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As measures of interobserver agreement for both nominal and ordinal categories, Cohen’s kappa coefficients appear to be the
most widely used with simple and meaningful interpretations. However, for negative coefficient values when (the probability of)
observed disagreement exceeds chance-expected disagreement, no fixed lower bounds exist for the kappa coefficients and their
interpretations are no longer meaningful and may be entirely misleading. In this paper, alternative measures of disagreement (or
negative agreement) are proposed as simple corrections or modifications of Cohen’s kappa coefficients. The new coefficients have
a fixed lower bound of −1 that can be attained irrespective of the marginal distributions. A coefficient is formulated for the case
when the classification categories are nominal and a weighted coefficient is proposed for ordinal categories. Besides coefficients for
the overall disagreement across categories, disagreement coefficients for individual categories are presented. Statistical inference
procedures are developed and numerical examples are provided.

1. Introduction

When two (or more) observers are independently classify-
ing observations or items (objects) into the same set of 𝑘

mutually exclusive and exhaustive categories, it may be of
interest to have a summary description of the extent to
which the observers agreed in their classifications. The total
probability (proportion) of agreement is one such obvious
summary measure. However, since some agreement is to be
expected purely by chance, Cohen [1] introduced the kappa
coefficient of agreement as one that corrects for the chance-
expected agreement. Cohen’s kappa has since become widely
used in a variety of situations and discussed extensively in
various textbooks (e.g., [2–5]) and a wide variety of journal
publications (e.g., [6–10]).

In order to define the kappa coefficient in terms of
probabilities (proportions), let 𝑝

𝑖𝑗
be the probability that a

random observation is assigned to category 𝑖 by Observer 1
and to category 𝑗 by Observer 2 for 𝑖 = 1, . . . , 𝑘 and 𝑗 =

1, . . . , 𝑘. Furthermore, let 𝑝

𝑖+
denote the probability that a

randomly chosen observation is assigned to category 𝑖 by

Observer 1 and 𝑝

+𝑗
the probability that a randomly chosen

observation is assigned to category 𝑗 by Observer 2 (𝑖, 𝑗 =

1, . . . , 𝑘). If these probabilities are represented in terms of
a two-way contingency table with rows 𝑖 = 1, . . . , 𝑘 and
columns 𝑗 = 1, . . . , 𝑘, then 𝑝

𝑖𝑗
becomes the probability in

cell (𝑖, 𝑗) and {𝑝

𝑖+
} becomes the marginal row distribution

and {𝑝

+𝑗
} becomes the marginal column distribution. With

the row categories and the column categories being the same,
∑

𝑘

𝑖=1
𝑝

𝑖𝑖
is the total probability of agreement between the two

observers. Cohen [1] used the overall statistical independence
as the condition for chance agreement and defined 𝐾 as

𝐾 =

𝑃AO − 𝑃AC
1 − 𝑃AC

, 𝑃AO =

𝑘

∑

𝑖=1

𝑝

𝑖𝑖
, 𝑃AC =

𝑘

∑

𝑖=1

𝑝

𝑖+
𝑝

+𝑖
(1)

with 𝑃AO and 𝑃AC being the observed agreement probability
and the chance-expected agreement probability, respectively.
In terms of the observed and chance-expected disagreement
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probabilities 𝑃DO and 𝑃DC, 𝐾 can alternatively be expressed
as

𝐾 = 1 −

𝑃DO
𝑃DC

,

𝑃DO =

𝑘

∑

𝑖=1,𝑖 ̸=𝑗

𝑘

∑

𝑗=1,𝑖 ̸=𝑗

𝑝

𝑖𝑗
, 𝑃DC =

𝑘

∑

𝑖=1,𝑖 ̸=𝑗

𝑘

∑

𝑗=1,𝑖 ̸=𝑗

𝑝

𝑖+
𝑝

+𝑗
.

(2)

It is clear from (1)-(2) that 𝐾 = 1 if the interobserver
agreement is perfect, that is, if 𝑃AO = 1 (𝑃DO = 0), 𝐾 = 0

if 𝑃AO = 𝑃AC (𝑃DO = 𝑃DC), and 𝐾 < 0 if 𝑃AO < 𝑃AC (𝑃DO >

𝑃DC). The case of negative 𝐾-values will be discussed further
in the next section.

In addition to measuring the overall agreement between
two observers, it may be of interest to assess their level
of agreement for specific categories. Spitzer et al. [11] first
proposed such a measure by collapsing the original 𝑘 × 𝑘

table into a 2 × 2 table, one such 2 × 2 table for each category
𝑖 = 1, . . . , 𝑘, and then computing 𝐾 in (1)-(2) for each such
2 × 2 table (see also [2, Chapter 18]). As a simpler procedure
yielding the same numerical results, Kvålseth [12] proposed
the following form of kappa for the specific category 𝑖 (𝑖 =

1, . . . , 𝑘):

𝐾

𝑖
=

𝑝

𝑖𝑖
− 𝑝

𝑖+
𝑝

+𝑖

𝑝

𝑖
− 𝑝

𝑖+
𝑝

+𝑖

, 𝑝

𝑖
=

𝑝

𝑖+
+ 𝑝

+𝑖

2

(3)

= 1 −

∑

𝐷𝑖
∑

𝐷𝑖
𝑝

𝑖𝑗

∑

𝐷𝑖
∑

𝐷𝑖
𝑝

𝑖+
𝑝

+𝑗

, (4)

where∑

𝐷𝑖
∑

𝐷𝑖
denotes the summation over all disagreement

cells for category 𝑖. With, say, 𝑘 = 3,𝐷
2
consists of cells (2, 1),

(2, 3), (1, 2), and (3, 2). For complete agreement with respect
to category 𝑖, 𝐾

𝑖
= 1 when 𝑝

𝑖𝑖
= 𝑝

𝑖+
= 𝑝

+𝑖
, 𝐾
𝑖

= 0 for
the independence 𝑝

𝑖𝑖
= 𝑝

𝑖+
𝑝

+𝑖
, and 𝐾

𝑖
< 0 when observed

disagreement exceeds chance disagreement.
To account for the potential fact that some disagreements

may be more serious than others, as when the 𝑘 categories
have a natural order, Cohen [13] and Cicchetti and Allison
[14] independently introduced theweighted kappa𝐾

