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Abstract 

Alaria esculenta is a brown seaweed with a great potential for biomass production due to its 

high productivity and high content of carbohydrates, proteins, vitamins, minerals and bioactive 

compounds like phlorotannins and pigments. Alaria cultivation is performed either by collection 

and settlement of zoospores on ropes to develop seedlings, or by production of the seedlings 

from vegetative gametophyte cultures. Contrary to the zoospore technique, the use of 

gametophyte cultures has the potential to provide a constant, year-round supply of seedlings. 

There is a need for optimizing the production methods such as the maintenance of the 

gametophyte cultures, gametogenesis, seeding process and deployment time. 

The purpose of this dissertation is to optimize several parameters involved in Alaria cultivation 

using vegetative gametophytes and provide qualitative and quantitative information related to 

kelp phlorotannins.  

Optical density and in vivo fluorescence were evaluated as an alternative method to estimate 

gametophyte biomass. Both methods showed linearity with the dry weight.  The cultures were 

also supplemented with a possible growth enhancer and the effect evaluated on the cultures, 

however no growth improvements were noticed on these cultures.  

When the seedlings production is initiated, the fertility of vegetative gametophytes needs to 

be switched on. The fertility induction was evaluated with three different photoperiod regimes 

under white light, where the best performance was accomplished by 23 hours light over 8 

days. The seeding density is the next step to optimize seaweed industry. Higher and lower 

densities bring several disadvantages to the development of the sporophytes. Thus, four 

densities of fertile gametophyte cultures were tested, where a density per dry weight of 0.8 

mg/mL produced the most acceptable number of sporophytes on the twines.  

For the estimation of sporophyte growth, manual measurements, such as sporophytes 

counting and length measurement, are extremely time-consuming methods. An alternative 

method based on image analysis was tested to estimate the percentage of growth of the 

seedlings and compared with the manual method. The image analysis method was shown to 

have a good relationship with the sporophyte measurements, bringing a faster and easier way 

to estimate the seedlings growth.  

A. esculenta and S. latissima could represent a viable source of phlorotannins (PHL) due to 

the fast and efficient grow of these species. The juvenile stages of these species had an 

average of 4.11 and 3.08 mg PHL/g algae, respectively. It was also observed that the 

phlorotannin content in the Alaria gametophytes increased during fertilization. Two forms of 

phloroglucinol were documented in both species but due to the lack of studies related with the 

phlorotannin characterization of these species no more compounds were identified. 
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Resumo 

Alaria esculenta é uma alga castanha com um grande potencial para a produção de biomassa 

devido à sua alta produtividade e aos elevados conteúdos de hidratos de carbono, proteinas, 

minerais e compostos activos como florotaninos e pigmentos. O cultivo desta espécie é 

realizado pela apanha de esporófitos maduros e pela fixação de zoosporos em cordas para 

produzir algas juvenis ou pela produção de algas juvenis a partir de culturas de gametófitos 

vegetativos. Contrariamente à primeira técnica, o uso de culturas de gametófitos têm o 

potencial de iniciar esta produção durante todo o ano. Para utilizar este método é ainda 

necessário otimizar todos os processos envolvidos nesta produção, desde a manutenção das 

culturas de gametófitos à determinação do período de plantação dos esporófitos no mar.  

O presente trabalho procura otimizar diferentes parâmetros envolvidos no cultivo de A. 

esculenta utilizando gametófitos vegetativos. Procura também fornecer informações 

qualitativas e quantitativas dos florotaninos presentes nestas espécies.  

A densidade óptica e a fluorescência in vivo foram avaliadas como um método alternativo 

para estimar a biomassa de gametófitos. Estes dois métodos apresentaram linearidade com 

o peso seco. As culturas foram também suplementadas com um possível indutor de 

crescimento e o seu efeito foi avaliado, não sendo observadas melhorias no seu crescimento. 

Para a produção de algas juvenis a partir de gametófitos a crescer de forma vegetativa, a 

fertilidade destes gametófitos têm de ser induzida. Esta indução foi avaliada usando três 

regimes de fotoperíodo, onde o melhor desempenho foi obtido nas culturas de gametófitos 

expostas a 23 horas de luz e uma de obscuridade durante 8 dias.  

A densidade da cultura que inicia a sementeira é outro passo a ser optimizado. Elevadas e 

reduzidas densidades trazem desvantagens ao desenvolvimento dos esporófitos. Desta 

forma, quatro densidades de culturas de gametófitos foram testadas, onde uma densidade 

de 0.8 mg/mL por peso seco obteve os melhores resultados. 

Para avaliar o desenvolvimento dos esporófitos juvenis, a contagem e a medição do 

comprimento de esporófitos são métodos extremamente morosos. Um método baseado na 

análise de imagem foi testado para estimar a percentagem de crescimento dos juvenis. Este 

método mostrou uma boa relação com as medições manuais dos esporófitos, permitindo 

estimar rapidamente o crescimento destes. 

A. esculenta e S. latissima podem representar uma fonte viável de florotaninos (PHL) devido 

ao rápido e eficiente crescimento destas espécies. Estas algas apresentaram, 

respectivamente, um conteúdo médio de florotaninos de 4.11 e 3.08 mg PHL/g alga. Os 

gametófitos de A. esculenta apresentaram um aumento dos teores de florotaninos após a 

indução da fertilidade. Apenas dois tipos de floroglucinol foram identificados nestas espécies, 

porque devido à falta de estudos relacionados com a caracterização destes compostos, não 

foi possível identificar outros florotaninos. 
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1. Introduction 

The seaweeds are a diverse group of marine algae. They are critical primary producers using 

photosynthesis to convert CO2 and nutrients into living biomass. These organisms support the 

remaining marine life through the oxygen production, their contribution to marine food webs, 

and by providing structure and habitat for other species. Seaweeds are also an important 

resource for humans. Historically, seaweeds have been used around the world for human 

consumption, as a fertilizer, as medicine and as animal food additive (Arbona and Molla, 2006; 

Seth and Shanmugam, 2016). 

 

 Worldwide aquaculture 

Seaweeds are one of the largest unexploited global biomass resources. For centuries, 

macroalgae has been farmed in China, Japan, and Korea, but now this cultivation has 

expanded across the world. The main species harvested include Laminaria sp, Undaria sp, 

Eucheuma sp, Gracilaria sp, and Porphyra sp. As seaweed consumption has increased in the 

last several decades, seaweed mariculture had filled the gap between wild stock harvest and 

the present demand. ”Aquatic plants” represent 27.6 percent of global aquaculture production, 

where seaweeds are by far the dominant group (FAO, 2016). In 2015, aquaculture produced 

29.3 million tonnes (live weight equivalent) of “aquatic plants”, with a total estimated value of 

US$4.84 billion. Countries in East and Southeast Asia dominate the global seaweed 

production by volume and value. There are innumerous applications involving these 

organisms (table1).  

Table 1- Applications and their principal components  

 Seaweeds are industrially processed to extract thickening substances such as alginate, agar 

and carrageenan. A growing attention is focused on seaweed nutritional value due to their 

natural abundance of vitamins, minerals, and plant-based proteins. The use of seaweed as 

an alternative to salt is also being explored. Procedures are being developed for the industrial 

Application Components References 

Food  Seaweed blade, proteins, amino acids, minerals, vitamin C 

and A, iodine, lipids, alginate, agar, carrageenan, mannitol, 

laminarin 

(Holdt and Kraan, 2011; 

Kim and Pangestuti, 

2011; Thomas and Kim, 

2011; Vijayaraghavan et 

al., 2012; Balboa et al., 

2013; Evans and 

Critchley, 2014; Silva et 

al., 2015; Seth and 

Shanmugam, 2016)  

Fertilizer Minerals and phytohormones 

Biofuel Alginate, laminarin 

Feed additives Protein, lipid, dietary fibers, alginate, iodine, fucoidan 

Medicine and 

Pharmaceutical  

Phlorotannins, fucoidan, agar, fucoxanthine, carrageenan, 

alginate, enzymes, tocoferol, ᵝ-carotene, phospholipids,  

IMTA system Whole seaweed 

Bioremediation Whole seaweed, capsules from alginate  
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preparation of biofuel from fish waste and seaweeds (Teresa Fernandes and McWhinnie, 

2011; Hurd et al., 2014; Skjermo et al., 2014; FAO, 2015, 2016).  

Before 2050, the global population will reach 9 billion people and will require millions of tons 

of new biomass resources. The cultivated seaweed biomass is a new entry into the growing 

global bioeconomy. The uncontaminated and relatively sheltered coast allied to a strong 

competence in aquaculture and off-shore constructions create many opportunities for 

seaweed cultivation and processing in Norway. Whereas Laminaria hyperborea and 

Ascophyllum nodosum are the main seaweeds harvested and exploited in Norway today, the 

kelp species Saccharina latissima and Alaria esculenta have the biggest potential for industrial 

scale farming, being already cultivated by several companies. The number of research 

projects on macroalgae cultivation has also increased due the potential to increase the 

volumes of renewable biomass for third generation biofuel production and to supply the global 

market with food, feed ingredients and other products (Meland and Rebours, 2012; Skjermo 

et al., 2014). 

 

 Experimental organism 

Alaria esculenta (Linnaeus) Greville is an abundant brown algal species of the order 

Laminariales populating sublittoral zones of Arctic and cold temperate coastal ecosystems 

(Fig.1). Low tide level mainly determines its upper vertical distribution limit. Also called winged 

kelp, this seaweed is among the highest biomass producers and grows naturally down to at 

least 8 meters at moderately to highly exposed areas (Bischof et al., 1999). 

 

 

Figure 1. A. esculenta distribution in European coastal waters (from 

http://www.ukmarinesac.org.uk/communities/infralittoral/ ik1_2_2.htm) 

Figure 2. Alaria esculenta morphology   
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A. esculenta is composed by a long non-digitate monostromatic blade, a stipe arranged with 

sporophylls and a root-like organ called holdfast (Fig.2). The stipe is short, continuing as a 

prominent midrib in the blade, which is smooth with deep ridges. These ridges extend from 

the periphery towards the central midrib on the adult plant. The plant attaches to the 

substratum with the narrow but resistant holdfast. The reproductive cells are produced in small 

blades with few centimeters up from the holdfast called sporophylls (Druehl, 1988; Arbona and 

Molla, 2006). 

 

 Life history 

The life history of a species is a continuous interaction between the organism and its biotic 

and abiotic environments. Kelp species, including Alaria esculenta, have a heteromorphic 

diplohaplontic reproductive cycle (Fig.3). After maturation, the adult sporophyte releases 

zoospores (sporulation), which develop into male or female microscopic gametophytes. The 

sexual fertilization of the gametes results in a zygote, which develops into a sporophyte.  

The sporulation season lasts for about 2-3 months with a peak in October-November. 

Zoospores or meiospores are produced in a unilocular sporangium called sorus, which is 

present in the mature sporophylls (Kain, 1979). These biflagellate zoospores become haploid 

through meiosis when released. Before settling in a suitable substratum, zoospores are able 

Figure 3. The life cycle of Alaria esculenta (Adapted from Redmond et al. (2014)). 
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to move actively for more than 48 h under experimental conditions. The flagella are then 

resorbed and germination occurs immediately. The initial germling stage involves the 

elongation of the spore and after 11-13 days, male and female individuals can be 

distinguished.  

The development of the gametophytes involves three stages: embryospore germination 

phase, vegetative growth phase and reproductive phase. The first stage leads to the primary 

cell of the gametophyte. The second is characterized by the primary cell increase in the female 

gametophyte or by the production of a few cells in the male gametophyte. The last stage only 

occurs if there are favorable conditions for the gametophyte fertilization, otherwise they may 

grow vegetatively, forming filamentous structure (Cuijuan et al., 2005). This type of fertilization 

involving a mobile and a non-mobile gamete is termed oogamy. Female gametophytes can 

be distinguished from males by having less branching and being thicker. Males develop 

antheridia where spermatozoids are produced and females develop oocysts or oogonia 

producing oospheres. After the oosphere is produced, female gametophytes secrete 

pheromones such as lamoxirene that induce the spermatozoids release and attract towards 

the oosphere, where the fusion occurs to form a zygote (Maier et al., 2001). The sexual 

maturation of gametophytes occurs within 15-20 days after sporulation, but large variations 

can be observed from 8 days to 70 days. Finally, the zygote germinates forming diploid 

plantlets, termed seedlings. Unfertilized egg cells may develop into haploid 

parthenosporophytes. (Kraan and Guiry, 2000; Cuijuan et al., 2005; Arbona and Molla, 2006; 

Lüning, 2008; Steinhoff et al., 2011) 

  

 Biomass composition 

Seaweeds are known for their richness in carbohydrates, minerals and certain vitamins, but 

they also contain bioactive substances like polysaccharides, proteins, lipids and polyphenols. 

