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A directional communication scheme, TRAC, is proposed in this paper to deal with issues in mobile directional communications.
Directional communication can bring benefits in terms of spatial reuse, power consumption, and security. Using direction antennas
implies that the transmitters must know the direction or location of the receiver. It is necessary to predict the receiver’s location to
keep the transmitter’s antenna pointing in the right direction if nodes travel always. TRAC is composed of the location prediction
and antenna adjustment. It predicts a possible circular region where the moving receiver may enter into in the near future. The
transmitter points its antenna at the predicted circular region and adjusts the beam-width of its directional antenna to cover the
predicted region. The authors validated the TRAC algorithm on some vehicles traces. The validation indicated that the algorithm
efficiency of TRAC is larger than 96%. TRAC can be employed in mobile communications without nodes’ history movement traces.

1. Introduction

Mobile ad hoc networks (MANETS) consist of wireless mobile
nodes that communicate with each other without centre
base-station. These kinds of communication are used in
collaborative, distributed mobile computing and especially
in scenarios where wired networks are simply ineffective or
implausible, such as disaster recovery and survival search.
Typically, the common assumption about Ad hoc networks
communication is that nodes are equipped with omni-
directional antennas and the communication among them is
dynamic and temporary.

Omni-directional antennas have a 360° coverage angle
and do not need to be pointed at each other when they com-
municate. Omni-directional antennas send signals towards
all horizontal directions and form an approximate circular
radiation region [1-3]. However, since the power is broad-
casted in all directions, and only the receiver in a specified
direction should receive the signals, a lot of energy is wasted.

Directional antennas have several advantages over omni-
directional antennas. A directional antenna can form a
directional beam pointing to the specified direction of the
receiver. This increases the potential for spatial reuse and
decreases the power consumed by the transmitter [4, 5]. On
the other hand, those nodes outside of the radiation region of
the directional antenna receive little radiated power from the
transmitter and have little chance receiving interference from
the transmitting node.

The use of directional antennas introduces the complex
issue of finding the direction of receivers. If the transmitter
sends a video to the receiver, the transmitting will last
for minutes usually. In general, a vehicle could travel 1~2
kilometers in a minute; so, the transmitter has to consider the
mobility of the receiver during the communication when the
receiver is running. It is a challenge for the transmitter to keep
communicating with the receiver if the receiver keeps moving
fast. The transmitter needs to predict the receiver’s future
location and points its directional antenna to the predicted
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direction. Thus, it is imperative to capture the gist of nodes’
movements by analyzing the motion of realist mobile nodes
to predict nodes’ future locations accurately.

Most of the researches on location prediction are to
study the mobile nodes’ traces and mine all possible mobility
sequences of users, while these mobility sequences extracted
from some certain traces could not be applied in others
scenarios directly because the environments and users are
totally different. In this paper, we analyze a real MANET
trace and extract the direction characteristic of those mobile
nodes. We propose an eflicient algorithm to predict the
future location of a mobile node based on this direction
characteristic.

Itis the first time to specially develop alocation prediction
algorithm for the directional communication. The major
contribution of this algorithm is that the prediction algorithm
we proposed is independent of the application and users.
The algorithm can be employed to predict any vehicle’ future
location even if it does not have the vehicle’s history traces.
Hence, our location prediction algorithm can be applied in
arbitrary real time communication scenario where nodes are
moving and using directional antennas to communicate.

The remainder of this paper is organized as follows.
Section 2 is the related work about location prediction.
We introduce the directional antenna in Sections 3 and 4
is our analysis of the direction characteristic of vehicles.
We describe the vehicles mobility prediction algorithm in
Section 5. Section 6 is the validation of the proposed location
predication algorithm. We conclude this paper in Section 7.

2. Related Work

Location management includes two strategies: location track-
ing and location prediction. Location tracking periodically
records the current location of the mobile nodes, and is
a passive strategy. Existing location tracking techniques
typically use distance or angle measurements from a fixed
set of reference points and apply triangulation techniques to
solve for unknown locations.

