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This is a survey paper concerning stability results for the linear functional equation in single variable.We discuss issues that have not
been considered or have been treated only briefly in other surveys concerning stability of the equation. In this way, we complement
those surveys.

1. Introduction

It is a commonly accepted conviction that the issue of stability
of functional equations has been motivated by a problem
raised by Ulam (cf. [1]) in 1940 in his talk at the University
of Wisconsin. The problem can be stated as follows.

Let𝐺
1
be a group and (𝐺

2
, 𝑑) ametric group. Given 𝜀 > 0,

does there exist 𝛿 > 0 such that if 𝑓 : 𝐺
1
→ 𝐺
2
satisfies

𝑑 (𝑓 (𝑥𝑦) , 𝑓 (𝑥) 𝑓 (𝑦)) < 𝛿, 𝑥, 𝑦 ∈ 𝐺
1
, (1)

then a homomorphism 𝑇 : 𝐺
1
→ 𝐺
2
exists with

𝑑 (𝑓 (𝑥) , 𝑇 (𝑥)) < 𝜀, 𝑥, 𝑦 ∈ 𝐺
1
? (2)

The first (partial) answer to it was published in 1941 by
Hyers [2]. It reads as follows.

Let 𝐸 and 𝑌 be Banach spaces and 𝜀 > 0. Then, for every
𝑔 : 𝐸 → 𝑌 with

sup
𝑥,𝑦∈𝐸

󵄩󵄩󵄩󵄩𝑔 (𝑥 + 𝑦) − 𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜀, (3)

there is a unique solution 𝑓 : 𝐸 → 𝑌 of the Cauchy equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (4)

such that

sup
𝑥∈𝐸

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜀. (5)

Nowadays, we describe that result of Hyers simply saying
that Cauchy functional equation (4) is Hyers-Ulam stable (or
has the Hyers-Ulam stability). Next, Hyers and Ulam pub-
lished some further stability results for polynomial functions,
isometries, and convex functions in [3–6].

For the last 50 years, that issue has been a very popular
subject of investigations and we refer the reader to mono-
graphs and surveys [7–17] for further information, references,
some discussions, and examples of recent results. Below, we
present only one such example, which is an extension of the
result ofHyers [2] and is composed of the outcomes from [18–
21] (cf. [22, 23]; see also [24]).

Before we do this, let us yet recall that a function is called
additive provided it is a solution of (4).

Theorem1. Let𝐸
1
and𝐸

2
be normed spaces, 𝑐 ≥ 0,𝑝 ̸= 1 fixed

real numbers. Assume also that𝑓 : 𝐸
1
→ 𝐸
2
is amapping such

that
󵄩󵄩󵄩󵄩𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝑐 (‖𝑥‖
𝑝
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝

) ,

𝑥, 𝑦 ∈ 𝐸
1
\ {0} .

(6)

If 𝑝 ≥ 0 and 𝐸
2
is complete, then there is a unique additive

function 𝑇 : 𝐸
1
→ 𝐸
2
with

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝑐‖𝑥‖
𝑝

󵄨󵄨󵄨󵄨2
𝑝−1 − 1

󵄨󵄨󵄨󵄨

, 𝑥 ∈ 𝐸
1
\ {0} . (7)

If 𝑝 < 0, then 𝑓 is additive.
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In this paper, we focus on stability of a linear functional
equation of the first order, in single variable and some
related results; in this way, we complement to some extent
the information provided in surveys [7–9, 25, 26]. Let us
yet mention that the equation plays a significant role in
the investigations of stability of the functional equations in
several variables; for suitable examples, we refer the reader,
for example, to [8, 27–31].

2. Preliminaries

In what follows, N, Z, Q, R, and C denote, as usually, the
sets of positive integers, integers, rationals, reals, and complex
numbers, respectively; moreover, N

0
:= N ∪ {0} and R

+
:=

[0,∞).
Let us recall that the linear functional equation of the

order𝑚 ∈ N has the form

𝜑 (𝑥) =

𝑚

∑

𝑖=1

𝑎
𝑖
(𝑥) 𝜑 (𝜉

𝑖
(𝑥)) + 𝐹 (𝑥) , (8)

where 𝑆 is a nonempty set,𝑋 is a linear space over a field F ∈

{R,C}, and the functions 𝐹 : 𝑆 → 𝑋, 𝜉
𝑖
: 𝑆 → 𝑆, and

𝑎
𝑖
: 𝑆 → F for 𝑖 = 1, . . . , 𝑚 are given. The unknown function

is 𝜑 : 𝑆 → 𝑋. We refer the reader to [7–9, 25, 26] for surveys
on stability results for that equation (with arbitrary 𝑚) and
its generalizations. In this paper, we focus only on the case
𝑚 = 1, when the equation takes the form

𝜑 (𝑥) = 𝑎
1
(𝑥) 𝜑 (𝜉

1
(𝑥)) + 𝐹 (𝑥) . (9)

It is easily seen that the following functional equation

Φ(𝑥, 𝜑 (𝑥) , 𝜑 (𝜉 (𝑥))) = 𝜑 (𝑥) , (10)

with suitable functions 𝜉 and Φ, is its natural generalization.
Next, if 𝜉

1
is bijective, then we can rewrite (9) in the form

𝜑 (𝜉
−1

1
(𝑥)) = 𝑎

1
(𝜉
−1

1
(𝑥)) 𝜑 (𝑥) + 𝐹 (𝜉

−1

1
(𝑥)) , (11)

and a natural generalization of it is the functional equation

𝜑 (𝜂 (𝑥)) = 𝐻 (𝑥, 𝜑 (𝑥)) (12)

with suitable functions 𝜂 and𝐻.
We discuss stability results for those three functional

equations and some related issues that have not been treated
at all or only briefly in [7–9, 25, 26].

The following general definition (cf. [25]) describes the
main idea of the notion of stability that we use in this paper;
for comments on various possible definitions of stability, we
refer the reader to [16, 17, 32] (given two nonempty sets, 𝐴
and 𝐵, by 𝐴𝐵 we denote, as usual, the family of all functions
mapping 𝐵 into 𝐴).

Definition 2. Let 𝑛 ∈ N, 𝑆 be a nonempty set, (𝑋, 𝑑) a metric
space, C ⊂ R

+

𝑆
𝑛

nonempty, T a function mapping C into
R
+

𝑆, and F
1
,F
2
functions mapping nonempty set D ⊂ 𝑋

𝑆

into𝑋𝑆
𝑛

. We say that the equation

F
1
𝜑 (𝑥
1
, . . . , 𝑥

𝑛
) = F

2
𝜑 (𝑥
1
, . . . , 𝑥

𝑛
) (13)

isT-stable provided, for any 𝜀 ∈ C and 𝜑
0
∈ D with

𝑑 (F
1
𝜑
0
(𝑥
1
, . . . , 𝑥

𝑛
) ,F
2
𝜑
0
(𝑥
1
, . . . , 𝑥

𝑛
)) ≤ 𝜀 (𝑥

1
, . . . , 𝑥

𝑛
) ,

𝑥
1
, . . . , 𝑥

𝑛
∈ 𝑆,

(14)

there is a solution 𝜑 ∈ D of (13) such that

𝑑 (𝜑 (𝑥) , 𝜑
0
(𝑥)) ≤ T𝜀 (𝑥) , 𝑥 ∈ 𝑆. (15)

In the case where C consists of all constant functions
from R

+

𝑆
𝑛

and T(C) contains only constant functions, the
T-stability is usually called the Hyers-Ulam (or the Ulam-
Hyers) stability.

3. Stability Results

In this section, we present various examples of stability
results. We do not compare them, in general. The readers can
easily do it themselves.

The first theorem is a well known example of the Hyers-
Ulam stability result for a particular case of functional
equation (10) (its probabilistic versions have been given by
Miheţ in [33] and Miheţ and Zaharia in [34, 35]).

Theorem 3 (see [36, Theorem 2]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜉 : 𝑆 → 𝑆, 𝐹 : 𝑆 × 𝑋 → 𝑋,
𝜆 ∈ [0, 1), and

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝜆𝑑 (𝑢, V) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋. (16)

If 𝜑 : 𝑆 → 𝑋, 𝛿 > 0 and

𝑑 (𝜑 (𝑡) , 𝐹 (𝑡, 𝜑 (𝜉 (𝑡)))) ≤ 𝛿, 𝑡 ∈ 𝑆, (17)

then there is a unique solution 𝜓 : 𝑆 → 𝑋 of the functional
equation

𝜓 (𝑡) = 𝐹 (𝑡, 𝜓 (𝜉 (𝑡))) (18)

such that

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤
𝛿

1 − 𝜆
, 𝑡 ∈ 𝑆. (19)

To formulate the next result (which is a generalization of
Theorem 3), we recall that a mapping 𝛾 : R

+
→ R
+
is called

a comparison function if it is nondecreasing and

lim
𝑛→∞

𝛾
𝑛
(𝑡) = 0, 𝑡 ∈ (0,∞) . (20)

Theorem 4 (see [37, Theorem 2.2]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a completemetric space, and 𝜉 : 𝑆 → 𝑆,𝐹 : 𝑆×𝑋 → 𝑋.
Assume also that

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝛾 (𝑑 (𝑢, V)) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋, (21)

where 𝛾 : R
+

→ R
+
is a comparison function, and let 𝜑 :

𝑆 → 𝑋, 𝛿 > 0 be such that (17) holds. Then, there is a unique
solution 𝜓 : 𝑆 → 𝑋 of (18) such that

𝜌 (𝜓, 𝜑) := sup
𝑡∈𝑆

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) < ∞. (22)

Moreover,

𝜌 (𝜓, 𝜑) − 𝛾 (𝜌 (𝜓, 𝜑)) ≤ 𝛿. (23)
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Below, we present several other (less known) similar
stability results for particular cases of (10), obtained in an
analogous way asTheorems 3 and 4, that is, by the fixed point
methods.

