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Abstract
The presence of two closely related subgenomes in the allotetra-
ploid Upland cotton, combined with a narrow genetic base of 
the cultivated varieties, has hindered the identification of poly-
morphic genetic markers and their use in improving this important 
crop. Genotyping-by-sequencing (GBS) is a rapid way to identify 
single nucleotide polymorphism (SNP) markers; however, these 
SNPs may be specific to the sequenced cotton lines. Our objec-
tive was to obtain a large set of polymorphic SNPs with broad 
applicability to the cultivated cotton germplasm. We selected 
11 diverse cultivars and their random-mated recombinant inbred 
progeny for SNP marker development via GBS. Two different 
GBS methodologies were used by Data2Bio (D2B) and the 
Institute for Genome Diversity (IGD) to identify 4441 and 1176 
polymorphic SNPs with minor allele frequency of  ³0.1, respec-
tively. We further filtered the SNPs and aligned their sequences 
to the diploid Gossypium raimondii reference genome. We were 
able to use homeologous SNPs to assign 1071 SNP loci to the 
At subgenome and 1223 to the Dt subgenome. These filtered 
SNPs were located in genic regions about twice as frequently as 
expected by chance. We tested 111 of the SNPs in 154 diverse 
Upland cotton lines, which confirmed the utility of the SNP mark-
ers developed in such approach. Not only were the SNPs identi-
fied in the 11 cultivars present in the 154 cotton lines, no two 
cultivars had identical SNP genotypes. We conclude that GBS 
can be easily used to discover SNPs in Upland cotton, which 
can be converted to functional genotypic assays for use in breed-
ing and genetic studies.

Cotton (Gossypium hirsutum L.) is a major natural 
fiber crop, with estimated production of 116.7 mil-

lion bales in the United States in 2013 (USDA, 2014). 
In the United States, the estimated return from cotton 
fibers and seed byproducts is more than five billion 
dollars annually (Wallace et al., 2008). Upland cotton 
(Gossypium hirsutum L.) represents over 95% of the total 
cotton fiber produced in the world (Fang et al., 2014). 
Both G. hirsutum and G. barbadense L. are allotetra-
ploid (2n = 4x = 52) species and originated around 1 to 
2 million years ago from interspecific crosses between 
an A-genome diploid (~1,700 Mb [megabase]) species 
and a D-genome (~900 Mb) diploid species (Wendel, 
1989; Wendel and Cronn, 2003). Narrow genetic diver-
sity within tetraploid cotton, as well as minor sequence 
divergence between At and Dt subgenomes (Doyle et 
al., 2008) have hindered identification of polymorphic 
molecular markers and their use in cotton improvement. 
Identification of large number of polymorphic molecular 
markers in Upland cotton will enable a more complete 
assessment of genetic structure of complex traits and 
will be valuable to cotton breeding programs.
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Next-generation DNA sequencing (NGS) technolo-
gies enable researchers to rapidly develop large numbers 
of SNP markers at a relatively low cost (Maughan et al., 
2009). Inexpensive NGS technologies have been suc-
cessfully used for whole-genome sequencing (Li et al., 
2014; Wang et al., 2011; Xu et al., 2011), gene expression 
analysis (Harper et al., 2012; Naoumkina et al., 2014), 
and SNP discovery including small and large genome-
size organisms, as well as complex polyploidy organisms 
with narrow genetic differences such as cotton (Byers et 
al., 2012; Gore et al., 2014) and wheat (Triticum aestivum 
L.; Poland et al., 2012). Several methods and techniques 
have been developed to discover SNPs and to genotype 
them in several organisms (Byers et al., 2012; Elshire et 
al., 2011; Gore et al., 2014; Poland et al., 2012; Wang et al., 
2012). Among those methods, one promising, robust, and 
simple approach is GBS, which facilitates the detection 
of a wide range of SNPs using many individuals simul-
taneously. The GBS protocols usually use methylation 
sensitive restriction enzymes (RE) to produce reduced 
representation of the genome by targeting the genomic 
sequence flanking RE sites (Elshire et al., 2011; Poland 
et al., 2012). Compared with other similar methods, 
such as reduced representation libraries and restriction 
site-associated DNA, GBS library construction is more 
simplified and needs less DNA, avoids random shearing 
and size selection, and is completed in only two steps 
on plates followed by polymerase chain reaction (PCR) 
amplification of the pooled library (Elshire et al., 2011). 
Since it removes the prerequisite of detection and valida-
tion of polymorphism, GBS can be utilized in any poly-
morphic species and/or any segregating population with 
any number of individuals (Schnable et al., 2013). So far, 
a significant number of reports by different groups have 
detected SNPs in different crop species such as maize 
(Elshire et al., 2011), wheat, barley (Hordeum vulgare L.; 
Poland et al., 2012), cotton (Gore et al., 2014), rice (Oryza 
sativa L.; Spindel et al., 2013), soybean [Glycine max (L.) 
Merr.; Sonah et al., 2013], and sorghum [Sorghum bicolor 
(L.) Moench; Ma et al., 2012].

So far, in cotton, SNP development has progressed 
using different approaches (Byers et al., 2012; Gore et al., 
2014; Van Deynze et al., 2009). The first extensive work on 
SNP development reported the characterization and map-
ping of >1000 SNPs from 270 loci based on EST sequenc-
ing using an interspecific population (Van Deynze et al., 
2009). The first NGS-based SNP development in cotton 
employed the genome reduction on restriction site con-
servation (GR-RSC) method by using two accessions from 
G. hirsutum and two accessions from G. barbadense and 
was reported by Byers et al. (2012). They also used com-
petitive allele-specific PCR (KASP) genotyping chemistry 
to convert hundreds of SNPs into functional genotyping 
assays which were mapped on the cotton genome. There 
is only one report of small-scale GBS in Upland cot-
ton using a biparental population which developed and 
mapped 412 SNPs (Gore et al., 2014). We discovered thou-
sands of SNP markers based on the GBS methods using a 

diverse set of Upland cotton cultivars, and validated a set 
of SNPs by converting them into functional SNP geno-
typing assays using KASP. So far, no other work has been 
reported in Upland cotton to develop large numbers of 
SNPs based on GBS technology.

