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Presenting native-like HIV-1 envelope 
trimers on ferritin nanoparticles improves their 
immunogenicity
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Abstract 

Background: Presenting vaccine antigens in particulate form can improve their immunogenicity by enhancing B cell 
activation.

Findings: We describe ferritin-based protein nanoparticles that display multiple copies of native-like HIV-1 envelope 
glycoprotein trimers (BG505 SOSIP.664). Trimer-bearing nanoparticles were significantly more immunogenic than 
trimers in both mice and rabbits. Furthermore, rabbits immunized with the trimer-bearing nanoparticles induced 
significantly higher neutralizing antibody responses against most tier 1A viruses, and higher responses (but not signifi-
cantly), to several tier 1B viruses and the autologous tier 2 virus than when the same trimers were delivered as soluble 
proteins.

Conclusions: This or other nanoparticle designs may be practical ways to improve the immunogenicity of envelope 
glycoprotein trimers.
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Findings
An HIV-1 subunit vaccine should induce a broad and 
potent neutralizing antibody (NAb) response against 
the envelope glycoprotein spike (Env) [1]. Soluble, stable 
mimics of the native spike, such as the BG505 SOSIP.664 
gp140 trimer, might be good starting points for such a 
vaccine [2–5]. These trimers bind virtually all known 
broadly neutralizing antibodies (bNAbs) but almost no 
non-neutralizing antibodies (non-NAbs), and adopt a 
native-like conformation with a well-defined structure 
[2, 6–8]. Furthermore, unlike other gp140 proteins, solu-
ble, adjuvanted BG505 SOSIP.664 trimers induce NAbs 
against the autologous, neutralization-resistant (tier 2) 
virus efficiently in animals [9]. Licensed subunit vaccines 
against viral pathogens, such as hepatitis B virus and 
human papillomavirus, are however particulate antigens 

[10]. The greater size and the capacity for multivalent 
antigen presentation and B cell receptor cross-linking 
provide such particulate vaccines with advantages over 
soluble proteins for inducing antibody responses [11]. 
For example, fusing eight influenza hemagglutinin (HA) 
trimers or engineered HA stem antigens to Helicobacter 
pylori ferritin greatly improved NAb responses against 
influenza in animals [12, 13].

Modeling showed that H. Pylori ferritin (GenBank 
accession no. NP_223316) could potentially present eight 
BG505 SOSIP.664 trimers. Therefore we fused the ferritin 
N-terminus, starting from Asp5, to the SOSIP.664 C-ter-
minus, separated by a Gly-Ser-Gly (GSG) linker (Fig. 1a). 
The SOSIP.664-ferritin plasmid was co-transfected into 
293F cells with a furin plasmid to maximize trimer cleav-
age and ensure it adopts a native conformation [14]. To 
select for antigenically and structurally well-folded Env 
proteins, the secreted nanoparticles and control trimers 
were purified using PGT145 bNAb-affinity chromatog-
raphy [15]. Judged by BN-PAGE and SDS-PAGE analysis 
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followed by Coomassie staining this purification method 
yielded highly pure (>95 % purity) SOSIP.664 trimer and 
SOSIP.664-ferritin protein preparations (Fig.  1b). SDS-
PAGE also confirmed that the SOSIP.664 component of 
the nanoparticles was cleaved efficiently between gp120 
and gp41 (Fig. 1b, left panel).

The antigenic structure of SOSIP.664 trimers and 
SOSIP.664-ferritin was compared using ELISA. Proteins 
were captured using Galanthus nivalis lectin and probed 
with bNAbs and non-NAbs (Fig. 1c). Several bNAbs that 
bind to distinct Env epitopes (VRC01, PGT121, PG9) 
showed similar binding to SOSIP.664 and SOSIP.664-
ferritin, moreover non-NAbs (F105 and F240) displayed 
similarly poor reactivity with both proteins (Fig.  1c). 
We did observe lower affinity of gp120/gp41 interface 
(8ANC195, 35O22 and PGT151) and gp41 (3BC315) 
bNAbs for SOSIP.664-ferritin, which might be explained 
by steric hindrance of neighboring trimers on the nano-
particle (Fig. 1c).

The purified nanoparticles were analyzed by negative 
stain electron microscopy (NS-EM). More than 70 % of 
the particles on the EM grid resembled ferritin cages 

with protruding spikes that were 30–40  nm in diam-
eter (Fig.  1d). When single particles were automatically 
picked and processed as described elsewhere [2], 2D class 
averages representing views along the three- and fourfold 
symmetry axes suggested that 65–80 % of the SOSIP.664-
ferritin particles were fully decorated with Env trimers 
(three and four spikes visible, respectively) (Fig. 1e). The 
lack of views along the twofold symmetry axis (i.e. six 
spikes visible) may be a result of the immobilization on 
the EM grid or flexibility of the GSG-linker that affects 
the alignment of the particles and visualization of each 
Env trimer.

