
Objective: We investigated how automation-
induced human performance consequences depended 
on the degree of automation (DOA).

Background: Function allocation between human 
and automation can be represented in terms of the 
stages and levels taxonomy proposed by Parasuraman, 
Sheridan, and Wickens. Higher DOAs are achieved both 
by later stages and higher levels within stages.

Method: A meta-analysis based on data of 18 
experiments examines the mediating effects of DOA 
on routine system performance, performance when 
the automation fails, workload, and situation awareness 
(SA). The effects of DOA on these measures are sum-
marized by level of statistical significance.

Results: We found (a) a clear automation benefit for 
routine system performance with increasing DOA, (b) a 
similar but weaker pattern for workload when automa-
tion functioned properly, and (c) a negative impact of 
higher DOA on failure system performance and SA. Most 
interesting was the finding that negative consequences of 
automation seem to be most likely when DOA moved 
across a critical boundary, which was identified between 
automation supporting information analysis and automa-
tion supporting action selection.

Conclusion: Results support the proposed cost–
benefit trade-off with regard to DOA. It seems that 
routine performance and workload on one hand, and 
the potential loss of SA and manual skills on the other 
hand, directly trade off and that appropriate function 
allocation can serve only one of the two aspects.

Application: Findings contribute to the body of 
research on adequate function allocation by providing 
an overall picture through quantitatively combining data 
from a variety of studies across varying domains.

Keywords: degree of automation, operator perfor-
mance, workload, situation awareness, human-automa-
tion interaction, function allocation

Introduction
It has been long known that automation 

can both hurt and benefit human performance 
(e.g., Bainbridge, 1983; Ephrath & Young, 
1981; Kessel & Wickens, 1982; Rasmussen & 
Rouse, 1981; Sheridan, 2002; Wickens & Kes-
sel, 1979, 1981; Wickens, Mavor, Parasuraman, 
& McGee, 1998; Wiener & Curry, 1980). This 
cost–benefit trade-off is particularly prominent 
when automation is imperfectly reliable. Auto-
mation infrequently fails, either due to hardware 
or software failures, or it fails to achieve desired 
outcomes simply because a functionality is used 
in circumstances for which it was not intended. 
For fielded automation, it is almost always the 
case that routine or “nonfailure” performance 
substantially exceeds unaided human perfor-
mance and/or the automation assistance lowers 
workload. If it did not, the system would not be 
fielded or considered useful.

However, on those infrequent occasions when 
automation does fail, the effects on joint human-
machine system performance may be catastrophic. 
These catastrophic effects may result from 
human’s reduced monitoring of highly reliable 
automation at the time it fails, trusting it too much 
(Parasuraman & Riley, 1997) and losing situation 
awareness (Endsley & Kiris, 1995). This is 
sometimes described as a form of complacency 
(Parasuraman, Molloy, & Singh, 1993) or an 
automation-induced decision bias (Mosier & 
Skitka, 1996). Indeed, operators occasionally 
over-rely on automation and exhibit complacency 
because the highly (but not perfectly) reliable 
automation functioned properly for an extended 
period prior to this first failure (Parasuraman et al., 
1993; Parasuraman & Manzey, 2010; Yeh, Merlo, 
Wickens, & Brandenburg, 2003).

Going beyond the issues of highly reliable 
automation, Endsley and Kiris (1995) and Miller 
and Parasuraman (2007) have pointed out that 
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also the “competence” of the automation must be 
considered. The more support an automated sys-
tem provides, the higher the risk of adverse effects 
on human performance (e.g., complacency, loss 
of situation awareness, skill degradation), and the 
greater the likelihood of catastrophic conse-
quences when it fails. This trade-off, in which 
more automation yields better human-system 
performance when all is well but induces 
increased dependence, which may produce more 
problematic performance when things fail, will 
be of critical importance to this review of the 
performance effects of different degrees of auto-
mation. We might refer to this conventional  
wisdom about automation as the “lumber jack 
effect”; as applied to trees in the forest, “the 
higher they are, the farther they fall.” Of impor-
tance, the choice of whether or not, and to what 
degree, to automate a particular function should 
involve a trade-off between the benefits of reli-
able automation and the expected costs (true 
costs × probability of failure) of automation fail-
ures (Sheridan & Parasuraman, 2000).

The “routine-failure” trade-off is complicated 
by the fact that “automation” is not an all-or-
none concept, as it was often assumed to be in 
the classic human–machine task allocation anal-
yses (e.g., the “Fitts List”; for a critique of those 
analyses, see Dekker & Woods, 2002; Parasura-
man, Sheridan, & Wickens, 2008). Instead, one 
can think of varying levels of automation as first 
put forth by Sheridan and Verplank (1978; see 
also Endsley & Kiris, 1995). This continuum 
can be jointly defined by the amount of automa-
tion autonomy and responsibility (highest at the 
highest level) and the amount of human physical 
and cognitive activity (highest at the lowest 
level). For example, at the highest level, the 
automation can perform a decision task com-
pletely autonomously; at a lower level, it can 
choose (and possibly execute) an option unless 
the human vetoes; and at an even lower level, it 
may simply offer the human a selection of 
options.

