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We show that, by applying the conformal transformation method, strongly correlated superconducting systems can be discussed
in terms of the Fermi liquid with a variable density of states function. Within this approach, it is possible to formulate and
carry out purely analytical study based on a set of fundamental equations. After presenting the mathematical structure of the 𝑠-
wave superconducting gap and other quantitative characteristics of superconductors, we evaluate and discuss integrals inherent
in fundamental equations describing superconducting systems. The results presented here extend the approach formulated by
Abrikosov and Maki, which was restricted to the first-order expansion. A few infinite families of integrals are derived and allow
us to express the fundamental equations by means of analytical formulas. They can be then exploited in order to find quantitative
characteristics of superconducting systems by the method of successive approximations. We show that the results can be applied in
studies of high-𝑇

𝑐
superconductors and other superconducting materials of the new generation.

1. Introduction

Over the past few years, research on superconductivity has
been gaining newmomentum due to the milestone discovery
of iron-based superconductors [1, 2]. Along with the ongo-
ing work on high-𝑇

𝑐
materials, studies on superconducting

systems of the new generation remain one of the most active
research areas in superconductivity research. Progress in fab-
rication and characterization techniques is mutually coupled
with efforts to model and predict theoretically the trends and
phenomena observed in experiments. An important tool for
quantitative theoretical studies on superconducting systems
is the gap equation accompanied by the carrier concentration
equation. It appears in similar forms in the BCS theory, the
Eliashberg equations, the VanHove Scenario, and the confor-
mal transformation method, with the latter taking fully into
account the low-dimensional structure of high-𝑇

𝑐
materials.

In order to evaluate fundamental thermodynamic functions

such as the free energy, the thermodynamic potential, the
entropy, the heat capacity, and other quantitative parameters
such as the transition temperature, the heat capacity leap, the
critical current, the critical magnetic field, and the isotope
shift, one should study the gap equation and the carrier con-
centration equation along with the corresponding formulas
for the thermodynamic potential, the critical fields, the con-
centration of superconducting carriers, and so forth [3–11].

Employing the gap equation with a fixed chemical poten-
tial equal to the Fermi energy, in theoretical studies of BCS-
type superconducting systems at subcritical temperatures,
Abrikosov andMaki have suggested to apply an expansion in
the integral equation and restrict it to the first-order terms.
The calculated integral allowed them to estimate the solution
of the first boundary value problem for the gap of a BCS
superconductor as a function of the temperature [12–14].

Contemporary studies focus, however, more on super-
conducting materials of the new generation. These include
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high-𝑇
𝑐
copper-oxide quasi two-dimensional superconduct-

ing systems and various doped superconducting compounds
such as spinel- and perovskite-type structures of supercon-
ducting compounds of a trivalent rare-earth and a divalent
alkali-earth ion. Other classes of superconducting materials
that have been actively studied in recent years include novel
superconducting compounds of MgB

2
with a C, Al, or Sc

substitution, or organic superconductors with a controlled
bandwidth and band filling [7, 11, 15–22].Theoretical descrip-
tion of such superconducting systems requires to take into
account spin-fluctuations or strong-correlation effects. These
can be included by means of an effective Hamiltonian in
the strongly interacting Hubbard model with a given (multi-
band) one-particle dispersion relation enriched by self-
energy corrections, as well as a quite general form of the
pairing potential. The latter can be decomposed into an anti-
symmetric and a symmetric part determining the symmetry
of the order parameter [23–30].

In order to address the above problems in a systematic
analytical manner, we propose to apply the conformal trans-
formation, which allows us to consider a superconducting
systemasmapped onto a Fermi liquid in an isotropicmomen-
tum space with a naturally introduced function of the density
of states [23]. In further discussion, a series expansion of
fundamental integrals emerging in the formalismproves to be
a powerful tool. In the present paper, we derive formulas for
some infinite families of integrals, which allow us to construct
such series up to an arbitrary order. We emphasize that until
now only few of such integrals were given [12–14, 31–33].

2. Employed Formalism

Employing the Green function formalism, with the effects
of an external magnetic field included, one can derive a set
of two fundamental equations in the momentum space, con-
sistent with the mean-field approximation. One of these
equations is the gap equation [5, 7, 19–21, 32, 34]:

Δk = ∑
k󸀠
𝑉(k, k󸀠) Δk󸀠

2𝐸k󸀠
(tanh

𝐸k󸀠 + 𝑚k (𝜕𝜖k󸀠/𝜕k󸀠)
2𝑇

+ tanh
𝐸k󸀠 − 𝑚k (𝜕𝜖k󸀠/𝜕k󸀠)

2𝑇
) ,

(1)

where 𝐸k = √(𝜖k − 𝜇)
2
+ Δ

2
k and k = ∇𝜑 − (𝑒/𝑚)A is the

superflow, with 𝜑 being the phase of the order parameter
and A is the vector potential. The other one is the carrier
concentration equation:

𝑛 =

1
𝑁

∑

k
[1−

𝜖k − 𝜇

2𝐸k
(tanh

𝐸k + 𝑚k (𝜕𝜖k/𝜕k)
2𝑇

+ tanh
𝐸k − 𝑚k (𝜕𝜖k/𝜕k)

2𝑇
)] ,

(2)

which determines the chemical potential 𝜇. This equation
allows one to express 𝜇 in (1) in dependence on 𝑛 and

study some superconducting systems with a partially filled
conduction band.Thedispersion relation entering both equa-
tions is usually defined with respect to the Fermi level.