Siuli et al. proposed a mechanism for estimating the
location of each node in the network using a pair of ref-
erence nodes and the angle of arrival of best signal from
each reference node [6]. To initiate a location tracking, a
node broadcasts 12 directional beacons at 30° interval. Each
node records the received signal strength and the direction
from which it receives this packet in its Neighborhood link
State Table and sends back a response that contains the
received signal strength. Then, the transmitter knows the best
possible direction to access each of its neighbors. However,
as nodes in the mobile Ad hoc networks move frequently,
they must always update their information about neighbors
by broadcasting the tracking packet and waiting for the
responses. Obviously, maintaining an updated neighbor table
needs much tracking packet and will waste much network
resources. Our location prediction algorithm did not need to
maintain all neighbors’ locations. The source node gets the
receiver’s current location by sending the RTS packet when it
wants to send data to the receivers.
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Jeong et al. suggested a minimal contour tracking algo-
rithm (MCTA) that uses the vehicular kinematics to reduce
the tracking area [7]. First of all, they put lots of sensor nodes
into the experiment area, and since the mobile node could
not reach all the tracking area during a limited time according
to its vehicular kinematics, they prune out the most unlikely
region that the node cannot visit during some limited time.
Prune out the region that the node cannot reach during some
limited time means to turn off sensor nodes in that region.
MCTA minimizes the number of working sensor nodes to
save communication energy consumption. The shortcoming
of MCTA is that it requires the user to put a lot of sensors into
an area, which is not always available in all Ad hoc network
application. However, the location prediction algorithm we
proposed does not need any sensors, so the cost of using our
scheme is much cheaper than using MCTA. However, the
idea of pruning out unlikely visit region is the same as the
algorithm we proposed.

Location prediction is an active dynamic strategy, which
forecasts a mobile node’s location based on this node’s
mobility model. One way to know the future location of
a mobile node is to require the mobile node to indicate
its destination and speed; we can employ this node’s future
destination and current speed to calculate its future location
[8]. Unfortunately, in some scenarios, the mobile node does
not know its destination or next direction. Some researchers
have proposed some mobility prediction algorithms.

Tang et al. proposed the concept of dividing sensitive
ranges in accordance with the probability of cell transfor-
mation, and then provide a mobility prediction algorithm
based on dividing sensitive ranges [9]. Firstly, they calculate
the minimum distance between the current locations of the
mobile subscriber and the border to decide the sensitivity for
the current location. If the sensitivity is the lowest in the cell,
they will do nothing and directly predict that the next cell
is still the same one as the current cell. If the sensitivity is
the medium in the cell, they will use the average rate method
to predict the next cell. Finally, they will use the polynomial
regression mobility prediction method to predict the future
cell if the sensitivity is the highest in the cell. The prediction
accuracy rate of Tang’s algorithm is higher than 90%, but the
complexity of the algorithm high as well.

Yavas et al. proposed a data mining approach for location
prediction in mobile environments in [10]. They divided the
coverage region network into neighboring cells and used
a directed graph to represent the network region. Cells in
the coverage region are considered to be the vertices of
this graph and an edge between two vertices means these
two cells are neighboring regions. Then, they use sequential
pattern mining method to mine user mobility patterns from
user actual paths. Their location prediction algorithm takes
advantage of the method of data mining theory. However,
in order to employ their method, users must know the
condition of coverage region and develop a directed graph.
This algorithm can be used in predicating location in a fixed
and limited region and knowing users’ mobility traces in
that region. It is difficult to apply this location prediction
algorithm in predicting a node’s next position in a totally
unknown and strange environment. The location prediction
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algorithm we proposed can be applied in arbitrary commu-
nication applications where the transmitter does not have the
receiver’s historical trace.

Recent years also saw an increasing number of researches
on mobility prediction and mobility model with emphasis
on real mobility traces [11-14]. Tuduce and Gross proposed
a WLAN mobility model from a WLAN trace [11]. The
trace was gathered from a campus wireless network consisted
of 166 APs. They presented a framework to extract the
mobility parameters to build the WLAN model. But, the
spatial parameters and temporal parameters in the model are
independent with each other. Treating the space and time
dimension independently is not adequate overall.