Theorem 5 (see [38, Theorem 2.1]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, and functions 𝜉 : 𝑆 → 𝑆, 𝐹 :

𝑆 × 𝑋 → 𝑋, and 𝛼 : 𝑆 → (0,∞) fulfil

𝛼 (𝜉 (𝑡)) 𝑑 (𝐹 (𝑡, 𝑢 (𝜉 (𝑡))) , 𝐹 (𝑡, V (𝜉 (𝑡))))

≤ 𝜆𝛼 (𝑡) 𝑑 (𝑢 (𝜉 (𝑡)) , V (𝜉 (𝑡)))
(24)

for any 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋
𝑆, and a fixed 𝜆 ∈ [0, 1). If 𝜑 : 𝑆 → 𝑋

satisfies the inequality

𝑑 (𝜑 (𝑡) , 𝐹 (𝑡, 𝜑 (𝜉 (𝑡)))) ≤ 𝛼 (𝑡) , 𝑡 ∈ 𝑆, (25)

then there exists a solution 𝜓 : 𝑆 → 𝑋 of (18) such that

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤
𝛼 (𝑡)

1 − 𝜆
, 𝑡 ∈ 𝑆. (26)

The subsequent theorem also concerns (18).

Theorem 6 (see [39, Theorem 2.2]). Let S be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜉 : 𝑆 → 𝑆, 𝐹 : 𝑆 × 𝑋 → 𝑋,
and

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V))

≤ 𝛼
1
(𝑢, V) 𝑑 (𝑢, V) + 𝛼

2
(𝑢, V) 𝑑 (𝑢, 𝐹 (𝑡, 𝑢))

+ 𝛼
3
(𝑢, V) 𝑑 (V, 𝐹 (𝑡, V)) + 𝛼

4
(𝑢, V) 𝑑 (𝑢, 𝐹 (𝑡, V))

+ 𝛼
5
(𝑢, V) 𝑑 (V, 𝐹 (𝑡, 𝑢)) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋,

(27)

where 𝛼
1
, . . . , 𝛼

5
: 𝑋 × 𝑋 → R

+
fulfil the inequality

5

∑

𝑖=1

𝛼
𝑖
(𝑢, V) ≤ 𝜆, 𝑢, V ∈ 𝑋 (28)

for a fixed 𝜆 ∈ [0, 1). If 𝜑 : 𝑆 → 𝑋, 𝛿 > 0 and (17) holds, then
there is a unique function 𝜓 : 𝑆 → 𝑋 satisfying (18) and such
that

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤
(2 + 𝜆) 𝛿

2 (1 − 𝜆)
, 𝑡 ∈ 𝑆. (29)

Recall that a mapping 𝛾 : [0,∞] → [0,∞] is called a
generalized strict comparison function if it is nondecreasing,
𝛾(∞) = ∞, and

lim
𝑛→∞

𝛾
𝑛
(𝑡) = 0, 𝑡 ∈ (0,∞) ,

lim
𝑡→∞

(𝑡 − 𝛾 (𝑡)) = ∞.

(30)

The following is one more generalization of Theorem 3.

Theorem 7 (see [40, Theorem 3.1]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a completemetric space, and 𝜉 : 𝑆 → 𝑆,𝐹 : 𝑆×𝑋 → 𝑋.
Assume also that

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝛾 (𝑑 (𝑢, V)) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋, (31)

where 𝛾 : [0,∞] → [0,∞] is a generalized strict comparison
function, and let 𝜑 : 𝑆 → 𝑋, 𝛿 > 0 be such that (17) holds.
Then, there is a unique function𝜓 : 𝑆 → 𝑋 satisfying (18) and

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤ sup {𝑠 ∈ (0,∞) : 𝑠 − 𝛾 (𝑠) ≤ 𝛿} , 𝑡 ∈ 𝑆.

(32)

The next result involves a generalization of condition (17)
(with a constant replaced by a suitable function on the right
hand side of the inequality).

Theorem 8 (see [41, Theorem 4.1]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜉 : 𝑆 → 𝑆, 𝐹 : 𝑆 × 𝑋 → 𝑋,
𝑔 : 𝑆 → F , where F ∈ {R,C}, and

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ 󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨 𝑑 (𝑢, V) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋. (33)

Assume that 𝜑 : 𝑆 → 𝑋 satisfies

𝑑 (𝜑 (𝑡) , 𝐹 (𝑡, 𝜑 (𝜉 (𝑡)))) ≤ 𝛿 (𝑡) , 𝑡 ∈ 𝑆 (34)

with amapping 𝛿 : 𝑆 → R
+
for which there exists an𝐿 ∈ [0, 1)

such that
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨 𝛿 (𝜉 (𝑡)) ≤ 𝐿𝛿 (𝑡) , 𝑡 ∈ 𝑆. (35)

Then, there is a unique solution 𝜓 : 𝑆 → 𝑋 of (18) such that

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤
𝛿 (𝑡)

1 − 𝐿
, 𝑡 ∈ 𝑆. (36)

Let us mention here that an analogous result for the
complete probabilistic metric spaces has been obtained in
[42].

Another result on the stability of (18) comes from [43]
(for some related results cf. [44]). To formulate it, we define,
for given nonempty sets 𝑆, 𝑍 and functions 𝜉 : 𝑆 → 𝑆, 𝐹 :

𝑆 × 𝑍 → 𝑍, an operatorL𝐹
𝜉
: 𝑍
𝑆
→ 𝑍
𝑆 by

L
𝐹

𝜉
(𝑔) (𝑡) := 𝐹 (𝑡, 𝑔 (𝜉 (𝑡))) , 𝑔 ∈ 𝑍

𝑆
, 𝑡 ∈ 𝑆. (37)

Theorem 9 (see [43, Corollary 2.1]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝐹 : 𝑆×𝑋 → 𝑋,Λ : 𝑆×R

+
→

R
+
, and

𝑑 (𝐹 (𝑡, 𝑢) , 𝐹 (𝑡, V)) ≤ Λ (𝑡, 𝑑 (𝑢, V)) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋. (38)

Assume also that 𝜉 : 𝑆 → 𝑆 and 𝛿 : 𝑆 → R
+
are such that

∞

∑

𝑛=0

(L
Λ

𝜉
)
𝑛

(𝛿) (𝑡) =: 𝜎 (𝑡) < ∞, 𝑡 ∈ 𝑆, (39)

𝜑 : 𝑆 → 𝑋 fulfils (34) and, for every 𝑡 ∈ 𝑆, Λ
𝑡
:= Λ(𝑡, ⋅) is

nondecreasing and 𝐹(𝑡, ⋅) is continuous. Then, the limit

𝜓 (𝑡) := lim
𝑛→∞

(L
𝐹

𝜉
)
𝑛

(𝜑) (𝑡) (40)

exists for every 𝑡 ∈ 𝑆,

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤ 𝜎 (𝑡) , 𝑡 ∈ 𝑆 (41)

and 𝜓 is a solution of (18). Moreover, if, for every 𝑡 ∈ 𝑆, Λ
𝑡
is

subadditive (i.e.,Λ
𝑡
(𝑎+𝑏) ≤ Λ

𝑡
(𝑎)+Λ

𝑡
(𝑏) for 𝑎, 𝑏 ∈ R

+
) and

𝑀 ∈ N, then 𝜓 : 𝑆 → 𝑋 is the unique solution of (18) with

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤ 𝑀𝜎 (𝑡) , 𝑡 ∈ 𝑆. (42)
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Now, we present a result from [45].

Theorem 10 (see [45,Theorem 2.2]). Let S be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜉 : 𝑆 → 𝑆, 𝐹 : 𝑋 × 𝑋 → 𝑋,
𝜆, 𝜇 ∈ R

+
, and

𝑑 (𝐹 (𝑠, 𝑢) , 𝐹 (𝑡, V)) ≤ 𝜇𝑑 (𝑠, 𝑡) + 𝜆𝑑 (𝑢, V) , 𝑠, 𝑡, 𝑢, V ∈ 𝑋.

(43)

Assume also that 𝜑 : 𝑆 → 𝑋, Φ : 𝑆 → R
+
are such that

𝑑 (𝜑 (𝑡) , 𝐹 (𝜑 (𝑡) , 𝜑 (𝜉 (𝑡)))) ≤ Φ (𝑡) , 𝑡 ∈ 𝑆,

𝜆Φ (𝜉 (𝑡)) + 𝜇Φ (𝑡) ≤ 𝐿Φ (𝑡) , 𝑡 ∈ 𝑆

(44)

with an 𝐿 ∈ [0, 1). Then, there is a unique solution 𝜓 : 𝑆 → 𝑋

of the equation

𝜓 (𝑡) = 𝐹 (𝜓 (𝑡) , 𝜓 (𝜉 (𝑡))) (45)

such that

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤
Φ (𝑡)

1 − 𝐿
, 𝑡 ∈ 𝑆. (46)

The next two stability outcomes were obtained in [46].

Theorem 11 (see [46, Theorem 2]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space,𝐹 : 𝑆×𝑋×𝑋 → 𝑋, 𝜉 : 𝑆 → 𝑆,
𝛼 : 𝑆 → (0,∞), and 𝐿 ∈ [0, 1). Assume also that functions
𝜆, 𝜇 : 𝑆 → R

+
satisfy the inequality

𝜆 (𝑥) 𝛼 (𝑥) + 𝜇 (𝑥) 𝛼 (𝜉 (𝑥)) ≤ 𝐿𝛼 (𝑥) , 𝑥 ∈ 𝑆 (47)

and 𝐹 : 𝑆 × 𝑋 × 𝑋 → 𝑋 is such that

𝑑 (𝐹 (𝑥, 𝑢 (𝑥) , 𝑢 (𝜉 (𝑥))) , 𝐹 (𝑥, V (𝑥) , V (𝜉 (𝑥))))

≤ 𝜆 (𝑥) 𝑑 (𝑢 (𝑥) , V (𝑥)) + 𝜇 (𝑥) 𝑑 (𝑢 (𝜉 (𝑥)) , V (𝜉 (𝑥))) ,

𝑥 ∈ 𝑆, 𝑢, V ∈ 𝑋
𝑆
.

