TOPOLOGICALLY NOVEL PHOSPHORUS COMPOUNDS AND METAL COMPLEXES

A Dissertation
by
SUGAM KHAREL
Submitted to the Office of Graduate and Professional Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Chair of Committee, John Gladysz
Committee Members, Janet Bluemel
Francois Gabbai
Sarbajit Banerjee
Melissa Grunlan
Head of Department, Simon North

August 2018

Major Subject: Chemistry

Copyright 2018 Sugam Kharel

Abstract

This dissertation details the synthesis of isomeric square planar platinum complexes bearing bridgehead diphosphine ligands with cis and trans geometries at platinum. The stabilities of these isomers have been discussed in detail. The topological properties of these complexes along with those of corresponding diphosphine ligands are examined. An overview on synthesis of oxide analogs of these ligands is presented.

We first studied the literature to understand the chemistry of novel platinum diphosphine complexes with cis- (parachutes) and trans- (gyroscopes) geometries at platinum.

Next, we carried out the reactions of cis- $\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$ and Grubbs' first generation catalyst and then hydrogenations to afford $c i s-\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}\right)(c i s-\mathbf{2}$; $n=2 m+2=\mathbf{b} / 12, \mathbf{c} / 14, \mathbf{d} / 16, \mathbf{e} / 18, \mathbf{f} / 20, \mathbf{g} / 22 ; 6-40 \%)$, derived from three fold interligand metatheses. The thermal behavior of the complexes is examined. When the bridges are sufficiently long, they rapidly exchange via an unusual "triple jump rope" motion over the PtX_{2} moieties. The relative stabilities of cis/trans and other types of isomers are probed by combinations of molecular dynamics and DFT calculations.

We extended our research to trans-platinum complexes. Reactions of $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(2.0$ equiv; $m=\mathbf{f} / 9, \mathbf{g} / 10, \mathbf{k} / 14)$ and PtCl_{2} in toluene to give trans$\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$ (trans-1f,g,k; 63-49\%). Reactions of trans-1f,g with Grubbs' first generation catalyst $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ reflux $)$ followed by hydrogenations (cat. PtO_{2}) afford chromatographically separable gyroscope like trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}\right)$ (trans2f,g, 3-19\%; from interligand metathesis) and trans- $\mathrm{PtCl}_{2}\left(\left(\mathrm{H}_{2} \mathrm{C}_{n} \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right) \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n}\right)\right)$ (trans-2'f,g, 25-12\%; from inter- and intraligand metathesis), where $n=2 m+2$. Under

analogous conditions, trans- $\mathbf{1 k}$ gives only cis- $-\mathrm{PtCl}_{2}\left(\mathrm{P}_{\left(\left(\mathrm{CH}_{2}\right)_{30}\right)_{3} \mathrm{P}}\right)$ (cis-2k, 39\%). The stability of cis vs trans is established for $\mathbf{1 g}$ and $\mathbf{2} \mathbf{\prime} \mathbf{f}, \mathbf{g}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene.

To further probe the applicability of our research, we exploited the rapidly equilibrating in, in and out,out isomer of $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}(\mathbf{1})$. U-tubes are charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\mathbf{1}$ (lower phase), an aqueous solution of $\mathrm{K}_{2} \mathrm{MCl}_{4}$ (charging arm; $\mathrm{M}=$ Pt, Pd), and an aqueous solution of excess $\mathrm{KCl} / \mathrm{KCN}$ (receiving arm). The MCl_{2} units are then transported to the receiving arm until equilibrium is reached (up to 22 d vs. 100 h , KCl vs. KCN). Analogous experiments with $\mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{K}_{2} \mathrm{PdCl}_{4}$ mixtures show PdCl_{2} transport to be more rapid.

The reactions of $(\mathrm{O}=) \mathrm{PH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}$ and $\mathrm{BrMg}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}$ (4.9-3.2 equiv; $m=\mathbf{a} / 4, \quad \mathbf{b} / 5, \quad \mathbf{c} / 6$) are carried out to give the dialkylphosphine oxides $(\mathrm{O}=) \mathrm{PH}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}$ (2a-c; 77-81\% after workups), which are treated with NaH and then α, ω-dibromides $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{n} \operatorname{Br}\left(0.49-0.32\right.$ equiv; $\left.n=\mathbf{a}^{\mathbf{\prime}} / 8, \mathbf{b}^{\mathbf{\prime}} / 10, \mathbf{c}^{\mathbf{\prime}} / 12, \mathbf{d}^{\mathbf{\prime}} / 14\right)$ to yield the bis(trialkylphosphine oxides) $\quad\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{m}\right)_{2} \mathrm{P}(=\mathrm{O})$ $\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{O}=) \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}$ (3ab', 3bc', 3cd', 3ca'; 79-84\%). Reactions of 3bc' and 3ca' with Grubbs' first generation catalyst and then $\mathrm{H}_{2} / \mathrm{PtO}_{2}$ afford the dibridgehead diphosphine dioxides $(\mathrm{O}=) \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n}\left(\left(\mathrm{CH}_{2}\right)_{n^{\prime}}\right)_{2} \mathrm{P}(=\mathrm{O})\left(\mathbf{4 b c}{ }^{\prime}, 4 \mathbf{c a}^{\prime} ; 14-19 \%, n^{\prime}=2 m+2\right)$. Crystal structures of two isomers of the latter are obtained, out,out-4ca' and a conformer of in,out-4ca' that features crossed chains, such that the $(\mathrm{O}=) \mathrm{P}$ vectors appear out,out.

Overall, this research summarizes the reactions of cis- and trans- platinum complexes to create an assembly of macrocyclic cages. These cages can be isomerized under thermal conditions and the chemistry of the empty macrocyclic cages obtained from the demetallation of these metal-containing macrocylic cages can be used to selectively transport metal chlorides.

DEDICATION

I dedicate this dissertation to my lovely wife. We have faced a lot together during the last few years and I thank you for helping me make all the right decisions during these times. This one is for you!!

ACKNOWLEDGEMENTS

I would like to begin by thanking my family for their unconditional love and support. Thanks dad, Mukunda P Kharel and mom, Subhadra Kharel for being the coolest parents. Thanks to my parents in law Raju Bhetuwal and Indira Bhetuwal for the final stage of my graduate career less stressful. Thanks to my lovely wife Rita Bhetuwal and my cute daughter Aanvie Kharel. Life in graduate school was stressful but you provided the exact opposite environment at home. I will have a Ph.D. degree but my graduation cap belongs to you.

I would like to thank my advisor and my co-advisor, Dr. Gladysz and Dr. Bluemel, for all of their support and assistance throughout the years. I have learned invaluable lessons from both of you beyond research that will make me a better scholar.

Furthermore, I want to appreciate my entire committee, Dr. Gabbai, Dr. Banerjee, and Dr. Grunlan. You've provided insightful questions and valuable input about what directions to pursue in my research. Thank you for showing up to my seminars and allowing me the time to present my research to you. Also, thanks to Dr. Yang for supporting me as a committee member during the beginning of my Ph.D. and my preliminary exam. My sincere appreciation goes to my lab members who created the best environment in the lab. Special thanks to Dr. Tathagata Mukherjee and Dr. Hemant Joshi for being good friends and true companion. Thanks to Dr. Arjun Acharya, Dr. Ramesh C. Dhakal, and Dr. Rajan Parajuli for all the time they have spent together with me. My time in Texas A\&M has been much easier with the help of excellent graduate office staffs whom I like to express my sincere appreciation. Finally, thanks to all my friends who have contributed to make my journey memorable.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

Part 1, faculty committee recognition

This work was supervised by a dissertation committee consisting of Dr. John A. Gladysz, Dr. Janet Bluemel, Dr. Francois Gabbai, and Dr. Sarbajit Banerjee of the Department of Chemistry and Dr. Melissa Grunlan of the Department of Biomedical Engineering.

Part 2, student/collaborator contributions

The work of section 2 of dissertation was completed by the student, in collaboration with Dr. Hemant Joshi, Dr. Tobias Fiedler, and Andreas Ehnbom of the Department of Chemistry; Ms. Katrin Skopek and Ms. Giesla D. Hess of the Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen (Germany).

The work of section 3 of dissertation was completed by the student, in collaboration with Dr. Hemant Joshi of the Department of Chemistry.

The work of section 4 of dissertation was completed by the student, in collaboration with Dr. Hemant Joshi and Stephen Bierschenk of the Department of Chemistry.

The work of section 5 of dissertation was completed by the student, in collaboration with Mr. Tiezheng Jia of the Department of Chemistry.

All crystal structures were determined by crystallographer Dr. Nattamai Bhuvanesh, Dr. Joseph Reibenspies, and Dr. Frank Hampel, although all crystallographic data were interpreted by the student.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

This work was made possible in part by National Science Foundation under Grant Number CHE-1153085 and CHE-1566601.

NOMENCLATURE

δ	chemical shift in ppm
λ	wavelength
${ }^{13} \mathrm{C}$	NMR active carbon nucleus (NMR)
${ }^{1} \mathrm{H}$	proton (NMR)
${ }^{31} \mathrm{P}$	NMR active phosphorus nucleus (NMR)
$\left\{{ }^{1} \mathrm{H}\right\}$	proton decoupled
$\left\{{ }^{31} \mathrm{P}\right\}$	phosphorus decoupled
A	Ångstrom
ACS	American Chemical Society
Anal.	Analysis
ATR	Attenuated Total Reflectance
B3LYP	Becke, three parameter, Lee-Yang-Parr
BET	Brunauer Emmett Teller
br	broad
Bu	butyl
COSY	COrrelation SpectroscopY (2D NMR)
d	doublet (NMR), days
DFT	density functional theory
DSC	differential scanning calorimetry
ESI	electrospray ionization
h	hour
HMBC	Heteronuclear Multiple Bond Correlation (2D NMR)
HSQC	Heteronuclear Single Quantum Coherence (2D NMR)

Hz	Hertz
i	ipso
J	scalar coupling constant
IR	infrared
m	multiplet (NMR), medium (IR)
m	meta
Me	methyl
NMR	nuclear magnetic resonance
o	ortho
Oct	octyl
p	para
Ph	phenyl
ppm	parts per million
R	alkyl group
RT	room temperature
S	singlet (NMR), strong (IR)
t	triplet (NMR)
THF	tetrahydrofuran
UV	ultraviolet
v	wavenumber
Vis	visible
VT	variable temperature
w	weak (IR)

TABLE OF CONTENTS

Page

ABSTRACT ii
DEDICATION iv
ACKNOWLEDGEMENTS v
CONTRIBUTORS AND FUNDING SOURCES vi
NOMENCLATURE viii
TABLE OF CONTENTS x
LIST OF FIGURES xii
LIST OF SCHEMES xvi
LIST OF TABLES xviii

1. INTRODUCTION 1
1.1 Molecular gyroscopes 1
1.2 Gyroscopes in the chemical literature 1
1.3 Aim of this work 4
1.4 References 5
2. THREE FOLD INTRAMOLECULAR RING CLOSING ALKENE METATHESES OF SQUARE PLANAR COMPLEXES WITH CIS PHOSPHORUS DONOR LIGANDS $\mathrm{P}\left(\mathrm{X}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(\mathrm{X} / m=-/ 5-10$, O/3-5); SYNTHESES, STRUCTURES, AND THERMAL BEHAVIOR OF MACROCYCLIC DIBRIDGEHEAD DIPHOSPHORUS COMPLEXES 7
2.1 Introduction 7
2.2 Results 11
2.3 Discussion 29
2.4 Experimental Section 37
2.5 References 56

Page

3. SYNTHESES, STRUCTURES, AND THERMAL PROPERTIES OF GYROSCOPE LIKE COMPLEXES CONSISTING OF PtCl_{2} ROTATORS ENCASED IN MACROCYCLIC DIBRIDGEHEAD DIPHOSPHINES P ($\left.\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}$ WITH EXTENDED METHYLENE CHAINS ($n=20 / 22 / 30$), AND ISOMERS THEREOF68
3.1 Introduction 68
3.2 Results 71
3.3 Discussion 80
3.4 Experimental section 83
3.5 References 92
4. HOMEOMORPHIC ISOMERIZATION AS A DESIGN ELEMENT IN CONTAINER MOLECULES; BINDING, DISPLACEMENT, AND SELECTIVE TRANSPORT OF MCl_{2} SPECIES ($\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni}$) 98
4.1 Introduction 98
4.2 Results and Discussion 100
4.3 Experimental section 111
4.4 References 119
5. A NON-TEMPLATED ROUTE TO MACROCYCLIC DIBRIDGEHEAD DIPHOSPHORUS COMPOUNDS: CRYSTALLOGRAPHIC CHARACTER- IZATION OF A "CROSSED CHAIN" VARIANT OF in/out STEREOISOMERS 123
5.1 Introduction 123
5.2 Results 127
5.3 Discussion 135
5.4 Experimental section 139
5.5 References 147
6. SUMMARY AND CONCLUSIONS 155
APPENDIX A 157
APPENDIX B 170