More recently, Kaber and Endsley (2004) and 
Wickens et al. (1998) put forth the idea that 
automation could also be categorized according 
to the stage of information processing that it 
accomplished. Elaborating on this concept, 
Parasuraman, Sheridan, and Wickens (2000) and 

Wickens et al. (1998) proposed a concept in 
which automation could filter information from 
the environment (Stage 1: information acquisi-
tion), integrate this information, as when form-
ing an assessment based on several sources of 
information (Stage 2: information analysis), 
choose or decide on an action based on the 
assessment (Stage 3: decision and action selec-
tion), and implement the action via a typically 
manual activity (Stage 4: action implementa-
tion). Within each stage, varying levels could be 
defined. For example, as described earlier, Sher-
idan and Verplank (1978) define multiple levels 
at Stage 3. In so doing, automation can be said to 
offload, assist, or replace human performance at 
corresponding stages of human information pro-
cessing (e.g., automation filtering at Stage 1, can 
assist human selective attention).

As an example, health care automation may 
(a) alert (call attention to) abnormal patient 
symptoms, (b) integrate these symptoms to form 
an intelligent diagnosis of the patient condition, 
(c) recommend a treatment or course of action 
based on the diagnosis, and (d) carry out the 
action as, for example, with an automated infu-
sion pump. In applying this taxonomy, where 
any given stage can function at various levels, it 
is important to note the quasi-independence of 
levels across the various stages. Thus, for exam-
ple, a totally automated diagnosis may be fol-
lowed by a fully manual (physician chosen) 
course of action, just as a fully manual diagnosis 
may trigger an automated choice of treatment.

Considering that “more automation” can be 
represented both by higher levels within a stage, 
and, typically, later stages (which, in the litera-
ture, are typically preceded by automation at 
earlier stages), we assume, in the analysis given 
later, that these two dimensions (higher levels 
and later stages) increase the degree of automa-
tion (DOA; e.g., Manzey, Reichenbach, & 
Onnasch, 2012). More specifically, it is assumed 
that differences between automated (support) 
systems representing automation of different 
stages and levels can be described on an ordinal 
scale reflecting the amount of automated sup-
port that is provided. The main assumption 
underlying this concept as we define it asserts 
that assessment of “more versus less automa-
tion” can be based on dominance relationships, 
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as long as the following three postulates are 
agreed on. That is, all other factors held equiva-
lent, (a) a higher level of automation constitutes 
“more automation,” (b) a later stage of automa-
tion constitutes “more automation,” and (c) as a 
consequence, a combination of higher levels and 
a greater number of stages at which automation 
is implemented constitutes “more automation.” 
As will be shown later, applying this reasoning 
enables an unambiguous rank ordering of auto-
mated systems that have been analyzed and 
compared in different studies and domains. It 
further seems to reflect the implicit or explicit 
assumptions that researchers in the field whose 
data are employed in the current analysis usually 
apply when comparing their systems in terms of 
some concept of “more or less automation.”

We illustrate this within Figure 1, which, for 
simplicity, presents examples of the four-stage 
model of Parasuraman et al. (2000) with only 
three levels per stage. Each of the four cases 
contains two automation systems, A and B, 
which are compared within one experiment. The 
automation characteristic of each of these sys-
tems is characterized by a profile of levels across 
the stages. The first three cases also represent 
the three postulates given earlier. Case 1 (“Pure 
Levels”) represents different levels within a 
stage. Case 2 (“Pure Stages”) represents differ-
ent stages at the same level. Case 3 (“Aggrega-
tion”) represents an earlier stage and lower level 
versus a later stage and higher level. Case 4 

(“Confound”) represents an earlier stage and 
higher level versus a later stage and lower level 
(i.e., a “trade-off” between stages and levels).

We argue that, to the extent that the three pos-
tulates given earlier are agreed on, comparisons 
1 to 3 clearly represent contrasts between sys-
tems with more (System B) versus less (System 
A) automation, as defined on an ordinal scale. 
These relationships characterize all of the stud-
ies we have reviewed in which authors have 
invoked a phrase like “more automation.” Case 
4 is an important exception. Here, there is a 
trade-off between later stages and higher levels. 
It is impossible to assess a relative DOA unless 
both stages and levels are expressed on an inter-
val or ratio scale, and we have no confidence 
that this has or even can be done. But none of the 
studies analyzed later in this article involved 
such a comparison.

Thus, in our analysis, DOA is a useful ordinal 
metric explicitly available and used to compare 
two or more systems (or experimental condi-
tions), specifically for the purpose of examining 
the trade-offs inherent in the lumberjack anal-
ogy.