Antibacterial, antiviral and antifungal properties are just a few applications used by 

macroalgae. These give seaweed great potential as a supplement in functional food or for the 

extraction of compounds. However, these organisms are characterized by a highly variable 

composition, depending on species, collection time and habitat. These seasonal and 

environmental variations in the composition of seaweed make generalizations impossible 

(Holdt and Kraan, 2011; Schiener et al., 2015). 

The moisture content of fresh marine algae is very high and can account for up to 94% of the 

biomass. The ash content of Alaria sp blades is lowest during September, October and 

November and highest during February to June. The dry weight is lowest from January to 

March and highest from July to September for these species (Holdt and Kraan, 2011). 
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Marine algae contain large amounts of polysaccharides. The cell wall and storage 

polysaccharides most common in brown algae are the alginic acid, mannitol, fucoidan and 

laminarin (β-1,3 glucan). The storage carbohydrates mannitol and laminarin in Laminariales 

tend to accumulate during summer and autumn and then utilized during winter as an energy 

source for new tissue growth (Holdt and Kraan, 2011; Schiener et al., 2015). 

The structure and biological properties of seaweed proteins are still poorly documented. The 

protein fraction of seaweed varies with the species, but is generally small in brown seaweed. 

Most seaweed species contain all the essential amino acids and are a rich source of the acidic 

amino acids, aspartic acid and glutamic acid. Contrary to carbohydrate profiles, protein 

contents were found to be highest from February to May, where it has been suggested that 

this build-up of nitrogen reserves is to sustain the rapid growth rates during the summer (Holdt 

and Kraan, 2011; Schiener et al., 2015). 

Lipids represent up to 4.5% of the seaweed on a dry weight basis, and this content is lower 

than other marine organisms. The lack of studies of the bioavailability of algal lipids currently 

limits their nutritional evaluation. Like other biochemical components, the fatty acid content 

varies with the season and other environmental factors. The maximum content of lipids in the 

fronds of A. esculenta was generally found in winter (Holdt and Kraan, 2011). 

Seaweed pigmentation is composed by chlorophylls, carotenoids and other pigments. 

Chlorophylls are green lipid-soluble pigments which carry out photosynthesis. Chlorophyll a is 

essential in the reaction center of the thylakoid, light-harvesting structures in which 

photosynthesis is carried out. The carotenoids such as β-carotene, violaxanthin and 

fucoxanthin are photosynthetic pigments that absorb into the blue-green region. The latter is 

one of the most abundant carotenoids in nature where its content varies during the season 

and life cycle (Holdt and Kraan, 2011; Hurd et al., 2014). 

Marine algae are also known for the high mineral content, being used as feed and food 

supplements to supply minerals. The brown seaweeds are an excellent source of iodine (Holdt 

and Kraan, 2011). 

 

 Phlorotannins  

Polyphenols have been emerging as one major category of natural product important to 

human health. Beside polyphenols from terrestrial plants, seaweeds are another source of 

polyphenols with unique structural properties (Zhang et al., 2006). 

Phlorotannin is a group of phenolic compounds widely distributed in brown macroalgae (Fig. 

4). It consists of phloroglucinol (1,3,5-trihydroxybenzene) units with different degrees of 

polymerization and a group of heterogeneous polymeric compounds. Phlorotannins are 
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subdivided in four subclasses based on their type of linkage, i.e., phlorotannins with phenyl 

linkage (fucols), with both phenyl and ether linkages (fucophlorethols), with dibenzodioxin 

linkages (eckols) and with ether linkages (fuhalols and phlorethols). The molecular weight 

(MW) of these compounds can range from 126 Da to 650kDa.  

Phlorotannins are biosynthesized through the acetate-malonate pathway in the Golgi 

apparatus, in the perinuclear area of the cell. Soluble phlorotannins are stored in physodes 

which are membrane-bound cytoplasmic vesicles. These organelles fuse with the cell 

membrane and the phlorotannins are secreted into the cell wall, forming complexes with 

different components of the cell. Phlorotannins are essential to the physiological integrity of 

the seaweeds. These compounds act as a defense mechanism against herbivores and other 

organisms by releasing an insoluble agar matrix containing phlorotannins into the surrounding 

water directly via exudation. Phlorotannins have an allelopathic activity against epibionts and 

they are responsible for the absorption of ultraviolet radiation. Phlorotannins can be found in 

brown seaweeds, depending on the species, age and tissue type, with concentrations between 

0.5 to 20% of dry weight. These concentrations show a phenotypic plasticity in response to 

environmental parameters such seasonal variations, nutrient availability, intensity of herbivory, 

light intensity exposure, water temperature and others (Koivikko et al., 2005; Holdt and Kraan, 

2011; Lopes et al., 2012; Steevensz et al., 2012; Agregán et al., 2017; Li et al., 2017). 

Recently, phlorotannins showed a wide variety of bioactivities and potential beneficial health 

effects, including antioxidant properties (Balboa et al., 2013),  anti-carcinogenic activity (Yuan 

and Walsh, 2006) , anti-allergic effects (Shim et al., 2009) , anti-HIV-1 activity (Ahn et al., 

2004), acting as radioprotective effect (Yuan and Walsh, 2006), as bactericides (Nagayama 

et al., 2002) and antidiabetic activity (Okada et al., 2004). Phlorotannins are analyzed as total 

phenolics, where the total contents of phenolic compounds can be measured by colorimetric 

assays such as the Folin-Ciocalteu, the Folin–Denis reagent and 2,4- dimethoxybenzaldehyde 

Figure 4.  Different classes of phlorotannins from brown seaweeds (Adapted from Thomas and Kim (2011)) 
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(DMBA). These methods are simple to use but they provide little information on the chemical 

composition of phenolic extracts. Chromatographic techniques have been shown to be a 

suitable option for this kind of analysis, providing qualitative and quantitative analysis of 

phenolic extracts (Steevensz et al., 2012). 

 

 From the sea to the lab 

1.6.1.  Current process 

The Alaria esculenta cultivation is mainly performed by the collection of wild sporophytes, 

release and settlement of zoospores into strings (sporelings), and development of the 

seaweed on the twine (seedlings). Finally, there is a deployment, outgrowing and eventually 

harvesting of the plants. Sporelings can be made using zoospores released seasonally from 

mature sporophytes and by vegetative filamentous gametophytes cultures (Xu et al., 2009; 

Forbord et al., 2012). The cultivation protocol for A. esculenta developed by Arbona and Molla 

(2006) is currently used by both scientists and seaweed farmers, but possibly with some 

adaptions. 

 

1.6.2.  Zoospore versus gametophyte method 

The technique using zoospores is practiced for a long time and for that reason is well studied, 

being crucial to the seaweed industry. However, this method is dependent on the availability 

of mature algae, which is limited by seasonal and local variations. Furthermore, the process 

involving the collection and transporting of the mature sporophytes and the release of the 

zoospores from the sporophylls could be quite time consuming, and the number of zoospores 

obtained not predictable. Gametophytes can be kept in cultures under laboratory conditions 

and enable access independent of the season. The technique using gametophytes also has 

challenges. The gametophytes tend to cluster due to the filamentous structure of these 

organisms, which could affect the development of the algae by overlapping during growth, 

where nutrients, light and the proper space are limited. The attachment of the gametophytes 

to the twine could be also a bottleneck, which depends on the polysaccharides quality released 

by the gametophytes. However, since the gametophyte method is not dependent of the 

seasonality, it could provide seedlings through the whole year, increasing the availability of 

demanded biomass of macroalgae (Xu et al., 2009; Forbord et al., 2012; Hurd et al., 2014). 

 

 Growth conditions for gametophyte cultures 

Gametophyte cultures are kept under manipulated conditions, such as light and temperature, 

to maintain these organisms in a vegetative state. This state allows the cultures to be 
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maintained for years and there is a constant increase of biomass since the vegetative growth 

of the gametophytes is favored. The fertilization can be triggered at any moment by modifying 

the previous conditions for seedling production (Arbona and Molla, 2006). 

 

1.7.1.  Light and photoperiod 

In their natural environments, seaweeds grow in exceptionally diverse and dynamic light 

climates. The season, tides, water turbidity and other factors have a marked effect on the 

quantity and quality of light that reaches seaweeds at their growth sites.  Thus, the quality and 

the intensity of light influences the growth, development and reproduction of the Laminariales 

species (Lüning and Dring, 1972, 1975; Lüning, 1981; Cuijuan et al., 2005). 

Blue light alone or as part of white light is required for the gametogenesis of Alaria esculenta. 

In red light, gametophytes grow only vegetatively. The ability to grow vegetatively in extremely 

dim light and reproduce only when irradiance increases provides a mechanism for populations 

to retain space after the canopy of parent sporophytes is lost (Hurd et al., 2014). The 

chlorophylls and other light harvesting pigments have different absorption peaks, and together 

they absorb across a broad region (400-700nm) of what is called photosynthetic active 

radiation (PAR). Three kinds of pigments are directly involved in algal photosynthesis: 

chlorophylls, phycobiliproteins and carotenoids. Chlorophyll a is present in all algae. The 

chlorophyll c1 and c2 occurs in brown seaweed, which they absorb blue light more strongly 

and red light less strongly than chlorophyll a. Fucoxanthin, b-carotene and siphonaxanthin are 

carotenoids that absorb into the blue-green region. The blue light affects specifically the 

reproductive development of the gametophytes as a photomorphogenetic response (Lüning 

and Dring, 1972; Hurd et al., 2014). The importance of carotenoids as light harvesting 

pigments is much more pronounced in macroalgae than in terrestrial plants because the 

spectral composition underwater is particular rich in blue and green light. Therefore, species 

from sublittoral zones such as A. esculenta are exposed to these conditions and it’s expected 

to have a better performance under blue light. Indeed, light acts as an important ambient factor 

to regulate plant growth and it also has a strong effect on algae in morphological and 

reproductive development (Hurd et al., 2014).                                                           

Photoperiodism is the ability of an organism to detect day length, which is a key factor to 

determine the timing of reproduction and growth activity in macroalgae species. The two-main 

photoperiodic responses are short-day plants (SD) and long-day plants (LD). Notwithstanding 

these names, plants actually measure the length of uninterrupted night, not day length. For 

terrestrial plants, the biochemistry and molecular biology of photoperiodic responses are well 

understood, which cannot be said about seaweeds. Most macroalgae species that show 
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photoperiodism are short-day. Higher plants have a family of photoreceptors, the 

phytochromes, which detect light in the red region of the spectrum and are involved in their 

systems for measuring and responding to light/dark cycles (Pr/Pfr). The presence of 

phytochromes has not been confirmed for brown seaweeds. The microstages of the life cycle 

are not under photoperiod control. The meiospore germination is dependent on light dose, 

whereas gametogenesis is triggered by a specific dose of blue light, which that means when 

the sporophyte canopy is removed, the increased blue light triggers gametogenesis (Hurd et 

al., 2014; Taiz et al., 2015). 

The ability of the seaweed to modify its reproductive status in response to an environmental 

stimulus can be categorized in “anticipators” and “responders”. Season responders sense and 

respond directly when environmental conditions are favorable. Yet, season anticipators grow 

and reproduce in a strategic annual rhythm suitable for the species. The growth is not a 

response to suitable environmental conditions but a response to a trigger (eg. low light). 

Contrary to a responder organism, an anticipator would show a slower growth rate during the 

summer, when irradiance is maximal. The organic matter produced in excess is stored and 

then used for growth during the winter, when the light is low and the nutrients are high. The 

species from the order Laminariales are mainly season anticipators, since their reproduction 

and sporophyte development occur during the winter. The biochemical and molecular 

mechanisms underlying circannual endogenous clocks are barely known for seaweeds (Kain, 

1989). 

 

1.7.2.  Temperature 

The temperature primarily controls the biogeography of seaweed specie. Seawater 

temperature has been increasing annually due to the global warming, which is directly related 

to the amount of light reaching the sea. These climate changes have caused measurable 

effects on kelp near their thermal limit, whereas blades may decay or even drop away from 

floating twines. The temperature can also affect reproduction through its effects on metabolism 

rates. The reproduction and sorus induction time, and the enhancement of the reproductive 

traits are dependent from temperature, being a few examples within the brown seaweed 

(Zhang et al., 2013; Hurd et al., 2014). 

 

1.7.3.  Growth medium 

Seaweeds require inorganic carbon, water, light and various mineral ions for photosynthesis 

and growth. In 1960, the development of defined culture media for growing algae allowed the 



25 
 

testing of a variety of elements to determine which are essential and required for growth. All 

the major constituents of seawater, except Sr and F, are required by macroalgae. 