LIST OF FIGURES

FIGURE Page
1.1 Molecular gyroscopes in chemical literature 2
1.2 Complexes synthesized in Gladysz group; Gyroscope-like (top, bottom left), parachute-like (bottom right) 3
2.1 Possible "jump rope" dynamic processes involving the macrocycles of parachute like complexes cis-2 10
2.2 Thermal ellipsoid plot (50\% probability) of cis-1f 16
2.3 Thermal ellipsoid plot (50\% probability) of cis-2c 16
2.4 Thermal ellipsoid plot (50\% probability) of one of the two independent molecules of cis-2d in the crystal lattice 17
2.5 Thermal ellipsoid plot (50\% probability) of one of the two independent molecules of cis-2f in the crystal lattice 17
2.6 Thermal ellipsoid plot (50\% probability) of cis-6c 18
2.7 Thermal ellipsoid plot (50\% probability) of one of the two independent molecules of cis-5a in the crystal lattice 18
2.8 Thermal ellipsoid plot (50\% probability) of cis-5b 19
2.9 Thermolysis of cis-2c in o-C64 $\mathrm{H}_{4} \mathrm{Cl}_{2}$ at $185{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data 20
2.10 Thermolysis of cis-2g in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ at $150{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (§ denotes an unidentified substance believed to be oligomer) 21
2.11 Partial ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis-2d $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right)$ as a function of temperature. Each spectrum (left) is paired with simulated line shapes for the signals of interest (right; compare red and green traces) 23
2.12 Relative energies ($\mathrm{kcal} / \mathrm{mol}$) of isomeric platinum dichloride complexes as computed by DFT and molecular dynamics (gas phase) 27
2.13 Relative energies ($\mathrm{kcal} / \mathrm{mol}$) of isomeric rhenium tris(carbonyl) halide complexes as computed by DFT and molecular dynamics (gas phase) 29
2.14 Top: spatial relationships involving the PtCl_{2} moiety and macrocycles of cis-2 $\left(\mathrm{X}=\mathrm{CH}_{2}\right)$ and cis-5 $(\mathrm{X}=\mathrm{O})$; parameters that affect the energy barriers for bridge exchange. Middle and bottom: partial macrocycle conformations corresponding to possible transition states for bridge exchange 33
3.1 Isomerization of trans-1f $(*)$ to cis-1f $(*)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at RT (62:38 after 151 d) 76
3.2 Isomerization of trans $\mathbf{- 1 g}(*$ or $\bullet)$ to cis $\mathbf{- 1 g}(\diamond$ or $\bullet)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene at RT (39:61 or 91:09 after 195 d) 76
3.3 Isomerization of trans-2'f($\boldsymbol{\text { or }} \bullet)$ to cis $\mathbf{- C}(\diamond$ or $\bullet)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene at RT (42:58 or 93:07 after 187 d or 86 d) 77
3.4 Isomerization of trans-2'g $(*)$ to cis-2'g $(*)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at RT (44:56 after 161 d). 77
3.5 Thermal ellipsoid plot (50\% probability) of trans-2g•THF (top) and view along P-Pt-P axis (bottom) 78
3.6 Thermal ellipsoid plots (50\% probability) of cis-2'f (top) and cis-2'g (bottom) 79
3.7 Additional relevant structures 82
4.1 U-tube apparatus commonly used to assay guest transport in host/guest chemistry (left), metrical parameters of the apparatus used in this work (right) 99
4.2 Thermal ellipsoid plot of the molecular structure of 4 (50\% probability level) 100
4.3 Transport of MCl_{2} from aqueous $\mathrm{K}_{2} \mathrm{MCl}_{2}$ to aqueous KCl or KCN via $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of in,in/out,out-1 102
4.4 Data for Figure 4.3. Top: disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the charging arm $(\bullet ; 0.361 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the receiving arm $(\bullet ; 3.68$ $\mathrm{mmol} \mathrm{KCl})$ using in,in/out,out- $\mathbf{1}(0.246 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. Bottom: disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the charging arm ($\bullet ; 0.357 \mathrm{mmol}$) and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ in the receiving arm ($\bullet 3.59 \mathrm{mmol} \mathrm{KCN}$) using in, in/out,out $-1(0.245 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase
4.5 I-tube experiment for probing biphasic equilibria
4.6 Equilibration of PtCl_{2} between an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(\cdot ; 0.150$ $\mathrm{mmol}, 3.5 \mathrm{~mL}$) and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of in,in/out,out-1 $(0.101 \mathrm{mmol}, 20$ mL) in an "I-tube"
4.7 Additional data for Figure 4.3. Top: disappearance of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ from the charging arm $(\bullet ; 0.371 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ in the receiving $\operatorname{arm}(\bullet ; 3.66 \mathrm{mmol} \mathrm{KCl})$ using in,in/out,out $-1(0.244 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. Bottom: disappearance of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ from the charging arm $(\bullet ; 0.371$ $\mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ in the receiving arm $(\bullet ; 3.70 \mathrm{mmol}$ KCN) using in,in/out,out $\mathbf{- 1}(0.244 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.
4.8 Additional data for Figure 4.3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(\triangle, 0.185 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}(\bullet, 0.192 \mathrm{mmol})$ from the charging arm and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}(\boldsymbol{\Delta})$ and $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{CN})_{4}(\bullet)$ in the receiving arm (3.67 mmol KCN) using in, in/out,out- $\mathbf{1}(0.243 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase
4.9 Additional data for Figure 4.3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(\triangle ; 0.185 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}(\bullet ; 0.185 \mathrm{mmol})$ from the charging arm and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(\mathbf{\Delta})$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}(\bullet)$ in the receiving arm (3.69 mmol KCl) using in, in/out,out- $\mathbf{1}(0.246 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.
4.10 Additional data for Figure 4.3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the charging arm ($\bullet ; 0.365 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ in the receiving arm ($\bullet ; 3.67 \mathrm{mmol} \mathrm{KCN}$) using in,in/out,out-5 $(0.249 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase
4.11 Additional data for Figure 4.3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the charging $\operatorname{arm}(\bullet ; 0.374 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the receiving $\operatorname{arm}(\bullet ; 3.72 \mathrm{mmol} \mathrm{KCl})$ using in,in/out,out-5 $(0.241 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase
5.1 Thermal ellipsoid plots (50% probability) obtained from different crystals of $\mathbf{4 c a} \mathbf{a}^{\prime}$ (left), and alternative representations (right). Top, traditional out,out isomer; bottom, "crossed chain" out,out isomer
5.2 Thermal ellipsoid plot (50\% probability) of 4'bc' 133
5.3 Thermal ellipsoid plot (50\% probability) of 3ab' (top) and 3bc' (bottom) 134

LIST OF SCHEMES

SCHEME Page
2.1 Three fold ring closing metatheses of trans-1c-e; syntheses of gyroscope like complexes trans-2c-e 8
2.2 Three fold ring closing metatheses of cis-1b-g; syntheses of parachute like complexes cis-2b-g 9
2.3 Homeomorphic isomerization of macrocyclic dibridgehead diphosphines, and complexation of MCl_{2} units 10
2.4 Three fold ring closing metatheses of cis-4a-c; syntheses of parachute like phosphite complexes cis-5a-c 13
2.5 Substitution reactions of parachute like complexes 14
2.6 Three fold ring closing metatheses of the octahedral rhenium complexes $f a c-10 \mathrm{c}$ and $f a c-11 \mathrm{c}$ and related reactions 25
2.7 Limiting structures for macrocyclic dibridgehead diphosphorus ligands 31
3.1 Three fold ring closing metatheses of trans-1c-e; syntheses of gyroscope like complexes trans-2c-e 68
3.2 Three fold ring closing metatheses of cis-1b-g; syntheses of parachute like complex cis-2b-g 70
3.3 Syntheses of dibridgehead diphosphines 3c,e 71
3.4 Syntheses of title complexes with $n=20$ and 22 72
3.5 Syntheses of title complexes with $n=30$ 74
3.6 Additional thermal isomerizations 75
4.1 Dibridgehead diphosphine 1: in, in and out,out isomers and proposed mode of MCl_{2} binding 99
5.1 Syntheses of gyroscope like platinum and rhodium complexes and dibridgehead diphosphines derived therefrom 124
5.2 Homeomorphic isomerization of the dibridgehead diphosphine 1c or Lewis acid adducts thereof 125
5.3 Relationships between the traditional in/out isomers I, III, and V and "crossed chain" variants II, IV, and VI (X = lone pair or Lewis acid)...... 126
5.4 A phosphine borane precursor to $\operatorname{bis}\left(\mathrm{BH}_{3}\right)$ adducts of the dibridgehead diphosphine 1c 127
5.5 Title reaction sequence 129
5.6 Conversion of a traditional in, out dibridgehead diphosphine dioxide (VII) to a "crossed chain" out,out isomer (VIII; Figure 5.1, bottom), or a "crossed chain" in,in isomer (IX; not observed) 133
5.7 Previously characterized macrocyclic dibridgehead diphosphine dioxides 136
5.8 Chain crossing in gold Lewis acid adducts of dibridgehead diphosphines 137

LIST OF TABLES

TABLE Page
2.1 Summary of crystallographic data for cis-1f,2c,d,f,6c,5a,b 64
2.2 Key crystallographic bond lengths [\AA] and angles [${ }^{\circ}$] for cis $\mathbf{- 1} \mathbf{1}, \mathbf{2 c}, \mathbf{d}, \mathbf{f}$ 67
3.1 Summary of crystallographic data for trans-2g•THF, cis-2'f,2'g 96
3.2 Key crystallographic bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for trans- $\mathbf{2 g} \cdot \mathrm{THF}$, cis-2'f,2'g. 97
4.1 Summary of crystallographic data for 4 122
5.1 Summary of crystallographic data for the isomers of 4ca' 151
5.2 Key crystallographic distances $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ for the isomers of $\mathbf{4 c a} \mathbf{a}^{\prime}$ 152
5.3 Summary of crystallographic data for other structurally characterized compounds. 153
5.4 Key crystallographic bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for other structurally characterized compounds. 154

1. INTRODUCTION

1.1. Molecular gyroscopes

Machines based upon molecules able to perform functions of a rotor are gaining popularity because of their applications, especially in the field of nanofluidics, ${ }^{1-3}$ electronics, and photonics. ${ }^{4,5}$ The rotors consist of a "rotator", the internal spinning part and a "stator", defining a stable outer framework. Toy gyroscopes clearly illustrate both components, optimal with a stator providing a degree of steric protection. The first device with resemblance to mechanical gyroscopes was made in 1810 by a German inventor, G. C. Bohnenberger. Jean Foucault, a French physicist, built a gyroscope in 1852 that helped people visualize the rotational axis of earth. ${ }^{6,7}$ Termed by Foucault, gyroscope is derived from two Greek words - "gyros" and "skopein", meaning "circle" and "to view" respectively. ${ }^{8}$

Macroscopic gyroscopes can assume a number of physical forms, ${ }^{9}$ which include biological assemblies such as the halteres of flying insects. ${ }^{10}$ All of these serve to sense and/or maintain the orientation of an object. These gyroscopes conserve angular momentum, such as when the object is displaced from its axis of rotation, there is a restoring force. ${ }^{11}$ Since the underlying physics can also be applied at the molecular level, ${ }^{12}$ chemists are inspired to miniaturize the gyroscope with no regards to its size.

1.2. Gyroscopes in the chemical literature

There has been a series of gyroscope like molecules developed in the past. In 1985, Rose reported the first molecules called "gyroscope porphyrins" from which gyroscope as a term in chemical literature came into existence (Figure 1.1, top left). ${ }^{13}$ Rose's porphyrins are similar to toy gyroscopes with two spokes in terms of their connectivities.

Figure 1.1. Molecular gyroscopes in chemical literature.

In 1995, Moore reported similar molecules (Figure 1.1, top right). ${ }^{14}$ These molecules termed as "molecular turnstiles" consisted of a cyclohexa-m-phenylene with a $\mathrm{C} \equiv \mathrm{C}$ expansion that hosted p-phenylene moiety in its center. When R is small, rotation of phenylene is fast on the NMR time scale.

The research group of Miguel Garcia-Garibay has reported configurationally similar models in the recent past (Figure 1.1, bottom). ${ }^{4,15,16}$ In place of spokes, they consist of bulky termini in these axes, functioning to protect the rotator because of their steric appearance. This group has studied several properties of these molecules including the speed of rotation of these rotators and even using solid state NMR tactics to measure the rotational barriers.

Gladysz and coworkers developed the first molecule which, in terms of connectivity, is the closest mimic of a toy gyroscope ${ }^{17}$ It is comprised of a stator that encapsulates an interior rotator with multiple "spokes", at the same time, duplicating the symmetry and connectivity of a toy gyroscope. This molecule is a trigonal-bipyramidal metal complex with an equatorial ML_{3} array. The rotator connects to two phosphorous atoms in axial positions, leading to a P-M-P axis. These phosphorous atoms at the end of the axis are connected by three "spokes", consisting of methylene groups $\left(\mathrm{CH}_{2}\right)_{n}$. The Gladysz group has synthesized a library of these compounds, with different geometric construction at the metal center. The study was extended to square planar metal complexes, where different types of compounds were obtained based on cis or trans orientation of the two phosphine ligands (Figure 1.1). ${ }^{18}$

$$
()=\left(\mathrm{CH}_{2}\right)_{n}
$$

$$
\begin{gathered}
n=14 \\
\mathrm{X}=\mathrm{CO}, \mathrm{X}^{\prime}=\mathrm{Cl}, \mathrm{Br}
\end{gathered}
$$

$n=14,16,18$

Figure 1.2. Complexes synthesized in Gladysz group; Gyroscope-like (top, bottom left), parachute-like (bottom right).

1.3. Aim of this work

In this thesis, square planar gyroscope like complexes of varying macrocycle sizes have been reported. An obvious aim was to see how flexible the associated diphosphine ligands are conformationally. These phosphines can be isolated by extruding the metal out of the square planar platinum gyroscopes, giving rise to rare dynamic properties. The empty diphosphine cage thus obtained could serve as a host molecule to metals and solvents. Different sized gyroscopes can yield corresponding empty cages that have the potential to capture guest molecules of various sizes which can help in catalysis or transport.

Another question of interest is derived from the geometry of platinum complexes based on cis positions of the phosphine ligands. It was of great interest to expand the library of these complexes and probe any attendant unusual types of isomerism. Furthermore, these adducts featuring geometries of a parachute might be active catalytically and provide unexpected reactant or product selectivities.

Furthermore, molecules derived from further coordination of phosphine ligands in empty diphosphine cages should be discussed. This includes synthesizing Lewis acid adducts and also attaining different oxidation states on phosphorus.

1.4. References

(1) Zheng, X.; Mulcahy, M. E.; Horinek, D.; Galeotti, F.; Magnera, T. F.; Michl, J. J. Am. Chem. Soc. 2004, 126, 4540-4542.
(2) Koumura, N. L.; Geertseman, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 5037-5051.
(3) Feringa, B. L. Acc. Chem. Res. 2001, 34, 504-513.
(4) (a) Godinez, C. E.; Zepeda, G.; Mortko, C. J.; Dang, H.; Garcia-Garibay, M. A. J. Org. Chem. 2004, 69, 1652-1662. (b) Dominguez, Z.; Dang, H.; Strouse, M. J.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2002, 124, 7719-7727.
(5) (a) Saleh, B. E. A.; Teich, M. C. Fundamental of Photonics; WileyInterscience: Hoboken, NJ, 2009. (b) Setian, L. Applications in Electrooptics; Pearson Prentice Hall: Upper Saddle River, NJ, 2001. (c) Kasap, S. O. Optoelectronic and Photonics, Principals and Practices; Pearson Prentice Hall; Upper Saddle River, NJ, 2001. (d) Weber, M. J. Handbook of Optical Materials, CRC Press: Boca Raton, FL, 2002.
(6) Fabeck, W. Kreiselgeräte, 1. Aufl., Vogel-Verlag, Würzburg, 1980, 92.
(7) Bergmann, L.; Schäfer, C. Lehrbuch der Experimentalphysik, Band 1, Walter de Gruyter, Berlin, 1990, 212.
(8) http://www.science.edu.sg
(9) Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. Rev. 2005, 105, 12811378.
(10) See http://www.gyroscopes.org/uses.asp.
(11) Alexander, R. M. Science 2007, 315, 771-772.
(12) (a) Butikov, E. Eur. J. Phys. 2006, 27, 1071-1081. (b) Kleppner, D.; Kolenkow, R. J. An Introduction to Mechanics, Cambridge University Press, Cambridge, UK; 2010, Chapters 7.3-7.5.
(13) Boitrel, B.; Lecas, A.; Renko, Z.; Rose, E. J. Chem. Soc., Chem. Commun. 1985, 1820-1821.
(14) Bedard, T. C.; Moore, J. S. J. Am. Chem. Soc. 1995, 117, 10662-10671.
(15) (a) Dominguez, Z.; Khuong, T.-A.; Dang, H.; Sanrame, C. N.; Nuñez, J. E.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2003, 125, 8827-8837. (b) Karlen, S. D.; Ortiz, R.; Chapman, O. L.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2005, 127, 6554-6555. (c) Karlen, S. D.; Garcia-Garibay, M. A. Chem. Commun. 2005, 189-191. (d) Karlen, S. D.; Godinez, C. E.; Garcia-Garibay, M. A. Org. Lett. 2006, 8, 3417-3420.
(16) (a) Garcia-Garibay, M. A. Proc. Natl. Acad. Sci. 2005, 102, 10771-10776. (b) Khuong, T.-A. V.; Nuñez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A. Acc. Chem. Res. 2006, 39, 413-422.
(17) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem. Int. Ed. 2004, 43, 5537; Angew. Chem. 2004, 116, 5653-5656.
(18) Skopek, K.; Barbasiewicz, M.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2008, 47, 3474-3476.