Within this DOA concept, the discrete trade-
off described earlier (i.e., automation supports 
better performance in routine situations but is 
problematic when automation breaks down) can 
be expressed as a more continuous trade-off, as 
illustrated in Figure 2. The two primary perfor-
mance functions in this figure (heavy lines)  

Figure 1. Four cases comparing degree of automation (DOA) across stages, that is, information acquisition 
(IAc), information analysis (IAn), action selection (AS), and action implementation (AI), and levels, that is, 
high, low, and manual. Two systems compared are represented by dashed (System A) and solid lines (System 
B). For Cases 1 to 3, System B always represents “more automation” in a distinct way (e.g., by higher levels 
or by higher stages). Case 4 represents a confound where “what is more automation” cannot be defined.
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indicate that, as the DOA increases, routine  
performance will improve but performance 
under failure will decline. This relationship is 
expressed intuitively by the lumberjack analogy. 
Prior research has found that the lumberjack 
analogy appears to apply to the continuum of 
automation reliability of alerting systems (Wick-
ens & Dixon, 2007). We examine here the extent 
to which this may also apply to DOA. Further-
more, our interest lies in whether DOA also has 
a systematic impact on workload and situation 
awareness (Endsley & Kiris, 1995). Indeed, as 
discussed later, to the extent that loss of situation 
awareness may be due to both an increase in 
automation reliability and an increased DOA, it 
is plausible to assume that the lumberjack anal-
ogy may apply to the latter case (see also Wick-
ens, 2008b).

Thus, Figure 2 also depicts the hypothetical 
trade-off between the two secondary variables, 
workload and loss of situation awareness (the 
two lighter lines). With a higher DOA, the work-
load imposed by the automated task is progres-
sively reduced, almost by definition, since if the 
automation is doing more cognitive/physical 
work, the human is doing less. This holds at least 
if the automation is properly designed and does 
not provide new effortful challenges and tasks 
related to its engagement and monitoring (e.g., 
Kirlik, 1993; Wiener, 1988). If this is granted, the 
automation enables the human to allocate more 
attention to other concurrent tasks (Wickens, 
2008a); but if the human does so (i.e., exploits 
the lower workload to enhance overall produc-
tivity), the resulting reduction of attention to the 

tasks served by automation could have conse-
quences expressed in the loss of situation aware-
ness (LSA), that is, loss of awareness of the state 
of the system supported by automation (e.g., lack 
of altitude awareness in the autopilot-controlled 
cockpit) or the state of the automation itself (i.e., 
poor mode awareness of the flight management 
system; e.g., Sarter, 2008).

Even though there is broad consensus in the 
understanding of the concept of situation aware-
ness (SA) as it has been defined by Endsley’s 
(1988) three levels model, the operational defi-
nitions used to assess SA in different studies are 
considerably diverse. In the context of the pres-
ent research, we consider both direct as well as 
indirect measures as indicators of SA. Direct 
indicators are derived from conventional meth-
ods to assess SA, like the situation awareness 
global assessment technique (SAGAT; Endsley, 
2000). Indirect measures of (a loss of) SA 
include any performance consequences in inter-
action with automation that point to a lack of 
information sampling, a lack of understanding, 
or a lack of correctly anticipating the behavior of 
the automation (e.g., errors of omission or com-
mission; Mosier & Skitka, 1996).

The hypothetical trade-offs depicted in  
Figure 2 are critical for task allocation because 
these trade-offs may not be linear, and in some 
cases a “flat” function may allow strong recom-
mendations for the optimal task allocation 
(Wickens, 2008a). For example, if the costs of 
imperfect automation (mediated by LSA) remain 
flat up to a high DOA (as shown in Figure 2), 
then the recommended DOA would be at Point a 
in the figure: maximum routine performance 
and lowest workload, without sacrificing failure 
performance.

Earlier research contrasting human perfor-
mance with and without automation support has 
focused only on what has been referred to as 
“out-of the-loop unfamiliarity” effects without 
varying the levels or stages of automation (e.g., 
Crossman, 1974; Ephrath & Young, 1981; Kes-
sel & Wickens, 1982; Wickens & Kessel, 1979, 
1980, 1981). These studies provide evidence for 
automation-induced performance consequences 
but do not allow for any conclusion about the 
relationship to different degrees of automation. 
The latter issue attracted little research until the 

