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Abstract 

 

Sleep occupies significant part of human life. The diagnoses of sleep 

related disorders are of great importance. To record specific physical and 

electrical activities of the brain and body, a multi-parameter test, called 

polysomnography (PSG), is normally used. The visual process of sleep 

stage classification is time consuming, subjective and costly. To improve 

the accuracy and efficiency of the sleep stage classification, automatic 

classification algorithms were developed. 

In this research work, we focused on pre-processing (filtering 

boundaries and de-noising algorithms) and classification steps of automatic 

sleep stage classification. The main motivation for this work was to develop 

a pre-processing and classification framework to clean the input EEG signal 

without manipulating the original data thus enhancing the learning stage 

of deep learning classifiers. 

For pre-processing EEG signals, a lossless adaptive artefact 

removal method was proposed. Rather than other works that used artificial 

noise, we used real EEG data contaminated with EOG and EMG for 

evaluating the proposed method. The proposed adaptive algorithm led to a 

significant enhancement in the overall classification accuracy. 
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In the classification area, we evaluated the performance of the most 

common sleep stage classifiers using a comprehensive set of features 

extracted from PSG signals. Considering the challenges and limitations of 

conventional methods, we proposed two deep learning-based methods for 

classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) 

and Convolutional Neural Network (CNN). The proposed methods 

performed more efficiently by eliminating the need for conventional feature 

selection and feature extraction steps respectively. Moreover, although our 

systems were trained with lower number of samples compared to the similar 

studies, they were able to achieve state of art accuracy and higher overall 

sensitivity.  

Keyword: Sleep Stage Classification, Deep Learning, Convolutional Neural 

Networks, Transfer Learning, Wavelet, Adaptive Filtering, Denoising. 
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Resumo 

 

O sono ocupa uma parte significativa da vida humana. Por isso, o 

diagnóstico de distúrbios relacionados com o sono é de grande importância. 

Para registar as atividades físicas e elétricas específicas do cérebro e do 

corpo, é normalmente efetuado um teste multiparamétrico durante o sono a 

que se dá o nome de polissonografia (PSG). No entanto, o processo de 

classificação visual das diversas fases do sono é demorado, subjetivo e 

dispendioso. Com o objetivo de melhorar a precisão e eficiência da 

classificação das fases do sono, diversos algoritmos de classificação 

automática têm sido desenvolvidos. 

Nesta tese o trabalho desenvolvido focou-se principalmente no pré-

processamento (faixa de filteragem e algoritmos de cancelamento de ruído) 

e na classificação automática das fases do sono. A principal motivação para 

este trabalho foi o desenvolvimento de uma estrutura de pré-processamento 

e classificação que permita atenuar o ruído do sinal de electroencefalograma 

(EEG) de entrada sem manipular os dados originais, melhorando assim a 

possibilidade de aprendizagem dos classificadores de aprendizagem 

profunda (deep learning). 
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Para o pré-processamento dos sinais EEG, foi proposto um método 

de remoção de artefactos adaptativo e sem perdas. Contrariamente a outros 

trabalhos que usaram ruído artificial para a avaliação dos resultados, foram 

neste trabalho usados dados reais de EEG contaminados com sinais de 

electrooculografia (EOG) e eletromiografia (EMG) para a avaliação do 

método proposto. Como se demonstra ao longo dos ensaios efetuados, o 

algoritmo adaptativo que aqui se propõe permitiu uma melhoria 

significativa na precisão geral da classificação. 

Na área da classificação, foi avaliado o desempenho dos 

classificadores de fases do sono mais comuns usando um conjunto 

abrangente de características extraídas de sinais PSG. Considerando os 

desafios e limitações dos métodos convencionais, foram propostos dois 

métodos baseados em aprendizagem profunda para classificar as fases do 

sono, nomeadamente o Stacked Sparse AutoEncoder (SSAE) e as 

Convolutional Neural Networks (CNN). Os métodos propostos mostraram-

se mais eficientes do que os métodos clássicos, eliminando a necessidade de 

seleção de características e de extração de características, respetivamente. 

Além disso, embora os sistemas propostos tenham sido treinados com um 

menor número de amostras em comparação com os estudos similares, eles 

foram capazes de atingir uma precisão que se pode considerar ao nível da 

atingida pelos métodos atualmente mais desenvolvidos, juntando a isso uma 

maior sensibilidade geral. 

Palavras-chave: Classificação das fases do sono, aprendizagem profunda, 

Convolutional Neural Networks, transferência de aprendizagem, Wavelet, 

filtragem adaptativa, Denoising. 
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Chapter 1 

 

1 Introduction 

 

1-1 Background Theory 

Sleep occupies a very significant part of human life. Therefore, the 

diagnoses of sleep related disorders are of great importance in both health 

care and sleep research. 

Sleep is a particular condition of the nervous system with noticeable 

features and brain activity phases. Although most people think sleep is a 

passive and constant process, as a matter of fact, sleep is an active state. 

Human bodies move frequently during the night and the human brain is 

sometimes more active during sleep than in the period of the normal waking 

state. The human brain travels through several psycho-physiological states 
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during sleep that are quite stable and noticeable. For the sleep study, it is 

mandatory to record specific physical activities of the brain. For this aim a 

multiple-parametric test, called polysomnography (PSG), is normally used. 

Through the American Academy of Sleep Medicine (AAMS) the PSG 

monitors many body functions such as [1]: 

 Electroencephalogram (EEG) derivations; 

 Electro-oculogram (EOG) derivations; 

 Chin electromyogram (EMG); 

 Leg electromyogram (EMG); 

 Airflow signals; 

 Respiratory effort signals; 

 Oxygen saturation; 

 Body position; 

 Electrocardiogram (ECG); 

Sleep study is usually done by analysing macro and microstructures.  

1-1-1 Macrostructure 

According to the publication “A Manual of Standardized Terminology, 

Techniques and Scoring System for Sleep Stages of Human Subjects”, 

established in 1968 by a committee co-chaired by A. Rechtschaffen and A. 

Kales, sleep is divided in five stages. Non-Rapid Eye Movement stage 

(NREM) which includes four stages: S1, S2, S3 and S4. Rapid-Eye 

Movement stage (REM) and wakefulness that is frequently included in 

analysis as a sixth stage. NREM itself occupies almost 75% of sleep. In the 

following, sleep stages will be described by detail.  
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According to AASM the EEG data should be divided into 30s epochs, 

with sleep staging done by relating each epoch to the corresponding stage. 

Wake:  

The waking stage covers from full alertness to the early stage of 

drowsiness. Since in this stage body prepares to sleep, we can call it a 

relaxing stage. 

Stage 1 of NREM:  

Stage 1 is the bridge between wakefulness and sleep (Sleep Onset) and 

can also be called light sleep stage. In this stage, the heart rate starts to slow 

down and breathing, step by step, becomes more regular.  This stage may 

last for 5 to 10 minutes and the subject can still be easily wake up. Slow eye 

movement (SEM), which are called sinusoidal eye movements with an 

initial deflection, regularly lasting more than 500 msec. Low amplitude 

waves with the frequencies between 4 and 7Hz are noticeable also vertex 

sharp waves (V waves) are included with a duration less than 0.5 sec. 

Stage 2 of NREM:  

Stage 2 is still called as light sleep stage but more difficult to be awakened. 

Blood pressure and body temperature decrease and heart rate slows down 

in order to prepare body for deep sleep. It is possible to score an epoch stage 

2 by observing either or both K-Complex and sleep spindles. These 

distinguishing phenomena belong to stage 2.  

Stage 3 of NREM:  

Stage 3 is called deep, delta or slow-wave-stage (SWS). Comparing to 

stage 1 and 2 it is more difficult to awaken the subject. In deep sleep stages, 

the body repairs and regrows tissues and relaxes the muscles. Delta brain 
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waves with frequencies of 0.5 to 4Hz along with a small number of spindles 

(comparing to the stage 2) can be noticed. One epoch can be considered as 

a stage 3 if more than 20% of it is occupied by SWS.  

Stage REM:  

This is the final stage of sleep. If a person enters this stage, his/her brain 

will become more active. It is during this stage of sleep that dreams usually 

happen. Also, sleep problems such as sleepwalking, bedwetting and sleep 

talking happen in REM stage. One of the most noticeable and 

distinguishable changes is rapid eye movement (REM). The similarity 

between stage REM and stage 1 through the PSG signals can be noticed. 

Usually, a person can enter stage REM after 90 minutes of sleep with the 

first period typically lasting for 10 minutes.  

NREM and REM sleep occur in irregular cycles, each lasting 

approximately 90 to 100 minutes, with a total of 4 to 6 cycles. Generally, 

on a healthy young adult, NREM sleep accounts for 75-90% of total sleep 

time (3-5% for Stage 1, 50-60% for Stage 2, and 10-20% for Stages 3) while 

REM sleep accounts for 10-25% of total sleep time [1]. 

1-1-2 Microstructure 

Microstructure of sleep is characterized by EEG patterns of different 

morphology and short duration. These patterns are called phasic events. 

Phasic events are brain, muscle, or autonomic related events of a brief and 

episodic nature occurring in sleep [2], [3]. These events are superimposed 

on background rhythms and represent sudden changes on the ongoing 

activity, both in amplitude and morphology. Phasic events appear 

spontaneously and may be elicited in the same form by different kinds of 

sensory stimuli, regardless of its modality. Their EEG morphological 
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features depend on intensity and biological meaning of stimulus and level 

of sleep where the stimulus arrives. Phasic events, common in different 

parts of sleep, are described below: 

Phasic events of the sleep onset: 

 Micro-sleep; 

 Vertex sharp transients (vertex sharp waves); 

 Positive occipital sharp transients of sleep (POSTS); 

 Slow-rolling eye movements; 

 Blinks and rapid eye movements of sleep onset; 

 Theta bursts; 

Phasic events of NREM sleep: 

 Spindles; 

 K-Complexes; 

 Delta burst; 

Phasic events of REM sleep: 

 Rapid eye movements in REM sleep; 

 Saw-tooth waves (STWs); 

 Twitch; 

Phasic events appearing in all sleep stages: 

 Arousals; 

 Body movement; 

 Stage shifts (SS); 

 Stage latency; 
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Table 1. Sleep stages characteristics (AASM V2.1) [1]. 
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Autonomic sleep - related events: 

 Modifications of heart rate (HR); 

 Blood pressure-related arousals; 

Cyclic alternating patterns (CAPs): 

 K-Complexes; 

 Delta burst; 

 Vertex sharp transients (vertex sharp waves); 

 Polyphasic burst; 

 K-alpha; 

 EEG arousals; 

1-1-3 Classifiers 

Classification is the process of categorizing data into relevant groups. 

The first step in the classification process is the identification of features or 

characteristics that will enable the discrimination between the different 

groups of data. A classification model should be developed in a way that 

provides a structure for how the classification processes’ actions will be 

realized. Ideally, this model should be chosen to optimize the system 

performance, although it may need to be revised as the classifier design 

progresses. A classifier is then implemented and “trained” to recognize the 

chosen features in the data, or to determine the best input-to-output 

mapping. Generally, there are two ways to train a classifier: supervised 

learning and unsupervised learning. A system is called supervised learning 

if it uses data labelled by the expert to create an optimal response for the 

system, which is used as feedback to the learning system to increase 

accuracy. In contrast, unsupervised learning occurs when the system does 
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not use any labelled data to modify its output. Once the system has trained 

and learned, it is ready to recognize and classify specific inputs. It can be 

tested and evaluated with such metrics as speed of computation and 

accuracy of classification. 

1-2 Motivation 

The function of human body is frequently associated with signals of 

electrical, chemical, or acoustic origin. Such signals convey information that 

may not be immediately perceived because it is hidden in the signal's 

structure. However, signals’ complexity is often considerable and therefore, 

the biomedical signal processing has become a vital tool for extracting 

clinically significant information hidden in signals. The artefacts such as 

body movements, sweating and sensor fault can reduce the accuracy in 

signal processing especially in sleep signal analysis. The conventional 

solution is to detect the artefacts and denoise the signal by removing 

corresponding epochs from the sleep signal. However, this way, the EEG 

signal will be manipulated and may lose important information. One of the 

motivations of this thesis is to develop and improve noise cancelation 

method that does not manipulate the signal and protect its originality [4].  

Deep learning is an emerging technique that can be applied to a broad 

field of science in order to improve learning and classification algorithms. 

Deep learning is rarely used to classify biosignals and still there is a lack of 

applying this technique to sleep staging problems. It is proven that shallow 

learning techniques are not adequate tools to discriminate among stages 

(e.g. still there is accuracy reduction in detecting S1). 

In this research work we will focus on pre-processing (filtering 

boundaries and de-noising algorithms) and classification for automatic 
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sleep stage classification. Since a contaminated EEG signal would 

negatively affect sleep signal analysis quality, the main motivation for this 

work is to develop a pre-processing and classification framework to clean 

the input EEG signal without manipulating the original data and enhance 

learning stage of classifier through deep learning methods.  
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Chapter 2 

 

2 Research Question 

 

2-1 Main Research Question 

As mentioned above, a new challenge emerges when dealing with “Deep 

Learning” within sleep stage classification. In addition, several studies 

reveal that inadequate training of a classifier is very often the cause for 

misclassification and conflicts that, in some cases, might lead to reduction 

in the accuracy. Moreover, artefacts always have been an obstacle for signal 

processing tools in the extraction and understanding of the better features. 

If we take for instance, the adaptive filtering techniques and develop them 

to detect and cancel the noise and estimate a clean signal, it is likely that 

automatic sleep classification could be a trustable tool either for experts to 

analysis the sleep signal faster and better or for patients themselves to 
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analyse their own sleep quality. If a proper learning method is achieved, the 

model built by the classifier could be able not only to discriminate better 

the stages and even the artefacts, but also to detect sleep disorders such as 

apnea, insomnia, rapid eye movement sleep behaviour disorder, 

somniphobia, etc. In this way, monitoring human sleep could be done in 

home environment with lots of benefits such as: 1) each person can evaluate 

his/her own sleep quality before going to the hospital, 2) a cyber physical 

system would be organized, 3) huge reduction in the queues of hospitals 

will be noticeable, 4) sleep monitoring could be done on a much earlier stage 

due to the easiest and more convenient access to the diagnose tools. 

Considering these challenges, the main research question for this work is 

the following: 

 

In addition, five more detailed questions are proposed with the aim of 

better solidifying the main research question, two of them are related to the 

artefact cancelation and three related to the hybrid classification structure. 

The first question is related to the noise detection: 

 

The second question is related to adaptive noise cancelation structures: 

How to design a system for automatic sleep stage classification that is 

capable of denoising EEG signals and has an efficient and fast learning 

phase? 

How to detect other noises (e.g. sweat and sensor fault) rather than eye 

blink and body movement to cancel them from EEG signal? 
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The third question is related to the learning phase: 

 

The fourth question is related to supervised-classification: 

 

Finally, considering the feature extraction characteristics of deep 

learning networks, a question emerges: 

 

2-2 Hypothesis and Approach 

The proposed hypothesis to address this question is: 

What kind of adaptive noise cancelation techniques are more suitable 

for EEG signals? 

What kind of un-supervised learning method as a first component of the 

hybrid structure performs better? 

Does Deep Learning method overcome other structures from accuracy 

point of view? 

Considering conventional feature extraction methods, does deep 

learning networks extract more discriminative features or not? 
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To give a detailed answer to the previously mentioned research questions, 

our research methodology is divided into two main sections: 1) Denoising, 

2) Classification. In the denoising section, first of all, the structure of the 

noise will be studied in order to find suitable threshold to detect the noises. 

Second, different kinds of adaptive filters will be applied to find the best 

structure.  

In the classification section, advanced learning methods such as deep 

learning will be applied to enhance the performance of sleep stage 

classification. 

2-3 Research Method 

This section presents the aimed contribution to answer the proposed 

main research question. The detailed planed work was developed according 

to the classical research method as shown in figure 1. 

A reliable automatic sleep stage classification with the desired 

performance can be achieved if; 

 Besides the conventional filtering and artifact removal 

algorithms, a method for canceling the artifacts from EEG signal 

without manipulating the original data will be designed. 

 The hybrid structure of supervised and un-supervised learning is 

utilized to enhance the accuracy and reduce the learning time. 
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Figure 1. The classical research method. Adapted from the hand-outs of the Scientific Research 

Methodologies and Technologies course of the PhD program in Electrical and Computer Engineering 

by Professor Luis Camarinha-Matos. 

2-3-1 Aimed Contribution 

To give answers to the proposed research questions, the adopted 

approach will develop a system that will comprise the following main 

blocks: 

i. Noise detection: 

 Study structure of the noises. 

 Building a framework aimed at finding better thresholds to detect 

the noise. 

ii. Denoising:  

 Applying an adaptive filter structure to cancel the noises. 

 Parameter configuration of adaptive filter to find the most 

efficient denoising. 

iii. Classifier: 
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 Exploring different kind of classifiers in sleep stage classification. 

 Applying deep learning methods for sleep stage classification in 

order to increase the accuracy. 
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Chapter 3 

 

3 Literature Review 

 

3-1 PSG Channel Selection 

In hospital environment doctors use AASM rules for manual sleep 

scoring. There are a few recommended parameters that should be reported 

for a PSG study. At least, three EEG channels (frontal, central and occipital 

derivations) plus two EOG channels (from left and right eyes) and two chin 

EMG channels are necessary to perform manual sleep scoring. 

Recommendation for EEG channels by AASM consist of F4-M1, C4-M1 

and O2-M1 and in the case which those channels are not available, 

alternative EEG channels set includes Fz-Cz, Cz-Oz, and C4-M1. 
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Taking the above paragraph to the consideration, researchers try to 

emulate the visual sleep scoring process by using a proper subset of PSG 

recordings in automatic sleep stage classification. The usual subset consists 

of EEG, submental EMG and EOG. In Table 2, a summary of PSG subsets 

used in the literature is presented. Papers summarized in this table include 

studies that classify sleep recordings into 2 stages (REM/Non-REM or 

Sleep/Wake), 3 stages, 4 stages, 5 stages or 6 stages. Studies that detect 

patterns such as spindles, k-complex or sleep disorder detection papers are 

not included in this table. 

Table 2. Summary of PSG subsets used in sleep stage classification. 

Subset Type Signal Channels References 

Single 
Channel 

EEG 

C3-A2 [5]–[22] 

C4-A1 [23][16][20][24] 

C3-A1 [25] 

Fpz-Cz/Pz-Oz 
[11], [13], [18], 

[26]–[43] 

F3-A2 [20] 

F4-A1 [20] 

O1-A2 [20] 

Cz-Pz [44] 

A1-A2 [45] 

Cz-A1 [46] 

EOG 
Left EOG [47] 

E2-E1 [48] 

ECG  [49]–[51] 

Multi-
Channel 

EEG, EOG, and 
EMG 

EEG (C3-A2), Left and Right EOG, and 
chin EMG 

[52] 

Six EEG (F3-A2, C3-A2, O1-A2, F4-A1, 
C4-A1, O2-A1), Left and Right EOG, 
and chin EMG 

[53], [54] 

Four EEG channels (C3-A2, P3-A2, C4-
A1, and P4-A1), one horizontal EOG 
and one chin EMG 

[55] 
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EEG and EOG 

EEG (C3 and Cz), Left and Right EOG [56] 

Six EEG channels (F3-A2, C3-A2, O1-
A2, F4-A1, C4-A1, O2-A1) and two 
EOG channels (Left and Right) 

[57][58] 

EEG (Pz-Oz) and Horizontal EOG [59] 

Two EEG (Fz and Oz) and two EOG 
(Left and Right) Channels 

[60] 

EEG (C4-M1), EOG [61] 

Heart Rate, 
Breathing Rate 
and Movement 
Information 

Heart Rate, Breathing Rate and 
Movement Information 

[62] 

EEG, ECG and 
Respiration 
Features 

EEG (C1-A2), ECG and Respiration 
Features 

[63] 

ECG and 
Respiration 

ECG and respiratory inductance 
plethysmography (RIP) 

[64] 

EEG and EMG 

EEG (C4-M1) and chin EMG [65] 

EEG (C3-A2) and chin EMG [66] [67] 

ECG, 
Respiratory and 
actigraphy and 
signals 

ECG, Respiratory and actigraphy and 
signals 

[68] 

EEG 

Fp1-C3, Fp2-C4, Fp1-T3 
and Fp2-T4 

[69] 

Pz, Cz, Pz, T3, T4 [70] 

Six EEG channels (Fp1–M2, C3–M2, 
O1–M2, Fp2–M1, C4–M1, and O2–M1) 

[71] 

Fpz-Cz and Pz-Oz [72], [73] 

C3-A2 and C4-A1 [74] [75] 

Six EEG Channels (F3-A2, C3-A2, O1-
A2, F4-A1, C4-A1 and O2-A1) 

[76] 

C4-A1, O2-A1 and C3-O1 [77] 

EOG Left and Right [78][79] 
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EEG, EOG, 
EMG and ECG 

Six EEG channels (Fp1–M2, C3–M2, 
O1–M2, Fp2–M1, C4–M1, and O2–M1), 
two EOG channels (Left and Right), one 
chin EMG channel and ECG. 