Minkyong et al. collected a campus Wi-Fi network trace
at Dartmouth College from nearly 10,000 users [12]. They
analyzed the characteristics including pause time, speed, and
direction of the movements. Through analysis, they found
the pause time and speed distributions followed a log-normal
distribution. In their model, node selects its destination based
on the probability in the region transition matrix. Students
usually go to somewhere by themselves, and their mobility
characteristics are different from the vehicles. So, we cannot
use their mobility model to predict a vehicle location.

Some researchers studied application dependent traces.
Aschenbruck et al. studied a disaster scenario trace in which
there were 150 communication devices [13]. They divided
the simulation area into several kinds of disjunctive tactical
areas. Each node must enter or leave the area only via
entry-point or exit-point, and travels to another area by the
shortest path avoiding obstacles. Their model shows specific
characteristics like heterogeneous node density, because in
disaster area scenarios, nodes move in a structured way
based on civil protection tactics. Zhang et al. looked into
a bus mobility trace taken from UMass DieseNet which
consisted of 40 buses [14]. They found the intermeeting
time between buses was not constant but random because
of traffic conditions whereas the inter-contract time of buses
was indeed periodic. The periodicity in buses traces exists
because of them traveling along a closed route always and is
fundamentally different from that of our model. The nodes
involved in [11-13] are people whose mobility characteristic
is different from the vehicle’s.

3. Mobile Directional Communication

3.1. Antenna Model. Antennas are either omni-directional
antenna or directional antenna [2, 3]. Omni-directional
antennas scatter the signals in all directions and only a small
fraction of the overall energy reaches the desired receiver.
Directional transmission overcomes this disadvantage by
concentrating signal strength in the main lobe direction and
form a directional beam towards the specified direction of the
receiver.

Figure1 illustrates the RF radiation patterns of an ide-
alized omni-directional antenna and a directional antenna
[2]. The smaller parasitic lobes in Figure 1(b) are called “side
lobes” that potentially can produce harmful interference to
other receivers. However, for simplicity, we do not consider

(b)

FiGure 1: RF radiation patterns of omni-directional antenna (a) and
directional antenna (b).

side lobes for the rest of the paper. The receiver’s antenna can
receive data both in omni- and directional mode. Receiver
and sender can communicate over a larger distance when
both antennas are operating in directional mode.

3.2. Location Updating and Neighbor Table. In our model, we
assume an antenna can work in two modes: omni mode and
directional mode. If nodes have nothing to transmit, their
antennas work in omni mode to detect signals. It sends data
in directional mode and receives data both in omni mode and
directional mode. Nodes are equipped with GPS modules to
know their GPS geographic locations.

In order to accurately point its directional antenna
towards a vehicle, a sender has to know the receiver’s
location. Every node/vehicle has a neighbor table to store
other vehicles’ GPS locations. The neighbor table records
each vehicle’s (node identity, history location, and current
location). Each vehicle periodically sends a heartbeat packet
that includes its current location. The period of sending the
heartbeat packet is called heartbeat cycle. When another
vehicle receives the heartbeat packet from the vehicle, the
receiver updates the corresponding records in its neighbor
table. It replaces the “history location” by the location stored
in the “current location” field and saves the neighbor’s newest
location into the “current location” field.

3.3. Medium Access Control. Many MAC protocols for the
directional antenna have been developed [15-19]. As these
protocols were developed for nodes that are not mobile
always, it is necessary to slightly modify these MAC protocols
to fit with the mobile vehicles scenarios: the destination node
sends the ACK packet periodically.

In general, when a node wants to send some data but
it does not know the location of the receiver, its antenna
will work in omni mode and transmit an ORTS (Omni
RTS) message to the whole area around it. If the desired
receiver receives the ORTS, it sends back a DCTS (Directional



FIGURE 2: [llustration of sending the ORTS and DCTS.

Transmitter Receiver

FIGURE 3: Sequence diagram of directional communications.