In this research, we first used GBS to identify poly-
morphic SNP markers using 11 diverse Upland cotton 
lines and random-mated recombinant inbred progeny 
derived from crosses using the 11 lines as parents. Then 
we tested a subset of the SNP markers in a panel of 154 
Upland cotton lines to validate their polymorphisms. 
Our objectives were to (i) rapidly develop a large number 
of SNPs using GBS, (ii) convert those SNPs to func-
tional genotyping assays, and (iii) validate the utility of 
the SNPs using diverse Upland cotton germplasm from 
around the world. Since the 11 Upland cotton cultivars 
represent the diverse pool of the U.S. cultivated cotton, 
SNPs identified in this research should be valuable to 
Upland cotton breeding.

Materials and Methods

Plant Materials
A set of 11 diverse Upland cotton lines (10 cultivars and 
one elite breeding line, Table 1) from major breeding 
programs across the United States were used as parents 
to develop a random-mated recombinant inbred 
population. The details of developing the random-
mated recombinant inbred population were previously 
described by Jenkins et al. (2008) and Fang et al. (2014). 
The recombinant inbred lines used in the current 
research are C5S6 (five cycles of random-mating and six 
generations of self-pollination; Tables S1 and S2).

DNA Isolation, Library Preparation,  
and Sequencing
Recombinant inbred lines (RILs) and 11 parents were 
grown in a greenhouse in 2013 in New Orleans, LA. 
Young leaves were collected from each RIL, along 

Table 1. Eleven Upland cotton cultivars that were used 
for random-mated recombinant inbred population 
development and single nucleotide polymorphism 
discovery.†

Cultivar Place and source of origination

1 Acala Ultima California Planting Cotton Seed Distributors (Shafter, CA)
2 Tamcot Pyramid Texas A&M University (College Station, TX)
3 Coker 315 Coker Pedigreed Seed Co. (Hartsville, SC)
4 Stoneville 825 Stoneville Pedigreed Seed Co. (Stoneville, MS)
5 Fibermax 966 Bayer Crop Science (Lubbock, TX)
6 M240 USDA-ARS (Mississippi State, MS)
7 Paymaster HS26 Paymaster Technologies, Inc. (Plainview, TX)
8 Deltapine Acala 90 Delta and Pine Land Co. (Scott, MS)
9 Suregrow 747 Sure-Grow Co. (Centre, AL)
10 Phytogen PSC 355 Phytogen Seeds (Indianapolis, IN)
11 Stoneville 474 Stoneville Pedigreed Seed Co. (Stoneville, MS)
† This table was taken from Fang et al. (2014).
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with their parents, and stored at –80°C. The genomic 
DNA was extracted from frozen leaves following 
the protocol previously described (Islam et al., 2014) 
with an additional RNAase A digestion step before 
binding of DNA to the column. The quality and 
quantity of DNA was measured using a Nanodrop 2000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA) as well as on a 1.5% agarose gel. DNAs from 37 and 
84 randomly selected RILs along with 11 parents (Tables 
S1 and S2) were sent to D2B, LLC (Ames, IA) and IGD 
(Cornell University, Ithaca, NY), respectively, for library 
preparation, sequencing, and subsequent bioinformatics. 
Data2Bio and IGD used different approaches to 
construct sequencing libraries. The protocols for library 
preparation and sequencing followed by D2B and IGD 
were described in Schnable et al. (2013) and Elshire et 
al. (2011), respectively. Briefly, D2B digested 48 DNA 
samples with two RE (NspI and BfuCI), followed by 
ligation with a single-stranded barcode oligonucleotide 
in one site. The restriction endonucleases NspI and BfuCI 
recognize a degenerate 5 bp sequence (RCATG, where R 
is A or G) and 4 bp sequence (GATC), respectively. The 
other site was ligated with an oligonucleotide which was 
complementary to amplification primer. On the other 
hand, IGD used ApeKI, a type II restriction endonuclease 
that recognizes a degenerate 5 bp sequence (GCWGC, 
where W is A or T) to digest 95 DNA samples. Ligation 
between ApeKI-cut genomic DNA and adaptor was 
completed after digestion and 96-plexing of samples 
was done for sequencing. Two primers were used for 
amplification. Data2Bio sequenced libraries using two 
different methods: (i) Genome Reduction Level (GRL) 
3 (1 lane 100 bp single end [SE] hi-seq), and (ii) GRL2 
(2 lanes 100 bp SE hi-seq). Meanwhile, IGD sequenced 
following only one method (1 lane 86 bp reads) using a 
Genome Analyzer 2000 (Illumina, Inc, San Diego, CA).

Processing of Illumina Raw Sequence Data  
and SNP Calling
In case of D2B, raw reads were trimmed initially using 
their own pipeline for low quality bases according to 
error tolerance rate £3%. The SNP sequences with >50 
bases were aligned to consensus reference sequences. 
Uniquely mapped SNP sequences (£2 mismatches every 
36 bp and <5 bases for every 75 bp as tails) were used for 
SNP discovery. Polymorphic bases of detected SNPs were 
supported by at least three reads of the respective SNP. 
A SNP was called as heterozygous in a given sample if at 
least two reads supported each of at least two different 
alleles and each of the two read types separately comprised 
>20% of the reads aligning to that site, and when the sum 
of the reads supporting those two alleles comprised at 
least 90% of all reads covering the site. The putative SNPs 
were then filtered on the basis of allele number = 2, minor 
allele frequency (MAF) ³ 10%, heterozygosity rate (HR) 
£ 0.1, number of genotypes ³ 2. Finally, good SNPs were 
detected by filtering again on the basis of missing rate 
(MR) £ 20%.

Detailed description of related bioinformatics from 
raw reads to SNP calling can be found in Glaubitz et 
al. (2014) and Elshire et al. (2011) for IGD. The SNP 
sequences provided by IGD were finally filtered in 
our laboratory. Filtering criteria were MR £ 20%, 
allele number = 2, MAF ³ 10%, HR £ 0.1, number of 
genotypes ³ 2. Polymorphism and MAF among the 
parents and RILs were checked separately for each of 
the filtered SNPs. The SNPs with > 20% MAF difference 
between average of parents and RILs were discarded. 
Monomorphic SNPs either among parents and/or 
RILs were also discarded. The SNP nomenclature was 
created in our laboratory starting with CFB (cotton fiber 
bioscience), followed by a serial number.