(48)

If 𝜑 : 𝑆 → 𝑋 fulfils

𝑑 (𝜑 (𝑥) , 𝐹 (𝑥, 𝜑 (𝑥) , 𝜑 (𝜉 (𝑥)))) ≤ 𝛼 (𝑥) , 𝑥 ∈ 𝑆, (49)

then there exists a unique solution𝜓 : 𝑆 → 𝑋 of the functional
equation

𝜓 (𝑥) = 𝐹 (𝑥, 𝜓 (𝑥) , 𝜓 (𝜉 (𝑥))) (50)

such that

𝑑 (𝜑 (𝑥) , 𝜓 (𝑥)) ≤
𝛼 (𝑥)

1 − 𝐿
, 𝑥 ∈ 𝑆. (51)

Theorem 12 (see [46, Theorem 5]). Let 𝑆 be a nonempty set,
𝑋 a Banach space over F ∈ {R,C}, 𝜉 : 𝑆 → 𝑆, 𝑎 : 𝑆 → F ,
ℎ : 𝑆 → 𝑋, 𝛼 : 𝑆 → (0,∞), and 𝐿 ∈ [0, 1). Assume also that
functions 𝜆, 𝜇 : 𝑆 → R

+
satisfy the inequalities

𝜇 (𝑥) 𝛼 (𝜉 (𝑥)) ≤ (𝐿 − 𝜆 (𝑥)) 𝛼 (𝑥) , 𝑥 ∈ 𝑆,

(|𝑎 (𝑥)| − 𝜇 (𝑥))
󵄩󵄩󵄩󵄩𝑢 (𝜉 (𝑥)) − V (𝜉 (𝑥))󵄩󵄩󵄩󵄩

≤ 𝜆 (𝑥) ‖𝑢 (𝑥) − V (𝑥)‖ , 𝑥 ∈ 𝑆, 𝑢, V ∈ 𝑋
𝑆
.

(52)

If 𝜑 : 𝑆 → 𝑋 fulfils

󵄩󵄩󵄩󵄩𝜑 (𝑥) − 𝑎 (𝑥) 𝜑 (𝜉 (𝑥)) − ℎ (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛼 (𝑥) , 𝑥 ∈ 𝑆, (53)

then there exists a unique solution𝜓 : 𝑆 → 𝑋 of the functional
equation

𝜓 (𝑥) = 𝑎 (𝑥) 𝜓 (𝜉 (𝑥)) + ℎ (𝑥) (54)

such that

󵄩󵄩󵄩󵄩𝜑 (𝑥) − 𝜓 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝛼 (𝑥)

1 − 𝐿
, 𝑥 ∈ 𝑆. (55)

Moreover,

𝜓 (𝑥) = ℎ (𝑥)

+ lim
𝑛→∞

(𝜑 (𝜉
𝑛
(𝑥))

𝑛−1

∏

𝑖=0

𝑎 (𝜉
𝑖
(𝑥))

+

𝑛−2

∑

𝑗=0

ℎ (𝜉
𝑗+1

(𝑥))

𝑗

∏

𝑖=0

𝑎 (𝜉
𝑖
(𝑥))) , 𝑥 ∈ 𝑆.

(56)

The next theorem has been applied in [47] to prove
stability of the Pexiderized linear functional equation

𝜓 (𝜉 (𝑡)) = 𝑝 (𝑡) 𝜑 (𝑡) + 𝑞 (𝑡) . (57)

Theorem 13 (see [47, Theorem 2.1]). Let 𝑆 be a nonempty set,
𝑋 a Banach space over F ∈ {Q,R,C}, 𝜉 : 𝑆 → 𝑆, 𝑝 : 𝑆 →

F \ {0}, 𝑞 : 𝑆 → 𝑋, 𝛼 : 𝑆 → R
+
, 𝐿 ∈ (0, 1), and

𝛼 (𝜉 (𝑡)) ≤ 𝐿
󵄨󵄨󵄨󵄨𝑝 (𝜉 (𝑡))

󵄨󵄨󵄨󵄨 𝛼 (𝑡) , 𝑡 ∈ 𝑆. (58)

If 𝜑 : 𝑆 → 𝑋 satisfies

󵄩󵄩󵄩󵄩𝜑 (𝜉 (𝑡)) − 𝑝 (𝑡) 𝜑 (𝑡) − 𝑞 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝛼 (𝑡) , 𝑡 ∈ 𝑆, (59)

then there is a unique function 𝜓 : 𝑆 → 𝑋 such that

𝜓 (𝜉 (𝑡)) = 𝑝 (𝑡) 𝜓 (𝑡) + 𝑞 (𝑡) , 𝑡 ∈ 𝑆, (60)

󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜓 (𝑡)
󵄩󵄩󵄩󵄩 ≤

𝛼 (𝑡)

(1 − 𝐿)
󵄨󵄨󵄨󵄨𝑝 (𝑡)

󵄨󵄨󵄨󵄨

, 𝑡 ∈ 𝑆. (61)

Theorem 14 (see [47,Theorem 2.5]). Let S be a nonempty set,
𝑋 a Banach space over F ∈ {Q,R,C}, 𝜉 : 𝑆 → 𝑆 a bijection,
𝑝 : 𝑆 → F \ {0}, 𝑞 : 𝑆 → 𝑋, 𝛼 : 𝑆 → R

+
, 𝐿 ∈ (0, 1), and

󵄨󵄨󵄨󵄨𝑝 (𝑡)
󵄨󵄨󵄨󵄨 𝛼 (𝜉
−1
(𝑡)) ≤ 𝐿𝛼 (𝑡) , 𝑡 ∈ 𝑆. (62)

If 𝜑 : 𝑆 → 𝑋 satisfies (59), then there is a unique function
𝜓 : 𝑆 → 𝑋 such that (60) holds and

󵄩󵄩󵄩󵄩𝜑 (𝑡) − 𝜓 (𝑡)
󵄩󵄩󵄩󵄩 ≤

1

1 − 𝐿
𝛼 (𝜉
−1
(𝑡)) , 𝑡 ∈ 𝑆. (63)
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The authors have also proved in [47] a stability result for
the system of homogeneous linear equations

𝜓 (𝜉
𝑖
(𝑡)) = 𝑝

𝑖
(𝑡) 𝜓 (𝑡) , 𝑖 ∈ 𝐼, (64)

which gives a partial affirmative answer to a problem posed
by G.L. Forti during the 13th International Conference on
Functional Equations and Inequalities (Małe Ciche, Poland,
September 13–19, 2009).

The below theorem has been used in [48] to prove a
stability result for the following functional equation

𝜓 (𝐹 (𝑥, 𝑦)) = 𝐻 (𝜓 (𝑥) , 𝜓 (𝑦) , 𝑥, 𝑦) , (65)

with suitable functions 𝐹 and𝐻.

Theorem 15 (see [48, Theorem 1]). Let 𝑆 be a nonempty set,
(𝑋, 𝑑) a complete metric space, 𝜉 : 𝑆 → 𝑆, 𝐹 : 𝑋 × 𝑆 → 𝑋,
𝜆 ∈ R

+
, and

𝑑 (𝐹 (𝑢, 𝑡) , 𝐹 (V, 𝑡)) ≤ 𝜆𝑑 (𝑢, V) , 𝑡 ∈ 𝑆, 𝑢, V ∈ 𝑋. (66)

If 𝜑 : 𝑆 → 𝑋, 𝛿 : 𝑆 → R
+
are such that

𝑑 (𝜑 (𝑡) , 𝐹 (𝜑 (𝜉 (𝑡)) , 𝑡)) ≤ 𝛿 (𝑡) , 𝑡 ∈ 𝑆, (67)

and the series ∑∞
𝑖=0

𝜆
𝑖
𝛿(𝜉
𝑖
(𝑡)) converges for every 𝑡 ∈ 𝑆, then

there is a unique solution 𝜓 : 𝑆 → 𝑋 of the functional
equation

𝜓 (𝑡) = 𝐹 (𝜓 (𝜉 (𝑡)) , 𝑡) (68)

with

𝑑 (𝜓 (𝑡) , 𝜑 (𝑡)) ≤

∞

∑

𝑖=0

𝜆
𝑖
𝛿 (𝜉
𝑖
(𝑡)) , 𝑡 ∈ 𝑆. (69)

Let us also mention that the probabilistic stability of the
following particular cases of (10) and (18)

𝑓 (𝜑 (𝑔 (𝑡))) = 𝜑 (𝑡) (70)

was investigated in [49]. Further results on stability of this
equation can be found, for instance, in [50–52].

The next result deals with linear equation (54) and is due
to Trif [53]. We will show its application in the sequel, in the
section concerning solutions of a simplified version of the
linear equation.

Theorem 16 (see [53, Theorem 2.1]). Let 𝑆 be a nonempty set,
𝜉 : 𝑆 → 𝑆, 𝑋 a Banach space over F ∈ {R,C}, 𝑎 : 𝑆 → F ,
ℎ : 𝑆 → 𝑋, and 𝜖 : 𝑆 → R

+
such that

𝜔 (𝑥) :=

∞

∑

𝑗=0

𝜖 (𝜉
𝑗
(𝑥))

∏
𝑗

𝑘=0

󵄨󵄨󵄨󵄨𝑎 (𝜉
𝑘 (𝑥))

󵄨󵄨󵄨󵄨

< ∞, 𝑥 ∈ 𝑆. (71)

If 𝜑 : 𝑆 → 𝑋 satisfies the inequality
󵄩󵄩󵄩󵄩𝜑 (𝜉 (𝑥)) − 𝑎 (𝑥) 𝜑 (𝑥) − ℎ (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜖 (𝑥) , 𝑥 ∈ 𝑆, (72)

then there exists a unique solution 𝜑 : 𝑆 → 𝑋 of (54) with
󵄩󵄩󵄩󵄩𝜑 (𝑥) − 𝜑 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜔 (𝑥) , 𝑥 ∈ 𝑆. (73)

Moreover,

𝜑 (𝑥) = lim
𝑛→∞

(
𝜑 (𝜉
𝑛
(𝑥))

∏
𝑛−1

𝑗=0
𝑎 (𝜉𝑗 (𝑥))

−

𝑛−1

∑

𝑘=0

ℎ (𝜉
𝑘
(𝑥))

∏
𝑘

𝑗=0
𝑎 (𝜉𝑗 (𝑥))

) ,

𝑥 ∈ 𝑆.