The main sources of nitrogen for seaweeds are nitrate, nitrite and ammonium (inorganic 

nitrogen) and urea (organic nitrogen). Nitrogen has a major metabolic importance in 

compounds, being assimilated into amino acids and proteins. Phosphorus is mainly available 

as the inorganic ions PO4
3- and H2PO4. Phosphorus plays key roles in nucleic acids, proteins 

and phospholipids. The most important role is in energy transfer through ATP and other high-

energy compounds in photosynthesis and respiration. Nitrogen is the most frequently limiting 

nutrient followed by phosphorus. Iron is an important trace element for macroalgae growth, 

involved in the photosynthesis, chlorophyll synthesis, respiration, mitochondria electron 

transport, nitrogen reduction and gametogenesis induction. Elements such as magnesium, 

cooper, zinc, selenium, nickel and molybdenum are mainly involved as enzyme cofactors. 

Iodine is mainly stored as iodide, which scavenges a variety of reactive oxygen species.  

The use of natural seawater in macroalgae cultures usually involves the addition of an 

enrichment solution to produce an enhanced growth of the organisms. Among the many 

media, one dominates citations when working with seaweeds - the Provasoli’s Enriched 

Seawater medium (PES). Essential macronutrient elements (carbon, nitrogen and 

phosphorous), ions elements (Na+, K+, Mg2+, Ca2+, Cl-, and SO4
2-) and micronutrient metals 

(iron, zinc, cobalt, and manganese) are added to these cultures for the reasons mentioned 

before. Contrary to most of the higher plants, macroalgae don’t synthesize their own vitamins 

and depend on environmental sources. The three vitamins are added to culture media are B12 

(cyanocobalamin), thiamine and biotin. Vitamin B12 is the most required by seaweeds 

because it’s present in lower amounts than the remaining in seawater (Harrison and Berges, 

2005; Hurd et al., 2014).  

 

1.7.4.  Germanium dioxide 

The cultivation of the microscopic stage has the potential to be contaminated with diatoms, 

microalgae and other. The use of the germanium dioxide (GeO2) interferes with the formation 

of the diatom’s silica frustule inhibiting their growth. Ge blocks Si uptake and blocks the 

metabolism of Si already taken up, which affects protein and especially chlorophyll synthesis. 

Silica is not a major or essential element for kelp species, however the effects of GeO2 on 

micro- and macroscopic stages of Laminariales is still not entirely clear. Either studies pointed 

out inhibitory effect of GeO2 or no serious damaged for given GeO2 doses in brown 

macroalgae cultures. Currently, the concentration of GeO2 usually applied on gametophyte 

cultures is between 0.1 and 0.5 mL per liter  (Lewin, 1966; Markham and Hagmeier, 1982; 

Merrill and Gillingham, 1991; Shea and Chopin, 2007; Kerrison et al., 2016).  
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1.7.5.  Growth enhancers 

Seaweeds have been used in agriculture for decades due to the presence of several plant 

growth-stimulating compounds in crop production systems. The phytohormones present in 

higher plants such as auxin, cytokinin gibberellins, abscisic acid and polyamines are also 

present in brown macroalgae extracts, playing a physiological role in the regulation of growth 

and development these organisms. Numerous studies have revealed a wide range of 

beneficial effects of seaweed extract applications on plants such as enhancement of growth 

and development and establishment, and elevated resistance to biotic and abiotic stress, for 

example. Seaweed extracts might also produce these effects in macroalgae as in higher 

plants. Studies where macroalgae cultures were treated with seaweed extracts demonstrated 

higher growth rates and effects in growth and development comparing with the controls. The 

growth enhancer Algeafert was used in S. latissima gametophytes with positive effects on 

these cultures (Stirk et al., 2003; Robertson-Andersson et al., 2007; Tarakhovskaya et al., 

2007; Khan et al., 2009; Hurtado et al., 2012; Panda et al., 2012; Matsson, 2013). 
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2.  Experimental design 

 

Figure 5. Experiment design of the dissertation. 

Experiment 1 (E1) evaluates the effect of a possible growth enhancer on gametophyte cultures of Alaria esculenta. Experiment 2 

(E2) evaluates the fertility induction of the previous cultures under three different photoperiod regimes. Experiment 3 (E3) intends 

to optimize the density of gametophyte cultures as a starting point of the seedlings of A. esculenta. The control culture from E1 

was used and the fertility of the gametophytes was induced based on E2. Experiment 4 (E4) evaluates the seedlings quality 

initiated by different gametophyte cultures of A. esculenta. One culture from each condition was selected from E1. The induction 

of the gametophytes fertility was performed based on E2 and the density of the cultures was adjusted based on E3. Phlorotannin 

analysis (E5) was performed using samples from E3 (Alaria sporophytes), E4 (Alaria vegetative and fertile gametophytes and 

sporophytes) and Saccharina sporophytes from another experiment group from the MACROSEA project. 
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3.   Monitoring methods of A. esculenta 

gametophytes cultures (E1) 

3.1. Scientific questions 

The use of gametophyte cultures as source for seedling production is an increasingly common 

experimental alternative to the zoospore release method, but in the upscaling of the seaweed 

cultivation there is a need for optimizing of the production methods and different techniques 

that are used during different steps. The measurements of growth allows to understand the 

performance of a gametophyte culture. These measurements have been archived by wet 

weight (Zhang et al., 2008; Liu et al., 2016), dry weight (Ratcliff et al., 2017) and counting in 

microscope. Wet weight requires large amounts of samples and counting in microscope is 

very time-consuming. The dry weight method is the most accurate for filamentous cultures, 

but it takes a considerable time to obtain the biomass value in gametophyte cultures. It is 

necessary to establish an alternative method, less time-consuming, to follow these 

gametophyte cultures. Question 1: Is it feasible to measure the biomass of Alaria gametophyte 

cultures with optical density or in vivo fluorescence alternatively to the dry weight method?   

The addiction of fertilizers has been used in higher plants for a long time. Not only the plant 

growth and development are stimulated but also their resistance against biotic and abiotic 

factors. These growth enhancers might show similar effects in the seaweed production. 

Question 2: Could the addition of different concentrations of a possible growth enhancer affect 

the growth rate and/or the quality of Alaria gametophyte cultures?  

 

3.2. Materials and methods 

Cultures initiation and maintenance: A gametophyte culture of A. esculenta was provided by 

the company Hortimare. This culture was kept in a culture room at 10°C under a 24h 

photoperiod with a red light at 640 nm and intensity of 30 µmol m-2 s-1. The culture was equally 

distributed into three groups of five flasks. The cultures were renewed each 10-12 day with 

Provasoli Enriched Seawater (PES) medium supplemented with germanium dioxide (GeO2). 

Each group was supplemented with a different concentration of a growth enhancer (AlgeaFert 

Solid K+) – 0 mg/L (control, culture C), 25mg/L (culture A) and 50mg/L (culture B). 

Material and reagents: AlgeaFert Solid K+ (Ascophyllum nodosum extract) was purchased 

from Algea (Kristiansund, Norway). Sodium beta-glycerophosphate pentahydrate and 

germanium (IV) oxide were purchased from Alfa Aesar. Tris(hydroxymethyl) aminomethane, 

ammonium iron (II) sulfate hexahydrate and sodium nitrate were purchased from Merck. 
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Culture monitoring: Every 10-12 days, the gametophytes cultures of A. esculenta were 

measured by dry weight, optical density and in vivo fluorescence over 53 days. Calibration 

curves were established for each method. The dry weight method was performed by weighting 

pre-dried filters (24h at 80°C), filtrating the sample using a vacuum filtration system, rinsing 

with distilled water, drying the filters for 24h at 80°C and weighting them. The optical density 

method was measured in a visible spectrometer (UviLine 9100 from SCHOTT Instruments) 

using a plastic cuvette at 750nm. The in vivo fluorescence method was performed in a 

fluorescence spectrophotometer (Cary Eclipse from Agilent Technologies) with an excitation 

wavelength of 436.00nm and an emission wavelength of 685nm. A plastic cuvette was used.  

The medium of the culture was used as a blank in both methods.  

Statistics: All data are expressed as means ± SD. Two-way analysis of variance (ANOVA; 

GraphPad PRISM 6.01 for windows) was used to test for differences between sample 

treatments, using the Tukey’s multiple comparison test. A level of statistical significance at 

p<0.05 was used. The plots presented were made on the program R v3.3.3 with the package 

ggplot2.  

 

3.3. Results 

An alternative method to dry weight is mandatory. Although this method is the most accurate 

for filamentous cultures, it takes a long time to obtain the number of biomass existing in 

gametophyte cultures. Thus, the gametophyte cultures were followed through dry weight 

(DW), optical density (OD) and in vivo fluorescence (ivF). Standard curves were made to 

calculate the dry weight (mg/mL) from the measurements of optical density and in vivo 

fluorescence (Appendix I: Supplemented figure 1 and 2). 

Figure 6 represents the biomass of A. esculenta gametophytes, treated with 3 concentrations 

of a putative growth enhancer, obtained by the three methods over 53 days. For DW, the 

cultures C and B had similar profiles with an exponential phase ending on day 32. For OD and 

ivF measurements, these same cultures were still in exponential phase on day 53, contrary to 

the DW. For all methods, the culture A entered in stationary phase always on day 43. Beside 

the controversial profiles, the estimated biomass revealed different values at the end of the 

experiment.  
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With the interest to perceive the differences of growth in each gametophyte culture treatment, 

two comparisons by two-way ANOVA were performed at the end of the experiment (Fig. 7). 

The first evaluate the effect of the putative growth enhancer comparing the biomass obtained 

Figure 6. Representation of the biomass of Alaria gametophytes obtained by dry weight (left), optical density (center) and in vivo 

fluorescence (right) over 53 days. The yellow line represents the cultures non-treated (C), the orange line represents the culture 

treated with 25mg/L (A) and the red line the culture treated with 50mg/L (B) of growth enhancer. Values are means (n=5). 

 

a a 

a 

A 

Figure 7. Biomass of Alaria gametophyte cultures after 53 days under three different concentrations of growth enhancer measured 

by dry weight, optical density and in vivo fluorescence. Values are means ± SD (n=5). Similar letters denote no statistical significant 

differences between treatments and measure techniques.  
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by the different measurement techniques. The cultures C, A and B had no significant 

differences (p>0.05) on the DW method. The same happened on the OD measurements. The 

biomass of the culture C, measured by ivF, was significant higher (p≤0.05) than the culture A 

and B, which no significant differences (p>0.05) were found between them. 

The second comparison evaluate the differences of the alternative methods with the dry 

weight, which was considered as a control method in this statistic analysis. The comparison 

of the DW with the OD method showed no significant difference (p>0.05) in any treatments. 

The same comparison was made with ivF method, which showed a significant increase 

(p≤0.05) of the biomass in cultures C, but no significant difference (p>0.05) was found on the 

treated cultures obtained by these two methods.  

 

A regression was made between the dry weight and the remaining methods to better 

understand how the first method varies with the other methods (Fig. 8). During the experiment, 

the biomass obtained by DW was positively correlated to the biomass from OD (p<0.0001) 

and to the biomass of ivF (p<0.0001). The linearity between dry weight and optical density 

was confirmed with 74% of variability of the dependent variable (biomass from OD) being 

explained by the independent variable (biomass from DW). The linearity between dry weight 

and in vivo fluorescence is also confirmed with 65% of variability of the dependent variable 

(biomass from ivF) being explained by the independent variable (biomass from DW). 

 

 

Figure 8. Regression between the biomass (mg/mL) obtained by dry weight and optical density and between the biomass 

(mg/mL) obtained by dry weight and in vivo fluorescence (p<0.0001) 
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The calculation of the ratio OD/DW and ivF/DW allowed to perceive how is the data behaving 

over the population, i.e., if the number obtained by the alternative methods is close to the true 

biomass obtained by the DW method. The figure 9 represents the biomass ratio OD/DW and 

the biomass ratio ivF/DW over the biomass obtained by the dry weight. The optical density 

method is underestimating the value of biomass in 25%, independently from the population 

size. The in vivo fluorescence method is under- and overestimating the value of biomass in 

7%, which seems be dependent of the population size. 

  

Figure 9 . Representation of the ratio OD/DW and ivF/DW over the biomass obtained by the dry weight. The ratio 1 corresponds to 

the true value of the biomass, where an underestimation is represented by the line being below 1 and the opposite represents an 

overestimation. 



33 
 

3.4. Discussion 

The seedling production using gametophytes cultures has a great potential to increase 

seaweed biomass. It’s important to find an easy and fast method to monitoring growth of these 

cultures. Dry weight is an accurate method to estimate biomass when a culture has the 

tendency to aggregate such as the gametophyte culture of A. esculenta. This method is very 

time consuming, where it’s necessary at least two days to know the exact biomass present on 

the cultures. Therefore, for industrial production, it is mandatory an alternative method to dry 

weight. Optical density and in vivo fluorescence are two methods which need a small volume 

of sample and the biomass can be estimated quickly. In this experiment, the estimation of the 

culture biomass by these methods allowed to know how the relationship between optical 

density and in vivo fluorescence differ from the dry weight. 