𝑤
, which

can be expressed as

𝐾

𝑤
=

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖𝑗
− ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

1 − ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

(5)

= 1 −

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖𝑗

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

, (6)

where each weight 𝑤
𝑖𝑗

∈ [0, 1], with 𝑤

𝑖𝑖
= 0 and V

𝑖𝑗
= 1 − 𝑤

𝑖𝑗

for all 𝑖 and 𝑗 and with the following logical weight choices
(e.g., [2, page 609]):

𝑤

𝑖𝑗
=









𝑖 − 𝑗









𝑘 − 1

or 𝑤

𝑖𝑗
= (

𝑖 − 𝑗

𝑘 − 1

)

2

;

𝑖, 𝑗 = 1, . . . , 𝑘.

(7)

For a specific category 𝑖, Kvålseth [15] proposed the following
measure as an extension of (4):

𝐾

𝑤𝑖
= 1 −

∑

𝐷𝑖
∑

𝐷𝑖
𝑤

𝑖𝑗
𝑝

𝑖𝑗

∑

𝐷𝑖
∑

𝐷𝑖
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

(8)

with𝐷

𝑖
denoting the set of all disagreement cells for category

𝑖. The values of these weighted measures equal 1 for perfect
agreement and 0 if observed agreement equals chance agree-
ment, with negative values if observed agreement is less than
chance agreement.

The kappa coefficients in (1)–(8) may be appropriate
measures of agreement when their values are nonnegative,
but not when their values are negative as discussed in the
next section. From a theoretical point of view at least,
it is certainly troublesome that their negative values lack
appropriate meaning and validity.This paper presents simple
corrections or modifications of the kappa coefficients in (1)–
(8) such that the negative values of the corrected coefficients
provide appropriate representation of the extent to which
the observers disagree. Statistical inference procedures for
the new coefficients or measures are developed. Numerical
examples are also given.

2. Comments on Kappa

One of themost appealing properties of kappa, and undoubt-
edly a reason for its popularity, is its simplicity and trans-
parency. All the kappa coefficients in (1)–(8) have intuitively
appealing and meaningful interpretations. In the case of
𝐾 in (1)-(2), for example, it seems most meaningful to
interpret any 𝐾-value in terms of (2) as the proportional
difference between 𝑃DC and 𝑃DO, that is, the relative extent
to which the observed disagreement probability 𝑃DO is less
than the disagreement probability 𝑃DC attributable to chance.
By comparison, the norming used in (1) is not unique, with
any number of different potential denominators 𝑑 such that
(𝑃AO − 𝑃AC)/𝑑 ≤ 1 [16].

Complete statistical independence, that is, 𝑝
𝑖𝑗

= 𝑝

𝑖+
𝑝

+𝑗

for 𝑖, 𝑗 = 1, . . . , 𝑘, is a sufficient, but not a necessary, condition
for the kappa coefficients in (1)–(8) to take on value 0. In fact,
for𝐾 = 0 in (1) and 𝑘 > 2, it is not necessary that 𝑝

𝑖𝑖
= 𝑝

𝑖+
𝑝

+𝑖

for 𝑖 = 1, . . . , 𝑘. It is possible that 𝐾 = 0 even if 𝑝
𝑖𝑗

̸= 𝑝

𝑖+
𝑝

+𝑗

for all 𝑖 and 𝑗 when 𝑘 > 2. As a simple example, consider

𝑝

11
=

1

6

, 𝑝

12
=

1

6

, 𝑝

13
= 0,

𝑝

21
= 0, 𝑝

22
=

1

12

, 𝑝

23
=

3

12

(=

1

4

) ,

𝑝

31
=

1

6

, 𝑝

32
=

1

12

, 𝑝

33
=

1

12

,

(9)

where all marginal probabilities equal 1/3. And 𝑝

𝑖𝑗
̸= 𝑝

𝑖+
𝑝

+𝑗

for all 𝑖 and 𝑗, but 𝐾 = 0. In this case, from (3), 𝐾
1

= 1/4,
𝐾

2
= 𝐾

3
= −1/8, and, from (6) and (7), 𝐾

𝑤
= 0.06 for 𝑤

𝑖𝑗
=

|𝑖 − 𝑗|/(𝑘 − 1).
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Note that the two expressions for𝐾 in (1)-(2) areweighted
arithmetic means of the expressions for 𝐾

𝑖
in (3)-(4). Thus,

from (1) and (3), for instance, it is seen that

𝐾 =

𝑘

∑

𝑖=1

𝑢

𝑖
𝐾

𝑖
, 𝑢

𝑖
=

𝑝

𝑖
− 𝑝

𝑖+
𝑝

+𝑖

1 − ∑

𝑘

𝑖=1
𝑝

𝑖+
𝑝

+𝑖

, 𝑖 = 1, . . . , 𝑘. (10)

Similarly, for the weighted measures in (6) and (8),

𝐾

𝑤
=

𝑘

∑

𝑖=1

𝑢

𝑖
𝐾

𝑤𝑖
,

𝑢

𝑖
=

∑

𝐷𝑖
∑

𝐷𝑖
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

∑

𝑘

𝑖=1
∑

𝐷𝑖
∑

𝐷𝑖
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

, 𝑖 = 1, . . . , 𝑘.