CTS) message to the sender. The DCTS message includes the
receiver’s GPS geographic location. When the sender receives
the DCTS from the receiver, it knows the receiver’s direction,
then it switches antenna into directional mode and forms a
directional beam in the direction of the receiver, and it begins
to transmit data as Figure 2 shows.

The receiver sends an ACK packet to the transmitter when
it successfully receives the data. If the transmission lasts for a
long time, the receiver sends the ACK packet periodically to
update its location to the transmitter as Figure 3 shows. This
interval time between two ACK packets is assigned to each
node before the transmission. The interval might be the short
one of the two nodes’ heartbeat cycle. Thus, the transmitter
can employ the updated location information to calculate the
receiver’s future location.

3.4. Alterable Beam-Width. An antenna’s beam-width is usu-
ally understood as the half-power beam-width, that is, the
angle between the two directions in which the directive gain
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o Beam-width 3dB

FI1GURE 4: The beam-width of directional beam.

of the major radiation lobe is one half of the peak radiation
intensity. Half the power expressed in decibels is =3 dB, so the
half power beam-width is sometimes referred to as the 3dB
beam-width, as Figure 4 shows.

It is possible to make adaptive beam using arrays of
radiating elements [20]. An array consists of two or more
antenna elements that are spatially arranged and electrically
interconnected to produce a directional radiation pattern.
The interconnection between elements, called the feed net-
work, can provide fixed phase to each element or can form
a phased array. There are several beam-forming techniques
to create fixed beam or optimum beam. In general, the larger
the extent of the array elements the narrower is the beam-
width, as the scenario we consider here is the mobile vehicles
network, we assume the antenna is able to form adaptive
beam.

4. Vehicles Mobility Characteristic Analysis

4.1. Relative Direction Angle. 1t is difficult to predict a node’s
exact future position if we do not know its speed, route and
traffic conditions, and so forth. Fortunately, it is not necessary
to predict a node’s precise position to transmit data to it.
As long as the intended receiver is within the transmitter’s
transmission beam, it can receive the transmitter’s data. We
believe the direction trait of nodes’ movements to be an
important factor in predicting a mobile node’s future possible
region.

One factor that affects the accuracy of predicting a
mobile node’s location is how a node changes its current
traveling direction. We define relative direction angle (RDA)
to measure the direction change. In Figure 5, the relative
direction angle is the angular distance  between the direction

— —
vectors BC and AB.

The value of the relative direction angle 6 can be com-
puted by (1).

AB-BC
RDA = Arccos I —
|4B| - [BC|

_ (1)
BC = (Xi —Xi-p )i T ;VH))

N
AB = (xi—l — Xi—2 )il T )’i—z)-
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FIGURE 5: Relative direction angle.

ci',y"

FI1GURE 6: Coordinate transform.

Equation (1) does not indicate the node turning left or
right, so we obtain this information by coordinate transform.
As Figure 6 shows, in the original coordinate system, the

—
angle between AB and the positive direction of x-axis is

a. Now, we take the direction of vector AB as the positive
direction of x-axis in the new coordinate system. We can
calculate the new coordinates (x', y') of point C in the new
coordinate system by (2). If y' of node C is positive, node C
turns left; otherwise, it turns right.

cosx —sina
(x”y’)z(x’y)(sinoc cosoc)' @

4.2. Distribution of Relative Direction Angles. We study the
distribution of relative direction angles on a real vehicles
mobility trace. The traces we used were collected from
a MANET experiment consisting of 240 vehicles. These
vehicles traveled over an area of approximately 240 square
kilometers near New Jersey, USA, for hours. Each vehicle
noted its GPS locations every second. We do not analyze the
RDA of synthetic mobility models such as Random Waypoint
because the mobility traits of synthetic mobility models are
totally different from that of real mobility traces.

We computed the relative direction angle every 10 sec-
onds. Figure7 shows a vehicle’s relative direction angles

5
180
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120 b
;-»/" 90
o 60Ff
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< 30
o
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£ 60
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FIGURE 7: A vehicle’s relative direction angle variation.