2. THREE FOLD INTRAMOLECULAR RING CLOSING ALKENE METATHESES OF SQUARE PLANAR COMPLEXES WITH CIS PHOSPHORUS DONOR LIGANDS $\mathbf{P}\left(\mathbf{X}\left(\mathrm{CH}_{2}\right)_{m} \mathbf{C H}=\mathrm{CH}_{2}\right) 3(\mathrm{X} / m=-$ /5-10, 0/3-5); SYNTHESES, STRUCTURES, AND THERMAL BEHAVIOR OF MACROCYCLIC DIBRIDGEHEAD DIPHOSPHORUS COMPLEXES*

2.1. Introduction

Multifold ring closing alkene $(\mathrm{C}=\mathrm{C})$ metatheses can lead to a variety of fascinating molecular architectures, especially in metal coordination spheres. ${ }^{1,2}$ Over the last fifteen years, we have been especially concerned with metathesis/hydrogenation sequences of the type exemplified in 1. ${ }^{3-7}$ These feature educts with trans disposed olefinic phosphine ligands of the formula $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$, such as the platinum dichloride complexes trans-1c-e (indices code to the number of atoms between phosphorus and the vinyl group). The major products are almost always derived from three fold interligand metatheses, which afford triply trans spanning dibridgehead diphosphine ligands. For trans-1c-e, this corresponds to trans-2c-e. In some cases, byproducts derived from combinations of interligand and intraligand metatheses are obtained, such as trans-2'c-e in 1. Such species carry primed numbers throughout this manuscript. Setaka has realized similar chemistry when the P-M-P linkages are replaced by Si -arylene-Si linkages (e.g., arylene $=p$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{2 \mathrm{~d}, 8}$

Analogous reactions of palladium complexes with shorter methylene chains have

[^0]been investigated, but only oligomeric or polymeric products were detected. ${ }^{4 b, 9}$ In any event, the monoplatinum complexes trans-2c-e represent an interesting class of molecular rotors. ${ }^{10}$ In all cases, rotation of the PtCl_{2} moieties about the P-Pt-P axes is rapid on the NMR time scale, even at $-80^{\circ} \mathrm{C}$. ${ }^{4,11}$ Given the suggestive geometry, and the potential for closely related systems to function as molecular gyroscopes, ${ }^{8,10,12,13}$ we refer to them as gyroscope like.

$m=6$, trans- $1 \mathbf{c}$
7, trans-1d
8, trans-1e

trans-2c / 2'c 43\%/- (32\%/5\%) ${ }^{a}$ trans-2d / 2'd 04\% ${ }^{b} / 04 \%^{b}$ trans-2e / 2'e 28\%/23\%
${ }^{a}$ larger scale reaction ${ }^{b}$ yields from different experiments

Scheme 2.1. Three fold ring closing metatheses of trans-1c-e; syntheses of gyroscope like complexes trans-2c-e. ${ }^{4}$

During the course of the efforts in Scheme 2.1, syntheses of the isomeric educts cis-1 were developed. ${ }^{14}$ Hence, it became of interest to investigate analogous metathesis/hydrogenation sequences, as sketched in 2. In the case of three fold interligand metathesis to give cis-2, a likely spatial distribution of macrocycles suggests (when the perpendicular Pt-Cl bonds are both directed downwards) a parachute (see I in Figure 2.1). Thus, we refer to cis-2 as parachute like.

1. Grubbs' first

$\xrightarrow[\substack{2.5 \text { bar } \mathrm{H}_{2}, 50-70^{\circ} \mathrm{C}, \\ \text { cat. } \mathrm{PtO} \mathrm{O}_{2} \text { or } \\\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl} \\ \text { catalyst } \\ n=2 m+2}]{\substack{\text { generation } \\ n=2}}$

$+$

$\begin{aligned} m=5 & \text { cis-1 } \mathbf{b} \\ 6, & \text { cis }-1 \mathbf{c} \\ 7, & \text { cis }-1 \mathbf{d} \\ 8, & \text { cis-1e } \\ 9 & \text { cis- } \mathbf{e} \mathbf{f} \\ 10, & \text { cis }-1 \mathbf{g}\end{aligned}$

$$
n=12, c i s-2 b, 06 \%
$$

14, cis-2c, 40%
16, cis-2d, 17\%
18, cis-2e, 09\%
20, cis-2f, 18\%
22, cis-2g, 21\%
$\left.\begin{array}{l}\text { cis-2'b } \\ \text { cis-2'c } \\ \text { cis-2'd } \\ \text { cis-2'e } \\ \text { cis-2'f } \\ \text { cis-2'g }\end{array}\right\}<1 \%$

Scheme 2.2. Three fold ring closing metatheses of cis-1b-g; syntheses of parachute like complexes cis-2b-g.

Such complexes can also potentially serve as molecular rotors, although this is now in the form of coupled motion about two perpendicular Pt-P bonds. From the frame of reference of the $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ moiety, this may be viewed as a three fold "jump rope" process, as illustrated in $3 .{ }^{15}$ To wit, one methylene chain occupies a "central" position roughly in the platinum coordination plane, and the other two flanking positions above and below the coordination plane. These undergo clockwise or counterclockwise exchange in the same sense as "jumping rope" (or a tripled rope) in forwards or backwards directions. Others have made "jump rope" analogies for dynamic processes involving a single methylene or methylene rich bridge, ${ }^{15}$ but cis- $\mathbf{2}$ is perhaps the first system to invoke the rich Olympic traditions of the triple jump or triple axel.

Apart from any dynamic properties, such adducts are of interest in that they help define the geometric flexibility of the dibridgehead diphosphine ligands $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}(\mathbf{3 c}-$ e), which can be isolated via various demetallation protocols. ${ }^{4,16}$ Both $\mathbf{3 c}$ and $\mathbf{3 e}$ have been found to serve as "container molecules" capable of transporting MCl_{2} moieties from
one place to another.

Figure 2.1. Possible "jump rope" dynamic processes involving the macrocycles of parachute like complexes cis-2.

In all cases, when the "containers" $3 \mathbf{c}, \mathbf{e}$ are "loaded" $(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni})$, the resulting adducts exhibit trans $\mathrm{Cl}-\mathrm{M}-\mathrm{Cl}$ and $\mathrm{P}-\mathrm{M}-\mathrm{P}$ linkages (i.e., trans-2c as opposed to cis-2c), as exemplified in 3. We have sought to better understand the nuances of this process, especially with respect to kinetic and thermodynamic control of geometric isomerism. The dibridgehead diphosphines are themselves capable of dynamic processes, such as "homeomorphic isomerization", ${ }^{18}$ which exchanges exo directed (out,out) and endo directed (in,in) functionality without any intervening inversions of configuration at phosphorus (3). However, these phenomena do not play a role in this study.

Scheme 2.3. Homeomorphic isomerization of macrocyclic dibridgehead diphosphines, and complexation of MCl_{2} units.

Accordingly, we set out to (1) synthesize the parachute like complexes in Scheme 2.2, as well as homologs with dibridgehead diphosphite ligands or octahedral coordination geometries, (2) characterize their spectroscopic, structural, and dynamic properties, and (3) probe their stabilities vis-à-vis gyroscope like isomers by both experimental and computational techniques. A small portion of this work has been communicated. ${ }^{19}$

2.2. Results

2.2.1. Syntheses, dibridgehead diphosphine series. The educts cis$\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}($ cis- $\mathbf{1})$, were prepared from $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and the constituent olefinic phosphines in water as reported earlier (cis-1b-e; $m=5-8,33-70 \%)^{14}$ or by extending the protocol to phosphines with longer methylene chains (cis-1f,g; $m=9,10$, 44-51\%; APPENDIX A. Minor amounts of trans- $\mathbf{1}$ were often noted, but were easily separated chromatographically (trans-1 dominates when syntheses are conducted using PtCl_{2} and the less polar solvent benzene). ${ }^{14}$ In accord with literature precedent for bis(phosphine) platinum(II) complexes, ${ }^{20}$ the ${ }^{1} J_{\mathrm{PPt}}$ values of cis-1b-g were much greater than those of trans-1b-g (3511-3518 vs. 2375-2382 Hz). ${ }^{4}$

As shown in Scheme 2.2, dilute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of cis-1b-g ($0.00073-0.0015 \mathrm{M}$) and Grubbs' first generation catalyst (7.5-12 mol\%) were refluxed. After 12-48 h, workups gave crude metathesis products. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra exhibited a multitude of signals, ${ }^{21}$ some of which presumably reflect cis/trans $\mathrm{C}=\mathrm{C}$ isomers. Hydrogenations were carried out under 1-5 bar of H_{2} using PtO_{2} or $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$ as catalysts. Workups gave the target parachute like dibridgehead diphosphine complexes cis $-\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}\right)($ cis-2b-g; $n=2 m+2$) in 6-40\% overall yields. The P-Pt-P moieties are part of fifteen to twenty five membered macrocycles. No other monoplatinum products were detected. Hence, the generally low mass balance presumably reflects the formation of oligomers. ${ }^{21 b}$ Yields were nearly the same when Grubbs' second generation catalyst was employed.

All new complexes that were not mixtures of isomers were characterized by NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}\right)$ and in many cases by microanalyses, mass spectrometry, and IR spectroscopy, as summarized in the experimental section. The structures of cis-2b-g readily followed from their spectroscopic properties. For example, the ${ }^{1} J_{\mathrm{PPt}}$ values were much greater than those of the trans isomers in Scheme 2.1 (3530-3568 vs. 2389-2398 Hz). With cis-2b-d, two sets of methylene ${ }^{13} \mathrm{C}$ signals were observed, with an intensity ratio of ca. 2:1. With cis-2e-g, only a single set of methylene signals was observed. This dichotomy is rationalized below. Importantly, the isomeric structures cis-2'b-g (Scheme 2.2), which are derived from a combination of interligand and intraligand metatheses, would give two sets of signals for all macrocycle sizes (the less intense from the methylene chain that spans the two phosphorus atoms; the more intense from the phosphacycle methylene chains that circle back to the same phosphorus atom).

2.2.2. Syntheses, dibridgehead diphosphite series. Bis(phosphite)

 dihaloplatinum complexes are usually obtained as cis isomers, ${ }^{22}$ consistent with the greater π acidities of phosphite as compared to trialkylphosphine ligands. However, a few special types of trans isomers have been reported. ${ }^{23}$ The latter feature much lower ${ }^{1} J_{\mathrm{PPt}}$ values (4405-4680 vs. $5694-5918 \mathrm{~Hz}) .{ }^{22,23}$ Thus, the olefinic phosphites $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{m} * \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\left(m^{*}=\mathbf{a}, 3 ; \mathbf{b}, 4 ; \mathbf{c}, 5\right)^{24}$ and PtCl_{2} were combined in toluene. Chromatographic workups afforded the bis(phosphite) complexes cis- $\mathrm{PtCl}_{2}(\mathrm{P}(\mathrm{O}-$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{m} * \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)($ cis-4a-c; Scheme 2.4) as light yellow or colorless oils in $60-95 \%$ yields, with ${ }^{1} J_{\mathrm{PPt}}$ values of $5696-5698 \mathrm{~Hz}$. Note that a ligand or complex with a given index has the same number of atoms between the phosphorus atom and the vinyl groups as with the bis(phosphine) complexes cis-1 (e.g., five for cis-1b and cis-4b).

Scheme 2.4. Three fold ring closing metatheses of cis-4a-c; syntheses of parachute like phosphite complexes cis-5a-c.

Ring closing metatheses of cis-4a-c were carried out with Grubbs' first generation catalyst (10-20 mol \%) in dilute refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.00079-0.00099 \mathrm{M}$). Hydrogenations were conducted under 5 bar of H_{2} using $15-20 \mathrm{~mol} \%$ of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$. As shown in Scheme 2.4, chromatographic workups gave the target parachute like dibridgehead diphosphite complexes cis- $\left.\stackrel{\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} * \mathrm{O}\right)_{3} \mathrm{P}\right.}{)}\right)\left(\right.$ cis-5a-c; $\left.n^{*}=2 m^{*}+2\right)$ as white solids or foams in $10-20 \%$ overall yields. A lower homolog of cis-4a, with one less methylene group in each phosphorus substituent, was also synthesized and similarly reacted. Even with a 25% catalyst loading, ${ }^{1} \mathrm{H}$ NMR spectra showed a significant fraction of unreacted $\mathrm{CH}=\mathrm{CH}_{2}$ linkages after $72 \mathrm{~h} .{ }^{21 \mathrm{a}}$

The ${ }^{1} J_{\text {PPt }}$ values of cis-5a-c ranged from 5721 to 5759 Hz . For all three compounds, two sets of methylene ${ }^{13} \mathrm{C}$ signals with a ca. 2:1 intensity ratio were observed, analogous to the two dibridgehead diphosphine complexes with identical macrocycle sizes (cis-2b,c). Importantly, the protons on any CH_{2} group of a parachute like (but not gyroscope like) complex are diastereotopic. The couplings are never resolved, but as a result the ${ }^{1} \mathrm{H}$ NMR spectrum of cis-5a exhibits three well separated OCHH ' signals (m, 4 H each, $\Delta \delta \mathrm{ca} .1 .0 \mathrm{ppm}$). The signals become more closely spaced upon going to cis-5b ($\Delta \delta \mathrm{ca} .0 .5 \mathrm{ppm}$) and $c i s-5 \mathbf{c}(2 \mathrm{~m}, 4 \mathrm{H} / 8 \mathrm{H}, \Delta \delta \mathrm{ca} .0 .15 \mathrm{ppm})$. The diphosphine complex with
the smallest macrocycles, cis-2b, exhibited three well separated PCHH^{\prime} signals (m, 4H each, $\Delta \delta$ ca. 0.9 ppm$)$.
2.2.3. Substitution reactions. Halide ligands in gyroscope like complexes are usually quite easily substituted by a variety of nucleophiles. ${ }^{4-6,16}$ In all cases, the phosphorus donor atoms remain trans. As part of this work, it was not sought to develop an extensive substitution chemistry of parachute like complexes, but rather to verify that simple displacements can occur, and the attendant stereochemistry. The latter is relevant to mechanistic issues described below.

Scheme 2.5. Substitution reactions of parachute like complexes.

As previously reported, ${ }^{4 \mathrm{~b}}$ the gyroscope like dibridgehead diphosphine complex trans-2c and $\mathrm{Ph}_{2} \mathrm{Zn}$ (3.1 equiv) react over the course of 20 h at room temperature to give the diphenyl complex trans- $\mathrm{PtPh}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right)($ trans $-6 \mathrm{c})$ in 61% yield after workup. As shown in Scheme 2.5, analogous reactions of parachute like cis-2c,d and $\mathrm{Ph}_{2} \mathrm{Zn}$ (18 h)
gave cis-6c,d as white solids in 68-70\% yields. Similarly, a reaction of the dibridgehead diphosphite complex cis-5b and NaI (4.0 equiv) gave the diiodide complex cis-7b (Scheme 2.5) as a yellow solid in 98% yield. The NMR spectra of both substitution products exhibited the general features noted in the precursors above. In contrast to the situation with trans $-\mathbf{6 c},{ }^{4 \mathrm{~b}}$ there was no sign of restricted rotation about the Pt- $\mathrm{C}_{i p s o}$ bond on the NMR time scale with cis-6c.
2.2.4. Crystal Structures. Although all of the structures assigned above seemed quite secure based upon spectroscopic properties, it was still sought to crystallographically characterize as many complexes as possible in order to help define the range of accessible macrocycle conformations. Thus, crystals of cis-1f, cis-2 $\mathbf{2}, \mathbf{d}, \mathbf{f}$, cis- $\mathbf{6 c}$, and cis-5a,b were grown as described in the experimental section. X-ray data were collected, and the structures determined, as summarized in Table 2.1. The molecular structures are depicted in Figures 2-8. Key bond lengths and angles are given in Table 2.1. All of these are very close to those of related platinum(II) complexes, but the averages are valuable for certain structural analyses below.

With cis-2d,f and cis-5a, two independent molecules were present in the unit cell. Those of cis-2d,f were conformationally similar; over all four atom segments in all three macrocycles, the gauche/anti sense differed in only three linkages. For the independent molecules of cis-5a, the macrocycles that were perpendicular to the metal coordination plane showed several points of difference. Complex cis- $\mathbf{5 b}$ exhibited a C_{2} symmetry axis that passed through the platinum atom and bisected the $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ angle. Additional structural features are interpreted in the discussion section.

Figure 2.2. Thermal ellipsoid plot (50\% probability) of cis-1f.

Figure 2.3. Thermal ellipsoid plot (50\% probability) of cis-2c.