(74)

Actually, condition (74) has not been included in the
statement of [53, Theorem 2.1], but it can be easily derived
from the proof of the theorem. For some investigations of
condition (71), we refer the reader to [54].

We end this section with quite general stability results for
difference equations that have been obtained in [55].

Theorem 17 (see [55,Theorem 1]). Let𝑋 be an abelian group,
𝑑 a complete, and invariant metric in 𝑋, 𝑎

𝑛
: 𝑋 → 𝑋 a

continuous isomorphism for every 𝑛 ∈ N
0
, {𝜀
𝑛
}
𝑛∈N
0

⊂ (0,∞),
{𝜆
𝑛
}
𝑛∈N
0

⊂ R
+
, and {𝑥

𝑛
}
𝑛∈N
0

, {𝑏
𝑛
}
𝑛∈N
0

⊂ 𝑋. Suppose that

𝑑 (𝑥
𝑛+1

, 𝑎
𝑛
(𝑥
𝑛
) + 𝑏
𝑛
) ≤ 𝜀
𝑛
, 𝑛 ∈ N

0
,

𝐿
0
:= lim inf
𝑛→∞

𝜀
𝑛−1

𝜆
𝑛

𝜀
𝑛

> 1,

𝑑 (𝑎
𝑛
(𝑥) , 𝑎

𝑛
(𝑦)) ≥ 𝜆

𝑛
𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋, 𝑛 ∈ N

0
.

(75)

Then there exists a unique sequence {𝑦
𝑛
}
𝑛∈N
0

⊂ 𝑋 such that

𝑦
𝑛+1

= 𝑎
𝑛
(𝑦
𝑛
) + 𝑏
𝑛
, 𝑛 ∈ N

0
, (76)

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝑀𝜀

𝑛−1
, 𝑛 ∈ N, (77)

with an𝑀 ∈ R
+
.

Remark 18 (see [55, Remark 3]). It follows from [56, Remark
2.3] that, in the case

lim inf
𝑛→∞

𝜀
𝑛−1

𝜆
𝑛

𝜀
𝑛

= 1, (78)

the conclusion of Theorem 17 is not generally true.

Theorem 19 (see [55, Theorem 2]). Let (𝑋, 𝑑) be a metric
space, {𝑥

𝑛
}
𝑛∈N
0

⊂ 𝑋, {𝑎
𝑛
}
𝑛∈N
0

⊂ 𝑋
𝑋, {𝜀
𝑛
}
𝑛∈N
0

⊂ (0,∞), and

𝑑 (𝑥
𝑛+1

, 𝑎
𝑛
(𝑥
𝑛
)) ≤ 𝜀

𝑛
, 𝑛 ∈ N

0
. (79)

Suppose that there exists {𝜆
𝑛
}
𝑛∈N
0

⊂ R
+
with

𝐿 := lim sup
𝑛→∞

𝜀
𝑛−1

𝜆
𝑛

𝜀
𝑛

< 1,

𝑑 (𝑎
𝑛
(𝑥) , 𝑎

𝑛
(𝑦)) ≤ 𝜆

𝑛
𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑋, 𝑛 ∈ N

0
.

(80)

Then there exist a sequence {𝑦
𝑛
}
𝑛∈N
0

⊂ 𝑋 and an 𝑀 > 0 such
that

𝑦
𝑛+1

= 𝑎
𝑛
(𝑦
𝑛
) , 𝑛 ∈ N

0
, (81)

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝑀𝜀

𝑛−1
, 𝑛 ∈ N. (82)
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Remark 20 (see [55, Remark 3]). There is no uniqueness of
the sequence {𝑦

𝑛
}
𝑛∈N inTheorem 19, which follows from [56,

Remark 2.2].
If

lim sup
𝑛→∞

𝜀
𝑛−1

𝜆
𝑛

𝜀
𝑛

= 1, (83)

then the conclusion of Theorem 19 is not generally true (cf.
[56, Remark 2.3]).

We refer the reader to [57] (and the references therein)
for further stability results for linear difference equations of
higher orders.

4. Iterative Stability

Let 𝐼 = (0, 𝑑] for a 𝑑 > 0 and 𝜉 : 𝐼 → 𝐼, 𝑎, ℎ : 𝐼 → R given
functions. Consider the linear nonhomogenous equation

𝜑 (𝜉 (𝑥)) = 𝑎 (𝑥) 𝜑 (𝑥) + ℎ (𝑥) , 𝑥 ∈ 𝐼, (84)

and its homogenous version

𝜑 (𝜉 (𝑥)) = 𝑎 (𝑥) 𝜑 (𝑥) , 𝑥 ∈ 𝐼, (85)

where 𝜑 : 𝐼 → R is unknown.
Brydak [58] (cf. [59, Definition 2]) introduced the notion

of stability (later called iterative stability), which for (84)
means that for every 𝜀 > 0 there exists a 𝛿 > 0 such that if
a continuous function 𝜓 : 𝐼 → R satisfies the condition
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓 (𝜉
𝑛
(𝑥)) − 𝐺

𝑛
(𝑥) 𝜓 (𝑥) + 𝐺

𝑛
(𝑥)

𝑛−1

∑

𝑖=0

ℎ (𝜉
𝑖
(𝑥))

𝐺
𝑖+1

(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛿,

𝑥 ∈ 𝐼, 𝑛 ∈ N,

(86)

then there exists a continuous solution 𝜑 of (84) such that
󵄨󵄨󵄨󵄨𝜓 (𝑥) − 𝜑 (𝑥)

󵄨󵄨󵄨󵄨 < 𝜀, 𝑥 ∈ 𝐼, (87)

where

𝐺
𝑛
(𝑥) :=

𝑛−1

∏

𝑖=0

𝑎 (𝜉
𝑖
(𝑥)) , 𝑥 ∈ 𝐼. (88)

In general, the following two hypotheses have been used
in investigations of that stability.

(H1) 𝜉 is a strictly increasing continuous function and 0 <

𝜉(𝑥) < 𝑥 for 𝑥 ∈ 𝐼.
(H2) 𝑎 is a continuous function such that𝑎(𝑥) ̸= 0 for𝑥 ∈ 𝐼.

It is known that if (H1) and (H2) hold, then continuous
solutions of (84) and (85) defined on 𝐼 depend on an arbitrary
function (cf. [60,Theorem 2.1]). The crucial assumption here
is that 0 does not belong to the domain of the solutions.

Let us yet introduce the following two assumptions.

(A) The limit 𝐺(𝑥) := lim
𝑛→∞

𝐺
𝑛
(𝑥) exists, 𝐺 is continu-

ous in 𝐼 and 𝐺(𝑥) ̸= 0 for 𝑥 ∈ 𝐼.

(B) There exists an interval 𝐽 ⊂ 𝐼 such that the sequence
{𝐺
𝑛
}
𝑛∈N converges uniformly to the zero function on

𝐽.

Brydak [58] proved that if either (A) holds and

𝛾 := inf
𝑥∈𝐼

lim
𝑛→∞

𝐺
𝑛
(𝑥) ̸= 0, (89)

or (B) holds, then (84) is iteratively stable (cf. also [7]). Turdza
[61] considered the same problem in the case where 𝑎 : 𝐼 →

F , ℎ, 𝜑 : 𝐼 → 𝑌, F ∈ {R,C}, and 𝑌 is a Banach space over
F . He proved that if (H1), (H2), and (A) hold and 𝛾 ̸= 0, then
(84) is iteratively stable (cf. [7] for suitable comments).

Choczewski et al. [59, Theorem 1] have also introduced
the following definition of stability, which according to the
comment following Definition 2 can be called the Hyers-
Ulam stability.

Definition 21 (see [59, Definition 21]). Equation (84) is
called stable in the class 𝐶(𝐼) consisting of the all functions
continuous in the interval 𝐼, if there exists a 𝐾 > 0 such that
for any 𝜖 > 0 and solution 𝜓 ∈ 𝐶(𝐼) of the inequality

󵄨󵄨󵄨󵄨𝜓 (𝜉 (𝑥)) − 𝑎 (𝑥) 𝜓 (𝑥) − ℎ (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝜖, 𝑥 ∈ 𝐼, (90)

there exists a solution 𝜑 ∈ 𝐶(𝐼) of (84) with
󵄨󵄨󵄨󵄨𝜓 (𝑥) − 𝜑 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐾𝜖, 𝑥 ∈ 𝐼. (91)

They showed (under hypotheses (H1) and (H2)) that if (85) is
stable (iteratively stable, resp.) and has a continuous solution
𝜓 : 𝐼 → R, then so is (84); a very recent and more general
result of this type will be presented at the end of this section.

For an ample and much more detailed discussion of the
results concerning iterative stability, we refer the reader to
survey paper [7]. Below, we present some outcomes obtained
by Turdza in [62], which have not been included in [7].

The notion of iterative stability has been introduced in
[62] for functional equation (12), that is, for the equation

𝜑 (𝜂 (𝑥)) = 𝐻 (𝑥, 𝜑 (𝑥)) , (92)

with suitable given functions 𝜂 and 𝐻 and the unknown
function 𝜑.

The author has used in his considerations the following
hypotheses.

(𝐻
1
) The function 𝜂 is continuous and strictly increasing in
the interval 𝐼 = [𝜌, 𝑏), 𝜂(𝑥) < 𝑥 for 𝑥 ∈ 𝐼 \ {𝜌}, and
𝜂(𝜌) = 𝜌.