In the BCS theory, which was greatly successful in
explaining various properties of simple low-𝑇

𝑐
supercon-

ductors by means of several experimental parameters, an
electron system is treated as a Fermi liquid. However, high-
𝑇
𝑐
materials are complicated, and many fundamental con-

densed matter physics phenomena play some role in one
or another part of their phase diagram. The normal state
near the composition corresponding to the highest 𝑇

𝑐
shows

a convincing evidence of being a more composed form
of a quantum liquid than the Fermi liquid and should be
considered as a non-Fermi liquid. In a wide class of non-
Fermi liquids presented in [35] as applicable to modeling of
superconducting systems, for some of them, a singular (or
marginal) Fermi-liquid behavior is observed in the under-
doped (low carrier concentration) regime, whereas the other
ones exhibit it in the overdoped (high carrier concentration)
regime, near to the optimally doped structure.Therefore, low-
𝑇
𝑐
superconductors and overdoped high-𝑇

𝑐
cuprate super-

conductors, described by an effective Hamiltonian with a
nonlinear dispersion relation 𝜖k, can be discussed in terms of
the Fermi liquid after applying a conformal transformation of
the momentum space.

In general, such an approach can be applied to anisotropic
superconducting systems with an arbitrary dispersion rela-
tion for spin-singlet 𝑠-wave or 𝑑-wave symmetry states, as
well as for the spin-triplet𝑝-wave symmetry state, with a fixed
carrier concentration. It also allows one to include the effects
induced by variations of the carrier concentration 𝑛, and the
pairing potential amplitudes in both the isotropic and the
anisotropic channel, in order to discuss the stability of these
symmetry states [5, 20, 27, 33–36].

Studies of the pairing potential seem to be particularly
interesting and valuable, since a definite pairing mechanism
in high-𝑇

𝑐
superconducting systems has not been clearly

identified yet. However, in the literature, twomechanisms are
usually discussed [26]. The first one is based on the single-
band Hubbard model (or related models, such as the 𝑡-𝐽
model) whereas in the other one it is suggested that the
role of the electron-phonon interaction is crucial. Quanti-
tative analysis of the pairing interaction in superconducting
systems could therefore provide useful insights into the
mechanism of Cooper pairs formation in superconducting
systems of the new generation [7, 33]. In our approach, we
have introduced the pairing potential amplitude in the form
𝑉(k, k󸀠). Nevertheless, one should remember that−𝑉(k, k󸀠) is
the momentum-dependent part of the full pairing potential,
which is an antisymmetric matrix-function defined in the
momentum-spin space.This function is obtained as a result of
the Fourier transform of an effective two-particle interaction
potential including all many-body effects, and ensuring the
spin conservation law [36]. Hence, −𝑉(k, k󸀠) is a symmetric
function of k and k󸀠, and in order to generate attraction
needed to form a paired state in the system, this function
must be negative. In the formulated approaches (cf. [4, 5, 14,
26]), the function −𝑉(k, k󸀠) becomes negative and represents
the introduced pairing potential amplitude 𝑉(k, k󸀠) only in
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a small region of the momentum space near to the Fermi
surface, and so (for a spin-singlet 𝑠-wave state) it can be
consider as constant.

2.1. Integrals of the Fundamental Equations for v = 0. It is
worth to emphasize once again that the conformal transfor-
mationmethod [7, 23, 37] proves that an arbitrary anisotropic
system, with a given one-particle energy spectrum, can be
considered as an isotropic Fermi liquid in the momentum
space. However, it needs then to be taken into account
that quantum-mechanical states are not distributed homo-
geneously. The distribution is defined by a scalar field of the
density of states, which for a fixed spin-singlet 𝑠-wave state,
with a given carrier concentration 𝑛 and a pairing potential
amplitude 𝑉0, reduces to the density of states function.
Therefore, by applying the conformal transformationmethod
to an anisotropic superconductor with a given dispersion
relation, one can map quasiparticle excitations onto Landau
quasiparticles and consider the system as a Fermi liquid
with a fluctuating density of states. Then, (1), after taking
into account (2) in the manner discussed above, can be
transformed to the form:

1
]0𝑔

= ⟨∫

𝜖
𝑝

0

𝑑𝜉𝑁 (𝜉)

2√𝜉2 + Δ2
(tanh

√𝜉
2
+ Δ

2
+ kk

2𝑇

+ tanh
√𝜉

2
+ Δ

2
− kk

2𝑇
)⟩ ,

(3)

where ⟨⋅ ⋅ ⋅ ⟩ denotes averaging over the angles in the scalar
product ̂kk̂ and k = ̂k𝑘

𝐹
and k = k̂V. Here,𝑁(𝜉) is the dimen-

sionless density of states function, and it is found from the
given dispersion relation inherent to the studied anisotropic
superconducting system. More precisely, it appears as the
final product in the conformal transformation approach and
can also include effects of the particle-hole asymmetry and an
extra factor, as, for example, the spectral function defined in
the Eliashberg equations. Since for the BCS model 𝑁(𝜉) =
1, we take it in the form 𝑁(𝜉) = 1 + 𝜌(𝜉) in further
discussion. According to previous studies [38], the function
𝜌 can substantially change various parameters of a supercon-
ducting system.The effects are particularly pronounced if the
function has one narrow fluctuation (peak) in the vicinity of
the Fermi surface. Moreover, peaks of various shapes yield
similar results. Therefore, at this point, we do not need to
consider any particular analytical properties of the function
𝜌, treating it as a locally constant function.