TaBLE 1: Distribution of absolute RDA.

30-60 60-90 90-120 120-150 150-180
1.73% 0.43% 0.43%  0.43%

Angle 0-30
Distribution 93.08% 3.9%

during 180 minutes. This figure implied that the vehicle
turned its original direction to left or right within a narrow
range during most of the experiment time. Rarely the mobile
vehicle turned its direction sharply. Besides, the times that
the vehicle turned left roughly equaled to the times it turned
right.

Then, we study the RDA distribution of all the vehicles.
Table 1 depicts the distribution of absolute relative direction
angle during the whole 180 minutes. From the statistics we
can simply conclude that a mobile vehicle does not select
its new direction randomly from a uniform distribution (0°,
180°). Our study shows that over 93% relative direction angles
were within a range [-30°, 30°].

5. Vehicle Mobility Prediction

Here, we employ the mobility analysis result that we have
made to develop a location prediction algorithm: Trian-
gle And Circle (TRAC). TRAC composes of the location
prediction and antenna adjustment. In location prediction
step, TRAC predicts a possible circular region, where the
moving receiver may enter into in the near future. In antenna
adjustment step, the transmitter points its antenna at the
predicted circular region and adjusts the beam-width of its
directional antenna to cover the predicted region.

5.1. Antenna Assumption. The directional antenna can alter
its beam-width, but the beam-widths of the antenna are
discrete. The possible beam-widths can only be w;i =
L2,....mand w; < wy <+ < W,

5.2. Step 1: Location Prediction. Denote the last two geo-
graphical locations of a receiver as A(x;_;, y;_;) and B(x;, y;),



(¥i-1> yi-1)
FIGURE 8: Point the directional beam to the center of the circle.

respectively. (x;_;, y;_;) is the location stored in the neighbor
table “history location” field and (x;, ;) is the location stored
in “current location” field. As illustrated in Figure 8, the
distance between the A and B is d; and the distance from the
transmitter (T) to the receiver is D;. The T (Transmitter) uses
the following algorithm to predict a possible region where a
receiver moves into.

(1) Calculate the slope of AB. Let the slope of ABtobek,

k= M’ X # Xy (3)

Xi — X
(2) Make an equilateral triangle whose one vertex is at B
position and its center (x;,;, y;;,) is on the extension

line of AB as Figure 8 shows. The length of edges of
this equilateral triangle is d;. Calculate the coordinate
of the equilateral triangle’s center, (x;,,, ¥;,1)> by (4),

V3d x; = xi

Xip1 = X cos (arctan (|k|)), x;#x;_,
3 |x - x|
Yin =Yt @M sin (arctan (k)), ¥, # yiy
6 |y =yl
2 2
d= \/(xi —xiq) + (= yia) ™
(4)

(3) Draw a circle that can contain the equilateral triangle
with smallest radius. The circular region is the pos-
sible region where the mobile node might move into
in near future. The circle and the equilateral triangle
have the same center, (x;,,, ¥;,1), and the radius of the
circle is r;

= Y34 (5)
3

5.3. Step 2: Antenna Beam-Width Adjustment. Calculate the
needed sector angle « by (6),
i) ©)
Di+1 ’

o = 2 arcsin (
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where r; is calculated by (5) and D;,, is the distance from
the transmitter to the receiver. Since the beam-width of the
antenna is discrete, the practical beam-width cannot be more
narrow than the needed «. The antenna adjusts its beam-
width by (7), and then the transmitter points its antenna at
the predicted circular region,

w, fa<w
beamwidth = Jw;, ifw;; <a<w; (7)

w,, fa>w,.

m>

6. Evaluation

6.1. Metric. The metric we utilize to evaluate the prediction
efficiency is prediction accuracy rate. The definition of predic-
tion accuracy rate is the following:

X

X
prediction accuracy rate = Z’; )
(8)
1 ifl,eP
xX; = _
0 ifl; ¢ P,

where [; is the real location of a node at time i and P, is
the predicted region by TRAC at time i. [; € P means the
node is within the predicted region P. X is the total times of

predictions.