[71][80] 

3-2 Pre-Processing 

3-2-1 Introduction 

The presence of artefacts might lead to the misapprehension, low-

accuracy and distorted quantitative results. Therefore, a pre-processing 

step is necessary to cancel artefacts and remove cropped epochs to magnify 

informative components of raw EEG, EOG and EMG signals prior to any 

further analysis [28], [81].  

Considering the fact that nowadays portable devices for patient 

monitoring and automatic sleep stage classification could be a helpful 

assistance for experts on the analysis of sleep signals, the main motivation 

for the current work is the lack of a systematic method for automatic 

artefact detection and cancellation which leads to an improvement in the 

automatic stage classification accuracy compared to the original acquired 

data. 

 In this section of the thesis two of main issues will be discussed: the 

filtering criteria for bio-signals (i.e. EEG, EOG and EMG) and the 

denoising of EEG signals. The artefacts diffused on EEG channel may mask 

cerebral activity and simulate sleep phasic events such as sharp vertex 

waves, K-complexes and spindles. Additionally, some other noises and 

artefacts are introduced by the measurement devices as well. The power 

line interference (the 50/60 Hz components) or movements of electrodes 
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can impose variation in the baseline characteristics of PSG signals. Also, 

some artefacts are created from non-cerebral sources such as eye/muscle 

movement and cardiac sources. In addition, considering the relatively high 

amplitude level of ECG signals, the QRS complex regularly interfere in the 

EEG signals causing spiky patterns [82]–[84]. 

3-2-2 Filtering the data 

Filtering is an important step in the pre-processing of any sleep signal 

analysis algorithm. It means that, if the signal is not filtered properly, then 

the artefacts with low frequency and high frequency range (i.e. as it is 

proved that the main energy of the EEG is between 0.3-35 Hz according to 

AASM) will affect the classification results.  

The AASM manual provides some recommendations which are 

summarized in Table 3. 

Table 3. Filtering rules considering AASM manual [1]. 

Filter Settings Low Frequency High Frequency 

EEG 0.3 Hz 35 Hz 

EOG 0.3 Hz 35 Hz 

EMG 10 Hz 100 Hz 

ECG 0.3 Hz 70 Hz 

These rules are usually considered in papers. Here the big challenge is to 

follow the AASM rules or not. There are some papers which authors 

created their own rules to pre-process the data in order to increase accuracy. 

However, a comprehensive study to compare different filtering rules is still 

missing. Table 4 shows a survey of the recent papers from the filtering-

band point of view. 
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Table 4. Different band-pass filtering. 

Authors EEG EOG EMG 

Maja Čić [69] 0.3 – 70 Hz - - 

Sheng-Fu Liang [17] 0.1 – 75 Hz 0.1 – 75 Hz 10 – 75 Hz 

Mohamed ElMessidi [47] - 0.5 – 30 Hz - 

Han G. Jo [21] 0.5 – 100 Hz 0.5 – 100 Hz 0.5 – 100 Hz 

Sirvan Khalighi [85] 0.3 – 35 Hz 0.3 – 35 Hz 10 – 70 Hz 

Jun Shi [75] 0.3 – 64 Hz - - 

Sheng-Fu Liang [79] 0.5 – 30 Hz 0.5 – 30 Hz 5 – 100 Hz 

Jing Zhou [86] 0.1 – 40 Hz - - 

Tarek Lajnef [56] 0.2 – 40 Hz - - 

Salih Gunes [24] 0.1 – 60 Hz - - 

Baha Şen [6] 0.1 – 60 Hz - - 

Seung-Hyeon Oh [87] 0.5 – 50 Hz - - 

Florian Chapotot [65] 0.3 – 35 Hz 0.3 – 35 Hz 0.3 – 35 Hz 

Jose L. R. Sotelo [72] 0.5 – 100 Hz - - 

Teresa Sousa [57] 0.5 – 45 Hz 0.5 – 45 Hz - 

Pedro Pinero [88] 0.5 – 30 Hz 0.5 – 30 Hz 10 – 100 Hz 

Seral Ozsen [89] 0.5 – 35 Hz 0.5 – 35 Hz 10 – 70 Hz 

Jinwoo Kim [5] 0.3 – 50 Hz - - 

Mustafa Radha [20] 0.6 – 27 Hz - - 

Junming Zhang [90] 0.5 – 32 Hz 0.5 – 32 Hz 5 – 32 Hz 
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3-2-3 Data Denoising  

PSG recordings include EEG, EMG, EOG, ECG, snoring and other 

physiological signals to detect body movements. EEG is widely adopted for 

the automatic detection of sleep stages and neuronal activity evaluation 

during sleep. However, EEG is usually contaminated with several artefacts 

such as power line noise, EMG, EOG and electrode movements. Removal 

or attenuation of noise and unwanted signals is a prerequisite for most of 

the EEG signal processing applications. The presence of artefacts makes 

the EEG analysis difficult, since it may introduce spikes that can be 

confused with the original EEG trend, decreasing the reliability of the 

subsequent processing stages. 

Some of these artefacts are easily removed by a finite impulse response 

(FIR) or infinite impulse response (IIR) filter if their power spectrum 

doesn’t have overlap with the EEG power spectrum. However, EMG and 

EOG, which have significant power spectrum overlap with EEG are not 

easy to remove requiring careful consideration [91]. 

A commonly used method for avoiding artefacts is the rejection of the 

contaminated segments of the recorded EEG [92]–[94]. This method, 

although simple, results in a huge data loss and was an early technique of 

management artefacts. However, nowadays, with the emerging of recent 

signal processing techniques, the preference is for artefact cancelling or 

correcting techniques, instead of rejecting the data epoch [95]. 

Consequently, denoising the contaminated EEG segments would not only 

preserve the amount of data, but would also contribute to the increase of 

the accuracy in the automatic sleep stage classification [96]. Following this 

idea, an extensive number of studies have tried to extract the clean EEG 
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out of the contaminated recording in different research areas, but still no 

optimal method is agreed upon [95], [97].  

EEG is mainly intended for recording cerebral activity, yet other extra 

electrical activities are also recorded. These extra activities are usually 

considered harmful artefacts that can be either physiological like EOG, 

EMG and ECG or extra physiological like power line interference. EOG 

measures are captured mainly by frontal electrodes, but they are strong 

enough to also affect other electrodes. About the EMG, the degree and type 

of contamination depends on the contracted muscle, the recording purpose 

and the environment [91]. However, EMG and EOG, which have 

significant power spectrum overlap with EEG, are not easy to remove 

requiring careful consideration [91].  The state of the art in EEG denoising 

is quite broad. The most classic methods used in the last years are 

regression (especially for ocular interferences), blind source separation or 

component base techniques [98] and Wiener and Bayes filtering methods 

[97]. Also adaptive filtering [97], wavelet denoising [99] and empirical 

mode decomposition (EMD) [100] are among the most widely used 

denoising techniques. A great range of studies pay particular attention to 

the improvement of the existing methods or using more objective 

performance criteria [101]. 

3-2-3-1 Adaptive Filtering for Denoising 

An adaptive filter is a linear system that iteratively models its transfer 

function according to the relationship between the input and the output 

signals. The parameters are adjusted according to an optimization method 

in adaptive algorithm [102]. The filter weights can be adapted based on 
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the feedback from the output of the filter, but it needs a reference input to 

compare the desired output with the observed output. 

The output of an adaptive filtering system is given by: 

   (1) 

where  is the weight vector. The Wiener-Hopf solution gives the 

optimum weight vector for (1). However, it introduces a high order of 

computational complexity. A simple recursive solution to the classical 

wiener filtering problem is the gradient-based algorithms such as steepest 

descent and Least-Mean-Squares (LMS) optimization techniques. In the 

steepest descent optimization method, the weight vector is made to evolve 

in the direction of the negative gradient 

   (2) 

where  is the error signal given by: 

   (3) 

and  is the desired signal (given as clean signal). The gradient vector 

is computed as: 

   (4) 

where  is the autocorrelation matrix of the  and 

 is the cross-correlation vector between  and

. The main disadvantage of this method is the computational 

complexity involved in the real-time manipulation of the matrices  and r. 

The LMS algorithm is basically a simplification of the steepest descent 
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method where instantaneous values of  and r are used, and the weight 

vector is updated as: 

   (5) 

The block diagram of an adaptive filter is depicted in figure 2.  

 

Figure 2. Structure of Adaptive filter configuration 

The main drawback of LMS is being too sensitive to the scaling of its 

input as well as choosing  directly effects the convergence rate and 

stability of the filter [102], [103].  The Normalized-Least-Mean-Square 

(NLMS) filter is a variant of LMS filter which handles this problem by 

normalizing with squared-norm of the input . Therefore, a time 

variant step-size  is described as follows: 

   (6) 

where  is a small constant applied to avoid the probability of getting  

instable in the case of having value of  near to zero. 
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GuruvaReddy et al. [104] applied LMS and NLMS adaptive filters to 

remove the power line and baseline noise from EEG. Although the reason 

of using adaptive filter instead of notch filter to remove 50 Hz noise is not 

described, they put some results to prove that adaptive filters can remove 

above mentioned noises. But still a comparison between the two kind of 

adaptive filters performance with the signal to noise ratio (SNR) is missing. 

Senthil Kumar et al. [105] removed EOG artefacts from EEG by 

adaptive filtering techniques through wavelet transform. LMS filter was 

chosen and the database was provided from Physionet. The results 

illustrated that artefacts are removed from the EEG signal successfully, but 

for the validation part of the paper, just a suppression ratio was introduced 

which seems that is not significant.  

Ahirwal et al. [106] exploited adaptive filtering techniques to remove 

noise for EEG signal. The proposed method tested with LMS and recursive 

LMS (RLS) algorithm over electroencephalography/event related 

potentials (EEG/ERP) noise removal to build up relation between input 

SNR and output fidelity parameters. Their proposed method got a better 

SNR and mean square error (MSE) with RLS. 

Darroudi et al. instead of MSE which is a conventional criterion [106]–

[108] selected error entropy in order to eliminate noise from EEG signals. 

In this work it is claimed that by deploying MSE, only second-order 

moment of the error distribution is optimized, which is not adequate for the 

noisy EEG signal. But minimizing error entropy, all moments of the error 

distribution are minimized; hence, using the Minimum Error Entropy 

(MEE) algorithm instead of MSE-based adaptive algorithms will improve 
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the performance of noise elimination. They reached higher SNR with the 

proposed method for different input SNRs (5, 2, -2 and -5). 

3-2-3-2 Wavelet Denoising  

In the context of sleep stage classification, Estrada et al. [109] proposed 

a denoising method based on applying a predefined threshold to the wavelet 

coefficients of noisy EEG with the objective of finding the best threshold 

defining rule and value. The noisy signal is constructed by adding white 

noise ( ) and 50 Hz power line sinusoidal noise. The 

coefficients that contribute to the noise components are zeroed out using a 

threshold discrimination filter. Preliminary results showed that the 

combination of a soft thresholding rule applied to the detailed wavelet 

coefficients with the Universal threshold value produced better 

performance measures such as a smaller MSE and a larger SNR. Similarly, 

improved results were obtained for S1, S2, S3, stage 4 (S4) and REM stage 

EEG signals using this combination.  

Noviyanto et al. [50] evaluated the contribution of temporal pattern in 

sleep stages classification results based on the fact that sleep stages are time 

series data. Ten datasets of single lead ECG signal from healthy subjects 

have been collected and fifteen features extracted from raw ECG signal to 

describe the sleep stages. The smoothing process was applied to the 

datasets using stationary wavelet transform with “coiflet” mother wavelet, 

four level decomposition, and universal hard thresholding method. An 

example of denoising process is shown in figure 3. 

Still effect of wavelet denoising in sleep classification accuracy is missing 

which is one of objectives of this thesis. 

 E 0, 20x  
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Figure 3. Denoising using wavelet; a) original signal, b) signal after denoising.  

3-3 Classification 

This section is aimed to give a comprehensive overview about 

conventional classifiers and present the most recent works in a table to 

provide a summary and discuss about deep learning techniques which are 

applied to several classification issues. In case of sleep stage classification, 

there are few studies applying deep learning techniques. 

3-3-1 Conventional Classifiers 

Several papers provide evidence for the high performance of Support 

Vector Machine (SVM) specifically for high dimensional classification 

problems [56], [110]–[113]. In principle, SVMs are designed for binary 

classification problems (discrimination between two classes). However, as 

in many classification tasks, automatic sleep scoring requires discrimination 

between multiple classes (Awake, S1, S2, S3 and REM). Hence, for getting 

benefit from the assumed advantages of SVM classification, a multi class 

SVM framework needs to be implemented. Two of the most widely used 

approaches for multi-class SVM classification are the One-Against-All 

(OAA) and the One-Against-One (OAO) approaches. The OAA framework 

consists of using a binary SVM to distinguish each class from all other 
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classes and the decisions obtained by applying a winner-takes-all strategy. 

By contrast, in the OAO multi-SVM approach a dedicated classifier is 

trained for each of all possible pairs of classes. In other words, for a total of 

N classes, it needs to train  classifiers and the decision is then 

obtained by performing a majority vote (max-wins voting). 

Benabdeslem et al. [114] proposed a new approach called dendogram 

based support vector machine (DSVM). Although DSVMs are not as well-

known and established as OAO and OAA multi-class SVM methods, 

decision-tree-based multi-SVM classification has been explored in the 

machine learning and computer science literature [114]–[117].  

Lajnef et al. [56] proposed a sleep staging framework based on a DSVM 

classification. Its performance was evaluated using polysomnographic data 

from 15 subjects’ EEG, EOG and EMG recordings. They mentioned that 

the DSVM method is a decision-tree classification framework where each 

binary classification node is fulfilled by a binary SVM. First of all, a 

procedure applied consists in defining the tree with its binary branching, 

i.e. the structure of the dendrogram. This was done by computing the mean 

values of the features for each class. So, they applied ascendant 

(agglomerative) hierarchical clustering (AHC). Hierarchical clustering is a 

cluster analysis method that seeks to build a hierarchy of clusters. 

Strategies for hierarchical clustering divide into two basic paradigms: 

agglomerative (bottom-up) and divisive (top-down). Agglomerative 

strategies start at the bottom and at each level recursively merge a selected 

pair of clusters into a single cluster. This produces a grouping at the next 

higher level with one less cluster. The pair chosen for merging consists of 

the two groups with the smallest intergroup dissimilarity. Divisive 

methods start at the top and at each level recursively split one of the 

( 1) 2N N 
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existing clusters at that level into two new clusters. The split is chosen to 

produce two new groups with the largest inter-group dissimilarity. With 

both paradigms, there are  levels in the hierarchy. In the ascendant 

approach used here, observations that stem from each final class are 

sequentially merged as one move up the hierarchy [118], [119]. As well as 

achieving high sensitivity, specificity and accuracy, DSVM outperforms the 

two standard multi-class procedures (OAA-SVM and LDA). They 

suggested that the generation of an optimized dendrogram structure using 

ascending hierarchical clustering is an important source of performance 

enhancement. It reduces both the number of classifiers and the execution 

time. In particular, compared to the one-against-one SVM approach that 

would require 10 SVMs to run a 5-class classification, the dendrogram 

approach boils down the classification to four binary SVMs. Another 

advantage of this method is that there is no need for a classification decision 

stage; any given sample is assigned at the end of the tree to one class. 

To better understand multi-channel SVM, all its structures are illustrated 

in figures 4, 5 and 6. 

Pascualvaca et al. [120] used two techniques to improve the accuracy of 

sleep stage classifiers based on SVMs from EEG, EOG and EMG signals. 

Moreover, three different SVM multi-classifiers have been tested to 

evaluate and compare their performance. Just three feature groups are 

extracted from EEG on their work. For EMG, average signal power and 

for EOG, saccades density are extracted. Although three different SVM 

classifiers are analysed (as it can be seen in figures 4 to 6), one-vs-all 

overcame the others, but still lack of using deep learning techniques and 

not enough features are noticeable.  

1N 
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As mentioned in [120] Herrera et al. [19] introduced Stacked Sequential 

Learning (SSL), a meta-learning method in which the base classifier is 

augmented by making it aware of the labels of nearby patterns, was 

successfully used for improving the accuracy of the classifier. Nevertheless, 

in this study only 4 sleep stages were detected (Awake, REM, S1 and S2 

considered as Light-Sleep (LS), and S3 and S4 considered as Deep-Sleep 

(DS)) and EEG as a single source of information was analysed. 

 

Figure 4. One-Against-One structure. 

 

Figure 5. One – Against – All structure. 

 

Figure 6. Dendogram based SVM structure. 
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Wang et al. [45] studied the performance of automated sleep–wake 

detection algorithm (Z-ALG) used in the Zmachine® (a portable, single-

channel, EEG acquisition and analysis system) against laboratory PSG 

using a consensus of expert visual scorers. Instead of using the channels 

recommended in AASM, they used A1-A2, EEG channel. Especially this 

channel, selected because it is located completely outside of the hairline, 

allows an easy patient self-application and removal of the sensors. Sensors 

A1 and A2 are also located away from the face making it comfortable and 

unobtrusive to wear during sleep, eliminating the possibility of leaving 

noticeable marks on the face and forehead. However, the Z-ALG was only 

able to detect sleep and wake states. Almost one year later they developed 

another algorithm named Z-PLUS which was able to detect Light Sleep, 

Deep Sleep, and REM, but still doesn’t satisfy the demand of experts to 

evaluate the sleep data and a comparison between the specified EEG 

channel with others which are recommended by AASM (e.g. C3-A2) is 

missing. 

Banaee et al. [121] made a review of the latest methods and algorithms 

used to analyse data from wearable sensors for physiological monitoring of 

vital signs in healthcare services. In their framework, common data mining 

tasks have been applied such as anomaly detection, prediction and decision 

making when considering continuous time series measurements.  
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Figure 7. Illustration of each task in relation to the three dimensions (adapted from [121]). 

Figure 7 provides an illustration of each task in relation to the three 

dimensions. The first dimension is dealing with the setting considering the 

environment. Most monitoring applications which consider home settings 

or remote monitoring deal predominantly with prediction and anomaly 

detection whereas the applications in clinical settings are typically focused 

on diagnosis [121], [122]. This can be easily explained by considering the 

growing desire to have a more preventative approach by using wearable 

sensors and increase the sense of security (alarm) in home environment. 

Likewise, in clinical settings for diagnosis and assist in decision making 

much more information is available. 

The second dimension considers the type of subject for data mining. For 

patients with medical records, both diagnosis and possibility to have alarms 

are important whereas, for healthy subjects ensuring the maintenance of 

good health, prediction and anomaly detection are essential. 

The third dimension describes the method of processing the data. All 

three tasks (anomaly detection, prediction and decision making) have been 
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addressed both in online and offline scenarios. Alarm related tasks are 

usually used in the context of online continuous monitoring. In their work, 

usability, efficiency and challenges of each technique in the medical domain 

are indicated. Banaee et al. [121] outline the most common algorithms used 

with wearable sensor data.  

SVM techniques are often proposed for anomaly detection and decision-

making tasks in healthcare services. However, SVM is not an appropriate 

method to integrate domain knowledge to use metadata or symbolic 

knowledge seamlessly with the measurements from the sensors. Moreover, 

like other classifiers, SVM cannot be applied to find the unexpected 

information from unlabelled data. 

Since the progress of learning in Neural Network (NN) would be 

complex, the method is regularly used for decision-making in clinical 

conditions with large and complicated data sets. But same as SVM, NN is 

not able to handle domain knowledge to improve the results. Furthermore, 

as the modelling process in NN is a black box progress, NN method needs 

to justify for each input data. So, NN is not counted as a portable technique 

to easily apply for diverse data sets. 