In the next step, introducing the symbols 𝑥 = 𝜉/2𝑇, 𝐷 =
Δ/2𝑇, 𝑥

𝑝
= 𝜉
𝑝
/2𝑇, and 𝑤 = 𝑘

𝐹
V/2𝑇, (3) can be rewritten as

1
]0𝑔

= ⟨∫

𝑥
𝑝

0

𝑑𝑥 [1 + 󰜚 (𝑥)]
2√𝑥2 + 𝐷2

[tanh (√𝑥2 + 𝐷2
+𝑤
̂kk̂)

+ tanh (√𝑥2 + 𝐷2
−𝑤
̂kk̂)]⟩ ,

(4)

where the function 𝜌(𝜉) is redefined into 󰜚(𝑥), which can be
again modeled in various manners. The factor (]0𝑔)

−1 can be

eliminated by employing (4) in the limit cases 𝑇 = 𝑇
𝑐
and

𝐷 = 0.
In order to obtain the full representation of the gap equa-

tion of the Abrikosov-Maki type when 𝑤 = 0, we note that

tanh√𝑥2 + 𝐷2

√𝑥
2
+ 𝐷

2
=

tanh𝑥
𝑥

+

∞

∑

𝑙=1

1
𝑙!2𝑙
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙 tanh𝑥
𝑥

𝐷
2𝑙
,

(5)

where the differential operator should be read as

(

1
𝑥

𝑑

𝑑𝑥

)

𝑙

=

1
𝑥

𝑑

𝑑𝑥

⋅ ⋅ ⋅

1
𝑥

𝑑

𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑙

. (6)

Hence, for further calculation, we define the integrals

𝐻
𝑙
= ∫

∞

0
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙 tanh𝑥
𝑥

𝑑𝑥, (7)

where for 𝑙 ≥ 1 we can replace 𝑥
𝑝
by∞. Substituting 𝑥 = 𝑠𝑦,

differentiating by 𝑠, and putting 𝑠 = 1, we find that

𝐻
𝑙
=

1
2𝑙
∫

∞

0
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙

cosh−2𝑥 𝑑𝑥. (8)

Let us now define an extended form of𝐻
𝑙
which will become

useful in our discussion later on:

𝐺
𝑙
(𝑛) = ∫

∞

0
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙

cosh−2𝑛𝑥𝑑𝑥; (9)

so𝐺
𝑙
(1) = 2𝑙𝐻

𝑙
. After applying the differential operator in the

integral 𝐺
𝑙
(𝑛) once, then substituting 𝑥 = 𝑠𝑦, differentiating

by 𝑠, putting 𝑠 = 1, and completing some algebra, we arrive at
the following recursive formula:

(𝑙 − 1) 𝐺
𝑙
(𝑛) = 2𝑛2𝐺

𝑙−1 (𝑛) − 𝑛 (2𝑛 + 1) 𝐺𝑙−1 (𝑛 + 1) . (10)

Note that substituting 𝑙 = 1 into the obtained formula (10),
we get

𝐺0 (𝑛 + 1) =
2𝑛

2𝑛 + 1
𝐺0 (𝑛) , (11)

and taking into account that 𝐺0(1) = 1, we find

𝐺0 (𝑛) =
2𝑛−1 (𝑛 − 1)!
(2𝑛 − 1)!!

. (12)

In order to calculate 𝐺1(𝑛), after integrating by parts, it can
be transformed into the form:

𝐺1 (𝑛) = ∫
∞

0
ln𝑥 𝑑

2

𝑑𝑥
2 cosh

−2𝑛

𝑥𝑑𝑥, (13)

from which in turn, after some algebra, we obtain

𝐺1 (𝑛) = 2𝑛 (2𝑛 + 1) 𝐼
𝑛+1 − 4𝑛

2
𝐼
𝑛
. (14)
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Here, the symbol 𝐼
𝑛
denotes the integral

𝐼
𝑛
= ∫

∞

0
ln𝑥 cosh−2𝑛𝑥 𝑑𝑥 (15)

calculated in [39] and reported in the appendix.
Eventually, employing the relation (A.19), formula (14)

reduces to the form:

𝐺1 (𝑛) =
4𝑛

(2𝑛 − 1)!
[𝑛

2
𝑆 (𝑛) − 𝑆 (𝑛 + 1)] , (16)

from which it is easy to find

𝐺1 (1) = − 14
𝜁 (3)
𝜋
2 ,

𝐺1 (2) = −
28
3
𝜁 (3)
𝜋
2 − 124

𝜁 (5)
𝜋
4 ,

𝐺1 (3) = −
112
15
𝜁 (3)
𝜋
2 − 124

𝜁 (5)
𝜋
4 − 762

𝜁 (7)
𝜋
6 ,

𝐺1 (4) = −
32
5
𝜁 (3)
𝜋
2 −

1736
15
𝜁 (5)
𝜋
4 − 1016

𝜁 (7)
𝜋
6

− 4088𝜁 (9)
𝜋
8 .