(𝐻
2
) The function𝐻(𝑥, 𝑦) is defined in a setΩ ⊂ 𝐼×𝐸 and
takes values in 𝐸 (𝐸 is a nonempty set), and for every
fixed 𝑥 ∈ 𝐼 the function𝐻(𝑥, ⋅) is invertible in the set
Ω
𝑥
:= {𝑦 : (𝑥, 𝑦) ∈ Ω} (provided Ω

𝑥
̸= 0).

(𝐻
3
) For any𝑥

0
∈ 𝐼 and function𝜑

0
, which is continuous in

the interval 𝐼
0
= [𝜂(𝑥

0
), 𝑥
0
) and such that 𝜑

0
(𝜂(𝑥
0
)) =

𝐻(𝑥
0
, 𝜑
0
(𝑥
0
)), there exists exactly one function 𝜑 that

is continuous in 𝐼 and satisfies (92) and the condition
𝜑(𝑥) = 𝜑

0
(𝑥) for 𝑥 ∈ 𝐼

0
.
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(𝐻
4
) For every 𝑥

0
∈ 𝐼, there exists an 𝐿 > 0 such that for

any continuous solution 𝜓 of the inequality
󵄨󵄨󵄨󵄨𝜓 (𝜂
𝑛
(𝑥)) − 𝐻

𝑛
(𝑥, 𝜓 (𝑥))

󵄨󵄨󵄨󵄨 ≤ 𝜖, 𝑛 ∈ N, 𝑥 ∈ 𝐼, (93)

where𝐻
0
(𝑥, 𝑦) = 𝑦 and

𝐻
𝑛+1

(𝑥, 𝑦) = 𝐻 (𝜂
𝑛
(𝑥) ,𝐻

𝑛
(𝑥, 𝑦)) 𝑛 ∈ N

0
, (94)

and continuous solution 𝜑 of (92), fulfilling the
condition

󵄨󵄨󵄨󵄨𝜓 (𝑥) − 𝜑 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝜖, 𝑥 ∈ 𝐼

0
, (95)

the subsequent inequality is valid
󵄨󵄨󵄨󵄨𝜓 (𝑥) − 𝜑 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐿𝜖, 𝑥 ∈ 𝐼. (96)

Let 𝐼 be a nontrivial interval and 𝐶(𝐼) denote the class
of all functions defined and continuous in 𝐼. The next two
definitions have been introduced in [62].

Definition 22 (see [62, Definition 1]). Equation (92) is itera-
tively stable in the interval 𝐼 in the class 𝐶(𝐼), if there exists
an 𝐿 > 0 such that, for any 𝜖 > 0 and solution 𝜓 ∈ 𝐶(𝐼) of the
system of inequalities (93), there exists a solution 𝜙 ∈ 𝐶(𝐼) of
(92) satisfying (96).

Definition 23 (see [62, Definition 2]). Equation (92) is stable
in the interval 𝐼 in the class 𝐶(𝐼), if there exists an 𝐿 > 0 such
that, for any 𝜖 > 0 and solution 𝜓 ∈ 𝐶(𝐼) of the inequality

󵄨󵄨󵄨󵄨𝜓 (𝜂 (𝑥)) − 𝐻 (𝑥, 𝜓 (𝑥))
󵄨󵄨󵄨󵄨 ≤ 𝜖, 𝑥 ∈ 𝐼, (97)

there exists a solution 𝜑 ∈ 𝐶(𝐼) of (92) satisfying (96).

Actually the term “iterative stable” has been used in [62]
instead of “iteratively stable,” but it seems that the latter one
is more correct and consistent with [59, Definition 2].

The notions of stability described in Definitions 22 and 23
are closely related. Namely, we have the following.

Theorem 24 (see [62, Theorem 2]). Let hypotheses (𝐻
1
) and

(𝐻
2
) be valid, (97) hold, and

󵄨󵄨󵄨󵄨𝐻 (𝑥, 𝑦
1
) − 𝐻 (𝑥, 𝑦

2
)
󵄨󵄨󵄨󵄨 ≤ 𝑚 (𝑥)

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 ,

(𝑥, 𝑦
1
) , (𝑥, 𝑦

2
) ∈ Ω

(98)

for a function𝑚 : 𝐼 → [0, 1) such that

sup
𝑥∈[𝜌,𝜌+𝛿]

𝑚(𝑥) < 1 (99)

with a 𝛿 ∈ (0, 𝑏−𝜌).Then,Definitions 22 and 23 are equivalent.

The subsequent two theorems concern iterative stability
(the first one has actually been proved in [63]).

Theorem 25 (see [62, Theorem 1]). Let hypotheses (𝐻
1
) and

(𝐻
2
) be valid. If there exists an𝑀 > 0 with

󵄨󵄨󵄨󵄨𝐻𝑛 (𝑥, 𝑦1) − 𝐻
𝑛
(𝑥, 𝑦
2
)
󵄨󵄨󵄨󵄨 ≤ 𝑀

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 ,

(𝑥, 𝑦
1
) , (𝑥, 𝑦

2
) ∈ Ω, 𝑛 ∈ N,

(100)

then for every 𝜌
0
∈ (0, 𝑏 − 𝜌) (92) is iteratively stable in [𝜌, 𝑏 −

𝜌
0
].

Theorem26 (see [62,Theorem 4]). Let hypotheses (𝐻
1
)–(𝐻
4
)

be valid with 𝜌 = 0. Assume also that there exist𝑀,𝜇 > 0 and
continuous function𝑚 : 𝐼 → R

+
such that

󵄨󵄨󵄨󵄨𝜉 (𝑥) − 𝑥
󵄨󵄨󵄨󵄨 ≤ 𝑀𝑥

1+𝜇 (101)

in a neighbourhood of zero, (98) holds, and

𝑚(𝑥) ≤ 1 − 𝑥, 𝑥 ∈ [0, 𝑐) (102)

with a 𝑐 ∈ (0, 𝑏). Then, for every 𝑥
0
∈ [0, 𝑏) (92) is iteratively

stable in the interval [0, 𝑥
0
].

The next theorem corresponds toTheorem 26.

Theorem 27 (see [62, Theorem 3]). Let hypotheses (𝐻
1
) and

(𝐻
2
) be valid. If condition (98) is fulfilled with a function 𝑚 :

𝐼 → [0, 1) such that (99) holds, then for every 𝜌
0
∈ (0, 𝑏 − 𝜌)

(92) is stable in the interval [𝜌, 𝑏 − 𝜌
0
] in the class 𝐶(𝐼).

A connection between the stability and the continuous
dependance of (92) on a given function 𝐻 has been inves-
tigated in [62, Theorems 5 and 6]. Below, we present those
results.

Theorem 28 (see [62, Theorem 5]). Let (𝐻
1
) be valid and

functions 𝐻
1
, 𝐻
2
satisfy hypothesis (𝐻

2
) with 𝐻 = 𝐻

𝑖
for

𝑖 = 1, 2. Let 𝜑
1
, 𝜑
2
: 𝐼 → R be such that

𝜑
𝑖
(𝜉 (𝑥)) = 𝐻

𝑖
(𝑥, 𝜑
𝑖
(𝑥)) , 𝑥 ∈ 𝐼, 𝑖 = 1, 2. (103)

Assume also that there is an 𝑚 : 𝐼 → [0, 1) such that (99)
holds and

󵄨󵄨󵄨󵄨𝐻2 (𝑥, 𝑦1) − 𝐻
2
(𝑥, 𝑦
2
)
󵄨󵄨󵄨󵄨 ≤ 𝑚 (𝑥)

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 ,

(𝑥, 𝑦
1
) , (𝑥, 𝑦

2
) ∈ Ω.

(104)

If 𝑥
0
∈ 𝐼, 𝜖 > 0, and

󵄨󵄨󵄨󵄨𝐻1 (𝑥, 𝑦) − 𝐻
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜖, (𝑥, 𝑦) ∈ Ω,

󵄨󵄨󵄨󵄨𝜑1 (𝑥) − 𝜑
2
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝜖, 𝑥 ∈ [𝜂 (𝑥
0
) , 𝑥
0
] ,

(105)

then there exists an 𝑆(𝑥
0
) > 0 such that

󵄨󵄨󵄨󵄨𝜑1 (𝑥) − 𝜑
2
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑆 (𝑥
0
) 𝜖, 𝑥 ∈ 𝐼, 𝑥 ≤ 𝑥

0
. (106)

Theorem 29 (see [62, Theorem 6]). Assume that (𝐻
1
) and

(𝐻
2
) are valid and functions 𝐻

𝑛
satisfy hypothesis (𝐻

2
) with

𝐻 = 𝐻
𝑛
for 𝑛 ∈ N. Let the sequence {𝐻

𝑛
}
𝑛∈N converge to 𝐻

uniformly on Ω. If the equations

𝜑
𝑛
(𝜉 (𝑥)) = 𝐻

𝑛
(𝑥, 𝜑
𝑛
(𝑥)) , 𝑥 ∈ 𝐼, 𝑛 ∈ N (107)

are stable in 𝐼 with constants 𝐾
𝑛
and

𝐿 := sup
𝑛∈N

𝐾
𝑛
< ∞, (108)

then for every solution 𝜑 of (92) there exists a sequence {𝜑
𝑛
}
𝑛∈N

of solutions of (107), which converges to 𝜑 uniformly on 𝐼.
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Now, we show how some considerations concerning the
iterative stability can be expressed in terms of difference
equations; we will only deal with (85). Let us assume that
𝜉(0) := 0. Then, hypothesis (H1) implies that 0 is an attractive
fixed point of 𝜉. Indeed, for every 𝑥

0
∈ 𝐼, the sequence

{𝑥
𝑛
}
𝑛∈N, where

𝑥
𝑛
:= 𝜉
𝑛
(𝑥
0
) , (109)

tends to 0, since 𝜉(𝑥) < 𝑥 for all 𝑥 ∈ 𝐼. Moreover, 𝜉([0, 𝑥
0
]) ⊊

[0, 𝑥
0
] for every 𝑥

0
∈ 𝐼.