(11)

In order to show that the interobserver agreement for
a specific category 𝑖 can be determined directly from (3)-
(4), without the need to collapse the original 𝑘 × 𝑘 table
as suggested by Spitzer et al. [11], consider that the original
𝑘 × 𝑘 table with probability components 𝑝

𝑖𝑖
, 𝑝
𝑖+
, and 𝑝

+𝑖
for

category 𝑖 is collapsed into the following 2 × 2 table:

𝑝

(2)

11
= 𝑝

𝑖𝑖
, 𝑝

(2)

12
= 𝑝

𝑖+
− 𝑝

𝑖𝑖
,

𝑝

(2)

21
= 𝑝

+𝑖
− 𝑝

𝑖𝑖
, 𝑝

(2)

22
= 1 − 𝑝

𝑖+
− 𝑝

+𝑖
+ 𝑝

𝑖𝑖
.

(12)

When (12) is substituted into (1),𝐾
𝑖
in (3) results immediately.

However, no such corresponding procedure applies to 𝐾

𝑤
in

(6) and 𝐾

𝑤𝑖
in (8). Note that, for 𝑘 = 2, 𝐾

1
= 𝐾

2
= 𝐾 and

𝐾

𝑤1
= 𝐾

𝑤2
= 𝐾

𝑤
.

In spite of its wide appeal, kappa is not without some
criticism or controversy, especially related to its dependence
on the marginal distributions {𝑝

𝑖+
} and {𝑝

+𝑗
} (see, e.g.,

[4, pages 168–173]). The chance agreement (disagreement)
for all the kappa coefficients in (1)–(8) is based on the
marginal distributions. If those distributions are highly
uneven (nonuniform) and nearly symmetric, the values of the
kappa coefficientsmay become unreasonably small due to the
relatively large chance agreements.

A clear limitation of the kappa coefficients relates to
situations when the values of those coefficients become neg-
ative and lack meaningful interpretations.This limitation has
generally been ignored in published studies, partly perhaps
because such studies using kappa have typically involved
positive kappa values. Negative kappa values could, however,
lead to incorrect interpretations, results, and conclusions.
Also, if, for instance, 𝐾 > 0 in (1)-(2), it is possible that some
𝐾

𝑖
< 0 in (3)-(4).
For the overall kappa in (1)-(2), when 𝑃AO < 𝑃AC so that

𝐾 < 0, 𝐾 has no reasonable meaning in terms of (1), but −𝐾

does in terms of (2); that is, −𝐾 is the relative extent to which
𝑃DO exceeds 𝑃DC. The same argument applies to𝐾

𝑖
in (3)-(4).

However, two serious limitations of all the kappa coefficients
are that, for negative values, (a) the coefficients have no
fixed lower bounds, making it impossible to appropriately
assess the size or magnitude of coefficient values, and (b)
the coefficients take on negative values that do not appear
reasonable as discussed below.

The minimum values −𝑃AC/(1 − 𝑃AC) of 𝐾 in (1) and
−𝑝

𝑖+
𝑝

+𝑖
/(𝑝

𝑖
− 𝑝

𝑖+
𝑝

+𝑖
) of 𝐾

𝑖
in (3) depend exclusively on

the marginal distributions {𝑝

𝑖+
} and {𝑝

+𝑗
}. Values such as

𝐾 = −0.4 or 𝐾

𝑖
= −0.2 are uninformative since they cannot

be related to any fixed lower bounds on 𝐾 or 𝐾

𝑖
such as

−1, irrespective of the marginal distributions. There is no
basis for making any interpretation or statement such as
𝐾 = −0.5 indicating a “moderate,” “low,” or “high” level of
disagreement between the two observers.

There is also some confusion in the literature about the
minimum value of 𝐾, with some stating that the minimum
value is −∞ or −𝑃AO/(1 − 𝑃AO) [5, page 4] and others stating
that it is −1when 𝑝

𝑖+
= 𝑝

+𝑗
= 1/𝑘 for all 𝑖 and 𝑗 [17, page 113].

Such statements are clearly incorrect. In fact, the minimum
value𝐾 = −𝑃AC/(1−𝑃AC) equals −1 if, and only if, 𝑃AC = 0.5.
Similarly, theminimumvalue of𝐾

𝑖
in (3) equals−1 onlywhen

the harmonic mean 2𝑝

𝑖+
𝑝

+𝑖
/(𝑝

𝑖+
+ 𝑝

+𝑖
) of 𝑝
𝑖+
and 𝑝

+𝑖
equals

0.5.
What is needed are chance-corrected measures of dis-

agreement, both weighted and unweighted, which have fixed
lower bounds of −1 and which are attainable irrespective
of the marginal distributions. This requirement has also
been clearly emphasized by others [18]. Such measures will
be introduced in the next section as simple corrections or
modifications of the existing kappa coefficients.

3. Proposed Kappa Coefficients of
Disagreement

3.1. Overall Coefficients. When 𝑃AO < 𝑃AC and hence 𝑃DO >

𝑃DC, it seems most logical and intuitive to define negative
overall kappa as

𝐾

−
= −(

𝑃DO − 𝑃DC
1 − 𝑃DC

) = −(1 −

𝑃AO
𝑃AC

) , (13)

where 𝑃AO, 𝑃AC, 𝑃DO, and 𝑃DC are the probabilities defined in
(1)-(2). Consequently,

𝐾corrected =

{

{

{

𝐾 in (1)-(2), if 𝑃AO ≥ 𝑃AC,

𝐾

− in (13) , if 𝑃AO ≤ 𝑃AC,
(14)

where, of course, 𝐾 = 𝐾

−
= 0 for 𝑃AO = 𝑃AC. Except for

the minus sign,𝐾− in (13) follows from𝐾 in (1)-(2) by simply
substituting disagreement probabilities for the corresponding
agreement probabilities.

The properties of 𝐾− can be summarized as follows:
(P1) 𝐾

− is well defined if at least two cells of the contin-
gency table contain nonzero probabilities.