Figure 2. Trade-off of variables, with degree of 
automation.
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early 1990s (for early examples, see, e.g., Cro-
coll & Coury, 1990; Layton, Smith, & McCoy, 
1994). Yet since then at least a limited number of 
studies have become available that have col-
lected empirical data on effects of two or more 
different DOAs on workload and/or SA (e.g., 
Endsley & Kiris, 1995; Kaber, Onal, & Endsley, 
2000; Lorenz, Di Nocera, Röttger, & Parasura-
man, 2002a; Sarter & Schroeder, 2001). The pat-
tern of results of these single studies provides a 
somewhat mixed picture. Whereas some studies 
support the existence of the trade-off as defined 
by better routine performance but worse perfor-
mance when automation fails (e.g., Sarter & 
Schroeder, 2001), others do not find this effect 
(Lorenz et al., 2002a) and still others suggest 
that medium levels of automation provide the 
best choice in terms of maintaining SA and 
return-to-manual performance (Endsley & Kiris, 
1995) or provide an even more complex pattern 
of effects (Endsley & Kaber, 1999). However, 
due to differences in DOA levels considered, 
and a generally limited statistical power, the 
effects of single studies are inconclusive.

A more valid overall picture might be revealed 
by quantitatively combining data from a variety 
of studies across varying domains (e.g., process 
control, aviation), an approach analogous to a 
classic meta-analysis (Fadden, Ververs, & Wick-
ens, 1998; Horrey & Wickens, 2006; Rosenthal, 
1991; Wickens, Hutchinson, Carolan, & Cum-
ming, 2013). The purpose of the current investi-
gation is to provide such meta-analysis (a) by 
aggregating data from studies that compared dif-
ferent degrees of automation, (b) by examining 
the extent to which they show the postulated 
trade-off between normal operations and failure 
conditions as the DOA was manipulated, and  
(c) if possible, by identifying factors that may 
mitigate or moderate this trade-off.

Method
In a first step we looked for relevant studies 

to be included in this analysis. Sources used for 
this purpose included databank searches (e.g., 
PsycINFO), analyses of tables of contents of rel-
evant journals (e.g., Human Factors, Ergonom-
ics, International Journal of Human-Computer 
Interaction) and conference proceedings for 
the years 1990 to present, and direct contact of 

colleagues to identify relevant technical reports 
or other examples of references that were not 
available through publishers. Only studies that 
compared at least two different degrees of auto-
mation defined by the postulates given earlier, 
for example, either by varying the stage of auto-
mation or the number of stages or by varying the 
level of automation within a stage, with respect 
to at least one relevant performance measure, 
were included. Consequently, a total of 18 studies 
were identified and integrated in the analysis 
(see Table 1).

The second step included a proper quantifica-
tion of the independent variable (i.e., DOA) and 
dependent variables (i.e., performance, work-
load, and SA data) as a basis for our meta-analy-
sis approach. For each single study, the DOAs 
analyzed were converted into rank data with an 
increasing rank (beginning by rank = 1) reflect-
ing an increasing DOA via either stages or levels 
corresponding to the logic described earlier. We 
note that none of the studies contrasted condi-
tions with higher level/earlier stage with lower 
level/later stage (or vice versa), which would not 
be easy to rank due to lacking unambiguous a 
priori criteria for cross-stage comparisons of 
levels. Manual performance conditions were 
always assigned a rank of 0. Rankings were pro-
vided by one of the authors (LO) and double-
checked by two of the coauthors (CW, DM).

To bring the variety of dependent measures 
and definitions used in the studies to a compa-
rable level, we defined “metavariables” that 
were broad enough to group the data while still 
representing a clear definition of the concept in 
question (e.g., SA). As our main focus of the 
present study was on performance costs and 
benefits of automation support, we differenti-
ated between primary task performance when 
the automation functioned properly (metavari-
able routine primary task performance, reflect-
ing joint performance of operator and system 
together) and performance when there was a 
complete automation breakdown, that is, when 
operators had to resume the automated task and 
perform it manually again after some time of 
reliable automation support (metavariable 
return-to-manual primary task performance). 
The routine primary task performance metavari-
able, for example, could be realized within the 
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single studies as fault identification time in a 
monitoring task (e.g., Lorenz, Di Nocera, Rött-
ger, & Parasuraman, 2002b), the decision accu-
racy in interaction with an automated decision 
aid (e.g., Rovira, McGarry, & Parasuraman, 
2007) or the out-of-target error when the main 
task was to maintain certain values in a dynamic 

task (e.g., Manzey et al., 2012). Nevertheless, all 
these measures represented operators’ perfor-
mance when working together with a reliable 
automation support and were therefore subsumed 
under the same metavariable. For defining the 
return-to-manual primary task performance 
metavariable, the same measures as for routine 

Table 1: Kendall’s Tau for the Single Studies on the Six Metavariables With Resulting Overall Kendall’s 
Tau and Statistics of One-Tailed t Tests

Study

Routine 
Primary Task 
Performance 

(TP)

Return-
to-Manual 
Primary TP

Routine 
Secondary 

TP

Return-to-
Manual  

Secondary  
TP

Subjective 
Workload

Situation 
Awareness

Calhoun et al. (2009) –.816 0 0
Crocoll & Coury 

(1990)
.707  

Cummings & Mitchell 
(2007)