Alignment and Functional Annotation of SNPs
Alignment of filtered SNP markers from D2B and IGD to 
the USDOE Joint Genome Institute (JGI, Walnut Creek, 
CA) G. raimondii genome sequence (v.2.1; Paterson et al., 
2012) was performed using BLASTN. The sequences of 
tags flanking SNPs were used as queries. The threshold 
was set as follows: percentage of length of alignment was 
³0.9; mismatches were £5; and at most, one £3 bp gap. 
When a tag gave significant alignments with a minimum 
bit score of 50, it was taken as having a real hit.

To do functional annotation, SNP loci were aligned 
to the JGI G. raimondii genome sequence (v.2.1) with 
the GSNAP software program (Paterson et al., 2012; Wu 
and Nacu, 2010). These loci were assigned to the At or Dt 
subgenome using the PolyCat software program (Page et 
al., 2013). The number of SNP loci per 5 Mb was calculated 
to generate a histogram for the reference genome, and the 
At and Dt subgenome assigned loci separately.

Validation of SNPs
A set of 111 SNPs evenly distributed along the whole G. 
raimondii genome were selected for validation using 154 
diverse Upland cotton varieties from around the world 
(Table S3). Of the 111 SNPs, 75 and 36 were generated from 
D2B and IGD data, respectively. First, the selected 111 
SNPs were converted to functional genotyping SNP assays 
using KASP technology (LGC Genomics, Beverly, MA). 
For each SNP, two allele-specific forward primers and one 
common reverse primer were designed. By using these 
primers, KASP assays were performed in a final reaction 
volume of 5.00 mL containing 1́  KASP reaction mix 
(LGC Genomics), 0.07 mL of assay mix (12 µM each allele-
specific forward primer and 30 µM reverse primer), and 
20–25 ng of genomic DNA. The Bio-Rad CFX96 RT-PCR 
Thermal cycler (Bio-Rad Corporation, Hercules, CA) was 
used for the following cycling conditions: 15 min at 94°C; 
10 touchdown cycles of 20 s at 94°C, and 60 s at 61 to 55°C 
(the annealing temperature for each cycle being reduced 
by 0.6°C per cycle); and 26 to 35 cycles of 20 s at 94°C and 
60 s at 55°C. Fluorescence detection of the reactions was 
performed using Bio-Rad CFX96 RT-PCR, and the data 
were analyzed using the CFX96 manager software.
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Results

Sequencing and Reads
Raw reads produced by D2B and IGD were quite different, 
since they used different methods during both library 
preparation and sequencing. A summary of sequence data 
generated from both D2B and IGD is included in Table 2. 
From a total of 379.8 million raw reads produced in D2B, 
approximately 3.8 million reads were discarded due to 
presence of low quality of sequences. An average of 662.77 
million trimmed base pairs per sample were read in D2B. 
Results also revealed that D2B produced greater read 
depth per sequence site (on average, 51.2 reads). Among 
the 11 parents, the number of trimmed reads ranged from 
2.43 (‘Suregrow 747’) to 8.83 (‘Fibermax 966’) million 
reads created in D2B, while average of RILs trimmed 
reads were 3.59 million (Table 3).

Approximately 24.6 million low quality reads were 
trimmed from 235.32 million total raw reads created in 
IGD. An average of 144.95 million trimmed base pairs 
per sample were read in IGD. On average, 7.9 reads per 
sequence site were found in IGD. With IGD data, the 
number of good reads ranged from 1.88 (‘Acala Ultima’) up 
to 2.85 (Fibermax 966) million reads among the 11 parents, 
and average of RILs was 2.25 million reads (Table 3).

SNP Discovery and Individual Genotype
A total of 123,942 filtered contig sequences were 
produced by D2B, while 73,632 contigs were produced 
by IGD (Table 2). Average length of contig sequences 
were 88 and 64 from data produced in D2B and IGD, 
respectively. A higher number of unfiltered SNPs were 
detected from data generated by IGD (32,644) compared 
with data generated by D2B (10,512). Similarly, the 
unfiltered to filtered SNPs ratio was also higher in IGD 
data (0.61) than D2B data (0.44). Surprisingly, a huge 
number of filtered SNPs were discarded from IGD 
data since they did not fulfill the criteria (MR £ 20%, 
allele number = 2, MAF £ 10%, HR £ 0.1, number of 

genotypes ³ 2) set up in our lab. All filtered SNPs were 
submitted to dbSNP (accessions numbers 1,387,933,573 
to 1,387,939,389) and also listed in Tables S4 and S5. 
Finally, 4441 and 1176 good SNPs from D2B and IGD, 
respectively, were used for further analysis.

Percentages of genotypic categories of filtered SNPs 
created during GBS of 11 parents and RIL average 
were comparable in both D2B and IGD data except the 
homozygote alternate allele and missing categories for Acala 
Ultima (Table 3). The ranges of percentages of genotypic 
categories were 52.1 to 69.9 and 46.1 to 62% for homozygote 
major allele; 26.9 to 36.1 and 6.1 to 34.1% for homozygote 
minor allele; 0.2 to 13.2 and 1.0 to 19.8% for heterozygote; 
1.0 to 7.3 and 3.5 to 28.1% for missing values in data 
generated from D2B and IGD, respectively. Comparing 
among cotton lines, Acala Ultima showed the highest 
rate of heterozygosity in both data from D2B (13.2%) and 
IGD (19.8%). Minor allele frequency is one of the effective 
indicators for prediction of the success rate of a SNP marker. 
In this study, the distribution of usable SNPs from data 
generated in D2B and IGD is illustrated in Fig. 1. The SNPs 
obtained from IGD data were evenly distributed across 
the MAF 0.10 to 0.50, while SNPs acquired from data D2B 
mostly clustered between MAF 0.12 to 0.22.

