing parameter A
Observed European forward call price ¢;(k;, 7;)
Output: Estimated call price ¢;(#, 7)

(2) Fitted the call price surface using tensor product of spline kernel
a. Define the tensor product kernel as

- | (Bopi (k1)) (Baip (k1)) @ (Bop: (71))-+-(Bgy pi (1))
(Bop (EN))-(Bgy 1 (58)) @ (Bopy (Tn)) -+ (Bgy 1 (7))

Where p; and p, are the order of b spline kernel

b. Define a regular grid as & x 7 C [k;, 7;] with 100 grid points

c. Search and Relocate the knots in grid that have minimum Akaike
Information Criterion

The search boundary is v and the new knot as €%, the orignal knots is
¢ and the AIC

value of original knots is AIC

While the knots in grid do:
e = argmin(AIC(e°Jv)

Until
AIC(e*%|J€%) > AIC,

(3)Set optimization problem as D = BT B + \I

BT — c1(k1, 1)
c1(kn, V)
Solve the quadratic program
min(0.507 DO — 07d)
subject to constraints on coefficients of b spline kernel(reference papr for

more detial)
Finally

(’i 7_l) qul OZ]Q 0 J1 J2 ]1 p1(/{)Bj27p2<T)




5.5. Comparison of nonparametric methods

Table 5.5.1: Summary of Compared Models

Model Interest rate  Dividend Kernel Scope
Fengler(2009)  Deterministic Deterministic Cubic Spline Maturity Slice
(Univariate)
Fengler and Hin Deterministic Deterministic Tensor product Global
(2013) B-spline (Bivariate)

Note: this table compares two nonparametric estimation methods for assump-
tion of interest rate and dividend, choice of kernel in my estimation framework.

Table 5.5.2: Empirical Results for Estimating Call Option Price

Fengler (2009) L;-SVM  Fengler (2015)

Min  0.093 1.259 4.579
Time Mean 1.708 8.771 331.934
Max  106.481 468.83 3037.909
Std 5.043 19.680 305.849
Min  0.314 0.312 1.164
Relative Distance Mean 2.368 2.363 18.734
Max  10.132 10.135 367.530
Std 1.933 1.937 27.119
Min  0.060 0.004 0.082
Smoothness(Moneyness) Mean 35.250 33.369 43.633
Max  4406.122 2854.166 1197.856
Std 171.411 184.698  97.831
Min  0.000 0.000 0.000
Smoothness(TTM) Mean 0.006 0.006 0.010
Max  0.116 0.117 0.231
Std 0.011 0.016 0.020

Note: this table reports the performance of three compared methods. Time
refers as the computation time. Relative distance and smoothness (forward-
moneyness and maturity direction) is defined in Section 5.5.1. Std represents
standard deviation. I use Python’s Cvxopt library to solve the optimization and
the laptop conducts the codes is an Intel Core i7 and 2.9 GHz.
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5.6. Summary

spread no-arbitrage condition is a weak constraint. Overall, my method displays
a relatively smooth call price surface.

From the above analysis, my L;-SVM method provides a universal framework
that incorporates previous studies by using different kernel function in Equa-
tion(5.14). Previous studies with univariate and bivariate kernels can both be
replicated in my linear programming framework. Although my method requires
additional time to search the optimal parameters, as shown in Table 5.5.2, it im-
proves the estimation accuracy and surface smoothness in the forward-moneyness
direction. Therefore, in this chapter, I use the estimated call option price from
L1-SVM to extract the state price density (SPD). Since the above comparison
is under the forward measure, based on Equation(5.6), I first transform the esti-
mated option price back to risk neutral measure and then calculate SPD based
on Equation(5.5). Figure 5.5.5 shows the extracted SPD on 02 July, 2013. As
expected, the SPD is unimodal, smooth and positive. The SPD becomes small
for far OTM and far I'TM option.

5.6 Summary

In this chapter, I investigate the problem of estimating risk neutral information
(SPD or RND) from option price. I find estimation of SPD from option prices
faces five challenges: (a) in Breeden and Litzenberger (1978)’s estimation equa-
tion, the strike price is continuous while strike prices in real markets are discrete;
(b) market data contain noise that may lead coarse and multimodal SPD; (c)
theoretically SPD starts from 0 and extends to infinity while the market option
data can only estimate SPD within certain bounds; (d) the estimated call option

price surface should incorporate no-arbitrage constraints; (e) the estimation of
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Figure 5.6.1: State Price Density on July 2, 2013
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Note: Figure 5.5.5 plots the state price surface on 02/07/2013. The index price
is 1614.08. The state price density obtained as second oder derivatives of call
price function respect to strike price.

SPD surfers the 'curse of differentiation’.

After briefly review existing parametric and non-parametric methods, I find
that none of the methods is superior and has successfully solved all five chal-
lenges. More specifically, the parametric method is not flexible to satisfied all no-
arbitrage constraints and thus leads to under-fitting the real market data. The
non-parametric method shows good performance in approximating the surface
but is sensitive to the pre-determined parameters. Therefore, differing from these
two methods, I propose a new machine learning approach to estimate the call
option price surface. Compared with parametric and non-parametric methods,
machine learning has two advantages. First, since it is a data-driven approach,
machine learning exhibits good performance in solving constrained optimization
problems. Second, it is not sensitive to pre-determined parameters because the

optimal value of these parameters are chosen using the gridsearch technique dur-

ing training.
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5.6. Summary

Based on empirical studies, although most use the average of the bid and
ask price as fair option price, the true transaction option price lies in a range.
To take this into account, I develop a data-driven approach L;-SVM based on
standard support vector machine(SVM)*®, which incorporates the information in
the bid-ask spread in pre-defining error tolerance in a loss function. As shown
in Section 5.3.2, my L;-SVM method is sufficiently flexible to consider different
models and all arbitrage-free constraints.

Empirically comparing my L;-SVM method with other non-parametric meth-
ods using S&P 500 index options, I show that my method is accurate and smooth.
It is easy to implement and can be universally applied by choosing different ker-
nel functions. Previous studies that use cubic spline, low-order polynomial and

tensor product spline estimation method can all be replicated in my framework.

49Gee Section 3.1.2 for more detail.
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Chapter 6

Extracting Natural Probabilities
from Option Prices: The Empirical

Ross Recovery Theorem

All models are wrong, but some are useful.

—Box (1976)

6.1 Introduction

Traditionally, practitioners and academics have been content with forecasting re-
turns based on historical data, where future returns are assumed to be drawn
from specific models or distributions. Although this standard econometrics ap-
proach yields relative a good performance in predicting stock volatility, it fails to
capture extreme movements in the financial markets. History has clearly revealed
that rare events in the financial markets occur with a low probability which, from
a statistical perspective, lies in the tail of a probability distribution(Liu (2014)).
When I use historical data to infer future returns, these extreme values are likely
to be treated as outliers. Hence, valid inferences on future returns can only be
obtained by incorporating the tail dependence(Poon et al. (2003)) and adding

additional restrictions.
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Is it possible that I can obtain a valid inference without using historical data?
Researchers have investigated this issue in the derivatives market. With payoffs
extending into future, financial derivatives naturally offer a prism through which
ay market’s perception of future returns can be revealed. The hope that this
revealed information can be used to forecast underlying future returns has fasci-
nated academics and practitioners. While there exists a rich equity option market
and a literature about how to extract risk-neutral probabilities from option prices
(see Chapter 5 and Anagnou et al. (2002) for a review), previous studies do not
consider directly extracting real-world probabilities from observed option prices.
This is for two reasons. First, classic option pricing theory is based on a risk-
neutral valuation framework(Black and Scholes (1973); Merton (1973)), in which
there is no role for the dynamics of the underlying under a real-world measure
P. If the option is valued without knowing the underlying dynamics under P ,
how can this information be inferred from option prices? It seems impossible
to recovery real-world probabilities from option prices. Second, as suggested by
Jackwerth (2000) and shown in Section 5.2.1, in each state of the world, the re-
lationship between risk neutral price and real-world probability and risk aversion

is shown as below.

