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Timothy is a novel large scalemodelling framework that allows simulating of biological processes involving different cellular colonies
growing and interacting with variable environment. Timothy was designed for execution on massively parallel High Performance
Computing (HPC) systems. The high parallel scalability of the implementation allows for simulations of up to 109 individual cells
(i.e., simulations at tissue spatial scales of up to 1 cm3 in size). With the recent advancements of the Timothymodel, it has become
critical to ensure appropriate performance level on emerging HPC architectures. For instance, the introduction of blood vessels
supplying nutrients to the tissue is a very important step towards realistic simulations of complex biological processes, but it greatly
increased the computational complexity of the model. In this paper, we describe the process of modernization of the application in
order to achieve high computational performance onHPC hybrid systems based onmodern Intel�MIC architecture. Experimental
results on the Intel Xeon Phi� coprocessor x100 and the Intel Xeon Phi processor x200 are presented.

1. Introduction

Mathematicalmodelling in biology aims at the representation
of biological processes using a variety of mathematical and
computational techniques. Addressing the most ambitious
challenges of modern biology alongside new experimental
studies very often requires analytical description and efficient
“in silico” simulations. Nowadays, the use of mathematical
language is widely recognized as a complementary tool for
deepening the understanding of complex biological systems.
The approach of mathematical modelling takes on a special
value when computer simulations and predictions are com-
pared with experimental results and should be seen as an
iterative process, where experiments and computer simula-
tions refine and improve one another by providing feedback.
Apart from the cost aspect, mathematical modelling may
involve specific aspects and phenomena which cannot be
included in the experimental laboratory conditions. As a
result, new hypotheses on biological mechanisms may come
out. Thus, mathematical modelling in biology has a real

chance of making a great impact on the development of
biology, mathematics, and computational sciences.

The utility of mathematical models in biology is often
limited by very high computational complexity. A typical
example, where limitations associated with computational
complexity play an important role, is simulations of devel-
opment of cellular colonies of different kinds. Such phe-
nomena are usually modelled with the use of the so-called
individual-based models that are sometimes also referred
to as agent-based models. In this approach, individual cells
are explicitly modelled as single entities or agents and their
properties are determined and can evolve according to a set
of biophysical rules. The computational complexity of such
models increases rapidly with the level of biological detail and
amount of data included in the model. Just how important
such models have become is indicated by the spectrum of
their applications; that is, these models are widely used in
a broad class of problems of immense significance which
include, among others, issues such as the growth of bacterial
colonies, solid tumors, embryogenesis, and wound healing.
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There are several agent-basedmodelling tools available in
the field of mathematical biology. Most of these tools have
their own specific features related to modelling approach,
usability, implementation, or performance. From the mod-
elling perspective, there are worth mentioning tools that
implement different variants of the Cellular Potts Model,
CompuCell3d [1], Morpheus [2], and Simmune [3], off-lattice
center-based models, CellSys [4], PhysiCell [5], Biocellion [6],
and Timothy, or more universal tools which incorporate
different models within a code library like Chaste [7].
Several tools provide improved user interface based on
scripting language (CompuCell3d), domain specific language
(Morpheus), or advanced graphical user interface (Simmune,
Morpheus). An interesting usage model was introduced in
Chaste, which is a library consisting of implementation of
different modelling approaches. Users can define their own
models by choosing and combining modules available in
Chaste. In terms of performance, several tools provide single
node parallelization based on OpenMP (Morpheus, CellSys,
PhysiCell, and CompuCell3d) which enables computations to
scale up to few millions cells. To our knowledge, Timothy
was the first tool to introduce parallelization between nodes,
which enabled large scale simulations on the order of several
billions of cells. However, recently, another tool called Biocel-
lion was made available. Both tools enable simulations to be
carried out with the use of large core counts on a broad class
of supercomputers.

Timothy is an open-source software distributed under
the GNU GPL license and freely available at http://timothy
.icm.edu.pl.With recent advancements inHPCand the devel-
opment of new algorithms, the Timothy framework enables
simulation of cellular colonies dynamics consisting of as
much as 109 individual cells. Inmany eukaryotic systems, this
corresponds to the size of the simulated structures to be as big
as 1 cm3 or larger. At this size, cellular colonies are palpable
and the model has the potential to be of prognostic value to
clinicians interested in a range of pathological situations.The
mathematical model represented by the Timothy framework
was already described in [8–10]. In Section 2, we recall only
the most important characteristics of the model.