Decision tree (DT) methods are restricted to the space of the constructed 

features as the inputs of the model. So, finding hidden information out of 

constricted features would not be recognizable. Furthermore, since the 

number of features can impact on the efficiency of the method, DT models 

are not usually applied to big and complex physiological data. Nonetheless, 

DT is one of the preferable classifiers considering the fact that it is simple 

and easy to implement and understand. 
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Even though Gaussian Mixture Model (GMM) is able to detect unseen 

information in physiological data, it has been rarely used for prediction 

tasks. Since the computation time of constructing the models is high, 

applying GMM in real-time is usually not affordable. Moreover, the 

initialization step in GMM does not necessarily improve the modelling (as 

GMM approached assume data as a combination of Gaussian distinction) 

due to the character of health parameters in real world situations. 

The Hidden Markov Model (HMM) is used for anomaly detection rather 

than any other tasks. Moreover, this method has not been applied to multi 

health parameters analysis and big data sets. However, based on the abilities 

of HMM to model the unexpected behaviours of the data, it is applicable to 

use the modified versions of HMM in more problems in healthcare domains. 

Through the mentioned review paper [121], the techniques which are 

most applied to ECG analysis as data mining tools are SVM, NN and DT, 

respectively and for HR are SVM and statistical methods, respectively. 

Also, they provide an outline of the three most commonly used data mining 

tasks in relation to the vital signs that can be measured by wearable sensors. 

ECG provides mostly the rich data, which is predominantly used for all 

tasks in comparison to the other types of sensors. Next, with a huge 

difference, HR is used to analyse the subject. 

ElMessidi et al. [47] introduce a statistical based solution which explores 

a simple rule based method to accurately predict the occurrence of S3. This 

automatic method detects S3 epochs using a single-channel EOG based on 

a simple rule-based algorithm with adaptive thresholds. They evaluated 

their method through 9 healthy subjects and the results are compared to 

the clinical visual scoring. The agreement of the detection method for the 
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validation data was 90.0%, the sensitivity was 90.5%, the specificity was 

89.9% and the kappa value was 0.74. The results look promising but only 

S3 and non-S3 epochs are detected.  

Fraiwan et al. [25] used single channel EEG to classify sleep stages. 

Three time–frequency techniques were deployed for the analysis of the 

EEG signal: Choi–Williams distribution (CWD), continuous wavelet 

transform (CWT), and Hilbert–Huang transform (HHT). The classification 

of the extracted features was done using Random Forest (RF) classifier. 

Among all time–frequency techniques, they reached the best performance 

by using RF classifier by choosing CWT and RF classifier from Weka 

classification software package. 

Breiman [123], which consists of many individual classification trees (in 

their work they chose 10 trees), where each tree is a classifier by itself that 

is given a certain weight for its classification output (in Weka all trees are 

given the same weight). The classification outputs from all trees are used 

to determine the overall classification output which is done by choosing the 

mode (the output with most votes) of all tree’s classification output (figure 

8). Although the authors claimed that RF outperforms the other classifiers, 

this comparison is missing. 
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Figure 8. Flowchart of the RF classifier showing the different steps of the classification procedure. 

As mentioned before, one of the future works proposed in this thesis is 

the reduction of the necessary channel numbers to extract the features and 

classify the sleep stages, which will result in the reduction of the 

computational complexity and hardware requirement. 

Moreover, looking from another point of view and considering home-

based settings, data acquisition instruments are also important in order to 

make a comfortable environment for the subject to sleep and achieve user 

friendly devices (which anyone can use without the support of an expert).  

Considering this aspect, Fonseca et al. [64] presented a method to 

identify overnight sleep stages using cardiorespiratory features extracted 

from ECG and RIP signals. After extracting feature and post-processing 

them, they used a multi-class Bayesian linear discriminant with time-

varying prior probabilities [124], to classify the stages. By choosing this 

specific classifier considering the non-linear structure of ECG, multi-class 

Bayesian linear discriminant couldn’t be a proper classifier in this case. It 

can be described simply as following: non-linear classifiers will have a 

higher risk of overfitting, since they have more dimensions of freedom. 

They can suffer from learning just good set of data points, rather than 
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coming up with a good generalization. On the other hand, a linear classifier 

has less freedom to fit, and in the case of non-linearly separable data, will 

fail to find a good decision function and suffer from high error rates.  

Liang et al. [79] designed their own eye mask to record EOG (right and 

left) using conventional electrodes which can be easily worn by a patient at 

home. The idea was to integrate a sleep eye mask with EOG electrodes. 

Conventional EOG electrodes are made of adhesive pads or conductive 

paste and are neither reusable nor easy to use. Therefore, they replaced 

conventional electrodes with a material that can be reused and easily 

combined with the cloth eye mask. Multiscale entropy (MSE) and 

autoregressive (AR) coefficients of the theta band signals are extracted from 

the EOG. Linear discriminant analysis (LDA) were adopted to classify the 

five sleep stages based on the extracted MSE values and the AR coefficients. 

After classifying the sleep stage by LDA [125], a smoothing technique 

[126] was used to improve the classification accuracy. LDA finds a 

hyperplane that best separates two or more classes of objects or events by 

adjusting the linear weighting of features. They performed two 

experiments. The first experiment was designed to compare the eye mask 

system with manual scoring by experts during overnight sleep. These EOG 

signals included several sleep cycles of five sleep stages 

(Wake/S1/S2/S3/REM).  

The second experiment was designed to evaluate, online, the overall 

agreement during nap sleep. They woke the subjects up when they first 

reached an S3, or after a 30-min naptime. The recordings contained only 

three sleep stages (Wake/S1/S2).  In the overnight experiment, the overall 

agreement between the computer scoring and the manual scoring was 

84.33%. In the nap experiment, the overall agreement was 83.08%. 
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Partial least squares regression (PLS) is a statistical method that bears 

some relation to principal components regression; instead of finding 

hyperplanes of minimum variance between the response and independent 

variables, it finds a linear regression model by projecting the predicted 

variables and the observable variables into a new space [127]. PLS is an 

extended class of methods for modelling relations between sets of observed 

variables by means of latent variables. By encoding the class membership 

in a suitable indicator matrix, PLS can also be applied to classification 

problems [39]. Kayikcioglu et al. compared PLS performance by means of 

accuracy and time with k-nearest neighbourhood (k-NN), linear 

discriminant classifier (LDC) and Bayes. Figure 9 shows the flowchart of 

the proposed classification of single channel EEG sleep method that 

includes three parts: (1) pre-processing; (2) feature extraction; and (3) 

classification. They proved that for two-class staging (Sleep and Wake) PLS 

overcome other algorithms and is more suitable for real-time application. It 

is necessary to consider two points: first the performance of LDC is almost 

similar to PLS and secondly (to the best of our knowledge) still there is no 

comparison between PLS and other classifiers for full stage classification 

(W, S1, S2, S3 and REM). 
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Figure 9. Flowchart of the proposed single channel EEG classification (adapted from [39]). 

Huang et al. [128] introduced a novel method for training to overcome 

the typical slowness of the artificial neural network (ANN). It is clear that 

the learning of feedforward neural networks is in general far slower than 

required and it has been a major bottleneck in their application during the 

past decades. Two key reasons behind may be: (1) the slow gradient-based 

learning algorithms that are extensively used to train neural networks, and 

(2) all the parameters of the networks are tuned iteratively by using such 

learning algorithms. Unlike these conventional implementations, Huang et 

al. proposes a new learning algorithm called extreme learning machine 

(ELM) for single-hidden layer feedforward neural networks (SLFNs) which 

randomly chooses hidden nodes and analytically determines the output 

weights of SLFNs.  

ELM was originally inspired by biological learning and proposed to 

overcome the challenging issues faced by Back Propagation learning 
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algorithms. It also aims to provide a biologically inspired simple and 

efficient unified learning framework filling the gap between artificial 

learning methods and biological learning mechanisms. 

It was demonstrated that ELM has several interesting and significant 

features different from traditional gradient-based learning algorithms for 

feedforward neural networks such as: 

i. The learning speed of ELM is extremely fast. 

ii. In most cases the proposed ELM has better generalization 

performance than gradient-based learning algorithms such as 

backpropagation. 

iii. ELM tends to reach solutions straightforward overcoming the 

traditional gradient-based learning algorithms issues such as like 

local minima, improper learning rate and overfitting. 

iv. The analysis of the SLFNs performance with different activation 

functions is not done and the authors mention that as a future work. 

Several years later Huang [129] extended ELM to SLFNs with radial 

basis function (RBF) kernels which randomly generate the centres and 

impact widths of RBF kernels and simply analyse the output weights 

instead of iteratively tuned.  

Chen et al. [60] compared SVM with two kinds of ELM: basic ELM with 

sigmoid activation function and ELM with RBF kernels. The ELM 

achieved the best classification results with 20 hidden neurons and there 

was one node in the output layer whose target value was defined as: 1 – 

drowsiness, 0 – alertness. 
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It is almost impossible to discuss about classifiers without mentioning the 

ensemble learning technique [130]. This technique is derived from the 

principles of regular machine learning topic and uses multiple learning 

algorithms to obtain better results than conventional learning algorithms. 

Ensemble learning is a technique for combining a number of base learners 

in an attempt to produce better results. Basic machine learning classifiers 

such as bayes, adaboost, DTs, etc. are called base learners or weak classifiers 

in ensemble methods. Avci et al. [131] provided an efficient and robust 

method classifying the minute based occurrence of sleep apnea with 

respiration signals. They implemented three different ensemble learning 

classifiers such as: adaboost (as an ensemble learning method), RF and 

Random Subspace. However, the best result was obtained analysing nasal 

based respiratory signal by using the RF method. In this case, accuracy, F-

measure and kappa obtained 98.68%, 0.981 and 0.972, respectively. 

Gunes et al. [24] introduced a novel pre-processing method for features 

called k-means clustering based on feature weighting (KMCFW) and 

combined it with k-NN and C4.5 DT classifiers to discriminate six stages 

from sleep EEG including Wake, S1, S2, S3, REM and non-sleep 

(Movement time). Finally, the weighted sleep features have been 

automatically classified into six sleep stages using k-NN and C4.5 DT 

classifiers. In the classification of sleep stages, the k values of 10, 20, 30, 40, 

50, and 60 in k-NN classifier have been used and compared with each other. 

In the experimental results, while sleep features have been classified with 

55.88% success rate using k-NN classifier (k value of 40), the weighted sleep 

features with KMCFW has been recognized with 82.15% success rate k-NN 

classifier (k value of 40). They claimed that their system could be used as an 
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online system automatic scoring of sleep stages, which that is arguable from 

at least two points of view:  

i. Classifier:  

Taking into account that k-NNs are k values based, there are other 

classifiers which can easily overcome it like RF, DSVM, etc. 

ii. Bioelectrical signal:  

Nowadays, bioelectrical signals are preferable which are easily 

applicable1 and comfortable from the subject point of view2.  

Generally, neural networks can be divided into two main classes. One 

class contains feedforward neural networks (FFNNs), and the other 

contains recurrent neural networks (RNNs). The essential difference 

between FFNNs and RNNs is the presence of a feedback mechanism among 

the neurons in the latter. FFNN is a network without any feedback 

connections among its neurons, while an RNN has at least one feedback 

connection. Since RNNs allow feedback connections in neurons, the 

network topology can be very general: any neuron can be connected to any 

other, even to itself. Allowing the presence of feedback connections among 

neurons has an advantage: it leads naturally to an analysis of the network 

as a dynamic system, in which the state of the network, at one moment in 

time, depends on its state at a previous moment in time [132]. 

Examples of feedforward networks include the multi-layer perceptron 

(MLP) [133], the learning vector quantization (LVQ) network [134], the 

cerebellar model articulation control (CMAC) network [135] and the 

                                                           
1 Considering that currently people prefer to analyse their sleep signals at home rather than waiting in 
huge list for hospitals, sleep scoring and analysis devices should be easily used by ordinary patients.  
2 Reducing the number of sensor connected to the patient will allow him/her to sleep better. 
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group-method of data handling (GMOH) network [136]. Feedforward 

networks can most naturally perform static mappings between an input 

space and an output space: the output at a given instant is a function only 

of the input at that instant and FFNs are extensively used in pattern 

recognition. 

Examples of recurrent networks include the Hopfield network [137], the 

Elman network [138] and the Jordan network [139]. Recurrent networks 

have a dynamic memory: their outputs at a given instant reflect the current 

input as well as previous inputs and outputs. The comparison between 

feedforward and feedback-ward neural networks always has been an 

attractive task for researchers in various applications such as time series 

forecasting, equalizers, speech denoising, etc. [140]–[142]. Therefore, it 

can be proven that RNNs outperforms the FFNNs in the case of training 

and classification accuracy.  

Hsu et al. [37] used energy features extracted from characteristic waves 

of EEG signals. The classification performance of a FFNN and a 

probabilistic neural network (PNN) were compared to proposed classifier. 

They utilized Elman network as a recurrent neural classifier for 

categorizing human sleep stages. For classification problems, RNNs make 

efficient use of temporal information in the input sequence. The 

classification rate of the recurrent neural classifier (with 6 hidden neurons) 

was found to be better (87.2%) than those of the two neural classifiers 

(81.1% for FFNN with 6 hidden neurons and 81.8% for PNN).  

Şen et al. [6] did a comparative study on the classification of sleep stages. 

They compared RF, FFNN, DT, SVM and RBF neural networks from 

accuracy, time consumption and feature selection points of view. They have 
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provided 6 experiments and in each one a specific feature selection 

algorithm was used to feed features to the classifiers as follows: 

Exp. 1: Fisher score feature selection algorithm, 

Exp. 2: mRMR feature selection algorithm, 

Exp. 3: t-test feature selection algorithm, 

Exp. 4: ReliefF feature selection algorithm, 

Exp. 5: Fast Correlation Based Filter (FCBF) feature selection algorithm, 

Exp. 6: A Hybrid Approach. 

Figure 10 to 15 display the classification accuracy rates and the 

computation times for experiments 1 to 6.  

 

Figure 10. Results for experiment 1. 
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Figure 11. Results for experiment 2. 

 

Figure 12. Results for experiment 3. 

 

Figure 13. Results for experiment 4. 
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Figure 14. Results for experiment 5. 

 

Figure 15. Results for experiment 6. 

According to the results, the RF algorithm was the best algorithm in 

terms of success, considering that RF, SVM, DT and RBF algorithms were 

found to be effective in different feature clusters. Similar results were 

obtained in different experiments computational time. The DT algorithm 

was found to be the one with the lowest computation time followed by RF, 

SVM, FFNN and RBF algorithms respectively. 

In table 5, a number of recent works about sleep stage classification are 

listed considering the input channels, classifiers, accuracy and capability of 

discriminating sleep stages. 
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Table 5. Recent works for automatic sleep stage scoring. 

Authors 
Detected 
Sleep Stages 

Classifiers 
Classification 
Accuracy 

Input 
Channels 

Šušmáková et 
al. [80] 

W, S1, S2, S3, 
REM 

Discriminant 
Analysis 

77% 
EEG, EMG, 
EOG and ECG 
signals 

Chapotot et al. 
[65] 

W, S1, S2, S3, 
REM, 
Movement 
Time (MT) 

FFNN (with 
Back 
Propagation 
Algorithm) 

W: 34%, S1: 
43%, 
S2: 51%, S3: 
82%, 
REM: 82%, MT: 
13% 

EEG and 
EMG signals 

Zoubek et al. 
[55] 

W, S1, S2, S3, 
REM 

FFNN (with 
Back 
Propagation 
Algorithm) 

71% (EEG only), 
80% (EEG, EOG 
and EMG) 

EEG, EMG 
and EOG 
signals 

Tagluk et al. 
[9] 

REM, S1 
(Drowsy), S2 
(LS), 
S3 and S4 
(DS), W, Sleep 
spindles, REM 

FFNN (with 
Back 
propagation 
Algorithm) 

74.7% 

EEG, EMG, 
REOG and 
LEOG signals 
 

Sinha [143] 
W, Sleep 
spindles, REM 

FFNN (with 
Back 
Propagation 
Algorithm), 
Combined with 
Content rules 

95.35% EEG signal 

Fraiwan et al.  
[144] 

W, N-REM1, 
N-REM2, N-
REM3, 
N-REM 4, 
REM 

LDA 84% EEG Signal 

Subasi et al. 
[8] 

Alert, drowsy, 
sleep 

FFNN (with 
Levenberg– 
Marquardt 
Algorithm) 

94,03% EEG signal 

Ebrahimi et al. 
[145] 

W, S1, S2, S3, 
REM 

FFNN (with 
Back 
Propagation 
Algorithm) 

93% EEG signal 
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Doroshenkov 
et al. [73] 

W, S1, S2, S3, 
S4, REM 

HMM 92% EEG signal 

Gunes et al. 
[24] 

W, N-REM1, 
N-REM2, N-
REM3, 
N-REM 4, 
REM, Non-
Sleep 

DT (C4.5) 92.40% EEG signal 

Ozsen [89] 

W, N-REM1, 
N-REM2, N-
REM3, 
REM 

ANN 90.93% 
EEG, EMG 
and EOG 
signals 

Hsu et al. [37] 
W, N-REM 1, 
N-REM 2, S3, 
REM 

Elman 
Recurrent 
Neural 
Classifier 

87.2% EEG signal 

Baha Şen et al. 
[146] 

W, N-REM 1, 
N-REM 2, N-
REM 3, 
N-REM 4, 
REM 

RF 97.03% EEG signal 

Baha Şen et al. 
[146] 

W, S1, S2, S3, 
REM 

RF 98.02% EEG signal 

Jinwoo Kim et 
al. [5] 

W, S1, S2, S3, 
REM 

SVM 86%, EEG signal 

Kurihara et al. 
[147] 

W, S1, S2, S3, 
S4, REM 

Rule Based 

51.6%, 56.2%, 
and 77.5% (six, 
five, and three 
stages) 

Heartbeat and 
EMG signals 

Agarwal et al. 
[148] 

W, S1, S2, S3, 
S4, REM 

Clustering 76.8% 
EEG, EMG 
and EOG 
signals 

Vivaldi et al. 
[149] 

REM, S1, S2, 
S3 

Clustering Visualized EEG signal 

Hese et al. 
[150] 

REM, S1, S2, 
S3, Spindles 

K-means 
Clustering 

Visualized EEG signal 

Pacheco et al. 
[151] 

W, S1, S2, S3, 
S4, REM 

MLP + Rules 93.6% 
EEG, EOG 
and EMG 
signals 
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Schwaibold et 
al. [152] 

W, S1, S2, S3, 
S4, REM 

MLP + Neuro 
Fuzzy System 

Obstructive 
Sleep Apnea 
(OSA) subjects) 
70.7% - (Healthy 
subjects) 79.8% 

EEG, EOG 
and EMG 
signals 

Virkkala et al. 
[78] 

W, S1, S2, S3, 
REM 

DT 72.5% 

EOG L-M1, 
EOG R-M1 
and the 
calculated 
EOG L–R 
signals 

Khalighi et al. 
[53] 

W, S1, S2, S3, 
S4, REM 

Importance 
Weighted 
Kernel Logistic 
Regression 
(IWKLR) 

(Sleep/Wake) 
73.75% - (All 
Stages) 96.55% 

EEG, EOG 
and EMG 
signals 

Gudmundsson 
et al. [153] 

W, (Light 
Sleep) LS, S3, 
REM 

SVM, k-NN 
81% - (K=30) 

80% 
EEG signal 

McGrogan et 
al.  [154] 

W, S1, S2, S3, 
S4, REM, MT 

ANN 

(consensus 
scores) 72.2% - 
(single expert 
Scores) 63.3% 

EEG signal 

Alvarez-
Estevez et al. 
[155] 

W, S1, S2, S3, 
REM 

Fuzzy Logic 
(111 Fuzzy 
Rules) 

90% 
EEG, EOG 
and EMG 
signals 

Flexer et al. 
[156] 

W, S1, S2, S3, 
S4, REM 

HMM 
(S2) 14% - 

(Wake) 86% 
EEG and 
EMG signals 

Fraiwan et al. 
[25] 

W, S1, S2, S3, 
REM 

RF 83% EEG signal 

Liang et al. 
[126] 

W, S1, S2, S3, 
REM 

DT 86.68% 
EEG, EOG 
and EMG 
signals 

Krakovska et 
al.  [71] 

W, S1, S2, S3, 
S4, REM 

Rules 81% 

EEG, EOG, 
EMG 
and ECG 
signals vs EEG 
alone 

Koley et al. 
[23] 

W, S1, S2, S3, 
S4, REM 

SVM 96.4% EEG signal 

Hanaoka et al. 
[157] 

W, S1, S2, S3, 
S4, REM, MT 

DT 80% 
EEG, EOG 
and EMG 
signals 
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Tagluk et al. 
[9] 

S1, S2, S3, S4, 
REM 

ANN 74.7% 
EEG, EMG, 
REOG and 
LEOG signals 

Wang et al. 
[158] 

W, LS, DS, 
REM 

Conditional 
Probability of 
the Knowledge 
Base 

W (88.6%) 
REM (68.1%) 
LS (82.4%) 
DS (96.3%) 

EEG, EOG 
and EMG 
signals 

Park et al. 
[159] 

W, S1, S2, S3, 
S4, REM 

Case Based 
Reasoning and 
Hybrid Rule 

87.5 % 
EEG, EOG 
and EMG 
signals 

Anderer et al. 
[160] 

W, S1, S2, S3, 
S4, REM 

Rule-Based and 
LDA 

80% 
EEG, EOG 
and EMG 
signals 

Gabran et al. 
[161] 

S1, S2, S3, S4, 
REM 

ANN 85% EEG signal 

3-3-2 Deep Learning Approach  

Unlike some of the machine learning areas such as natural language 

processing and object classification, the potential of deep learning 

techniques is not fully explored in automatic sleep stage classification. This 

fact is also noticeable when it comes to the feature transformation for sleep 

scoring. To the best of our knowledge, there are few researches works in 

this area and in the following we will try to review them. 