 At the end of the experiment, the dry weight and the optical density method had no statistically 

differences contrarily to the in vivo fluorescence. The addiction of the growth enhancer on the 

treated cultures gave a brownish tone to the media. Therefore, these cultures had a darker 

medium than the control cultures, increasing with the concentration of growth enhancer. The 

in vivo fluorescence measured the intensity of reflected light by chlorophyll a present in the 

cultures. The higher the reflected light, the higher is the chlorophyll content. The higher the 

chlorophyll content, higher is the biomass on the culture. If there was a decrease of chlorophyll 

content on the cultures treated with the growth enhancer, it means the medium is, somehow 

affecting the production/reflection of the chlorophyll.  

The regression between the three methods was performed to estimate the strength of the 

relationship (R2) between variables. There was a positive relationship in DW /OD and DW/ivF, 

however the relationship of the first was higher than the second. Contrarily to the relationship 

strength, the slop of the linear equation of DW/OD was lower than DW/ivF. In a perfect model, 

the slop would be one (y=1x) but, for both regressions, this perfection wasn't achieved. The 

optical density method is underestimation the biomass for 25%, yet the in vivo fluorescence 

method is under- and overestimation 6,4%. It seems there was a regression between the 

overestimation with the decrease of population and the underestimation with the increase of 

the population. Such thing doesn’t happen with the optical density method, where the 

underestimation is constant over the population.  

Both methods can measure the biomass of a gametophyte cultures of A. esculenta, however 

there will be always an error associated to these measurements. The choice between these 

three methods depends on time limitations and investment of the laboratory.  
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4.  Fertility induction of Alaria gametophytes (E2) 

4.1. Scientific questions 

The seedlings production using gametophytes cultures needs the right conditions to maintain 

these filamentous organisms under vegetative growth (eg. red light). However, when the 

seedlings production is initiated, the fertility of these vegetative gametophytes needs to be 

switch on. The fertility induction should be performed under blue or white light and an 

appropriate photoperiod regime. The nutrients concentration is also considered as a factor 

that influence the reproduction of the kelp species (Lüning and Dring, 1972). Question 3: Could 

the rate of developmental stage of Alaria esculenta be optimized by applying different 

photoperiod regimes? Question 4: Could also the addition of the growth enhancer benefit the 

fertility induction of Alaria gametophytes? 

 

4.2. Materials and methods 

Seaweed material: The gametophyte cultures of Alaria esculenta, from the previous 

experiment, were maintained in PES supplemented with GeO2 in a culture room at 10°C under 

a 24h photoperiod with a red light intensity of 30 µmol m-2 s-1. The medium of the cultures was 

renewed to remove the GeO2. From each condition, one flask was chosen randomly to make 

part of the fertility induction experiment.  

Material and reagents: AlgeaFert Solid K+ was purchased from Algea. Sodium beta-

glycerophosphate pentahydrate was purchased from Alfa Aesar. Tris(hydroxymethyl) 

aminomethane, ammonium iron (II) sulfate hexahydrate and sodium nitrate were purchased 

from Merck. 

Fertility induction: The experiment was performed in a climate controlled room at 10°C under 

a white light with an intensity range of 30-60 µmol m-2 s-1. Three photoperiod regimes were 

selected - 16:8, 24:0 and 23:1 (light:dark) and the duration of this experiment was 10 days.  

For each photoperiod regime six 6 well-plates were used, where each one of those correspond 

to a monitoring day:  0, 2nd, 4th, 6th, 8th, 10th day.  Inside of these plates three replicates from 

each condition was added.  A total of 18 plates was used in this experiment.   

Monitoring: The monitoring was made every 2 days by removing one of the plates from each 

treatment. Lugol was used to preserve the cells. From each well, 50 organisms were counted 

with a Sedgewick-Rafter chamber under an inverted microscope (Nikon Eclipse TS100). A 

counting pattern was used covering whole chamber. All organisms were categorized 

according their development phase: Vegetative gametophyte, fertile gametophyte, mature 
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oogonia, elongated oogonia, early sporophyte and sporophyte. In fertile gametophytes, the 

number of early, mature and elongated oogonia, and early and late sporophytes were counted. 

Statistics: All data are expressed as means ± SD. Two-way analysis of variance (ANOVA; 

GraphPad PRISM 6.01 for windows) was used to test for differences between photoperiod 

regimes on the culture C (Tukey’s multiple comparison test) and on cultures with growth 

enhancer (Dunnett's multiple comparisons test). A level of statistical significance at p<0.05 

was used. The plots presented were made on the program R v3.3.3 with the package ggplot2.  

 

4.3. Results 

The experiment 2 attempt to reduce the time of fertility induction of Alaria gametophytes by 

testing three different photoperiods regimes over 10 days. Along the counting chamber, the 

different life stages of A. esculenta were counted and categorized. The figure 10 represents 

the percentage of these microstages under 16:8, 23:1 and 24:0 (light:dark regime) over 10 

days on a gametophyte culture C. 

 

Figure 10. Percentage of the microstages of Alaria esculenta under photoperiod 16:8 (left), 23:1 (center) and 24:0 (right) over 10 

days. The microstages represented are vegetative gametophytes (blue), fertile gametophytes (green), mature oogonium (yellow), 

elongated oogonium (light orange), early sporophyte (orange) and sporophyte (red). Values are means (n=3). 

                

After 4 days of white light exposure, the percentage of vegetative gametophyte decreased 

from ~61% to ~12% and the fertile gametophytes increased from ~39% to ~87% in the cultures 

from the different photoperiod regimes. In the 6th day, the vegetative gametophytes 
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percentage was close to 0% in all photoperiod treatments. The fertile gametophytes 

percentage decreased 20%, 55% and 34% under 16:8, 23:1 and 24:0 regime, respectively. 

The mature oogonia percentage was 27%, 40% and 43% and the elongated oogonia 

percentage was 3%, 27%, 6% under 16:8, 23:1 and 24:0 regime, respectively. In the 8th day, 

the fertile gametophytes percentage was 47%, 17% and 43% under 16:8, 23:1 and 24:0 

regime, respectively. The mature oogonia percentage was 37, 44 and 27 % and the elongated 

oogonia percentage was 16%, 39%, 29% under 16:8, 23:1 and 24:0 regime, respectively. On 

the last day, the fertile gametophytes percentage was around 30% under 16:8 and 23:1 

regime, respectively, and 40% under 24:0 regime. The mature oogonia percentage was 51%, 

21%, 19% and the elongated oogonia percentage was 26%, 46%, 34% under 16:8, 23:1 and 

24:0 regime. The early stage of sporophyte started to appear with a percentage around 5% 

only on 23:1 and 24:0 photoperiod regimes.  

The developmental rate was calculated for each photoperiod regime. A value was attributed 

to each microstage. The number 1 to 6 was assign to vegetative gametophyte, fertile 

gametophyte, mature oogonia, elongated oogonia, early sporophyte and sporophyte, 

respectively. From all organisms counted, the numbers assigned were summed and divided 

by the total of organisms counted. The final value represents the developmental rate of the 

microstages of Alaria esculenta.  

 

Figure 11. Developmental rate of A. esculenta under the photoperiod 16:8 (brown), 23:1 (green) and 24:0 (blue) over 10 days 

Values are means ± SD (n=3). 
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The figure 11 represents the developmental rate of A. esculenta under different photoperiod 

regime over 10 days. From day 4 to 6, the photoperiod 23:1 and 24:0 were at exponential 

phase, however the photoperiod 16:8 was still in exponential phase until day 10. 

Figure 12 represents the developmental rate of A. esculenta under the three photoperiod 

regimes on the day 6, 8 and 10. The effect of the photoperiod and the time on the 

developmental rate was compared statistically (two-way ANOVA).  

In the 6th day, the developmental rate of the photoperiod 16:8 was statistically different from 

the 23:1 (p≤ 0.0001) and 24:0 (p≤0.05). In the days 8 and 10, the developmental rate of the 

photoperiod 23:1 was significant higher than the photoperiods 16:8 (p≤ 0.0001; p≤ 0.01) and 

24:0 (p≤ 0.001; p≤ 0.01). By comparing the days within each condition, the photoperiod 16:8 

and 24:0 had a significant increase during these 3 days. However, for the photoperiod 23:1 

there was no longer a significant difference (p>0.05) after the 8th day.  

After the understanding of the control cultures under the previous experimental conditions, the 

effect of the fertility induction in gametophytes cultures supplemented with 25 and 50mg/L of 

growth enhancer was evaluated and compared with the control culture. 

The figure 13 represents the developmental rate of the Alaria gametophytes C, A and B under 

three photoperiod regimes on the day 6, 8 and 10. 

 

Figure 12. Developmental rate of A. esculenta under the three different photoperiod regimes on day 6 (light color), 8 (medium 

color) and 10 (dark color). Values are means ± SD (n=3). Similar letters denote no statistical significant differences between 

photoperiod conditions and days. 
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The data from the treated cultures were compared statically (two-way ANOVA) with the culture 

C: 0mg/L. Within the photoperiod groups there was no significant difference (p>0.05) between 

the treated cultures and the control culture, excepting for the photoperiod 24:0 on the day 8 

where a significant decrease (p≤ 0.01) of the developmental rate was found in the culture A. 

 

4.4. Discussion 

The fertility induction of vegetative gametophytes from A. esculenta is one of the crucial 

parameters to be optimized, since could take from 8 days to 70 days depending on the culture 

conditions (Arbona and Molla, 2006). The switch from vegetative growth to reproductive 

development depends on environmental factors such as light, photoperiod, nutrient 

concentration and others (Lüning and Dring, 1972). A faster transition to fertility is desirable in 

the seaweed industry, thus different photoperiod regimes were tested, on this experiment, to 

evaluate the percentage of Alaria microstages over time. During these days, female 

gametophytes became fertile, where each cell of this filamentous organism had the potential 

to turn into a sporophyte. These cells developed into an elongated neck, then most of the 

contents emerged in the tip of the neck forming a spherical egg (mature oogonium). After 

fertilization, the spherical zygote swelled, elongated (elongated oogonium) and a transverse 

** 

Figure 13. Developmental rate of the microstages of Alaria esculenta, treated with different concentrations of a growth 

enhancer, under three different photoperiod regimes (16:8, 23:1 and 24:0) on the day 6 (light color), day 8 (medium color) 

and day 10 (dark color). Values are means ± SD (n=3). The symbol (**) denote statistical significant differences against the 

control. 
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division occurred resulting in a single cell row or a cruciate form (early sporophyte) (Kain, 

1979).  

Between the different photoperiod regimes, it seems the induction of fertility of the culture C 

had a better response to the photoperiod 23 hours light. On day 6 the percentage of vegetative 

gametophytes rounded 0%, meaning almost all gametophytes were already fertile. Two days 

later, the percentage of fertile gametophytes was 20% lower in the 23:1 photoperiod than the 

remaining conditions. The percentage of mature oogonia and elongated oogonia together was 

30% higher in the 23:1 photoperiod than the remaining conditions. These different life stages 

are indicative the fertility induction is engaging, being expected a decrease of the fertile 

gametophytes and an increase of oogonia mature, elongated and sporophytes. And so, the 

fertility induction of the culture C exposed to 23h light had a better performance than the 

remaining photoperiod regimes. Not only because, these cultures showed a faster 

developmental rate but also because 8 days were enough to produce a good number of 

mature and elongated oogonia which could be seeded on the next phase of the Alaria 

cultivation. The explanation to this better performance is difficult to compare with other articles, 

since no studies have been explored on A. esculenta fertility. Even being a short-day seaweed, 

kelp microstages are not under photoperiod control, where gametogenesis is triggered by a 

specific dose of blue light (Bartsch et al., 2008). Thus, Alaria gametophytes exposed to a long 

exposure of light with at least one hour of darkness seems to be necessary for an optimized 

induction of the fertility. 

The percentage of the Alaria microstages were also evaluated on the cultures A and B 

(Fig.13), verifying the effect of nutrients on the fertility induction. Few authors mentioned the 

concentration of nutrients can influence, positively and negatively, the fertility induction of 

gametophyte cultures (Hsiao and Druehl, 1973; Hoffmann and Santelices, 1982). Ratcliff et 

al. (2017) tested the gametogenesis of L. digitata under 12h light and a better performance 

was found with a f/2 medium, which is less rich in nutrients than PES. No differences were 

found between these conditions, except the culture A in one of the days. In this experiment, it 

seems the growth enhancer, which provides extra nutrients to the culture, didn't affect the 

fertility induction of the gametophytes cultures.     
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5.  Effect of different gametophyte densities on 

seedlings (E3) 

5.1. Scientific questions 

The seeding density is one of the most important traits to be optimized in the seaweed industry. 