0 0

Endsley & Kaber 
(1999)

.637 .025 .804 .597

Endsley & Kiris (1995) –.837 0 –.837
Kaber & Endsley 

(2004)
.6 0 –.598 .258

Kaber et al. (2000) .316 –.408 –.775 –.632
Li et al. (in 

preparation)
1 –1 –1

Lorenz et al. (2002a) .333 –.333 0 0 0  
Lorenz et al. (2002b) .816 .333  
Manzey et al. (2012) .913 –.816 .913 –.913 –.707
Metzger & 

Parasuraman (2005)
0 0 0 0 0 0

Reichenbach et al. 
(2011)

1 –1 0 0 0 0

Röttger et al. (2009) .816 0 –1  
Rovira et al. (2007) .837 .707 –.333  
Sarter & Schroeder 

(2001)
1  

Sethumadhavan 
(2009)

.707 –.913

Wright & Kaber 
(2005)

0 .913  

Overall τ .509 –.337 .291 0 –.242 –.294
t-crit 1.341 –1.397 1.415 –1.363 –1.372
t 4.027 –2.176 2.024 –1.284 –1.809
p .0005* .031* .042* .056 .049*
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performance were considered for a given study 
but for a situation where the operator needed 
to perform the primary task manually after  
a complete automation breakdown of the  
automation.

Workload measures were assessed in two dif-
ferent ways: As a performance variable we 
defined the metavariable secondary task perfor-
mance (if the study used a multitask environ-
ment) again for routine and return-to-manual 
performance, respectively. A second metavari-
able was operators’ subjective workload, typi-
cally quantified by the NASA-TLX (Hart & 
Staveland, 1988) as used, for example, by Ends-
ley and Kaber (1999).

The situation awareness metavariable merged 
any direct and indirect indicators that pointed to 
LSA when working together with automation. 
As direct indicators we considered the outcome 
of techniques that are designed to directly ask 
for SA like SAGAT (Endsley, 1988, 2000) or 
questionnaires such as the Situational Awareness 
Rating Technique (Taylor, 1990). As indirect evi-
dence for a possible loss of SA we considered all 
sorts of operators’ errors that might be attributed 
to a loss of SA due to an overtrust in automation 
or a lack of proper understanding. Such errors 
can include, for example, mode errors (Sarter, 
2008) or errors of omission or commission 
(Mosier & Skitka, 1996), that is, errors where 
operators failed to respond to a critical situation 
if the automation failed to alert them properly or 
where operators followed incorrect advice of 
automation without detecting this failure. When 
participants committed these kinds of error, we 
interpreted this as evidence for deficient SA as 
they did not realize that the automation had 
made a mistake.

Departing from the classic meta-analysis 
approach we assigned rankings for every meta-
variable within a single study according to  
significant effects found with regard to DOA  
(a priori, a posteriori). This was done as effect 
sizes (e.g., Hedges’s g) were only rarely reported 
in the original studies and therefore could not be 
used for analysis, without eliminating many 
studies from consideration. Furthermore, any 
other estimates of effect sizes based on the  
F ratios for multiple conditions reported in the 
studies would not be able to capture the ordinal 

aspect of data, which is of particular relevance 
for our question. Although unconventional, this 
approach of data aggregation is in line with the 
basic idea of meta-analysis (e.g., Rosenthal, 
1991), where no particular statistical method is 
defined for this “analysis of analyses.” It is also 
in line with other authors who also departed 
from the classic approach for similar reasons 
(e.g., Hutchins, Wickens, Carolan, & Cumming, 
2013; Wickens & Dixon, 2007; Wickens et al., 
2013; Wickens, Hooey, Gore, Sebok, & Koe-
nicke, 2009).

Different rankings were assigned when there 
was a significant effect between two DOA con-
ditions (p < .05). In case of nonsignificant effects 
between different degrees of automation, we 
assigned tied ranks. For example, in case a study 
comparing the impact of three different DOAs 
on routine primary task performance revealed 
all pairwise comparisons between the DOA con-
ditions as significant, the condition showing the 
worst performance was assigned rank 1, the con-
dition with the second-best performance rank 2, 
and rank 3 was assigned to the condition with 
best performance. However, when only one con-
dition differed in terms of superior performance 
compared to the other two conditions, the best 
condition was assigned rank 3 and the other two 
conditions were assigned tied ranks, in this case 
rank 1.5.

When a metavariable was measured by more 
than one dependent variable within a study (e.g., 
error of omission and SAGAT for SA), the rank-
ings of the single variables were integrated into 
one “overall ranking.” With this approach we 
were able to integrate data from various studies 
assessed in numerous ways to examine the trade-
off when automation degree increased and to 
identify trends on a descriptive level.