Timothy was already used to simulate various biological
processes and it is still subject to continuous improvements.
In order to demonstrate the computational complexity of
simulations with very large number of cells, we present some
of the details of one of the extreme scale tumor growth
simulations that we executed on the IBM Power 775 system.
The simulation consisted of a healthy 3D tissue composed
of 2.5 ∗ 108 cells and a single tumor cell placed in the
middle. As simulation proceeded, the tumor cells spread in
the tissue. The cross section of one of the intermediate steps
of the simulation with approximately 75,000 tumor cells is
shown in Figure 3. A single time step of the simulation was
computed in approximately 100 seconds with the use of 128
cores of the IBM Power 775 system. We recommend that a
single time step should correspond to at most 3600 seconds
of a real biological process development. This means that
a simulation illustrating the three-month development of
the geometric structure of the tumor would take 60 days of

computing on the selected partition of the IBM Power 775
system.

Recently, theTimothymodel has been extended to include
blood vessels supplying nutrients to the tissue. Incorporating
new features and functionalities into the model has enor-
mous potential for future development and can take the
multiscale mathematical modelling of cellular systems to
a completely new level. However, in order to enable such
development, appropriate steps need to be taken to ensure
good performance on the emerging HPC architectures. One
of the most important processor architectures nowadays
is the Intel Many Integrated Core architecture (the Intel
MIC architecture) introduced by Intel in 2010 with the
prototype product codenamed Knights Ferry. The Intel MIC
architecture together with recent Intel products is described
in Section 3.The usefulness of this architecture for increasing
the efficiency of computing applications has been already
shown in number of publications [11, 12].

This paper describes the process of modernization of
the Timothy computational model for the hybrid systems
based on modern Intel Xeon Phi product family devices,
which include Intel Xeon Phi coprocessors x100 (code name:
Knights Corner (KNC)) and Intel Xeon Phi processors
x200 (code name: Knights Landing (KNL)). In Section 4,
we describe all necessary transition steps which include
profiling, choosing an appropriate execution model, and
reimplementation of Timothy. In Section 5, we present per-
formance results and comparisons.

2. Mathematical Model Description

Cells aremodelled as spheres that reside in three-dimensional
space. The position of each cell is given by Cartesian coor-
dinates of the sphere’s center and, most importantly, is not
limited to predefined lattice nodes (off-lattice model). Cells
can interact with each other if located close enough. Each
cell’s neighborhood is defined by a cutoff distance.

Thanks to an individual-based modelling approach, the
Timothy framework allows for introduction of intracellular
processes in each individual cell [13]. One of the processes
which is being modelled at this scale is the cell cycle, an
ordered series of reactions leading to duplications of cell’s
biological contents and finally to the division into two new
daughter cells (see Figure 1).

The interactions between two cells are described and
computed by a modified Hertz model which includes attrac-
tive interactions related to adhesive forces and repulsive
interactions associated with limited compressibility of cells
[14]. For each cell, we consider such interactions with all
cells in its neighborhood. Besides cells in the neighborhood,
the external factor influencing the dynamics of a cell is its
environment. Some cells can even migrate towards the areas
where they have better living conditions. This phenomena,
i.e., directed movement of cells along the concentration
gradient of chemoattractant, is called chemotaxis. In other
words, the environment may determine the direction of
movement of the cell. The model takes into account this
phenomenon including the chemotactic term in the equation
describing the forces acting on a cell (see Figure 2). To sum
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Figure 1: Mitosis of a given cell (indicated by a yellow frame). Colors indicate neighborhood-based cell density.
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Figure 2: Schematic representation of forces influencing the cell
movement.

up, we assume that the movement of a cell is influenced by
the strengths of adhesion, the strengths of repulsion, and the
phenomenon of chemotaxis.