Let 𝜑 be a solution of (85). For a fixed 𝑥
0
∈ 𝐼, put

𝑦
𝑛
:= 𝜑 (𝜉

𝑛
(𝑥
0
)) , 𝑛 ∈ N

0
. (110)

Then, by (85), we have

𝑦
𝑛
= 𝑎 (𝑥

𝑛−1
) 𝑦
𝑛−1

, 𝑛 ∈ N. (111)

On the other hand, by (85) and (88),

𝑦
𝑛
= 𝐺
𝑛
(𝑥
0
) 𝑦
0
, 𝑛 ∈ N. (112)

Let 𝜓 : 𝐼 → R be a function such that
󵄨󵄨󵄨󵄨𝜓 (𝜉 (𝑥)) − 𝑎 (𝑥) 𝜓 (𝑥)

󵄨󵄨󵄨󵄨 < 𝛿, 𝑥 ∈ 𝐼. (113)

Fix an 𝑥
𝑜
∈ 𝐼 and put

𝑧
𝑛
:= 𝜓 (𝜉

𝑛
(𝑥
0
)) , 𝑛 ∈ N. (114)

Then, we get
󵄨󵄨󵄨󵄨𝑧𝑛 − 𝑎 (𝑥

𝑛−1
) 𝑧
𝑛−1

󵄨󵄨󵄨󵄨 < 𝛿, 𝑛 ∈ N. (115)

Next, condition (86) with ℎ(𝑥) ≡ 0 yields
󵄨󵄨󵄨󵄨𝑧𝑛 − 𝐺

𝑛
(𝑥
0
) 𝑧
0

󵄨󵄨󵄨󵄨 < 𝛿, 𝑛 ∈ N. (116)

Hence, by (112), we obtain
󵄨󵄨󵄨󵄨𝑧𝑛 − 𝑦

𝑛

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑧𝑛 − 𝐺

𝑛
(𝑥
0
) 𝑧
0
+ 𝐺
𝑛
(𝑥
0
) 𝑧
0
− 𝑦
𝑛

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑧𝑛 − 𝐺

𝑛
(𝑥
0
) 𝑧
0

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐺𝑛 (𝑥0)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑧0 − 𝑦

0

󵄨󵄨󵄨󵄨 , 𝑛 ∈ N,

(117)

and consequently, by (116),
󵄨󵄨󵄨󵄨𝑧𝑛 − 𝑦

𝑛

󵄨󵄨󵄨󵄨 ≤ 𝛿 +
󵄨󵄨󵄨󵄨𝐺𝑛 (𝑥0)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑧0 − 𝑦

0

󵄨󵄨󵄨󵄨 , 𝑛 ∈ N. (118)

So, in the particular case where 𝑧
0
= 𝑦
0
, that is, 𝜑(𝑥

0
) =

𝜓(𝑥
0
), we have

󵄨󵄨󵄨󵄨𝑧𝑛 − 𝑦
𝑛

󵄨󵄨󵄨󵄨 ≤ 𝛿, 𝑛 ∈ N. (119)

Thus, we have shown that, in particular, if there is a 𝑑 ∈ 𝐼with
𝜑(𝑥
0
) = 𝜓(𝑥

0
) for 𝑥

0
∈ (𝜉(𝑑), 𝑑], then (87) holds with 𝜀 = 𝛿.

We end this section with a very simple, but useful (we
hope) observation, which is a simplified version of [64,
Theorem 1]; it corresponds to the already mentioned [59,
Theorem 1] and, in view of Theorem 24, it concerns relation
between iterative stabilities of some special cases of (84) and
(85). Using it, we can also deduce easily from Theorem 17

some stability results for (76) in the special case when all 𝑎
𝑛

are additive.
Let 𝑆 be a nonempty set, 𝑋 a normed space, C ⊂ R

+

𝑆

nonempty, T a function mapping C into R
+

𝑆, and F a
function mapping a nonempty setU ⊂ 𝑋

𝑆 into 𝑋𝑆 and such
that

F (𝜓
1
+ 𝜓
2
) (𝑥) = F𝜓

1
(𝑥) +F𝜓

2
(𝑥) , 𝜓

1
, 𝜓
2
∈ U, 𝑥 ∈ 𝑆,

(120)

where for simplicity we write F𝜓
𝑖
:= F(𝜓

𝑖
) for 𝑖 = 1, 2 and

(𝜓
1
+ 𝜓
2
)(𝑥) := 𝜓

1
(𝑥) + 𝜓

2
(𝑥) for 𝑥 ∈ 𝑆. Assume also thatU

is a subgroup of𝑋𝑆; that is,

𝜓
1
− 𝜓
2
∈ U, 𝜓

1
, 𝜓
2
∈ U. (121)

Now, we are in a position to present the following theorem
(cf. Definition 2).

Theorem 30. Let 𝜇 : 𝑆 → 𝑋. Suppose that the equation

F𝑓 (𝑥) = 𝜇 (𝑥) , 𝑥 ∈ 𝑆 (122)

admits a solution 𝜓
0
∈ U. Then, the equation

F𝑓 (𝑥) = 0, 𝑥 ∈ 𝑆 (123)

isT-stable if and only if so is (122).

Proof. Since the proof is very elementary and short, we
present it here for the convenience of the readers.

Assume first that (122) isT-stable. Let 𝛿 ∈ C and 𝜙 ∈ U
satisfy the condition

󵄩󵄩󵄩󵄩F𝜙 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛿 (𝑥) , 𝑥 ∈ 𝑆. (124)

Write 𝜙
0
:= 𝜙 + 𝜓

0
. Then, 𝜙

0
∈ U and

󵄩󵄩󵄩󵄩F𝜙
0
(𝑥) − 𝜇 (𝑥)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩F𝜙 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝛿 (𝑥) , 𝑥 ∈ 𝑆. (125)

Hence, there exists a solution 𝜂
0
∈ U of (122) such that

󵄩󵄩󵄩󵄩𝜙0 (𝑥) − 𝜂
0
(𝑥)

󵄩󵄩󵄩󵄩 ≤ T𝛿 (𝑥) , 𝑥 ∈ 𝑆. (126)

Clearly, 𝜂 := 𝜂
0
− 𝜓
0
∈ U is a solution of (123) and

󵄩󵄩󵄩󵄩𝜙 (𝑥) − 𝜂 (𝑥)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝜙0 (𝑥) − 𝜂
0
(𝑥)

󵄩󵄩󵄩󵄩 ≤ T𝛿 (𝑥) , 𝑥 ∈ 𝑆.

(127)

The proof of the necessary condition is analogous. But,
again for the convenience of the readers, we present it below.
So, assume that (123) is T-stable. Let 𝛿 ∈ C and 𝜙

0
∈ U

satisfy
󵄩󵄩󵄩󵄩F𝜙
0
(𝑥) − 𝜇 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝛿 (𝑥) , 𝑥 ∈ 𝑆. (128)

Write 𝜙 := 𝜙
0
− 𝜓
0
. Then,

󵄩󵄩󵄩󵄩F𝜙 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛿 (𝑥) , 𝑥 ∈ 𝑆. (129)

Hence, there exists a solution 𝜂 ∈ U of (123) such that
󵄩󵄩󵄩󵄩𝜙 (𝑥) − 𝜂 (𝑥)

󵄩󵄩󵄩󵄩 ≤ T𝛿 (𝑥) , 𝑥 ∈ 𝑆. (130)

Clearly, 𝜂
0
:= 𝜂 + 𝜓

0
∈ U is a solution of (122) and

󵄩󵄩󵄩󵄩𝜙0 (𝑥) − 𝜂
0
(𝑥)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝜙 (𝑥) − 𝜂 (𝑥)

󵄩󵄩󵄩󵄩 ≤ T𝛿 (𝑥) , 𝑥 ∈ 𝑆.

(131)
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Remark 31. It is easily seen that the assumption that (122)
admits a solution 𝜓

0
∈ U is very important in the proof of

Theorem 30; an analogous hypothesis is also applied in [59,
Theorem 1].

In the next section, we present some remarks on the issue
of the existence of solutions of (122), resulting from some
stability outcomes obtained for the equation.

5. A Description of Solutions

Let, as before, 𝑆 be a nonempty set, 𝜉 : 𝑆 → 𝑆, 𝑋 a Banach
space, and ℎ : 𝑆 → 𝑋. In this section, we show how to
derive from Theorem 16, in a very easy way, a description of
solutions of the equation

𝜑 (𝜉 (𝑥)) = 𝜑 (𝑥) + ℎ (𝑥) , 𝑥 ∈ 𝑆 (132)

under assumption (139). Note that (132) is a particular case of
(84) (with 𝑎(𝑥) ≡ 1).

First, let us rewrite Theorem 16 in a simplified form with
𝑎(𝑥) ≡ 1.

Corollary 32. Let 𝜖 : 𝑆 → R
+
be such that

𝜔 (𝑥) :=

∞

∑

𝑗=0

𝜖 (𝜉
𝑗
(𝑥)) < ∞, 𝑥 ∈ 𝑆. (133)

If 𝜑 : 𝑆 → 𝑋 satisfies
󵄩󵄩󵄩󵄩𝜑 (𝜉 (𝑥)) − 𝜑 (𝑥) − ℎ (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜖 (𝑥) , 𝑥 ∈ 𝑆, (134)

then there exists a unique solution 𝜑 : 𝑆 → 𝑋 of (132) with
󵄩󵄩󵄩󵄩𝜑 (𝑥) − 𝜑 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝜔 (𝑥) , 𝑥 ∈ 𝑆. (135)

Moreover,

𝜑 (𝑥) = lim
𝑛→∞

(𝜑 (𝜉
𝑛
(𝑥)) −

𝑛−1

∑

𝑘=0

ℎ (𝜉
𝑘
(𝑥))) , 𝑥 ∈ 𝑆. (136)

Let us next introduce some notions.
We say that a function 𝜑 : 𝑆 → 𝑋 is 𝜉-invariant provided

𝜑 ∘ 𝜉 = 𝜑. Define an equivalence relationR(𝜉) ⊂ 𝑆
2 by

R (𝜉) := {(𝑥, 𝑦) ∈ 𝑆
2
: 𝜉
𝑚
(𝑥) = 𝜉

𝑘
(𝑦) with some 𝑘,𝑚 ∈ N

0
}

(137)

and write

[𝑥]𝜉 := {𝑦 ∈ 𝑆 : (𝑥, 𝑦) ∈ R (𝜉)} , 𝑥 ∈ 𝑆. (138)

It is easily seen that a function 𝜑 : 𝑆 → 𝑋 is 𝜉-invariant if
and only if 𝜑 is constant on [𝑥]

𝜉
for every 𝑥 ∈ 𝑆.