In a third step we described the relationship 
between the DOAs and the different metavari-
ables by computing Kendall’s tau (correlation 
between rank orderings) to see if the DOA had an 
impact on a certain class of metavariable. Kend-
all’s tau was used as an alternative analysis to 
product moment correlations as we only had rank 
orderings as data bases. With this analysis it was 
possible to determine and test for a monotonic 
relation between two dependent variables (e.g., 
DOA and workload). Furthermore, Kendall’s tau 
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does not make the implicit assumption of equidis-
tance between different rankings, which would 
not have been the case for our data.

To further abstract the results, we computed 
an overall Kendall’s tau for every metavariable 
across studies and tested with one-tailed t tests if 
this correlation was different from zero in the 
hypothesized direction. In doing so, we defined 
each Kendall’s tau, computed for every study, as 
a certain manifestation of the variable in ques-
tion (e.g., routine primary task performance). 
With this last step, we could also examine vari-
ous instances of the trade-off: For example, do 
the routine and failure aspects of performance 
trade off? How strongly is decreased failure 
response coupled with LSA? Do workload and 
LSA trade off?

Results
Table 1 shows the correlations of DOA on the 

six metavariables for the single studies (Kend-
all’s tau) and the computed overall Kendall’s 
tau for every metavariable including statistics of 
one-tailed t tests.

Primary Task Performance
A total of 16 studies provided data for the 

routine primary task performance metavariable. 
In terms of Kendall’s tau, a vast majority of 
these studies indicated a strong positive cor-
relation of DOA and routine performance. This 
is in accordance with the anticipated benefit of 
automation support with increasing DOA when 
automation functioned properly. Data of one 
study only resulted in a negative correlation, and 
an additional three studies revealed no evidence 
for a relation of DOA and routine primary task 
performance. Looking at the amount of studies 
with positive taus and the strength of these cor-
relations supports the hypothesized benefit of 
automation support with increasing DOA. This 
interpretation is also backed up by a significant 
overall rank correlation across studies (τ = .51, 
p < .001).

For an assessment of the impact of DOA on 
return-to-manual primary task performance, data 
of nine studies were available. Five of these stud-
ies reported effects that resulted in a negative 
Kendall’s tau, whereas only three others showed 
no evidence for the hypothesized negative impact 

of DOA when participants had to resume the for-
merly automated task because of an automation 
breakdown. This general trend was reinforced by 
a negative overall Kendall’s tau averaged across 
the nine studies that was significantly different 
from zero (τ = –.34, p = .03).

Taken together, results for primary task per-
formance support the hypothesized lumberjack 
effect as the routine and failure aspects of per-
formance trade-off with increasing automation 
complexity. Further in line with the hypothe-
sized trade-off (Figure 2) is the fact that eight 
out of the nine studies that assessed both aspects 
of performance (routine and return-to-manual) 
showed a higher (more positive) correlation of 
DOA with routine than with failure performance, 
and the single exception (Metzger & Parasura-
man, 2005) showed a zero correlation in both 
cases.

Workload
Workload was evaluated on a performance 

level and on a subjective level. Eight stud-
ies provided data for the metavariable routine 
secondary task performance. Three out of these 
eight studies revealed a strong positive correla-
tion of DOA and performance; that is, operators 
showed better results when supported by higher 
degrees of reliable automation. This was also 
supported by a significant overall Kendall’s tau 
(τ = +.03, p = .04). However, this interpretation 
is challenged by the fact that five out of the eight 
studies revealed no connection between DOA 
and performance in terms of zero correlations. 
Therefore, the results have to be interpreted with 
caution.

In contrast to primary task performance, sec-
ondary task performance did not seem to be 
affected by surprising automation breakdowns, 
as there was no evidence for an impact of DOA 
on return-to-manual secondary task perfor-
mance. However, only three studies reported 
data for this variable, so the explanatory power 
of this result is rather low.

Concerning the impact of DOA on subjective 
workload, the 12 studies that reported data for 
this metavariable provided a quite complex pat-
tern of results. Two of these studies (Endsley & 
Kaber, 1999; Wright & Kaber, 2005) reported 
data that revealed strong positive relations 
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between DOA and subjective workload (τ = +.80, 
τ = +.91). In contrast, six studies provided a 
reversed pattern with strong negative Kendall’s 
taus, and the remaining four studies showed no 
correlation at all.

However, because the majority of the data 
provided negative correlations, overall Kend-
all’s tau also showed a negative albeit weak 
trend (τ = –.24, p = .05) that supports the often 
stated argument that higher degrees of automa-
tion reduce operators’ workload. Nevertheless, 
because of the different results of the single 
studies, further research is needed to ensure the 
proposed interpretation.