On the other hand, the environment in which a cell lives
also affects its internal dynamics, particularly its metabolism.
A living cell constantly samples its environment checking if
the conditions are appropriate and the level of nutrients is
sufficient. This ability is particularly important when a cell
has to decide on a possible mitosis. If the living conditions
are sufficiently good, the cell progresses through the cell cycle
and ultimately divides into two daughter cells. If environment
conditions become harsh, it might not be able to pass through
the cell cycle and becomes quiescent. A further deterioration
of the environment can lead to cell death. The general
equation describing the dynamics of global fields reads as
follows:

𝜕

𝜕𝑡
𝑄 (𝑥, 𝑡) = 𝐷𝑄∇

2
𝑄 (𝑥, 𝑡) − 𝐺 (𝑥, 𝑡)𝐻 (𝑥, 𝑡) , (1)

where 𝑄(𝑥, 𝑡) denotes the substance concentration, 𝐷𝑄
denotes the diffusion constant, and function𝐻(𝑥, 𝑡) denotes
the substance source whereas 𝐺(𝑥, 𝑡) denotes the substance
uptake. The equation is equipped with Dirichlet boundary
conditions. Both functions𝐻(𝑥, 𝑡) and 𝐺(𝑥, 𝑡) are calculated
at each node of the discretization grid (i.e., their values
dependent on the concentration of cells and other factors
such as concentration of blood vessels in surrounding tissue).
We assume that discretization grid size used for solving
substance equations is always larger than the cell diameter. In
each time step, the concentration of cells in each grid cell is
computed. Based on those values, the uptake function𝐺(𝑥, 𝑡)
is computed in each grid node. Then, the concentration
of a given substance is interpolated to each biological cell
with the cloud-in-cell method (CIC). Additionally, in cases
such as simulating the dynamics of tissue with blood vessel,
the source function 𝐻(𝑥, 𝑡) is also computed based on
vessels concentration computed in each grid node. This way,

the coupling between the discrete cellular and continuous
environment descriptions is defined in our model. It should
be strongly emphasized that we are dealing with the so-
called hybrid approach, where the environment, which may
be nutrients, metabolic wastes, temperature, and so on, is
modelled with the use of continuous mathematical equations
(partial differential equations), while cells in cellular colonies
are modelled as discrete entities. Such hybrid approach has
a few very important consequences on the implementation
which will be mentioned in the next section.

The Timothy framework was developed to simulate mul-
tiple biological scenarios. For this purpose, it was designed so
that adding new functionalities is straightforward in order to
make the applicability of the model even greater. An example
of such an extension is taking into account the blood vessels
that is necessary inmany biological andmedical applications.
In the model, blood vessels are introduced by specifying
spheres whose collection forms the desired vessels shapes.
These spheres represent cells that build an outer layer of
blood vessels. In case of capillaries, they simply correspond
to endothelial cells building up the vessel. Depending on the
simulated scenario, each of these spheres can constitute a
source of oxygen or other external nutrients. Suitable shapes
of the blood vessels can be introduced into the model in two
ways. One is to use an additional Timothy module which
produces the collection of spheres for vessels defined by
Bezier curves. This method is appropriate when the goal is
to describe the capillaries. An alternative option is to import
the actual data derived from medical imaging. Such data
has to be properly prepared to run the simulation. For this
purpose, one can use the VisNow package, which is an open
access software developed at the Interdisciplinary Centre
for Mathematical and Computational Modelling (ICM, Uni-
versity of Warsaw) and allows complex visual analysis and
segmentation of the geometry to be studied. On the basis of
the chosen geometry, one can provide digitized input data
for the model. Figure 4 presents an example of a blood vessel
geometry imported from microtomography together with a
visualization of the concentration gradient of oxygen released
by the vessel to the surrounding tissue.