risk mneutral probaility = stochastic discount factorxreal world probaility

Apparently, from this relationship, there is an infinite combination of stochas-
tic discount factor and the real-world probability that yield the same risk neutral
probability. Economically, this means when I extract the risk-neutral probabili-
ties from the prices of options on the S&P 500, I find the risk-neutral probability
of, for example, a 25% drop in one month to be higher than the probability cal-

culated from historical stock returns. Since the risk-neutral probability is the
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real probability adjusted for the stochastic discount factor, this result indicates
either that the market forecasts a higher probability of a stock decline (implied
by real-world probability) than has occurred historically or the market requires a
very high risk premium (implied by stochastic discount factor) to insure against
a decline. Without knowing which is the case, it is impossible to separate the two
and infer the market’s forecast of the real-world probability. Therefore, in order
to estimate real-world probabilities from option prices, the stochastic discount
factor (or pricing kernel in asset pricing literature) should be known. However,
there is no widely accepted measure of the stochastic discount factor in previous
studies, this therefore leads to controversial recovered results.

Recently, without appealing to historical data and assuming an investor’s risk
preferences, Ross (2015) poses “The Recovery Theorem (TRT')”, which enables the
recovery of real-world probability and stochastic discount factor together from
Arrow-Debreu state prices (Arrow (1964)) implied by observed option prices.
This is a remarkable study and the result relies on two insights: (a) the stochas-
tic discount factor is transition independent; (b) there is a time homogeneous,
finite state Markov chain process driving all changes in the economy. These two
assumptions together allow for a unique recovery of real-world probability.

Following Ross’s approach, several studies attempt to generalize TRT by re-
laxing these two key assumptions. As pointed out by Huang and Shaliastovich
(2014), current economic conditions may influence future wealth and, therefore,
the stochastic discount factor implied utility in Ross (2015)’s first assumption is
incorporated with Kreps and Porteus (1978)’s recursive preferences. By consid-
ering these, they extend TRT to an Epstein-Zin type utility based framework,
in which when wealth to consumption ratio is given, recovered pricing kernel

captures the investor’s preference for timing uncertainty.
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Additionally, several recent papers focus on extending the second assump-
tion of TRT from discrete time to continuous and from bounded state space to
unbounded. Replacing the discrete-time Markov chain with a continuous time re-
current Borel right process, Qin and Linetsky (2016) prove that TRT is possible
when the stochastic discount factor is a positive semi-martingale function. This
semi-martingale stochastic discount factor setting is further extended and linked
to Hansen and Scheinkman (2009) by Qin and Linetsky (2017). Changing the
risk neutral measure to T-forward measure, Qin and Linetsky (2017) extend TRT
without the Markovian assumption. Clearly, TRT should extend to continuous
time since the real financial market is in continuous time, but whether I need
TRT in unbounded state space is debatable. Some researchers argue this is not
necessary because even if the true economy state space is unbounded, I always
truncate the space because I have a limited number of observations. However, I
argue that the extension of TRT is required for two reasons. First, although there
is no conclusion about whether the economy state pace is bounded or unbounded,
for robustness, it is necessary to extend Ross (2015) to an unbounded diffusion
setting. Second, even though I assume the state space is bounded, it is impossible
to determine the upper bound of economy state space. Take the S&P 500 index
as an example, no one can know a correct upper bound .

The study of the boundary condition of TRT is initiated by Dubynskiy and
Goldstein (2013), who prove the boundaries of state space are essential for sepa-
rating risk aversion and real-world probability. However, they argue the assumed
boundaries which, in order to apply TRT, fundamentally change the solution of
real-world probability. This result is confirmed by Walden (2017), who shows
that boundaries only concern the state dynamics instead of the pricing kernel.

In contrast to Dubynskiy and Goldstein (2013)’s finding of boundaries, by re-
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laxing the bound restriction, Walden (2017) shows that recovery is possible in
an unbounded diffusion-type state space when the diffusion process is recurrent
and the sufficient but not necessary condition for deriving unbounded is a mean
reverting diffusion process.

Instead of recovering from the Arrow-Debreu state prices perspective, Carr
and Yu (2012) consider an alternative set of sufficient conditions to derive TRT.
Relying on restricting the dynamics of the numeraire portfolio, they show the
unique real-world probability can be recovered using the regular Sturm-Liouville
theory. This study provides an insight into recovering real-world probability with
a preference-free approach. Along the line of this perspective, Park (2016) further
supports Walden (2017) by proving recovery under a recurrent and mean reverting
diffusion process is possible under Carr and Yu (2012)’s framework.

Although previous studies have successfully extended TRT, Borovicka et al.
(2016) point out that there is a theoretical flaw in TRT, arguing that Ross’ first
assumption is a special case of Hansen and Scheinkman (2009), in which the
martingale component in the stochastic discount factor factorization equals one.
They suggest that this special case only holds in an economic environment where
the highest return asset is the long bond. In particular, they prove that, under the
general stochastic discount factor factorization, what is recovered via the Perron-
Frobenius theory is a distorted probability since the martingale component serves
as the change of measure. This distorted probability reveals the market’s long-
term perspective. This distorted probability is also discussed in Alvarez and
Jermann (2005), Hansen and Scheinkman (2009) and Qin and Linetsky (2017).

Empirical studies implementing TRT in stock options and bond futures op-
tions markets show conflicting results. In the context of the fixed income market,

Qin et al. (2016) and Bakshi et al. (2017) test the potential misspecification of
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TRT in Borovicka et al. (2016)’s long-term factorization framework. Qin et al.
(2016) conduct a hypothesis test for Ross’s first assumption on the US Treasury
market. They show that the recovered measure is different from the estimated
real-world probability measure. The difference between these measures can be ex-
plained by the instantaneous volatility of the martingale component. Similarly,
using the 30-year Treasury bond futures option, Bakshi et al. (2017) demonstrate
that the martingale component of the stochastic discount factor exhibits stochas-
tic behavior. These two studies confirm Borovicka et al. (2016)’s factorization of
the stochastic discount factor and show Ross’s assumption (the special case of
martingale component equal to one) is violated in the long bond market®® market.
In the equity option market, using S&P 500 index option, Jackwerth and Menner
(2017) empirically evaluate the short-term forecast ability of recovered probabil-
ity. They show that statistically the 1-month realized returns are not drawn from
recovered probability. However, using a neural network estimation framework,
Audrino et al. (2015) show that the recovered distribution of S&P 500 index
option contains predictive information. A trading strategy that uses recovered
moment significantly outperforms one using this risk neutral information.
Focusing on two conflicting results in the equity option market, I argue there
are two issues with previous studies. First, they both use discretization to im-
plement TRT. As shown by Tran and Xia (2015) and Dubynskiy and Goldstein
(2013), the discretized recovery result is sensitive to the number of states and
bounds on the state space. As a result, without comparing the two methods in
the same number of states and bounds on the state space, it is difficult to conclude
whether or not the recovered result has predictive ability. Second, Jackwerth and

Menner (2017) argue that the recovered result of Audrino et al. (2015) can be at-

50Long bond refers as zero coupon bond with long maturity.
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tributed to the loss function (or penalty term) in the neural network, but, without
directly theoretical proving and empirically testing, it is hard to argue whether
the failure of TRT in Jackwerth and Menner (2017) is due to theoretical flaws in
TRT or their implemented technique.