6.2. Parameter Analysis

6.2.1. Influence of Beam-Width. The simulation program
randomly selects one position in the experiment area as the
transmitter’s location where we place a directional antenna
to send signals. Then, the simulation program randomly
selects a vehicle in the New Jersey traces as the receiver. It
calculates the average probability of a receiver being within
the transmitters’ directional beam during 180 minutes. To
make the experiment more credible, we further repeat the
experiment 50 times and use the average value. We assume
the heartbeat cycle is 10 seconds.

First, we study the influence of beam-width on the predic-
tion accuracy rate. Figure 9 shows the algorithm prediction
accuracy rate with different antenna beam-widths. As we can
see from Figure 9, if an antenna’s beam-width is as narrow
as 2°, the prediction accuracy rate is less than 0.7. This is
reasonable because if the beam-width is too narrow to cover
the possible region where the mobile vehicle might move
into as Figure 8 shows the prediction accuracy rate is low.
On the other hand, when the beam-width is wider than 10°,
the prediction accuracy rate is almost constant. If most of
the predicted circular regions are already covered by a 10°
beam-width directional beam, the prediction accuracy rate
does not increase even if we further increases the antenna’s
beam-width.

6.2.2. Influence of Beam-Width. Then, we study the influence
of heartbeat cycle on the prediction accuracy rate. Figure 10
shows the prediction accuracy rates with different heartbeat
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FIGURE 10: Average prediction accuracy rate under different heart-
beat cycles (beam-width = 10°).

cycles when the beam-width being 10°. This figure shows
that with the increasing of the heartbeat interval, the pre-
dicting performance decreases. When the interval between
two heartbeat packets is long, the probability of a vehicle
travelling along its previous direction decreases because
roads are not straight always. The distance that a vehicle
travels during a long interval differs much more than during
ashort interval. Therefore, we suggest that the heartbeat cycle
is not longer than 10 seconds.

We study the reason of the decrease of the prediction
accuracy rate shown in Figure 10. In the above evaluation
simulation, the average distance from the sender to a receiver
was about 3000 meters. We can calculate the value of + based
on Figure 11.

Assume that a vehicle’s average speed is 90 km/hour, then
the vehicle can exercise 250 meters in 10 seconds and run 500
meters in 20 seconds and 750 meters in 30 seconds. When
the heartbeat cycle is 10 seconds, a vehicle averagely travels
250 meters during a heartbeat cycle. So, it hardly runs out of
the predicted region with r = 262 meters, and the algorithm

B

FIGURE 11: Tllustration of computing r. tan(w/2) = r/D,r = D -
tan(w/2). Assume D = 3000 m and w = 10°, then r = 262 m.

prediction accuracy rate is about 96%. When the heartbeat
cycle is 20 seconds, vehicles can run 500 meters during a
heartbeat cycle and the probability of the car running out of
the predicted region with » = 262 meters improves. Then, the
prediction accuracy rate of TRAC is down to 50%. When the
heartbeat cycle is 30 seconds, cars in a heartbeat cycle average
runs 750 meters. As the probability of the car running out of
the predicted region is very high, the prediction accuracy rate
of TRAC is only 34%.

6.3. Validation. Next, we validate our prediction algorithm
on other traces. The traces we employed to validate our algo-
rithm is generated by Communication Systems Group (CSG),
ETH Zurich (http://www.csg.ethz.ch/). The validation simu-
lation is made in a 3000 m*3000 m square area for 1 hour. The
antenna beam-widths are 5° and 10°and the heartbeat cycle
is 10 seconds. The location of the transmitter is randomly
selected within the simulation area. For simplicity, we assume
the transmitter is immobile. To make the validation more
confident and accurate, we did the simulation 50 times on
every mobility trace.

Figure 12 traces that a vehicle moved in rural terrain
road network, urban terrain road network, and city terrain
road network. As there are more and more roads from rural
to urban and city, a vehicle has more and more direction
selections and road selections.