Alignment and Distribution of SNPs  
in the Cotton Genome
In total, 5617 (4441 and 1176 from D2B and IGD, 
respectively) high quality polymorphic SNPs contig 
sequences were aligned to the G. raimondii reference 
genome sequences. A total of 3963 (3156 and 807 from 
D2B and IGD, respectively) SNPs produced a significant 
hit, and could be aligned to the reference genome (Table 
S6). The remaining 1654 markers are most likely located 
in unique regions of the At subgenome that are not 
homeologous with the reference D5 genome. All aligned 
SNPs loci were assigned to the At or Dt subgenome 
and histograms were generated by counting SNPs in 
each 5 Mb interval (Fig. 2). Out of 3963 aligned SNPs, 
1071 and 1223 were assigned to At and Dt subgenome, 
respectively, using software program PolyCat (Page 
et al., 2013). Histograms revealed that SNP loci were 
evenly distributed in the cotton reference genome, 
except for a few large clusters on chromosomes 1, 8, and 
9. The highest number of SNPs loci were mapped on 
chromosome 9 between 40 and 50 Mb, followed by on 
chromosome 8 between 40 and 50 Mb. At subgenome 
assigned SNP loci were more or less evenly distributed to 
the whole genome, while Dt subgenome assigned SNPs 
produced two large clusters on chromosomes 1 and 9. To 
understand why SNPs on chromosome 9 between 40 and 
50 Mb showed more diversity, we separated those SNPs 
and observed the genotype (Table S7). Cultivar FM966 
accounts for most of the diversity in the interval, and 
‘Tamcot Pyramid’ showed some heterozygosity.

To investigate the structural, functional, and 
evolutionary impact of the filtered SNPs, we analyzed 
the annotations of the GBS SNP loci (Fig. 3). We found 

Table 2. Summary statistics of sequence reads and 
single nucleotide polymorphism (SNP) information 
produced by genotyping by sequencing.

Item Data2Bio† IGD‡

Total raw reads per lane (million) 379.80 235.32
Total trimmed reads per lane (million) 375.99 210.63
Average raw bp per sample per lane (million) 687.92 161.94
Total trimmed bp per sample per lane (million) 662.77 144.95
Average reads per SNP site/sample 51.20 7.90
Total tags after filter 123,942 73,632
Average length (base) 85 64
Total unfiltered SNPs 10,512 32,644
Total filtered SNPs 4,663 19,925
Total used SNPs 4,441 1,176
Total aligned SNPs 3,156 807
† Data2Bio results are combined from GRL2 and GRL3. Data2Bio, LLC, Ames, IA.
‡ IGD, Institute for Genome Diversity, Cornell University, Ithaca, NY.
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that 11.56% of these GBS SNPs resided in exons, while 
9.94% were in introns. However, the published D 
genome is comprised of 5.95% exons and 6.88% introns 
(Paterson et al., 2012).

Validation and Utility of GBS SNPs
One-hundred-fifty-four diverse Upland cotton varieties, 
originating from 25 countries (Fang et al., 2013), were 
chosen for validation of a set of selected GBS SNPs (Table 
S3). Out of 111 selected GBS SNPs, 75 originated from 
D2B and 36 were from IGD data (Table 4). These selected 

SNPs reside on all 13 reference chromosomes and are 
evenly distributed along the whole G. raimondii genome 
(Table S8). Of the 75 SNPs from D2B data, 56 (74.7%) 
were amplified using KASP genotyping assay, while 18 
(50.0%) out of 36 SNPs from IGD data were successfully 
converted into a KASP assay. Of the total 74 amplified 
SNPs, 58 were codominant, while remaining 16 were 
dominant. Sixty nine (93.2%) SNPs gave polymorphic 
results. Codominant polymorphic SNP assays produced 
three distinguishable clusters (homozygotes for 2 alleles 
and heterozygote), while dominant but polymorphic 

Table 3. Summary of individual sequence and genotype information of filtered single nucleotide polymorphisms 
(SNPs) of 11 parents and their recombinant inbred line (RIL) average.

Sample†

Data2Bio‡ IGD§

Genotype

Reads (million) bp (million)

Genotype

Reads (million) bp (million)
Homozygote 
(major allele)

Homozygote 
(minor allele) Heterozygote Missing

Homozygote 
(major allele)

Homozygote 
(minor allele) Heterozygote Missing

 —————————— % ——————————  —————————— % —————————— 

AU 52.1 29.0 13.2 5.7 7.64 651.25 46.1 6.1 19.8 28.1 1.88 120.23

TP 57.7 36.1 0.9 5.2 4.50 386.00 59.5 34.1 1.3 5.0 2.30 147.23

Coker315 56.5 26.9 11.4 5.2 3.43 288.37 58.7 25.9 8.1 7.4 2.27 145.38

ST825 64.4 31.1 1.1 3.4 4.63 392.35 64.5 27.6 1.7 6.2 2.19 140.32

FM966 60.7 33.6 3.4 2.4 8.83 760.89 61.3 32.8 2.4 3.5 2.85 182.20

M240 62.4 35.2 0.2 2.2 3.78 324.11 63.7 28.2 1.5 6.6 2.41 154.47

HS26 64.4 32.8 0.3 2.5 6.01 505.51 54.8 38.7 1.3 5.2 2.49 159.34

DP90 57.6 30.9 5.4 6.2 3.36 279.10 60.2 27.7 7.7 4.4 2.50 160.18

SG747 63.6 31.0 0.5 4.9 2.43 205.23 66.6 27.6 1.0 4.9 2.36 151.06

PSC355 59.6 29.5 9.7 1.2 5.23 443.21 57.3 27.7 6.7 8.2 2.20 141.08

ST474 69.9 28.6 0.4 1.0 5.37 447.14 62.0 27.6 3.9 6.6 2.70 172.86

RIL avg. 58.8 32.4 1.6 7.3 3.59 303.33 58.5 29.0 5.9 6.6 2.25 143.93
† Cultivar name abbreviations: AU, Acala Ultima; TP, Tamcot Pyramid; ST, Stoneville; FM, Fibermax; DP, Deltapine; HS, Paymaster HS; PSC, Phytogen; SG, Suregrow.
‡ Data2Bio results are combined from GRL2 and GRL3. Data2Bio, LLC, Ames, IA.
§ IGD, Institute for Genome Diversity, Cornell University, Ithaca, NY.

Figure 1. Distribution of filtered single nucleotide polymorphisms (SNPs) according to their minor allele frequency (MAF). (a) Data2Bio, 
Ames, IA. (b) Institute for Genome Diversity (IGD), Cornell University.
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Figure 2. Histogram of genotyping by sequencing single nucleotide polymorphism (SNP) markers in 5 megabase (Mb) intervals of the 
G. raimondii reference genome.
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markers gave two different clusters. Monomorphic SNP 
assays showed only one homozygote allele cluster (Fig. 4).