To provide empirical evidence for the recovery problem, following Walden
(2017), this chapter implements TRT in a continuous time setting. To my knowl-
edge, this is the first study to investigate the empirical validity of TRT in contin-
uous time. Without incurring discretization error, this chapter makes two contri-
butions. First, I complete Walden (2017)’s unbounded diffusion TRT framework
by providing the empirical evidence. Using Audrino et al. (2015) ’s quadratic loss
function in my L;-SVM framework, my study shows that using a quadratic loss
function in state price estimation does not guarantee a well-recovered result. To
further investigate whether the distorted recovery result is caused by the imple-
mentation procedure associated error or the flaws of TRT, I simulate option data
using the Ornstein-Uhlenbeck (OU) process and define a specified m(x) function.
In line with Jackwerth and Menner (2017) and my empirical study using the
S&P 500, I find that the recovered probability is different from the OU process
generated real-world probability. Second, I contribute to the empirical studies
on multivariate TRT. Although Ross (2015) and Walden (2017) both show that
TRT can be applied in univariate and multivariate settings, the empirical studies
are scarce. Sanford (2017) is the only empirical study that tests Ross (2015)’s
recovery theorem in a multivariate Markov chain. Including volatility and under-
lying price as state variable, they show that the forecast results from multivariate
TRT are far superior to univariate TRT. However, this result does not directly
prove that the recovered probability is the real-world probability. In this chapter,

using the theoretical result from Walden (2017) Section 3.4, I directly calibrate
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the two-dimensional consumption model of Bansal and Yaron (2004). I confirm
that the recovered probability is not the real-world probability.

The road map of this chapter is as follows. In Section 2, I provide a theoreti-
cal review of three key studies of TRT. Section 3 introduces the implementation
procedure of TRT and how to back out key input parameters from option prices.
I test the TRT in unbound diffusion using S&P 500 index option price and Orn-
stein—Uhlenbeck (OU) process generated synthetic data. Section 4 provides an
example of bivariate TRT using Bansal and Yaron (2004)’s consumption model.

In Section 5, I discuss the reasons that why TRT fails and Section 6 concludes.

6.2 The Recovery Theorem

The basic objective of TRT is to extract the real-world measure from the risk neu-
tral measure. Until Ross (2015), this aim has always been viewed as impossible
because it is hard to disentangle real-world probability from option implied infor-
mation. As shown in Section 2.23 and Section 6.1, the risk neutral probability is
a product of two components: (a) real-world probability, and (b) the stochastic
discount factor. In general, option prices do not offer sufficient information to
separate them. Surprisingly, Ross (2015) proposes TRT, which is a new way to
recover the real-world probability from the risk neutral measure under certain
assumptions. In this section, I provide a theoretical review of three key studies
of TRT. I illustrate the basic assumptions and key recovery procedure of TRT

under discrete and continuous time settings.
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6.2.1 Discrete Recovery
6.2.1.1 Basic Framework

To successfully recovery the real-world probability, Ross (2015) makes two main
assumptions. First, he assumes a discrete-time economy world, in which the
driver of uncertainty follows a finite time homogeneous Markov chain process.
This assumptions implies two essential characteristics for the uncertainty driver
X: (a) X is bounded and lower and upper limits exist. (b) the future state
of X only depends on the current state. Second, the stochastic discount factor
(or pricing kernel) is transition-independent, in other words, the utility for a
representative agent in the market is state-independent and additively separable.
Using these two assumptions, Ross (2015) shows that the recovered real world
probability problem transforms to an eigenvalue analysis of Arrow Debreu state
prices.

Let us consider a economy world with a finite number of states M and time
horizons N. The risk neutral information implied by Arrow Debreu state price S

is defined as:

S11 S12  Sin

S$2,1 S22  Sa2n
S =

Sm,1 Sm,2 """ Smpn

As the S is driven by a Markov chain process, I define the next state Arrow
Debreu state price S, 11 only depending on current state S, . I express this

relationship as 5,11 = Q.S,,, where Q is an M X M transition matrix denoted by:
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d11 41,2 qin
0 d21 S22 q2.n
dm,1 4m,2 qmm

The transition matrix () is the key to implementing Ross’s Recovery. The rows of
(Q denote the current state and the columns represent the next potential state, so

the sum of each row of () will be one. If I define the real-world transition matrix

as P, where

P11

P21

pm,l

P12

D22

pm,2

Pin

P2.n

Pmm

My aim is to recovery P from (), which is uniquely determined by Arrow

Debreu state price S®'. Under the general equilibrium pricing model ( see Section

2.2.3), this two matrixes are connected with the pricing kernel.

pricing kernel matrix is given as:

©1,1

P21

Spm,l

©1,2

©2.2

Pm,2

Pin

P2.n

Pm,m

Assume the

Using the transition independent assumption, the pricing kernel from state ¢

to j can be written in the following form:

>1Ross(2015) assumes the Arrow Debreu state price S is known. Please see Chapter 5 for the

estimation of this matrix.
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¢y  h(i)
==L =52 6.1
7 Dij h(j) (6.1)

Where h(.) is a positive function. ¢ is the time discount factor. If I define the

)

diagonal matrix as

[ h1) 0 0 |
|0 e 0
00 h) |

Replacing h(.) with D, then Equation(6.1) can be written as:

Q=Pd=6D"'D (6.2)

Rearranging this equation yields

§S'QD =DM (6.3)

Setting z = D!, Ross(2015) further simplifies Equation(6.3) as an eigenvalue
analysis problem

Qz =0z (6.4)

Since the transition matrix () is non-negative, applying the Perron-Frobenius
Theorem(Meyer (2000)), Ross(2015) shows unique recovery of the real world prob-

ability (matrix F') and the pricing kernel (matrix D up to a positive scaling).

Theorem 6. (Perron-Frobenius Theorem) If all elements in a square matriz A
is a non-negative matriz, the following statements hold:
1. A has a nonnegative real eigenvalue and the largest eigenvalue dominates

the absolute values of all other eigenvalues.
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2. the following problem has an unique pair of eigenvalue and eigenvector

Axr = Az

Where x 1s a vector and X is a scalar. The elements in the eigenvector are also

strictly positive.

6.2.1.2 Discussion

While Ross(2015) elegant proves the recovery of the real-world probability from
risk neutral measure is possible, I argue that the framework of TRT has two
groups of limitations (see Table 6.2.1 for summary). In contrast with the most
option pricing models, which are build on continuous time with a diffusion process,
Ross (2015) assumes a discrete and bounded economy world. Undoubtedly, a
continuous time setting may more appropriate as the real financial market is
continuous. However, whether the state space must unbounded is unclear. In
Ross’s framework, the information of state bound is included in Arrow Debreu
state price matrix S. The first row in .S shows the information of low bound and
the last row in () presents the upper bound. As a result, the choice of bound
is determined in the value of S, which further influences () and the recovered
results. This influence of boundaries is also mathematically proved by Dubynskiy
and Goldstein (2013) and Tran and Xia (2015).