Moreover, the Timothy framework allows for the descrip-
tion of three important biological scales of interest: the
intracellular, the cellular, and the tissue scales.Themultiscale
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Figure 3: A tissue cross section consisting of approximately 2.5⋅108
healthy cells and around 75,000 tumor cells. The tumor cells are
shown in black. On the left-hand side, the structure of the tumor
is shown in a close-up view.
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Figure 4: The Timothy framework has been recently extended
to include blood vessels that supply nutrients to the tissue. This
image originates from one of the first simulations of such type.
It shows a vessel with streamlines of the concentration gradient
of oxygen in the surrounding tissue. Realistic vessel shapes were
obtained through processing of medical imaging data with the
VisNow package [15].

approach makes it possible to better understand the links
between processes occurring inside the cell and phenomena
observed at the macroscopic level. This concerns mainly the
so-called signaling and metabolic pathways which are the
cascades of biochemical reactions responsible for (i) mainte-
nance of the intracellular homeostasis, (ii) targeted response
of cells to external stimuli, and (iii) proper intracellular
metabolism. Abnormal changes in these pathways are often
the origin of serious diseases such as inborn and acquired
errors of metabolism or cancer.The latter applies particularly
to carcinogenic mutations in genes regulating cell division
and death. To link the aforementioned intracellular processes
with the clinically observed phenotype is the essential dif-
ficulty related to understanding biological processes. In the
future, computational frameworks like Timothy may have a
genuine impact on our understanding of the courses of many
diseases and in optimizing and adjusting treatments to meet
the needs of each patient.

To give the reader a clear understanding of what types
of simulations can be performed by Timothy, we present the
visualizations of sample results in Figures 3 and 4.

3. Computing Architecture Overview

In our experiments, we used two generations of Intel Xeon
Phi processors/coprocessors.The Intel Many Integrated Core

architecture (Intel MIC architecture), used in the Intel Xeon
Phi product family, is complementary to the traditional
many-core architecture represented by multiple generations
of Intel Xeon� processors. It targets traditional HPC work-
loads as well as other highly parallel, computation intensive
tasks such as machine learning. We will describe briefly
details of this architecture to help aid the reader in under-
standing the obtained performance results.

The first product from the Intel Xeon Phi family, the
Intel Xeon Phi coprocessor x100 (code name: Knights Corner
(KNC)), is available on a separate extension board [16]. It
contains up to 61 cores, each of them capable of running
four hardware threads, each core has its own L2 cache and a
high bandwidth bidirectional ring connecting them together.
All L2 caches are fully coherent across the entire processor.
Memory controllers are connected to the same ring and
provide interfaces to the on-board DDR memory. The cores
are able to execute a proprietary 512-bit vector instruction
set. A standard PCIe interface is used to communicate with
the host processor. The Intel Xeon Phi coprocessor x100
runs a customized distribution of Linux OS and can be used
in hosts running either Linux or Microsoft Windows OS.
The coprocessor is not binary compatible with other Intel
processors, so code recompilation is required.

The second-generation Intel Xeon Phi Product Family
x200 (code name: Knights Landing (KNL)) is available as
a stand-alone processor as well as a coprocessor [17]. Intel
Xeon Phi x200 devices have up to 72 cores, each core running
four hardware threads. Internally, the processor contains up
to 36 tiles, each of which contains two improved Silvermont
cores. Each core is equipped with L1 data and instruction
caches and two additional vector processing units (VPU) that
execute standard AVX-512 vector instructions. Each VPU
is capable of executing floating point operations on vectors
of 16 double-precision or 32 single-precision numbers. Two
cores that reside on the same tile share 1MB of L2 cache. All
caches are fully coherent. Tiles are connected with a high-
throughput mesh interconnection.

The Intel Xeon Phi processor x200 is binary compatible
with other Intel Xeon processors. AVX-512 vector exten-
sion instructions are part of the standard Intel architecture
instruction set and will be supported by other Intel proces-
sors.

The Intel Xeon Phi processor x200 can address up to
384GB of standard DDR memory. In addition to that, it has
16GB of high bandwidth, on-package MCDRAM memory.
TheMCDRAMmemory offers much higher bandwidth than
the traditional DDR memory (up to 480GB/s on STREAMS
Triad benchmark, compared to ∼90GB/s on DDR for the
same benchmark), with only a slightly higher latency. There-
fore, it offers a significant performance boost for parallel
workloads. The MCDRAM memory can be used in two
modes: cache and flat. In the flat mode, the MCDRAM
memory can be addressed directly by cores. To distinguish
between DDR and MCDRAM, the two kinds of memory
are exposed by the OS as separate NUMA nodes. Software
decides whether a given variable is in MCDRAM or DDR. In
the cache mode, the MCDRAMmemory is used as a large L3
cache managed entirely by hardware.
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4. Implementation Details