A too high seeding density affects the development of the seaweed seedlings by nutrient and 

light competition and is also a waste of material, leading to sporophytes growing on the tank 

walls. However, a lower density allows the growth of diatoms and other organisms in the free 

spaces on the twine. Question 5: What is the optimum seeding density for A. esculenta 

gametophytes? 

 

5.2. Materials and methods 

Seaweed material: The gametophyte culture of Alaria esculenta from the first experiment was 

used in the seedling experiment. The effect of the culture density was evaluated with a random 

flask from the culture C (0mg/L).  

Material and reagents: Sodium beta-glycerophosphate pentahydrate and germanium (IV) 

oxide were purchased from Alfa Aesar. Tris(hydroxymethyl) aminomethane, ammonium iron 

(II) sulfate hexahydrate and sodium nitrate were purchased from Merck. 

Fertility induction: The culture was transferred to a climate controlled room at 10°C under a 

23:1 photoperiod (light: dark regime) with a white light intensity range of 30-60 µmol m-2 s-1 

over 8 days. Germanium dioxide was used. Samples were taken before and after the 

fertilization period and organisms were counted in the same way as in E2. 

Tank treatment: Flat tanks with a water volume of 27 liter, were cleaned with warm water, 

rubbed with sodium hypochlorite, and filled with water. A period of three days in stagnant water 

with this compound was applied on tanks. The water flow was turned on for three days, 

removing the hypochlorite from the water. The water flow at 1.5L min-1 and the water level was 

equally adjusted in each tank. 

System design: A plate of polycarbonate glass was used to produce the seedlings. These 

seedlings had a dimension of 35x40cm. The plats extremities were cut 30cm from the center 

to the corners. This action confines the twines and avoids them to get loose from the platform. 

The twine used was made of polyester with a width of 1.35mm, which was spooled around the 

plates. Each seedling had one “sample” twine not connected to the main twine, allowing to 

remove it without compromising the seedling.   



41 
 

Seedling initiation: Four different densities were used (0.79, 1.59, 3.18 and 6.35 mg/mL). The 

seedling was initiated with 200mL. A container was developed to pour the gametophyte culture 

on the twines, in a distributed manner. After the pouring, spools were placed in air for 20min 

at 10°C, allowing the gametophytes to settle onto the strings. The spools were immersed and 

left in stagnant water. Three days later, the waterflow was opened at 1.5L min-1. The seedlings 

were cultivated at 10°C under a 16:8 photoperiod (light: dark regime) and white light 

(fluorescent light bulb) with a mean intensity of 44.9 µmol m-2 s-1 over four weeks. 

Monitoring: The sporophyte number was counted on 1,4mm of five different points in the 

“sample” twine on the fourth week. A device was made to hold this twine, keeping it under 

water and in the same position. The counting was made under a stereomicroscope (Nikon 

SMZ1000). All sporophytes were collected five weeks later. Sporophytes were frozen at -20°C 

for chemical analysis.  

Statistics: All data are expressed as means ± SD. Two-way analysis of variance (ANOVA; 

GraphPad PRISM 6.01 for windows) was used to test for differences between sample 

treatments, using the Tukey’s multiple comparison test. A level of statistical significance at 

p<0.05 was used. The plots presented were made on the program R v3.3.3 with the package 

ggplot2.  

 

5.3. Results 

The optimized parameters from E2 and the density of the seedlings, which will be developed 

in this experiment, permit to accelerate the hatchery phase of the seaweed industry. And so, 

the experiment 3 evaluated four different seedings densities of Alaria gametophyte cultures. 

The fertility of a gametophyte culture was induced under photoperiod 23:1 over 8 days and 

four densities with 0.79, 1.59, 3.18 and 6.35 mg/mL of biomass (DW) were made. The linear 

model from E1 was used to estimate the biomass of the gametophyte culture. 

The figure 14 shows the percentage of Alaria microstages under 23:1 regime over 8 days on 

the gametophyte culture. After 8 days, the vegetative gametophytes percentage decreased 

from 48% to 28% and the fertile gametophytes percentage increased from 29% to 68%. The 

percentage of the reproductive structures were around 1%. The developmental rate was 

calculated the same way as E2. From day 0 until the end of the fertility induction there was an 

increase of 0.27 of developmental rate (Appendix III: Supplemental figure 3).  
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Figure 15 represents the number of sporophytes per millimeter twine, in each seedling, after 

four weeks of growth. The grouped columns represent the culture densities 0.79, 1.59, 3.18 

and 6.35 mg/mL applied on the seedlings, where each column illustrate the replicates within 

the densities group. 

 

While, the lowest density presented a low variance between replicates with no significant 

differences (two-way ANOVA; p>0.05), the remaining densities had a high variance between 

replicates with a few significant differences. The average of sporophytes per mm of twine was 

7, 15, 21 and 27 from the lowest to the highest density. 

 

 

 

 

Figure 14. Percentage of the microstages of Alaria esculenta under photoperiod 23:1 on day 0 and 8. The 

microstages represented are vegetative gametophytes (blue), fertile gametophytes (green), mature 

oogonium (yellow), elongated oogonium (light orange), early sporophyte (orange) and sporophyte (red). 

Values are means (n=3). 
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5.4. Discussion 

The seeding density is another crucial parameter needed to optimize in a seaweed industry. 

The importance of optimizing the seeding density is because a higher and a lower density 

brings limitations to the development of the seedlings. On the one hand, a higher density 

affects the development of the seaweeds by nutrient competition and produces gametophyte 

waste, leading to sporophytes growing in the tank walls. On the other hand, the lower density 

will benefit the grow of diatoms, epiphytes and other organisms on the free spaces of the 

twine. Thus, a culture C was induced and different densities were applied to evaluate the 

optimum density of Alaria gametophytes. 

The fertility induction performed in this experiment was clear that didn’t work similarly as in 

E2. Eight days after transferring the culture C into white light, the number of the two oogonia 

type was very low and the vegetative and fertile gametophytes should be close to 0% and 

lower than 30%, respectively. Since all conditions, as the light and temperature, were 

standardized, the volume and the culture density were the only different parameters used in 

this experiment. While, the experiment E2 was performed in microplates with 5 mL of a diluted 

culture, the E3 used 1 liter of non-diluted culture. Having a culture with a higher density and a 

lower surface area, probably part of the gametophytes didn't receive the amount of light 

needed to induce their fertility, even under shaking conditions (Lüning and Dring, 1975).  
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Figure 15. Sporophytes per mm twine on the seedlings started with different gametophyte densities after 4 weeks. The densities 

applied were 0.79, 1.59, 3.18 and 6,35 mg/mL. Values are means ± SD (n=3). Similar letters denote no statistical significant 

differences between replicates. 
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After the gametogenesis, the densities were performed and the cultures were seeded on the 

twines. The lowest density had a low variance and the remaining densities had a high variance 

between replicates. The high variance on the seedlings could be explained by the high density 

present in the gametophyte cultures. Whereas, probably some gametophytes had no space 

to attach to the twine, growing freely in the tank, and/or some sporophytes had developed 

above other sporophytes.  

The average of sporophytes on the lower density had 7 sporophytes per mm twine and the 

highest had 27. Since Alaria's holdfast can occupy at least 10mm of twine in the adult phase, 

the lowest density will in theory develop 70 sporophytes in 10 mm of twine, which of course is 

impossible in a cultivation situation at sea. Even the lowest density seems to be preeminent 

in this experiment. A deployment at the sea could be useful to evaluate the survival rate of the 

plants. Nonetheless, this experiment is a starting point to find the ideal seedling density 

avoiding gametophyte waste and ensure the viability of the sporophytes after deployment.   
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6.   Effect of different gametophyte qualities on 

seedlings (E4) 

6.1. Scientific questions 

The manual measurements of sporophytes on the twine are an accurate method, providing a 

real and precise number of the growing state on seedlings but these are methods extremely 

time-consuming. The monitoring of the seedling cultures based on digital images is an 

automatic method, already been used to follow the biofouling on cage nets in the fishery 

industry (Braithwaite et al., 2007; Guenther et al., 2010). Question 6: When gametophyte 

cultures are seeded on twines for seedlings production, will gametophytes treated with growth 

enhancer develop differently from non-treated gametophytes? Question 7: Could the image 

analysis method be used to estimate the growth of A esculenta during the hatchery phase for 

the seaweed industry?  

6.2. Materials and methods 

Seaweed material: The gametophyte cultures of Alaria esculenta from the first experiment 

were used in the seedling experiment. The effect of the quality of gametophyte culture was 

evaluated with three random flasks from each condition (0, 25 and 50 mg/L). 

Material and reagents: AlgeaFert Solid K+ was purchased from Algea. Sodium beta-

glycerophosphate pentahydrate and germanium (IV) oxide were purchased from Alfa Aesar. 

Tris(hydroxymethyl) aminomethane, ammonium iron (II) sulfate hexahydrate and sodium 

nitrate were purchased from Merck. 

Fertility induction: The culture was transferred to a climate controlled room at 10°C under a 

23:1 photoperiod (light: dark regime) with a white light intensity range of 30-60 µmol m-2 s-1 for 

8 days. Germanium dioxide was not used. Samples were taken before and after the 

fertilization. Microscopic observations were performed likewise as in E2. 

Tank treatment and system design: The tanks were treated and seedlings were produced the 

same way as the previous experiment. The number of “sample” twines present on the seedling 

was four. 

Seedling initiation: To start the seedling a volume of 200 mL of culture with a density of 

0.9mg/mL (DW) was used. The pouring and the settlement of the culture was performed 

similarly as the later experiment. The seedlings were cultivated at 10°C under a 16:8 

photoperiod (light: dark regime) and white light (fluorescent light bulb) with a mean intensity of 

58.7 µmol m-2 s-1 over four weeks 
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Manual monitoring: The monitoring was performed every week. The seaweeds were collected 

and frozen at -20°C at the end of the experiment. Number of sporophytes and gametophytes, 

sporophytes length, image analysis and chemical analysis were evaluated in this experiment. 

The sporophyte and gametophyte number were counted on 1,4mm of five different points in 

the “sample” twine under a stereomicroscope (Nikon SMZ1000). A device was made to hold 

the sample twine, keeping the twine under water and in the same position. The sporophytes 

from each twine point were detached and collected with a tweezer and a needle. These 

sporophytes were transferred to a petri dish and pictures were taken under the 

stereomicroscope camera (Nikon SMZ1000). The length measurements were performed 

using the software Lumenera INFINITY ANALYZE.  

Automatic monitoring: Parallelly to the manual monitoring pictures were taken to the seedlings. 

The photo shoot was taken, with a Nikon D800E and a Sigma 105mm f/2.8 EX DG OS HSM 

Macro Lens, in a standard environment (light intensity, distance between camera and 

seedling, focal length and other). The pictures were analyzed with a program developed by 

Torfinn Solvang-Garten in the software ViewLab. This program does a thresholding on the 

images based on hue/value histogram, resulting in a binary image (red and black, or 

mathematically, 0 and 1's). The 1's are counted, and divided on the sum of both numbers, 

giving the percentage cover (PC), which represent the grow percentage.  

Statistics: All data are expressed as means ± SD. Two-way analysis of variance (ANOVA; 

GraphPad PRISM 6.01 for windows) was used to test for differences between developmental 

rates (Sidak's multiple comparisons test) and between seedling qualities (Tukey’s multiple 

comparison test). A level of statistical significance at p<0.05 was used. The plots presented 

were made on the program R v3.3.3 with the package ggplot2.  

 

6.3. Results 

The previous experiments allowed to reduce the fertility induction period and to approximate 

the optimal density of the gametophyte cultures.  These parameters are crucial to accelerate 

the hatchery phase and to reduce the gametophyte waste, i.e., the number of gametophytes 

floating freely within the seedlings. Based on these optimized parameters, experiment 4 

evaluated the effect of a possible growth enhancer, supplemented to the gametophyte 

cultures, on the sporophytes growth.  

The gametophyte cultures fertility was induced under photoperiod 23:1 (light:dark regime) over 

8 days and densities performed. The figure 16 represents the percentage of Alaria 

microstages under 23:1 photoperiod regime over 8 days on the gametophyte cultures C, A 

and B. The control culture showed a decrease of the vegetative gametophytes percentage 
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from 60% to 53.3%. The fertile gametophytes, mature oogonia and elongated oogonia 

increased 4%, 2% and 0.6%, respectively.  

 

The culture A presented a decrease of the vegetative gametophytes percentage from 68.6% 

to 58%, respectively. The fertile gametophytes, mature oogonia and elongated oogonia 

increased 8.7%, 0.6% and 1.3%, respectively. The percentage of vegetative and fertile 

gametophytes decreased 0.6% after 8 days on the culture B. The number of mature oogonia 

remained the same and the elongated oogonia increased 1.3%. 