(P2) 𝐾

−
∈ [0, −1], with 𝐾

−
= 0, if observed agreement

(disagreement) equals chance agreement (disagree-
ment) (i.e., 𝑃AO = 𝑃AC or 𝑃DO = 𝑃DC) and𝐾

−
= −1 if,

and only if, 𝑃AO = 0 (𝑃DO = 1).
(P3) 𝐾

− can take on value −1 for any marginal distribu-
tions {𝑝

𝑖+
} and {𝑝

+𝑗
}.

(P4) |𝐾

−
| has a meaningful interpretation as the relative

extent to which the observed agreement probability
is less than that expected by chance alone.
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Table 1: A 2 × 2 contingency table with marginal probabilities r
and 1 − 𝑟 and with the entries in each cell as follows: first entry
corresponds to 𝑃AD = 0, second entry corresponds to 𝑃AO = 𝑃AC,
and third entry is the weighted mean of the other two entries where
0 ≤ 𝜆 ≤ 1.

Observer 1 Observer 2 Total
Category 1 Category 2

Category 1
0 𝑟

𝑟

𝑟(1 − 𝑟) 𝑟

2

(1 − 𝜆)𝑟(1 − 𝑟) 𝜆𝑟 + (1 − 𝜆)𝑟

2

Category 2
1 − 𝑟 0

1 − 𝑟

(1 − 𝑟)

2
𝑟(1 − 𝑟)

𝜆(1 − 𝑟) + (1 − 𝜆)(1 − 𝑟)

2
(1 − 𝜆)𝑟(1 − 𝑟)

Total 1 − 𝑟 𝑟 1.00

(P5) 𝐾

− takes on values that appear reasonable throughout
its 0 to −1 range.

While Properties (P1)–(P4) are immediately apparent
from the definition in (13), Property (P5) needs an explana-
tion. This can most simply be done for the 𝑘 = 2 category
case and without undue loss of generality since, for any data
set with 𝑘 > 2, there exists an equivalent 2 × 2 table with the
same𝐾−-value.Therefore, onemay consider a 2× 2 table such
as the one in Table 1 with themarginal probabilities 𝑟 and 1−𝑟

(0 ≤ 𝑟 ≤ 1). The first two entries in each cell correspond to
the cases when 𝐾

−
= −1 and 0, respectively, while the third

entry equals the weighted arithmetic mean of the other two
entries with weights 𝜆 and 1 − 𝜆 (0 ≤ 𝜆 ≤ 1).

In order for the values of 𝐾− to be considered reasonable
throughout the [−1, 0]-interval, the only logical condition
would clearly seem to be that the value of𝐾− for the weighted
mean cell probabilities should equal the weightedmean value
of 𝐾− for the other cell probabilities with the same weights 𝜆
and 1 − 𝜆; that is,

𝐾

−
({mean probabilities})

= 𝜆 (𝐾

−
= −1) + (1 − 𝜆) (𝐾

−
= 0) = −𝜆.

(15)

By substituting the expressions for the mean cell probabilities
from Table 1 into 𝐾

− in (13), it is seen that 𝐾− does meet the
condition in (15), irrespective of the marginal probabilities
𝑟 and 1 − 𝑟. This assumes, of course, as with Cohen’s 𝐾,
that chance agreement (disagreement) based on the marginal
probabilities is reasonable.

By contrast, substituting the mean probabilities from
Table 1 into 𝐾 in (1)-(2) gives

𝐾({mean probabilities}) = −(

2𝑟 (1 − 𝑟)

1 − 2𝑟 (1 − 𝑟)

) 𝜆 (16)

showing the strong dependence of 𝐾 on the marginal prob-
abilities. The parenthetical term in (16) equals 1 if 𝑟 = 0.5

and approaches 0 as themarginal distributions becomehighly
uneven or nonuniform (i.e., as 𝑟 approaches 0 or 1).

When 𝐾

𝑤
< 0 in (5)-(6) and hence

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖𝑗
< ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗
and ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖𝑗
>

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗
and with the sets of weights {V

𝑖𝑗
} and

{𝑤

𝑖𝑗
} as defined in (7), the following weighted negative kappa

is proposed:

𝐾

−

𝑤
= −(

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖𝑗
− ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

1 − ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

)

= −(1 −

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖𝑗

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

)

(17)

and hence

𝐾

𝑤(corrected)

=

{

{

{

{

{

{

{

{

{

{

{

𝐾

𝑤
in (5)-(6), if

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

V
𝑖𝑗
𝑝

𝑖𝑗
≥

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗
,

𝐾

−

𝑤
in (17) , if

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

V
𝑖𝑗
𝑝

𝑖𝑗
≤

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗
.

(18)

Except for the minus sign, 𝐾−
𝑤
in (17) follows from (5)-(6) by

simply substituting {𝑤

𝑖𝑗
} for {V

𝑖𝑗
} in (5) and {V

𝑖𝑗
} for {𝑤

𝑖𝑗
} in

(6).
𝐾

−

𝑤
is well defined if at least two cells of the 𝑘 × 𝑘 table

contain nonzero probabilities. It is also apparent from (17)
that 𝐾

−

𝑤
takes on values between 0 and −1, inclusive, with

𝐾

−

𝑤
= 0 if 𝑝

𝑖𝑗
= 𝑝

𝑖+
𝑝

+𝑗
for all 𝑖 and 𝑗 (as a sufficient but not

necessary condition). Also𝐾

−

𝑤
= −1 if, and only if, 𝑝

𝑖𝑗
= 0 for

all 𝑖 and 𝑗 except for 𝑖 = 1 and 𝑗 = 𝑘 and 𝑖 = 𝑘 and 𝑗 = 1, that
is, when the only nonzero probabilities occur in the corner
cells (1, 𝑘) and (𝑘, 1) and the weights are of the type of form
as in (7). These properties of 𝐾−

𝑤
all appear to be reasonable.