Situation Awareness
We hypothesized that one of the costs con-

cerned with higher degrees of automation would 
be associated with LSA. Eleven studies reported 
data for this metavariable. Whereas five studies, 
such as Endsley and Kiris (1995) and Manzey et 
al. (2012), did report a potential loss of SA with 
increasing automation, four other studies did 
not find an impact of DOA (Calhoun, Draper, 
& Ruff, 2009; Cummings & Mitchell, 2007; 
Metzger & Parasuraman, 2005; Reichenbach, 
Onnasch, & Manzey, 2011), and data of the 
two remaining studies even produced positive 
correlations of DOA on SA. Due to this, the 
hypothesized negative trend was not as strong 
as expected, with an overall Kendall’s tau of 
–.29, but was still significantly different from 
zero (p = .04).

Taking a closer look at the single studies, it is 
striking that the two studies with the highest 
lumberjack trade-off (routine vs. return-to- 
manual primary task performance; Kaber et al., 
2000; Manzey et al., 2012) were also two of the 
four studies that yielded comparatively strong 
negative correlations between DOA and SA 
(values of –.71 and –.63, respectively). This is in 
accordance with the assumption that higher 
DOAs increase the risk of out-of-the-loop unfa-
miliarity issues reflected in a loss of SA as well 
as with negative performance consequences in 
case an operator unexpectedly needs to resume 
manual control of an automated task (Endsley & 
Kiris, 1995). Similarly, the strongest negative 
correlation between DOA on SA was found in 
the study conducted by Li, Wickens, Sarter, and 

Sebok (in preparation), which at the same time 
showed the greatest automation benefits for rou-
tine primary task performance as well as the 
greatest decrease in subjective workload of all 
studies. Therefore, it seems that routine primary 
task performance and workload, on one hand, 
and the potential loss of SA, on the other hand, 
directly trade off and that appropriate function 
allocation can serve only one of the two aspects.

Moderating Factors
In a next step we tried to identify possible 

factors that might moderate potential trade-offs 
between the different measures. We looked for 
aspects that some studies had in common, espe-
cially those that strongly supported the trade-off 
hypothesis, but also differentiated them from 
other studies. As one such variable, we focused 
on the critical distinction between automation 
that supported situation assessment by pro-
viding automated information acquisition and 
analysis (Stage 1 or Stage 2) versus that which 
supported the selection and execution of action 
(Stages 3 and 4). This distinction of assessment 
versus action is an ubiquitous one that underlies 
many facets of human performance (Wickens, 
Hollands, Banbury, & Parasuraman, 2012). For 
this analysis only those studies that varied the 
DOA across the assumed critical boundary from 
information analysis support to action selection 
support were included (i.e., Crocoll & Coury, 
1990; Cummings & Mitchell, 2007; Manzey  
et al., 2012; Reichenbach et al., 2011; Rovira  
et al., 2007; Sarter & Schroeder, 2001). Exam-
ining these studies exclusively, we found that 
when DOA was varied across this boundary, the 
pattern of the lumberjack analogy trade-off was 
substantially amplified. Calculated for these six 
studies separately, the overall Kendall’s tau cor-
relation of DOA with routine performance was 
+.68, higher than the overall correlation of +.51 
for all studies (see Table 1); and the overall cor-
relation with return-to-manual performance was 
–.90, much more negative than the overall cor-
relation of all studies, a value of –.34.

We also examined how other variables such 
as prior experience with failures or subject expe-
rience might have modulated the trade-off. Con-
cerning the training participants received, we 
looked especially for the possible impact of 
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“first failure automation training,” which has 
been found to affect human performance with 
automation (Bahner, Huper, & Manzey, 2008). 
Yet none of the integrated studies applied such 
kind of training. The only systematic differences 
in training were related to practice time before 
the experiment started. However, this difference 
is hard to evaluate since training time usually 
depends on the complexity of the experimental 
task.

In all but four studies students served as par-
ticipants. In one study participants were recruited 
from Air Force personnel but still were novices 
for the experimental task (Calhoun et al., 2009). 
Three studies were conducted with experts as 
the experimental simulation was very realistic 
(control of unmanned aerial vehicles, ATC, 
pilots). Nevertheless, these differences did not 
moderate the reported lumberjack trade-off 
effects of DOA.

Also, most studies used multitask settings but 
differed in the number of concurrent tasks (two or 
three). Yet four studies represented single-task 
studies (Crocoll & Coury, 1990; Endsley & Kaber, 
1999; Endsley & Kiris, 1995; Kaber et al., 2000). 
One could assume that this differentiation might 
be important, especially for variables such as 
workload or SA. However, the amount of second-
ary tasks did not seem to make a difference.