Now, we are ready to present the following description of
solutions of functional equation (132).

Corollary 33. Let 𝜑 : 𝑆 → 𝑋 be 𝜉-invariant. Suppose that

𝜔 (𝑥) :=

∞

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
ℎ (𝜉
𝑗
(𝑥))

󵄩󵄩󵄩󵄩󵄩
< ∞, 𝑥 ∈ 𝑆. (139)

Then, there exists a unique solution 𝜑 : 𝑆 → 𝑋 of (132) such
that (135) holds. Moreover,

𝜑 (𝑥) = 𝜑 (𝑥) − lim
𝑛→∞

𝑛

∑

𝑘=0

ℎ (𝜉
𝑘
(𝑥)) , 𝑥 ∈ 𝑆. (140)

Proof. Observe that (133) holds with

𝜖 (𝑥) := ‖ℎ (𝑥)‖ , 𝑥 ∈ 𝑆, (141)

and 𝜑 fulfils (134).Thus, it is enough to use Corollary 32.

6. Stability of Intervals and Regions

In this section, we assume that (H1) and the following
hypothesis (instead of (H2)) are valid:

(H3) 𝑎 : 𝐼 → (0,∞) is a continuous function.

Then, 𝐺
𝑛
(𝑥) > 0 for 𝑥 ∈ 𝐼, where 𝐺

𝑛
is given by (88). For

each 𝑥
∗
∈ 𝐼, put 𝐼

∗
:= [𝜉(𝑥

∗
), 𝑥
∗
]. Let 𝜑

0
: 𝐼
∗

→ R be a
continuous function such that

𝜑
0
(𝜉 (𝑥
∗
)) = 𝑎 (𝑥

∗
) 𝜑
0
(𝑥
∗
) . (142)

Then, there exists a unique continuous function 𝜑
∗
: 𝐼 → R

satisfying (85) such that 𝜑
∗
(𝑥) = 𝜑

0
(𝑥) for 𝑥 ∈ 𝐼

∗
(see [60,

Theorem 2.1]).
Czerni [65, 66] has considered stability and uniform

stability of real intervals for (85). First, we present the results
concerning the case where the studied intervals do not
depend on 𝑥. Next, we proceed to the stability of regions, that
is, to the case where the interval changes continuously with
𝑥.

For simplicity, let us restrict our attention to the case
where the studied intervals have the form [𝑐,∞) for some
𝑐 > 0. The interval [𝑐,∞) is called a stable interval of (85) if
for every 𝜀 > 0 and every 𝑥

∗
∈ 𝐼 there exists a 𝛿 > 0 such that

if a continuous function 𝜑
0
: 𝐼
∗
→ R satisfies the condition

𝜑
0
(𝑥) > 𝑐 − 𝛿, 𝑥 ∈ [𝜉 (𝑥

∗
) , 𝑥
∗
] , (143)

then for its extension 𝜑
∗
: 𝐼 → R fulfilling equation (85) the

condition

𝜑
∗
(𝑥) > 𝑐 − 𝜀, 𝑥 ∈ [0, 𝑥

∗
] (144)

holds (see [65, Definition 3]).

Theorem34 (see [65,Theorem4]). Let 𝜉 : 𝐼 → 𝐼, 𝑎 : 𝐼 → R

satisfy (H1) and (H3), respectively. Then, [𝑐,∞), where 𝑐 > 0,
is a stable interval of (85) if and only if

𝑎 (𝑥) ≥ 1, 𝑥 ∈ 𝐼. (145)

To explain the above theorem, we suppose that 𝑎(𝑥
0
) <

1 for some 𝑥
0
∈ 𝐼. By the continuity of 𝑎, we can assume

without loss of generality that 𝑥
0
∈ (0, 𝑑). Then, there exists

an 𝑥
∗
∈ 𝐼 such that 𝑥

0
∈ (𝜉(𝑥

∗
), 𝑥
∗
). Let 𝜀 := 𝑐 − 𝑎(𝑥

0
) 𝑐.

Then, for each 𝛿 > 0, if 𝜑
0
(𝑥
0
) ∈ (𝑐 − 𝛿, 𝑐) for a continuous

function 𝜑
0
: 𝐼
∗
→ R, then by (85)

𝜑
∗
(𝜉 (𝑥
0
)) = 𝑎 (𝑥

0
) 𝜑
0
(𝑥
0
) =

𝑐 − 𝜀

𝑐
𝜑
0
(𝑥
0
) < 𝑐 − 𝜀. (146)
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Therefore, the interval [𝑐,∞) cannot be stable. In other
words, if 𝑎(𝑥

0
) < 1 for some 𝑥

0
∈ 𝐼, then we can take such 𝐼

∗

and 𝜑
0
: 𝐼
∗
→ (𝑐 − 𝛿,∞) that 𝜑

∗
(𝜉(𝑥
0
)) < 𝑐 − 𝜀.

The condition that 𝑎(𝑥) ≥ 1 for 𝑥 ∈ 𝐼 implies that for each
solution 𝜑 of (85) and each 𝑥

0
∈ 𝐼 we have

𝜑 (𝑥
𝑛
) = 𝐺
𝑛
(𝑥
0
) 𝜑 (𝑥
0
) ≥ 𝜑 (𝑥

0
) , 𝑛 ∈ N, (147)

where 𝑥
𝑛
is given by (109). Hence, if 𝜑(𝑥

0
) ≥ 𝑐 − 𝛿 for an

𝑥
0
∈ 𝐼 and a 𝛿 > 0, then 𝜑(𝑥

𝑛
) ≥ 𝑐 − 𝛿 for all 𝑛 ∈ N.

Consequently, for any 𝜀 > 0, we can take any 𝛿 ≤ 𝜀 in (143)
to obtain (144). Moreover, such a 𝛿 does not depend on the
choice of 𝑥

∗
. Furthermore, by (147), we obtain that [𝑐,∞) is

an invariant set.
The condition 𝑎(𝑥) ≥ 1 for 𝑥 ∈ 𝐼 in Theorem 34 can

be slightly weakened. In the case where 𝑎(𝑥) ≥ 1 for all 𝑥
from a vicinity of 0, we can replace, inTheorem 34, 𝐼with the
interval (0, 𝑠], where 𝑠 is arbitrarily taken from this vicinity.

A different situation is if we consider the problem of
interval stability for some particular 𝑥

∗
∈ 𝐼. It may happen

that, in the case where condition (145) does not hold, we can
still find for all 𝜀 > 0 and for some 𝑥

∗
∈ 𝐼 a 𝛿 > 0 such

that (143) implies (144) for every 𝜑
0
satisfying (142). More

precisely, for a fixed 𝑥
∗
∈ 𝐼, to obtain the stability of [𝑐,∞),

we need to assume that 𝐺
𝑛
(𝑥) ≥ 1 for 𝑥 ∈ 𝐼

∗
. Then, by (147),

𝜑 (𝑥
𝑛
) ≥ 𝜑 (𝑥

0
) > 𝑐 − 𝛿 ≥ 𝑐 − 𝜀 (148)

if 𝛿 ≤ 𝜀. We will say that the interval [𝑐,∞) is stable with
respect to the set 𝐴 if for all 𝑥

∗
∈ 𝐴 and 𝜀 > 0 there exists

such a 𝛿 > 0 that (143) implies (144) for every 𝜑
0
satisfying

(142).
Theorem 34 can be now restated in the following form.

Theorem 35. Let 𝜉 : 𝐼 → 𝐼, 𝑎 : 𝐼 → R satisfy (H1) and
(H3), respectively.Then, [𝑐,∞), where 𝑐 > 0, is a stable interval
of (85) with respect to an 𝑥

∗
∈ 𝐼 if and only if

𝐺
𝑛
(𝑥) ≥ 1, 𝑥 ∈ [𝜉 (𝑥

∗
) , 𝑥
∗
] . (149)

Czerni [65] has also considered the stability of regions of
the form

[𝜓,∞) := {(𝑥, 𝑦) ∈ R
2
: 0 < 𝑥 ≤ 𝑑, 𝜓 (𝑥) ≤ 𝑦} , (150)

where𝜓 : 𝐼 → R is a continuous function which satisfies the
inequality

𝜓 (𝜉 (𝑥)) ≤ 𝑎 (𝑥) 𝜓 (𝑥) , 𝑥 ∈ 𝐼. (151)

The constant interval [𝑐,∞) is now replaced by interval
[𝜓(𝑥),∞) varying continuously with 𝑥. Let us note that if
𝑎(𝑥) ≥ 1 for 𝑥 ∈ 𝐼, then for any 𝑐 > 0 the constant function
given by 𝜓(𝑥) = 𝑐 satisfies inequality (151).

Using the assumption that the function 𝜓 fulfills inequal-
ity (151), Czerni proved the following theorem.

Theorem 36 (see [66, Theorem 2.2]). Let 𝜉 : 𝐼 → 𝐼, 𝑎 : 𝐼 →

R satisfy (H1) and (H3), respectively, and 𝑥
∗
∈ 𝐼. Assume that

𝜓 : 𝐼 → R is a continuous solution of inequality (151). Then,
if there exists a 𝑘 ∈ N such that the region [𝜓,∞) is stable
with respect to 𝜉𝑘(𝑥

∗
), then [𝜓,∞) is stable with respect to each

𝑥
0
∈ [𝜉
𝑘
(𝑥
∗
), 𝑥
∗
].