Since 2006, deep structured learning, or more commonly called deep 

learning, has emerged as a new area of machine learning research [162]. 

During the past several years, the techniques developed from deep learning 

research have already been impacting a wide range of signal and 

information processing work within the traditional and the new, widened 

scopes including key aspects of machine learning and artificial intelligence.  

By the commonly adopted machine learning tradition naturally deep 

learning techniques classify into deep discriminative/supervised models 
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(e.g., deep neural networks (DNNs), RNNs, convolutional neural networks 

(CNNs), etc.) and generative/unsupervised models (e.g., restricted 

Boltzmann machine (RBMs), deep belief networks (DBNs), deep Boltzmann 

machines (DBMs), regularized autoencoders, etc.). The third category 

belongs to the class of hybrid deep network structures, which refers to the 

deep architecture that either comprises or makes use of both generative and 

discriminative model components. This two-way classification scheme, 

however, misses a key insight gained in deep learning research about how 

generative or unsupervised-learning models can greatly improve the 

training of DNNs and other deep discriminative or supervised-learning 

models via better regularization or optimization. deep learning [163]–

[165] has been proposed for unsupervised feature learning and has been 

applied to many domains, such as biomedical signals [90], [166]–[169]. 

One of the major advantages of deep learning compared to traditional 

approaches is that they can work directly on raw data and do not require 

any tuning or hand-crafted features. Instead, they can learn their own 

feature representations.  

Längkvist et al. [169] explored the feasibility of applying a DBN to sleep 

data. In general, DBN tends to learn distributed, non-sparse 

representations [170]. However, sparse representation models resemble 

biological visual system characteristics, and they are able to learn more 

complex features than simple oriented bars. Lee et al. [165] considering 

this part of the biological visual system characteristics, presented a sparse 

variant of the deep belief network (SDBN) model. Deep learning have been 

successfully applied to detect anomalies related to epilepsy in EEG 

recordings [167] and to classify sleep stages from EEG as well as 

recordings of eye movements and skeletal muscle activity [169]. Zhang et 
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al. [90] presented an automatic sleep stage method which includes a SDBN 

for extracting feature from EEG, EOG and EMG and a combination of 

multiple classifiers. Moreover, a voting principle based on classification 

entropy was proposed to enhance the classification performance further by 

harnessing the complementary information provided by the individual 

classifier. The flowchart of the proposed technique is shown in figure 16. 

 

Figure 16. Flow-chart of multi-parameter sleep staging method [90]. 

Each data channel was divided into segments of 30s with zero overlap for 

feature extraction and imported to the SDBN which contains two major 

points: DBN and sparse coding. The features extracted from SDBN were 

classified into W, S1, S2, S3 and REM. The classification performance of 

the selected subjects using the combination of classifiers was 91.31%, with 

accuracy of 83.98% for the SVM, 82.05% for the k-NN and 85.55% for the 

HMM. Considering the total accuracy, which is higher than each classifier 

by itself, this technique can be considered successful. However, from 

another point of view, computational complexity is increased which is not 

an ignorable objection specially on real-time sleep classification tasks. 
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In [171], the main idea is to use hybrid deep learning models to increase 

the performance of sleep stage classification. DBNs are applied on 28 hand-

crafted feature set for unsupervised generation of higher-level features. For 

classification, another deep structure, namely, Long Short-Term Memory 

(LSTM) is used. In this work, sleep stage classification is regarded as a time 

series and sequence classification problem. Therefore, the ability of LSTM 

models for recognizing the patterns from a sequence of events is mentioned 

as the reason for using this classifier.  

The proposed algorithm is tested on two sleep recording datasets and the 

features are extracted from EEG, EOG and EMG. The performance of the 

proposed algorithm (DBN+LSTM) is compared to three other sleep stage 

classification algorithms, namely DBN only, LSTM only and DBN with 

HMM. Simulation results show that two hybrid methods (DBN+LSTM 

and DBN+HMM) have significantly better performance than single DBN 

and single LSTM, while DBN+LSTM performs better than DBN+HMM 

for both datasets. It has been concluded that LSTM boosted the 

performance of DBN much better than HMM. 

Dong et al. in [172], proposed a practical approach for mitigating the 

limitations of single-channel automatic sleep stage classification using 

mixed neural network (MNN). MNN is a deep learning-based feature 

transformation and classification technique and is composed of an RNN, a 

LSTM and a Softmax regression. The input to this system is a feature 

vector with time-frequency domain, statistical and time domain features. 

Considering temporal dependency of sleep stages to each other, in addition 

to the features of the current epoch, the features from previous EEG epochs 

are also fed to the system. In this paper, several alternative electrode 

placements are explored and finally a convenient single forehead EEG 
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channel together with an EOG channel configuration is proposed for the 

low-cost, at-home sleep monitoring applications. 

Tsinalis et al. [173] presented a time-frequency analysis based feature 

extraction to feed the stacked sparse autoencoders (SSAE) for classifying 

the sleep stages. SSAEs are a specific type of neural network model. The 

key difference between stacked autoencoders and standard neural networks 

is layer-wise pre-training using unlabelled data (i.e., without class labels) 

before fine-tuning the network as a whole. Autoencoders were trained using 

iterative optimization with backpropagation. They got overall accuracy of 

78% with S3 being the most correctly classified sleep stage with around 

90% correctness. Stages S2, R and W follow, with around 80% of the epochs 

correctly classified for each stage. The most misclassified stage was S1 with 

only 60% correctness. Most misclassifications occurred between the pairs 

S1-W and S1-R (about 15 and 13% respectively), followed by pairs S1–S2 

and S2–S3 (about 8%), and S2-R and R-W (about 4%). The remaining pairs 

had either misclassification rates smaller than 4% (S2-W and S3-W) or 

almost no misclassifications at all (S1–S3 and S3-R). Although they reached 

a considerable value of accuracy and F1-score their method is not the most 

accurate and efficient one because: 

i. No feature selection methods were used; 

ii. Using a single channel is essential for future monitoring devices 

but it seems that they did not apply any pre-processing technique 

to prepare data in order to reach higher accuracy; 

iii. Considering the numbers of open-access sleep databases, they 

could evaluate their method by applying it to other databases as 

well. 
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In [174], an end-to-end deep learning method was proposed to perform 

temporal sleep stage classification using multivariate sleep signals, i.e. 

EEG, EOG, and EMG. This algorithm basically had three key steps. First, 

linear spatial filtering was applied to the input signals with the aim of 

enhancing the information contained in the data. Second, feature extraction 

architecture, where temporal convolution, rectified linear operator, and 

max pooling were applied to signals serially. The outputs of the second step 

were concatenated to form the feature space. Finally, the features were fed 

to nonlinear Softmax classifier. The results of this work were compared to 

other methods in the following works: 

i. Tsinalis et al. [175], 

ii. Lajnef et al. [176], 

iii. Supratak et al. [177]. 

Comparison of this method with three state of the art methods yielded 

comparable performance as well as low run time and computational cost.  

With rapid development of wearable devices and increased accessibility 

of EEG signal, single channel deep learning models are getting more 

attention. For instance, Supratak et. al. [177] proposed DeepSleepNet. 

This model is based on raw sleep EEG signal and contains two different 

CNNs to extract time-invariant features and one bidirectional LSTM for 

sequence residual learning [178]. The performance evaluation with two 

different datasets demonstrated that this method was able to learn features 

from raw EEG signal and classify them efficiently compared to the methods 

that use hand-crafted features.  

In another work, Vilamala et. Al. [179] developed the idea of single 

channel system combined with transfer learning. They tested the 
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hypothesis that sleep stage classification can be supported by transfer 

learning on the data obtained from Physionet Sleep-EDF database [180]. 

Spectral images were created from each window of EEG signal using a 

method called multitaper spectral estimation [181]. These images were fed 

to a pre-trained CNN, VGGNet [182], to be classified into one of five sleep 

stages. Empirical evaluation results showed that this method reaches a 

performance comparable to the state of the art methods. 

Recently, Ren et al. [183] applied CNN to the feature learning of EEG 

data and valuated it on the datasets from previous brain-computer 

interfaces (BCI) competitions. Compared with other state-of-the-art feature 

extraction methods, the learned features using CNN shown better 

performance. 

3-4 Brief Summary 

When relating all the above different existing solutions in the literature 

with the proposed research work, it is noticeable that deeper research work 

is required in sleep stage classification to apply these methods as a reliable 

tool in clinical environments. Despite several works have already proposed 

methods, further research is however mandatory in particular regarding 

denoising the EEG signal without manipulation and improving the 

classifier performance. Some of the challenges are related to the 

identification of the noise structure to efficiently detect and cancel it from 

original data. The next challenge is enhancing the generalization ability of 

the classifier to unseen data by improving the learning phase. The potential 

of applying advanced learning techniques such as deep learning is not 

explored adequately in sleep stage classification. 
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Chapter 4 

 

4 Research Methods 

 

In this section the methods and databases used to achieve the goals of this 

thesis will be described. Also, a brief description of the methods applied for 

data pre-processing/denoising, feature extraction/selection and 

classification procedures can be found. 

4-1 Data 

Details of all the databases utilized in this thesis will be discussed in this 

section. For the investigation of sleep stage classification based on PSG 

signals and evaluation of the developed algorithm, annotated data is needed. 

Therefore, two different open-access databases annotated under the AASM 

rules were obtained from online sources.  
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The following databases were used: 

i. Sleep-EDF Database [Expanded] [180]; 

 The collection of data in this database comes from two 

studies. PSG recordings of the first study are named SC files 

(SC = Sleep Cassette). PSG recordings of the second study 

are named ST files (ST = Sleep Telemetry). SC files were not 

used, since EMG data for first study was a zero-amplitude or 

no-data recording. Therefore, only ST files were chosen, 

which are a collection of 22 PSG signals recorded in the 

hospital during two nights for about 9 h in 1994. EOG, EMG 

and EEG signals were sampled at 100 Hz, and the event 

marker at 1 Hz. Except for slight difficulty in falling asleep, 

subjects were healthy without any sleep related medication. 

The data were segmented into 30s epochs and all epochs 

were scored according to R&K guidelines for human sleep 

staging. These recordings include EEG (Fpz-Cz and Pz-Oz), 

EOG (horizontal), submental chin EMG, together with the 

corresponding hypnograms. 

ii. ISRUC_Sleep Database [85]; 

 This dataset includes data from healthy subjects as well as 

subjects with sleep disorders and subjects under the effect of 

sleep medication. PSG recording was performed using a bio-

signal acquisition equipment namely, SomnoStar Pro sleep 

system, in the sleep medicine centre of the hospital of 

Coimbra University (CHUC) between 2009 and 2013. Each 

PSG signal was recorded over a whole night of sleep 
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(approximately eight hours) according to the 

recommendations of AASM. The sampling frequency was 

200 Hz for all EEG, EOG, chin EMG and ECG signals. 

After data segmentation into 30 second epochs, two different 

experts performed manual sleep scoring using AASM. To 

improve the quality of the recordings, a pre-processing 

technique was applied by the providers of the database: 

i. A notch filter was applied to eliminate the 50 Hz 

electrical noise from EEG, EOG, chin EMG and 

ECG. 

ii. EEG and EOG recordings were filtered using a 

bandpass Butterworth filter with a lower cut-off 

frequency of 0.3 Hz and higher cut-off frequency of 

35 Hz. 

iii. EMG channels were filtered using a bandpass 

Butterworth filter with a lower cut-off frequency of 

10 Hz and higher cut-off frequency of 70 Hz. 

4-2 Pre-Processing 

Because no online database without major or minor issues exits, the 

following sub-sections will explain the methods applied for preparing the 

content of the databases. These preparation procedures effect the 

performance of classification dramatically. 
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4-2-1 Database Pruning and Synchronization 

In this sub-section, an approach to tackle the initial problems of the 

databases will be discussed which include cropped epochs identification and 

pruning. The main causes for the appearance of those kinds of epochs are 

sensor disconnection, body movement or recording device issues. After 

analysing two databases two kinds of data corruption was observed: 

 In the beginning or at the end of recordings; 

 In the middle of the recordings; 

In both above mentioned cases data loss occurs which could 

dramatically affect the number of specific epochs for each stage. 

Considering the fact that the number of S1 and REM stages in both of 

the databases is low, it could affect negatively the classification accuracy. 

After removing the corrupted epochs in one or all the recorded signals 

(EEG, EOG, ECG and EMG), corresponding epochs are removed from 

the hypnogram in order to synchronize the signals. 

4-2-2 Filtering and Windowing 

In order to guarantee the reliability of biomedical signal analysis, artefact 

free data is necessary. In this thesis, for reducing the artefact, the cropped 

epochs were automatically detected and eliminated. Then EEG and EOG 

data were band-pass filtered between 0.3 Hz and 35 Hz and EMG was 

filtered between 10 Hz to 100 Hz according to the AASM manual for the 

sleep scoring [1]. Then, the EEG, EOG and EMG signals were windowed 

in 30s intervals and grouped stage wise by considering the corresponding 

hypnogram. Next, in contrast with conventional approaches in the 

literature, which imports all the existing epochs to the classifier, we used a 

quantity of epochs selected out of each subject. In this method, selected 
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epochs from each subject should have two characteristics. First, the number 

of epochs must be the same for all the subjects. Second, the number of 

epochs for each stage should be dependent on the number of occurrences of 

that stage for each subject. The proposed method is suitable for large 

databases with lower standard deviation in the quantity of each class 

helping on the computational complexity reduction of the classifier training 

stage. Considering that sleep databases have S1 deficiency, the training 

dataset will become highly unbalanced using the conventional method. 

Therefore, in this thesis proposed method was used to make balanced and 

fair training datasets from the number of stages point of view. 

4-3 Proposed Adaptive Filtering Technique 

Rather than other works that used artificial noise, in [184] real EEG data 

contaminated with EOG and EMG are used for evaluating the proposed 

artefact removal algorithm’s efficiency via classification accuracy. The 

artefact detection is performed by thresholding the EEG-EOG and EEG-

EMG cross correlation coefficients. Then, the segments considered 

contaminated are denoised by NLMS adaptive filtering technique. Using a 

single EEG channel, four sleep stages consisting of Awake, Stage1 + REM, 

Stage 2 and S3 are classified. A wavelet packet (WP) based feature set 

together with ANN was deployed for sleep stage classification purposes. 

 Still there are some open challenges such as: 

 Using ECG channel for denoising the EEG, 

 Extract or simulate the real artefact from EOG, EMG or ECG and 

add to clean EEG (proved by expert) to better evaluate the 

denoising performance. 
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4-3-1 Artefact Detection and Removal 

It is usually assumed that the measured EEG is a linear combination of 

cerebral activity with one or more kind of artefacts. Therefore, in this work, 

for detecting the EOG and EMG contamination, the filtered EEG, EOG 

and EMG recordings are divided into 1000-sample segments and then the 

cross correlation of each EEG segment is calculated with the corresponding 

EOG and EMG segment. If the absolute value of the EEG-EOG cross 

correlation coefficients or EEG-EMG cross correlation coefficients is more 

than threshold 1 or threshold 2 respectively, the corresponding segment 

will be fed to an artefact removal block which is based on NLMS adaptive 

filtering. Adaptive filtering [185] has been extensively used in EEG 

artefact removal algorithms. It uses a recorded reference of the artefact (in 

our case horizontal EOG and submental chin EMG) to adjust a vector of 

weights that models the contamination according to an optimization 

algorithm. 

If the thresholding conditions for cross correlation coefficients are not 

satisfied, the relevant EEG segment will be copied to the output without 

any change. 

4-4 Feature Extraction 

In this section, feature extraction from 30-second epochs of PSG data will 

be explained in detail. The feature set consists of 80 features extracted from 

EEG, EOG, and EMG signals. We tried to use the most common features 

to explore the information contained in these signals [6], [23], [186]–

[188]. These features can be mainly categorized into temporal, time-

frequency domain, entropy-based and non-linear features. In order to 
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extract time-frequency domain features, a WP tree with seven levels of 

decomposition was utilized to extract the EEG rhythms. For more details 

about EEG rhythms and features refer to [41], [189]. As a result, each 

epoch’s feature vector contains 41 EEG, 12 EOG, 13 EMG, 6 ECG, 4 EEG-

EMG, and 4 EEG-EOG features. Table 6 summarizes the conventional 

features and table 7 summarizes the distance-based features used in this 

thesis along with their handy descriptions. The distance-based features are 

categorized in the non-linear group. 

Table 6. Summary of the conventional features extracted from PSG recordings. 

Ref. Signal Description T* TF* F* E* NL* 

F1 

EEG 

Arithmetic Mean      

F2 Maximum      

F3 Minimum      

F4 Standard Deviation      

F5 Variation      

F6 Skewness      

F7 Kurtosis      

F8 Median      

F9 Petrosian Fractal Dimension      

F10 Rényi Entropy      

F11 Spectral Entropy      

F12 Permutation Entropy      

F13 Approximation Entropy      

F14 Hjorth Parameter (Activity)      

F15 Hjorth Parameter (Mobility)      

F16 Hjorth Parameter (Complexity)      

F17 Mean Curve Length      

F18 Zero-Crossing Number      

F19 Mean Energy      

F20 Mean Teager Energy      

F21 Hurst Exponent      

F22 
Mean Quadratic Value of WP Coefficients 
in Delta Band 

  
 

  

F23 
Mean Quadratic Value of WP Coefficients 
in Theta Band 

  
 

  

F24 
Mean Quadratic Value of WP Coefficients 
in Alpha Band 

  
 

  

F25 
Mean Quadratic Value of WP Coefficients 
in Spindle Band 

  
 

  

F26 
Mean Quadratic Value of WP Coefficients 
in Beta1 Band 

  
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F27 
Mean Quadratic Value of WP Coefficients 
in Beta2 Band 

  
 

  

F28 
Mean Quadratic Value of WP Coefficients 
in All Frequency Bands  

  
 

  

F29 F24/(F22+F23)      

F30 F22/(F24+F23)      

F31 F23/(F22+F24)      

F32 F24/F23      

F33 F22/F23      

F34 
Mean of the Absolute Values of WP 
Coefficients in All Bands 

  
 

  

F35 
Standard Deviation of WP Coefficients in 
All Bands 

  
 

  

F36 

EMG 

Spectral Power      

F37 
Maximum of the Spectral Power 
Distribution 

     

F38 Mean of the Spectral Power Distribution      

F39 
Standard Deviation of the Spectral Power 
Distribution 

     

F40 Temporal Energy      

F41 
Ratio of the Temporal Energy of Current 
Epoch to The Energy of Previous Epoch 

  
 

  

F42 
Ratio of the Temporal Energy of Current 
Epoch to the Energy of Next Epoch 

  
 

  

F43 

EOG 

Mean      

F44 Energy      

F45 Maximum      

F46 Standard Deviation      

F47 Skewness      

F48 Kurtosis      

* T: Temporal, TF: Time-Frequency, F: Frequency, E: Entropy, NL: Non-Linear 

Table 7. Summary of distance-based features extracted from PSG recordings. 