Moreover, Ross’s assumption of investor’s utility is also criticized by fellow
researchers (Carr and Yu (2012); Borovicka et al. (2016)) and challenged by em-
pirical work on the stock market (Mehra and Prescott (1985)). In fact, the utility
function itself is difficult to capture and measure. For example, how should I
decide on the form of the utility function? According to the Expected Utility

Theory, the utility function is expressed as probability weighted average of
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contingent utility. However, based on Prospect Theory, utility is a weighted
related probability and a non-linear function, since people overweight small prob-
ability. The choice of utility function becomes extremely complex since Ross’s
assumptions involve time-additivity and transition independence. The transition
independence of utility, means the utility of a representative agent only depends
on final and current state and rules out both an economic satiation effect and
habit persistence in utility function (Carr and Yu (2012)). The satiation effect,
put simply, is the diminishing marginal utility effect. Habit persistence, or habit
formation, captures the effect that an increase in current consumption increases
its marginal utility in the next time period. since Ross’s framework is build on
the assumption that there exist a representative agent, the implementation of
TRT is restricted. It can only be applied to forecasting an index asset because it
is a proxy for the representative agent’s holding. Besides, it could not be used to

forecast the underlying, which is zero net supply and not tradable.

6.2.2 Continuous Recovery

To derive a general version of TRT and loosen the assumption of Ross, Carr and
Yu (2012) and Walden (2017) demonstrate that similar separation can be achieved
in a bounded and unbounded continuous time setting. In contrast to using the risk
neutral measure as the Arrow Debreu state price, Carr and Yu (2012) accomplish
the recovery task using the properties of a numeraire portfolio. As introduced by
Long (1990), in a market with no arbitrage opportunities, there exists a portfolio
under which the deflated asset price evolves at a constant expected rate. When
examining Ross’s assumption in the numeraire portfolio context, Carr and Yu
(2012) replaces Ross’s assumption about the utility with the restrictions on the

driver X. They show that unique recovery is possible in a time-homogeneous
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diffusion setting when the boundary conditions are known.

6.2.2.1 Bounded Recovery

Consider an economy with probability space (2, F,P) , where P is a unknown
real world probability. Assume the risk-less asset (or money market account) is
defined as

dSor = r¢Sodt (6.5)

with a initial condition Syg = 1. There are no arbitrage opportunities in the
market, therefore, according to the fundamental asset pricing theorem in Section
2.1, a unique risk neutral measure Q exists. Under QQ, the security price adjusted

by risk free rate is a martingale

S S
EO ) = 2 6.6
[ SOT] S, (6.6)

Using the numeraire portfolio maps the risk neutral measure Q to real-world mea-
sure P, Carr and Yu (2012) denote the relationship between numeraire portfolio

L; and money market account as

_ Sot
Li=37 (6.7)

Assume a univariate uncertainty process X exists in the economy and drives all
the observables, such that,r(z,t) = r(x),0(z,t) = o(x). X satisfies the stochastic

differential equation

dX, = B(X,)dt + a(X,)dW2 (6.8)

Where 3(z) and o?(x) are the known drift and variance function respectively,

and I/VtQ is a Brownian motion under Q. The infinitesimal generator G of X is
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defined by

0? 0
922 + ﬁ(x)£ (6.9)

d  a*(z)

g:a-l- 5

Directly apply the Girsanov’s Theorem in Section 2.1.2 to change the measure of

Xy, the dynamics of X; under P is
dX, = (B(Xy) + 0o (Xy) o Xy))dt + a(X,)dWS (6.10)

Based on Equation(6.7), the P dynamics of the numeraire portfolio L; can be

derived by Ito’s lemma, which yields

dL,

T = (r(Xy) + 0?(Xy))dt + o(Xy)dW (6.11)

Where r; is the short rate,o? is the instantaneous variance and W is a Brownian
motion under P. From Equation(6.11), it is clear that the risk premium of the
numeraire portfolio L; is determined by its variance o?. In other words, if I
can determine the volatility process of L;, I can recover the P dynamics of the

numeraire portfolio. If T apply Ito’s formula to L; = L(X;,t) and substitute

Equation(6.9), then the volatility of L, is

o(X) = a(X)%lnL(X, t) (6.12)

Rearrange Equation(6.12) and take the exponentiation for both sides, the value

of numeraire portfolio can be expressed by two separated terms

L(X.t) = p(X0)() (6.13)

v o(y)
Where p(z) = el T ¥ and v(t) = e/®, f(t) is the constant of integration and
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p(.) and ~y(.) are positive function. Substituting Equation(6.12) into the diffusion

generator (Equation(6.9)), it implies

02w ') P A
2 o) P W =0 (6.14)

This equation can hold only if both sides are constant and so finding the unique
solution of this problem fits into the the regular Sturm Liouville theorem. The
general solution of this eigenfunction analysis problem yields the value of the

numeraire portfolio having the form

L(X,t) = p(X)e" (6.15)

Hence, imposing the restrictions on the P dynamics of the numeraire portfolio,
Carr and Yu (2012) provide an alternative way to extract the real world measure.
I argue that the restrictions of numeraire portfolio in Carr and Yu (2012) fun-
damentally connect to the utility assumptions of Ross (2015). As suggested by
Kelly (1956) and Platen (2006), the numeraire portfolio has the optimal growth
rate, which means the investors in the portfolio aim to maximize the logarithm of
their terminal wealth. This is consistent with Ross (2015)’s framework, in which
the representative agent aims to maximize his utility. However, the empirical
implication of Carr and Yu (2012) is difficult because the numeraire portfolio is

either not actually traded nor can it be constructed in the real market.

6.2.2.2 Unbounded Recovery

Inspired by Carr and Yu (2012), Walden (2017) further extends the recovery into
the unbounded diffusion. Instead of restricting the numeraire portfolio, Walden

(2017) extends Ross (2015)’s TRT framework on Arrow Debreu securities. In this
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section, I summarize the Walden (2017) approach and show how it is related to
Ross (2015).

Similar to Carr and Yu (2012), Walden (2017) considers an economy with
probability space (€2, F,P) , where IP is a unknown real world probability. Suppose

there is a state variable X that drives all the observations

dX: = p(Xy)dt + o(X)dw (6.16)

Mathematically, to ensure there are strong solutions in any interval of Equa-
tion(6.16), Walden (2017) assumes that p and o are continuously differentiable.

For any x and y, there are exists constant C'{,Cy and Cj3, such that Mﬁ% <y

Yl

7%§03and0<02<0(f)-

The transition density function f(z,y) = 88—1“; associated with the above dif-

fusion satisfies the Fokker-Planck equation, therefore

oft .
o~y (6.17)

Similar to Equation(5.3), in this framework, the price of call option C*(K) is

written as

C(K) = [ ty= K2 gy (6.19)

Based on Equation(6.16), the Arrow Debreu state prices that inferred from call

option prices C*(K) are defined as

Pary) = ept%ft(x, ) (6.20)

This definition of Arrow Debreu state prices corresponds with Equation(6.1) in
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Ross’s framework. In the terminology of Ross (2015), the pricing kernel is tran-

sition independent. For convenience, I define the function ¢(z) = and
z(x) = ﬁ Clearly, g(x) is related to the representative agent’s utility in Ross’s
framework.

Similar to Ross (2015), I assume the Arrow Debreu security price is known,
which means in Equation(6.20) p(z,y) is known. As proven by Walden (2017), I
can infer the underlying parameters p, p(z), o(x) and m(z) from p'(x,y). More
formally, the recovery problem of unbounded diffusion process becomes one of
solving the fundamental ODE

Z”‘f—ﬁzl‘f—
D D

2=0 (6.21)

Where D = 022(1) 2 = ;f((;:)) and 2’ = —m%‘r) (q(x) —q(x)?). r is the short risk-free
rate. A = p. k(z) = p(x) + 2¢(z)D(x). In fact, Equation (6.21) is similar to
the eigenvector formulation of Ross (2015). Although I can recover m(z) using
Equation (6.21), more conditions are needed to guarantee uniqueness. Consistent

with Carr and Yu (2012), Walden (2017) finds that the recovery is only related

to the dynamics of the state variable.