We first immunized mice (approved by the AMC ani-
mal ethics committee: DMB-102836; n  =  8 mice per 
group) to compare the antibody response of SOSIP.664-
ferritin nanoparticles with soluble (i.e. monovalent) 
SOSIP.664 trimers. The anti-trimer binding responses 
were eightfold higher in mice vaccinated with nano-
particle-displayed trimers compared to soluble trim-
ers (medians: 86 vs. 686; P =  0.015) (Fig.  2a). We next 
immunized rabbits (approved by the Covance Insti-
tutional Animal Care and Use Committee (IACUC): 
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Fig. 1 Design and biochemical characterization of BG505 SOSIP.664-ferritin nanoparticles. a Top: model of eight BG505 SOSIP.664 trimers (PDB: 
4TVP) with gp120 subunits in blue and gp41 subunits in green, displayed on the H. Pylori ferritin nanoparticle (in violet, PDB: 3BVE), viewed down 
one of the threefold axes of the ferritin particle. The figure was drawn using Pymol [20]. Bottom: the BG505 SOSIP.664-gp140-ferritin construct. 
The hexa-arginine furin cleavage site (R6) [21], the SOS disulfide bond between gp120 and gp41 (C501–C605) [22], and the I559P substitution 
that facilitates trimerization [23] are indicated on the SOSIP.664 component, to which the ferritin moiety is linked via a Gly-Ser-Gly (GSG) spacer. b 
Coomassie-stained reducing and non-reducing SDS-PAGE (left) and BN-PAGE (right) gels comparing soluble SOSIP.664 trimers and SOSIP.664-ferritin 
nanoparticles. The nanoparticles were too large to enter BN-PAGE gels efficiently, but were visible at the top of the lanes (Fig. 1b, right panel, right 
lane). c Representative ELISA binding curves of a panel of antibodies to SOSIP.664 trimer (2.0 μg/ml) and SOSIP.664-ferritin (0.45 μg/ml) with 2G12 as 
loading control. d Unprocessed electron micrograph showing individual SOSIP.664-ferritin particles (indicated by arrows). Protein samples were pre-
pared on carbon-coated copper grids. Imaging was carried out using an FEI Tecnai T12 microscope operating at 120 keV [2]. Images were collected 
using a Tietz TemCam-F416 CMOS camera at 1 µm defocus with an average dose of 25 electrons/Å2 and a magnification of ×52,000. e 84 NS-EM 2D 
class averages of SOSIP.664-ferritin particles. The SOSIP.664 spikes (blue arrows) and the ferritin cage (magenta arrow) are highlighted in the top right 
2D class average image
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0082-14; n =  5 rabbits per group), using a triple DNA-
prime, protein-boost regimen (Fig. 2b). Given the limited 
group sizes and the large spread in neutralization titers 