Figure 2.4. Thermal ellipsoid plot (50\% probability) of one of the two independent molecules of cis-2d in the crystal lattice.

Figure 2.5. Thermal ellipsoid plot (50\% probability) of one of the two independent molecules of cis-2f in the crystal lattice.

Figure 2.6. Thermal ellipsoid plot (50\% probability) of cis-6c.

Figure 2.7. Thermal ellipsoid plot (50\% probability) of one of the two independent molecules of cis-5a in the crystal lattice.

Figure 2.8. Thermal ellipsoid plot (50\% probability) of cis-5b.
2.2.5. Thermolyses. Thermal equilibrations of isomeric gyroscope and parachute like complexes were attempted. An NMR tube was charged with a $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (odichlorobenzene) solution of cis-2c, which features seventeen membered macrocycles, and kept at $185{ }^{\circ} \mathrm{C}$. As shown by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in Figure 2.9, clean isomerization to trans-2c gradually took place. The trans/cis ratio plateaued at 89:11 after 5-6 d (6 d spectrum not depicted). An o- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ solution of trans-2c gave 8% isomerization to cis-2c after 14 h at $180^{\circ} \mathrm{C}$.

Similar experiments were conducted with $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ solutions of $\mathbf{2 c}, \mathbf{g}$. No isomerizations were observed with trans-2c,g after 48 h at $150{ }^{\circ} \mathrm{C}$. However, cis-2c,g underwent reactions. As shown in Figure 2.10, after 1 d the larger twenty five membered macrocycle cis-2g gave a 74:7:19 mixture of trans-2g, cis-2g, and a species tentatively assigned as an oligomer. After another day, the proportion of oligomer had increased slightly (65:6:29).

Interestingly, cis-2c gave a somewhat slower isomerization (1 d, 16:78:6
trans/cis/oligomer; $2 \mathrm{~d}, 22: 62: 16$), although the rate was faster than in $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ at 185 ${ }^{\circ} \mathrm{C}$. As further detailed in the Appendix A and Figure s2.5, continued heating at $185{ }^{\circ} \mathrm{C}$ gave a significant amount of the previously characterized gyroscope like dibromide complex trans $-\mathrm{PtBr}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right) \quad(2.94 \quad \mathrm{ppm} ; \quad 22:<1: \quad 48: 30$ trans/cis/oligomer/dibromide after 3 d). ${ }^{4 b, 25}$

The preceding experiments indicate that trans-2c,g are thermodynamically more stable than cis-2c,g, with the equilibrium ratio for 2c being ca. 90:10 $\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}, 180\right.$ $185{ }^{\circ} \mathrm{C}$). DSC analyses of cis-2c showed an endotherm at $200^{\circ} \mathrm{C}$, nearly coincident with the physically observable melting point at $210^{\circ} \mathrm{C}$. However, no exotherm, which would be expected for an isomerization, was noted. Perhaps the barrier is lower in solution than the solid state. TGA data showed an onset of mass loss close to the melting point, suggesting some concomitant decomposition.

Figure 2.9. Thermolysis of cis-2c in o- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ at $185{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data.

Figure 2.10. Thermolysis of cis-2g in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ at $150{ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (§ denotes an unidentified substance believed to be oligomer).

In a similar experiment, an NMR tube was charged with a $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ solution of the parachute like dibridgehead diphosphite complex cis-5b. No reaction occurred after 1 d at $100^{\circ} \mathrm{C}$ or another 2 d at $185^{\circ} \mathrm{C}$, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. When the sample was warmed to $200^{\circ} \mathrm{C}$, numerous decomposition products formed.
2.2.6. Dynamic Properties. The parachute like complexes that exhibited two sets of methylene ${ }^{13} \mathrm{C}$ NMR signals (cis-2b-d, cis-5a-c) featured smaller macrocycles. Thus, those that exhibited one set of signals (cis-2e-g) were provisionally assumed to undergo rapid "jump rope" exchange of the methylene bridges per Figure 2.1. Nonetheless, this interpretation would be strengthened if both regimes could be established for a single complex, and activation parameters acquired. Accordingly, samples giving two sets of signals were heated, and those giving one set of signals were cooled, in hopes of observing coalescence/decoalescence phenomena.

As shown in Figures 2.11 and A-2 (APPENDIX A), when $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ solutions of cis-2d, which features nineteen membered macrocycles, were warmed, the two sets of methylene ${ }^{13} \mathrm{C}$ NMR signals coalesced. As previously observed with gyroscope like complexes, the chemical shifts were somewhat temperature dependent. ${ }^{3,7 \mathrm{~d}}$ This presumably reflects changes in relative populations of macrocycle conformations (each distinguished by a unique set of chemical shifts) as a result of differential entropies. In contrast, the ${ }^{1} J_{\mathrm{PPt}}$ value, another potentially sensitive probe, was essentially temperature independent (3529 to $3519 \mathrm{~Hz}, 25$ to $100^{\circ} \mathrm{C}$).

The line shapes of the coalescing signals in Figure 2.11 were simulated using gNMR^{26} and the rate constants determined at each temperature. An Eyring plot utilizing these rate constants (Figure A-3, APPENDIX A) afforded $\Delta \mathrm{H}^{\neq}, \Delta \mathrm{S}^{\neq}$, and $\Delta \mathrm{G}^{\neq} 298 \mathrm{~K}$ values of $7.8 \mathrm{kcal} / \mathrm{mol},-27.9 \mathrm{eu}$, and $16.1 \mathrm{kcal} / \mathrm{mol}$ for the process rendering the methylene signals equivalent. As further analyzed below, one would expect a highly negative $\Delta \mathrm{S} \neq$ for the conformationally restricted transition state III in Figure 2.1.

When $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ solutions of cis-2c or cis-6d, which feature smaller seventeen membered macrocycles or larger phenyl ligands, respectively, were heated to $120-100^{\circ} \mathrm{C}$, no coalescence of methylene ${ }^{13} \mathrm{C}$ NMR signals was observed (Figures s2.1 and s2.4). With cis-2c, this allowed a lower limit of $19.6 \mathrm{kcal} / \mathrm{mol}\left(\Delta \mathrm{G}^{\neq} 393 \mathrm{~K}\right)$ to be set for any process capable of rendering the methylene groups equivalent, as derived in the APPENDIX A. When $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions of cis-2e, which features larger twenty one membered macrocycles and a single

Figure 2.11. Partial ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis-2d $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right)$ as a function of temperature. Each spectrum (left) is paired with simulated line shapes for the signals of interest (right; compare red and green traces).
set of methylene ${ }^{13} \mathrm{C}$ NMR signals, were cooled to $-80{ }^{\circ} \mathrm{C}$, no decoalescence was observed.
2.2.7. Attempted Extension to Octahedral Rhenium Complexes. The ring closing metatheses to give square planar gyroscope like complexes in Scheme 2.1 are easily extended to trigonal bipyramidal and octahedral coordination geometries. ${ }^{3 \mathrm{a}-\mathrm{c}, 6,7 \mathrm{~b}}$ Thus, we were curious whether the routes to parachute like complexes in Schemes 2.2 and 2.4 could similarly be applied to trigonal bipyramidal or octahedral educts.

Accordingly, the rhenium halide complexes $\operatorname{ReX}(\mathrm{CO})_{5}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and the olefinic phosphine $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ (2.0 equiv) were combined in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ at $60-80$ ${ }^{\circ} \mathrm{C}$. Workups gave the cis bis(phosphine) complexes fac$\operatorname{ReX}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}(\mathrm{X}=\mathrm{Cl}$, fac-10c; $\mathrm{Br}, f a c-\mathbf{1 1 c})$ in $43-67 \%$ yields. As shown in Scheme 2.6, the thermolysis of fac-11c in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ at $140{ }^{\circ} \mathrm{C}$ afforded the previously characterized ${ }^{6 \mathrm{a}, \mathrm{b}}$ isomer mer, trans-11c in 89% yield. Many earlier studies have shown that mer, trans isomers of rhenium tricarbonyl bis(phosphine) halide complexes are more stable than fac isomers. ${ }^{27}$ As noted previously, when mer,trans-11c is subjected to the standard metathesis/hydrogenation conditions, the corresponding gyroscope like complex mer, trans- $-\sqrt\left[\operatorname{eeBr}(\mathrm{CO})_{3}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right]{ }\right)$ (mer,trans-12c; Scheme 2.6) can be isolated in 37% yield. ${ }^{6 \mathrm{a}, \mathrm{b}}$

In procedures parallel to those in Schemes 2.2 and 2.4, fac-10c and fac-11c were treated with Grubbs' first generation catalyst and then $\mathrm{H}_{2} / \mathrm{PtO}_{2}$. As shown in Scheme 2.6, workups gave products derived from a combination of interligand and intraligand metatheses, fac-12'c and fac-13'c, in 39% and 15% overall yields, respectively. The parachute like complexes $f a c-12 \mathrm{c}$ and $f a c-13 \mathrm{c}$ were not detected; due to their lower symmetry vs. cis-2, three sets of methylene ${ }^{13} \mathrm{C}$ NMR signals - one for each macrocycle

- would be expected. Interestingly, mass spectra of the crude metathesis product derived from fac-10c exhibited a number of dirhenium ions (e.g., $2 \mathbf{M}^{+}-3 \mathrm{CO}, 100 \%$).

Scheme 2.6. Three fold ring closing metatheses of the octahedral rhenium complexes $f a c-10 c$ and $f a c-11 \mathrm{c}$ and related reactions.

As a further check of structure, $f a c-12 ' \mathbf{c}$ and $f a c-13 ' \mathbf{c}$ were thermolyzed in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ at $130-140^{\circ} \mathrm{C}$. Similar to the result with fac-11c, mer,trans-12'c and mer, trans-13'c were
isolated in $17-22 \%$ yields. The complex mer,trans-12'c had been independently synthesized earlier (byproduct accompanying mer,trans-12c), as had homologs of mer, trans-13' \mathbf{c} with larger macrocycles. ${ }^{6 \mathrm{~b}}$ Thermolyses of the target complexes, fac-12c and fac-13c, would have given the known gyroscope like complexes mer,trans-12c and mer, trans-13c. ${ }^{6 \mathrm{a}, \mathrm{b}}$
2.2.8. Computational Studies. Further insight was sought regarding the relative stabilities of the various types of isomeric species encountered above. Thus, DFT calculations, including dispersion corrections, were carried out. This was followed by molecular dynamics annealing simulations to maximize the likelihood of correctly identifying the lowest energy conformer. This output was further optimized by additional DFT calculations. As shown in Figure A-9 (APPENDIX A), the dispersion corrections gave structures that more closely modeled those in the crystal structures.

Figure 2.12. Relative energies ($\mathrm{kcal} / \mathrm{mol}$) of isomeric platinum dichloride complexes as computed by DFT and molecular dynamics (gas phase).

The relative gas phase stabilities of the parachute and gyroscope like complexes cis-2 and trans-2 are illustrated as a function of macrocycle size in Figure 2.12. As one goes from thirteen to twenty five membered macrocycles (or ten (a) to twenty-two (g) methylene groups per bridge), the gyroscope like complexes range from 5.1 to 9.2 $\mathrm{kcal} / \mathrm{mol}$ more stable, consistent with the trends established for $\mathbf{2 c}, \mathbf{g}$ in haloarenes in Figures 2.9-2.10. However, the energy differences do not vary monotonically. Rather, there is an "even/odd" alternation with respect to $n / 2$ (odd, -9.2 to $-8.5 \mathrm{kcal} / \mathrm{mol}$; even, 5.8 to $-5.1 \mathrm{kcal} / \mathrm{mol})$. No attempt has been made to elucidate a basis for this phenomenon. However, it may be coupled to conformational features of the macrocycles. Physical properties that alternate with even/odd methylene chain lengths have abundant precedent. ${ }^{28}$

Figure 2.12 also displays the relative energies of the alternative cyclization products trans-2'a-g (Scheme 2.1) and cis-2'a-g (Scheme 2.2). The former is more stable for all macrocycle sizes. In both cases, the complexes with the two smallest macrocycle sizes, $\mathbf{2} \mathbf{\prime} \mathbf{a}, \mathbf{b}$, are considerably higher in energy, also as compared to gyroscope and parachute like $\mathbf{2 a}, \mathbf{b}$. This presumably reflects ring strain associated with the monophosphacycles. The energies of $\mathbf{2}^{\prime} \mathbf{a - g}$ generally decrease with increasing macrocycle size, although not monotonically. Interestingly, trans-2'f,g, which feature the two largest macrocycle sizes, are computed to be more stable than gyroscope like trans-2f,g (-5.4 to $-3.5 \mathrm{kcal} / \mathrm{mol}$).

Data for the parachute and gyroscope like phosphite complexes cis-5a-g and trans-5a-g are also provided in Figure 2.12 (right). Now the former are computed to be more stable, consistent with (1) the preferred geometry for acyclic bis(phosphite) platinum dichloride complexes, and (2) the absence of any thermal isomerization of cis-5b, as noted above. Thus, a metal based electronic effect dominates over any ring strain trends that may
be operative with the macrocycles.

Figure 2.13. Relative energies ($\mathrm{kcal} / \mathrm{mol}$) of isomeric rhenium tris(carbonyl) halide complexes as computed by DFT and molecular dynamics (gas phase).

Data for the four types of isomeric rhenium complexes in Scheme 2.6 are provided in Figure 2.13. Consistent with the thermolyses in Scheme 2.6, and the direction of equilibrium for a number of related complexes, ${ }^{27}$ mer,trans-12'c and mer,trans-13'c were found to be much more stable than $f a c-12 ' \mathbf{c}$ and $f a c-13 ' \mathbf{c}(-5.4$ to $-7.4 \mathrm{kcal} / \mathrm{mol})$. Interestingly, the energies of the previously synthesized gyroscope like complexes mer, trans-12c and mer,trans-13c were quite close to those of the parachute like complexes $f a c-12 \mathrm{c}$ and $f a c-13 \mathrm{c}(\leq 0.4 \mathrm{kcal} / \mathrm{mol})$. Thus, the latter remain realistic synthetic targets, although the cyclization mode leading to (after hydrogenation) the much less stable fac$\mathbf{1 2}^{\prime} \mathbf{c}$ and $f a c-13 ' \mathbf{c}$ is preferred under the conditions of Scheme 2.6.

2.3. Discussion

2.3.1. Syntheses and Structures. Schemes 2.2 and 2.4 establish that parachute
like square planar platinum complexes are easily accessed, albeit in modest yields, via three fold interligand ring closing metatheses of precursors with suitable cis olefinic phosphine and phosphite ligands. It also appears that they can be accessed with smaller macrocycles than the corresponding gyroscope like complexes, as exemplified by cis-5a (thirteen membered), cis-5b, and cis-2b (both fifteen membered). As noted above, attempts to synthesize gyroscope like square planar complexes with macrocycles of less than seventeen atoms have yet to be successful.

It seems likely that Schemes 2.2 and 2.4 can be extended to other square planar complexes. However, there appear to be greater restrictions with respect to the metal coordination geometry than for gyroscope like complexes, as reflected by the failure to access octahedral analogs in Scheme 2.6. Here, an alternative mode of ring closing metathesis affords cis bis(phosphacycle) chelate ligands (fac-12'c and fac-13'c). As noted above, related complexes with trans spanning chelates, such as mer,trans-12'c, are sometimes found as byproducts in syntheses of octahedral gyroscope like complexes. ${ }^{4 b, 6 b, c}$

Prior to our work, no aliphatic dibridgehead diphosphines with bridges greater than four atoms had been synthesized, either as complexes or free ligands. ${ }^{29}$ Analogous diphosphites were unknown, although macrocyclic aromatic analogs derived from $\mathrm{P}(\mathrm{OAr})_{3}$ units had been reported. ${ }^{30}$ This study establishes that such ligands possess incredible flexibility, as illustrated in Scheme 2.7. Naturally the phosphorus-lone pair vectors can orient collinearly with a 180° angle (V), as seen in bimetallic complexes. ${ }^{31}$ In the parachute like complexes cis-2 and cis-4, these vectors define 90° angles (VII). Intermediate geometries such as VI should be possible, in which the lone pairs might be directed at a surface or polymetallic assembly. Continued rotation of the vectors leads to gyroscope like complexes (VIII), in which the phosphorus configurations have been
inverted relative to \mathbf{V}. These changes in vector orientations require specific accompanying changes in the conformations of the methylene bridges - processes that will be fully treated in the future addressing mechanisms of interconversion of \mathbf{V} and VIII.