(17)

The obtained formulas (10), (16), and (A.20) allow us to eval-
uate 𝐺

𝑙
(𝑛), for 𝑙 ≥ 1, and eventually find

𝐺
𝑙
(𝑛) =

2𝑙−1

(𝑙 − 1)!
4𝑛

(2𝑛 − 1)!

𝑙

∑

𝑗=0
(−1)𝑗 𝐵

𝑗
(𝑙, 𝑛) 𝑆 (𝑛 + 𝑗) , (18)

where

𝐵
𝑗
(𝑙, 𝑛) = ∑

𝑛≤𝑖1≤𝑖2 ⋅⋅⋅≤𝑖𝑛−𝑗−1≤𝑛+𝑗

𝑖
2
1𝑖
2
2 ⋅ ⋅ ⋅ 𝑖

2
𝑙−𝑗
, (19)

for 𝑗 = 0, 1, . . . , 𝑙 − 1 and 𝐵
𝑙
(𝑙, 𝑛) = 1. Hence, in particular, for

𝑙 = 2, we have

𝐺2 (𝑛) =
2 ⋅ 4𝑛

(2𝑛 − 1)!
{𝑛

4
𝑆 (𝑛)

− [𝑛
2
+ (𝑛 + 1)2] 𝑆 (𝑛 + 1) + 𝑆 (𝑛 + 2)} ,

(20)

and, consistently, for 𝑛 = 1, 2, and 3, their explicit forms read

𝐺2 (1) = 372𝜁 (5)
𝜋
4 ,

𝐺2 (2) = 248𝜁 (5)
𝜋
4 + 7620

𝜁 (7)
𝜋
6 ,

𝐺2 (3) =
992
5
𝜁 (5)
𝜋
4 + 7620

𝜁 (7)
𝜋
6 + 85848

𝜁 (9)
𝜋
8 .

(21)

Furthermore, for 𝑙 = 3,

𝐺3 (𝑛) =
2 ⋅ 4𝑛

(2𝑛 − 1)!
{𝑛

6
𝑆 (𝑛)

− [𝑛
4
+ 𝑛

2
(𝑛 + 1)2 + (𝑛 + 1)4] 𝑆 (𝑛 + 1)

+ [𝑛
2
+ (𝑛 + 1)2 + (𝑛 + 2)2] 𝑆 (𝑛 + 2) − 𝑆 (𝑛 + 3)} ,

(22)

which for 𝑛 = 1 and 2 yields

𝐺3 (1) = − 11430
𝜁 (7)
𝜋
6 ,

𝐺3 (2) = − 7620
𝜁 (7)
𝜋
6 − 429240

𝜁 (9)
𝜋
8 .

(23)

Note also that 𝑆(𝑚) can be written in the form:

𝑆 (𝑚) = [(𝑚− 1)!]2 𝐼1 −
(2𝑚 − 1)!
4𝑚−1

𝐼
𝑚
, (24)

and hence the integrals 𝐺
𝑙
(𝑛) are expressed by means of a

linear combination of 𝐼
𝑚
, where 𝑛 ≤ 𝑚 ≤ 𝑛 + 𝑙, and 𝐼1.

Since for the formulated problem, we have to find the
integrals 𝐻

𝑙
and 𝐻

𝑙
= (1/2𝑙)𝐺

𝑙
(1); below we focus on 𝐺

𝑙
(1),

solely. Employing (18), (A.10), and (A.19), after some algebra,
we find

𝐺
𝑙
(1) = (−1)𝑙 (2𝑙)!

(𝑙 − 1)!
(22𝑙+1 − 1)

2𝑙−1
𝜁 (2𝑙 + 1)
𝜋
2𝑙 , (25)

and hence

𝐻
𝑙
= (−1)𝑙 (2𝑙 − 1) !! (22𝑙+1 − 1) 𝜁 (2𝑙 + 1)

𝜋
2𝑙 . (26)

In particular,

𝐻1 = − 7
𝜁 (3)
𝜋
2 ,

𝐻2 = 93𝜁 (5)
𝜋
4 ,

𝐻3 = − 1905
𝜁 (7)
𝜋
6 ,

𝐻4 = 53655𝜁 (9)
𝜋
8 .

(27)

Now, restricting the discussion to the case of 󰜚(𝑥) ≡ 0, we
can rewrite (4) in the form (cf. [14]):

ln 𝑇
𝑇
𝑐

=

∞

∑

𝑙=1
(−1)𝑙 (2𝑙 − 1)!!

2𝑙𝑙!
(2− 2−2𝑙) 𝜁 (2𝑙 + 1)

𝜋
2𝑙 (

Δ

𝑇

)

2𝑙
,

(28)

where we include that, for 𝑇 = 𝑇
𝑐
, the gap function Δ = 0

and we also assume that tanh (𝜉
𝑝
/2𝑇) can be replaced by 1

in this limit. The obtained equation allows one to find the
superconducting gap Δ as a function of the temperature 𝑇
using the method of successive approximations. So, neglect-
ing all terms with 𝑙 ≥ 2 in the sum, one gets the solution
of the first boundary value problem for (28). Taking it as the
first approximation and including the next terms in (28), one
can obtain solutions in the subsequent approximations. For
example, in the third step, we find

Δ (𝑇) = 3.063𝑇
𝑐
(1− 𝑇

𝑇
𝑐

)

1/2

− 1.254𝑇
𝑐
(1− 𝑇

𝑇
𝑐

)

3/2

+ 1.454𝑇
𝑐
(1− 𝑇

𝑇
𝑐

)

5/2

,

(29)
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where it is always taken into account that 𝑇 is close to 𝑇
𝑐
and

should be expressed as 𝑇 = 𝑇
𝑐
[1 − (1 − 𝑇/𝑇

𝑐
)]. Moreover,

using relations established in [40], we can derive the reduced
specific heat difference in the form:

Δ𝐶 (𝑇)

𝐶
𝑁
(𝑇
𝑐
)

= 1.426− 2.802(1− 𝑇
𝑇
𝑐

)

+ 5.948(1− 𝑇
𝑇
𝑐

)

2
.