Proposition 3. The necessary and sufficient conditions for recovery of m(z) are

0 @ u(s)
/ e o DB dr = 00
—0oQ

o0 o p(s)
/ e o 5% gy = 0o
0

Overall, as shown above, Walden (2017) provides a general version of Ross (2015)
in an unbounded continuous setting. With restrictions on the behavior of the state

variable, he shows the recovery is possible in unbounded diffusion.
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6.3 Empirically Recovery in Continuous Time

Following Walden (2017), I empirically investigate TRT in unbounded diffusion
setting. The procedure for applying the TRT is shown in Figure 6.3.1. The
first step for TRT in continuous time is extract state price from observed market
price. In this chapter, I use L;-SVM state price density estimator to extract
state price. Compare with other parametric or nonparametric methods that are
reviewed in Chapter 5, my estimator shows two advantages. First, as shown in
Chapter 5, my L;-SVM estimator is comparatively accurate and smooth. Second,
applying my L;-SVM estimator will allow us to examine the issues whether the
quadratic penalty term (or loss function) in machine learning framework will
influence recovered result. To apply the quadratic loss function, I modify the

Equation(5.21) as

N
, 1
minap 5 llodl|* +C D [f(k.7) = Clk,7)] (6.22)

i=1
According to Section 3.1.2, this problem can be transformed to a dual opti-

mization problem

1 g * * g * . *
MaT{aaty ~ 5 D (i —af)(a; — o)) K(Xi, Xj) = Y (ai—af)+ > Yi(ai — o)
i,5=1 i=1 i=1
(6.23)
subject to

n

Z(Oéi —a;)=0

i=1
Following Audrino et al. (2015) and use Equation(6.23), I remove the esti-
mated results that violate three no arbitrage conditions (Equation(2.27), Equa-

tion(2.31) and Equation(2.32)) during modeling. I suggest this standard support
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Figure 6.3.1: The Recovery Procedure

Note: This figure gives the procedure for applying TRT in unbounded diffusion
in practice. The S represents the state price. r is the short risk-free rate. k and
D are defined in Section 6.2.2.2

vector machine can be estimated using Python’s scikit-learn library. The second

step of recovery problem is back out r, k and D from option prices, which has

illustrated by Walden (2017) as follow:

Proposition 4. For all t € (0,T), If the second order derivative of call option
prices is defined as V(t,y) = p'(xo,y). Then, for each y and t>0, this second

order deriwative has following relationship
Vi =D(y)Vyy + ar(y)Vy + ao(y)V

where

Where V;,V,,, and V,, are the partial derivatives of V,D and k are defined in Section

6.2.2.2. 1(y) = p— qW)n(y) — (¢ W) + q(v))D(y) and q(z) = =
Please refer Walden (2017) Section 3.8 for proof
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6.3.1 S&P 500 Index Option Example

In this chapter, I estimate the state price using the same dataset with Chapter
5. The dataset includes daily observations of S&P 500 index option from Jan-
uary 5, 2000 to April 30, 2016. I only use the OTM option data and apply the
three level data filter proposed in Chapter 4. I estimate the state price using a
standard quadratic programming support vector machine (Equation(6.23)). The
description of the whole dataset is shown in Table 5.4.1. In Figure 6.3.2, I report
two recovered results. The left panels show the state prices estimated from Equa-
tion(6.23). The right panels show the recovered physical distributions and middle
panels report corresponding pricing kernels. Theoretically, the pricing kernel of
S&P 500 index should monotonically decrease with state variable, in my case, the
forward-moneyness. However, the empirical studies (such as Jackwerth (2000),
Rosenberg and Engle (2002) and Constantinides et al. (2013)) show that the pric-
ing kernel may increase locally. In my results, as shown in Figure 6.3.2, I do not
find a persistent pricing shape kernel. Most surprisingly, instead of decreasing
with forward-moneyness, the pricing kernel of bottom panel in Figure 6.3.2 even
increase with it.

Specifically, to compare my continuous recovery with Ross (2015), in Table
6.3.1, I present the descriptive statistics of S&P 500 Options on April 27, 20112,
There are total 62 observations and the time to maturity from 7 to 365 days.
Figure 6.3.3 illustrates the estimation results from Equation(6.23). Consistent
with Equation(2.31), the call option surface is decreasing across the strike price
and the state price is unimodal, smooth and positive. Figure 6.3.4 shows the
corresponding partial derivatives of state price in Proposition 4. The recovered

pricing kernel and probability are reported in Figure 6.3.5.

2This is the same date utilized in Ross (2015).
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6.3. Empirically Recovery in Continuous Time

In contrast to Figure 11 in Ross (2015), I do not find a strictly decreasing pricing
kernel. My recovered pricing kernel exhibits a U shape, which provides new
evidence to Rosenberg and Engle (2002) using a forward-looking information.
Overall, I conclude I can recover the probability using Walden (2017) but what
information do I recovery is not clear.

To test whether the recovered probability is drawn from real-world probability.
Following Walden (2017), I test following null hypothesis using Berkowitz (2001)
test, which has better accuracy in small samples Bliss and Panigirtzoglou (2004).

Hy : Future returns are drawn from the recovered probability distribution.

In particular, I test this hypothesis with a monthly time horizon. I test
whether the 1-month future realized S&P 500 index return is drawn from its
real-world counterparts. If null hypothesis holds, I concludes that the recovered
probability is the real-world probability. The Recovery Theorem is well specified

or defined. The test procedure can be summarized as follow.

e First, I estimate the recovered probability p; following procedure in Figure

6.3.1.

e Second, for each option, I find all 1-month horizon®® options and their start

and expiration dates.

e Third, I record the return between these start and expiration dates as 1-

month realized return R;.

e Finally, test the hypothesis whether R; is drawn from p; using Berkowitz

test.

53This means the days to maturity is 30. In my sample, I accept days to maturity in|[21,33]
as 1-month horizon.
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6.3. Empirically Recovery in Continuous Time

Figure 6.3.3: Estimated Price and State Price Surface on April 27, 2011

Price Surface

Price

State Price (V) Surface

State Price

1600

Note: Figure 6.3.4 shows the call option price and state price surface and on
27/04/2011. The top panel shows the call option price surface. The bottom

panel displays the state price surface.

130



6.3. Empirically Recovery in Continuous Time

Figure 6.3.4: Partial Derivative of State Price Surface on April 27, 2011

Recovered (Vy) Surface

Recovered (Vt) surface

Vit

Note: Figure 6.3.4 shows the associated partial derivative of state price surface
on 27/04/2011.The top panel plots its first order derivative respect to the strike
price. The bottom panel displays the first-order derivative of state price surface

with respect to time to maturity.
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Figure 6.3.5: Recovered Probability and Pricing Kernel on April 27, 2011

Recovered Implied Pricing Kemel
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Note: Figure 6.3.5 plots the recovered results of S&P 500 index option on April
27, 2011. The right panel shows the recovered pricing kernel and the left panel
reports the recovered probability density.

Table 6.3.3: Test Result of Recovered Probability

Period Berkowitz(p-value)
2000-2007 0.001
2008-2009 0.005
2010-2016 0.001

Note: This table present test results for whether the 1-month realized return are
drawn from recovered probability.
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The test results are reported in Table 6.4. Similar to Walden (2017), my

results strongly reject the null hypothesis.