Ref. Signal Description 

F49 

EEG 

Itakura Distance of AR Coefficients 

F50 Itakura Distance of Spectral Coefficients 

F51 Itakura-Saito Distance of AR Coefficients 

F52 Itakura-Saito Distance of Spectral Coefficients 

F53 

EMG 

Itakura Distance of AR Coefficients 

F54 Itakura Distance of Spectral Coefficients 

F55 Itakura-Saito Distance of AR Coefficients 

F56 Itakura-Saito Distance of Spectral Coefficients 

F57 

EOG 

Itakura Distance of AR Coefficients 

F58 Itakura Distance of Spectral Coefficients 

F59 Itakura-Saito Distance of AR Coefficients 

F60 Itakura-Saito Distance of Spectral Coefficients 

F61 ECG Itakura Distance of AR Coefficients 
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F62 Itakura Distance of Spectral Coefficients 

F63 Itakura-Saito Distance of AR Coefficients 

F64 Itakura-Saito Distance of Spectral Coefficients 

F65 

EEG & 
EOG 

Itakura Distance of AR Coefficients, 

F66 Itakura Distance of Spectral Coefficients 

F67 Itakura-Saito Distance of AR Coefficients 

F68 Itakura-Saito Distance of Spectral Coefficients 

F69 

EEG & 
EMG 

Itakura Distance of AR Coefficients 

F70 Itakura Distance of Spectral Coefficients 

F71 Itakura-Saito Distance of AR Coefficients 

F72 Itakura-Saito Distance of Spectral Coefficients 

F73 
EEG 

COSH Distance of AR Coefficients 

F74 COSH Distance of Spectral Coefficients 

F75 
EMG 

COSH Distance of AR Coefficients 

F76 COSH Distance of Spectral Coefficients 

F77 
EOG 

COSH Distance of AR Coefficients 

F78 COSH Distance of Spectral Coefficients 

F79 
ECG 

COSH Distance of AR Coefficients 

F80 COSH Distance of Spectral Coefficients 

4-5 Feature Normalization 

The extracted features from PSG signals are in different ranges, and this 

variety can bias the results of the following steps. Feature normalization 

methods are usually utilized for avoiding this bias. In this thesis, two 

different types of normalization methods were used: standardization (or Z-

score normalization) and Min-Max. The effect of each method in feature 

ranking and classification was evaluated. In standardization, the features 

were rescaled so that they have zero mean and unit variance. In Min-Max, 

features were scaled to the fixed range of [0 1]. This rescaling is necessary 

for many machine learning algorithms. 

4-6 Feature Selection 

In this section the goal is to use conventional feature selection methods 

to prepare the features set for classifiers. In order to select a subset of 
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features containing most of the original feature set information, we 

proposed a two-step feature selection method. In the first step we reduced 

the similarity between pairs of the features. In the second step, different 

feature ranking methods were applied. 

4-6-1 Similarity Reduction 

To remove the features with high levels of similarity, a feature selection 

method was proposed. The existence of similar features negatively affect 

the stability [190] of the feature ranking results; therefore, applying feature 

selection can improve the overall performance of the proposed algorithm 

[191]. After the L1-norm between each pair of feature vectors was 

calculated, a similarity threshold was defined. The feature pair, whose L1-

norm was lower than the threshold level, was considered strongly similar. 

This way, features were clustered into groups of similar features, and one 

feature per cluster was selected as representative. The representative 

feature was the one with the lowest computational complexity. 

Alternatively, it is possible to use Principal Component Analysis (PCA) for 

finding the most dissimilar features. However, there is a main reason why 

we did not use PCA. In PCA for finding a non-redundant feature set would 

lead to keeping and calculating all the features in the classification and 

practical application steps, whereas by using the similarity threshold, the 

most redundant features can be detected and omitted from the feature set 

in the application step. 

4-6-2 Feature Ranking 

For analysing the contribution and evaluating the potency of the different 

kind of features, feature ranking techniques were adopted. In particular, we 

used ReliefF, minimum Redundancy Maximum Relevance (mRMR-MID 
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and mRMR-MIQ), Fisher score, Chi-square and Information Gain (IG) 

techniques. Next, each technique will be briefly described: 

4-6-2-1 ReliefF 

Originally proposed by Kira and Rendell in 1992 [192], Relief [193] is 

an instance-based method for estimating a feature discrimination power. In 

this method, for a randomly selected sample, the 2k nearest neighbours are 

considered: k neighbours from the same class (hits) and from a different class 

(misses). Then, the distance of the random sample from the hits and misses 

is calculated. A quality (discrimination power) coefficient is updated 

according to this distance, i.e., the feature with lower distance from hits will 

have higher quality. ReliefF is an extension of the Relief method that 

removes the two-class problems restriction and reduces its sensitivity to 

noisy and incomplete data. 

4-6-2-2 minimum Redundancy-Maximum Relevance (mRMR) 

This is a feature selection method that selects a subset of features by 

maximizing the relevance of each feature to the target class and minimizes 

the redundancy between the selected features. It was mainly proposed by 

Peng et al. [194] for dealing with the redundancy problem. The 

redundancy and relevance are calculated using mutual information, whereas 

the objective function is defined by either the difference between 

redundancy and relevance (mRMR-MID) or the ratio between relevance 

and redundancy (mRMR-MIQ). 

4-6-2-3 Fisher Score 

This method is one of the most efficient, being widely used for feature 

ranking. Its main idea is to find a group of features with maximum distance 

between the data points from different classes and minimum distance 
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between the data points of the same class in the feature space [195]. Since 

the Fisher score is calculated individually for each feature, the selected 

feature set can be redundant. 

4-6-2-4 Chi-square Test 

This is a statistical test to measure the independency of events. In feature 

selection, it is used to evaluate whether or not the occurrence of a specific 

value of a feature and a specific class are independent. Despite the fact that 

Chi-square was proposed exclusively for categorical data, this method was 

later extended to the continuous case [196]. For calculating the Chi-square 

statistics of each feature, the range of the numerical feature should be 

discretized into intervals. The features are ranked according to Chi-square 

statistics without taking into account the interactions between features like 

Fisher score. 

4-6-2-5 Information Gain (IG) 

This method proposed by Ross Quinlan [197] is a widely used feature-

ranking algorithm. It works based on a DT generated from the training set. 

To select the effective feature in each node of the tree the IG measure is 

used. In other words, IG measures how much information each specific 

feature provides with respect to each class. Therefore, considering the 

notion of the DT, IG depends on how much information was available 

before knowing the feature and on how much would be available after. A 

common measure for the information is Shannon entropy, although any 

measure that allows for evaluating the information content of a feature will 

be applicable. 



 
99 

 

4-7 Classification 

The process of labelling the data into relevant classes is called 

classification. The first step in the classification process is the identification 

of the features or characteristics that will enable the highest discrimination 

between the different groups of data. A classification model is developed in 

such a way that it provides the structure for how the classification 

processes’ actions will be realized. Ideally, this model should be chosen to 

optimize the performance of the classification system, although it may need 

to be revised as the classifier design progresses. A classifier is then 

implemented and “trained” to recognize the chosen features in the data, or 

to determine the best input-to-output mapping. Once the system has 

trained and learned, it is ready to classify specific inputs. Then, the system 

can be tested and evaluated with such metrics as speed of computation and 

accuracy of classification [118]. For sleep stage classification variety of the 

classifiers have been used. In this thesis we will compare conventional to 

the recently emerged methods. Five different classifiers were chosen as 

follows: k-NN, ANN, DSVM, and deep learning (SSAE and CNN). DSVM 

classifier has been comprehensively discussed in the subsection 3-3-1, 

therefore it will not be explained in this section. 

4-7-1 k-NN Classifier 

k-NN is a fairly simple and straightforward classifier to implement, which 

makes it very appealing. Briefly, it has two parameters that need to be 

adjusted, which can directly affect the classification performance. The first 

is the number of neighbours while the second is the dissimilarity measure 

that indicates the neighbouring relationships [198].  
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Euclidean distance was used as the distance measure for the k-NN 

classifier in this work. In each experiment, considering the number of 

features, the classification accuracy for the 1, 2, …20 neighbourhood was 

calculated, and the one leading to maximum accuracy was selected as the 

optimum neighbourhood number. 

4-7-2 Shallow ANN Classifier 

In the state of art section of this thesis we discussed about ANN. 

Considering the slowness of learning procedure of ANN, it is one of the 

wildly applied classifiers to biosignals.  

A standard FFNN consists of many simple, connected processors called 

neurons, each producing a sequence of real-valued activations. Input 

neurons get activated through sensors perceiving the environment while 

other neurons get activated through weighted connections from previously 

active neurons. Some neurons may influence the environment by triggering 

actions.  

The work flow for the neural network design process has seven primary 

steps as follows [199]: 

i. Collect data; 

ii. Create the network; 

iii. Configure the network; 

iv. Initialize the weights and biases; 

v. Train the network; 

vi. Validate the network; 
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vii. Use the network to test; 

A standard three-layer FFNN is illustrated in Fig. 17, which consists of 

an input layer, a hidden layer and an output layer [199], [200]. 

 

Figure 17. Three layers neural network [199]. 

In the following output of each layer is given by: 

   (7) 

    (8) 

   (9) 

Figure 17 shows an output layer (layer 3) and a hidden layer (layers 2). 

The input layer is composed of input vectors [p1, p2, …, pR]. A layer whose 

output is the network output is called the output layer [a3
1, a3

2, …, a3
S

3]. The 

other layers are called hidden layers with outputs of [a1
1, a1

2, …, a1
S

1] and 

 1 1 1 1 a f W p b

 2 2 2 1 2 a f W a b

 

   

3 3 3 2 3

3 3 2 2 1 1 1 3 3

 

   

a f W a b

f W f W f W p b b b
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[a2
1, a2

2, …, a2
S

2]. All inputs in each layer goes through the transfer function 

(f), which produces the scalar neuron output vector a. 

4-7-3 Stacked Sparse Auto Encoder (SSAE) 

An autoencoder is a special type of neural network whose output values 

are equal to the inputs. Figure 18 presents an autoencoder structure. An 

autoencoder typically consists of an encoder and a decoder and it is trained 

in an unsupervised manner using backpropagation. During training, a cost 

function that measures the error between input and output of the 

autoencoder is optimized. In other words, the autoencoder tries to learn the 

identity function. By applying special constraints on the network such as 

the number of hidden units, an autoencoder can learn new representation 

or coding of the data [201]. 

Suppose the input vector to the autoencoder is a set of un-labelled data

. This vector is encoded to another vector  in the hidden layer 

as follows: 

   (10) 

where h1 is the transfer function of the encoder, W1 is the weight matrix 

and b1 is the bias vector of the encoder. Then, the autoencoder tries to 

decode this new representation back to the original input vector as follows: 

   (11) 

where h2 is the transfer function of the decoder, W2 is the weight matrix 

and b2 is the bias vector of the decoder. Sparse autoencoder is a specific type 

of autoencoder in which, in order to encourage the sparsity of the output of 

the hidden layer, a constraint is imposed on the number of active hidden 

xD
x 1D

z

 1 1 1h z W x b

 2 2 1 1ˆ h h  x z W x b
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neurons. The cost function of sparse autoencoder is slightly different from 

the original autoencoder as follows: 

   (12) 

where N is the length of the input vector,  is the weight regularization 

parameter and  is the sparsity regularization parameter [202]. 

A SSAE is a neural network with several sparse autoencoders. In this 

architecture, the output of each autoencoder is fully connected to the inputs 

of the next autoencoder. Greedy layer-wise training strategy is usually used 

for training SSAE. After the training of each layer is complete, a fine tuning 

is usually performed for enhancing the learned weights using 

backpropagation algorithm. Fine tuning can greatly improve the 

performance of the stacked autoencoder [201]. Figure 19 shows the 

training steps of a stacked autoencoder with two layers. Training of this 

stacked autoencoder has three steps: 

i. Step1: initial pretraining of layer 1; 

ii. Step 2: optimize the weights of the second layer using the weights 

of the first layer; 

iii. Step 3: model fine-tuning by connecting all layers together; 

 
2

weight regularization sparsity regularization
mean squared error

1
ˆ

weights sparsityE
N

       x x




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Figure 18. Structure of an autoencoder with 3 fully-connected layers. 

 

Figure 19. Training of two layers stacked autoencoder [203]. 

The Softmax function is also known as the normalized exponential and 

can be considered the multi-class generalization of the logistic sigmoid 

function [204]. The Softmax function is the output unit activation function 

that should come after the last fully connected layer for multi-class 

classification problems. After SSAE, a Softmax function is used as classifier 

and stacked to the network as the output layer. 

4-7-4 Convolutional Neural Network (CNN) 

A CNN is a multilayer perceptron designed specifically to recognize two-

dimensional shapes with a high degree of invariance to translation, scaling, 
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skewing, and other forms of distortion. Learning section of this classifier is 

done in supervised method which includes the following structure [205], 

[206]: 

i. Feature extraction; 

ii. Feature mapping; 

iii. Subsampling; 

The weights in all layers of a CNN are learned through training. Also, 

the network learns to extract its own features automatically. 

 

Figure 20. Convolutional network for image processing such as handwriting recognition. 

Figure 20 illustrates the architectural design of a CNN made up of an 

input layer, four hidden layers, and an output layer. This network is 

designed to perform image processing. The input layer consists of 28×28 

sensor neurones, receives the images of different characters that have been 

approximately centred and normalized in size. 

However, a major breakthrough in the field occurred in 2012 when the 

Deep CNN AlexNet won the ImageNet Large-Scale Visual Recognition 

Challenge (ILSVRC) by a big margin to all other competing models [179]. 
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Therefore, an overall architecture of this CNN will be described in this part 

of thesis.  

As depicted in figure 21, the AlexNet contains eight layers with weights; 

the first five are convolutional and the remaining three are fully-connected. 

The output of the last fully-connected layer (eighth layer) is fed to a 1000-

way Softmax which produces a distribution over the 1000 class labels. 

AlexNet maximizes the multinomial logistic regression objective, which is 

equivalent to maximizing the average across training cases of the log-

probability of the correct label under the prediction distribution. The 

kernels of the second, fourth, and fifth convolutional layers are connected 

only to those kernel maps in the previous layer. The kernels of the third 

convolutional layer are connected to all kernel maps in the second layer. 

The neurons in the fully-connected layers are connected to all neurons in 

the previous layer. Response-normalization layers follow the first and 

second convolutional layers. In the Rectified Linear Units (ReLU) non-

linearity is applied to the output of every convolutional and fully-connected 

layer. The first convolutional layer filters the 224×224×3 input image with 

96 kernels of size 11×11×3 with a stride of 4 pixels. The second 

convolutional layer takes as input the output of the first convolutional layer 

and filters it with 256 kernels of size 5×5×48. The third, fourth, and fifth 

convolutional layers are connected to one another without any intervening 

pooling or normalization layers. The third convolutional layer has 384 

kernels of size 3×3×256 connected to the outputs of the second 

convolutional layer. The fourth convolutional layer has 384 kernels of size 

3×3×192, and the fifth convolutional layer has 256 kernels of size 3×3×192. 

The fully-connected layers have 4096 neurons each [207]. 
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Figure 21. An illustration of the AlexNet architecture, explicitly showing the layers [207]. 

4-8 Brief Summary 

Section 4 described the methods applied in this thesis in two main 

research topics which are denoising and classification. We considered 

FFNN as a shallow neural network and taking about the deep learning 

methods, SSAE and CNN are explained. 

In the next chapter, we will explain our methodology in each section of 

this thesis including denoising and classification. 
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Chapter 5 

 

5 Methodology and Results 

 

In this section, we will discuss the proposed methodologies in each main 

topic of this thesis. First methodology is based on the description of the 

proposed denoising algorithm and the corresponding details. As second 

methodology, the details of the proposed methods for sleep stage 

classification will be discussed. 

In the following a list of our main contributions can be found: 

 Artefact detection and cancellation for EEG signal with application 

in sleep stage classification. 

 Adaptive denoising EEG from artefacts with origin of EOG and 

EMG signals. 
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 Comparing different kinds of classifiers in sleep stage classification. 

 Analysing the performance of the DSVM classifier. 

 Creating 2D signals from conventional 1D sleep signals and 

classify them using deep learning methods. 

5-1 Removing Artefact of EOG and EMG from EEG 

for Sleep Stage Classification 

In this sub-section, a new algorithm will be proposed for artefact 

removing of EEG with application in sleep stage classification. Rather than 

other works that used artificial noise, in this study we used real EEG data 

contaminated with EOG and EMG for evaluating the proposed artefact 

removal algorithm’s efficiency. The classification accuracy was the 

evaluation criterion. The artefact detection was performed by thresholding 

the EEG-EOG and EEG-EMG cross correlation coefficients. Then, the 

segments considered contaminated were denoised by NLMS adaptive 

filtering. Using a single EEG channel, four sleep stages consisting of 

Awake, S1 + REM, S2 and S3 were classified. A WP based feature set 

together with MLFN was deployed for sleep stage classification purposes. 

Simulation results showed that artefact removed EEG allowed a 

classification accuracy improvement of around 14%. 

5-1-1 Methodology 

Figure 22 shows an overview of the sleep stage classification with 

proposed sleep EEG artefact removal scheme. 
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Figure 22. Flowchart of the proposed algorithm for denoising the EEG. 

In this study, PSG records of the Sleep EDF Database were used which 

was explained in the chapter 4. All PSGs were divided into 30-seconds 

epochs and annotated according to the R&K manual. Pz-Oz EEG channel, 

horizontal EOG and submental chin EMG recordings of all the subjects 

were used. 

Visual inspection of the data revealed that occasionally there exists one 

or more consecutive epochs in which the energy of the signal was zero 

probably due to hardware failure. Therefore, all pre-processing steps in 

chapter 4 including database pruning and synchronization and filtering and 

windowing were applied. 

In this study, WP based decomposition and reconstruction methods as a 

filter for removing unwanted frequency band of physiological data was 

applied [208]. 

Conventionally, it is assumed that the measured EEG is a linear 

combination of cerebral activity with one or more kind of artefacts. 
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Therefore, in this study, for detecting the EOG and EMG contamination, 

the filtered EEG, EOG and EMG recordings were divided into 1000-

sample segments and then the cross correlation of each EEG segment was 

calculated with the corresponding EOG and EMG segment. If the absolute 

value of the EEG-EOG cross correlation coefficients or EEG-EMG cross 

correlation coefficients was more than threshold 1 or threshold 2 

respectively, the corresponding segment would be fed to an artefact 

removal block which was based on NLMS adaptive filtering. We fed to 

NLMS a recorded reference of the artefact (in our case horizontal EOG and 

submental chin EMG) to adjust a vector of weights that models the 

contamination according to an optimization algorithm. 

If the thresholding conditions for cross correlation coefficients were not 

satisfied, the relevant EEG segment would be copied to the output without 

any change. 

In order to perform sleep stage classification, the output of the pre-

processing block was used for feature extraction. There are four types of 

main brain waves that can be distinguished by their frequency range. These 

frequency bands are called Delta (0-3.99 Hz), Theta (4-7.99 Hz), Alpha (8-

13 Hz) and Beta (>13 Hz) [1]. EEG is analysed in the frequency domain. 

Moreover, EEG is a non-stationary signal and simultaneous time-

frequency analysis can be quite useful. In this study, a WP tree with 7 

decomposition levels and Daubechies order 2 (db2) mother wavelet was 

used for feature extraction. Different frequency bands of EEG including 

Delta, Theta, Alpha, spindle, Beta1 and Beta 2 were extracted according to 

the scheme proposed in [41]. The following statistical features were 

calculated for each epoch using the WP coefficients: 
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i. Energy of the WP coefficients for each frequency band (F1-F6); 

ii. Total Energy (F7); 

iii. Mean of the absolute values of WP coefficients for all frequency 

bands (F8); 

iv. Standard deviation of WP coefficients for all frequency bands (F9); 

v. Energy ratio of various frequency bands (F10 to F14); 

F10 is the ratio between the energy in the Alpha band and the sum of the 

energy in the Delta and Theta bands. F11 is the ratio between the energy 

in the Delta band and the sum of the energy in the Alpha and Theta bands. 