To investigate the potential utility of SNP assays in 
breeding, several observations could be made from the 
genotype pattern of 58 polymorphic and codominant 
KASP SNP assays within the 154 cotton lines. Of the 154 
Upland cotton lines, no two individuals shared the same 
genotype across all SNP assays. Of the 11 parents initially 
used for GBS library construction, each had a unique 
genotype. Results also revealed that an average HR of 
10.8% was observed across all SNP assays, with the highest 
HR of any assay being 34.8% (Table 4). Of the 58 assays 
tested, 52 (89.7%) had an MAF > 10% and 33 (57.0%) had 
an MAF > 20%, with an average MAF = 25.2%.

Discussion
Our objective was to develop a large set of polymorphic 
markers with wide applicability to cultivated Upland 
cotton varieties. By sequencing 11 diverse cultivars and 
their random-mated progeny, we were able to identify 
5617 SNPs that met our criteria for quality and minor 
allele frequency. We converted 111 of these SNPs into 
KASP assays, which we tested on 154 cultivars from 25 

countries. Despite the narrow genetic base of cultivated 
cotton, no two cultivars showed identical genotypes 
even in this small subset of SNPs. The large-scale set of 
SNPs will no doubt further differentiate the haplotypes 
that exist in the elite cotton germplasm and be useful to 
genetic mapping in cotton.

Figure 4. Sample genotyping plots of a diverse set of Upland cot-
ton cultivars generated from Bio-Rad CFX96 manager software 
during competitive allele specific polymerase chain reaction 
(KASP) assay genotyping of selected genotyping by sequencing 
(GBS) single nucleotide polymorphisms (SNPs). (a) Codominant 
polymorphic SNP showed clear separation of two alleles; (b) 
SNP showed dominant reaction; (c) SNP was monomorphic.

Figure 3. Comparison of the annotation of genotyping by 
sequencing (GBS) single nucleotide polymorphism (SNP) 
loci with the overall annotation of the G. raimondii reference 
genome. UTR, untranslated region.
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In this study, D2B generated a larger number of reads 
with higher individual site depth than IGD. This may be 
due to several reasons. One of the notable reasons was 
that D2B used altogether three lanes 100 bp SE Hi-seq 
during sequencing, while IGD used only one lane of 84 
bp reads. The average individual base pairs generated 
from raw sequences of D2B and IGD were 831.1 and 151.5 
Mb, respectively. Although the number of unfiltered 
SNPs was higher from IGD than D2B, the number 
of final usable SNPs discovered from D2B data was 
higher than that from IGD data. This may be due to the 
modified GBS protocol used by D2B which incorporates 
two RE. This enabled D2B to produce more uniform 
GBS libraries with different overhangs at each end of the 
digested fragments. They also used primers amplified on 
non barcode site to further reduce the number of targeted 
sites for analysis (Schnable et al., 2013).

Minor allele frequency is one of the key indicators 
to detect SNPs with real polymorphism and influence 
the success of SNPs in the subsequent genotypic assay, 
since SNPs with low MAF based on the NGS detection, 
were less likely to be polymorphic than SNPs with 
higher MAF. MAF also affects the application of SNPs as 
molecular markers by influencing the type of information 
provided by the markers in different populations. 
During mapping studies, it is desirable to maximimize 
the number of polymorphic markers by selecting SNPs 
with moderate MAF. It has been shown by simulation 
that map-independent imputation is significantly more 
accurate for markers with MAF > 0.1 (Rutkoski et al., 
2013). Hence, we discarded SNPs having MAF < 10% 
among the 11 upland cotton cultivars and their random 
mated progenies. The SNPs having MAFs within clusters 
evenly spaced across the cotton genome will help to get 
available haplotypes with high-MAF SNPs (i.e., MAF 
³ 0.1), improving detection of heterozygosity for any 
assayed genotype sample, while lower-MAF SNPs (MAF 
£ 0.1) tend to come from a specific origin and improve 
detection of uncommon haplotypes.

Different groups have detected SNPs in crop species, 
including wheat, barley (Poland et al., 2012), cotton (Gore 
et al., 2014), rice (Spindel et al., 2013), soybean (Sonah et 
al., 2013), potato (Solanum tuberosum L.; Uitdewilligen et 
al., 2013), and sorghum (Ma et al., 2012). However, unlike 
the present study, most of these were conducted using 
only two parents and a mapping population to generate 
genetic maps (Gore et al., 2014; Ma et al., 2012; Poland 
et al., 2012; Spindel et al., 2013). A total of 10,120 and 
129,156 SNPs were detected using a set of eight diverse 
varieties of soybean (Sonah et al., 2013) and 83 tetraploid 
potato varieties (Uitdewilligen et al., 2013), respectively. 
It is difficult to use these data to compare the underlying 
diversity of those crops with cotton, since our filtering 
criteria were not the same. Our 5617 high quality SNPs 
are significantly higher than the 412 GBS-based SNPs 
from cotton which were already used, along with 429 
simple sequence repeat markers, to construct a linkage 
map and subsequent QTL analysis (Gore et al., 2014).

Some GBS approaches use methylation-sensitive 
RE, or RE which are predicted to cut less frequently in 
intergenic regions because of sequence biases. The IGD 
used ApeKI which is methylation sensitive, but D2B 
used both methylation sensitive BfuCI and methylation 
insensitive NspI (Elshire et al., 2011; Schnable et al., 
2013). We observed that our SNPs were about twice 
as likely to be located in exons or introns as would be 
expected by chance. This bias increases the likelihood 
that the markers will divide gene-rich regions, and that 
the marker set may include actual causative mutations. 
Despite this bias, the markers we identified were 
distributed across all 26 G. hirsutum chromosomes. 
Using the reference G. raimondii genome and the 
PolyCat software to assign loci to subgenomes, we were 
able to assign physical map locations to 1071 SNP loci 
in the At subgenome and 1223 in the Dt subgenome. 
Therefore, on average, we expect one marker per 1.6 Mb 
in the 1.7 gigabase At subgenome, and one marker per 
736 kilobase in the 900 Mb Dt subgenome (Wendel, 
1989; Wendel and Cronn, 2003). Previous studies also 
demonstrated that SNPs identified based on various NGS 
technology, including GBS, were evenly distributed, such 
as in cotton, using the GR-RSC approach (Byers et al., 
2012); in soybean, by using GBS method (Sonah et al., 
2013). Well distributed markers in genes are especially 
useful for breeders and genetics researchers.