6.3.2 Ornstein—Uhlenbeck Example

To investigate whether the distorted recovery result is caused by error associated
with implementation procedure or comes from a theoretical flaw in TRT then, fol-
lowing Walden (2017), I consider the state evolving with the Ornstein—Uhlenbeck
(OU) process

dX =6(a— X)dt + odw (6.24)

where 6 and o are greater than zero. Since the OU process tends to drift towards
its mean, it is generally used to model the mean reverting behavior of underlying
in mathematical finance. As I can always define a new state variable X = X — q,

assuming a = 0, I further simplify Equation (6.24) as follow

dX = 0(—X)dt + odw (6.25)

Comparing above equation with Equation (6.16), I define p = —f0z. According

to Proposition 3, I check whether recovery is possible for this diffusion. Since

_(z u(s)d T 0 0 .. .
£ = —gx, then I get e o 5% = ol o5ds — e5e, Therefore, two conditions in

D
Proposition 3 are satisfied. The recovery is possible for this unbounded diffusion.

To test whether the recovered result is affected by the estimation of Arrow
Debreu state prices, in this section, instead of extracted state prices, I use sim-

ulated state prices based on Equation (6.20) directly. The empirical procedure

can be summarized as follows.

e Generate the OU probability density under P measure by assuming p = 1.1,

o = 0.3, § =1 and the initial underlying price Sy = = = 1900.
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6.3. Empirically Recovery in Continuous Time

e Get Arrow Debreu state prices by assuming m(z) = 1 + z? and using

Equation(6.20).
e Back out r, k and D from the Arrow Debreu state prices
e Obtain the recovered probability

In the top panel of Figure 6.3.6, I plot my simulated option prices. The x-axis
is the strike price and the y-axis is the option price. The strike price starts from
50 to 4000 and time to maturity is from 0.1 to 0.8. There are total 5400 option
prices in my sample. Consistent with the real market option data plotted in
Figure 5.4.1, the option prices reflect the decreasing behavior as I expect. The
ITM option is more expensive than OTM option. Using the definition of r and k

in Proposition 3, I obtain

2220 — o

= 2
r=pt+— g (6.26)
b a4 220 (6.27)

= —x .
1+ a2
The fundamental ODE problem Equation(6.21) becomes
., T 20° | 2220 — o

Bl G Ny, 2

2 +D<1+x2 0)z +D(>\ p = )2 =0 (6.28)

Solving this equation, I plot the recovered probability in bottom panel of Figure
6.3.6. I can see that the recovered probability density is significantly different
from the OU density distribution under P. The recovered distribution exhibits
fatter tails than the real world distribution. Except for the options with 0.1 time

to maturity, the recovered distributions with other times to maturity
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6.4. Reasons for Distorted Recovery

are significantly higher than the real-world probability. Consequently, instead of
associated state price estimation error, the distorted recovery result is caused by

a theoretical flaw in TRT.

6.4 Reasons for Distorted Recovery

6.4.1 Theoretical Explanation

As criticized by Borovicka et al. (2016), Ross’s Recovery Theorem would lead a
misspecified pricing kernel, which further results in a distorted real-world prob-
ability. They demonstrate that although Ross’s first assumption (transition in-
dependence of pricing kernel) mathematically delivers a unique recovery, it is in-
consistent with stochastic discount factor decomposition of Alvarez and Jermann
(2005). The transition independence assumption implies that there is a martin-
gale component associated with the stochastic discount factor and the recovered
probability from Ross (2015) actually reflects a long term expectation.

To illustrate this issue, let us consider a discrete time environment with prob-
ability space (£, F,P). There exists a state process X; that is strictly stationary
and time-homogenous. If I define the stochastic discount factor process as Sy,
then based on Equation(2.2.2), at each time t, the price of claims that receive

payoft Z,,,, at t-+n, is given by

Stin
E| ;jt Zyin| X4 (6.29)

According to Hansen and Scheinkman (2009), if I further restrict Z;,, =
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6.4. Reasons for Distorted Recovery

Figure 6.4.1: Recovery for Bivariate State Variables
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Note: This figure shows the true and recovered joint distribution of state vector
(mean growth rate and stochastic volatility). The parameters of the model is
a=—0.021,0%x; =[0 0.00034 0] and oxo =1[0 0 —0.038]

1 (X¢4r) and introduce a collection of linear pricing operators as {M,} , I can get

My(e) = EIZE2)(Xep) (6.30)

Using the Perron-Frobenius Theorem and defining ® is the positive eigenfunc-
tion/eigenvector and p is associated eigenvalue, I can further simplify the pricing

operator M,, as®*

Mng = p"¢ (6.31)

This means I that can decompose the pricing kernel into two parts, namely
permanent component M = p~tM,¢(X;) and transitory component M} =

p'd(X;)(Alvarez and Jermann (2005) and Hansen and Scheinkman (2009)). There-

4Please see Hansen and Scheinkman (2009) and Hansen (2013) for more detail.
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fore the SDF can be expressed as

o Sin _ ME,ME,

— — .32
S, MP Mf (6.32)
where
Mt]i —1 Mt+n ¢(Xt+n)
n = —_— 6.33
MP P T () (6:33)

M P o(Xem)

If I compare Equation (6.32) with Equation (6.1), apparently Ross (2015)
assumes the transitory component [Equation (6.34)) is equal to 1]. This is an
unrealistic assumption Alvarez and Jermann (2005) and means the asset that
can achieve the highest return is the long bond. Hansen and Scheinkman (2009)
further shows that this transitory component is actually a martingale component,
which defines a new probability that reflects long-term risk adjustments. As a
result, due this martingale component, using Ross’s TRT, I always get a distorted

result.

6.4.2 Martingale Extraction using Bivariate Recovery

To test whether there is a martingale component in the pricing kernel, in this
section, I apply Walden (2017) to Bansal and Yaron (2004)’s two-dimensional
consumption dynamic model. Assume the state variables X; and X, evolve ac-
cording to

dX1 = —andt -+ O'dewX1 (635)
dXQ = —det + Ox,Wx, (636)

where X is growth rate and X5 is stochastic volatility, wy, and wy, are indepen-

138



6.4. Reasons for Distorted Recovery

dent Brownian motion processes. Based on Equations (6.33) and (6.20), I express

o ot m(X,Yr)
the pricing kernel as Ay = e™* m(Xo,Y0)

. If T assume the aggregate consumption
—rX

e t :
v , where 7 is

e~ T

C, = eXt, then the pricing kernel can be expressed as A; = e
the risk aversion coeflicient for a representative agent with power utility. Using
this assumption and based on Equation(6.20), the recovery problem becomes one

of solving the following PDE

0'2 0'2 O'2
iZXle —|—ﬁZX2X2 —XQZX2 — (OZXQ +’70§(1)ZX1 +()\—,0—|—’)/06X2 +’72%)Z =0

2 2

(6.37)

In Section 3.4 of Walden (2017), he mathematically proves that this PDF
has a unique positive solution. Thus, I can directly recover X; and X5. The
solutions of this PDE are related to discrete martingale component extraction in
Borovicka et al. (2016) Section 5. Following Borovicka et al. (2016) and Hansen
et al. (2007), if the recovered X; and X, are identical to the pre-determined X,
and X5, this means that the transitory component in Equation(6.34) is equal to
1 and there is no martingale component in the pricing kernel. To compare the
recovered result and true state variables, using the same input parameters a, oy,
and oy, in Borovicka et al. (2016), I plot the true joint stationary distribution
of the state vector [Xi, Xs] in Figure 6.4.1. It can be seen that the recovered
distribution shares similar characteristics with the true distribution. However,
the recovered distribution exhibits a lower mean growth rate X; and a higher
conditional volatility X,. This result indicates that there exits a martingale
component that defines a new probability and under which the distribution of

state variables is distorted. The mathematical proof of the new set state variables

can be found in Appendix of Borovicka et al. (2016).
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6.5 Summary

In this chapter, I study the second main problem addressed in the thesis: what
is recovered from The Recovery Theorem (TRT). Although previous studies by
Audrino et al. (2015) and Jackwerth and Menner (2017) have explored this prob-
lem in the equity option market, I find their studies pose two issues: first, they
both focus on discrete TRT by Ross (2015), which is sensitive to the number
of states and boundaries of state space. Second, the error associated with state
price estimation procedure may lead to a misspecified recovery result.