Scheme 2.7. Limiting structures for macrocyclic dibridgehead diphosphorus ligands.

The crystal structures determined include parachute like complexes with thirteen, fifteen, seventeen, nineteen, and twenty three membered macrocycles. These can be compared to the conformational model in Figure 2.1, in which the "middle" macrocycle occupies the metal coordination plane. This is always the case for the first few atoms emanating from phosphorus. However, as shown in Figures 2.3-2.5, the middle macrocycles in cis-2c,d,f exhibit a subsequent fold or "kink". The other macrocycles adopt approximately perpendicular orientations above and below the coordination plane.

The crystal structure of one precursor to a parachute like complex, cis-1f, could be determined. As shown in Figure 2.2, the spatial distribution of the six vinyl groups is by no means conducive for the required three fold interligand ring closing alkene metathesis. This is presumably one factor behind the modest yields in Schemes 2.2 and 2.4. In contrast, favorable or "pre-organized" conformations have been documented for hexaolefinic educts that give trigonal planar gyroscope like complexes in quite good yields. ${ }^{3,7 b}$
2.3.2. Dynamic properties. Dynamic processes in which a macrocycle must rotate or "jump" over another moiety are not unusual. ${ }^{15,32}$ However, the three fold variant invoked for parachute like complexes with sufficiently long methylene bridges (Figure 2.1) is to our knowledge unprecedented. In the absence of such exchange, the macrocycles above and below the coordination plane must give methylene ${ }^{13} \mathrm{C}$ NMR signals distinct from those of the macrocycle in the coordination plane.

The "jump rope" process requires that the PtCl_{2} moiety pass through each macrocycle. Although this is accomplished by correlated rotations about the platinumphosphorus bonds, the phosphorus-phosphorus vector, highlighted in IX in Figure 2.14, provides a valuable reference point for analyzing steric interactions. The two chlorine atoms are $2.88 \AA$ from this vector (average of sixteen distances in all independent molecules in crystalline cis-2c,d,f and cis-5a,b; see Table 2.1). When the van der Waals radius of a chlorine atom is added ($1.75 \AA$) ${ }^{33}$ an effective "length" or radius of $4.63 \AA$ is obtained.

At the same time, the PtCl_{2} moiety has "width" or "fatness". The average chlorinechlorine distance in cis-2c,d,f and cis-5a,b is $3.59 \AA$. When twice the van der Waals radius of a chlorine atom is added, an effective width of $7.09 \AA$ is obtained. The activation barriers reflect the ease with which the cavities of the macrocycles can adapt to these dimensions ($4.63 \times 7.09 \AA$).

One approach to gauging the "lengths" of the macrocycles in a given complex is to calculate the distance from the center of the phosphorus-phosphorus vector to the two carbon atoms at the halfway mark of the three macrocycles. These will often, but not always, be the two carbon atoms most distant from the phosphorus-phosphorus midpoint. The six values are averaged (twelve for the cases of two independent molecules), and the van der Waals radius of an sp^{3} carbon atom is subtracted. As would be expected, the
resulting values ascend in the order cis-5a,b and cis-2c,d,f(3.31, 4.04, 5.49, 7.09, 9.49 \AA). Thus, cis-2c,d,f can easily accommodate the $4.63 \AA$ "length" of the PtCl_{2} moiety, whereas cis-5b requires a bit of a squeeze.

XI
Figure 2.14. Top: spatial relationships involving the PtCl_{2} moiety and macrocycles of cis-2 $\left(\mathrm{X}=\mathrm{CH}_{2}\right)$ and cis-5 $(\mathrm{X}=\mathrm{O})$; parameters that affect the energy barriers for bridge exchange. Middle and bottom: partial macrocycle conformations corresponding to possible transition states for bridge exchange.

The effective "width" is another matter. As can be seen in Figures 2.3, 2.4, 2.7, and 2.8, the P-X- CH_{2} and P-X-CH2- CH_{2} groups of each macrocycle will most closely
flank the PtCl_{2} moiety during the "jump rope" process. It is a simple matter to calculate the distances between the two P-X- $\mathbf{C H}_{2}$ carbon atoms of a given macrocycle, and the two $\mathrm{P}-\mathrm{X}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ carbon atoms $\left(\mathrm{X}=\mathrm{O}\right.$ or $\left.\mathrm{CH}_{2}\right)$. The three values for a given complex are averaged (six for the cases of two independent molecules), and twice the van der Waals radius of a carbon atom is subtracted. This gives clearances that vary irregularly over a ca. $1 \AA$ İ range for cis-5a,b and cis-2c,d,f (1.67, 2.21, 1.34, 1.78, 1.39 Å for P-X- $\mathbf{C H}_{2} ; 1.30$, $2.31,2.44,1.40,2.08 \AA$ for P-X- $\left.\mathrm{CH}_{2}-\mathbf{C H}_{2}\right)$. None of these are sufficient to accommodate the "width" of the PtCl_{2} moiety ($7.09 \AA$).

Hence, the jump rope process must incorporate conformational changes in the macrocycles that constitute significant deviations from the crystal structures. Figure 2.14 shows two partial conformations that widen the macrocycle cavity ($\mathbf{X}<\mathbf{X I}$). This is accomplished by introducing anti four-atom segments, e.g. P-X-CH2-CH2 in \mathbf{X} and Pt-P-$\mathrm{X}-\mathrm{CH}_{2}$ and $\mathrm{P}-\mathrm{X}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ in $\mathbf{X I}$. These in turn render it more difficult to "close the macrocycle" with the remaining atoms without inducing strain. Thus, the bridges of the smaller macrocycles lack sufficient degrees of freedom and the activation parameters become prohibitive. Only upon reaching cis-2d, which features nineteen membered macrocycles, does exchange become observable on the NMR time scale. The significantly negative $\Delta \mathrm{S}^{\neq}(-27.9 \mathrm{eu})$ is consistent with highly ordered macrocycle conformations such as \mathbf{X} or $\mathbf{X I}$ in the transition state. Alternative mechanisms involving the dissociation of a phosphorus atom can be excluded as all of the complexes retain ${ }^{1} J_{\mathrm{PPt}}$ values in the rapid exchange limit (e.g., cis-2e-g at room temperature or cis-2d at $75-100^{\circ} \mathrm{C}$).
2.3.3. Relative Isomer Stabilities. It is clear from the thermolysis experiments (Figures 2.9, 2.10, s2.5) that the gyroscope like platinum dibridgehead diphosphine complexes trans-2c,g are more stable than the parachute like analogs cis-2c,g, at least in low polarity solvents such as haloarenes. The gas phase computational data (Figure 2.12)
confirm the generality of the stability trend for all macrocycle sizes that have been synthetically accessed (trans-2b-g > cis-2b-g). Given the extreme temperatures required for equilibration $\left(150-185^{\circ} \mathrm{C}\right)$, it can be concluded that cis isomers are not intermediates in the complexation of MCl_{2} by the free dibridgehead diphosphines $\mathbf{3}$ (Scheme 2.3) - a key step in their application as "container molecules". ${ }^{17}$

The computational data are of particular value in cases where authentic samples of both cis and trans complexes are lacking, such as with the dibridgehead diphosphite complexes cis-5a-c. Currently, there is no way to access suitable precursors to the trans isomers. As noted above, the reversal of the relative stabilities of parachute and gyroscope like complexes with the diphosphite complexes $\mathbf{5 a - g}$ as compared to diphosphine complexes 2a-g underscores the importance of electronic effects. Indeed, preliminary computational results show that with certain small ancillary ligands, parachute like diphosphine complexes can become more stable. These data, which are beyond the scope of the present study, will be presented in the future. ${ }^{34}$

Some issues that the computational data do not address deserve note. As emphasized in past studies, $3 \mathrm{~b}, 4 \mathrm{~b}, 6 \mathrm{c}$ our ring closing metathesis reactions are generally under kinetic control. Thus, the ratios of constitutional isomers such as trans-2 and trans2' (Scheme 2.1), cis-2 and cis-2' (Scheme 2.2), or fac-12c and fac-12'c (Scheme 2.6) reflect the ratios of the precursor cycloalkenes (prior to hydrogenation). These are always complex mixtures of Z / E isomers of undefined ratios, and should not automatically correlate to any distribution computed from the relative energies of the saturated products.

Nucleophilic substitutions of chloride ligands in both parachute and gyroscope type platinum complexes (e.g., Scheme 2.5) take place without geometric isomerization and therefore fit the rigorous definition of stereospecific reactions. ${ }^{35}$ This leads in turn to a number of conclusions - for example, that the diphenyl complex cis-6c is not an
intermediate in the synthesis of trans-6c, and vice versa. Finally, mention should be made of related studies involving the relative stabilities of cis/trans $\mathrm{MCl}_{2}(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ adducts of monophosphines as well as diphosphines capable of both cis and trans coordination. ${ }^{36}$
2.3.4. Conclusion. This study has established the general accessibility of square planar platinum dichloride complexes with cis coordinated dibridgehead diphosphine and diphosphite ligands, albeit in modest yields. When the three macrocycles in these "parachute like" species are sufficiently large, they can sequentially "jump" over the PtCl_{2} moiety in a dynamic process that appears to be topologically unprecedented, and reminiscent of a triple axel. Isomeric trans dibridgehead diphosphine complexes, termed "gyroscope like", have been synthesized earlier and are thermodynamically more stable. Isomeric trans dibridgehead diphosphite complexes cannot presently be accessed, but computational data indicate that they are less stable. Results with octahedral rhenium complexes suggest that it is unlikely that parachute like complexes will be accessible with higher coordination geometries. The preceding data also eliminate certain mechanistic variants from various phenomena involving gyroscope like platinum complexes, simplifying the interpretation of their chemistry.

2.4. Experimental Section

General. Reactions were conducted under inert atmospheres using standard Schlenk techniques unless noted. DSC and TGA data were recorded with a Mettler-Toledo DSC821 instrument and treated by standard methods. ${ }^{37}$ Solvents were treated as follows: benzene, toluene, and THF, distilled from $\mathrm{Na} /$ benzophenone or purified using a Glass Contour system; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexanes, ethyl ether, pentane, and ethyl acetate, distilled by rotary evaporation or purified using a Glass Contour system; $\mathrm{CH}_{3} \mathrm{OH}$, distilled from Mg ; acetone, distilled from $\mathrm{K}_{2} \mathrm{CO}_{3} ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, distilled under reduced pressure and degassed; $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}, \mathrm{CDCl}_{3}$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(5 \times$ deutero GmbH or Cambridge Isotope Laboratories), used as received. Grubbs' first generation catalyst $\left(\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{RuCl}_{2}(=\mathrm{CHPh}) ;\right.$ Aldrich, $\left.97 \%\right),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$ (Lancaster. 97\%), PtCl_{2} (ABCR, 99.9\%), $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ (Aldrich, 99.9\%), PtO_{2} (Aldrich, 99.9\%), NaI (Rienst, 99%), and $\mathrm{Ph}_{2} \mathrm{Zn}$ (Acros, 95\%) were used as received.

NMR spectra were recorded on standard FT instruments at ambient probe temperatures unless noted and referenced as follows (δ, ppm): ${ }^{1} \mathrm{H}$, residual internal CHCl_{3} (7.26), $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ (7.15), CDHCl_{2} (5.32), or $\mathrm{C}_{6} \mathrm{D}_{4} \mathrm{HCl}(6.96,6.99 .7 .14) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, internal CDCl_{3} (77.16), $\mathrm{C}_{6} \mathrm{D}_{6}$ (128.0), $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (53.5), or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ (134.19, 129.26, 128.25, 125.96); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}(0.00)$. Mass spectra were recorded on a Micromass Zabspec instrument. IR spectra were recorded on ASI React-IR 1000, Thermo Scientific Nicolet IR100 FT-IR, or a Shimadzu IRAffinity-1 spectrometers. The last featured a Pike MIRacle ATR system (diamond/ ZnSe crystal). Melting points were recorded using a Stanford Research Systems MPA100 (OptiMelt) automated apparatus. Microanalyses were conducted on a Carlo Erba EA1110 instrument (in house) or by Atlantic Microlab, Inc.

Metathesis of cis-1b. A Schlenk flask was charged with cis-1b (0.438 g, 0.481 mmol), Grubbs' first generation catalyst ($0.0274 \mathrm{~g}, 0.0329 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (320 mL ; the resulting solution is 0.0015 M in cis-1b), and fitted with a condenser. The solution was refluxed with stirring (12 h). The solvent was removed by oil pump vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The sample was passed through a short pad of neutral alumina, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the filtrate by oil pump vacuum to give metathesized cis $\mathbf{- 1 b}(0.158 \mathrm{~g}, 0.191 \mathrm{mmol}, 40 \%)$ as a light brown solid.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 7.6$ (s, 26\%), 6.9 (s, 39\%), 5.4 (s, 18\%), 4.1 (s, 17\%).
cis- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{12}\right)_{\mathbf{3}} \mathbf{P}\right)($ cis-2b). A Fischer-Porter bottle was charged with metathesized cis-1b $(0.150 \mathrm{~g}, 0.181 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(0.0252 \mathrm{~g}, 0.0272 \mathrm{mmol}, 15$ $\mathrm{mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and H_{2} (5 bar). The solution was stirred (72 h). The solvent was removed by oil pump vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The sample was passed through a short pad of neutral alumina, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Two fractions were collected. The solvents were removed by oil pump vacuum. The second gave cis-2b $(0.023 \mathrm{~g}, 0.028$ $\mathrm{mmol}, 15 \%$) as a light brown solid, mp (capillary) $260^{\circ} \mathrm{C}$. TGA: onset of mass loss, 109 ${ }^{\circ} \mathrm{C}(8 \%)$. Anal. Calcd. (\%) for $\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (832.89): C, 51.92; H, 8.71. Found: C, 51.22; H, 8.48. ${ }^{38}$

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz})$ 2.62-2.60 (br m, 4H, PCH 2), 2.05-2.03 (br $\mathrm{s}, 4 \mathrm{H}, \mathrm{PCH}), 1.72\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.65-1.24\left(\mathrm{~m}, 60 \mathrm{H}\right.$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100$ $\mathrm{MHz})^{39} 30.1$ (virtual t, ${ }^{41} J_{\mathrm{CP}}=8.4 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.7\left(\right.$ virtual $\mathrm{t},{ }^{41} J_{\mathrm{CP}}=5.4$ $\mathrm{Hz}, 2 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $27.5\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.1\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.7\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.2(\mathrm{~s}$, $\left.2 \mathrm{C}, \mathrm{CH}_{2}\right), 25.7\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 25.2\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 24.7\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 24.5(\mathrm{br} \mathrm{s}, 2 \mathrm{C}$,
 $\left.{ }^{1} J_{\mathrm{PPt}}=3568 \mathrm{~Hz}^{42}\right) . \mathbf{M S}:{ }^{43} 832\left(\mathbf{M}^{+}, 20 \%\right), 797\left(\mathbf{M}^{+}-\mathrm{Cl}, 100 \%\right), 759\left(\mathbf{M}^{+}-2 \mathrm{Cl}, 85 \%\right)$.