By contrast, if 𝑝

1𝑘
̸= 0, 𝑝
𝑘1

̸= 0, and all other 𝑝

𝑖𝑗
= 0,

𝐾

𝑤
in (5)-(6) becomes 𝐾

𝑤
= −2𝑝

1𝑘
𝑝

𝑘1
/(1 − 2𝑝

1𝑘
𝑝

𝑘1
), which

equals −1 only if 𝑝
1𝑘

= 𝑝

𝑘1
= 0.5. Otherwise, the value of

𝐾

𝑤
increases as 𝑝

1𝑘
and 𝑝

𝑘1
become increasingly different,

approaching 0 as |𝑝

1𝑘
− 𝑝

𝑘1
| approaches 1. Such behavior of

𝐾

𝑤
< 0 makes any reasonable interpretation of negative 𝐾

𝑤
-

values impossible and meaningless.

3.2. Specific Category Coefficients. Just as the 𝐾 and 𝐾

𝑤

coefficients are inappropriate for negative values, so is the
category-specific coefficient 𝐾

𝑖
in (3)-(4) as pointed out in

Section 2.Therefore, for𝐾
𝑖
< 0, another coefficient is needed

that satisfies the reasonable requirements that its value equals
0 when 𝑝

𝑖𝑖
= 𝑝

𝑖+
𝑝

+𝑖
and equals −1 when 𝑝

𝑖𝑖
= 0. The

following proposition seems most reasonable:

𝐾

𝑖(corrected)

=

{

{

{

{

{

𝐾

𝑖
in (3)-(4), if 𝑝

𝑖𝑖
≥ 𝑝

𝑖+
𝑝

+𝑖
,

𝐾

−

𝑖
= −(1 −

𝑝

𝑖𝑖

𝑝

𝑖+
𝑝

+𝑖

) , if 𝑝

𝑖𝑖
≤ 𝑝

𝑖+
𝑝

+𝑖
.

(19)

𝐾

−

𝑖
is well defined unless either 𝑝

𝑖+
= 0 or 𝑝

+𝑖
= 0 (and hence

𝑝

𝑖𝑖
= 0). 𝐾−

𝑖
= −1 if, and only if, 𝑝

𝑖𝑖
= 0 (and 𝑝

𝑖+
̸= 0 and
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𝑝

+𝑖
̸= 0). For the weighted mean cell probabilities in Table 1,

𝐾

−

1
= 𝐾

−

2
= −𝜆. Also, analogous to (10),

𝐾

−
=

𝑘

∑

𝑖=1

𝑢

𝑖
𝐾

−

𝑖
, 𝑢

𝑖
=

𝑝

𝑖+
𝑝

+𝑖

∑

𝑘

𝑖=1
𝑝

𝑖+
𝑝

+𝑖

(20)

with 𝐾

− defined in (13).

In terms of weights V
𝑖𝑗

= 1 − 𝑤

𝑖𝑗
, with the types of

𝑤

𝑖𝑗
as in (7), the proposed specific-category weighted kappa

coefficient may be defined as

𝐾

𝑤𝑖(corrected) =

{

{

{

{

{

{

{

{

{

𝐾

𝑤𝑖
in (8) , if 𝐾

𝑤𝑖
≥ 0,

𝐾

−

𝑤𝑖
= −(1 −

∑

𝑘

ℎ=1
V
ℎ𝑖
𝑝

ℎ𝑖
+ ∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖𝑗

∑

𝑘

ℎ=1
V
ℎ𝑖
𝑝

ℎ+
𝑝

+𝑖
+ ∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗

) , if 𝐾

𝑤𝑖
≤ 0,

(21)

where, as always, the first subscript refers to the table row
and the second subscript to the table column. Note that
the component for cell (𝑖, 𝑖) appears twice in 𝐾

−

𝑤𝑖
. Note also

that, analogous to (20), 𝐾−
𝑤
in (17) is the weighted arithmetic

mean of 𝐾

−

𝑤1
, . . . , 𝐾

−

𝑤𝑘
in (21) with weights based on the

denominator in (21) for 𝑖 = 1, . . . , 𝑘. It is apparent from (21)
that, for the weights in (7) and with V

𝑖𝑗
= 1 − 𝑤

𝑖𝑗
, 𝐾−
𝑤𝑖

= −1 if
𝑝

𝑖+
= 𝑝

+𝑖
= 0 for all 𝑖, but also𝐾

−

𝑤1
= 𝐾

−

𝑤𝑘
= −1 if 𝑝

1𝑘
and 𝑝

𝑘1

are the only nonzero probabilities in the table.

4. Statistical Inferences

Consider now that the coefficients (measures) discussed
above are all sample estimates (and estimators) based on
the sample probabilities 𝑝

𝑖𝑗
= 𝑛

𝑖𝑗
/𝑁 (𝑖, 𝑗 = 1, . . . , 𝑘) with

frequencies (counts) 𝑛

𝑖𝑗
and sample size 𝑁 = ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑛

𝑖𝑗
.

𝑝

𝑖𝑗
’s are maximum likelihood estimates (and estimators) of

the unknown population probabilities 𝜋

𝑖𝑗
(𝑖, 𝑗 = 1, . . . , 𝑘)

on which the corresponding population coefficients are
based such as the population coefficient 𝐾

𝑤
({𝜋

𝑖𝑗
}) = 1 −

∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝜋

𝑖𝑗
/∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝜋

𝑖+
𝜋

+𝑗
corresponding to the

sample coefficient 𝐾

𝑤
in (6). It may then be of interest to

make statistical inferences about the population coefficients
corresponding to the sample coefficients discussed above.