In order to solve these issues, I empirically implement Walden (2017)’s un-
bounded diffusion Recovery Theorem using S&P 500 index options. In particular,
I test whether 1-month realized S&P 500 returns are drawn from recovered prob-
ability. My results strongly reject the null hypothesis and confirm Jackwerth
and Menner (2017)’s finding using discrete TRT. To further analyze whether
the distorted recovery result is due to state price estimation associated error or
a theoretical flaw in TRT, I use simulated state prices generated by the Orn-
stein-Uhlenbeck (OU) process. As expected by Borovicka et al. (2016), the re-
covered probability still differs from the real-world probability. In Section 6.3, I
explore theoretical reason that why The Recovery Theorem fails. Also, instead
of using a discrete TRT, I provide alternative evidence for the existence of a mar-
tingale component in eigenvector /eigenfunction decomposition of the stochastic
discount factor using bivariate unbounded recovery.

This study contributes to previous empirical studies of the recovery problem
in several aspects. First, to the best of my knowledge, this is the first empirical
study of the recovery of real-world probability with an unbounded diffusion pro-
cess. Without the influence of state space boundaries, I complete Walden (2017)’s

unbounded diffusion TRT framework by providing empirical evidence and show
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that recovery is possible with the unbounded diffusion process. Second, using
an extended quadratic SVM, I provide the empirical evidence for Jackwerth and
Menner (2017). I show that using a quadratic loss function in state price esti-
mation does not result in well specified recovery results. Third, I contribute to
the empirical studies on multivariate TRT. I empirically implement a bivariate
recovery, which provides additional unbounded diffusion evidence for Borovicka
et al. (2016).

Overall, although The Recovery Theorem starting with Ross (2015) (followed
by Carr and Yu (2012), Walden (2017) and other researchers) fails to extract the
real-world probability, I nevertheless argue it is a remarkable work and leaves
many opportunities for further research. Even if at this early stage I can not
discard some unrealistic assumptions in TRT, I strongly believe that some future

work will solve it.
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Chapter 7

Conclusions, Limitations and

Future Research

Not everything that counts can be counted, and not everything that

can be counted counts.

—Cameron (1963)°°

7.1 Summary

This thesis focuses on extract forward-looking information from option prices.
In particular, I attempt to extract risk neutral and real-world information from
option prices. Risk neutral information is related to the theoretical prices of
options and real-world information reflects the information associated with the
dynamics of the underlying. To extract the risk neutral information, I apply
a linear programming support vector machine L;-SVM framework. Using S&P
500 index options, I show that this L;-SVM framework is a universal approach
and comparatively accurate and smooth. Moreover, using a modified L;-SVM
framework, I further demonstrate how to back out the real-world information
from option prices. I empirically investigate The Recovery Theorem (TRT) in an

unbounded diffusion setting. Consist with previous empirical study by Jackwerth

55This quote is often attributed to Albert Einstein.
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and Menner (2017) and theoretical criticism of Borovicka et al. (2016), I demon-
strate that the recovered probability from TRT is not the real-world probability.

The thesis contains 7 Chapters. Chapter 1 introduces the research back-
ground, motivation and key contributions. I briefly summarize the history of
options, noting the introduction of electronic trading platforms and creation of
more option products as the options markets have become more active and im-
portant. Thus, how to obtain and use the information from option markets has
been a fundamental concern of both scholars and practitioners. In this thesis,
I focus on how to extract accurate information from an option market and the
use this information for future research. Specifically, I investigate two problems:
(a) how to extract a well-behaved risk neutral density from option prices and (b)
whether the information extracted from The Recovery Theorem is the real-world
measure.

Chapter 2 provides a brief review of related option pricing and general asset
pricing. I illustrate how the risk neutral and real-world measures are related from
mathematical finance and asset pricing perspectives. In Section 2.3, I provide a
comprehensive review of no arbitrage conditions for call option prices. An intro-
duction to machine learning and its applications in finance is given in Chapter
3, where two machine learning techniques: the neural network and the support
vector machine are presented. Comparing their characteristics in terms of abil-
ity to handle noisy data, processing large datasets, controlling model complexity,
predictive accuracy and ease of operation, I argue the support vector machine is
more suitable for extracting the risk neutral density from option prices.

Chapter 4 develops a data filter approach based on three principles: represen-
tative, accurate and no arbitrage. In Section 4.2, I provide a detail description

of data filter rules and discuss the reason for choosing to work with S&P 500 in-
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dex options. Comparing my filtered result with Zhang and Xiang (2008), I show
that my dataset contains less noise. Finally, to compare my L;-SVM with other
non-parametric methods, I change the estimated framework under the forward
measure using the Radon-Nikodym derivative. This transformation enables us to
compare all the models on common ground and treat interest rate and dividends
as zero.

In light of the above techniques and the theorem, in Chapter 5, I specify how
to incorporate no-arbitrage conditions into the linear programming support vec-
tor framework. Compared with other methods, I show that previous studies that
use different interpolation techniques can all be incorporated in my framework by
choosing a different kernel function. Also, taking advantage of the error insensi-
tive range in the support vector machine, my framework naturally considers the
information in bid-ask spread. Using 16 years of daily S&P 500 index options,
I show that my method establishes a somewhat better accuracy and is stability
smooth in the forward-moneyness direction.

In Chapter 6, following Walden (2017), I provide the first empirical study of
recovery of real-world probability with the unbounded diffusion process. Mod-
ifying my support vector machine framework to consider the quadratic penalty
term, I document that using a quadratic loss function in state price estimation
does not guarantee a well-recovered result. This distorted result may be caused
by either the implementation error or by a theoretical flaw in TRT. To show which
is the case, I apply TRT using simulated data from an Ornstein—Uhlenbeck (OU)
process. In line with my finding in S&P 500 index options, I note the recovered
results always differ from the real-world probability. Following Borovicka et al.
(2016)’s criticism of Ross (2015), in Section 6.3, I further show the existence of a

martingale component in a two-dimensional unbounded diffusion setting.
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7.2 Limitations and Future Work

7.2.1 Limitations

Although my study has successfully shown how to extract the risk neutral density
and natural probability from option prices, I argue it has some limitations.

First, a data limitation. Although, as shown in Figure 5.4.1, my dataset
is large enough to construct a well-defined surface, I argue that high-frequency
data are preferred for machine learning approach. This is because, as discussed
in Section 5.4.2, the dataset always needs to be split during the learning process.

