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Abstract

A derivation d : R → R is called cofinite if its image Im d is a subgroup of
finite index in the additive group R+ of an associative ring R. We characterize
left Artinian (respectively semiprime) rings with all non-zero inner derivations
to be cofinite.
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1. Introduction

Throughout this paper R will always be an associative ring with identity. A deriva-
tion d : R→ R is said to be cofinite if its image Im d is a subgroup of finite index in
the additive group R+ of R. Obviously, in a finite ring every derivation is cofinite.
As noted in [3], only a few results are known concerning images of derivations.

We study properties of rings with cofinite non-zero derivations and prove the
following

Proposition 1.1. Let R be a left Artinian ring. Then every non-zero inner derivation
of R is cofinite if and only if it satisfies one of the following conditions:

(1) R is finite ring;

(2) R is a commutative ring;

(3) R = F ⊕D is a ring direct sum of a finite commutative ring F and a skew
field D with cofinite non-zero inner derivations.

Annales Mathematicae et Informaticae
40 (2012) pp. 3–11
http://ami.ektf.hu

3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EKE Repository of Publications

https://core.ac.uk/display/187495261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Recall that a ring R with 1 is called semiprime if it does not contains non-zero
nilpotent ideals. A ring R with an identity in which every non-zero ideal has a
finite index is called residually finite (see [2] and [10]).

Theorem 1.2. Let R be a semiprime ring. Then all non-zero inner derivations
are cofinite in R if and only if it satisfies one of the following conditions:

(1) R is finite ring;

(2) R is a commutative ring;

(3) R = F ⊕B is a ring direct sum, where F is a finite commutative semiprime
ring and B is a residually finite domain generated by all commutators xa−ax,
where a, x ∈ B.

Throughout this paper for any ring R, Z(R) will always denote the center,
Z0 = Z0(R) the ideal generated by all central ideals of R, N(R) the set of all
nilpotent elements of R, DerR the set of all derivations of R, Im d = d(R) the
image and Ker d the kernel of d ∈ DerR, U(R) the unit group of R, |R : I| the
index of a subring I in the additive group R+, ∂x(a) = xa − ax = [x, a] the
commutator of a, x ∈ R and C(R) the commutator ideal of R (i.e., generated by
all [x, a]). If |R : I| <∞, then we say that I has a finite index in R.

Any unexplained terminology is standard as in [6], [4], [5], [8] and [11].

2. Some examples

We begin with some examples of derivations in associative rings.

Example 2.1. Let D be an infinite (skew) field,

A =

(
a 0
0 0

)
, X =

(
x y
z t

)
∈M2(D).

Then we obtain that

∂A(X) = AX −XA =

(
ax− xa ay
−za 0

)
,

and so the image Im ∂A has an infinite index in M2(D)+.

Recall that a ring R having no non-zero derivations is called differentially trivial
[1].

Example 2.2. Let F [X] be a commutative polynomial ring over a differentially
trivial field F . Assume that d is any derivation of F [X]. Then for every polynomial

f =
n∑

i=0

aiX
n−i ∈ F [X]
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we have

d(f) = (
n−1∑

i=0

(n− i)aiXn−i−1)d(X) ∈ d(X)F [X],

where d(X) is some element from F [X]. This means that the image Im d ⊆
d(X)F [X].

a) Let F be a field of characteristic 0. If we have

g =

(
m∑

i=0

biX
m−i

)
· d(X) ∈ d(X)F [X],

then the following system




(1 +m)d0 = b0,

md1 = b1,
...

2dm−1 = bm−1,

dm = bm,

has a solution in F , i.e., there exists such polynomial

h =

m+1∑

i=0

diX
m+1−i ∈ F [X],

that d(h) = g. This gives that Im d = d(X)F [X]. If d is non-zero, then the additive
quotient group

G = F [X]/d(X)F [X]

is infinite and every non-zero derivation d of a commutative Noetherian ring F [X]
is not cofinite.

b) Now assume that F has a prime characteristic p and d(X) = X. If Xpl −
Xps ∈ Im d for some positive integer l, s, where l > s, then

Xpl −Xps = d(t)

for some polynomial t = d0X
m + d1X

m−1 + · · ·+ dm−1X + dm ∈ F [X] and conse-
quently

Xpl −Xps = md0X
m + (m− 1)d1X

m−1 + · · ·+ 2dm−1X
2 + dm−1X.

Let k be the smallest non-negative integer such that

(m− k)dk 6= 0.

Then pl = m− k, a contradiction. This means that |F [X] : Im d| =∞.
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Example 2.3. Let

H = {α+ βi + γj + δk | α, β, γ, δ ∈ R,
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j}

be the skew field of quaternions over the field R of real numbers. Then

∂i(H) = {γj + δk | γ, δ ∈ R}

and so the index |H : Im ∂i| is infinite. Hence the inner derivation ∂i is not cofinite
in H.

Example 2.4. Let D = F (y) be the rational functions field in a variable y over a
field F and σ : D → D be an automorphism of the F -algebra D such that

σ(y) = y + 1.