The main emphasis in the design and development of
Timothy was put on efficient parallelization and achieving
high computational performance.The framework is currently
composed of two modules: the cellular dynamics module
and the nutrients environment module. Both modules are
of a different computational nature, with the former being
implementation of a specific type of discrete agent-based
model while the latter being responsible for discretizing
and solving a continuous mathematical system of PDEs.
Moreover, parallelization of both modules is based on
domain decompositionmethods of different kind: the cellular
dynamics module uses a geometrical Peano-Hilbert decom-
position method while the nutrients environment module
uses block decomposition. This makes parallel data sharing
scheme a bit more complicated and harder to implement but
by using the asynchronous communication mechanism we
are able to maintain very good scalability of both modules.
Both modules are coupled together; that is, discrete objects
can consume and/or produce specific nutrients which must
be reflected in variability of the cellular environment.

Figure 5 presents computational scheme of simulations
in Timothy. The biological cellular systems are simulated
by computing their state at successive time steps over a
specified time span. In each iteration, every process performs
computations of both modules.

Computations of the cellular dynamics module consist of
the following steps:

(i) Domain decomposition: An algorithm based on
Peano-Hilbert space filling curves finds the optimal
distribution of ownership of cells between available
processes. For each cell based on cell’s location, the
algorithm first finds its corresponding values in the
[0, 1] interval by using an inverse mapping associated
with the curve.The [0, 1] interval is then cut into frag-
ments containing equal numbers of cells. Those frag-
ments (subsets containing cells) are finally mapped
to corresponding parallel processes. This process is
schematically presented for a 2-dimensional case in
Figure 6. At the end of this step domain decompo-
sition is executed (i.e., cells are migrated between
processes according to mappings).

(ii) Tree build: Cells assigned to each process are orga-
nized in an octree structure based on their geometri-
cal localization.The procedure starts with a root node
containing all local cells. The root node is repeatedly
subdivided into eight octants. The procedure stops
when each leaf node of the tree contains at most a
single cell.

(iii) Cells exchange init: The exchange areas (boundaries)
are found for each pair of processes. Data exchange is
initiated with an asynchronous MPI call.

(iv) Computing potential (local data): Potential compo-
nent is computed by octree traversal for each cell
based on locally available data.

(v) Cells exchange wait: Data exchange is finished.

(vi) Computing potential (received data): Potential com-
ponent is computed by octree traversal for each cell
based on data exchanged with neighboring processes.

(vii) Potential exchange init: Potential values exchange is
initiated with an asynchronous MPI call.

(viii) Computing gradient of the potential (local data):
Gradient of the potential component is computed by
octree traversal for each cell based on locally available
potential values.

(ix) Potential exchange wait: Potential values exchange is
finished.

(x) Computing gradient of the potential (received data):
Gradient of the potential component is computed by
octree traversal for each cell based on potential values
exchanged with neighboring processes.

Computations of the nutrients environmentmodule con-
sist of the following steps:

(i) Solving nutrients environment PDEs: The Hypre
library [18] is used for solving nutrients environment
PDEs.The discretization of PDEs is achieved with the
use of an implicit in time finite difference scheme.
The resulting system is then defined in the ParCSR
parallel format. The data decomposition is achieved
by assigning computational grid blocks to different
processes. Conjugate gradient solver preconditioned
by the BoomerAMG algebraic multigrid method is
used to solve the system.

(ii) Computing nutrients’ gradients: Gradients of given
nutrients are computed. Resulting vector field can be
used to simulate the chemotactic movement of cells.

At the end of each iteration of the main simulation loop,
the cells’ states are being updated. Cells can grow, change their
current cell cycle phase, or move to a different location in a
3D space.

From the technical point of view,Timothy is implemented
in the C programming language and is parallelized with a
hybrid model which combines MPI and OpenMP. It uses
MPI to communicate among nodes and uses OpenMP-based
shared memory programming in each node. Shared memory
parallelization is used in the most compute intensive parts of
each MPI process (i.e., in computing the potential and the
gradient of the potential steps as well as in solving nutrients
environment PDEs step, wherewemake use ofMPI/OpenMP
parallelization available in the Hypre library). Timothy uses
the MPI parallel I/O scheme to handle program output and
the checkpoint/restart mechanism. It has several dependen-
cies: the Zoltan library [19] used for domain decomposition,
the Hypre library [18] used for solving partial differential
equations describing cellular environment, and the SPRNG
2.0 library [20] for random number generation.