(30)

This allows us to find that, at𝑇 = 𝑇
𝑐
, the reduced specific heat

jump is equal to 1.462, whereas the slope of the tangent line
to the reduced specific heat difference curve is

[

𝑑

𝑑 (𝑇/𝑇
𝑐
)

Δ𝐶 (𝑇)

𝐶
𝑁
(𝑇
𝑐
)

]

𝑇=𝑇
𝑐

= tan 1.228, (31)

which corresponds to the angle of 70.4∘.
Note that the sum (28) is an oscillating power series,

whose coefficients for 𝑙 → ∞ tend to 0 as 𝜋−2𝑙. Thus, the
expression (28) converges if 𝑇 > Δ/𝜋, and then the resulting
sequence converges, yielding a solution to the problem.

2.2. Integrals of the Fundamental Equations for v ̸= 0.
In developed models of superconductors, some additional
parameters, such as a supercurrent or an external magnetic
field, are included. In that case, one should also consider other
expressions describing the superconducting current and the
current of normal particles, the free energy difference, the
entropy, and the magnetic susceptibility. These expressions
allow one to derive a number of quantitative thermodynamic
characteristics of the system such as the transition temper-
ature, the isotope shift, the specific heat jump, the critical
current, the critical superflow, the London penetration depth,
the critical magnetic field, and other quantities important
in characterization of superconducting systems [7, 11, 20].
Note that the integrand in the gap equation (4)—as well as
in other expressionsmentioned above—can be expanded in a
double series, with respect to𝐷2 and the additional parameter
(𝑤
̂kk̂)2. For the integrand in the gap equation, it takes the

form:

tanh (√𝑥2 + 𝐷2
+ 𝑤
̂kk̂) + tanh (√𝑥2 + 𝐷2

− 𝑤
̂kk̂)

2√𝑥2 + 𝐷2

=

tanh𝑥
𝑥

+

∞

∑

𝑙=1

1
𝑙!2𝑙
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙 tanh𝑥
𝑥

𝐷
2𝑙
+

∞

∑

𝑙=1

1
(2𝑙)!

⋅

𝑙−1
∑

𝑘=0
(

2𝑙
2𝑘 + 2

)

1
22(𝑙−𝑘−1)

(

1
𝑥

𝑑

𝑑𝑥

)

2(𝑙−𝑘−1)
𝑑
2𝑘+1

𝑑𝑥
2𝑘+1

⋅ tanh𝑥𝐷4(𝑙−𝑘−1)
(𝑤
̂kk̂)

2(𝑘+1)
+

∞

∑

𝑙=1

1
(2𝑙 + 1)!

⋅

𝑙−1
∑

𝑘=0
(

2𝑙 + 1
2𝑘 + 2

)

1
22(𝑙−𝑘)−1

(

1
𝑥

𝑑

𝑑𝑥

)

2(𝑙−𝑘)−1
𝑑
2𝑘+1

𝑑𝑥
2𝑘+1

⋅ tanh𝑥𝐷2(2𝑙−2𝑘−1)
(𝑤
̂kk̂)

2(𝑘+1)
.

(32)

Hence, there appear some new specific integrals, which can
be represented as

𝐿
𝑙
(𝑘) = ∫

∞

0
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙

𝑑
2𝑘+1

𝑑𝑥
2𝑘+1 tanh𝑥𝑑𝑥 (33)

and rewritten in the equivalent form

𝐿
𝑙
(𝑘) = ∫

∞

0
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙

𝑑
2𝑘

𝑑𝑥
2𝑘 cosh

−2

𝑥 𝑑𝑥. (34)

However, in order to evaluate such integrals, we yet define
their extended forms:

𝑀
𝑙
(𝑘, 𝑛) = ∫

∞

0
(

1
𝑥

𝑑

𝑑𝑥

)

𝑙

𝑑
2𝑘

𝑑𝑥
2𝑘 cosh

−2𝑛

𝑥 𝑑𝑥, (35)

so that 𝐿
𝑙
(𝑘) = 𝑀

𝑙
(𝑘, 1). Now, use the following relations for

even-order derivatives of cosh−2𝑛𝑥, that is,

𝑑
2𝑘

𝑑𝑥
2𝑘 cosh

−2𝑛

𝑥

=

𝑘

∑

𝑗=0
(−1)𝑗 22(𝑘−𝑗)𝐶

𝑗
(𝑘, 𝑛)𝐷 (𝑗, 𝑛) cosh−2(𝑛+𝑗)𝑥,

(36)

where

𝐶
𝑗
(𝑘, 𝑛) = ∑

𝑛≤𝑖1≤𝑖2 ⋅⋅⋅≤𝑖𝑘−𝑗≤𝑛+𝑗

𝑖
2
1𝑖
2
2 ⋅ ⋅ ⋅ 𝑖

2
𝑘−𝑗
, (37)