generally observed in other HIV-1 vaccination studies 
[9], we included historic control sera from four rabbits to 
increase the statistical power of this study. These rabbits 
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Fig. 2 Induction of increased antibody responses by BG505 SOSIP.664-ferritin in mice and rabbits. a Eight BALB/C mice were immunized three 
times (at weeks 0, 4 and 12) with either 2.8 μg of BG505 SOSIP.664 trimer or BG505 SOSIP.664-ferritin protein formulated with 25 μg MPLA adjuvant. 
The midpoint binding (EC50) titers to BG505 SOSIP.664 trimer were determined at week 14 by Ni-NTA ELISA [2]; the median titers are denoted 
by horizontal lines. Statistical analysis was performed using a two-tailed Mann–Whitney U test. b Two groups of five New Zealand White rabbits 
received intramuscular immunizations at weeks 0, 4 and 12 with 200 μg of a non-adjuvanted DNA plasmid via electroporation of the quadriceps, 
followed by a protein boost at week 24 with 17 µg of protein in ISCOMATRIX™ adjuvant (75 units per rabbit) [24]. The DNA plasmids encoded either 
the soluble BG505 SOSIP.664 gp140 or the BG505 SOSIP.664 gp140-ferritin nanoparticles; none of the plasmids encoded furin. The protein boost 
was, correspondingly, either soluble SOSIP.664 trimers or SOSIP.664-ferritin particles, in both cases purified by a PGT145 bNAb column. The four 
historic control rabbits (indicated by circles in panel b) received identical DNA priming, but were then boosted with ISCOMATRIX™ adjuvanted (75 
units per rabbit) soluble BG505 SOSIP.664 trimers (40 μg) that had been purified using 2G12-affinity chromatography followed by size exclusion 
chromatography (SEC) [2], which are antigenically identical to PGT145-purified BG505 SOSIP.664 trimers [25]. Anti-trimer serum binding titers over 
the course of the experiment were tested in D7324-capture ELISA using 2G12/SEC purified D7324-tagged BG505 SOSIP.664 trimers (0.5 μg/ml), 
essentially as described before [2, 9]. The medians of the midpoint binding titers (±error) are plotted. Asterisks indicate significant differences at 
specific time points (two-tailed Mann–Whitney U test; *P < 0.05). c Midpoint neutralization (IC50) titers against the autologous neutralization-resist-
ant (tier 2) virus, BG505, and against the negative control, MLV, at week 26. d IC50 titers against a panel of heterologous neutralization-sensitive (tier 
1A and tier 1B) viruses at week 26. The IC50 titers in c and d were determined using the TZM-bl neutralization assay. The pre-bleed samples lacked 
neutralization activity (not shown). Neutralization assays were performed either at the Academic Medical Center (SF162, 6535.3, ZM197M, HXB2, 
DJ268.3, BaL, ZM109F, 94UG103, 92RW020, Q23env17 and MLV) or the Duke University Medical Center (DUMC) (BG505.T332 N, MN.3, MW965.26, 
Q259.d2.17, Ce1176_A3, Q769.d22, Q842.d12, YU2, Q23env17 and MLV). The fold difference in median IC50 titer (horizontal lines) is depicted below 
the graphs. The dotted horizontal lines in the BG505 SOSIP.664 group represent the median titers for the five animals from the current experiment, 
i.e. excluding the four control sera. The titers were very similar when the four control sera were included or excluded. Statistical differences between 
the nine trimer-immunized rabbits and the five nanoparticle-immunized rabbits were determined using a two-tailed Mann–Whitney U test



Page 4 of 5Sliepen et al. Retrovirology  (2015) 12:82 

were immunized with the soluble trimers in an inde-
pendent experiment using the same DNA prime + pro-
tein boost protocol (approved by the Covance IACUC: 
0001-14; n =  4 rabbits per group; unpublished results). 
As expected, the anti-trimer binding antibody responses 
rose and fell between immunizations, and were boosted 
by the protein-only immunization [9, 16]. The titers were 
two- to threefold higher at several time points for the 
rabbits given SOSIP.664-ferritin nanoparticles compared 
to the soluble trimers. Although the improved immu-
nogenicity was less pronounced in rabbits compared to 
mice, it is consistent with other observations showing the 
benefits of particulate antigen presentation [12, 17, 18] 
(Fig. 2b).

We used the TZM-bl cell neutralization assay and 
viruses from different clades to assess the serum NAb 
titers 2 weeks after the protein boost in rabbits [19]. Sera 
from 4/5 rabbits given the SOSIP.664-ferritin nanopar-
ticles neutralized the autologous BG505.T332  N tier 
2 virus, and the median titer in this group was higher 
than in the soluble trimer group (603 vs. 186). How-
ever, because of the small group sizes, the difference 
was not statistically significant (P =  0.34) (Fig.  2c). The 
NAb titers against heterologous tier 1 viruses were also 
higher in the rabbits that received SOSIP.664-ferritin 
nanoparticles (Fig.  2d). Median NAb titers against tier 
1A viruses were 10- to 90-fold higher in the nanoparti-
cle group: MN.3 (4,857 vs. 282; P = 0.019); SF162 (2,799 
vs. 31; P = 0.004); MW.965 (18,563 vs. 1,127; P = 0.019). 
For the more resistant tier 1B viruses the titers were also 
higher, although this did not reach statistical significance 
in all cases: 6535.3 (472 vs. 82; P = 0.029); BaL (171 vs. 
71; P = 0.083); DJ286.3 (195 vs. 64; P = 0.11). The tier 1B 
viruses HxB2, Q23env17, ZM109F and ZM197M and the 
tier 2 viruses 94UG103, 92RW020, Q259.d2.17, Q769.
d22, Q842.d12 (all clade A), YU2 (clade B) and Ce1176_
A3 (clade C) were not neutralized by any rabbit sera (data 
not shown).

Conclusions
We conclude from this exploratory study that the nan-
oparticle display of SOSIP.664 trimers improves the 
magnitude of the overall antibody response and neutrali-
zation breadth at the tier 1 level. We are seeking to solve 
the substantial problem of inducing a bNAb response (at 
the tier 2 level) by improving the design of native-like 
trimers such as BG505 SOSIP.664 and/or how they are 
used as immunogens. If and when this goal is achieved, 
the superior immunogenicity of a particulate antigen 
presentation should be valuable.
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