Such statistical inferences would probably be most mean-
ingful in terms of the construction of confidence intervals
for the overall kappa coefficients in (14) and (18). The
inference procedure needs necessarily to be approximated for
reasonably large sample size 𝑁 and be based on the delta
method (e.g., [19, Chapter 14]) or resampling methods such
as the bootstrap and the jackknife (e.g., [20, 21]). The delta
method is chosen in this paper. By developing the procedure
based on the 𝐾

𝑤
expression in (6), the procedures for 𝐾

−

𝑤
in

(17), 𝐾− in (13), and 𝐾 in (1) follow as special cases by the
appropriate selection of the set of weights {𝑤

𝑖𝑗
}. Fleiss et al. [2]

gave the estimated large sample variance of 𝐾
𝑤
based on the

expression in (5) without presenting any intermediate steps.
Instead, the expression in (6) will be used here as being more
convenient and some of the important intermediate steps will
be presented.

Then, letting 𝐾

𝑤
in (6) denote both the sample estimate

and estimator of the corresponding population coefficient
𝐾

𝑤
({𝜋

𝑖𝑗
}) (based on population probabilities 𝜋

𝑖𝑗
, 𝜋

𝑖+
, and 𝜋

+𝑗

for 𝑖 = 1, . . . , 𝑘 and 𝑗 = 1, . . . , 𝑘), it follows from the
delta method that, under multinomial sampling (when the
𝑘 categories and the sample size 𝑁 are a priori fixed), the
estimator 𝐾

𝑤
is approximately normally distributed with

mean 𝐾

𝑤
({𝜋

𝑖𝑗
}) and estimated variance ̂Var(𝐾

𝑤
) if 𝑁 is

reasonably large.
In order to derive the estimated variance of 𝐾

𝑤
, express

𝐾

𝑤
({𝜋

𝑖𝑗
}) as 𝐾

𝑤
({𝜋

𝑖𝑗
}) = 1 − 𝑎/𝑏 = 1 − 𝑑 and let 𝑎



𝑖𝑗
, 𝑏



𝑖𝑗
,

and 𝑑



𝑖𝑗
denote the partial derivatives of these quantities with

respect to 𝜋

𝑖𝑗
, with 𝜋

𝑖𝑗
then being replaced with the estimated

probabilities 𝑝
𝑖𝑗
for all 𝑖 and 𝑗. Then,

̂Var (𝐾
𝑤
) =

̂Var (𝑑)

= 𝑁

−1
[

[

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑝

𝑖𝑗
(𝑑



𝑖𝑗
)

2

− (

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑝

𝑖𝑗
𝑑



𝑖𝑗
)

2

]

]

,

(22)

where

𝑑



𝑖𝑗
= 𝑏

−1
𝑤

𝑖𝑗
− 𝑎𝑏

−2
𝑏



𝑖𝑗
(23)

for all 𝑖 and 𝑗. It is found that

𝑏



𝑖𝑗
=

𝑘

∑

𝑗=1

𝑤

𝑖𝑗
𝑝

+𝑗
+

𝑘

∑

𝑖=1

𝑤

𝑖𝑗
𝑝

𝑖+
= 𝑤

𝑖+
+ 𝑤

+𝑗 (24)

so that, from (23)-(24),

𝑑



𝑖𝑗
= 𝑏

−1
𝑤

𝑖𝑗
− 𝑎𝑏

−2
(𝑤

𝑖+
+ 𝑤

+𝑗
)

= 𝑏

−1
[𝑤

𝑖𝑗
− (1 − 𝐾

𝑤
) (𝑤

𝑖+
+ 𝑤

+𝑗
)]

(25)

from which one gets

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑝

𝑖𝑗
𝑑



𝑖𝑗
= −𝑎𝑏

−1
= − (1 − 𝐾

𝑤
) . (26)
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When (25) and (26) are substituted into (22), one obtains

̂Var (𝐾
𝑤
)

= 𝑁

−1
{

{

{

𝑏

−2

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑝

𝑖𝑗
[𝑤

𝑖𝑗
− (1 − 𝐾

𝑤
) (𝑤

𝑖+
+ 𝑤

+𝑗
)]

2

− (1 − 𝐾

𝑤
)

2
}

}

}

,

(27)

where 𝑏 = ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
𝑤

𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗
and𝑤

𝑖+
and𝑤

+𝑗
are defined in

(24). This variance formula, which gives the same numerical
results as the formula given by Fleiss et al. [22], can then be
used for interval estimation.

By comparing |𝐾

−

𝑤
| in (17) with the expression for 𝐾

𝑤
in

(6), it follows from (27) that the estimated variance of 𝐾−
𝑤
is

given by

̂Var (𝐾−
𝑤
)

= 𝑁

−1
{

{

{

𝑏

−2

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑝

𝑖𝑗
[V
𝑖𝑗
− (1 −









𝐾

−

𝑤









) (V
𝑖+

+ V
+𝑗

)]

2

− (1 −









𝐾

−

𝑤









)

2}

}

}

,

(28)

where 𝑏 = ∑

𝑘

𝑖=1
∑

𝑘

𝑗=1
V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗
is the denominator in (17) and

V
𝑖+

=

𝑘

∑

𝑗=1

V
𝑖𝑗
𝑝

+𝑗
,

V
+𝑗

=

𝑘

∑

𝑖=1

V
𝑖𝑗
𝑝

𝑖+
.