Metathesis of cis-1c. Grubbs' first generation catalyst ($0.033 \mathrm{~g}, 0.040 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$, cis $-1 \mathbf{c}(0.2000 \mathrm{~g}, 0.2009 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL ; the resulting solution is 0.0010 M in cis-1c) were combined in a procedure analogous to that for cis- $\mathbf{1 b}$. An identical workup gave metathesized cis-1c $(0.098 \mathrm{~g}, 0.107 \mathrm{mmol}, 53 \%)$ as a white solid.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 9.8(\mathrm{~s}, 53 \%), 9.5(\mathrm{~s}, 33 \%), 8.4$ (s, 7\%), 8.0 (s, 7\%).
cis- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}}\right)_{\mathbf{3}} \mathbf{P}\right)($ cis-2c). Metathesized cis-1c $(0.0980 \mathrm{~g}, 0.108 \mathrm{mmol})$, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(0.0148 \mathrm{~g}, 0.0160 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, toluene $(20 \mathrm{~mL})$, and $\mathrm{H}_{2}(5 \mathrm{bar})$ were combined in a procedure analogous to that for cis-2b. An identical workup gave cis-2c $(0.0740 \mathrm{~g}, 0.0807 \mathrm{mmol}, 75 \%)$ as a light brown solid, mp (capillary) $210{ }^{\circ} \mathrm{C}$. DSC $\left(\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{e}} / \mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{f}}\right):{ }^{37} 140.2 / 200.2 / 211.1 / 214.9 / 218.4$ (endotherm) ${ }^{\circ} \mathrm{C}$. TGA: onset of mass loss, $204{ }^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{42} \mathrm{H}_{84} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (917.05): C, 55.01; H, 9.23. Found: C, 52.48; H, 9.17. ${ }^{38}$

NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta / \mathrm{ppm}\right){ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}) 2.58-2.55(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{PCH} 2), 1.84-1.78(\mathrm{br}$ $\mathrm{m}, 8 \mathrm{H}, \mathrm{PCH}_{2}$), 1.46-1.26 (br m, 72 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}){ }^{39} 31.0$ (virtual $\mathrm{t},{ }^{41} J_{\mathrm{CP}}=4.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 30.6 (virtual $\mathrm{t},{ }^{41} J_{\mathrm{CP}}=7.6 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $28.7\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.7\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 27.34\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.25(\mathrm{~s}, 8 \mathrm{C}$, CH_{2}), $26.6\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 25.4\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 25.2\left(\mathrm{br} \mathrm{s}, 2 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 24.7$ (br s, $4 \mathrm{C}, \mathrm{PCH} 2), 23.7(\mathrm{br} \mathrm{s}, 2 \mathrm{C}, \mathrm{PCH}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 5.3\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3543 \mathrm{~Hz}^{42}\right) . \mathbf{M S}:{ }^{43}$ $916\left(\mathbf{M}^{+}, 20 \%\right), 882\left(\mathbf{M}^{+}-\mathbf{C l}, 40 \%\right), 844\left(\mathbf{M}^{+}-2 \mathrm{Cl}, 100 \%\right)$.
cis- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{\mathbf{1 6}}\right)_{\mathbf{3}} \mathbf{P}\right) \mathbf{(c i s - 2 d)}$. Grubbs' first generation catalyst $(0.0445 \mathrm{~g}$, $0.0541 \mathrm{mmol}, 12 \mathrm{~mol} \%)$, cis $-1 \mathrm{~d}(0.4868 \mathrm{~g}, 0.451 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (750 mL ; the resulting solution is 0.00060 M in cis- $\mathbf{1 d}$) were combined in a procedure analogous to that for the metathesis of cis- $\mathbf{1 b}$. After the alumina filtration step, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ filtrate, PtO_{2} $(0.0236 \mathrm{~g}, 0.104 \mathrm{mmol})$ and $\mathrm{H}_{2}(5 \mathrm{bar})$ were combined in a Fischer-Porter bottle. A
reaction and workup analogous to that for cis-2b gave cis-2d ($0.0772 \mathrm{~g}, 0.077 \mathrm{mmol}, 17 \%$) as a white solid, mp (capillary) $159-161{ }^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{48} \mathrm{H}_{96} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1001.23): C, 57.58; H, 9.66. Found: C, 57.73; H, 9.77.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 2.68-1.51\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 2.01-1.88(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.78-1.70 (m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.35-1.20 (m, 60 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{39} 31.24$ (virtual $\left.\mathrm{t},{ }^{41} J_{\mathrm{CP}}=4.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.16$ (virtual t, ${ }^{41} J_{\mathrm{CP}}=7.6 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.2\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 28.4$ (s, 2C, C_{2}), $28.3\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.7\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.4\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 27.0\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.5\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 26.0\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 25.8\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 24.9(\mathrm{br}$ s, $2 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 24.5 (br s, $4 \mathrm{C}, \mathrm{PCH}_{2}$), $23.8\left(\mathrm{br} \mathrm{s}, 2 \mathrm{C}, \mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 4.35$ ($\mathrm{s},{ }^{1} J_{\mathrm{PPt}}=3550 \mathrm{~Hz}^{42}$). IR (cm^{-1}, powder film): $2930(\mathrm{~s}), 2844(\mathrm{~m}), 1730(\mathrm{~m}), 1461(\mathrm{~m})$, 1265 (m), 1074 (m), 726 (m).

Metathesis of cis-1e. Grubbs' first generation catalyst $(0.0213 \mathrm{~g}, 0.0258 \mathrm{mmol}$, $12.0 \mathrm{~mol} \%)$, cis- $\mathbf{1 e}(0.251 \mathrm{~g}, 0.215 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (215 mL ; the resulting solution is 0.0010 M in cis-1e) were combined in a procedure analogous to that for cis-1b. An identical workup gave metathesized cis-1e ($0.119 \mathrm{~g}, 0.110 \mathrm{mmol}, 51 \%$) as a white solid. NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 7.6(\mathrm{~s}, 47 \%), 7.3(\mathrm{~s}, 35 \%), 6.9(\mathrm{~s}, 7 \%)$, 3.8 (s, 11\%).
$\left.\left.\boldsymbol{c i s}-\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 8}}\right)_{\mathbf{3}} \mathbf{P}\right) \mathbf{(c i s - 2 e}\right)$. Metathesized cis-1e $(0.180 \mathrm{~g}, 0.167 \mathrm{mmol})$, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(0.023 \mathrm{~g}, 0.025 \mathrm{mmol}, 15 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), and H_{2} (5 bar) were combined in a procedure analogous to that for cis-2b. An identical workup gave cis-2e $(0.033 \mathrm{~g}, 0.030 \mathrm{mmol}, 18 \%)$ as a light brown solid, mp (capillary) $185^{\circ} \mathrm{C}$. DSC $\left(\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{e}} / \mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{c}} \mathrm{T}_{\mathrm{f}}\right){ }^{37} 33.3 / 55.7 / 59.4 / 61.8 / 69.1$ (endotherm), 133.2/155.5/166.9/168.6/169.7 (endotherm) ${ }^{\circ} \mathrm{C}$. TGA: onset of mass loss, $169^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{54} \mathrm{H}_{108} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1085.37): C, 59.76; H, 10.03. Found: C, 59.22; H, 9.64.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}) 2.10-1.85(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH} 2), 1.64-1.49(\mathrm{~m}$, $\left.12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.48-1.40\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40-1.18(\mathrm{~m}, 72 \mathrm{H}$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}){ }^{39} 30.9$ (virtual t, ${ }^{41}{ }^{3} J_{\mathrm{CP}}=6.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $28.9(\mathrm{~s}$, $\left.2 \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.5\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$, 24.6 (br s, $\left.\mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 4.6\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{PPt}}=3533 \mathrm{~Hz}{ }^{42}\right) . \mathbf{M S}:{ }^{43} 1084\left(\mathbf{M}^{+}, 15 \%\right)$, 1049 ([M-Cl] ${ }^{+}, 80 \%$), 1011 (unassigned, 100\%).
cis- $\underset{\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{2 0}}\right)_{\mathbf{3}} \mathbf{P}\right)}{\mathbf{(c i s - 2 f}) . \text { Grubbs' first generation catalyst }(0.0298 \mathrm{~g} \text {, }}$ $0.0362 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$), cis-1f ($0.6001 \mathrm{~g}, 0.481 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (450 mL ; the resulting solution is 0.0011 M in cis-1f) were combined in a procedure analogous to that for the metathesis of cis-1b. After the alumina filtration step, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ filtrate, PtO_{2} $(0.0232 \mathrm{~g}, 0.102 \mathrm{mmol})$, and H_{2} (5 bar) were combined in a Fischer-Porter bottle. A reaction and workup analogous to that for cis-2b gave cis-2f(0.1017 g, $0.087 \mathrm{mmol}, 18 \%$) as a white solid, mp (capillary) $163-167{ }^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{60} \mathrm{H}_{120} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$ (1169.53): C, 61.62; H, 10.34. Found C, 61.40; H, 10.29.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 2.08-1.85\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.60-1.50(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.45-1.37 (m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.36-1.17 (m, 84 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{39} 31.2\left(\right.$ virtual $\left.\mathrm{t},{ }^{41} J_{\mathrm{CP}}=6.9 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.4(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.1(\mathrm{~s}$, CH_{2}), $24.9\left(\mathrm{br} \mathrm{s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 24.6(\mathrm{br} \mathrm{s}, \mathrm{PCH}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 2.84\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3540\right.$ Hz^{42}). IR (cm^{-1}, powder film): $2916(\mathrm{~s}), 2847(\mathrm{~m}), 1458(\mathrm{~m}), 718(\mathrm{~m})$.
cis- $\widehat{\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{\mathbf{2 2}}\right)_{\mathbf{3}} \mathbf{P}\right)}$ (cis-2g). Grubbs' first generation catalyst $(0.0254 \mathrm{~g}$, $0.0309 \mathrm{mmol}, 9.4 \mathrm{~mol} \%$), cis $-1 \mathrm{~g}(0.4382 \mathrm{~g}, 0.329 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (450 mL ; the resulting solution is 0.00073 M in cis $\mathbf{- 1} \mathbf{g}$) were combined in a procedure analogous to that for the metathesis of cis-1b. After the alumina filtration step, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ filtrate (20 mL), $\mathrm{PtO}_{2}(0.0185 \mathrm{~g}, 0.0815 \mathrm{mmol})$, and $\mathrm{H}_{2}(5 \mathrm{bar})$ were combined in a Fischer-Porter bottle.

A reaction and workup analogous to that for cis-2b gave cis-2g ($0.0871 \mathrm{~g}, 0.0695 \mathrm{mmol}$, 21%) as a white solid, mp (capillary) $134-137{ }^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{66} \mathrm{H}_{132} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$ (1253.69): C, 63.23; H, 10.61. Found C, $63.50 ;$ H, 10.73.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 2.08-1.85\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.62-1.50(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{P} \mathrm{CH} 2 \mathrm{CH}_{2}$), 1.44-1.37 (m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.36-1.20 (m, 96 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{39} 31.1$ (virtual $\mathrm{t},{ }^{41} J_{\mathrm{CP}}=7.1 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 29.4 (s, $\left.2 \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.3(\mathrm{~s}$,
 IR $\left(\mathrm{cm}^{-1}\right.$, powder film): $2916(\mathrm{~s}), 2846(\mathrm{~m}), 1458(\mathrm{~m}), 718(\mathrm{~m})$.
cis- $\mathrm{PtCl}_{2}\left(\mathbf{P}\left(\mathbf{O}\left(\mathrm{CH}_{2}\right)_{3} \mathbf{C H}=\mathbf{C H}_{2}\right)_{3}\right)_{\mathbf{2}}$ (cis-4a). A Schlenk flask was charged with $\mathrm{PtCl}_{2}(0.250 \mathrm{~g}, 0.940 \mathrm{mmol})$, toluene $(10.0 \mathrm{~mL})$, and $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(0.5920 \mathrm{~g}$, $2.068 \mathrm{mmol}) .{ }^{24}$ The mixture was refluxed with stirring $(12 \mathrm{~h})$. The solvent was removed by oil pump vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The sample was chromatographed (silica column, $70: 30 \mathrm{v} / \mathrm{v}$ hexanes/ ethyl acetate). The solvent was removed from the product containing fractions by oil pump vacuum to give cis-4a ($0.474 \mathrm{~g}, 0.565 \mathrm{mmol}, 60 \%$) as a light yellow oil. Anal. Calcd. (\%) for $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$ (838.68): C, 42.96 ; H, 6.49. Found: C, 43.57; H, 6.73. ${ }^{38}$
NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}) 5.78\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} c i s}\right.$
$\left.=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}=\right), 5.02\left(\mathrm{dd}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right.$,
$=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}$), 4.99 (br d, $\left.6 \mathrm{H},{ }^{3} J_{\mathrm{HH} c i s}=10.2 \mathrm{~Hz},=\mathrm{C} H_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 4.18-4.93\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.16-$
$2.11(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} 2), 1.81-1.74\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}) 137.6(\mathrm{~s}, \mathrm{CH}=), 115.9$
$\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 67.3\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 30.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 29.7\left(\right.$ virtual $\left.\mathrm{t},{ }^{41} J_{\mathrm{CP}}=3.6 \mathrm{~Hz}, \mathrm{OCH}_{2} C \mathrm{H}_{2}\right)$; ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}(162 \mathrm{MHz}) 69.7\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5696 \mathrm{~Hz}^{42}\right) . \mathbf{M S}:{ }^{43} 803\left(\mathbf{M}^{+}-\mathrm{Cl}, 40 \%\right), 767\left(\mathbf{M}^{+}{ }_{-}\right.$ $2 \mathrm{Cl}, 8 \%$), 343 (unassigned, 100%).
$(5.5 \mathrm{~mL})$, and $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(0.272 \mathrm{~g}, 0.827 \mathrm{mmol})^{24}$ were combined in a procedure analogous to that for cis-4a. An identical workup gave cis-4b ($0.2275 \mathrm{~g}, 0.2465$ $\mathrm{mmol}, 66 \%$) as a colorless oil. Anal. Calcd. (\%) for $\mathrm{C}_{36} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$ (922.84): C, 46.86; H, 7.21. Found: C, 46.94; H, 7.46.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(400 \mathrm{MHz}) 5.76\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}=\right), 4.99\left(\mathrm{br} \mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.6 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.96(\mathrm{br}$ $\left.\mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} c i s}=10.3 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 4.16-4.12\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.09-2.02\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.71-1.64 (m, 12H, CH2), 1.49-1.42 (m, 12H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}) 138.5$ $(\mathrm{s}, C \mathrm{H}=), 115.4\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 67.7\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 33.6\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 30.0\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 25.2\left(\mathrm{~s}, C \mathrm{H}_{2}\right)$; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 69.3\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5696 \mathrm{~Hz}^{42}\right) . \mathbf{M S}:{ }^{43} 887\left(\mathbf{M}^{+}-\mathrm{Cl}, 25 \%\right), 850\left(\mathbf{M}^{+}-\right.$ $2 \mathrm{Cl},<5 \%), 357$ (100\%).
cis- $\left.\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\mathbf{O}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{5}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(c i s - 4 c}\right) . \mathrm{PtCl}_{2}(0.250 \mathrm{~g}, 0.940 \mathrm{mmol})$, toluene $(10.0 \mathrm{~mL})$, and $\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(0.766 \mathrm{~g}, 2.068 \mathrm{mmol})^{24}$ were combined in a procedure analogous to that for cis-4a. An identical workup gave cis-4c ($0.900 \mathrm{~g}, 0.894$ $\mathrm{mmol}, 95 \%$) as colorless oil. Anal. Calcd. (\%) for $\mathrm{C}_{42} \mathrm{H}_{78} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$ (1007.00): C, 50.10; H, 7.81. Found: C, 49.78; H, 7.81.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(400 \mathrm{MHz}) 5.77\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=\right), 4.98\left(\mathrm{dd}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.7 \mathrm{~Hz}\right.$, $=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}$), $4.93\left(\mathrm{brd}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} c i s}=10.2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 4.15-4.07\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.06-$ $2.01\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70-1.64\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39-1.35\left(\mathrm{~m}, 24 \mathrm{H}\right.$, remaining $\left.\mathrm{CH}_{2}\right)$; ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}) 138.9(\mathrm{~s}, \mathrm{CH}=), 115.1\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 67.7\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 34.0\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 30.1$ $\left(\mathrm{s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 25.5\left(\mathrm{~s}, C \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 69.3\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5698 \mathrm{~Hz}^{42}\right)$. MS: ${ }^{43} 971\left(\mathbf{M}^{+}-\mathrm{Cl}, 100 \%\right), 371\left(\left[\mathrm{P}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right]^{+}, 100 \%\right)$.