Timothy was tested on various massively parallel plat-
forms including IBM Blue Gene/Q, IBM Power 775, and
Cray XT40. The scalability tests executed on those platforms
confirm that Timothy is capable of performing extreme scale
simulations of individual-based models of cellular biosys-
tems.
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Figure 5: Scheme of simulation stages in Timothy.

5. Results and Discussion

The profiling of the application indicates that there are
two main computational kernels, one corresponding to the
cellular dynamics module and the other one corresponding
to the nutrients environment module.

The cellular dynamics module presents very good
OpenMP scalability, as can be seen in Table 1 (timings for
potential and potential gradient computations are presented).
This part of the application was our candidate for achieving
good performance on the Intel MIC architecture.

5.1. Timothy Modernization for the Offloading Model. Timo-
thy modernization for the Intel MIC architecture was per-
formed using offloading model. Under this approach, the
highly parallel part of the code is executed on the Intel Xeon
Phi coprocessor/processor, while less-parallel part is exe-
cuted on the traditional host processor. The original source
code is decorated by the pragma-based compiler directives
and the compiler with the corresponding run-time libraries
arranges the code execution and data transfer between the
host processor and the offloading target processors/coproc-
essors.
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Table 1: OpenMP scalability of two stages of simulations in Timothy.

Threads per node Computing potential seconds (speedup) Computing gradient seconds (speedup)
1 57.75 64.02
2 29.91 (1.93x) 37.73 (1.70x)
4 16.27 (3.55x) 22.55 (2.84x)
8 8.64 (6.68x) 12.11 (5.29x)
16 4.85 (11.91x) 6.59 (9.71x)
32 (SMT2) 2.90 (19.91x) 3.88 (16.5x)
64 (SMT4) 1.99 (29.02x) 2.78 (23.03x)

0 4

3

21

Figure 6: Example mapping for a 2-dimensional case and 5 parallel
processes achieved with the use of Peano-Hilbert algorithm.

Modernization of Timothy was based on an important
observation that the synchronization (exchange of informa-
tion) between two modules can be performed at the end
of each iteration. Therefore, it is possible to execute both
modules simultaneously.

As it is shown in Figure 7, we decided to redesign the
application in such a way that the nutrients environment
module is computed on the host, while the cellular dynamics
module is executed on the coprocessor.

We performed the following porting steps:

(1) New version of tree build and octree traversal algo-
rithms: The previous implementation of tree build
and octree traversal algorithms was based on C
pointers which turned out to be very hard to imple-
ment with the offload mechanism. A new version
was created, which operates on tables and indexes.
Second important modification was related to the
implementation of a nonrecursive (iterative) octree
traversal algorithm, which proved to be much more
efficient with higher numbers of threads.

(2) Offload scheme implementation: An offload and data
transfer scheme was created and implemented with

the use of the pragma-based offload mechanism
available in the Intel compilers suite.

(3) Scalability test of the computational kernel on the
offloading target: Various available work distribution
types and thread affinity models were tested on the
Intel MIC architecture. The most efficient setup was
achieved with the use of schedule(dynamic, 64) and
granularity=thread,compact settings. We achieved
more than 157x speedupwith the use of all 244 threads
of the Intel Xeon Phi coprocessor x100.

(4) Implementation of an efficient overlapping scheme:
We used the signal-wait mechanism to synchronize
work between the host and the offloading target.

(5) MultipleMPI processes per node:The applicationwas
prepared to be executed with multiple MPI processes
on the host. EachMPI process can offloadwork to the
offloading target.

It should be emphasized that, in the resulting application,
tree building is executed on the host side and only the result-
ing table representing the tree structure is being transferred
to the offloading target. Therefore, only the octree traversal
type algorithms are executed on the coprocessor.

The performance benchmark of the resulting hybrid
application was composed of more than 5 million cells and
the environment PDEs discretization grid size of 220 × 220 ×
220.