(29)

By setting 𝑤

𝑖𝑗
= 1 for all 𝑖 ̸= 𝑗 and 𝑤

𝑖𝑗
= 0 for all 𝑖 = 𝑗,𝐾

𝑤

in (6) reduces to𝐾 in (2) and, furthermore,𝑤
𝑖+

= 1−𝑝

+𝑖
and

𝑤

+𝑗
= 1 − 𝑝

𝑗+
in (24) so that, from (27), it is found that

̂Var (𝐾) = 𝑁

−1
𝑃

−2

DC
[

[

𝑃DO (1 − 𝑃DO)

+ (1 − 𝐾)

2

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑝

𝑖𝑗
(2 − 𝑝

+𝑖
− 𝑝

𝑗+
)

2

− 2 (1 − 𝐾)

𝑘

∑

𝑖=1,𝑖 ̸=𝑗

𝑘

∑

𝑗=1,𝑖 ̸=𝑗

𝑝

𝑖𝑗
(2 − 𝑝

+𝑖
− 𝑝

𝑗+
)

]

]

,

(30)

where 𝑃DO and 𝑃DC are defined in (2). Similarly, by setting
V
𝑖𝑗

= 1 for all 𝑖 = 𝑗 and V
𝑖𝑗

= 0 for all 𝑖 ̸= 𝑗, 𝐾−
𝑤
in (17) reduces

to 𝐾

− in (13) and, furthermore, V
𝑖+

= 𝑝

+𝑖
and V

+𝑗
= 𝑝

𝑗+
in

(29) so that, from (28), the following result is obtained:

̂Var (𝐾−) = 𝑁

−1
𝑃

−2

AC
[

[

𝑃AO (1 − 𝑃AO)

+ (

𝑃AO
𝑃AC

)

2 𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

𝑝

𝑖𝑗
(𝑝

+𝑖
+ 𝑝

𝑗+
)

2

− 2(

𝑃AO
𝑃AC

)

𝑘

∑

𝑖=1

𝑝

𝑖𝑖
(𝑝

+𝑖
+ 𝑝

𝑖+
)

]

]

,

(31)

where 𝑃AO and 𝑃AC are defined in (1). The expression in (30)
is somewhat different from that given by Fleiss et al. [22], but
they are found to give exactly the same numerical results.

If it should be of interest to test the null hypothesis that the
population equivalent to one of the new coefficients is equal
to zero, then the same procedure as proposed by Fleiss et al.
[22] for the case of Cohen’s𝐾 and𝐾

𝑤
would involve replacing

𝑝

𝑖𝑗
with 𝑝

𝑖+
𝑝

+𝑗
for all 𝑖 and 𝑗 in the variance expressions in

(28) or (30). However, a simpler method would be to use
the chi-square goodness-of-fit statistics 𝜒

2 or 𝐺

2 to test for
independence (noting again that independence is a sufficient
but not necessary condition for the coefficients to equal zero).

5. Numerical Examples

5.1. Example 1:𝐾−. Instead of one pair of observers assigning
each of𝑁 items (observations) to one of 𝑘 categories, consider
the statistically equivalent situation in which each of 𝑁 pairs
of observers assigns one item to one of 𝑘 categories. For
example, among 𝑁 = 100 randomly selected couples, each
spouse answers a question with 𝑘 = 3 choice categories
𝐶

1
, 𝐶

2
, and 𝐶

3
. The (fictitious) data are given in Table 2.

With 𝑃AO = 0.12 and 𝑃AC = 0.3410 in Table 2, it
follows from (13) that 𝐾

−
= −0.65, indicating a substantial

disagreement between husbands and wives. By contrast, the
corresponding value of Cohen’s 𝐾 in (1) is found to be 𝐾 =

−0.34, which could have been interpreted as indicating a
much lower level of disagreement. However, since 𝐾 has
no fixed lower bound as discussed above, any interpretation
or conclusion based on 𝐾 = −0.34 would be invalid and
misleading.

The next question may then be, how do the disagree-
ments on the individual categories contribute to the overall
disagreement of 𝐾− = −0.65? The answer from Table 2 and
(19) is found to be 𝐾

−

1
= −0.80, 𝐾−

2
= −0.79, and 𝐾

3
=

0.10. Therefore, the substantial overall disagreement 𝐾

−
=

−0.65 is attributable to the high disagreement on each of the
categories 𝐶

1
and 𝐶

2
, whereas category 𝐶

3
involves a very

low level of agreement. By comparison, the negative values
from (3) or (4) would have been substantially different, with
𝐾

1
= −0.62 and 𝐾

2
= −0.34.

In order to construct a confidence interval for the
population equivalent 𝐾

−
({𝜋

𝑖𝑗
}) of 𝐾− based on the data in

Table 2, it is found from (31) that ̂Var(𝐾−) = 0.0115. Then,
since the estimator 𝐾

−, with the sample estimate of −0.65, is
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Table 2: Results from𝑁 = 100 couples answering a multiple-choice
question with three choice categories (fictitious data).

Wives Husbands Total
𝐶

1
𝐶

2
𝐶

3

𝐶

1
0.04 0.35 0.21 0.60

𝐶

2
0.22 0.02 0.01 0.25

𝐶

3
0.08 0.01 0.06 0.15

Total 0.34 0.38 0.28 1.00

approximately normally distributed with mean𝐾

−
({𝜋

𝑖𝑗
}) and

estimated variance of 0.0115, an approximate 95% confidence
interval for 𝐾

−
({𝜋

𝑖𝑗
}) becomes −0.65 ± 1.96

√

0.0115 or
[−0.86, −0.44].

5.2. Example 2: 𝐾

−

𝑤
. Consider now that the categories in

Table 2 are ordinal so that the weighted kappa coefficients
would be appropriate.Then, with the weights𝑤

𝑖𝑗
= |𝑖−𝑗|/(𝑘−

1) in (7) and V
𝑖𝑗

= 1−𝑤

𝑖𝑗
for all 𝑖 and 𝑗, it is found fromTable 2

that ∑

3

𝑖=1
∑

3

𝑗=1
V
𝑖𝑗
𝑝

𝑖𝑗
= 0.4150 and ∑

3

𝑖=1
∑

3

𝑗=1
V
𝑖𝑗
𝑝

𝑖+
𝑝

+𝑗
=

0.5610 so that, from (17)-(18), 𝐾

−

𝑤
= −0.2602 = −0.26.