Metathesis of cis-4a. A Schlenk flask was charged with cis-4a (0.166 g, 0.198 mmol), Grubbs' first generation catalyst ($0.0163 \mathrm{~g}, 0.0198 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(250 mL ; the resulting solution is 0.00079 M in cis-4a), and fitted with a condenser. The solution was refluxed with stirring (12 h). The mixture was cooled to room temperature, and a second charge of Grubbs' first generation catalyst ($0.008 \mathrm{~g}, 0.009 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added. The solution was refluxed with stirring (12 h). A third cycle with $5 \mathrm{~mol} \%$ of Grubbs' first generation catalyst was similarly conducted. The solvent was removed by oil pump vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The mixture was chromatographed (silica column, 80: $20 \mathrm{v} / \mathrm{v}$ hexanes/ethyl acetate). A yellow band and then a colorless product band were collected. The solvent was removed from the latter by oil pump vacuum, and ethyl ether was added. The ether was removed by oil pump vacuum, and the cycle repeated until metathesized cis-4a ($0.0450 \mathrm{~g}, 0.0596 \mathrm{mmol}, 30 \%$) was obtained as a white solid.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathrm{H}(400 \mathrm{MHz}) 5.49-5.04(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=), 4.51-4.02(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{OCH}_{2}$), 2.41-1.52 (m, 24H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 76.0(\mathrm{~s}, 23 \%)$, 72.9 (s, 37\%), 69.1 (s, 23\%), 68.7 (s, 17\%).
cis- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P (O (\mathbf { C H } _ { 2 }) _ { \mathbf { 8 } } \mathbf { O }) _ { \mathbf { 3 } } \mathbf { P }}\right)($ cis-5a). A Fischer-Porter bottle was charged with metathesized cis $-4 \mathbf{a}(0.045 \mathrm{~g}, 0.060 \mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(0.0110 \mathrm{~g}, 0.0119 \mathrm{mmol}, 20$ $\mathrm{mol} \%)$, toluene $(20 \mathrm{~mL})$ and $\mathrm{H}_{2}(5 \mathrm{bar})$. The solution was stirred at $70^{\circ} \mathrm{C}(12 \mathrm{~h})$. The solvent was removed by oil pump vacuum. The mixture was chromatographed (silica column, $80: 20 \mathrm{v} / \mathrm{v}$ hexanes/ethyl acetate). A yellow band and then a colorless product band were collected. The solvent was removed from the latter by oil pump vacuum. Ethyl ether was added, and then removed by oil pump vacuum; hexanes were added, and then removed by oil pump vacuum. This cycle was repeated until cis-5a $(0.015 \mathrm{~g}, 0.020 \mathrm{mmol}$, 33%) was obtained as a white solid, mp (capillary) $195{ }^{\circ} \mathrm{C}, \mathbf{D S C}\left(\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{e}} / \mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{f}}\right) \cdot{ }^{37}$ 85.8/111.0/123.6/130.4/141.4 ${ }^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $289^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$ (760.57): C, 37.90; H, 6.36. Found: C, 38.45; H, 6.27. ${ }^{38}$ NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}) 5.00-4.95(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH} 2), 4.21-4.19(\mathrm{~m}$,
$\left.4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.09-3.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.02-1.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80-1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.62-1.54 (m, 16H, CH2), 1.40-1.21 (m, 12H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}) 69.0$ ($\mathrm{s}, 4 \mathrm{C}, \mathrm{OCH}_{2}$), $65.4\left(\right.$ virtual $\left.\mathrm{t},{ }^{41} J_{\mathrm{CP}}=4.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{OCH}_{2}\right), 29.0\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 28.1(\mathrm{~s}, 2 \mathrm{C}$, $\left.\mathrm{CH}_{2}\right), 26.5\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 24.0\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 23.9\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 20.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}, ~}$ $(162 \mathrm{MHz}) 68.2\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5729 \mathrm{~Hz}^{42}\right) . \mathbf{M S}:{ }^{43} 759\left(\mathbf{M}^{+}, 20 \%\right), 723\left(\mathbf{M}^{+}-\mathrm{Cl}, 60 \%\right), 687$ $\left(\mathbf{M}^{+}-2 \mathrm{Cl}, 100 \%\right)$.

Metathesis of cis-4b. Grubbs' first generation catalyst ($0.010 \mathrm{~g}, 0.012 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$, cis $-\mathbf{4 b}(0.113 \mathrm{~g}, 0.122 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL}$; the resulting solution is 0.00098 M in cis-4b) were combined in a procedure analogous to that for the metathesis of cis-4a. An identical workup gave metathesized cis-4b ($0.046 \mathrm{~g}, 0.055 \mathrm{mmol}, 45 \%$) as a white solid.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz})$ 5.41-5.31 (m, $\left.6 \mathrm{H}, \mathrm{CH}=\right), 4.54-4.43(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right)$, 3.92-3.88 (m, 8H, OCH 2), 2.09-1.17 (m, 36H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162$ MHz) 68.2 (s, 22\%), 68.00 (s, 46\%), 67.96 (13\%), 67.8 (s, 19\%).
$\boldsymbol{c i s}-\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\mathbf{O}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 0}} \mathbf{O}\right)_{\mathbf{3}} \mathbf{P}\right) \quad($ cis-5b). Metathesized cis-4b $(0.039 \mathrm{~g}, 0.046$ $\mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(0.0064 \mathrm{~g}, 0.0069 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, toluene $(20 \mathrm{~mL})$, and $\mathrm{H}_{2}(5 \mathrm{bar})$ were combined in a procedure analogous to that for cis-5a. An identical workup gave cis5b ($0.017 \mathrm{~g}, 0.020 \mathrm{mmol}, 44 \%$) as a white solid, mp (capillary) $146^{\circ} \mathrm{C}$. DSC $\left(\mathrm{T}_{\mathrm{i}} / \mathrm{T}_{\mathrm{e}} / \mathrm{T}_{\mathrm{p}} / \mathrm{T}_{\mathrm{c}} / \mathrm{T}_{\mathrm{f}}\right):{ }^{37} \quad 51.2 / 61.4 / 72.1 / 83.8 / 88.0 \quad$ (endotherm), $116.3 / 142.7 / 146.2 / 147.6$ $/ 155.1{ }^{\circ} \mathrm{C}$ (endotherm). TGA: onset of mass loss, $276{ }^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{30} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$ (844.73): C, 42.66; H, 7.16. Found: C, 42.96; H, 7.53.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz})$ 4.58-4.52 (m, 4H, OCH 2), 4.13-4.04 (m, $\left.4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.00-3.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.81-1.68\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.48-1.34(\mathrm{~m}$, 36 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}) 68.5\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{OCH}_{2}\right), 65.7\left(\mathrm{br} \mathrm{s}, 2 \mathrm{C}, \mathrm{OCH}_{2}\right)$, $29.1\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 28.5\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.9\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 26.8\left(2 \mathrm{~s}, 6 \mathrm{C}, \mathrm{CH}_{2}\right), 24.8(\mathrm{~s}, 2 \mathrm{C}$,
$\left.\mathrm{CH}_{2}\right), 23.9\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 22.9\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 68.1\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5759\right.$ Hz^{42}). MS: ${ }^{43} 810\left(\mathbf{M}^{+}-\mathrm{Cl}, 100 \%\right), 772\left(\mathbf{M}^{+}-2 \mathrm{Cl}, 40 \%\right)$.

Metathesis of cis-4c. Grubbs' first generation catalyst ($0.024 \mathrm{~g}, 0.030 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$, cis $-4 \mathrm{c}(0.300 \mathrm{~g}, 0.298 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL}$; the resulting solution is 0.00099 M in cis-4c) were combined in a procedure analogous to that for the metathesis of cis-4a. An identical workup gave metathesized cis-4c ($0.150 \mathrm{~g}, 0.163 \mathrm{mmol}, 55 \%$) as colorless foam.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}) 5.38-5.23(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}=), 4.45-4.39(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.21-4.07\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.26-2.06\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-1.39(\mathrm{~m}, 36 \mathrm{H}$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 67.4(\mathrm{~s})$.
cis- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\mathbf{O}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 2}} \mathbf{O}\right)_{\mathbf{3}} \mathbf{P}\right)($ (cis-5c). Metathesized cis-4c (0.0440 g, 0.0477 $\mathrm{mmol}),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(0.0083 \mathrm{~g}, 0.0095 \mathrm{mmol}, 20 \mathrm{~mol} \%)$, toluene $(20 \mathrm{~mL})$, and $\mathrm{H}_{2}(5 \mathrm{bar})$ were combined in a procedure analogous to that for cis-5a. An identical workup gave cis$5 \mathrm{c}(0.016 \mathrm{~g}, 0.017 \mathrm{mmol}, 36 \%)$ as white foam. Anal. Calcd. (\%) for $\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$ (928.89): C, 46.55; H, 7.81. Found: C, 47.23; H, 7.97. 38

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}) 4.33-4.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.17-4.14(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.75-1.58\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.34\left(\mathrm{~m}, 48 \mathrm{H}\right.$, remaining $\mathrm{CH}_{2} ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100$ $\mathrm{MHz}) 68.0\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{OCH}_{2}\right), 67.8\left(\right.$ virtual $\left.\mathrm{t},{ }^{41} \mathrm{~J}_{\mathrm{CP}}=2.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{OCH}_{2}\right), 30.1\left(\right.$ virtual $\mathrm{t},{ }^{41}$ $\left.J_{\mathrm{CP}}=3.1 \mathrm{~Hz}, 2 \mathrm{C}, C \mathrm{H}_{2}\right), 29.7\left(\right.$ virtual $\left.\mathrm{t},{ }^{41} J_{\mathrm{CP}}=3.1 \mathrm{~Hz}, 4 \mathrm{C}, C \mathrm{H}_{2}\right), 27.3\left(\mathrm{~s}, 2 \mathrm{C}, C \mathrm{H}_{2}\right), 27.1$ (s, $2 \mathrm{C}, \mathrm{CH}_{2}$), $26.8\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 26.7\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 26.3\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.1\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right)$, $24.7\left(\mathrm{~s}, 2 \mathrm{C}, C \mathrm{H}_{2}\right), 24.3\left(\mathrm{~s}, 4 \mathrm{C}, C \mathrm{H}_{2}\right) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 68.3\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5721 \mathrm{~Hz}^{42}\right)$. MS: ${ }^{43} 894\left(\mathbf{M}^{+}-\mathbf{C l}, 100 \%\right), 856\left(\mathbf{M}^{+}-2 \mathrm{Cl}, 45 \%\right)$.
cis- $\mathbf{P t P h}_{\mathbf{2}} \mathbf{(P ((\mathbf { C H } _ { 2 }) _ { 1 4 }) _ { \mathbf { 3 } } \mathbf { P })}$ (cis-6c). A Schlenk flask was charged with cis-2c ($0.0502 \mathrm{~g}, 0.0545 \mathrm{mmol}$) and $\mathrm{Ph}_{2} \mathrm{Zn}(0.0375 \mathrm{~g}, 0.171 \mathrm{mmol})$, and THF $(5 \mathrm{~mL})$ was added with stirring. After $18 \mathrm{~h}, \mathrm{CH}_{3} \mathrm{OH}$ (several drops) was added. The sample was exposed to
air. After 1 h , the solvent was removed by oil pump vacuum, and benzene was added. The suspension was filtered through a pipette filled with silica, which was rinsed with benzene. The solvent was removed from the combined filtrate by oil pump vacuum to give cis-6c $(0.0381 \mathrm{~g}, 0.0379 \mathrm{~mol}, 70 \%)$ as a white solid, dec. pt. (capillary) $160^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{54} \mathrm{H}_{94} \mathrm{P}_{2} \mathrm{Pt}$ (1000.36): C, 64.84; H, 9.47. Found: C, 61.87; H, 9.42. ${ }^{38}$

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(400 \mathrm{MHz}) 7.34(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{Ph}),{ }^{44} 6.83\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.9\right.$ $\mathrm{Hz}, 4 \mathrm{H}, m-\mathrm{Ph}), 6.63\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{Ph}\right), 2.12-2.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.90(\mathrm{br}, 4 \mathrm{H}$, PCH_{2}), 1.47-1.24 (m, 4H/72H, $\mathrm{PCH}_{2} /$ remaining $\mathrm{CH}_{2},{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}){ }^{39,45} 136.4$ (s, $4 \mathrm{C}, o-\mathrm{Ph}$), $126.8(\mathrm{~s}, 4 \mathrm{C}, m-\mathrm{Ph}), 120.7\left(\mathrm{~s}, 2 \mathrm{C}, p-\mathrm{Ph}\right.$), 30.8 (virtual $\mathrm{t},{ }^{41}{ }^{3} J_{\mathrm{CP}}=4.3 \mathrm{~Hz}, 2 \mathrm{C}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 30.5 (virtual $\mathrm{t},{ }^{41}{ }^{3} J_{\mathrm{CP}}=7.0 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $28.5\left(\mathrm{~s}, 6 \mathrm{C}, \mathrm{CH}_{2}\right)$, $27.4\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.3\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.2\left(\mathrm{~s}, 6 \mathrm{C}, \mathrm{CH}_{2}\right), 27.0\left(\mathrm{~s}, 6 \mathrm{C}, \mathrm{CH}_{2}\right), 26.3(\mathrm{~s}, 6 \mathrm{C}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 25.0\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{PCH}_{2}\right), 22.5(\mathrm{br} \mathrm{s}, 2 \mathrm{C}, \mathrm{PCH} 2) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 1.0\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}\right.$ $\left.=1779 \mathrm{~Hz}^{42}\right) . \mathbf{M S}:^{43} 920\left(\mathbf{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5}, 25 \%\right), 844\left(\mathbf{M}^{+}-2 \mathrm{C}_{6} \mathrm{H}_{5}, 100 \%\right)$.
$\boldsymbol{c i s}-\stackrel{\mathbf{P t P h}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 6}}\right)_{\mathbf{3}} \mathbf{P}\right)(\boldsymbol{c i s}-6 d) . \operatorname{THF}(5 \mathrm{~mL}), \mathrm{Ph}_{2} \mathrm{Zn}(0.0404 \mathrm{~g}, 0.184 \mathrm{mmol}),}{ }$ and cis-2d $(0.0621 \mathrm{~g}, 0.0620 \mathrm{mmol})$, were combined in a procedure analogous to that for cis-6c. An identical workup gave cis-6d ($0.0458 \mathrm{~g}, 0.0422 \mathrm{~mol}, 68 \%$) as a white solid, mp (capillary) $153{ }^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{60} \mathrm{H}_{106} \mathrm{P}_{2} \mathrm{Pt}$ (1084.54): C, 66.45; H, 9.85. Found: C, 64.70; H, 10.01. ${ }^{38}$