The developmental rate was calculated the same way as E2. The figure 17 represents the 

developmental rate of gametophyte cultures supplemented with 0, 25, 50 mg/L of growth 

enhancer under the 23:1 photoperiod regime over 8 days.  

From day 0 to 8 in the fertility induction there was only a significant increase (two-way ANOVA; 

p≤0.05) of developmental rate in the culture A but no significant differences were found 

between the three cultures in each day. Moreover, culture C from this experiment showed a 

developmental rate significant lower than culture C in E3. 

 

Figure 16. Percentage of the microstages of A. esculenta, treated with different growth enhancer concentrations, under 

photoperiod 23:1 over 8 days. The microstages represented are vegetative gametophytes (blue), fertile gametophytes (green), 

mature oogonium (yellow) and elongated oogonium (light orange). Values are means (n=3). 
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Later, the density of the gametophyte cultures C, A and B was adjusted to be similar and these 

cultures were seeded on the twines producing the seedlings under the names seedling C, A 

and B. The table 2 represents the density used in each condition of the experiment, which was 

near to the lowest density used on the last experiment. The linear model from E1 was used to 

estimate the biomass of each gametophyte culture.  

 

 

 

 

Figure 18 represents the number of gametophytes and sporophytes per millimeter twine, over 

30 days, within the seedlings started with gametophyte cultures C, A and B. 

The number of gametophytes and sporophytes were compared statistically (two-way ANOVA) 

against time and the different treatments. The number of gametophytes had no significant 

difference (p>0.05) between the four days and between the three treatments. No sporophytes 

were found on day 7 in any treatment. The seedling C had a significant increase of the number 

of sporophytes over the experiment days. For each day, the sporophytes number of the 

seedling C showed to be statistically higher than the treated seedlings. From the day 14 to 23, 

Treatement used Density applied (mg/mL) 

C: 0 mg/mL 0.91 

A: 25 mg/mL 0.93 

B: 50 mg/mL 0.90 

Figure 17. Developmental rate of A. esculenta of the gametophyte cultures C:0mg/L (brown), A:25mg/L 

(green) and B:50mg/L (blue) under the 23:1 photoperiod regime over 8 days. Values are means ± SD (n=3). 

Similar letters denote no statistical significant differences between treatments and days. 

a 
ab a 

a aB 

a 

Table 2. Densities applied in each seedling from the different treated cultures  
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the seedling A and B showed a significant increase of the number of sporophytes but after 

day 23 no differences were found. The treated seedlings showed to be statistically similar 

between them.  

The figure 19 represents the sporophytes length from the seedling C, A and B over 30 days. 

This data was not normal distributed due to the high variance of sporophyte length found within 

the twine. For that reason, several ranges of length were performed to clarify this data.  

Figure 19. Length of the sporophytes found within the different seedlings. Values are means ± SD 

(n=3). 

a 

b 

c 

d 

e e
  

f 

f 

Figure 18. Number of gametophytes and sporophytes per mm twine within the seedlings, started with the gametophyte cultures 

C, A and B over 30 days. The days represented are day 7 (yellow), day 14 (dark yellow), day 23 (light brown) and day 30 (brown).  

Values are means ± SD (n=3). Similar letters denote no statistical significant differences between treatments and days. 
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The table 3 shows the number of sporophytes within the range of length from the different 

seedlings on the day 30.  

 

Table 3. Number of sporophytes within the several ranges of length (µm) from different gametophyte cultures at day 30. Values 

are means (n=3). 

 Length range (µm) Seedling C Seedling A Seedling B 

Number of sporophytes 

<300 4 4 3 

300-1000 42 52 40 

1000-2000 52 34 37 

2000-3000 25 17 23 

3000-4000 10 17 18 

4000-5000 9 10 6 

>5000 8 16 23 
 

 

In each seedling treatment, the ranges with the highest number of sporophytes were selected 

to compare them. The majority of the sporophytes present in the seedling C and A had sizes 

between 300-3000 µm and 300-4000 µm, respectively. The seedling B showed a high number 

of sporophytes with sizes between 300-3000 µm and up 5000 µm.  

The counting and length measurement of sporophytes are an accurate method which provide 

a real and precise number of the growing state on seedlings, but these are methods 

associated to time-consume. New ways of monitoring seedlings cultures should be explored.  

The use of digital images could help to estimate the product of these two methods. All 

parameters, such light intensity, seedling depth and camera range, were standardized to have 

the same settings in every day of the experiment.  

The Percentage Cover (PC) was calculated as previously described. The pictures 20 illustrate 

the segmentation of the seedlings pictures into binary images, with black and red pixels. The 

first image has 1 PC with almost absence of black dots, where the background is the twine 

represented by the red points. Contrarily, the last picture has 97 PC being almost covered by 

black pixels. After day 30, the PC can only reach a percentage of 100, meaning there will be 

no more red points, or visible twine, on the image and so the system enters in saturation.  

Figure 20. Representation of the segmentation process of the pictures into binary images. From the left to the 

right are represented the seedlings on the 7th, 14th, 23rd and 30th day. 
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The figure 21 (left) represents the percentage of PC obtained by the image analysis over 30 

days. The percentage cover for each treatment showed a similar trend throughout the whole 

experiment with no significant differences between the treatments. The data showed an 

exponential growth right after the day 14 and a decreasing after day 23. 

 

The values obtained by counting and length of the sporophytes were multiplied and then the 

values of the gametophyte counting was added (CLP), representing the occupied space by 

the gametophytes and sporophytes on the seedlings. The three parameters: number of 

gametophytes, number of sporophytes and length had to be grouped as a variable because 

each one of this is contributing to the percentage cover on the seedling. While the number of 

gametophytes contributes mostly during the first 14 days, due to the lack of sporophytes 

conversion, the length of the blades of each sporophyte is contributing from day 23 to 30. 

The figure 21 (right) represents the correlation between CLP and PC to estimate the strength 

of the relationship between these two variables. The data was not normal distributed. A 

trendline with a polynomial function of 2nd degree fitted rather good between 0 and ~75 000 

CLP. Could had be interesting to follow the culture during the exponential growth to fill the gap 

with more points between these days. 

Figure 21. Left graph: Percentage Cover (PC) obtained by the image analysis over 30 days for the different seedlings quality. 

The seedlings were initiated with the culture C (red), A (blue) and B (gray). Values are means ± SD (n=3). 

Right graph: Correlation between the PC (obtained by image analysis) and CLP (product of length and counting 

measurements). The red line represents the saturation of the program. 



52 
 

6.4. Discussion 

After finding the optimum photoperiod regime for the fertility induction and the optimum 

seeding density, it was time to evaluate the effect of the gametophyte cultures treated with 

putative growth enhancer on the sporophytes development. 

The fertility induction performed to initiate the experiment had a similar behavior as the 

previous experiment (E3). Eight days after transferring the culture C, A and B into white light, 

the number of the two oogonia types was very low and the percentage of vegetative and fertile 

gametophytes had not decreased significantly. As already mentioned, the volume and culture 

density were different from the E2. The experiment E2 was performed in microplates with 5 

mL of a diluted culture, contrary to 1 liter of non-diluted culture used this experiment. Having 

a culture with a higher density and a lower surface area, part of the gametophytes probably 

didn't receive the amount of light needed to induce their fertility, even under shaking conditions 

(Lüning and Dring, 1975).  

Moreover, the E3 had an addition of germanium dioxide, contrarily to this experiment. Since a 

few authors (Markham and Hagmeier, 1982; Shea and Chopin, 2007; Mizuta and Yasui, 2012) 

pointed out positive and negative effects on kelp sporophyte development, the E4 had no 

GeO2 addition. Since the developmental rate of the culture C in E3 was statistically higher than 

the culture C in E4, it seems as addition of GeO2 could have a benefit for fertility induction.  

In the seeding experiment the lowest density seemed to be sufficient or even too high for the 

seedlings production, and this experiment (E4) confirms this statement. The estimated 

densities of gametophytes on the twines were similar, indicating that the seeding densities 

had been similar for the different tanks. The number of sporophytes increased over the weeks 

but at the same time the number of gametophytes were stable. This was not expected, as the 

conversion of gametophytes into sporophytes should have induced a decrease in the number 

of gametophytes. This means that only a part of the gametophytes on the twine had the ability 

to grow into sporophytes whereas the excess of the gametophytes endures in the vegetative 

form due to the lack of space or/and the competition for light and nutrient. 

No sporophytes present at day 7 was probably caused by a fertility induction that didn’t work 

properly, as discussed above. In addition to the 8-day of fertility induction time, the immature 

gametophytes were thus still being induced 7 days after seeding. With an optimized fertility 

induction, the maximum number of sporophytes, as observed on day 30, could possibly have 

been obtained one week earlier. Since there were no significant differences in the number of 

the gametophytes, the difference between the control and the treated sporophytes is valid. 

The difference could be explained by a better quality of the gametophytes cultivated without 

the growth enhancer, as these gametophytes produced a higher number of sporophytes. 
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Since there was a high variance on the sporophyte length, also described by Xu et al. (2009),  

different ranges of size were performed to show how different the sporophyte length are within 

treatments. Despite the number of sporophytes being higher in the control seedlings, it seems 

as by having less sporophytes per mm twine, the treated seedlings from the cultures A and B 

had two and three times, respectively, more seaweeds with a length over 5000 µm than the 

control group. By having a lower density, these sporophytes had probably less competition for 

nutrients and light in the tank, resulting in a faster grow. However, this feature was not directly 

related with the initial application of the growth enhancer. 

The percentage cover (PC) showed an exponential growth after day 14, starting to slow down 

one week later. The delay in the fertility induction is probably the reason why the exponential 

growth started after day 14 and not from the start. On day 23, the PC of the twines was around 

75% and probably sufficient for deployment of the seeded twines in the sea, but it is important 

to study this further to find the optimum PC and the seeding density and incubation time to 

reach this. 

The correlation between CLP and PC had a good relationship for these two variables. 

However, for values above 75 000 CLP, the system is in saturation and can't give a value 

more than 100 PC.  

The goal of the PC method is to accelerate the seedling monitoring, alternatively to the manual 

counting and measuring the sporophytes. This method is interesting to the seaweed industry 

because the growth percentage can be estimated in a few minutes by the image analysis, 

contrary to the manual counting and length measurement that can take hours, giving a green-

light to deploy the seedlings on the sea. 
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7.   Phlorotannins analysis (E5) 

7.1. Scientific questions 

Seaweed phlorotannins’ importance has been growing the past decades because of the 

potential to benefit human health. These properties come from the defense mechanism 

against grazing, protection against UV radiation and other. Phlorotannins are present in the 

brown seaweeds Alaria esculenta and Saccharina latissima and due to their fast and efficient 

growth, these species could represent a viable source of these compounds. Question 8: What 

are the quantitative and qualitative differences between the phlorotannin contents of A. 

esculenta and S. latissima species? Question 9: After the fertility induction of the Alaria 

gametophytes, what changes in the phlorotannin content? Question 10: Can a growth 

enhancer supplement increase the concentration of phlorotannins in gametophyte cultures or 

even later in the sporophyte form?  

7.2. Materials and methods 

Seaweed material: The phlorotannins analysis was performed with the seaweed material from 

the previous experiments and from experiments performed by others in work package (WP2) 

from the MACROSEA project: Alaria sporophytes cultivated with different densities (E3); Alaria 

gametophytes, before and after fertilization, and sporophytes with different qualities (E4); 

Saccharina latissima from different locations from Norway. The seaweed material was freeze-

dried and turned to dust using a grinder (KRUPS F203).  

Materials and reagents: Sodium carbonate solution was purchased from VWR. Folin-

Ciocalteu's reagent, methanol, n-hexane and acetone were purchased from Merck. 

Phloroglucinol anhydrous was purchased from Alfa Aesar. Ultrapure water was obtained by 

the equipment PURELAB® Ultra from Elga. 

Extraction: A quantity of 500mg was weighted in glass tubes. The lipids were removed three 

times by adding 1 mL n-hexane and centrifuged for 5 minutes at 4000 rpm. These extracts 

were saved for lipid analysis. The first part of the phlorotannin extraction was made by adding 

10 mL of acetone/ultrapure water (7:3) (AcUW), mixing at 100 rpm one overnight and 

centrifuging 10 minutes at 4000 rpm. The second part of the extraction was made 3 times. 