F12 is the ratio between the energy in the Theta band and the sum of the 

energy in the Alpha and Delta bands. F13 is the ratio between the energy 

in the Alpha band and the energy in the Theta band and F14 is the ratio 

between the energy in the Delta band and the energy in the Theta band. 

Since the range of values of raw EEG varies broadly, to avoid that 

features with larger numeric values dominate those with smaller numeric 

values affecting the accuracy of the classification technique, standardization 

method from chapter 4 was applied.  Therefore, each feature  was 

independently normalized by applying the following equation:  

   (13) 

where  and  are the mean and the standard deviation of each 

independent feature vector . 

ijx

ij i

ij

x
x




 

ix

x

ix 
ix

ix



 
114 

 

In this study MLFN was used for the classification of sleep stages. The 

two-layer feed forward backpropagation neural network consisting of 14 

input neurons, 12 hidden neurons and 4 output neurons for discrimination 

between the four sleep stages Wake, REM+S1, S2 and S3 was applied to 

the extracted feature set. A sigmoid transfer function in the hidden layer 

and a linear transfer function in the output layer were selected. Levenberg-

Marquardt training algorithm was chosen. 

5-1-2 Results 

The performance of the proposed method was assessed using the six 

subjects selected from the dataset mentioned in section 5-1-1. In the artefact 

detection stage, a threshold of 0.5 (Threshold 1) for EEG-EOG cross 

correlation coefficients and 0.25 (Threshold 2) for EEG-EMG cross 

correlation coefficients were used. These thresholds were selected 

empirically considering highest classification accuracy. Three different 

result validation approaches including subjective and objective methods 

were applied. 

The cross-correlation coefficients for EEG-EOG and EEG-EMG which 

were detected by thresholding before and after applying the artefact 

removal algorithm are shown in figure 23. A significant reduction in the 

correlation coefficients is noticeable after the artefact removal procedure. 

Figure 24 and 25 illustrate the cancellation of EOG and EMG artefacts 

from contaminated EEG segments. It can be seen that the artefacts can be 

correctly eliminated without distorting the original EEG.  

After the completion of the artefact removal stage, the data was fed to the 

feature extraction algorithm. Unlike the more conventional approaches in 
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the literature, which import all the existing stages to the neural network, 

we used a quantity of training data to be selected out of each patient for 

training the MLFN. This method is suitable for large databases helping on 

the reduction of the computational complexity of the classifier training 

stage. 

 

Figure 23. Cross correlation coefficient’s absolute values, (a) EEG-EOG before artefact removal, (b) 

EEG-EOG after artefact removal, (c) EEG-EMG before artefact removal, (d) EEG-EMG after artefact 

removal algorithm. 

 

Figure 24. EOG artefact cancelation from contaminated EEG. 
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Figure 25. EMG artefact cancelation from contaminated EEG. 

To assess the effectiveness of our artefact removal algorithm, we studied 

the sleep stage classification accuracy for raw (after removing zero energy 

epochs), filtered and artefact removed data. Table 8 shows the results of 

statistical analysis for comparison of each stage and overall accuracy for all 

the above-mentioned data. The results were validated using repeated 

random sub-sampling method, also known as Monte Carlo cross-validation 

technique. It can be observed that there is an improvement in the 

performance of the classifier after filtering the data, but the best 

performance is achieved by applying the proposed artefact removal 

algorithm. 

Table 8. Results of the statistical analysis for comparison of each stage and overall accuracy. 

 Wake (%) REM + S1 (%) S2 (%) S3 (%) Overall (%) 

Raw 77.56 87.08 74.67 78.11 63.70 

Filtered 79.44 78.75 83.26 90.74 70.60 

Proposed method 87.08 87.25 87.38 90.93 77.80 
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5-2 Performance Analysis of Conventional Classifiers 

in Sleep Stage Classification 

In this sub-section, the performance of conventional classifiers such as k-

NN, MLFN and DSVM are evaluated. This evaluation was done by 

applying them to a variety of feature extraction and selection methods. 

Also, both available databases were utilised and in the following we will 

have two studies in order to discuss methodologies and results related to 

each of these datasets. A comprehensive feature set was extracted from 

these recordings. The extracted features are among the most common and 

effective features used in sleep stage classification from temporal, spectral, 

entropy-based and nonlinear categories. The classification methods were 

evaluated and compared using three criteria: classification accuracy, 

sensitivity, and specificity. 

5-2-1 Methodology for First Study 

In this study, the database downloaded from Physionet website was 

processed. Figure 26 shows the block diagram of the proposed algorithm 

for comparing the classifiers for sleep stage classification. 

 

Figure 26. Block diagram for comparison of two classification methods for first study. 
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The data used in this study was obtained from Physionet Sleep-EDF 

Expanded Dataset [180]. Pz-Oz channel EEG together with submental 

chin EMG and horizontal EOG each sampled at 100 Hz were used in the 

evaluations. Table 9 illustrates the number of stages available per subject. 

Table 9. Summary of the data provided by six selected subjects in Sleep-EDF Expanded Dataset. 

 Wake REM S1 S2 S3 

Subject #1 146 122 101 527 136 

Subject #2 41 159 71 351 284 

Subject #3 85 226 120 392 180 

Subject #4 40 143 47 266 152 

Subject #5 149 80 102 428 218 

Subject #6 131 142 135 378 198 

All pre-processing steps in chapter 4, including database pruning, 

synchronization, filtering and windowing were applied to this database as 

well.  

In order to explore the information contained in PSG recordings, a set of 

features were extracted from EEG, H_EOG and submental chin EMG of 

each subject. This feature set includes 49 features that can be categorized 

into time, frequency, joint time-frequency domain, entropy-based and 

nonlinear types. Table 10 summarises information about the different 

features used in this study and their brief description.  

The physiological differences from subject to subject and equipment 

related variations have considerable impact on the features extracted from 

the PSG recordings. Moreover, since there are usually a wide variety of 

feature types extracted for characterizing sleep stages, the amplitude and 

unit of features will also vary. 
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Table 10. Summary of the features extracted from PSG recordings in the Physionet Sleep-EDF 

Expanded Database. 

Signal Category Feature Name 

EEG 

Time Domain  
(F1 to F12) 

Statistical Features (Minimum Value, Maximum Value, 
Arithmetic Mean, Standard Deviation, Variance, 
Skewness, Kurtosis, Median), Zero-crossing Rate, Hjorth 
Parameters (Activity, Mobility and Complexity) [6]. 

Time-Frequency 
Domain  

(F13 to F26) 

Features Extracted from WP Coefficients including 

Energy of α, δ, β1, β2, θ and Spindle bands, Total Energy 

of all bands, Energy ratio of (
𝛼

𝛿+𝜃
, 

𝛿

𝛼+𝜃
, 

𝜃

𝛼+ 𝛿
, 

𝛿

𝜃
, 

𝛼

𝜃
), 

Statistical Features (mean and standard deviation of 
coefficients in all the bands). 

Entropy 
 (F27 to F30) 

Spectral Entropy, Rényi Entropy, Approximate Entropy, 
Permutation Entropy [6]. 

Non-linear  
(F31 to F36) 

Petrosian Fractal Dimension, Teager Energy, Energy, 
Mean Curve Length, Hurst Exponent [6], ISD. 

EOG 

Time Domain 
(F37 to F41) 

Mean, Maximum, Standard Deviation, Skewness, 
Kurtosis [209]. 

Non-linear (F42) Energy [209]. 

EMG 

Frequency 
Domain (F43 to 

F46) 

Total Power in the EMG Frequency Spectrum, 
Statistical Features of EMG Frequency Spectrum 
(Maximum, Mean, Standard Deviation) [209]. 

Non-linear 
 (F47 to F49) 

Energy, Ratio of the EMG Signal Energy for the Current 
Epoch and Previous Epoch, Ratio of the EMG Signal 
Energy for the Current Epoch and Next Epoch [209]. 

The features may also get extreme values, i.e. extremely low or extremely 

high values. Data post-processing is an important step in this respect. The 

aim of feature post-processing is to enable classification algorithms to 

uniformly handle the features with different units and ranges as well as 

reducing the influence of extreme values. Feature post-processing can be a 

scaling operation (normalization/standardization) or a feature 

transformation operation. In this study, standardization method applied to 

the extracted features.  



 
120 

 

To select a subset of features containing most of the original feature set 

information, we used seven different feature selection methods: ReliefF, 

MRMR-MID, MRMR-MIQ, Fisher Score, Chi-Square (Chi2), IG and 

Conditional Mutual Information Maximization (CMIM). We have also 

implemented two different rank aggregation methods, Borda and Robust 

Rank Aggregation (RRA), to evaluate their ability to produce better feature 

rankings compared to conventional feature ranking methods [210]. 

We selected two simple and widely used classifiers: k-NN and MLFN to 

discriminate five sleep stages W, S1, S2, S3 and REM. By selecting k =1, 

nearest neighbour was utilized. The k-NN classifier is the simplest 

nonparametric classifier and assigns a pattern to a specific class based on its 

nearest neighbour’s class. In spite of its simplicity, in [211] it has been 

proved that, if the utilized database is fairly large, the error bound for 

nearest neighbour rule is quite tight, i.e. equal or less than twice the Bayes 

error. Also, neural networks are known to be very powerful computing 

models that can learn from training examples. Neural networks have been 

successfully used in a broad range of data mining applications including 

classification [212]. Accuracy as main criterion is considered for evaluating 

and comparing the different classification methods. The performance of the 

sleep stage classification is evaluated using repeated random sub-sampling 

validation. To measure the classification accuracy, the overall accuracy 

value is calculated as follows [213]: 

   (14) 

Six subjects were selected from the Physionet database for evaluating and 

comparing the feature ranking and the rank aggregation methods. For 

No. of true detections
Accuracy =

Total no. of epochs
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filtering EEG and EOG signals, Daubechies order 20 (db20) was used as 

the mother wavelet. The filtered data was segmented into 30-second 

epochs. From each epoch, a feature vector containing 49 features was 

extracted. After feature standardization, the feature vectors were fed into 

seven feature selection methods. Then, in order to aggregate the results, 

the outputs of these seven feature ranking methods were used by Borda and 

RRA, producing two additional ranked lists of features.  

For sleep stage classification, the parameters of the classifiers are set as 

follows. The Euclidean distance was chosen as the distance metric for the 

k-NN classifier. For the three-layer neural network classifier 12 hidden 

neurons and a sigmoid transfer function were selected in our simulations. 

The Levenberg-Marquardt training algorithm was adopted for minimizing 

the cost function because of its fast and stable convergence. In contrast with 

conventional approaches in the literature, which imports all the existing 

epochs to the classifier, we used a quantity of epochs selected out of each 

subject. In this method, selected epochs from each subject have two 

characteristics. Firstly, the number of epochs was the same for all the 

subjects. Second, the number of epochs for each stage was dependent on the 

number of occurrences of that stage for each subject. This method is 

suitable for large databases helping on the computational complexity 

reduction of the classifier training stage. 

In our simulations, 50 subsets were generated out of the original training 

set by bootstrapping.  

5-2-2 Results for First Study 

In order to estimate the generalization ability of the classifier, repeated 

random sub-sampling validation with 200 runs was applied. Figure 27 
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depicts the classification accuracy of k-NN and MLFN classifiers for 

different feature selection methods. Results show that MRMR-MID 

achieves the highest classification performance. On the other hand, the 

performance of the aggregation methods was in the average level, although 

they are known to generate more stable results and better accuracy. 

As figure 27 shows, starting with one feature, each additional feature 

typically leads to an increment in the classification accuracy. However, at 

some point, the increment on the classification accuracy for each additional 

feature is not significant leading to an elbow in the graph. Inspired by the 

“elbow” point in the cost-benefit curves, in this study we used the Kneedle 

algorithm proposed in [214] for determining the optimal feature number 

which provides a satisfactory trade-off between the selected number of 

features and the classification accuracy. Table 11 illustrates the top 10 

features selected by each method. In general, the accuracy of MLFN was 

higher than k-NN for all the ranking methods. The highest accuracy was 

77%, achieved by RRA and MLFN. 

Table 11. Top 10 features selected by each method and the optimum number selected by Kneedle 

algorithm (Corresponding Accuracy). 
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F28 
F36 
F7 

F49 
F41 
F27 
F20 
F23 
F6 

F22 

F36 
F35 
F31 
F9 

F29 
F11 
F25 
F27 
F12 
F22 

F35 
F9 

F11 
F31 
F36 
F27 
F26 
F4 

F25 
F14 

F9 
F35 
F11 
F31 
F36 
F4 

F27 
F26 
F25 
F29 

F15 
F36 
F9 
F8 
F1 

F34 
F35 
F28 
F6 

F48 

F35 
F39 
F36 
F22 
F15 
F31 
F29 
F23 
F9 

F38 

F35 
F42 
F15 
F36 
F22 
F23 
F31 
F38 
F29 
F9 

F36 
F35 
F9 

F31 
F22 
F27 
F29 
F11 
F15 
F20 

F36 
F35 
F9 

F31 
F27 
F22 
F17 
F29 
F11 
F20 

MLFN 7 (0.75) 5 (0.76) 7 (0.76) 7 (0.76) 3 (0.74) 5 (0.76) 5 (0.76) 5 (0.76) 7 (0.77) 

k-NN 7 (0.69) 5 (0.71) 9 (0.73) 9 (0.73) 3 (0.68) 7 (0.75) 11 (0.75) 9 (0.74) 7 (0.73) 
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5-2-3 Methodology for Second Study 

In the second study the dataset from ISRUC-Sleep was processed to 

evaluate the performance of conventional classifiers. Figure 28 shows the 

study framework used in this study. In the following sub-sections, each part 

will be described in detail. 

All the 80 features from tables 6 and 7 were used which can be categorized 

into temporal, time-frequency domain, entropy-based, non-linear and 

distance-based features.  

 

Figure 27. Classification accuracy for different feature selection methods, (a) k-NN classifier, (b) MLFN 

classifier. 
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Figure 28. Sleep study framework for second study. 

The extracted features from PSG signals are in different ranges, and this 

variety can bias the results of the subsequent steps. In this study, two 

different types of normalization methods from subsection 4-5 were used: 

standardization (or Z-score normalization) and Min-Max. The effect of 

each method in classification was evaluated. In standardization, the features 

are rescaled so that they have zero mean and unit variance. In 

normalization, features are scaled to the fixed range of [0 1]. This rescaling 

is necessary for many machine learning algorithms. 

To remove the features with high levels of similarity, a feature selection 

method which was mentioned in sub-section 4-6-1, was proposed in this 

study. 

We used all the six feature ranking methods mentioned in section 4-6-2. 

Each of these methods was applied on the conventional, distance-based and 

total feature sets (combined conventional and distance-based feature sets), 

and in all, 18 ranked lists of features were achieved. 
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For sleep stage classification three different classifiers were used: k-NN, 

MLFN and DSVM. The main reason for choosing these three different 

classifiers was that we did not want to restrict the significance of the 

comparison to one specific family of classifiers. On the other hand, we aimed 

to choose a variety of classifiers including the simplest, most used and the 

one that usually shows the best performance. Euclidean distance was used 

as the distance measure for the k-NN classifier. In each experiment, the 

classification accuracy for the 1, 2, …20 neighbourhood was calculated. The 

one leading to maximum accuracy was selected as the optimum 

neighbourhood number. For the MLFN classifier, a three-layered MLFN 

with 20 hidden neurons for the conventional and total feature sets and 12 

hidden neurons for the distance-based feature set were used. 

DSVM was used instead of conventional multi-SVMs. The reason for 

choosing DSVM was that it outperforms conventional multi-SVMs (OAO 

and OAA) while utilizing lower number of SVM in the structure [116], 

[117], [215], [216]. RBF was selected as the kernel function, and sigma 

was set to 3.0 for the conventional and total feature sets and 1.1 for the 

distance-based feature set. 

For each ranked list of features, created by one of the ranking methods, 

and each specific classifier, the classification accuracy was calculated for the 

top 25 features. Since it is always desirable to achieve the maximum 

accuracy with the minimum complexity, to find the optimum number of 

features, a Multi-Criteria Decision Making (MCDM) method called Vikor 

was used [217]. The Vikor method was originally developed for MCDM 

problems with contrasting and conflicting criteria. In our case, the accuracy 

and number of features were two conflicting criteria. This method ranks 

and selects a set of alternative solutions for the problem at hand, helping 
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decision makers to reach a final decision. The various J alternative solutions 

are denoted as . Suppose that there are n criteria.  is the value 

of the ith criterion for jth solution, aj. The compromise ranking is performed 

by comparing its closeness to the ideal solutions of the criteria (utopian 

solution F*). The distance measure of the Vikor method is developed from 

the Lp-metric as: 

   (15) 

where  and  are the best and the worst solutions of the ith criterion. 

After determining the best and the worst solutions for all criteria, the Vikor 

algorithm has the following steps: 

i. Compute the values Sj and Rj, j=1, 2, …, J as: 

   (16) 

   (17) 

where iw  is the weight of ith criterion expressing its importance.  

ii. Compute the values Qj as: 
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   (18) 

where  is the maximum group utility, here . 

iii. Sort the values of S, R and Q in decreasing order, obtaining three 

ranked lists. 

iv. The alternative that minimizes Q is selected as the compromise 

solution if two conditions of “acceptable advantage” and “acceptable 

stability in decision making” are satisfied. For more information 

about these conditions, refer to [71]. 

Feature similarity was evaluated using the method described before for 

both conventional and distance-based feature sets. The threshold value for 

L1-norm between each pair of feature vectors was empirically set to 1e-15.  

5-2-4 Results for Second Study 

For conventional and distance-based feature sets, the similar groups were 

detected and are listed in table 12. 

As shown in table 12, several similar cases were found using this measure. 

For example, the Hjorth activity parameter is the same as the variation. 

Furthermore, the COSH distance is the symmetric version of the Itakura-

Saito distance. 
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Table 12. Similar feature groups from the conventional and distance-based feature sets. 

Conventional 
Feature Set 

Group 1 Group 2 

F36, F38 and F40 F6 and F14 

Distance-based 
Feature Set 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

F52 and 
F74 

F55 and 
F75 

F56 and 
F76 

F60 and 
F78 

F63 and 
F79 

F64 and 
F80 

From each group of similar features, the feature with the lowest 

computational complexity was selected as group representative. Therefore, 

F14, F38 and F40 were removed from the conventional feature set. F74, 

F75, F76, F78, F79 and F80 were also removed from the distance-based 

feature set. After removing the redundant features, 45 features remained in 

the conventional feature set and 26 features remained in the distance-based 

feature set.  

To assess the usefulness of pruning feature sets, the sleep stage 

classification accuracy before and after feature selection was evaluated 

using the conventional, distance-based, and total feature sets. The results 

obtained by the k-NN classifier with Euclidean distance are shown in table 

13. The optimum number of neighbours for each case was found (shown in 

brackets in table 13) by evaluating the performance of the classifier for 

different numbers of neighbours. According to the results, removing similar 

features led to an average improvement of 0.61% for all cases. The 

maximum improvement (2.07%) was observed in the pruning of the 

conventional feature set using the standardization method. Additionally, it 

is noticeable that the accuracy of the classification with the Min-Max 

method is in all cases higher than the one with the standardization method. 

This emphasizes the importance of selecting a proper feature normalization 

method before classification. 



 
129 

 

Table 13. Classification accuracy for the original, pruned and both together (total) feature sets using 

the k-NN classifier. 

 
 Features Distance-

Based 

Pruned 
Distance-

Based 
Conventional 

Pruned 
Conventional 

Total 

Normalization 

STD 60.88 (15) 61.03 (5) 70.90 (15) 72.97 (26) 
73.26 
(12) 

Min-Max 62.30 (10) 62.37 (5) 73.94 (8) 74.10 (8) 74.42 (6) 

Tables 14-22 demonstrate the 5-stage (Wake, REM, S1, S2 and S3) 

classification accuracy results along with the optimum number of features 

selected by the Vikor method for the three feature sets and the three 

classifiers. The reliability of the results was validated using 10 times 

repeated 10-fold cross validation method on the whole data from 10 healthy 

subjects. Simulations were performed using a PC with 3.40 GHz Intel® 

Core™ i7-3770 CPU, 8 GB of RAM, Windows 10 (64 bits), and MATLAB 

R2015b. For each ranked list of features, created by one of the ranking 

methods, and each classifier, the overall classification accuracy, sensitivity 

and specificity were calculated for the top 25 features.  