By

R = D((X;σ)) = {
∞∑

i=n

aiX
i | ai ∈ D for all i ≥ n, n ∈ Z}

we denote the ring of skew Laurent power series with a multiplication induced by
the rule

(aXk)(bX l) = aσk(b)Xk+l

for any elements a, b ∈ D. Then we compute the commutator
[ ∞∑

i=n

aiX
i, y

]
=
∞∑

i=n

aiX
iy − y

∞∑

i=n

aiX
i

=
∞∑

i=n

aiσ
i(y)Xi −

∞∑

i=n

aiyX
i

=

∞∑

i=n

ai(σ
i(y)− y)Xi =

∞∑

i=n

iaiX
i.

If now

f =
∞∑

i=n

biX
i ∈ R,

then there exist elements ai ∈ D such that

bi = iai

for any i ≥ n. This implies that the image Im ∂y = R and ∂y is a cofinite derivation
of R.

Lemma 2.5. Let R = F [X,Y ] be a commutative polynomial ring in two variables
X and Y over a field F . Then R has a non-zero derivation that is not confinite.
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Proof. Let us f =
∑
αijX

iY j ∈ R and d : R → R be a derivation defined by the
rules

d(X) = X,

d(Y ) = 0,

d(f) =
∑

iαijX
i−1Y jd(X).

It is clear that Im d ⊆ XR and |R : XR| =∞.

In the same way we can prove the following

Lemma 2.6. Let R = F [{Xα}α∈Λ] be a commutative polynomial ring in variables
{Xα}α∈Λ over a field F . If card Λ ≥ 2, then R has a non-zero derivation that is
not confinite.

3. Cofinite inner derivations

Lemma 3.1. If every non-zero inner derivation of a ring R is cofinite, then for
each ideal I of R it holds that I ⊆ Z(R) or |R : I| <∞.

Proof. Indeed, if I is a non-zero ideal of R and 0 6= a ∈ I, then the image Im ∂a ⊆
I.

Remark 3.2. If δ is a cofinite derivation of an infinite ring R, then |R : Ker δ| =∞.
In fact, if the kernel Ker δ = {a ∈ R | δ(a) = 0} has a finite index in R, in view

of the group isomorphism
R+/Ker δ ∼= Im δ,

we conclude that Im δ is a finite group.

Lemma 3.3. If I is a central ideal of a ring R, then C(R)I = (0).

Proof. For any elements t, r ∈ R and i ∈ I we have

(rt)i = r(ti) = (ti)r = t(ir) = t(ri) = (tr)i,

and therefore
(rt− tr)i = 0.

Hence C(R)I = (0).

Lemma 3.4. Let R be a non-simple ring with all non-zero inner derivations to be
cofinite. If all ideals of R are central, then R is commutative or finite.
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Proof. a) If a ring R is not local, then R = M1 +M2 ⊆ Z(R) for any two different
maximal ideals M1 and M2 of R.

b) Suppose that R is a local ring and J(R) 6= (0), where J(R) is the Jacobson
ideal of R. Then J(R)C(R) = (0), C(R) 6= R and, consequently,

C(R)2 = (0).

If we assume that R is not commutative, then

(0) 6= C(R) < R,

and so there exists an element x ∈ R \ Z(R) such that

{0} 6= Im ∂x ⊆ C(R).

Then |R : C(R)| < ∞. Since C(R) ⊆ Z(R), we deduce that the index |R : Z(R)|
is finite. By Proposition 1 of [7], the commutator ideal C(R) is finite and R is also
finite.

Lemma 3.5. If N(R) ⊆ Z(R), then every idempotent is central in a ring R.

Proof. If d ∈ DerR and e = e2 ∈ R, then we obtain d(e) = d(e)e+ ed(e), and this
implies that

ed(e)e = 0 and d(e)e, ed(e) ∈ N(R).

Then ed(e) = e2d(e) = ed(e)e = 0 and d(e)e = 0. As a consequence, d(e) = 0 and
so e ∈ Z(R).

Lemma 3.6. Let R be a ring with all non-zero inner derivations to be cofinite.
Then one of the following conditions holds:

(1) R is a finite ring;

(2) R is a commutative ring;

(3) R contains a finite central ideal Z0 such that R/Z0 is an infinite residually
finite ring (and, consequently, R/Z0 is a prime ring with the ascending chain
condition on ideals).

Proof. Assume that R is an infinite ring which is not commutative and its every
non-zero inner derivation is cofinite. Then |R : C(R)| <∞ and every non-zero ideal
of the quotient ring B = R/Z0 has a finite index. If B is finite (or respectively
C(R) ⊆ Z0), then |R : Z(R)| < ∞ and, by Proposition 1 of [7], the commutator
ideal C(R) is finite. From this it follows that a ring R is finite, a contradiction.
Hence B is an infinite ring and C(R) is not contained in Z0. Since Z0C(R) = (0),
we deduce that Z0 is finite. By Corollary 2.2 and Theorem 2.3 from [2], B is a
prime ring with the ascending chain condition on ideals.