5.2. Experimental Results on Knights Corner. First experi-
ments were performed using Intel Xeon Phi coprocessors
x100 (Knights Corner). The computing system used in
development and testing phase was composed of the single
computational node with two Intel Xeon processors E5-2699
v3 @2.30GHz (host) and two Intel Xeon Phi coprocessors
7120P (offloading targets). It ran Red Hat Enterprise Linux∗
version 7.2 and the Intel Many Core Software Stack (Intel
MPSS) version 3.7.2.

The best results for the accelerated version of the code
were achieved on the host with the use of 8 MPI processes,
each with 9 OpenMP threads (host consists of 2 ∗ 18 = 36
physical cores, i.e., 72 hyperthreads). We executed the new
accelerated version of Timothy on one and two coprocessors.
The host/target communication was performed over PCIe
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Figure 7: Scheme of simulation stages in Timothy. Stages executed on coprocessors were indicated on the right-hand side.

Table 2:Timothy: execution on the Intel Xeon Phi x100 coprocessor.

Configuration Time [s]
Host + 1 KNC coprocessor 180
Host + 2 KNC coprocessors 135

(Gen2) interface. Results are listed in Table 2. The perfor-
mance on a single host + 2 coprocessors is 25% better than
on a single host and a single coprocessor.

5.3. Octree BenchmarkResults onKnights Landing. In order to
evaluate the expected performance results of the Intel Xeon
Phi processor x200, a simple application benchmark called
Octree was created. The benchmark was made available on
the Timothy web page. The benchmark program has a single
argument which is the number of discrete elements (agents).
In the first step, the memory is allocated and positions of
discrete elements are randomly chosen with the use of the
Box-Muller transform (normal distribution).The benchmark
runs on a single node and consists of two phases: tree

generation for a given set of discrete elements and tree walk.
Tree generation is sequential while tree walking is a highly
parallel task. OpenMP is used to spread the workload into
multiple threads. The main purpose of running the Octree
benchmark was to evaluate how Timothy and other agent-
based modelling codes could benefit from using the new
architecture.

Octree does not use any architecture-specific enhance-
ments; in particular, it was not manually tuned for the Intel
Xeon Phi processor x200. The Intel C++ Compiler was used
to compile Octree for the Intel Xeon Phi and for Intel Core�
processors.

We executed Octree on Intel Xeon Phi processor 7250,
which runs at 1.40GHz and has 68 cores and 16GB
MCDRAM. The benchmark was executed for 10 million
discrete elements.TheMCDRAMmemorywas configured in
the flat mode. The benchmark was executed twice: using the
DDR memory and using the MCDRAM mode. In the latter
case, entire data structures fit intoMCDRAM. Selection of the
memory was done at run time using standard numactl com-
mand to select NUMA node(s) for the memory allocation, so
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Table 3: Octree execution: tree generation and tree walk time [s].

Tree generation Tree walk
KNL + DDR KNL + MCDRAM Intel Core KNL + DDR KNL + MCDRAM Intel Core

Run 1 10.4275 12.0853 3.2020 3.7581 2.0220 11.0934
Run 2 10.7856 12.3703 3.3896 3.6044 1.8730 11.0872
Run 3 10.8040 12.4549 3.3644 3.6214 1.8719 11.0802
Run 4 10.7859 12.3930 3.3833 3.6012 1.8704 11.0865
Average 10.79183 12.32588 3.33483 3.64628 1.90933 11.08683

the benchmark code remained unchanged. Each benchmark
execution performed the building of a tree form, repeated
independently 4 times. Table 3 shows the tree generation and
tree walk times on the Intel Xeon Phi processor x200 (KNL)
and corresponding results on the Intel Core processor (Intel
Core i7-5960X processor @ 3.00GHz).

As expected, the execution of sequential tree generation
was almost 3 times slower on KNL than on the reference
Intel Core processor. Note also that execution of this phase
using the MCDRAMmemory was about 14% slower than on
DDRdue to its slightly higher latency. Also as expected, a vast
speedup was obtained on tree walk. By using MCDRAM and
multiple threads, we obtained almost 6 times better results
than on the reference Intel Core (3 times better by using
multiple threads and DDR only).