The analysis of the results reveals that, starting with one feature, each 

additional feature typically leads to an increment in the classification 

accuracy. However, at some point, the increment on the classification 

accuracy for each additional feature is not significant. Inspired by MCDM 

problems, in this paper the Vikor method was applied to the classification 

results for determining the optimal feature number that provides a 

satisfactory trade-off between the selected number of features and the 

classification accuracy. This method is one of the most common MCDM 

techniques with straightforward calculations. Accuracy and number of 

features were two conflicting criteria with the corresponding weights of 0.7 
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(w1) and 0.3 (w2), respectively, meaning that, in our sleep stage classification 

system, classification accuracy had priority over complexity. Figure 29 

shows a sample of the Vikor method results for the features scaled by 

standardization method, ranked with ReliefF and classified by k-NN 

classifier. The utopian solution, shown with a black star, represents the 

ideal solution in which the accuracy is maximum, and the number of 

features is minimum. The point selected by the Vikor method in each case 

is the closest point of the Pareto front (the set of solutions) to the utopian 

solution considering the weights of the two criteria. 

 

Figure 29. Optimum number of features selected by the VIKOR method for the (a) conventional, (b) 

distance-based, and (c) total feature sets. 

In the following, assessment of the results related to the k-NN classifier 

(tables 14-16) will be presented. 

i. The maximum enhancement in classification accuracy after adding 

the distance-based features to the conventional feature set occurred 

in mRMR-MID with Min-Max. 

ii. For all three feature sets, the maximum accuracy, regardless of the 

feature normalization method, was achieved by mRMR-MID or 
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mRMR-MIQ methods. Seven or eight (in one case) features were 

selected by the Vikor method to achieve this accuracy. The Itakura 

distance of EEG-EOG spectral coefficients, Itakura-Saito distance 

of EEG-EOG spectral coefficients, and Itakura distance of EMG 

AR coefficients are among these features.  

iii. For all three feature sets, the minimum accuracy, regardless of the 

feature normalization method, was achieved by the Chi-square 

method. 

iv. For most of the ranking methods, adding distance-based features 

to the conventional feature set improved the sensitivity and 

specificity of the classification.  

Table 14. k-NN classifier results for the conventional feature set. 

 ReliefF 
mRMR-

MID 
mRMR-

MIQ 
Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

#Features 5 6 10 7 9 8 8 8 7 8 8 8 

# Neighbours 18 16 20 11 20 20 12 12 12 20 16 8 

Sensitivity 72.8 72.9 75.6 72.5 73.7 71 71.5 72.7 71.3 74.6 73.1 72.9 

Specificity 93.4 93.2 94 93.4 93.5 92.6 93.1 93.2 92.9 93.8 93.3 93.4 

Accuracy 70 70.9 72.1 71.3 72.9 70.8 69.7 71.6 69 71.9 69.2 72.7 

Table 15.. k-NN classifier results for the distance-based feature set. 

 ReliefF 
mRMR-

MID 
mRMR-

MIQ 
Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 8 11 6 6 6 5 11 12 10 8 10 8 

# Neighbours 19 6 16 9 17 9 10 11 18 12 17 12 

Sensitivity 64.3 61.7 62.5 65.6 64 63 64.3 63.3 63.9 60 64.7 61.5 

Specificity 91.2 90.6 90.4 91.1 90.6 91 91.5 90.8 91 89.9 91 90.3 

Accuracy 59.7 59 61.5 60.6 61.9 60 62 60 61 56.3 61.1 56.6 
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Table 16. k-NN classifier results for the total feature set. 

 ReliefF 
mRMR-

MID 
mRMR-

MIQ 
Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 8 8 8 7 7 7 7 6 7 8 8 10 

# Neighbours 14 10 11 6 17 12 10 11 11 10 19 10 

Sensitivity 75.1 73.3 74.1 77.4 75.1 75.3 76.5 73.4 72.3 70.6 74 75.4 

Specificity 93.8 93.7 93.6 94.2 93.9 93.6 94.2 93.5 93 92.4 93.8 94.3 

Accuracy 72 71 73.2 73 72.2 72.3 71.1 71 71 70 71 70.3 

Next, assessment of results related to the MLFN classifier (tables 17-19) 

will be discussed. 

i. The maximum enhancement in classification accuracy after adding 

the distance-based features to the conventional feature set occurred 

in mRMR-MIQ with standardization. 

ii. For all three feature sets, the maximum accuracy, regardless of 

feature normalization method, was achieved by the mRMR-MID 

or mRMR-MIQ method. Up to 11 features were selected by the 

Vikor method to achieve this accuracy. The Itakura distance of the 

EEG-EOG spectral coefficients, Itakura-Saito distance of the 

EEG-EOG spectral coefficients, and Itakura distance of the EMG 

AR coefficients are among these features.  

iii. Compared to the results of the k-NN classifier, the overall accuracy, 

sensitivity and specificity of the ANN classifier is higher for three 

feature sets. 
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Table 17. MLFN classifier results for the conventional feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 9 10 11 11 9 11 8 10 9 9 11 8 

Sensitivity 72.6 77.7 75.9 78.3 74.9 76 73.9 74.6 73.4 76.9 73.6 75.4 

Specificity 93.7 94.4 94 94.6 93.7 94 93.5 93.6 93.3 94.2 93.4 93.9 

Accuracy 79 80 80 80.6 79 79.8 79.8 79.2 78.5 79.7 78.7 79.6 

Table 18. MLFN classifier results for the distance-based feature set. 

 ReliefF 
mRMR-

MID 
mRMR-

MIQ 
Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 9 7 7 7 13 7 11 13 15 15 15 15 

Sensitivity 62.1 59.9 63.3 61.1 64.8 61.3 63.4 63.6 66.1 64 65.1 63 

Specificity 90.5 90 90.9 90.2 91.1 90.3 90.8 90.9 91.5 90.5 91.2 90.7 

Accuracy 74.3 72.1 75.2 74 75.6 74 75 74.2 75 73.1 75 73.1 

Table 19. MLFN classifier results for the total feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 8 9 9 10 8 11 9 9 9 14 8 10 

Sensitivity 75.1 75.4 76.5 76.7 76.7 78.8 74 74.8 73.3 76.3 74 74.2 

Specificity 93.8 93.8 94.1 94.3 94.2 94.7 93.5 93.7 93.3 94.1 93.5 93.5 

Accuracy 79.5 79.2 80.2 79.9 80.2 80.4 79.2 79.1 79.2 79.5 79.2 78.5 

Next, assessment of results related to the DSVM classifier (tables 20-22) 

will be discussed. 

i. The maximum enhancement in classification accuracy after adding 

the distance-based features to the conventional feature set occurred 

in mRMR-MIQ with Min-Max.  
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ii. For all three feature sets, the maximum accuracy, regardless of the 

feature normalization method, was achieved by the mRMR-MID 

or mRMR-MIQ methods. Up to 13 features were selected by the 

Vikor method to achieve this accuracy. The Itakura distance of the 

EEG-EOG spectral coefficients, Itakura-Saito distance of the 

EEG-EOG spectral coefficients, and Itakura distance of the EMG 

AR coefficients are among these features.  

iii. Considering that the overall performance of the DSVM classifier, 

including accuracy, sensitivity and specificity, is the highest among 

the classifiers used in this paper, it can be concluded that DSVM 

outperforms k-NN and MLFN classifiers in sleep stage 

classification. 

Observing the results for all the classifiers, we can conclude that the 

accuracy obtained by Min-Max is higher than standardization in most 

cases. Furthermore, the presence of the distance-based features among 

selected features by the Vikor method shows their positive contribution to 

sleep stage classification. 

Table 20. DSVM classifier results for the conventional feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 10 10 10 11 9 9 8 11 8 9 8 8 

Sensitivity 79.2 74.4 80.1 78.5 79 76.3 77.2 76.6 73.2 78.4 76.3 75.7 

Specificity 95.3 94.2 95.7 94.9 95.6 94.6 95.2 94.6 94.7 95.4 94.9 94.7 

Accuracy 83.7 84.5 84.0 84.7 84.0 83.8 81.5 81.7 81.0 81.9 81.0 81.8 
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Table 21. DSVM classifier results for the distance-based feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 9 11 7 6 8 6 11 11 9 15 15 15 

Sensitivity 61.1 60.6 70.1 63.6 70.3 60.7 64.1 58.3 62.3 62.9 68.5 64.4 

Specificity 91.1 90.9 93.4 92.1 93.4 91.1 91.8 90.7 91.7 91.5 92.8 92.5 

Accuracy 78.1 77.2 79.7 79.3 79.8 77.8 79.2 78.1 77.8 78.7 79.4 79.2 

Table 22. DSVM classifier results for the total feature set. 

 ReliefF mRMR-MID mRMR-MIQ Fisher Chi-square IG 

 STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

STD 
Min-
Max 

# Features 11 9 8 13 8 11 9 14 9 14 9 15 

Sensitivity 79.3 76 81.6 79.8 80.6 80.5 75.1 76.3 75.3 73.8 77.5 76.5 

Specificity 95.5 94.9 96.5 96.3 96.1 96 94.6 95.3 94.6 94.3 94.9 94.8 

Accuracy 84.8 82.0 84.4 85.5 84.7 85.3 81.3 81.9 80.8 81.6 80.8 81.7 

5-3 Performance Analysis of Deep Learning methods 

for 1D Sleep Stage Classification 

In this section, a deep learning-based dimension reduction and 

classification method was proposed for automatic sleep stage classification. 

In order to enhance the feature vector, before feeding it to the deep network, 

a feature selection method (described in sub-section 4-6-1), was applied for 

removing the features with minimum information. Two-layer SSAE 

together with Softmax classifier was selected as the deep network model. 

The performance of the proposed method was compared with Softmax and 

k-nearest neighbour classifiers. Simulation results show that proposed deep 

learning structure outperformed others in terms of classification accuracy. 
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5-3-1 Methodology 

Figure 30 shows an overview of the proposed sleep stage classification 

algorithm with the proposed feature transformation scheme. 

 

Figure 30. Flowchart of the proposed algorithm for 1D sleep stage classification. 

In this study, we used the publicly available dataset, ISRUC-Sleep [85] 

which details are presented in section 4-1. For the evaluation of our 

proposed method, we used C3-A2 EEG channel, right EOG and chin EMG 

channels. In this study, we used all the data from 10 healthy subjects from 

ISRUC-Sleep dataset. The number of epochs for these 10 subjects is 954, 

941, 824, 794, 944, 853, 814, 1000, 969, and 796. Totally we have 8889 

epochs from this database. To avoid overfitting, we used all of them. All the 

pre-processing methods in sub-section 4-2 were applied to this dataset to 

prepare it for further processing. 

All signals used in this study, were divided into 30-second epochs. A set 

of features were extracted from each epoch of EEG, EOG and EMG 

recordings of each subject. This feature set includes 49 features that can be 

considered as time, frequency, joint time-frequency domain, entropy-based 
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and nonlinear types. Table 10 in sub-section 5-2-1 shows a summary of 

these features. 

In order to standardize the range of features, a Min-Max normalization 

method was applied. Details about this normalization method can be found 

in sub-section 4-5. 

There are many potential advantages in removing the features before 

final modelling and classification. Fewer features mean lower 

computational complexity. Also, some features may reduce the performance 

by their corrupt distributions. Consider a feature that a single value for all 

the samples. According to [218], this feature is called “zero-variance 

predictor”. Even if it has little effect on the next step, this feature should be 

discarded from feature set, because it has no information. Similarly, some 

features may have few unique values that occur with low frequency. These 

features are called “near-zero variance predictors”. Kuhn et al. [218] 

defines two criteria for detecting near-zero variance features as follows: 

i. The ratio of unique values to the number of samples is low, for 

example 10%. 

ii. The ratio of the frequency of the most dominant value to the 

frequency of the second dominant value is high, for example 20. 

Using these two criteria, we applied Discriminative Feature Selection 

(DFS) to remove the features that didn’t have enough discriminative power. 

As a result, the dimension of feature set was reduced to 37. 

The EEG, EOG and EMG signals of each subject in the dataset were 

divided into 30-second epochs. After feature extraction and normalization, 

the feature sets were fed to DFS block to eliminate the near-zero variance 
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features. According to the criteria mentioned before, 12 features were 

recognized as near-zero variance feature and removed from our sleep data 

model, as follows: maximum value (F1), minimum value (F2), variation 

(F5), median (F8), Petrosian fractal dimension (F31), permutation entropy 

(F30), Hjorth parameter (Activity) (F10), zero crossing number (F9), total 

power in the EMG frequency spectrum (F43), mean of power in the EMG 

frequency spectrum (F45), absolute energy of the time domain EMG signal 

(F47), maximum value of time domain EOG signal (F38). After the feature 

vector was set, data were divided into two parts, training, testing, using 10-

fold cross validation method. For fine tuning step of SSAE, part of training 

data was utilized. Our deep learning consists of three layers, a two-layer 

SSAE and a Softmax layer. The number of hidden units for the first and 

second layer of SSAE was 20 and 12, respectively. 

For finding the best hyper-parameters for the autoencoders, we tried 

several models by adjusting sparsity regularization parameter, weight 

regularization parameter and number of iterations. We used autoencoders 

with logistic sigmoid activation function for both layers.  

The performance of the proposed algorithm was compared with two other 

classifiers: Softmax and k-NN classifier. The number of neighbours was set 

to 18 and Euclidean distance was used as a measure of distance for k-NN.  

5-3-2 Results 

To evaluate our system’s performance, we used classification accuracy as 

the evaluation criterion. Table 23 shows the individual sleep stage and 

overall classification accuracy extracted from the confusion matrix for the 

three different classifiers. The boldface-numbers indicate the best 

performance. It is noticeable that SSAE method outperforms the other two 
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classifiers in terms of overall accuracy. Also, for the individual sleep stages, 

in most cases SSAE discriminates the stages better. In addition to the 

higher performance, SSAE provides a considerable reduction in the 

dimension of the feature vector. Considering that the second layer of SSAE 

had 12 hidden units, SSAE succeeded to decrease the dimension from 37 to 

12, which means 67% reduction. Therefore, SSAE is a powerful tool to 

generate more descriptive features from the original feature vector. 

Table 23. Results of the statistical analysis for comparison of each stage and overall accuracy. 

Classifiers 
Wake 

(%) 
REM 
(%) 

S1 
(%) 

S2 
(%) 

S3 
(%) 

Overall 
Accuracy 

(%) 

Softmax 80 61.66 65 90 78.33 74.9 

k-NN 85 66.66 61.66 70 83.33 73.33 

SSAE 91 77 69 87 87 82.2 

In order to confirm the advantage of DFS block, the performance of 

SSAE-based sleep stage classification with and without this step was 

investigated. Without using DFS block, 49 original features were fed to 

SSAE. The classification accuracy achieved in this way was 74.1% which is 

almost 8% less than the accuracy with DFS block. 

5-4 Performance Analysis of Deep Learning methods 

for 2D Sleep Stage Classification 

Most of the existing methods for automatic sleep stage classification are 

relying on hand-crafted features. In this study, the goal is to develop a deep 

learning-based method that automatically exploits time-frequency 

spectrum of EEG signal, removing the need for manual feature extraction. 

Using CWT, we extracted the time-frequency spectrogram for the EEG 
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signal of 10 healthy subjects and converted to RGB images. The images 

were classified using transfer learning of AlexNet, a pre-trained CNN. 

Evaluation results showed that our method can achieve state of the art 

accuracy, while having higher overall sensitivity. 

5-4-1 Methodology 

In this study, we benchmarked our work with EEG recordings of a 

publicly available database. We used the open-access comprehensive 

ISRUC-Sleep dataset [85]. All the pre-processing methods in sub-section 

4-2 were applied to this dataset to prepare it for further processing. 

EEG is a nonstationary signal and temporal or spectral representation by 

itself cannot reflect the information hidden in EEG. CWT [219] is a proper 

method to analyse the non-stationary signals such as EEG. As the window 

of CWT gets shrunk and dilated, it maps the variations of the signal into a 

time-frequency spectrogram. In this study, each epoch of EEG data is 

presented by time-frequency spectrogram image. Epochs are concatenated 

in a way that there is no overlap between them. There are a set of 

parameters that affect the CWT spectrogram, including the mother wavelet 

and number of frequency bins. After extracting the spectrogram for each 

epoch, we converted it into an RGB image by using a colour map (or colour 

table) to map pixel values into the actual colour values. 

Our approach was based on transfer learning, which is developed based 

on the fact that human brain is able to discover the underlying structure in 

previously learned knowledge and transfer this knowledge to new tasks 

[220]. Transfer learning is a machine learning method where the learning 

of a new task is improved through the use of the learning for a previous task 

as a starting point. The main advantage of transfer learning is the reduction 
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in the number of training samples necessary to achieve a desired 

performance on correlated problems.  

We chose AlexNet [207] which is a CNN trained on a subset of 

ImageNet datasets [221]. CNNs are deep feed-forward neural networks 

with trainable weights. These networks are mainly used for visual tasks 

since 1980s [222], minimizing the need for pre-processing related to 

feature extraction. AlexNet was trained on 1.2 million images and can 

classify them into 1000 categories. This network comprises 25 layers where 

eight of them have learnable weights (5 convolutional layers and 3 fully 

connected layers). The input is a 227 by 227 pixels RGB image. 

Images were created for C3-A2 sensor EEG signal for healthy subjects as 

explained in sub-section 4-1. To reduce the computational complexity while 

preserving the information in the EEG, a decimation with factor 2 was 

applied to the signals. Then, using DWT [219], the signals were filtered 

with lower cut-off frequency of 0.1 and higher cut-off frequency of 40. CWT 

mother wavelet was set to cmor15-1. For the time-frequency representation 

of each epoch, the number of frequency bins was chosen to be 2048 with the 

aim of properly capturing sleep dynamics. The time-frequency 

spectrograms were created in the range of 0.3 Hz and 35 Hz, according to 

the guidelines of AASM. The spectrograms were converted to RGB images 

using Jet colour map with 256 colours. The mapping of spectrogram to 

images was done through linear mapping. Although the dynamic range of 

sleep spectrograms was relatively high, using logarithmic/exponential 

mapping would either highlight the unwanted noise in the signals or fade 

out the desired high activity areas. While the generated image resolution 

was 3000 (points in time) in 2048 (points in frequency), the final image 

resolution was set to AlexNet input size (227 in 227) through image 
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resizing. The last three layers of AlexNet are by default configured for 1000 

classes. We transferred these layers to fit the five-stage sleep classification 

problem by replacing these layers with a fully connected Softmax layer. 

Simulations were done using a PC with 3.40 GHz Intel® Core™ i7-3770 

CPU, 8 GB of RAM, Windows 10 (64 bits), and MATLAB R2015b. Several 

sets of training parameters were tested to determine the optimal set of 

parameters. AlexNet was trained using Stochastic Gradient Descent (SGD) 

with learning rate of 10-4 on mini-batches of 64 samples. To assess the 

generalization ability, the proposed model was validated by 10-fold cross 

validation. 

5-4-2 Results 

Figure 31 shows sample RGB images of each sleep stage, as typical inputs 

to the pretrained CNN. Each individual image depicts the signal energy 

distribution during an epoch, i.e. 30s of EEG signal (horizontal axis) and 

frequency interval of 0.3 to 35 Hz (vertical axis). These images can be easily 

interpreted using AASM guidelines. The spectrogram for wake stage 

(figure 31.a) shows high Alpha band activity in the frequency interval of 8 

to 13Hz. Figure 31.b, corresponding to S1, shows activity in the range of 

4-7Hz with slow background activity (in frequencies less than 2 Hz). 

As the subject moves to S2, low amplitude activity in the range of 12-14 

Hz, together with low frequency K complexes, are noticeable. During S3, 

slow wave activity in frequencies less than 4 Hz is typical. Mixed frequency, 

low amplitude activity, resembling S1 is present in REM spectrogram. 
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Figure 31. Sample RGB image for five sleep stages created from time-frequency spectrogram (a) Wake, 

(b) S1, (c) S2, (d) S3, and (e) REM. 