for 𝑗 = 0, 1, . . . , 𝑘 − 1 and 𝐶
𝑘
(𝑘, 𝑛) = 1, and

𝐷(𝑗, 𝑛) =

𝑗−1

∏

𝑖=0
2 (𝑛 + 𝑖) [2 (𝑛 + 𝑖) + 1] , (38)

for 𝑗 = 1, 2, . . . , 𝑘 and 𝐷(0, 𝑛) = 1. Note that 𝐶0(𝑘, 𝑛) = 𝑛
2𝑘,

and

𝐶
𝑘−1 (𝑘, 𝑛) =

1
6
[(𝑛 + 𝑘 − 1) (𝑛 + 𝑘) (2𝑛 + 2𝑘 − 1)

− (𝑛 − 1) 𝑛 (2𝑛 − 1)] ,
(39)

and including (9), we eventually find that

𝑀
𝑙
(𝑘, 𝑛)

=

𝑘

∑

𝑗=0
(−1)𝑗 22(𝑘−𝑗)𝐶

𝑗
(𝑘, 𝑛)𝐷 (𝑗, 𝑛) 𝐺

𝑙
(𝑛 + 𝑗) ,

(40)
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and hence putting 𝑛 = 1, we obtain

𝐿
𝑙
(𝑘) =

𝑘

∑

𝑗=0
(−1)𝑗 22(𝑘−𝑗)𝐶

𝑗
(𝑘, 1) 𝐷 (𝑗, 1) 𝐺

𝑙
(1+ 𝑗) , (41)

where the integrals 𝐺
𝑙
(𝑛) are expressed by means of formula

(18), and, for example,

𝐿1 (2) = 48𝐻3,

𝐿2 (1) = 24𝐻3,

𝐿
𝑙
(0) = 𝐺

𝑙
(1) = 2𝑙𝐻

𝑙
,

(42)

for 𝑙 ≥ 1 and 𝐿0(0) = 𝐺0(1). Note also that

⟨(
̂kk̂)

2𝑝
⟩ =

{
{
{
{

{
{
{
{

{

1
22𝑝
(

2𝑝

𝑝

) for 2D systems

1
2𝑝 + 1

for 3D systems
(43)

and such averages vanish for odd exponents.

3. Conclusions

In the present paper, we have found and discussed some
infinite families of specific integrals inherent in models of
superconducting systems. The results presented here can be
easily applied in analytical studies on superconductors of
the new generation, since the gap equation and the carrier
concentration equation along with the other particular equa-
tions mentioned in the paper are important tools in research
of thermodynamic properties of superconductors. They are
commonly used to derive fundamental quantitative charac-
teristics for various classes of superconducting systems.

In order to apply the results presented in the paper to
superconductors of the new generation studied within the
conformal transformation method [7], it is enough to take
into account amodel form of the function 󰜚(𝑥)—which so far
has been treated as constant—in a local interval around𝑥 = 0,
where the integrands in the formulas under discussion are
strongly concentrated. The model function should possess a
narrow fluctuation (peak) in the vicinity of the Fermi surface.
Since various particular shapes of the fluctuation produce
similar results, we propose to take the function 󰜚(𝑥) in the
following normalized form:

󰜚 (𝑥) = 𝜒

(2𝑝 − 1)!!
2𝑝−1 (𝑝 − 1)!

cosh−2𝑝𝑥, (44)

wherewe also include (12).Thefixed parameter𝜒 is the height
of the local fluctuation, whereas 𝜂 = 2 arccosh( 2𝑛

√2) denotes
its half-width. These should be estimated in accordance with
a given form of the dispersion relation 𝜖k (cf. [7, 38]). Subse-
quently, the form of fluctuation [1 + 󰜚(𝑥)] can be substituted
into all integrals 𝐺

𝑙
(𝑛) and𝑀

𝑙
(𝑘, 𝑛). Because of the function

󰜚(𝑥) ∝ cosh−2𝑝𝑥 there appear some extra integrals 𝐺
𝑙
(𝑛 + 𝑝)

and 𝑀
𝑙
(𝑘, 𝑛 + 𝑝) in the equations under consideration. In

such a way, the proposed form of 󰜚(𝑥) allows us to employ

the derived integrals to calculate thermodynamic parameters
of composed superconductors [3, 4, 6, 8–10, 12, 14, 21].

Let us also emphasize that although the case 𝑤 = 0
corresponds to the Van Hove Scenario, the case 𝑤 > 0 can be
properly discussed in the conformal transformation method
only [7, 21–23, 30]. One should then include additional
functions 󰜚2𝑖(𝑥), for 𝑖 = 1, 2, . . ., where 󰜚0(𝑥) ≡ 󰜚(𝑥), which
appear after averaging the dimensionless kernel of the density
of states with (̂kk̂)2𝑖 over the angles and can be modeled
similarly to 󰜚(𝑥).