The above theorem has been used in the proof of the next
result about stability of the region [𝜓,∞).

Theorem 37 (see [66, Theorem 3.2]). Let 𝜉 : 𝐼 → 𝐼, 𝑎 : 𝐼 →

R satisfy (H1) and (H3), respectively, and 𝑥
∗
∈ 𝐼. Assume that

for a continuous solution 𝜓 : 𝐼 → R of inequality (151) there
exists a 𝑘 ∈ N such that

𝜓 (𝜉 (𝑥)) < 𝑎 (𝑥) 𝜓 (𝑥) , 𝑥 ∈ [𝜉
𝑘+1

(𝑥
∗
) , 𝜉
𝑘
(𝑥
∗
)] . (152)

Then, the region [𝜓,∞) is stable with respect to each 𝑥
0
∈

[𝜉
𝑘
(𝑥
∗
), 𝑥
∗
].

Let us note that, the assumption on function 𝜓 is the
counterpart of condition (149) in the case of stability of
[𝑐,∞). In the proof of the above theorem, it is showed
that inequality (152) implies that the region [𝜓,∞) is stable
with respect to 𝜉

𝑘
(𝑥
∗
). Indeed, the compactness of 𝐼

𝑘
:=

[𝜉
𝑘+1

(𝑥
∗
), 𝜉
𝑘
(𝑥
∗
)] gives that there exists a positive minimum

of 𝜓(𝑥) − (𝜓(𝜉(𝑥))/𝑎(𝑥)) over 𝐼
𝑘
. Taking any 𝛿 > 0 smaller

than this minimum (and, of course, smaller than a given 𝜀),
we obtain the stability of [𝜓,∞).

We say that solutions of (85) depend continuously on
initial conditions if, for each solution𝜑 : 𝐼 → R of (85), each
𝑥
∗
∈ 𝐼 and, for an arbitrary sequence (𝜑

0,𝑛
)
𝑛∈N converging

uniformly to 𝜑|
𝐼
∗

, where each element 𝜑
0,𝑛

: 𝐼
∗

→ R of
the sequence is a continuous function satisfying (142), the
sequence 𝜑

𝑛
: 𝐼 → R of the extensions of the functions 𝜑

0,𝑛

fulfilling equation (85) tends uniformly to 𝜑 on the interval
(0, 𝑥
∗
] (see [66, Definition 1.2]).

In the case where solutions of (85) depend continuously
on initial conditions, we have the following result.

Theorem 38 (see [66, Theorem 3.3]). Let 𝜉 : 𝐼 → 𝐼, 𝑎 : 𝐼 →

R satisfy (H1) and (H3), respectively. Assume that solutions of
(85) depend continuously on initial conditions. If𝜓 : 𝐼 → R is
a continuous solution of inequality (151), then the region [𝜓,∞)

is stable with respect to each 𝑥
∗
∈ (0, 𝑑).

However, without assuming continuous dependency on
initial conditions the following theorem holds.

Theorem 39 (see [67, Theorem 2.1]). Let 𝜉 : 𝐼 → 𝐼, 𝑎 : 𝐼 →

R satisfy (H1) and (H3), respectively, and 𝑥
∗
∈ 𝐼. Assume that

𝜓 : 𝐼 → R is a continuous solution of inequality (151). Then,
the following conditions are equivalent.

(i) The region [𝜓,∞) is not stable with respect to 𝑥
∗
.

(ii) There exists a sequence (𝑥
0,𝑘
)
𝑘∈N of elements of 𝐼

∗
and a

strictly increasing sequence (𝑛
𝑘
)
𝑘∈N of positive integers

such that

lim
𝑘→∞

𝐺
𝑛
𝑘

(𝑥
0,𝑘
) = +∞, lim

𝑘→∞

(𝜓 (𝑥
0,𝑘
) − 𝜓
𝑛
𝑘

(𝑥
0,𝑘
)) = 0,

(153)

where 𝜓
𝑛
𝑘

is given by

𝜓
𝑛
𝑘

(𝑥) :=
𝜓 (𝜉
𝑛
𝑘 (𝑥))

𝐺
𝑛
𝑘

(𝑥)
, 𝑥 ∈ 𝐼

∗
. (154)
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The results concerning the interval stability of (85)
presented above and similar results for (12) (see [67, 68])
have been motivated by Shanholt’s paper [69] concerning
the stability of sets for difference equations. To compare
these results with stability results in the theory of difference
equation, see, for example, [70–72].

7. Nonstability

It seems to be difficult to give a suitable (but simple) definition
of nonstability of functional equations; some examples of
such definitions can be found in [54, 57, 73–76]. Probably, it
should refer to Definition 2 and therefore also to the operator
T. Thus, we should speak of T-nonstability. Below, we
present an example of such a nonstability result for a linear
difference equation (as before 𝑋 stands for a Banach space
over F ∈ {R,C}).

Theorem 40 (see [74, Theorem 1]). Assume that {𝑎
𝑛
}
𝑛∈N
0

is a
sequence in F \ {0}, {𝑏

𝑛
}
𝑛∈N
0

is a sequence in𝑋, and {𝜀
𝑛
}
𝑛∈N
0

is
a sequence of nonnegative real numbers such that

lim
𝑛→∞

𝜀
𝑛

󵄨󵄨󵄨󵄨𝑎𝑛+1
󵄨󵄨󵄨󵄨

𝜀
𝑛+1

= 1. (155)

Then, there exists a sequence {𝑥
𝑛
}
𝑛∈N
0

in𝑋 satisfying

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑎
𝑛
𝑥
𝑛
− 𝑏
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝜀
𝑛
, 𝑛 ∈ N

0 (156)

and such that, for every sequence {𝑦
𝑛
}
𝑛∈N
0

in𝑋, given by

𝑦
𝑛+1

= 𝑎
𝑛
𝑦
𝑛
+ 𝑏
𝑛
, 𝑛 ∈ N

0
, (157)

we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

𝜀
𝑛−1

= ∞. (158)

Clearly,Theorem 40 shows that (under assumption (155))
difference equation (157) is not T-stable, for instance, for
every operatorT : (0,∞)

N
0 → (0,∞)

N
0 such that

T ({𝜀
𝑛
}
𝑛∈N
0

) = {𝛾
𝑛
𝜀
𝑛
}
𝑛∈N
0

, {𝜀
𝑛
}
𝑛∈N
0

∈ (0,∞)
N
0 (159)

with a bounded sequence {𝛾
𝑛
}
𝑛∈N
0

∈ (0,∞)
N
0 , where 𝜀

𝑛
=

𝜀
𝑛−1

for 𝑛 ∈ N and 𝜀
0
> 0 can be completely arbitrary.

There arises a natural question if we can replace condition
(155) by one of the following two conditions:

lim inf
𝑛→∞

𝜀
𝑛

󵄨󵄨󵄨󵄨𝑎𝑛+1
󵄨󵄨󵄨󵄨

𝜀
𝑛+1

= 1,

lim sup
𝑛→∞

𝜀
𝑛

󵄨󵄨󵄨󵄨𝑎𝑛+1
󵄨󵄨󵄨󵄨

𝜀
𝑛+1

= 1.

(160)

It follows from [74, Examples 1–4] that this is not possible.
For further examples of similar nonstability results (also

for other equations), we refer the reader to [54, 57, 73–76].

8. Multivalued Solutions

The issue of stability of functional equations in one variable
has been investigated also for multivalued functions, and for
suitable results we refer the reader to [77–80].

In this part of the paper, we present only one example of
such results (on selections of set-valuedmaps satisfying linear
inclusions), which is closely connected to the issue of stability
of the corresponding functional equations.

Let 𝑆 be a nonempty set and (𝑌, 𝑑) be a metric space. We
will denote by 𝑛(𝑌) the family of all nonempty subsets of 𝑌.
The real number

𝛿 (𝐴) := sup {𝑑 (𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐴} (161)

is said to be the diameter of a nonempty set 𝐴 ⊂ 𝑌. Given
𝐹 : 𝑆 → 𝑛(𝑌), we write cl 𝐹 for the multifunction defined by

(cl𝐹) (𝑥) := cl𝐹 (𝑥) , 𝑥 ∈ 𝑆. (162)

Each 𝑓 : 𝑆 → 𝑌 with

𝑓 (𝑥) ∈ 𝐹 (𝑥) , 𝑥 ∈ 𝑆, (163)

is said to be a selection of the multifunction 𝐹.
The following result has been obtained in [77].

Theorem 41 (see [77, Theorem 2]). Let 𝐹 : 𝑆 → 𝑛(𝑌), Ψ :

𝑌 → 𝑌, 𝜉 : 𝑆 → 𝑆, 𝜆 ∈ (0,∞), and

𝑑 (Ψ (𝑥) , Ψ (𝑦)) ≤ 𝜆𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝑌,

lim
𝑛→∞

𝜆
𝑛
𝛿 (𝐹 (𝜉

𝑛
(𝑥))) = 0, 𝑥 ∈ 𝑆.

(164)

(1) If 𝑌 is complete and

Ψ (𝐹 (𝜉 (𝑥))) ⊂ 𝐹 (𝑥) , 𝑥 ∈ 𝑆, (165)

then, for each 𝑥 ∈ 𝑆, the limit

lim
𝑛→∞

cl (Ψ𝑛 ∘ 𝐹 ∘ 𝜉
𝑛
) (𝑥) =: 𝑓 (𝑥) (166)

exists and 𝑓 is a unique selection of the multifunction
cl 𝐹 such that

Ψ ∘ 𝑓 ∘ 𝜉 = 𝑓. (167)

(2) If

𝐹 (𝑥) ⊂ Ψ (𝐹 (𝜉 (𝑥))) , 𝑥 ∈ 𝑆, (168)

then 𝐹 is a single-valued function and

Ψ ∘ 𝐹 ∘ 𝜉 = 𝐹. (169)

For a survey on further similar results, we refer the reader
to [81].
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