Then,10 mL of AcUW was added, two cycles of 30 seconds in vortex and 30 seconds of rest 

was performed and they were centrifuged for 10 minutes at 4000rpm. In the end of all steps, 

the extract was transferred into a new flask. The samples were submitted to the low pressure 

(~50 mbar) of a rotary evaporator (Heidolph, Laborota 4000) at 30°C for 5 min. These samples, 

now without acetone, were transferred into glass vials and they were freeze-dried. The final 

powder was weighted and stored in methanol (100%) with a final concentration of 10 mg/mL. 
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Quantification of phlorotannins: The total phlorotannins content was performed by the Folin-

ciocalteu method performed by Zhang et al. (2006). Three 96 well-plate were prepared. The 

structure of these plates was: standard curve samples/blank and their controls, samples/blank 

and their controls. The microplate was loaded with 20 µL of sample, 100 µL Folin-Ciocalteu’s 

reagent, mixed and waited for 5 min. Then 80 µL 7.5% sodium carbonate solution was added 

and well mixed. The microplate was incubated at room temperature in the dark for 2 h and 

then mixed in a microplate mixer (Eppendorf thermomixer comfort). The absorbance was read 

at 750 nm using a spectrophotometer (Varian Cary 50MPR Microplate Reader).  

Qualification of phlorotannins: The TOF-MS analyses were performed on an Agilent 6220 

Accurate Mass Time-of- flight mass spectrometer. Samples were introduced to the ion source 

through flow-injection using an Agilent 1100 HPLC system. One µl of sample was injected into 

a mobile phase consisting of acetonitrile:water (95:5) with 4 mM ammonium-acetate. This 

resulted in a single peak which was integrated, and the mass spectrum was extracted. 

Subsequently exported to a mzXML file for import into R using the mzR library (Chambers et 

al., 2012). 

Statistics: All data are expressed as means ± SD. One-way analysis of variance (ANOVA; 

GraphPad PRISM 6.01 for windows) was used to test for differences between sample 

treatments on E3 and E4 sporophytes, using the Tukey’s multiple comparison test. Two-way 

analysis of variance (ANOVA; GraphPad PRISM 6.01 for windows) was used to test for 

differences between sample treatments on E4 gametophytes, using the Tukey’s multiple 

comparison test. A level of statistical significance at p<0.05 was used. The plots presented 

were made on the program R v3.3.3 with the package ggplot2.  

 

7.3. Results 

The importance of phlorotannins has grown the past two decades. Phlorotannins are restricted 

to brown macroalgae and have been demonstrated to have a potential beneficial for human 

health. These compounds have been reported in A. esculenta and S. latissima (Zhang et al., 

2006; Lopes et al., 2012; Kim et al., 2013).  

The qualification and quantification of phlorotannins was performed with freeze-dried samples 

from the previous experiments. The seaweed material used were sporophytes with 9 weeks 

of growth (E3), gametophyte cultures collected before and after the fertility induction from E4, 

sporophytes with 4 weeks of growth (E4) and Saccharina sporophytes grown in laboratory 

from eleven locations in Norway. From all the experiments, the content of phlorotannins of A. 

esculenta and S. latissima showed an average of 4.11 and 3.08 mg PHL/g algae, respectively.  
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The figure 22 represents the content of phlorotannins in milligrams per grams of dry algae 

present in sporophytes from different seedlings densities. The figure shows there was no 

significant difference between densities 0.79, 1.59 and 6.35 mg/mL, however a significant 

difference was found between the density 3.18 and the densities 1.59 and 6.35 mg/mL (One-

way ANOVA; F=5.073; p=0.0055).  

 

Figure 23 represents the content of phlorotannins in milligrams per grams of dry algae present 

in the gametophyte cultures of A. esculenta treated with three growth enhancer 

concentrations, before and after fertilization. There was no significant difference between 

treatments on the non-fertile gametophytes. After the induction of the fertilization there was 

an increase of the phlorotannin content in all cultures, where the cultures A and B had an 

increase more accentuated than the control culture. The fertile gametophytes showed a 

significant difference of the phlorotannin content on the treated cultures comparing with the 

control culture (One-way ANOVA; F=49.7; p<0.0001).  

 

 

 

 

ab a a 

b 

Figure 22. Phlorotannin content present in sporophytes from seedlings with different densities. Values 

are means ± SD (n=3). Similar letters denote no statistical significant differences between treatments. 
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The figure 24 represents the content of phlorotannins in milligrams per grams of dry algae 

present in sporophytes of A. esculenta, where their gametophyte source was treated with three 

concentrations of a growth enhancer. The sporophytes showed significant differences 

between the culture B and the culture C and A, with no significant differences between the 

later (one-way ANOVA; F=7.414; p=0.0031).  

The figure 25 represents the content of phlorotannins in milligrams per grams of dry algae 

present in sporophytes of Saccharina latissima from eleven locations of Norway over three 

months.  Mature plants from these locations were collected and zoospores were released in 

the laboratory. All seedlings from the different locations grown under similar conditions over 

three months. A high variance was noticed on the phlorotannin concentration of Saccharina 

sporophytes from the eleven locations. The sporophytes from location 9 had a clear increase 

of phlorotannins concentration in April.  

 

 

 

 

Figure 24. Phlorotannins content of Alaria sporophytes from 

seedlings initiated with three gametophyte cultures treated 

with growth enhancer. Values are means ± SD (n=3). Similar 

letters denote no statistical significant differences between 

treatments. 

 

Figure 23. Phlorotannin content of Alaria gametophytes 

before and after the fertility induction. Values are means ± SD 

(n=3). Similar letters denote no statistical significant 

differences between treatments and days. 

a 

b 

c 
a 

a 

b 



58 
 

 

The lipid removal was mandatory before the phlorotannin analysis. As a complement, the lipid 

phase was analyzed and a number of lipid candidates were identified (Appendix IV: 

Supplemental table 4). 

The qualification of the phlorotannins was performed to identify different phlorotannins present 

on the samples of A. esculenta and S. latissima. The mass spectrometry data were collected 

in a non-targeted approach, which the full spectrum data were acquired in negative ion mode 

from m/z 50 to 1200. The data were then analyzed by searching for the theoretical masses 

corresponding to all possible phlorotannins in the recorded mass spectra (Table 4). The 

search was performed either by 1) comparing phlorotannin masses described in the literature 

and tentatively assigning peaks in the mass spectra to these when matched, or 2) by selecting 

the most dominant masses with highest intensities present on samples, followed by the 

identification of these compounds based on the literature and other database platforms 

(Metlin, KEGG, Pubchem and other). The later was not accomplished successfully. 

 

Table 4. List of phlorotannins referred in the literature found in the samples. (s) sporophyte, (v.g.) vegetative gametophyte and 

(f.g.) fertile gametophyte 

Phlorotannin compounds  
Experiments 

E3 (s) E4 (v.g.) E4 (f.g) E4 (s) WP2 (s) 

Phloroglucinol  

mmz=126.0317 

A
v
e
ra

g
e
 

In
te

n
s
it
y
 1205,61 4507,56 3151,94 0 33787,72 

Dihydrophloroglucinol  

mmz=128.0473 
166421,90 55344,79 11775,35 44298,01 1865292,37 

 

Figure 25. Phlorotannins content in juvenile S. latissima from 9 origins in Norway. Values are means ± SD (n=3). 
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Two forms of the phloroglucinol were identified: phloroglucinol (PG), and dihydrophloroglucinol 

(DHPG). The building structure of phlorotannins was identified both in Alaria and Saccharina 

experiments, excepting in E4. The DHPG was the phlorotannin compound found with the 

highest intensity in both species. Sporophytes from E3 had the highest intensity within Alaria 

experiments. Both PG and DHPG had the highest intensity in S. latissima comparing with A. 

esculenta. The figure 26 shows the peaks of PG and DHPG of the mass spectrum of the 

different seaweed species. 

 

A correlation was made between phlorotannins content from the Folin-ciocalteu method and 

the intensity of PG and DHPG from mass spectrometry for A. esculenta (Fig. 27) and for S. 

latissima experiments (Fig. 28). The data on the individual phloroglucinols are semi 

quantitative. 

The PG and DHPG correlation showed two distinct clusters matching with the experiments 

group. The gametophytes from E4 had a negative correlation between phlorotannin content 

and PG intensity, where the increase of content results in the decrease of PG (y = -942,19x + 

5070,2; R² = 0,538). The PG decrease seems to be related to the synergy of the fertilization 

induction and the addiction of the growth enhancer, where the latter seems to reduce PG 

intensity. The sporophytes from E3 (highest point excluded) and E4 had no correlation 

between phlorotannin content and PG intensity (y = 0; R² = #N/A). The PG intensity was zero, 

meaning other type of phlorotannins was quantified by the FC method. No relationship was 

found between treatments.  

DHPG 

DHPG 

DHPG 

DHPG 
DHPG 

PG 

PG PG 

PG 

Figure 26. PG and DHPG peaks of the mass spectrum of the extracts of A. esculenta and S. latissima.  
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The DHPG correlation on the gametophytes from E4 also had a negative correlation, which 

DHPG intensity decreased with the increase of phlorotannins content (y= -21456x+61808; 

R²=0,8443). The fertilization induction seems to decrease DHPG intensity and the addiction 

of the growth enhancer seems to have no influence. The DHPG correlation on the sporophytes 

from E3 had no correlation between phlorotannin content and intensity (y=9817,9x+96579; 

R²=0,063). The different densities seem to have no effect DHPG content. Yet, the sporophytes 

from E4 had a positive correlation between phlorotannins content and DHPG intensity 

(y=6206,2x+28536; R²=0,3135) with no apparently effect caused by the putative gametophyte 

qualities that started the seedlings.  

 

The Saccharina sporophytes (Fig. 28) showed no correlation, with a high degree of dispersion, 

between the phlorotannins content and intensity of PG and DHPG. Sporophytes from location 

9 had a decrease in PG intensity and an increase in DHPG with the phlorotannin content. 

Besides that, no evident effect by the time and the location was noticed. 

Figure 27. Correlation between the content of phlorotannins obtained by the FC method and the intensity of PG and DHPG 

from mass spectrometry for A. esculenta 
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The sum of the phloroglucinol and dihydrophloroglucinol intensity was made to correlate the 

phlorotannin content with the phlorotannins intensity identified in each kelp specie (Fig. 29). 

Two clusters were observed belonging to the two species. The correlation of phlorotannins 

content and intensity of A. esculenta was positive, where the intensity of the identified 

phlorotannins increased with the content (y=20999x+11925; R² = 0,6686). However, the 

intensity of these compounds was very low compared with S. latissima, suggesting that the 

PG and DHPG are not the only phlorotannins present in Alaria samples. The S. latissima 

correlation showed a weak relationship between phlorotannins content and intensity 

(y=107501x + 2000000; R²=0,1013). As already mentioned, S. latissima had higher intensities 

than A. esculenta, even with similar concentrations. 

 

 

 

 

Figure 28. Correlation between the content of phlorotannins obtained by the FC method and the intensity of PG and DHPG 

from mass spectrometry for S. latissima 
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7.4. Discussion 

Phlorotannins are specific to brown macroalgae. Most of the studies involving their 

characterization have been done in seaweeds from the Fucales order due to the high levels 

of phlorotannins found on these seaweeds (Isaza Martínez and Torres Castañeda, 2013). The 

phlorotannins are present in Alaria esculenta and Saccharina latissima (Zhang et al., 2006; 

Nwosu et al., 2011; Lopes et al., 2012; Kim et al., 2013) however no characterization has been 

done on these species. The present study performed a qualification and quantification of 

phlorotannins present in juvenile stages of those kelp species using FC method and TOF-MS, 

respectively. 

The content of phlorotannins present in the sporophytes that were cultivated at from different 

seedings densities (E3) was apparently not affected by the density, as the lower and the 

highest density had the same phlorotannin content. A crowded growth brings limitation to the 

cultures in the form of competition for light and nutrients, and may cause an abiotic stress. 

The phlorotannin production in macroalgae is often related to stressful environments (Dethier 

et al., 2005; Akula and Ravishankar, 2011), and similar phlorotannin content at all tested 

seeding densities may thus suggest that all seedlings either were equally stressed or that the 

environmental conditions experienced by the sporophytes in the different tanks not varied 

enough to induce differences in the phlorotannin synthesis. 

Figure 29. Correlation between the content and the intensity of phlorotannins (PG and DHPG) identified for A. esculenta and 

S. latissima 
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The 4 weeks old sporophytes produced from gametophyte cultures treated with growth 

enhancers (E4) had lower phlorotannin content than the nine weeks old sporophytes from the 

seeding density experiment (E3). This finding illustrates that the total content of phlorotannin 

increases with the age of the sporophytes. The seedling development period is recommended 

for 4 weeks. After nine weeks of growth the sporophytes were probably highly limited in light 

and possibly nutrients by the volume of the tanks used in this experiment and this possible 

stressful environment could also have affected the increased phlorotannin content.  

The sporophytes (E4) obtained from the gametophyte cultures B showed lower phlorotannin 

content than the sporophytes from the gametophyte culture C and A (Fig. 24). Since the light 

intensity and temperature were constant within the replicates, no evident explanation is found 

on this observation.  