Appendix

The Integral 𝐼
𝑛

As we have shown in [39], the formula for the family of inte-
grals

𝐼
𝑛
= ∫

∞

0
ln𝑥 cosh−2𝑛𝑥 𝑑𝑥, (A.1)

for 𝑛 ∈N, can be derived by analytical calculations. In order
to calculate 𝐼

𝑛
, we introduce the integrals:

𝐽
𝑛
(𝑠) = ∫

∞

0
𝑓
𝑛
(𝑠, 𝑢) 𝑑𝑢, (A.2)

where

𝑓
𝑛
(𝑠, 𝑢) = 𝑢

𝑠cosh−2𝑛𝑢 (A.3)

and 𝑠 is a complex number such that Re 𝑠 > −1.Then, for each
𝑛 ∈N, the function 𝑓

𝑛
(𝑠, 𝑢) is a continuous function of 𝑠 and

𝑢, where 𝑠 ranges over the region D = {𝑠 : Re 𝑠 > −1} and
𝑢 ∈ [𝑎, 𝐴], for all 0 < 𝑎 < 𝐴 < ∞. Moreover, for every value
of 𝑢 ∈ [𝑎, 𝐴], the function 𝑓

𝑛
(𝑠, 𝑢) is an analytic function of

𝑠 ∈ D, and finally the integral 𝐽
𝑛
(𝑠), for all 𝑛 ∈ N, is almost

uniformly convergent in the domainD. Therefore, 𝐽
𝑛
(𝑠) is an

analytic function of 𝑠 ∈ D and one can differentiate under
the integral sign [41]:

𝐽
󸀠

𝑛
(𝑠) = ∫

∞

0

𝜕𝑓
𝑛
(𝑠, 𝑢)

𝜕𝑠

𝑑𝑢. (A.4)

In particular, it yields

𝐼
𝑛
= 𝐽
󸀠

𝑛
(0) . (A.5)

Let us first derive a formula for 𝐽
𝑛
(𝑠). Using a series expansion

of 𝑓
𝑛
(𝑠, 𝑢), for 𝑢 > 0, we obtain

𝑓
𝑛
(𝑠, 𝑢) = 4𝑛

∞

∑

𝑘=0
(−1)𝑘 (

2𝑛 + 𝑘 − 1
𝑘

)𝑢
𝑠

𝑒
−2𝑢(𝑛+𝑘)

, (A.6)

which, after changing the summation index 𝑘 to 𝑚 = 𝑛 + 𝑘
and using the formula

(𝑛 + 𝑚 − 1)!
(𝑚 − 𝑛)!

= (𝑚
2
− (𝑛 − 1)2) (𝑚2

− (𝑛 − 2)2) ⋅ ⋅ ⋅ (𝑚2
− 1)𝑚,

(A.7)
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transforms into

𝑓
𝑛
(𝑠, 𝑢) =

4𝑛

(2𝑛 − 1)!

∞

∑

𝑘=0
(−1)𝑚+𝑛 (𝑚2

− (𝑛 − 1)2)

⋅ (𝑚
2
− (𝑛 − 2)2) ⋅ ⋅ ⋅ (𝑚2

− 1)𝑚𝑢𝑠𝑒−2𝑢𝑚,

(A.8)

where the summation can be extended to 𝑚 running from 1
to∞ since for 𝑚 = 1, . . . , 𝑛 − 1 we obtain zero terms. If Re 𝑠
is sufficiently large, we can integrate the series term-by-term
to get

𝐽
𝑛
(𝑠) =

4𝑛

(2𝑛 − 1)!

∞

∑

𝑘=0
(−1)𝑚+𝑛 (𝑚2

− (𝑛 − 1)2)

⋅ (𝑚
2
− (𝑛 − 2)2) ⋅ ⋅ ⋅ (𝑚2

− 1)𝑚∫
∞

0
𝑢
𝑠

𝑒
−2𝑢𝑚
𝑑𝑢

=

4𝑛

(2𝑛 − 1)!

∞

∑

𝑘=0
(−1)𝑚+𝑛 (𝑚2

− (𝑛 − 1)2)

⋅ (𝑚
2
− (𝑛 − 2)2) ⋅ ⋅ ⋅ (𝑚2

− 1) 1
(2𝑚)𝑠

Γ (𝑠 + 1) ,

(A.9)

where the change of variables 2𝑢𝑚 = 𝑥 in the integrals has
been performed.

The precise argument which allows term-by-term inte-
gration goes as follows. First, we note that term-by-term
integration of the series (A.8) is justified for the integration
from 𝑎 to 𝐴, where 0 < 𝑎 < 𝐴 < ∞ since the series
(A.8) is uniformly convergent for 𝑢 ∈ [𝑎, 𝐴] and any 𝑠 ∈
D. This allows us to integrate (A.8) term-by-term also over
the interval (0,∞) provided the right-hand side of (A.9)
converges absolutely [41]. It is the case in the half-plane Re 𝑠 >
2𝑛−1, and hence in that half-plane the formula (A.9) is valid.

In order to find the coefficients standing by the same
power of𝑚 in (A.9), let us introduce

𝐴
𝑗
(𝑛) = ∑

1≤𝑖1<𝑖2 ⋅⋅⋅<𝑖𝑛−𝑗−1≤𝑛−1
𝑖
2
1𝑖
2
2 ⋅ ⋅ ⋅ 𝑖

2
𝑛−𝑗−1, (A.10)

for 𝑗 = 0, 1, . . . , 𝑛 − 2 and 𝐴
𝑛−1(𝑛) = 1. Thus, in particular,

𝐴0 (𝑛) = [(𝑛 − 1)!]
2
,

𝐴
𝑛−2 (𝑛) =

1
6
(𝑛 − 1) 𝑛 (2𝑛 − 1) .