5.4. Timothy on Knights Landing. Results presented in the
previous section showed that using next generation of the
Intel Xeon Phi processor we may get additional performance
boost. Therefore, the entire Timothy application was run on
KNL. For this experiment, we used the same computation
node as in Section 5.2 (2x Intel Xeon processors E5-2699 v3
@2.30GHzwith 18 cores each).We also used two stand-alone
KNL computation nodes, eachwith Intel Xeon Phi processors
7210 (64 cores). 16GB of the MCDRAM memory on each
KNL node was configured in flat mode.

For offloading from the host to the KNL offloading
targets, we used the offloading over fabric functionality,
available as a part of the Intel Xeon Phi Processor Software
package [21]. It utilizes fabric interface (like Intel Omni-Path
Architecture� or InfiniBand) to offer the same offloading
functionality available for the Intel Xeon Phi coproces-
sors connected over PCIe. In our experiments, we used
Intel Omni-Path Architecture interfaces and the Intel OPA
10.2.0.0.158 software.

The same parameters of the simulation model as in
Section 5.2 were used during execution on KNL nodes. Also
like in experiments described in Section 5.2, the best results
were obtained when 8 MPI ranks were executed on the
offloading host. The MCDRAM memory was used on the
offloading targets. Timothy source codemodernized for KNC
was not modified for KNL. The offloading code was recom-
piled using the Intel icc compiler 17.0.0 that supports AVX-512
instructions. Offloading over fabric run time was responsible
for handling architectural differences, like MCDRAM access
or communication over fabric interface. Table 4 shows the
results of Timothy execution on one host and one and two

Table 4: Timothy: execution on the Intel Xeon Phi x200 processor.

Configuration Time [s]
Host + 1 KNL processor 135
Host + 2 KNL processors 105

KNL offloading target nodes. The performance on a single
host + 2 KNL nodes was 22% better than on a single host and
a single KNL node.

Finally, we ran complete Timothy on a single KNL node.
The source code was recompiled with offloading functions
disabled. Multiple configuration of the computation node
and different number of MPI ranks were tried. The best
performancewas achievedwith 8MPI ranks, each running 34
OpenMP threads.MCDRAMwas used in flat mode. On such
configuration, the model used in previous experiments was
calculated in 208 seconds (54% worse compared to a single
host + 1 KNL node).

6. Conclusions

Mathematical modelling has a tremendous impact on our
understanding of complex biological systems and is very
often used as a research tool complementary to the tradi-
tional, heuristic experimental approach. We believe that the
Timothymodel might have a unique benefit for the scientific
community, since it is the first and, to our knowledge, the only
available individual-based cellular biosystem modelling tool
capable of simulating processes at the tissue scale.

In this paper, we described the process of portingTimothy
to the Intel MIC architecture. In case of the Intel Xeon Phi
coprocessor x100 (KNC), we showed how the application was
redesigned for execution on a hybrid system consisting of
both a host processor and a coprocessor and presented the
resulting performance gain. Secondly, we created a bench-
mark program to test the performance of accelerated parts
of Timothy on the new Intel Xeon Phi processor x200. One of
the main issues we looked at was the performance gain from
using the MCDRAM memory for computations. Finally, we
ranTimothy on the new Intel XeonPhi processor x200 (KNL).

The results of experiments show that a system consisting
of a single Intel Xeon processor-based host and a single KNL
offloading target connected over fast fabric interface provides
the same results as a system with an identical Intel Xeon
processor and two KNC coprocessors connected over PCIe.
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Despite the mixed nature of the workload (highly parallel
code mixed with more sequential code), performance on a
single KNL node (without host) was also very high.

The obtained results show the efficient migration paths
for applications already ported to the older Intel Xeon Phi
coprocessor x100 towards the new Intel Xeon Phi processors
x200.

The tree walk algorithmwhich is part of Timothy and was
implemented in theOctree benchmark is widely used inmany
different agent-based modelling tools (e.g., in computational
cosmology, social sciences, or epidemiology). Many inter-
esting usage examples are listed in the review publications
like [22] and books [23]. Therefore, we believe that results
presented in this paper are very promising andwill havemuch
broader impact on computational sciences.
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