The phlorotannin content present in vegetative, non-fertile gametophytes was lower than in 

the fertile gametophytes, indicating that the changing of the quality and intensity of light 

influences this content (Fig. 23). The phlorotannin content of the non-fertile gametophytes was 

independent of the growth enhancer. Contrarily, the fertile gametophytes showed an increase 

of the phlorotannin content in the cultures supplemented with growth enhancer. As no 

differences were found between cultures treated with 25 or 50 mg/L of growth enhancer it is 

expected that the possible phlorotannin in the growth enhancer, an extract from Ascophyllum 

nodosum, not influenced significantly on the concentration in the growth medium. Potin and 

Leblanc (2006) reviewed the phenolic-based adhesives in brown algae, where there is a 

correlation between the phenolic polymers secreted and the attachment process of the 

zygotes in Fucus spp. Thus, the gametophyte medium could also have been analyzed to 

evaluate the presence of possible phlorotannin excreted by the Alaria gametophytes and how 

the cultivation conditions possibly affect this excretion (Steinhoff et al., 2011).  

The species from the Laminariales order with more in-depth phlorotannin characterization 

studies  are  Laminaria ochroleuca (Glombitza et al., 1976; Koch et al., 1980), Pleurophycus 

gardneri (Glombitza and Kno, 1992), Eisenia spp. (Okada et al., 2004; Kim et al., 2013) and 

Ecklonia spp. (Kim et al., 2009). In the present study just two forms of phloroglucinol were 

found: Phloroglucinol (PG) and dihydrophloroglucinol (DHPG), where DHPG was the 

compound with the highest intensity in both A. esculenta and S. latissima. 

The phlorotannins content of the sporophytes from E3 and E4 showed no correlation in any of 

the compounds, excepting the DHPG of the sporophytes in E4 with a weak correlation. The 

treatments with growth enhancer had apparently no effect on the synthesis of either of the 

three compounds.  
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In the gametophytes that were used to study effects of the growth enhancer (E4), both PG 

and DHPG had negative correlations with the total phlorotannin content. The induction of 

fertility of the gametophytes seems to provoke a decrease of PG and DHPG. The growth 

enhancer did not influence on the content of DHPG, but PG seems to be reduced by the 

growth enhancer concentration. The decrease of PG and DHPG suggests a polymerization of 

these compounds into other phlorotannin compounds but due to the lack of studies related 

with phlorotannin characterization in A. esculenta it is difficult to identify other compounds in 

the samples.  

The PG and DHPG compounds had no correlation with the phlorotannin content in S. 

latissima. As in the experiments with Alaria DHPG was the dominant compound also in 

Saccharina (Supplement figure 4). The sporophytes from location 9 showed a particular 

behavior compared to the other locations. The PG intensity decreased and the DHPG 

increased with the phlorotannin concentration, which suggests that the PG was transformed 

into DHPG by the addition of two hydrogens. Besides this, no evident effect was noticed by 

the time of the year and the location. 

The sum of the two phloroglucinol forms showed two clear cluster when the two species were 

compared. A. esculenta had a positive correlation between the total phlorotannin content and 

the content of identified phloroglucinol or phloroglucinol derivates, with median relationship 

(R2=0.67) and S. latissima a weak relationship (R2=0.1). In S. latissima the PG seems to be 

converted into DHPG increasing the total phlorotannin content. For A. esculenta both PG and 

DHPG seemed to be transformed into other phlorotannin compounds, that not were identified. 

The experiments also demonstrated lower intensity in all phloroglucinol forms in A. esculenta 

compared to S. latissima, even with a similar phlorotannin content.  

Other phlorotannins definitely seemed to be present in these data, however, due to the lack 

of studies of these species it was impossible to make identification. It is also important to 

remember that the mass spectrometry data when collected as fingerprints are semi 

quantitative and if there had been access to more reference standards, positive (as opposed 

to tentative) assignments could have been made also using chromatographic separation of 

the phloroglucinols. This should be pursued in further studies. 

This study represents a first description of the polyphenols in juvenile stages of A. esculenta 

and S. latissima. The results suggest that more studies are needed for a more complete 

explanation of the dynamics of these compounds during the development from gametophytes 

to sporophytes and as sporophytes grow, and as a response to different environmental 

conditions during the early life stages. 
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8. Conclusions and future perspectives 

In this study it was demonstrated that it is possible to measure the biomass of Alaria 

gametophyte cultures either by optical density or in vivo fluorescence and convert to dry 

weight. However, there will always be an error associated to these measurements and for that 

reason the choice between the three methods will depend on time limitations and investment 

of the laboratory. The addition of a putative growth enhancer did not affect the growth of 

gametophyte cultures, where the PES medium is enough for a maximum growth performance. 

The study related with gametogenesis showed that not only the fertility was induced in almost 

all gametophytes but also that it was possible to reduce the induction time by applying a 

photoperiod regime with 23 hours light + 1 hour darkness. The growth enhancer had no 

influence on the fertility of the gametophytes. However, the volume and the surface area 

demonstrated to have a high influence over the fertility induction, being directly related to the 

amount of light received by the gametophytes. The fertility development of gametophytes also 

seemed to be influenced by the addition of GeO2, where a faster development was obtained 

by the addition of this compound. 

The study of seeding densities showed an optimal number of sporophytes using the lower 

density tested, however the number of seaweeds per twine was probably still higher than the 

needed. The deployment of the sporophytes at the sea could be important to evaluate the 

survival rate of sporophytes produced with high and low densities. Nevertheless, these 

experiments were a starting point to find the ideal seeding density for Alaria cultivation. 

The number of sporophytes on twine were influenced by the treatment with growth enhancer 

used in the gametophyte cultures but not the length. The seedlings made from treated 

gametophytes had lower sporophyte density and this is probably the explanation of a higher 

number of seedlings with a length over 5 mm. This result was probably not directly related to 

the growth enhancer application but because of the lower density of the seedling. 

The manual measurements of sporophytes on the twine is an accurate method but extremely 

time-consuming as the counting and length measurement needed to monitor the growth can 

take hours. However, the estimation of the seedlings growth was possible using image 

analysis. This method could be interesting to the seaweed industry because by these digital 

images the growth can be estimated within a few minutes, giving a green-light to deploy the 

seedlings on the sea. 

A. esculenta and S. latissima showed similar quantities of phlorotannins. From the qualitative 

analysis only two forms of phloroglucinol (PG and DHPG) were found in the species. The 

correlation between these two analysis showed a clear cluster by species, which means the 
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phlorotannins composition were different between them. The most dominant phlorotannin in 

S. latissima was DHPG, whereas for A. esculenta a most dominant phlorotannin was not 

identified. 

The content and composition of phlorotannins of A. esculenta sporophytes were independent 

from the seeding density and the growth enhancer addition, except for seedling B where no 

apparent conclusion could be drawn. The content of phlorotannins and the identified 

compounds were also dependent on the incubation period, increasing with the time. The 

phlorotannins content of S. latissima sporophytes showed high variance within locations and 

between different ages. This was most pronounced for one location. The increase of 

phlorotannins content was accompanied with the increase of DHPG and the decrease of PG, 

appearing that the PG was being converted into DHPG. 

The phlorotannins content on the gametophyte cultures increased during fertility induction, 

especially in the cultures with addition of growth enhancer. The production of phlorotannin 

thus showed to be dependent of the white light exposure and to be stimulated by growth 

enhancer addition. The qualitative analysis shows that the PG and DHPG decreased with this 

induction. The PG and DHPG seemed to be polymerized in other phlorotannins, that not were 

identified in this study. 
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Appendix I 

Provasoli Enriched Seawater Medium (PES) 

Version in Harrison and Berges (Harrison and Berges, 2005) 

The Enrichment Stock Solution was prepared in a volumetric flask with 500 mL of distilled 

water. The remaining ingredients were added in the order shown (Supplemental table 1). All 

components were dissolved with a magnetic stirrer and with a little heat. Distilled water was 

added to bring the final volume to 1 liter. The solution was pasteurized, stored in a sterile glass 

bottle and kept refrigerated.  

Supplemental table 1. Components of the Enrichment Stock Solution 

Component Stock solution 

[g L-1 dH2O] 

Quantity 

Used 

Concentration in 

Final Medium (M) 

Tris Base - 5 g 8.26 x10-4 

NaNO3 - 3.5 g 8.24 x10-4 

Na2 β-glycerophosphate ·5H2O  - 0.7 g 4.63 x10-5 

Iron-EDTA solution See following recipe 250 mL - 

Trace Metals solution See following recipe 25 mL - 

Thiamine · HCl (vitamin B1) - 0.5 mg 2.96 x10-8 

Biotin (vitamin H) 0.005 1 mL 4.09 x10-10 

Cyanocobalamin (vitamin B12) 0.010 1 mL 1.48 x10-10 

 

Iron-EDTA solution was prepared in 900 mL of distilled water and the components were 

dissolved in the same order as shown (Supplemental table 2). Distilled water was added to 

bring the final volume to 1 liter. The solution was pasteurized, stored in a sterile glass bottle 

and kept refrigerated. 

Supplemental table 2. Components of the Iron-EDTA solution 

Component Stock solution 

[g L-1 dH2O] 

Quantity Used (g) Concentration in 

Final Medium (M) 

Na2EDTA ·2H2O - 0.841 1.13 x10-5 

Fe(NH4)2(SO4)2 ·6H2O - 0.702 1.13 x10-5 

 

The Trace Metals Solution was prepared by adding 900 ml distilled water to a volumetric 

flask. The EDTA was dissolved and then the remaining ingredients were added in the order 

shown (Supplemental table 3). The final volume was brought to 1L by distilled water. The 

solution was pasteurized, stored in a sterile glass bottle and kept refrigerated. 
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Supplemental table 3. Components of the trace metals solutions  

Component Stock solution 

[g L-1 dH2O] 

Quantity Used (g) Concentration in 

Final Medium (M) 

Na2EDTA ·2H2O - 12.74  1.71 x10-4 

FeCl3 ·6H2O - 0.484 8.95 x10-6 

MnSO4 ·4H2O - 1.624 3.64 x10-5 

ZnSO4 ·7H2O - 0.220 3.82 x10-6 

CoSO4 ·7H2O - 0.048 8.48 x10-7 
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Appendix II 
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Supplemental figure 2. Standard curve for in vivo fluorescenceSupplemental figure 3.  Standard curve for 
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Supplemental figure 5. Standard curve for in vivo fluorescence 
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Appendix III 
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Supplemental figure 7. Developmental rate of A. esculenta of the gametophyte cultures C:0mg/L under the 23:1 photoperiod 

regime over 8 days. Values are means ± SD (n=3). Similar letters denote no statistical significant differences between treatments 

and days. 

 

 

Supplemental figure 8. Mass spectra of putative phlorotannins in A. esculenta and S. latissimaSupplemental figure 9. 

Developmental rate of A. esculenta of the gametophyte cultures C:0mg/L under the 23:1 photoperiod regime over 8 days. Values 

are means ± SD (n=3). Similar letters denote no statistical significant differences between treatments and days. 
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Appendix IV 
 Supplemental table 4. Possible lipids identified in the lipid fraction 

 

 

  

Mz-H Lipid Name Formula Summary Name 

227,2 Myristic acid C14H28O2 Myristic acid 

255,2 Octadecatetraenoic acid C18H28O2 Octadecatetraenoic 

acid 

548,3 PS(20:2(11Z,14Z)/0:0) C26H48NO9P PS(20:2) 

671,4 PA(22:0/12:0) C37H73O8P PA(34:0) 

766,5 PS(O-16:0/20:5(5Z,8Z,11Z,14Z,17Z)) C42H74NO9P PS(O-36:5) 

805,5 PG(17:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C45H75O10P PG(39:7) 

806,5 PS(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C44H74NO10P PS(36:6) 

807,5 PI(16:0/16:1(9Z)) C41H77O13P PI(32:1) 

817,5 PG(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C46H75O10P PG(40:8) 

818,5 PS(17:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C45H74NO10P PS(39:7) 

819,5 PI(13:0/20:2(11Z,14Z)) C42H77O13P PI(33:2) 

830,5 PS(18:4(6Z,9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)) C46H74NO10P PS(40:8) 

831,5 PI(14:0/20:3(8Z,11Z,14Z)) C43H77O13P PI(34:3) 

841,5 PG(20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C48H75O10P PG(42:10) 

843,5 PI(13:0/22:4(7Z,10Z,13Z,16Z)) C44H77O13P PI(35:4) 

855,5 PI(14:1(9Z)/22:4(7Z,10Z,13Z,16Z)) C45H77O13P PI(36:5) 

865,5 PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C50H75O10P PG(44:12) 
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Supplemental figure 10. Mass spectra of putative phlorotannins in A. esculenta and S. latissima 

 

Supplemental figure 11. Mass spectra of putative phlorotannins in A. esculenta and S. latissima 
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