This weighted disagreement value differs considerably from
the above 𝐾

−
= −0.65 value when the three categories are

considered to be nominal.
In terms of the disagreements for the individual cate-

gories, it is found from (21) and Table 2 that 𝐾

−

𝑤1
= −0.35,

𝐾

−

𝑤2
= −0.18, and 𝐾

−

𝑤3
= −0.12. Again, these results differ

considerably from those in the nominal case considered in
Example 1. Note that the arithmetic mean −0.22 of𝐾−

𝑤𝑖
’s does

not differ greatly from the overall 𝐾−
𝑤

= −0.26.
An interval estimate for the populationmeasure𝐾−

𝑤
({𝜋

𝑖𝑗
})

can be derived from (28) by first computing V
𝑖+

and V
+𝑗

for each of 𝑖 and 𝑗 from (29) and Table 2, giving V
𝑖+

=

0.5300, 0.6900, and 0.4700 for 𝑖 = 1, 2, and 3, respectively,
and V

+𝑗
= 0.7250, 0.6250, and 0.2750 for 𝑗 = 1, 2, and 3,

respectively. Then, from (28), with 𝑏 = 0.5610 and 𝐾

−

𝑤
=

−0.2602, it is found that ̂Var(𝐾−
𝑤
) = 0.0028. Consequently,

a 95% confidence interval for𝐾−
𝑤
({𝜋

𝑖𝑗
}) is given by −0.2602 ±

1.96

√

0.0028 or [−0.36, −0.16].

5.3. Logistic Transformation. Instead of making statistical
inferences about the kappa coefficients directly, as done
above, it is likely advantageous to do so indirectly via the
logistic transformation. Therefore, in the case of 𝐾− in (13),
consider the following logistic transformation of 1 + 𝐾

− and
its inverse:

𝐿 = log(

1 + 𝐾

−

−𝐾

−
) , 𝐾

−
= −

1

1 + 𝑒

𝐿
.

(32)

Since the derivative 𝑑𝐿/𝑑𝐾

−
= −1/𝐾

−
(1+𝐾

−
), the estimated

variance of 𝐿 becomes

̂Var (𝐿) = (

1

𝐾

−
(1 + 𝐾

−
)

)

2

̂Var (𝐾−) , (33)

where ̂Var(𝐾−) is given in (31). An approximate confidence
interval for the population equivalent of 𝐿 can then be con-
structed based on (33), with the corresponding confidence
interval for 𝐾−({𝜋

𝑖𝑗
}) resulting from the inverse transform in

(32).
In the case of 𝐾

−

𝑤
in (17), 𝐾

− in (32)-(33) is simply
replaced with 𝐾

−

𝑤
. For 𝐾 and 𝐾

𝑤
in (1) and (5)-(6), the

transformation becomes log[𝐾/(1−𝐾)] and log[𝐾
𝑤
/(1−𝐾

𝑤
)].

With such transformations, the lower end of a confidence
interval for 𝐾

− or 𝐾

−

𝑤
cannot be less than −1 and the upper

end of a confidence interval 𝐾 or 𝐾

𝑤
cannot exceed 1.

Most importantly, the normal distribution approximation is
likely to be improved with the above logistic transforms.
Unless the sample size 𝑁 is very large, the distributions
of the kappa coefficients are likely to be skewed, especially
when a coefficient is near −1 or 1. For instance, when, say,
the population coefficient 𝐾

−
({𝜋

𝑖𝑗
}) = −0.9, the estimator

𝐾

− cannot be much smaller than 𝐾

−
({𝜋

𝑖𝑗
}), but it could

be much larger with nonnegligible probability. The logistic
transformation to the (−∞,∞)-interval tends to correct for
such skewness and provide for a more rapid convergence to
normality.

In Example 1, with 𝐾

−
= −0.6481 and ̂Var(𝐾−) =

0.0115, it follows from (32)-(33) that 𝐿 = −0.6107 and
̂Var(𝐿) = 0.2211. An approximate 95% confidence inter-
val for the population equivalent of 𝐿 is then given by
−0.6107 ± 1.96

√

0.2211 or [−1.5323, 0.3109]. Then, from the
inverse transform in (32), it follows that an approximate
95% confidence interval for 𝐾

−
({𝜋

𝑖𝑗
}) has the limits −1/(1 +

𝑒

−1.5323
) = −0.82 and −1/(1 + 𝑒

0.3109
) = −0.42, that is, the

interval [−0.82, −0.42]. This confidence interval is slightly
shorter than the interval [−0.86, −0.44] determined above.
Similarly, with 𝐾

−

𝑤
substituted for 𝐾

− in (32)-(33) and with
𝐾

−

𝑤
= −0.2602 and ̂Var(𝐾−) = 0.0028 from Example

2, it is found that an approximate 95% confidence interval
for the population coefficient 𝐾

−

𝑤
({𝜋

𝑖𝑗
}) is [−0.38, −0.17].

This interval differs little from the interval [−0.36, −0.16]

determined above when applying the inference procedure
directly to 𝐾

−

𝑤
.

6. Conclusion

If Cohen’s kappa is accepted as an appropriate measure
of interobserver agreement, as many do judging by its
widespread use, then the corrections proposed here for
negative kappa values should be equally acceptable. Of
course, since the chance-expected disagreement (or agree-
ment) terms in the new coefficients also depend exclusively
on the marginal distributions, the criticism by some that
Cohen’s coefficients depend too much on the marginal
distributions would similarly apply to the new coefficients.
Such concern is particularly important in cases of highly
uneven (nonuniform or “skewed”) marginal distributions.
If, however, those distributions are fairly even (uniform),
Cohen’s kappa and hence themeasures proposed in this paper
for interobserver disagreement (negative agreement) would
seem to be reasonably acceptable agreement-disagreement
measures.
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