Validation of detected SNPs is essential to establish 
the utility of these predicted polymorphisms for 
practical plant breeding applications. A number of SNP 
genotyping platforms, such as GoldenGate, Infinium, 
Taqman, and KASP assays, are available to convert 
SNPs to functional genotypic assays. However, in this 
study, because of its cost-effective and flexible nature, 
the KASP assay was designed for 111 SNPs spaced across 
the cotton genome. Few reports are available on the 
development of KASP assays in crop plants. For example, 
Allen et al. (2011) developed 1114 KASP SNP assays for 
validation on 23 wheat cultivars and also incorporated 

Table 4. Competitive allele-specific polymerase chain 
reaction (KASP) assay genotyping information of 
selected single nucleotide polymorphisms (SNPs) using 
154 diverse Upland cotton germplasm.

Item Data2Bio† IGD‡ Both

Total SNPs assayed 75 36 111
Functional SNPs 56 18 74
Functional SNPs percentage 74.7 50.0 66.7
Codominant 45.0 13.0 58.0
Dominant 11.0 5.0 16.0
Polymorphic 52.0 17.0 69.0
Percentage of polymorphic 92.9 94.4 93.2
Average heterozygosity, % 11.5 8.2 10.8
Average minor allele frequency, % 24.7 26.7 25.2
Average missing data, % 2.1 1.5 2.0
† Data2Bio, LLC, Ames, IA.
‡ IGD, Institute for Genome Diversity, Cornell University, Ithaca, NY.
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SNP markers into the genetic map of wheat. In the 
case of common bean (Phaseolus vulgaris L.), KASP 
assays have been developed for 94 SNPs and used for 
analyzing genetic diversity in 70 accessions (Cortes et 
al., 2011). Hiremath et al. (2012) developed KASP assays 
for 2005 SNPs in chickpea, and used these for genetic 
diversity analysis and genetic mapping in chickpea and 
comparative mapping in legumes. In cotton, Byers et al. 
(2012) developed KASP assays for 1052 SNPs that were 
used for genetic mapping in cotton and validated in 48 
cotton varieties. Thus, these four studies highlight the 
significance of KASP assays for SNP genotyping on a 
large scale for genetics and breeding applications. In 
the present study, though 111 SNPs were attempted for 
conversion into KASP assays, only 74 (66.7%) markers 
could be successfully converted. The failure of the 
remaining SNP markers (33.3%) to be validated is likely 
due to the presence of duplicate or paralogous loci, 
incorrect primer design near the SNP, identification of 
fake SNPs initially, and/or the need to optimize PCR 
conditions. This conversion rate is higher than that of the 
other KASP study on cotton (35.8%; Byers et al., 2012). 
This rate of conversion from selected SNPs to functional 
KASP assays could probably be increased further 
with optimization of primer design and amplification 
conditions. Among the 74 successfully converted 
markers, five showed monomorphic reactions, although 
they were polymorphic among the 11 parents used in 
GBS genotyping. This may be associated with false SNP 
calling during GBS data analysis. To determine further 
usefulness of the GBS SNPs in practical breeding, we 
analyze the genotypic data of polymorphic KASP assays 
among 154 Upland cotton cultivars. The HR, MAF, and 
genotypic categories once again highlighted the diversity 
among the tested cotton cultivars.

Although GBS allows simultaneous SNP discovery 
and scoring, each GBS protocol will only identify and 
score SNPs that are adjacent to the RE sites used. We used 
multiple GBS protocols with different RE to collect our 
set of SNPs, and converted some of these to KASP assays. 
We anticipate that different sets of KASP markers will 
be used sequentially to map QTLs and genes in cotton 
varieties. Knowledge of the physical locations of the SNP 
loci makes this approach feasible and economical, even 
when compared with GBS. Since a small set of markers 
can assign a trait to a chromosome arm, only a small set 
of markers need be interrogated at first. As the genetic 
interval is narrowed, more markers may be needed than 
sites of a given RE exist on that interval. Since our set 
of diverse parents was proven to capture much of the 
diversity in Upland cotton cultivars, we may increase our 
set of markers by additional rounds of GBS with different 
RE on these 11 lines. Fine mapping of a trait would then 
proceed by KASP assays derived from SNPs that are 
located within the genetic interval. This approach would 
allow finer mapping than a single round of GBS, with the 
expense of only a few dozen KASP assays.

In conclusion, we have demonstrated the utility 
of GBS on carefully selected cultivars for the large-
scale development of SNP markers in Upland cotton, 
an important crop with limited diversity. The markers 
reported here can be used in assays independently of 
the GBS technique and will be useful to breeders and 
cotton researchers.

Supplemental Information Available
Supplemental information is included with this article.
Table S1. Names of RILs and their crosses that were 

sent to Data2Bio for GBS library preparation and 
sequencing.

Table S2. Names of RILs and their crosses that were sent 
to IGD, Cornell University for library preparation and 
sequencing.

Table S3. The names, PI numbers, countries of original 
collection, and pedigree of 154 Upland cotton 
cultivars used in this study.

Table S4. List of filtered SNPs generated in Data2Bio.
Table S5. List of good SNPs used in this research 

originated from IGD, Cornell University
Table S6. List of SNPs aligned to G. raimondaii genome 

and their contig sequences.
Table S7. Allele produced by SNP loci mapped on 

chromosome 9 between 40 and 50 megabase (Mb).
Table S8. SNPs selected for KASP genotyping of 154 

diverse Upland cotton lines.

Acknowledgments
This research was funded by United States Department of Agriculture-
Agricultural Research Service CRIS projects 6435-21000-017-00D, 6406-
21000-12-00D, and Cotton Incorporated Project 10-747. We thank Mrs. 
Ping Li for her help during validation. Our appreciation goes to Data2Bio, 
LLC, Ames, IA, and Institute for Genome Diversity, Cornell University, 
for their excellent support in library construction, sequencing, and 
bioinformatics. Mention of trade names or commercial products in this 
article is solely for the purpose of providing specific information and does 
not imply recommendation or endorsement by the U. S. Department of 
Agriculture, which is an equal opportunity provider and employer.