(A.11)

For example,

𝐴1 (3) = 3,

𝐴1 (4) = 49,

𝐴2 (4) = 14,

𝐴1 (5) = 820,

𝐴2 (5) = 273,

𝐴3 (5) = 30,

𝐴1 (6) = 21076,

𝐴2 (6) = 7645,

𝐴3 (6) = 1023,

𝐴4 (6) = 55.
(A.12)

Now using (A.10) and the formula
∞

∑

𝑚=0
(−1)𝑚−1𝑚−(𝑠−2𝑗)

= (1− 21+2𝑗−𝑠) 𝜁 (𝑠 − 2𝑗) 2−𝑠Γ (𝑠 + 1) ,

(A.13)

for Re 𝑠 > 2𝑛−2, where 𝜁 is the Riemann 𝜁-function, we arrive
at

𝐽
𝑛
(𝑠) =

4𝑛

2 (2𝑛 − 1)!

∞

∑

𝑗=0
(−1)𝑗 𝐴

𝑗
(𝑛) (1− 21+2𝑗−𝑠)

⋅ 𝜁 (𝑠 − 2𝑗) 2−𝑠Γ (𝑠 + 1) .

(A.14)

By analytic continuation, this formula holds for all 𝑠 ∈ D and
in fact yields the analytic continuation of 𝐽

𝑛
(𝑠) even to the left

of the half-plane Re 𝑠 > −1 with poles at 𝑠 = −1, −2, −3, . . ..
Recall that 𝜁(−2𝑗) = 0, for 𝑗 = 1, 2, . . ., 𝜁(0) = −1/2, and

Γ(1) = 1. Differentiating (A.14) and then putting 𝑠 = 0, we
obtain

𝐼
𝑛
=

4𝑛 [(𝑛 − 1)!]2

(2𝑛 − 1)!
[

𝑑

𝑑𝑠

2−𝑠 (1− 21−𝑠) Γ (𝑠 + 1)

⋅ 𝜁 (𝑠)]

𝑠=0
+

4𝑛

2 (2𝑛 − 1)!

𝑛−1
∑

𝑗=1
(−1)𝑗 𝐴

𝑗
(𝑛) (1

− 21+2𝑗) 𝜁󸀠 (−2𝑗) .

(A.15)

Next, using the Riemann functional equation [31, 42]

Γ (

𝑠

2
) 𝜁 (𝑠) = 𝜋

(1/2)(𝑠−1)
Γ (

1 − 𝑠
2
) 𝜁 (1− 𝑠) , (A.16)

we arrive at the formula

𝜁
󸀠

(−2𝑗) =
(−1)𝑗 (2𝑗)!
2 (2𝜋)2𝑗

𝜁 (2𝑗 + 1) . (A.17)

Now, using formula (A.17) and formulas

Γ
󸀠

(1) = −𝐶,

𝜁
󸀠

(0) = − 1
2
ln (2𝜋) ,

(A.18)

where 𝐶 is the Euler constant (𝐶 = 0.577215 . . .), we finally
obtain

𝐼
𝑛
= −

4𝑛−1 [(𝑛 − 1)!]2

(2𝑛 − 1)!
ln 4𝑒𝐶

𝜋

−

4𝑛−1

(2𝑛 − 1)!
𝑆 (𝑛) , (A.19)

𝑆 (𝑛) =

𝑛−1
∑

𝑗=1
𝐴
𝑗
(𝑛)

(22𝑗+1 − 1) (2𝑗)!

(2𝜋)2𝑗
𝜁 (2𝑗 + 1) , (A.20)
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with 𝑆(1) = 0. Consistently, we can find 𝐼
𝑛
in particular cases,

and for 𝑛 = 1 we have

𝐼1 = − ln
4𝑒𝐶

𝜋

, (A.21)

in agreement with other results [3–5, 12, 14, 15, 31, 39, 43, 44].
Moreover, for subsequent 𝑛’s, we obtain

𝐼2 =
2
3
𝐼1 −

2
3
𝑆 (2) ,

𝐼3 =
8
15
𝐼1 −

2
15
𝑆 (3) ,

𝐼4 =
16
35
𝐼1 −

4
315
𝑆 (4) ,

𝐼5 =
128
315
𝐼1 −

2
2835

𝑆 (5) ,

(A.22)

where

𝑆 (2) = 7
2
𝜁 (3)
𝜋
2 ,

𝑆 (3) = 1
2
[35𝜁 (3)

𝜋
2 + 93

𝜁 (5)
𝜋
4 ] ,

𝑆 (4) = 1
4
[686𝜁 (3)

𝜋
2 + 2604

𝜁 (5)
𝜋
4 + 5715

𝜁 (7)
𝜋
6 ] ,

𝑆 (5) = 1
2
[5740𝜁 (3)

𝜋
2 + 25389

𝜁 (5)
𝜋
4 + 85725

𝜁 (7)
𝜋
6

+ 160965𝜁 (9)
𝜋
8 ] .

(A.23)

Moreover,

𝜁 (3) = 1.2020569032,

𝜁 (5) = 1.0369277551,

𝜁 (7) = 1.0083492774,

𝜁 (9) = 1.0020083928,

(A.24)

and 𝜁(𝑥) → 1, for 𝑥 → ∞, which can be exploited in
numerical estimations.
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