Figure 13 shows the prediction accuracy rates of TRAC
on the rural, urban, and city traces. The prediction accuracy
rates are ordered from small to large. From the figure, we can
find that the lowest prediction accuracy rate is higher than
0.88 and the prediction accuracy rates on city were lower
than those on the other two traces mostly. So, the algorithm
accuracy depends on the terrain where the vehicle travels.

Further, we validate the mobility prediction algorithm
on mobility models: Random Waypoint and Manhattan
Model. The simulation of mobility model is also made in a
3000 m#3000m square area for 1 hour. Figure 14(a) is the
traces by Random Waypoint model, and Figure 14(b) is the
trace by Manhattan Model, which are generated by ETH
Zurich CSG mobility generator.

Figure 15 shows the prediction accuracy rates of TRAC on
the Random Waypoint and Manhattan Model. The prediction
accuracy rates are ordered from small to large. Most of
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the prediction accuracy rates on Manhattan Model trace
are lower than that on Random Waypoint trace because in
Manhattan Model, nodes turned their directions frequently
and all the relative direction angles were 90°.

Figure 16 shows the average prediction accuracy rates on
above traces. The average prediction accuracy rate on the
New Jersey vehicles traces is 95.3%. The average prediction
accuracy rate on rural road is 96.83%, on urban road is
95.77% and on city road is 95.24%. The increase of road
choice brings more unpredictable direction variation during a
vehicle’s movement, so it is more difficult to predict a vehicle’s
future location when it travels in city than when it travels
on rural road. Thus, the prediction accuracy rate decreases
slightly with the increase of road density from rural terrain
to city terrain. The prediction accuracy rate on Manhattan
Model is the lowest because nodes in Manhattan mobility
model often turn left or right 90°. The average prediction
accuracy rate on the traces of vehicles on roads is 96%.
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FIGURE 17: Prediction accuracy rates on different mobility traces.

6.4. Performance Evaluation. We compare the prediction
performance of TRAC with hierarchical location prediction
(HLP) algorithm [8], mobility prediction based on dividing
sensitive ranges (MPDSR) [9], and mobility prediction based
on Transition Matrix (TM) [10]. The values of the parameters
for HLP, MPDSR, and TM were assigned to make the
prediction accuracy rate of them to be high. To make the
experiment more credible, we did the simulation 10 times.
Figure 17 shows the prediction accuracy rates of TRAC, HLP
MPDSR, and TM. As we can see, the prediction accuracy rates
of TRAC are higher than those of the other three.

HLP, MPDSR, and TM need a mobile node’s history traces
to study their possible mobility sequences and to match its
current mobility sequence with these mobility sequences to
find the node’s next possible location or cell. These algorithms
cannot be applied in real-time prediction when nodes are
traveling in a strange area. The largest advantage of TRAC is
that it does not need a node’s history mobility traces to study
its mobility pattern. So, TRAC algorithm can be employed to
predict a mobile node’s next region real-timely even if it is
traveling in a new area.

The validation and evaluation results show that the
prediction accuracy rate of TRAC is usually higher than 96%,
and the TRAC is independent of the New Jersey trace and can
be applied in other applications.

7. Conclusions

In this paper, we study the location prediction issue for com-
munications between vehicles and vehicle to infrastructure
using directional antennas. To do this, we analyzed a real
trace and extracted the direction characteristic from it. We
found most of the relative direction angle is in the range of
(-30°, 30°). Based on this mobility analysis result, we propose
a location prediction algorithm. The algorithm predicts a
possible circular regain where the vehicle might move into in
the next period. To validate the location prediction algorithm,
we apply the algorithm on three GIS-based road network
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traces and two random mobility models traces. Experiment
results show the average algorithm prediction accuracy rate
is as high as 96%. We also studied the influence of different
antenna beam-widths and interval durations on the algo-
rithm accuracy. The largest advantage of TRAC is that it
does not need a vehicle’s history mobility traces to study its
mobility pattern and it can be applied in real-time prediction
when vehicles travel in a strange area.
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