References
Allen, A.M., G.L. Barker, S.T. Berry, J.A. Coghill, R. Gwilliam, S. Kirby, 

et al. 2011. Transcript-specific, single-nucleotide polymorphism 
discovery and linkage analysis in hexaploid bread wheat (Triticum 
aestivum L.). Plant Biotechnol. J. 9:1086–1099. doi:10.1111/j.1467-
7652.2011.00628.x

Byers, R.L., D.B. Harker, S.M. Yourstone, P.J. Maughan, and J.A. Udall. 
2012. Development and mapping of SNP assays in allotetraploid 
cotton. Theor. Appl. Genet. 124:1201–1214. doi:10.1007/s00122-011-
1780-8

Cortes, A.J., M.C. Chavarro, and M.W. Blair. 2011. SNP marker diversity 
in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 
123:827–845. doi:10.1007/s00122-011-1630-8

Doyle, J.J., L.E. Flagel, A.H. Paterson, R.A. Rapp, D.E. Soltis, P.S. Soltis, 
and J.F. Wendel. 2008. Evolutionary genetics of genome merger 
and doubling in plants. Annu. Rev. Genet. 42:443–461. doi:10.1146/
annurev.genet.42.110807.091524

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. 
Buckler, and S.E. Mitchell. 2011. A robust, simple genotyping-by-
sequencing (GBS) approach for high diversity species. PLoS ONE 
6:e19379. doi:10.1371/journal.pone.0019379

http://dx.doi.org/10.1111/j.1467-7652.2011.00628.x
http://dx.doi.org/10.1111/j.1467-7652.2011.00628.x
http://dx.doi.org/10.1007/s00122-011-1780-8
http://dx.doi.org/10.1007/s00122-011-1780-8
http://dx.doi.org/10.1007/s00122-011-1630-8
http://dx.doi.org/10.1146/annurev.genet.42.110807.091524
http://dx.doi.org/10.1146/annurev.genet.42.110807.091524
http://dx.doi.org/10.1371/journal.pone.0019379


10 of 10 the plant genome  march 2015  vol. 8, no. 1

Fang, D.D., J.N. Jenkins, D.D. Deng, J.C. McCarty, P. Li, and J. Wu. 2014. 
Quantitative trait loci analysis of fiber quality traits using a random-
mated recombinant inbred population in Upland cotton (Gossypium 
hirsutum L.). BMC Genomics 15:397. doi:10.1186/1471-2164-15-397

Fang, D.D., L.L. Hinze, R.G. Percy, P. Li, D.D. Deng, and G. Thyssen. 2013. 
A microsatellite-based genome-wide analysis of genetic diversity 
and linkage disequilibrium in Upland cotton (Gossypium hirsutum 
L.) cultivars from major cotton-growing countries. Euphytica 
191:391–401. doi:10.1007/s10681-013-0886-2

Glaubitz, J.C., T.M. Casstevens, F. Lu, J. Harriman, R.J. Elshire, Q. Sun, 
and E.S. Buckler. 2014. TASSEL-GBS: A high capacity genotyping 
by sequencing analysis pipeline. PLoS ONE 9:e90346. doi:10.1371/
journal.pone.0090346

Gore, M.A., D.D. Fang, J.A. Poland, J. Zhang, R.G. Percy, R.G. Cantrell, 
G. Thyssen, and A.E. Lipka. 2014. Linkage map construction 
and quantitative trait locus analysis of agronomic and fiber 
quality traits in cotton. The Plant Genome 7 (1). doi:10.3835/
plantgenome2013.07.0023

Harper, A.L., M. Trick, J. Higgins, F. Fraser, L. Clissold, R. Wells, et al. 
2012. Associative transcriptomics of traits in the polyploid crop 
species Brassica napus. Nat. Biotechnol. 30:798–802. doi:10.1038/
nbt.2302

Hiremath, P.J., A. Kumar, R.V. Penmetsa, A. Farmer, J.A. Schlueter, S.K. 
Chamarthi, et al. 2012. Large-scale development of cost-effective 
SNP marker assays for diversity assessment and genetic mapping in 
chickpea and comparative mapping in legumes. Plant Biotechnol. J. 
10:716–732. doi:10.1111/j.1467-7652.2012.00710.x

Islam, M.S., L. Zeng, C.D. Delhom, X. Song, H.J. Kim, P. Lim, and D.D. 
Fang. 2014. Identification of cotton fiber quality quantitative trait 
loci using intraspecific crosses derived from two near-isogenic 
lines differing in fiber bundle strength. Mol. Breed. 34:373–384. 
doi:10.1007/s11032-014-0040-4

Jenkins, J.N., J.C. McCarty, O.A. Gutierrez, R.W. Hayes, D.T. Bowman, 
C.E. Watson, and D.C. Jones. 2008. Registration of RMUP-C5, a 
random mated population of Upland cotton germplasm. J. Plant 
Reg. 2:239. doi:10.3198/jpr2008.02.0080crg

Li, F., G. Fan, K. Wang, F. Sun, Y. Yuan, G. Song, et al. 2014. Genome 
sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 
46:567–572. doi:10.1038/ng.2987

Ma, X.F., E. Jensen, N. Alexandrov, M. Troukhan, L. Zhang, S. Thomas-
Jones, et al. 2012. High resolution genetic mapping by genome 
sequencing reveals genome duplication and tetraploid genetic 
structure of the diploid Miscanthus sinensis. PLoS ONE 7:e33821. 
doi:10.1371/journal.pone.0033821

Maughan, P.J., S.M. Yourstone, E.N. Jellen, and J.A. Udall. 2009. 
SNP discovery via genomic reduction, barcoding, and 
454-pyrosequencing in amaranth. Plant Genome 2:260. 10.3835/
plantgenome2009.08.0022. doi:10.3835/plantgenome2009.08.0022

Naoumkina, M., G. Thyssen, D.D. Fang, D.J. Hinchliffe, C. Florane, K.M. 
Yeater, J.T. Page, and J.A. Udall. 2014. The Li2 mutation results 
in reduced subgenome expression bias in elongating fibers of 
allotetraploid cotton (Gossypium hirsutum L.). PLoS ONE 9:e90830. 
doi:10.1371/journal.pone.0090830

Page, J.T., A.R. Gingle, and J.A. Udall. 2013. PolyCat: A resource for 
genome categorization of sequencing reads from allopolyploid 

organisms. G3: Genes Genomes Genet. 3:517–525. doi:10.1534/
g3.112.005298.