Second, I fail to address the risk neutral density tail extrapolation problem.
As suggested in Section 5.1, I identify five challenges that are imposed in extract-
ing RND. The third issue, that RND should theoretically lie in [0, +00], is not
appropriately investigated in L;-SVM framework. In Equation (5.27)-(5.28), 1
only consider the zero point in my framework because the Python Cvxopt library
produces NaN when I use infinity as input. I suggest that future study could
apply a different library to solve this issue.

Third, in Chapter 6, while I show empirically that the recovered probability
differs from the real-world probability, I argue this does not necessarily mean
I should discard the forecasting ability of recovered probability. The proof of
the existence of a martingale component using bivariate TRT only statistically
implies these two probabilities are not the same. However, it is still possible that
partial real-world information is recovered by TRT. How to prove this argument

and identify this partial information is an interesting research direction.
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7.2.2 Future Research

Clearly, building on Breeden and Litzenberger (1978) and Ross (2015) ’s theoret-
ical foundation, various future researches can be explored in order to get option
implied information. Based on the content of this thesis, I recommend following

research directions.

e [t is worth extending the study to more complex options such as American
options. This is because, even though the European option is widely traded
in the market, in some cases investors prefer to use other types of option
to express their future view. For example, the most traded crude oil option

traded on the CME is American-style.

e Although the recovered probability is distorted, it still sheds light on apply-
ing new extracted probability in risk management and portfolio selection.
Given the limited forecast ability of historical data, the estimation of tail
risk from past returns has been criticized by researchers. The forward-
looking information implied from options, which more closely represents a
market’s perspective on the future, may yield better performance. I suggest
the future research can start with reconstructing the standard risk measure
value at the risk (VAR) using implied probability. However, as discussed
in Carr and Yu (2012), one issue that should be borne in mind is that the
recovered probability reflects the market’s view about the future but the
market is not always right. Incorrect views obviously would lead incorrect

extracted measures.
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Appendix

Kernel Function

Let X and Yare input data, the parameter v determines the amplitude on the

function. The popular choice of kernel function K(X,Y") are listed as following:

Polynomial kernel with degree c:
K(X)Y)= (XY +9)°

Linear kernel:

K(X,Y)=X"Yy

Radial basis function(RBF) kernel:

K(X,Y) = exp(|| X = Y]|*/207)

Sigmoid kernel:

K(X,Y) = tanh(y.XTY +7)
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Selected Python Code

Selected Code for Data Cleaning

import numpy as np

import pandas as pd

import datetime

import matplotlib.pyplot as plt

import dateutil

import re

from pandas import DataFrame

from scipy.interpolate import interpld
from scipy.stats import norm

from scipy.linalg import 1lstsq

# 1.import option data

df _option = pd.read_csv(’/Users/Desktop/original data copy/
spx2000-20160430.csv’)

# Note that the strike prices are out by a factor of 1,000! So
let’s fix them: df_option.strike_price = df_option.
strike_price/1000

# format date

df _option[’date’] = pd.to_datetime(df_option[’date’],format = ’¥m
/hd/hY )

df _option[’exdate’] = pd.to_datetime(df_option[’exdate’],format =

Yhm/%hd/hY )

df _option[’days’]=(df _option[’exdate’]-df_option[’date’]).dt.days

# 2.import index data

df _index = pd.read_csv(’/Users/chelsea/Desktop/all thesis/
original data copy/chapterldata/spxunderlying2000-2016.csv’)

df _index[’date’] = pd.to_datetime(df_index[’date’],format = ’%m/%

d/%Y’) df_index = df_index.rename(columns = {’close’:’
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index_price’,’volume’:’underlying_volume’})

# final dataset
df = pd.merge(df_option,df_index)
df [’moneyness’]=df [’strike_price’]/df[’index_price’] df[’

mid_price’]=0.5*%(df[’best_bid’]+df[’best_offer’])

# drop identical observation
print (len(df .drop_duplicates (subset=[’date’,’exdate’,’
strike_price’,’cp_flag’,’best_bid’,’best_offer’],keep=’first’)

))

# drop Identical exzcept price
df _i = df.drop_duplicates(subset=[’date’,’exdate’,’strike_price’,

cp_flag’] ,keep=’first’) len(df_i)

# Liquidity Filter

df _zero = df_i[(df_i[’best_bid’]!=0) & (df_i[’best_offer’]!=0) &
(df_i[’volume’]1!=0)1]

df _days = df_zero[(df_zero[’days’]>= 7) & (df_zero[’days’]<= 365)
]

df _f = df_days[(df_days[’moneyness’]>= 0.8) & (df_days[’moneyness

1= 1.2)]
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Selected Code for L;-SVM

import numpy as np

import pandas as pd

import sympy as sp

from sympy import exp

from sympy.utilities.lambdify import lambdify

from cvxopt import matrix ,solvers
solvers.options|’show progress’| = False

from sklearn.model selection import train test split
from sklearn.model selection import GridSearchCV, cross val score, KFold
from sklearn.base import BaseEstimator, RegressorMixin
from sklearn.preprocessing import StandardScaler

from sklearn.metrics import make scorer

# kernels
def linear ker(x, y):

return np.dot(x, y)

def poly ker(x, y, p=3):

return (1 + np.dot(x, y)) *x p

def rbf ker(x,y,sigma):

return exp(—np.dot(x—y,x—y)/ (2 % (sigma xx 2)))

def sigmoid ker(x, y, pl=1,p2=2):

return sp.tanh(pl*np.dot(x, y) + p2)

## differential function

def diff fun (zinput, k, ker, xj,vars):

200

k is order
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ker:kernel fumction choice

zinput:knots in spline

zj:jth compoent of X

vars: sigma if rbf kernel

sizeX = len(xj)

sizezinput = len(zinput)

sx = sp.symbols(’x0:%d’ % sizeX)

x0 = sp.symbols(’'x0’) # change to z1, whether results change???

difftmp = np.empty ([sizezinput , sizeX ], dtype=object)

for i in np.arange(sizezinput):
for j in np.arange(sizeX):

difftmp[i][j] = ker(zinput[i], sx[]j],vars)

diff fun = sp.diff (sp.Matrix(difftmp), x0, k)
dffun = diff fun.col(0)

yf = lambdify (x0, dffun, ’numpy’)

res = yf(xj)

n = res.shape[0]

taok = res.reshape(n, —1)

return taok

# Optimazation

class mySVR(BaseEstimator, RegressorMixin ):

2002

Support vector regression and No arbitarge constraints

200

def  init (self, e=0.25, ker=rbf ker, nsplit=2, staus=’Non Cons’, C=100,
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lam0=50,lam1=50,lam2=>50,sigma=0.707,tol = le—10):
self.e = e
self.ker = ker

self.nsplit = nsplit

self.staus = staus
self . C=0C

self .lam0 = lam0
self.laml = laml
self.lam2 = lam?2
self .sigma = sigma

self.tol = tol

def fit(self, X, y):
my SVR eastimator
y—output vector
x—input vector
ker is kernel,choices:[linear ker ,poly ker, rbf ker,
sigmoid_ker,tensorproduct ,b—spline |
C,e,lam0 are trade—off parameters
set e 1/4(bid—ask spread)
C=1,tol =1e—10 tolerance for support vector detection
nsplit—mo. of splited fwd points

staus: whether add NA constraions or not. Flase is Non_ Cons, Ture = Cons

n = len (X)
K = kernelmatrix (X, self.ker,self.sigma)

y = y.reshape(len(y), —1)

# define the linear programing

if self.staus = ’'Non_ Cons’:
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¢ = matrix(np.vstack ((np.zeros((n, 1)), 0, (1/n)xself.C
* np.ones((n, 1)), (1/n)*np.ones((n, 1)))),tc="d")
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