Another variable that was examined in detail 
was the nature of the display of the automated pro-
cess. The rationale for this focus was twofold. The 
emerging literature that clear, intuitive, or “eco-
logical” displays of the state of automated pro-
cesses can support a proper response to automa-
tion failures (Bennett & Flach, 2011; Burns  
et al., 2008; Seppelt & Lee, 2007). The linkage 
between displays and SA support on one hand, 
and our finding that suggests that LSA might be 
related to return-to-manual performance issues. 
Although this relation too did not emerge from our 
post hoc analysis of the data, we are certainly 
reluctant to conclude that effective displays do not 
support off-nominal response via the mediating 
role of SA because of the relatively low power of 
our assessment.

Discussion
Overall, the results fairly conclusively con-

firm the lumberjack hypothesis with regard to 

the DOA. “Conventional wisdom” has now 
been transformed into “statistical wisdom.” 
Thus, the pattern underlying the DOA confirms 
the general pattern that had previously been 
observed regarding the presence or absence of 
automation. Automation helps when all goes 
well, but leaving the user out of the loop can 
be problematic because it leads to considerable 
performance impairment if the automation sud-
denly fails. And this risk appears to increase 
with increasing DOA. The data presented in 
Table 1 further suggest that this effect is linked 
to raised issues of LSA with increasing DOA. 
However, due to a lack of statistical power, this 
latter conclusion needs to be treated with cau-
tion.

The most promising account is suggested by 
the final post hoc analysis reported earlier. When 
DOA moves across the critical boundary from 
information acquisition and information analy-
sis to action selection, the latter alleviating the 
human from some or all aspects of choosing an 
action, then the human is much more vulnerable 
to automation “failures.” Actively choosing 
actions manually (the generation effect; Sla-
mecka & Graf, 1978) supports SA in a way that 
supports the manual performance in case of 
automation breakdown. When that choice is 
removed, the automation failure response suf-
fers. Thus, the distinction between situation 
assessment and action support is critically 
important in automation, just as the simple 
dichotomy is in other aspects of human factors 
and cognitive engineering, such as cognitive 
task analysis (Hoffman, Crandall, & Shadbolt, 
1998), predicting multitask performance (Wick-
ens, 2008b), and predicting transfer of training 
(Osgood, 1949).

This finding also qualifies and specifies ear-
lier claims that medium levels of automation 
would represent an optimum choice with respect 
to primary performance improvements and 
workload reductions by, at the same time, reduc-
ing unwanted performance consequences in 
terms of LSA and difficulties of return-to-manual 
performance (Endsley & Kiris, 1995). The direct 
trade-off between DOA-related consequences on 
primary task performance and return-to-manual 
performance, respectively, suggests that there is 
no clear optimum of automation support. Each 
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step of increase of DOA seems to be associated 
with an increase of the risk of return-to-manual 
performance decrements, meaning that there is 
no specific DOA below which automation-
induced performance benefits can be increased 
without any performance costs. This renders 
doubts in any simple design recipes like “medium 
DOAs are best.” However, the strength of the 
trade-off is important particularly if the border 
between information and action support is 
crossed. That is, the general recommendation of 
preferring “medium levels of automation” where 
the human is kept somehow “in the loop” can 
now be turned into a more specific one: If return-
to-manual performance issues are of serious con-
cern, human operators should be kept involved at 
least to some extent in decision and action selec-
tion as well as action implementation. However, 
even if in this case risks of return to manual 
might not be fully excluded, they can probably 
be kept to a comparably low level.

One limitation of the present research is the 
comparably small number of studies available 
for this analysis and the need to just consider 
rank data with respect to scaling DOA and per-
formance effects. Our approach of using rank 
orders based on dominance orderings of three 
features, that is, stages, levels, and number of 
stages, allowed neither for quantifying the DOA 
on a ratio or interval scale nor for resolving 
trade-offs between stages and levels. This made 
it difficult to yield clear statistical conclusions 
for all of the findings and limits the conclusive-
ness of results with respect to the formal charac-
teristics of the observed trade-offs (To what 
extent are they linear?). However, based on the 
limited current knowledge and available data, 
the rank order approach applied to represent 
DOA seemed to be the only way to yield a quan-
titative input for our meta-analysis. Clearly, 
much more psychophysical and controlled 
experimental research is needed before more 
distinct metric DOA scales may be developed. A 
second limitation is the possibility that we might 
have underestimated the trends within any par-
ticular study, with the relatively coarse dichoto-
mous “grain size” by which effects were coded 
(significant vs. nonsignificant). In doing so, we 
collapsed across quantitative measures of the 
size of an effect that might have added precision 

to the coding. Taking these limitations in mind, 
the overall pattern of raw effects and statistical 
results provides a first quantitative summary of 
the state of knowledge about performance con-
sequences of stages and levels of automation 
which, together with the remaining questions 
concerning possible moderating factors, cer-
tainly offers an invitation for future research.
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Key Points
•• Increasing DOA supports routine system perfor-

mance and workload.
•• Increasing DOA negatively affects failure system 

performance and SA.
•• Negative consequences of automation are most 

likely when DOA moves from Stage 2 to Stage 3 
automation.
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