Let D(R) be the subgroup of R+ generated by all subgroups d(R), where d ∈
DerR.
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Corollary 3.7. Let R be an infinite ring that is not commutative and with all non-
zero derivations (respectively inner derivations) to be cofinite. Then either R is a
prime ring with the ascending chain condition on ideals or Z0 is non-zero finite,
Z0D(R) = (0), D(R) ∩ U(R) = ∅ and D(R) is a subgroup of finite index in R+

(respectively Z0C(R) = (0), C(R) ∩ U(R) = ∅ and |R : C(R)| <∞).

Proof. We have Z0 6= R, Z0C(R) = (0) and the quotient R/Z0 is an infinite prime
ring with the ascending chain condition on ideals by Corollary 2.2 and Theorem
2.3 from [2]. By Lemma 3.6, Z0 is finite. Assume that Z0 6= (0). If d is a non-zero
derivation of R, then Z0d(R) ⊆ Z0 and so Z0d(R) = (0).

If we assume that A = annl d(R) is infinite, then A/Z0 is an infinite left ideal
of B with a non-zero annihilator, a contradiction with Lemma 2.1.1 from [6]. This
gives that A is finite and, consequently, A = Z0.

Finally, if u ∈ D(R) ∩ U(R), then Z0 = uZ0 = (0), a contradiction.

Corollary 3.8. Let R be a ring that is not prime. If R contains an infinite subfield,
then it has a non-zero derivation that is not cofinite.

Proof of Proposition 1.1. (⇐) It is clear.
(⇒) Assume that R is an infinite ring which is not commutative and its every

non-zero inner derivation is cofinite. Then Z0 6= R and R/Z0 is an infinite prime
ring by Lemma 3.6. Then J(R) ⊆ Z0. Then

R/Z0 =
m∑

i=1

⊕

Mni
(Di)

is a ring direct sum of finitely many full matrix rings Mni(Di) over skew fields
Di (i = 1, . . . ,m) and so by applying Example 2.1 and Remark 3.2, we have that
R/Z0 = F1⊕D1 is a ring direct sum of a finite commutative ring F1 and an infinite
skew field D1 that is not commutative. As a consequence of Proposition 1 from [8,
§3.6] and Lemma 3.5,

R = F ⊕D
is a ring direct sum of a finite ring F and an infinite ring D. Then F = Z0.

4. Semiprime rings with cofinite inner derivations

Lemma 4.1. Let R be a prime ring. If R contains a non-zero proper commutative
ideal I, then R is commutative.

Proof. Assume that C(R) 6= (0). Then for any elements u ∈ R and a, b ∈ I we
have

abu = a(bu) = (bu)a = b(ua) = uab

and so ab ∈ Z(R). This gives that

I2 ⊆ Z(R)
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and therefore
I2C(R) = (0).

Since I2 6= (0), we obtain a contradiction with Lemma 2.1.1 of [6]. Hence R is
commutative.

Lemma 4.2. Let R be a reduced ring (i.e. R has no non-zero nilpotent elements).
If R contains a non-zero proper commutative ideal I such that the quotient ring
R/I is commutative, then R is commutative.

Proof. Obviously, C(R) ≤ I and I2 6= (0). If C(R) 6= (0), then, as in the proof of
Lemma 4.1,

C(R)3 ≤ I2C(R) = (0)

and thus C(R) = (0).

Lemma 4.3. If a ring R contains an infinite commutative ideal I, then R is
commutative or it has a non-zero derivation that is not cofinite.

Proof. Suppose that R is not commutative. If all non-zero derivations are cofinite
in R, then B = R/Z0 is a prime ring by Lemma 3.6 and C(B) 6= (0). Therefore
I2C(R) ⊆ Z0 and, consequently, I ⊆ Z0, a contradiction.

Proof of Theorem 1.2. (⇐) It is obviously.
(⇒) Suppose that R is an infinite ring which is not commutative and its every

non-zero inner derivation is cofinite. Then B = R/Z0 is a prime ring satisfying the
ascending chain condition on ideals.

Assume that B is not a domain. By Proposition 2.2.14 of [11],

annl b = annr b = ann b

is a two-sided ideal for any b ∈ B, and by Lemma 2.3.2 from [11], each maximal
right annihilator in B has the form annr a for some 0 6= a ∈ B. Then annr a is a
prime ideal. Since |B : annr a| is finite, left and right ideals Ba, aB are finite and
this gives a contradiction. Hence B is a domain.

Now assume that Z0 6= (0). In view of Corollary to Proposition 5 from [8, §3.5]
we conclude that Z0 is not nilpotent. As a consequence of Lemma 3 from [9] and
Lemma 3.5,

R = Z0 ⊕B1

is a ring direct sum with a ring B1 isomorphic to B.

Remark 4.4. If R is a ring with all non-zero inner derivations to be cofinite and
R/Z0 is an infinite simple ring, then R = Z0 ⊕ B is a ring direct sum of a finite
central ideal Z0 and a simple non-commutative ring B.

Problem 4.5. Characterize domains and, in particular, skew fields with all non-zero
derivations (respectively inner derivations) to be cofinite.
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