Paterson, A.H., J.F. Wendel, H. Gundlach, H. Guo, J. Jenkins, D. Jin, et 
al. 2012. Repeated polyploidization of Gossypium genomes and 
the evolution of spinnable cotton fibres. Nature 492:423–427. 
doi:10.1038/nature11798

Poland, J.A., P.J. Brown, M.E. Sorrells, and J.L. Jannink. 2012. 
Development of high-density genetic maps for barley and wheat 
using a novel two-enzyme genotyping-by-sequencing approach. 
PLoS ONE 7:e32253. doi:10.1371/journal.pone.0032253

Rutkoski, J.E., J. Poland, J.-L. Jannink, and M.E. Sorrells. 2013. 
Imputation of unordered markers and the impact on genomic 
selection accuracy. G3: Genes Genomes Genet. 3:427–439.

Schnable, P.S., S. Liu, and W. Wu. 2013. Genotyping by next-generation 
sequencing. U.S. Patent Appl. no. 13/739,874.

Sonah, H., M. Bastien, E. Iquira, A. Tardivel, G. Legare, B. Boyle, et al. 2013. 
An improved genotyping by sequencing (GBS) approach offering 
increased versatility and efficiency of SNP discovery and genotyping. 
PLoS ONE 8:e54603. doi:10.1371/journal.pone.0054603

Spindel, J., M. Wright, C. Chen, J. Cobb, J. Gage, S. Harrington, et al. 
2013. Bridging the genotyping gap: Using genotyping by sequencing 
(GBS) to add high-density SNP markers and new value to traditional 
bi-parental mapping and breeding populations. Theor. Appl. Genet. 
126:2699–2716. doi:10.1007/s00122-013-2166-x

Uitdewilligen, J.G., A.M. Wolters, B.B. D’Hoop, T.J. Borm, R.G. Visser, 
and H.J. van Eck. 2013. A next-generation sequencing method for 
genotyping-by-sequencing of highly heterozygous autotetraploid 
potato. PLoS ONE 8:e62355. doi:10.1371/journal.pone.0062355

USDA. 2014. Cotton and wool yearbook: Dataset. http://usda.mannlib.
cornell.edu/usda/ers/CWS//2010s/2014/CWS-03-12-2014.pdf 
(accessed 25 July 2014).

Van Deynze, A., K. Stoffel, M. Lee, T.A. Wilkins, A. Kozik, R.G. Cantrell, 
et al. 2009. Sampling nucleotide diversity in cotton. BMC Plant Biol. 
9:125. doi:10.1186/1471-2229-9-125

Wallace, T.P., D. Bowman, B.T. Campbell, P. Chee, O.A. Gutierrez, R.J. 
Kohel, et al. 2008. Status of the USA cotton germplasm collection 
and crop vulnerability. Genet. Resour. Crop Evol. 56:507–532. 
doi:10.1007/s10722-008-9382-2

Wang, S., E. Meyer, J.K. McKay, and M.V. Matz. 2012. 2b-RAD: A simple 
and flexible method for genome-wide genotyping. Nat. Methods 
9:808–810. doi:10.1038/nmeth.2023

Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, et al. 2011. The genome 
of the mesopolyploid crop species Brassica rapa. Nat. Genet. 
43:1035–1039. doi:10.1038/ng.919

Wendel, J.F. 1989. New world tetraploid cottons contain old world cytoplasm. 
Proc. Natl. Acad. Sci. USA 86:4132–4136. doi:10.1073/pnas.86.11.4132

Wendel, J.F., and R.C. Cronn. 2003. Polyploidy and the evolutionary 
history of cotton. Adv. Agron. 78:139–186. doi:10.1016/S0065-
2113(02)78004-8

Wu, T.D., and S. Nacu. 2010. Fast and SNP-tolerant detection of complex 
variants and splicing in short reads. Bioinformatics 26:873–881. 
doi:10.1093/bioinformatics/btq057

Xu, X., S. Pan, S. Cheng, B. Zhang, D. Mu, P. Ni, et al. 2011. Genome 
sequence and analysis of the tuber crop potato. Nature 475:189–195. 
doi:10.1038/nature10158

http://dx.doi.org/10.1186/1471-2164-15-397
http://dx.doi.org/10.1007/s10681-013-0886-2
http://dx.doi.org/10.1371/journal.pone.0090346
http://dx.doi.org/10.1371/journal.pone.0090346
http://dx.doi.org/10.1038/nbt.2302
http://dx.doi.org/10.1038/nbt.2302
http://dx.doi.org/10.1111/j.1467-7652.2012.00710.x
http://dx.doi.org/10.3198/jpr2008.02.0080crg
http://dx.doi.org/10.1038/ng.2987
http://dx.doi.org/10.1371/journal.pone.0033821
http://dx.doi.org/10.3835/plantgenome2009.08.0022
http://dx.doi.org/10.1371/journal.pone.0090830
http://dx.doi.org/10.1038/nature11798
http://dx.doi.org/10.1371/journal.pone.0032253
http://dx.doi.org/10.1371/journal.pone.0054603
http://dx.doi.org/10.1007/s00122-013-2166-x
http://dx.doi.org/10.1371/journal.pone.0062355
http://dx.doi.org/10.1186/1471-2229-9-125
http://dx.doi.org/10.1007/s10722-008-9382-2
http://dx.doi.org/10.1038/nmeth.2023
http://dx.doi.org/10.1038/ng.919
http://dx.doi.org/10.1073/pnas.86.11.4132
http://dx.doi.org/10.1016/S0065-2113(02)78004-8
http://dx.doi.org/10.1016/S0065-2113(02)78004-8
http://dx.doi.org/10.1093/bioinformatics/btq057
http://dx.doi.org/10.1038/nature10158