The proposed method performance was evaluated using per stage and 

overall performance scores, including per stage sensitivity, specificity, 

accuracy and overall accuracy as shown in Table 24 The most correctly 

classified stage is wake (96.3%) followed by S3 (89.2%), S2 (84.1%) and 

REM (82.4%). As typical for automatic sleep stage classification systems, 

the lowest classification accuracy is for S1. The main reason for this is that 

EEG signals have similar patterns in S1, REM and even S2. On the other 
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hand, the distribution of sleep stages along a sleep study is not balanced. 

Usually S1 is rare compared to other stages and the classification system 

has difficulty in learn enough and predict it correctly. The sensitivity 

results confirm the above-mentioned similarity of EEG patterns in S1, S2, 

and REM. The specificity or true negative results for all stages are higher 

than 90%. Our results can be compared to the state of the art works 

presented in [179], although our system was trained with a lower number 

of samples. In contrast to our work, they achieved the highest per stage 

accuracy in S3 (94%).  The accuracy for wake stage was 87% compared to 

96.3% in our work. The system in [179] outperformed our system in 

classifying S1 stage (75% vs. 64%). On the other hand, overall sensitivity of 

our system is higher. Both systems reached state of the art overall accuracy 

[173], [175]. 

Table 24. Sensitivity, specificity, accuracy per stage, and overall accuracy for proposed method. All 

numbers are in percentage. 

 
Sensitivity Specificity 

Accuracy 
(per stage) 

Wake 92 97 96.3 

S1 64 94 67.6 

S2 79 91 84.1 

S3 85 95 89.2 

REM 78 96 82.4 

Overall Accuracy 84 
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Chapter 6 

 

6 Discussion and Conclusion 

 

There are many solutions for the denoising and classification of sleep 

PSG signals. In this thesis, we proposed three methods and explored their 

utility and benefits in the study of sleep. As the first method, in the pre-

processing part, we proposed an artefact detection algorithm based on the 

adaptive filtering technique. Two different types of artefacts (body and chin 

movement from EMG and eye movement from EOG) were studied; the 

performance of the denoising algorithm was quantified by the classification 

accuracy. The main advantage of the developed algorithm is the cancelation 

of the noise instead of removing it. This methodology avoids data loss by 

keeping the noisy epochs.  
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As the second novel method in this thesis, we proposed studying the 

conventional classifiers performance on the comprehensive features set 

used in sleep stage classification. The main goal of this work was to have 

an objective look at the conventional classifier’s performance. 

The emphasis of this thesis was to explore the potential of deep learning 

in sleep stage classification. For this aim, we proposed two new 

methodologies for 1D and 2D sleep stage classification. One for feature 

transformation (dimension reduction) and classification in 1D environment 

and the other one for feature extraction and classification in 2D 

environment. 

In the following, the first sub-sections will discuss the data we used in 

this thesis. The second sub-section will present the benefits of denoising 

EEG signals. The third sub-section will describe the cons and pros of 

conventional classifiers results and handcrafted features. In fourth sub-

section, the most important topic of this thesis, deep learning for 

classification and feature extraction/transformation, will be presented. 

6-1 Datasets 

In this sub-section we will discuss cons and pros of the datasets used in 

this thesis. 

Sleep-EDF Database [Expanded]:  

As mentioned in chapter 4, this database includes two groups of 

recordings, namely SC and ST. In our simulations, we didn’t use SC files, 

since EMG data for these recordings was a zero-amplitude or no data 

recording.  
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Through careful analysis ST recordings, a number of issues were detected 

that made some of the recordings unsuitable for being used in the 

evaluations. These issues are as follows: 

 Lack of S4 (according to R&K guidelines), 

 Artefacts such as severe movement or sensor misconnection, 

 Unsynchronized EEG data and hypnogram, 

 Lack of stage 3 epochs, 

 Severely corrupted EEG data. 

As a result, six recordings were selected out of twenty-two and the 

corresponding hypnograms were converted from R&K to AASM. 

Eliminating 16 out of twenty-two recordings led to major data reduction 

which can limit the power of the final classifying system.  

Pz-Oz channel EEG together with submental chin EMG and horizontal 

EOG each sampled at 100 Hz were used in the evaluations. Table 9 

illustrates the number of stages available per subject. 

ISRUC_Sleep Database: 

For our evaluations, we used PSG recordings from healthy subjects. Nine 

male and one female subjects aged between 30 and 58 participated in the 

recordings. Each recording contains signals from 19 channels. The data 

include six EEG channels: F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, and O2-

A1 from which we selected the C3-A2 EEG channel. The C3-A2 channel is 

the commonly used EEG channel in sleep stage classification (refer to 

chapter 3) and is among the recommended channels by AASM. In addition 
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to one EEG signal, we used the signals from right EOG and chin EMG, 

and ECG channels of all ten subjects.  

The recordings in this dataset didn’t have the issues mentioned for 

previous database. However, the main limitation of ISRUC_sleep database 

was the interscorer variability especially for S1. The studied sleep stage 

classification system was evaluated based on a hypnogram created from the 

consensus of two experts on visual sleep scoring. There were some cases of 

disagreement, especially on S1 which made the confirmation of the obtained 

results difficult. Moreover, the database was pre-processed, and raw data 

was not available for possible changes in the pre-processing step. 

One common issue with open access sleep databases is the problem of 

unbalanced data, meaning that sleep stages are not equally present in the 

database. Training a classifier with unbalanced data leads to unequal 

learning of different stages, thus stage-wise accuracy for S1 is usually lower 

than for the other classes. This problem becomes even more highlighted 

with the fact that EEG has similar wave patterns for S1 and REM. 

Therefore, it is important to use a feature extraction and classification 

scheme that can handle the domain knowledge and is not dependent on the 

availability of labelled data. Deep learning techniques are suitable choices 

considering these criteria. 

6-2 Denoising EEG Signal 

To the best of our knowledge there is a deficiency of EEG artefact 

removing studies in the sleep stage classification context that can remove 

the EOG and EMG artefacts from EEG without rejecting epochs and at the 

same time evaluates the performance of the classifier for the denoised data. 

Sub-section 5-1 is a contribution in this regard. Our findings showed that 
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the proposed method for artefact cancelation is reliable for sleep stage 

classification giving an accuracy improvement. According to the obtained 

results, artefact removed-EEG allowed a classification accuracy 

improvement of around 14% compared to raw EEG. 

Conventional classifiers are not able to handle domain knowledge. In 

other words, they cannot extract relevant information from raw data. 

Therefore, feature extraction is an essential prerequisite for them. 

Considering that the final classification accuracy is in direct relationship 

with feature vector quality and enhancement of raw signal quality can 

improve the quality of features, proper removal of EMG and EOG artefacts 

is of paramount importance. The same is not valid for deep learning-based 

sleep stage classification. In these systems, the leakage of information from 

EOG and EMG channels to EEG can be a positive contribution to improve 

the classification accuracy since this leakage can be used for efficient 

unsupervised feature extraction. 

This study is supported and validated by the following publication: 

 A. A. Gharbali, J. M. Fonseca, S. Najdi, and T. Y. Rezaii, 

“Automatic EOG and EMG Artifact Removal Method for Sleep 

Stage Classification,” IFIP Advances in Information and 

Communication Technology, Springer International Publishing, 2016, 

pp. 142–150. 

6-3 Conventional Classifiers 

As described in sub-section 5-2-1, we analysed the performance of two 

common classifiers, namely k-NN and MLFN in sleep stage classification. 

Also, this study was a contribution regarding the mutual relation between 
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classifiers and feature set. A comprehensive set of the most common 

features in sleep stage classification together with several feature ranking 

techniques were used. Table 11 illustrates the top 10 features selected by 

each method. Itakura Spectral Distance (ISD) (F36) always appears in the 

top 10 for all the methods. Although different feature ranking methods have 

their own specific criteria for ranking the features, observing ISD in the top 

10 list, means that ISD is a preferable feature for all feature selection 

methods.  

In addition to ISD, there are some other features that can be considered 

most preferable. EEG ZCR (F9) is a simple, yet effective feature that is 

listed in top 10 by all the methods except ReliefF. Following ZCR, 

Petrosian fractal dimension (F31), Hurst exponent (F35), WP feature (F22), 

approximate entropy (F29), spectral entropy (F27), and Hjorth mobility 

parameter (F11) were selected by at least five ranking methods to be 

included in top 10 list.  

The optimum number of features for each method, which is selected by 

the Kneedle algorithm, is also shown in table 11. For MLFN and k-NN 

classifiers, a slight difference exists in the optimum number. Considering 

the maximum accuracy that the methods reach in their optimum points, the 

MRMR-MID method using k-NN classifier outperforms all the others with 

seven selected features. Also, both MRMR methods using MLFN classifier 

outperform all the other methods with five features. 

The CMIM method reaches its best accuracy with the first 3 features on 

both the classifiers. Considering figure 27, its accuracy is equal or less than 

the MRMR-MID method’s accuracy at that point. Unanticipatedly, none of 

the aggregation methods outperformed the rest of the feature ranking 
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methods. One possible reason is that the aggregation methods, especially 

Borda, are affected by the performance of all the methods from best to 

worst. 

It should be considered that the results presented in this study are 

obtained through using Physionet Sleep-EDF Expanded Database which is 

already used in several previous sleep studies [40], [41], [72], [86] and 

can be supposed as verified enough to be used in such a comparative study.  

This study is supported and validated by the following publications: 

 S. Najdi, A. A. Gharbali, and J. M. Fonseca, “Feature ranking and 

rank aggregation for automatic sleep stage classification: a 

comparative study,” Biomedical Engineering Online, vol. 16, no. S1, 

p. 78, Aug. 2017. 

 S. Najdi, A. A. Gharbali, and J. M. Fonseca, “A Comparison of 

Feature Ranking and Rank Aggregation Techniques in Automatic 

Sleep Stage Classification Based on Polysomnographic Signals,” in 

4th International Conference, IWBBIO, 2016, pp. 230–241. 

In sub-section 5-2-3, the goal was to evaluate conventional classifiers 

performance in sleep stage classification with a new feature set. The new 

feature set consisted of conventional and distance-based feature set. The 

distance-based feature set included 32 features that were extracted by 

calculating the distance between AR and spectral coefficients of EEG, EOG, 

EMG, and ECG signals. The distance measures used were Itakura, Itakura-

Saito and COSH, all common in speech signal processing. Extensive 

assessments were performed to reveal the weaknesses and strengths of 

these features’ classification ability and classifiers’ performance. 
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Similar features were removed from the feature sets by thresholding L1-

norm between feature vectors. This step was advantageous because 

removing these features reduces the final feature vector dimensionality and 

enhances the stability of the feature-ranking results. Moreover, according 

to the results of table 13, this step led to an improvement in the 

classification accuracy. This improvement was expected since the existence 

of redundant features has no positive effects on the classification results and 

increases the computational complexity of the whole system. 

To find the most useful features for describing PSG signals for classifiers, 

six feature-ranking methods, namely ReliefF, mRMR-MID, mRMR-MIQ, 

Chi-square, Fisher, and IG, were applied to the three feature sets 

(conventional, distance-based and total).  

To further investigate the contribution of distance-based features, three 

different classifiers, k-NN, MLFN and DSVM, were used. Previous studies 

[20], [71] showed that combining different types of features, i.e. temporal, 

spectral, time-frequency domain and nonlinear, would lead to a satisfactory 

level of classification accuracy using a lower number of features. In this 

study, it has been shown that using distance-based features together with 

conventional ones can further improve the performance of the sleep scoring 

system. This improvement is noticeable in the results of all three classifiers. 

According to the results of the Vikor method in tables 14-22, carefully 

selected measures from the total feature set are sufficient to reach an 85% 

average accuracy. 

Regarding the compatibility of feature ranking and classifier, all 

classifiers achieved the highest accuracy with either mRMR-MID or 

mRMR-MIQ. In particular, mRMR-MID with Min-Max normalization 
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gave the highest accuracy with 13 features in which the EEG-EOG Itakura 

distance of spectral coefficients and EMG Itakura distance of AR 

coefficients are selected from the distance-based feature set (table 22). This 

result is consistent with our previous studies in which we used the 

Physionet sleep database [180] to evaluate the applicability of rank 

aggregation to the sleep scoring problem. Moreover, simulation results 

showed that DSVM outperformed the other two classifiers for all the 

feature ranking and normalization methods.  

6-3-1 GPU vs. CPU Performance Analysis for MLFN 

Training the classifier with sufficient amount of the data is crucial for 

obtaining a robust and reliable classifier. One of the main concerns in next 

generation sleep monitoring systems is the ability of hardware to manage 

that huge amount of data. GPUs or graphics processing units are used for 

mathematically-intensive tasks to assist CPU and improve the overall 

performance of computer or electronic device. 

In our study for evaluation of the conventional classifiers, considering the 

computational complexity of MLFN, the GPU unit was utilized to 

accelerate the simulation process with significant differences when 

compared to the CPU. The MATLAB parallel computing toolbox was used 

for distributing the processes among several sessions in the computer. A 

maximum of eight local workers could be provided by the parallel 

computing toolbox on a single workstation [217]. Nevertheless, the 

number of usable workers for a process is dependent on the number of cores 

of the processor in the computer. In our case, a core-i7 processor provided 

four workers considering the version of MATLAB. A NVIDIA GeForce 

GT 640 card was used as GPU. The elapsed time for 20 neurons of ANN 
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using CPU was 4426.57 seconds while using the GPU it was 1116.51 

seconds. Therefore, it can be determined that, for this type of computation, 

GPU can be at least 4-times faster than CPU. 

This study is supported and validated by the following publication: 

 A. A. Gharbali, S. Najdi, and J. M. Fonseca, “Investigating the 

contribution of distance-based features to automatic sleep stage 

classification,” Computers in Biology and Medicine, vol. 96, pp. 8–23, 

May 2018. 

6-4 Deep Learning Classifiers 

Although feature transformation based on deep learning has been already 

used in several machine learning applications, the advantages and 

potentials of applying these methods in sleep stage classification problems 

have not been explored yet. The study in sub-section 5-3 is a contribution 

in this regard. A new method was proposed for dimension reduction and 

classification based on SSAEs. The results showed that SSAE can be 

considered as an appropriate tool for decreasing the complexity of sleep 

scoring issues and classifying compared to k-NN and Softmax classifiers. 

DFS block showed in this study promising results not only in reducing 

computational complexity but also, on increasing the accuracy. SSAE 

outperformed other classifiers on all the stages except S2, which leads SSAE 

to have better overall accuracy comparing others.  

 S. Najdi, A. A. Gharbali, and J. M. Fonseca, “Feature 

Transformation Based on Stacked Sparse Autoencoders for Sleep 

Stage Classification,” in Technological Innovation for Smart Systems, 

2017, pp. 191–200. 
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The promising results of this study imply that deep learning techniques 

can be proper alternatives to the conventional classifiers. The main 

disadvantage of conventional classifiers is that they are closely dependent 

on a set of hand-crafted feature set extracted from PSG signals. The quality 

of this feature set is determined by the expert’s creativity and prior 

knowledge of the problem. Moreover, extracting these features requires 

extensive human labour and their modelling capabilities are limited. 

Therefore, it is highly desirable to make the feature learning and 

classification stages automatic and less dependent on expert’s knowledge.  

Most of the existing methods for automatic sleep stage classification rely 

on hand-crafted features and there are limited number of studies that apply 

deep learning techniques for unsupervised feature learning and 

classification. On the other hand, in image processing areas, deep learning 

techniques already achieved significant results and their usefulness and 

efficiency are confirmed in several applications. Motivated by these results, 

a new sleep scoring algorithm based on image classification was proposed.  

The idea of using 2D images instead of conventional hand-crafted 1D 

features is the application of deep learning-based methods (CNN) which is 

an emerging trend in sleep stage classification. It was always a concern for 

researchers to provide an efficient feature set for classifiers to increase their 

performance. Therefore, several feature extraction and selection methods 

were proposed to reach this goal. The main advantage of this method was 

elimination of the need for manual feature extraction and selection, while 

taking advantage of the advancements in deep image classification domain. 

High resolution time-frequency spectrograms of sleep epochs were 

extracted using CWT and converted to RGB images. The extracted images 

were intuitive and interpretable according to AASM guidelines. These 
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images were fed to a pre-trained CNN, AlexNet. We took advantage of 

transfer learning which allows rapid progress and facilitates the modelling 

for the second task. Classification results showed that although our system 

was trained with a lower number of samples compared to similar studies, it 

was able to achieve state of the art accuracy and higher overall sensitivity.  

It should be noted that because of hardware limitations we couldn’t use 

all the epochs of ten healthy subject’s data for training CNN. Classification 

accuracy could be further improved with more training data. Nevertheless, 

this study was one of the first studies in the sleep stage classification area 

where the need for feature extraction and selection stages was eliminated 

by using a deep network. 

This study is supported and validated by the following publication: 

 A. A. Gharbali, S. Najdi, and J. M. Fonseca, “Transfer Learning of 

Spectrogram Image for Automatic Sleep Stage Classification,” 

Springer International Publishing, 2018, pp. 522–528. 

6-6 Future Work 

Due to the database available at the moment of this research, EOG and 

EMG channels were utilized for cancellation of their contamination in 

EEG. The performance of the proposed method can be improved in the 

future using other PSG channels like ECG. On the other hand, the proposed 

artefact detection scheme was only able to detect linear artefact by 

evaluating cross correlation. Extending it to nonlinear artefact removal can 

extend the applicability of the proposed framework. 
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Moreover, one of the main criteria to evaluate the performance of the 

denoising algorithms is SNR. Considering the lack of clean EEG, SNR 

evaluation was not applicable in our study. As a future work, to have a clean 

EEG instead of using conventional sleep records, it is suggested to get the 

Electrocochleography (ECoG) database. In contrast with the non-invasive 

techniques (EEG), ECoG is an invasive technique which provides brain 

signals that have an exceptionally high SNR, less susceptibility to artefacts 

than EEG and a high spatial and temporal resolution. Then, it is possible 

to manually add the signals from EOG, EMG and ECG for denoising 

purposes. 

For evaluating the performance of conventional classifiers, in sub-section 

5-2-1, we tried to involve a comprehensive list of features and even newly 

introduced ones in the sleep study area. Also, a group of conventional 

feature selection techniques which performs selection independent of 

classifiers were used. We applied these techniques to the available datasets 

at the moment and tried to pre-process them in the same way to remain 

objective. Nevertheless, generalizing these results to all future sleep studies 

requires further study and analysis by using other sleep databases as well. 

Also, in this study for evaluating the generalization ability of classifiers 

we used repeated random subsampling validation. In [19], it is mentioned 

that due to the data subdivision dependency resulted from validation 

methods that are based on random subsampling, patient cross validation 

was preferred. Therefore, future steps will involve verifying the results with 

different databases, applying and comparing more rank aggregation 

methods and using patient cross validation and comparing the results with 

common validation methods. 
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Despite the advantages of the study in sub-section 5-2-3, there were some 

limitations. For example, the proposed system was designed for 

classification of data acquired from healthy subjects. Generalization of the 

results to unhealthy or elderly subjects would require modifications in the 

classification rules. Future work can include the analysis of other databases 

as well as different classifiers for further investigation. Furthermore, 

comparing the performance of handcrafted features with automatically 

extracted features by deep networks can be useful for further development 

of deep learning-based methods. 

For 1D deep learning classification study future works can be as follows: 

 Comparing the performance of other conventional classifiers such 

as SVM and RF with SSAE in sleep stage classification; 

 Comparing other deep learning classifiers performance with the 

SSAE; 

 Compare SSAE’s performance with other classifiers using different 

sleep databases; 

 In order to have a better comparison it is better to add other criteria 

rather than accuracy such as sensitivity and specificity; 

Transfer learning was used as deep learning approach for classification of 

sleep epoch images. The reason that higher accuracy was not achieved in 

our study for image classification is the deficiency of raw data in the 

available datasets. Deep learning techniques are data intensive and we used 

a dataset that included just ten healthy subjects. This number is quite small 

compared to the amount of data required to correctly train a deep 

architecture like CNN. Future work can include providing larger datasets 
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to approach an optimal accuracy, further optimization of parameters and 

testing of different pre-trained CNNs. 
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