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 7.33(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{Ph}),{ }^{44} 6.89\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.9\right.$ $\mathrm{Hz}, 4 \mathrm{H}, m-\mathrm{Ph}), 6.68\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, p-\mathrm{Ph}\right), 2.04-1.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.73(\mathrm{br}, 4 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 1.61-1.10\left(\mathrm{~m}, 4 \mathrm{H} / 84 \mathrm{H}, \mathrm{PCH} / 2 /\right.$ remaining $\mathrm{CH}_{2} ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz})^{39,45} 136.4(\mathrm{~s}$, $4 \mathrm{C}, o-\mathrm{Ph}$), 126.7 ($\mathrm{s}, 4 \mathrm{C}, m-\mathrm{Ph}$), 120.6 ($\mathrm{s}, 2 \mathrm{C}, p-\mathrm{Ph}$), 31.3 (virtual $\mathrm{t},{ }^{41}{ }^{3} J_{\mathrm{CP}}=4.3 \mathrm{~Hz}, 2 \mathrm{C}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 31.2 (virtual $\mathrm{t},{ }^{41}{ }^{3} J_{\mathrm{CP}}=7.0 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.2\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right)$, $28.7\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 28.33\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 28.27\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.9\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.5(\mathrm{~s}, 2 \mathrm{C}$, $\left.\mathrm{CH}_{2}\right), 27.0\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.9\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 26.8\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 26.5\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 25.4(\mathrm{~s}$,
$\left.6 \mathrm{C}, \mathrm{CH}_{2}\right), 23.6(\mathrm{~s}, 4 \mathrm{C}, \mathrm{PCH}), 22.5(\mathrm{br} \mathrm{s}, 2 \mathrm{C}, \mathrm{PCH} 2) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-0.68\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}\right.$ $=1778 \mathrm{~Hz}^{42}$). IR (cm^{-1}, powder film): $3043(\mathrm{w}), 2920(\mathrm{~s}), 2850(\mathrm{~m}), 1568(\mathrm{w}), 1458(\mathrm{~m})$, 1261 (m), 1091 (m), 1055 (m), 1020 (m), 800 (m).
cis- $\left.\mathbf{P t I}_{\mathbf{2}}^{\left.\mathbf{2}(\mathbf{P (O (C H 2})_{10} \mathbf{O}\right)_{\mathbf{3}} \mathbf{P}}\right)($ cis-7b). An NMR tube was charged with cis-5b $(0.0101 \mathrm{~g}, 0.0118 \mathrm{mmol}), \mathrm{NaI}(0.0071 \mathrm{~g}, 0.047 \mathrm{mmol})$ and THF/acetone $(0.6 \mathrm{~mL}, 50: 50$ v / v). After $17 \mathrm{~h}, \mathrm{a}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed $>99 \%$ conversion. The solvent was removed by oil pump vacuum, and benzene was added. The suspension was filtered through glass fibers. The solvent was removed from the filtrate by oil pump vacuum to give a yellow oil. Hexanes were added and then removed by oil pump vacuum. Pentane was added and then removed by oil pump vacuum to give cis-7b $(0.0119 \mathrm{~g}, 0.0116 \mathrm{mmol}$, 98%) as a yellow solid, mp (capillary) $147{ }^{\circ} \mathrm{C}$. Anal. Calcd. (\%) for $\mathrm{C}_{30} \mathrm{H}_{60} \mathrm{I}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$ (1027.63): C, 35.06; H, 5.88. Found: C, 37.56; H, 6.24. ${ }^{38}$

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{46} \mathbf{1} \mathbf{H}(400 \mathrm{MHz}) 4.47-4.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.15-4.07(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.99-3.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.84-1.71\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.40-1.23(\mathrm{~m}$, 36 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}) 69.4\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{OCH}_{2}\right), 66.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=9.8 \mathrm{~Hz}\right.$, $\left.2 \mathrm{C}, \mathrm{OCH}_{2}\right), 29.2\left(\mathrm{~d}, 4 \mathrm{C},{ }^{3} J_{\mathrm{CP}}=5.8 \mathrm{~Hz} \mathrm{OCH} \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~d}, 2 \mathrm{C},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 27.25\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 27.22\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 25.3\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right), 25.1\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{CH}_{2}\right)$, $24.2\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{CH}_{2}\right), 23.3\left(\mathrm{~s}, 2 \mathrm{C}, C \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(162 \mathrm{MHz}) 72.6\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5517 \mathrm{~Hz}^{42}\right)$. MS: ${ }^{43} 901$ (\mathbf{M}^{+}- I, 100\%), 772 ($\left.\mathbf{M}^{+}-2 \mathrm{I}, 50 \%\right)$.
$\left.\boldsymbol{f a c}-\mathrm{ReCl}(\mathbf{C O})_{\mathbf{3}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{\mathbf{6}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(f a c - 1 0 c}\right)$. A Schlenk flask was charged with $\operatorname{ReCl}(\mathrm{CO})_{5}(0.500 \mathrm{~g}, 1.38 \mathrm{mmol}),{ }^{47} \mathrm{THF}(15 \mathrm{~mL})$, and $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(1.011$ $\mathrm{g}, 2.773 \mathrm{mmol}),{ }^{14}$ and fitted with a condenser. The yellow solution was stirred at $60^{\circ} \mathrm{C}$ and turned orange as gas evolved. After 21 h , the solution was cooled, and the solvent was removed by rotary evaporation and oil pump vacuum. The residue was chromatographed (alumina column, $3 \times 15 \mathrm{~cm} ; 4: 1$ and then $2: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was
removed from the major yellow band by oil pump vacuum to give fac-10c ($0.953 \mathrm{~g}, 0.921$ $\mathrm{mmol}, 67 \%)$ as a colorless viscous oil. Anal. Calcd. (\%) for $\mathrm{C}_{51} \mathrm{H}_{90} \mathrm{ClO}_{3} \mathrm{P}_{2} \mathrm{Re}$ (1034.87): C, 59.19; H, 8.77. Found C, 59.05; H, 8.76.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{461} \mathbf{H}(300 \mathrm{MHz}) 5.78\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}=\right), 5.05\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.3 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 5.00(\mathrm{br}$ d, $\left.{ }^{3} J_{\mathrm{HH} \text { cis }}=11.1 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.14-1.82\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H} / 12 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2}=\mathrm{CH}_{2} / \mathrm{PCH}_{2}\right)$, 1.72-1.50 (br m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.42-1.22 (br m, 36 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100$ $\mathrm{MHz})$ 192.3/ 192.1/191.8/191.6/191.3 (apparent $\mathrm{s} / \mathrm{s} / \mathrm{s} / \mathrm{s} / \mathrm{m}$, unassigned ${ }^{2} J_{\mathrm{CP}}, 3 \mathrm{CO}$), 138.9 ($\mathrm{s}, \mathrm{CH}=$), $114.7\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 34.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 31.5\left(\right.$ virtual $\left.\mathrm{t},{ }^{413} \mathrm{~J}_{\mathrm{CP}}=6.0 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $29.11\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.06\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.5$ (virtual t, $\left.{ }^{41}{ }^{1} J_{\mathrm{CP}}=12.9 \mathrm{~Hz}, \mathrm{PCH}\right), 24.0(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-16.6(\mathrm{~s}) . \text { IR (} \mathrm{cm}^{-1} \text {, oil film): } 2019\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1930(\mathrm{~s} \text {, }, ~(1)}$ $\left.v_{\mathrm{CO}}\right), 1884\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1640\left(\mathrm{~m}, \mathrm{v}_{\mathrm{C}=\mathrm{C}}\right) . \mathbf{M S}:{ }^{43} 1034^{48}\left(\mathbf{M}^{+}, 5 \%\right), 1007\left(\mathbf{M}^{+}-\mathrm{CO}, 45 \%\right)$, $1000\left(\mathbf{M}^{+}-\mathrm{Cl}, 100 \%\right)$.
$\boldsymbol{f a c}-\mathbf{R e B r}(\mathbf{C O})_{\mathbf{3}} \mathbf{(P ((\mathbf { C H } _ { \mathbf { 2 } } \mathbf {) } _ { \mathbf { 6 } } \mathbf { C H } = \mathbf { C H } _ { \mathbf { 2 } }) _ { \mathbf { 3 } }) _ { \mathbf { 2 } } \mathbf { (f a c - 1 1 c }) \text { . THF } (1 5 \mathrm { mL }) , \operatorname { R e B r } (\mathrm { CO }) _ { 5 } , ~}$ $(0.500 \mathrm{~g}, 1.23 \mathrm{mmol}),{ }^{47}$ and $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(0.912 \mathrm{~g}, 2.50 \mathrm{mmol}){ }^{14}$ were combined in a procedure analogous to that for fac-10c, except that the solution was stirred at $80^{\circ} \mathrm{C}$. A similar workup (alumina column, $3 \times 15 \mathrm{~cm}$; hexanes and then $4: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave fac-11c ($0.575 \mathrm{~g}, 0.533 \mathrm{mmol}, 43 \%$) as yellow viscous oil. Anal. Calcd. (\%) for $\mathrm{C}_{51} \mathrm{H}_{90} \mathrm{BrO}_{3} \mathrm{P}_{2} \mathrm{Re}$ (1079.31): C, $56.75 ; \mathrm{H}, 8.40$. Found C, $56.28 ; \mathrm{H} 8.53$.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{46}{ }^{1} \mathbf{H}(300 \mathrm{MHz}) 5.78\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}=\right), 5.05\left(\mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.6 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 5.00(\mathrm{br}$ d, ${ }^{3} J_{\mathrm{HH} \text { cis }}=11.1 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}$), 2.12-1.80 (br m, $\left.12 \mathrm{H} / 12 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} / \mathrm{PCH}_{2}\right)$, 1.67-1.47 (br m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.40-1.18 (br m, 36 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(75$ MHz) 191.5/191.2/ 190.9/190.6/190.3 (apparent $\mathrm{s} / \mathrm{s} / \mathrm{s} / \mathrm{m} / \mathrm{s}$, unassigned ${ }^{2} J_{\mathrm{CP}}, 3 \mathrm{CO}$), 138.9 (s, $C H=$), $114.8\left(\mathrm{~s},=C H_{2}\right), 34.1\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 31.4\left(\right.$ virtual $\left.\mathrm{t},{ }^{41}{ }^{3} J_{\mathrm{CP}}=5.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$,
$29.10\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.08\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.0$ (virtual t, $\left.,{ }^{41}{ }^{1} J_{\mathrm{CP}}=13.3 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 24.2(\mathrm{~s}$,
 $\left.v_{\mathrm{CO}}\right), 1888\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1640\left(\mathrm{~m}, \mathrm{v}_{\mathrm{C}=\mathrm{C}}\right) . \mathbf{M S}:{ }^{43} 1078^{49}\left(\mathbf{M}^{+}, 8 \%\right), 1050^{49}\left(\mathbf{M}^{+}-\mathrm{CO}, 50 \%\right)$, $999^{49}\left(\mathbf{M}^{+}-\mathrm{Br}, 100 \%\right)$.

Metathesis of $\boldsymbol{f a c}-\mathbf{1 0 c}$. A three necked flask was charged with fac-10c $(0.795 \mathrm{~g}$, $0.768 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(700 \mathrm{~mL}$; the resulting solution is 0.0011 M in $f a c-10 \mathrm{c})$, and fitted with a condenser. Grubbs' first generation catalyst ($0.031 \mathrm{~g}, 0.038 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added. Then N_{2} was sparged through the solution with stirring. After 1 d , the solution was filtered through alumina, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the combined filtrates by oil pump vacuum to give metathesized fac-10c $(0.558 \mathrm{~g}$, $0.587 \mathrm{mmol}, 76 \%$) as a yellow viscous oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(300 \mathrm{MHz})$ 5.67-5.20 (br m, $6 \mathrm{H}, \mathrm{CH}=$), 2.45-1.86 (br m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), 1.84-1.60 (br m, $12 \mathrm{H}, \mathrm{PCH}_{2}$), 1.59-1.16 (br m, 60 H , remaining CH_{2}); ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}(121 \mathrm{MHz})-14.7(\mathrm{~s}, 10 \%),-15.1$ (s, 26\%), -15.3 (s, 39\%), -15.5 (s, 25\%). MS: ${ }^{43} 1846^{50}\left(2 \mathbf{M}^{+}-2 \mathrm{CO}, 15 \%\right), 1836^{50}\left(2 \mathbf{M}^{+}-\mathrm{CO}-\mathrm{Cl}, 50 \%\right), 1815^{50}\left(2 \mathbf{M}^{+}-3 \mathrm{CO}\right.$, $100 \%), 1786^{50}\left(2 \mathbf{M}^{+}-4 \mathrm{CO}, 25 \%\right), 1774^{50}\left(2 \mathbf{M}^{+}-2 \mathrm{CO}-2 \mathrm{Cl}, 30 \%\right), 1747^{50}\left(2 \mathbf{M}^{+}\right.$ $-3 \mathrm{CO}-2 \mathrm{Cl}, 5 \%), 922\left(\mathbf{M}^{+}-\mathrm{CO}, 5 \%\right), 894\left(\mathbf{M}^{+}-2 \mathrm{CO}, 5 \%\right)$.

Metathesis of $\boldsymbol{f a c} \mathbf{- 1 1 c}$. Grubbs' first generation catalyst ($0.017 \mathrm{~g}, 0.021 \mathrm{mmol}, 5$ $\mathrm{mol} \%)$, fac-11c ($0.450 \mathrm{~g}, 0.417 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(400 \mathrm{~mL}$; the resulting solution is 0.0010 M in $f a c-11 \mathbf{c}$) were combined in a procedure analogous to that for the metathesis of fac-10c. An identical workup gave metathesized fac-11c ($0.329 \mathrm{~g}, 0.331 \mathrm{mmol}, 79 \%$) as a yellow viscous oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz}) 5.60-5.18$ (br m, $6 \mathrm{H}, \mathrm{CH}=$), 2.31-1.87 (br m, $12 \mathrm{H} / 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH} / \mathrm{PCH}_{2}$), $1.80-1.01$ (br m, 48 H , remaining CH_{2}); ${ }^{\mathbf{3 1}} \mathbf{P}\{\mathbf{1} \mathbf{H}\}(121$ $\mathrm{MHz})-20.3$ (s, 22\%), -21.0 (s, 29\%), -21.1 (s, 29\%), -21.3 (s, 20\%). MS: ${ }^{43} 995^{51}$ (\mathbf{M}^{+},
$35 \%), 967^{52}\left(\mathbf{M}^{+}-\mathbf{C O}, 100 \%\right), 916\left(\mathbf{M}^{+}-\mathrm{Br}, 95 \%\right)$.
$f a c-\operatorname{ReCl}(\mathbf{C O})_{\mathbf{3}}\left(\mathbf{P}_{\left.\left(\mathbf{C H}_{2}\right)_{13} \mathbf{C H}_{2}\right)\left(\left(\mathbf{C H}_{2}\right)_{14}\right)\left(\mathbf{P}\left(\mathbf{C H}_{2}\right)_{13} \mathbf{C H}_{2}\right)(f a c-12 ' \mathbf{c}) \text {. A Schlenk }}\right.$ flask was charged with metathesized fac-10c $(0.558 \mathrm{~g}, 0.587 \mathrm{mmol}$; the entire quantity prepared above), THF $(10 \mathrm{~mL})$, and $\mathrm{PtO}_{2}(0.013 \mathrm{~g}, 0.057 \mathrm{mmol})$, connected to a H_{2} balloon, and partially evacuated. Then H_{2} was introduced (1 bar), and the suspension was stirred. After 1 d , the solvent was removed by oil pump vacuum. The residue was chromatographed (alumina column, $3 \times 20 \mathrm{~cm}, 1: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by rotary evaporation and oil pump vacuum to give $\mathrm{fac}-\mathbf{1 2} \mathbf{c}(0.283 \mathrm{~g}, 0.296 \mathrm{mmol}, 50 \% ; 39 \%$ from $\mathrm{fac}-\mathbf{1 0 c})$ as a white solid, mp (capillary) $76{ }^{\circ} \mathrm{C}$, DSC $\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right)$. $3^{37} 36.57 / 36.87 / 41.14 / 45.42 / 46.10{ }^{\circ} \mathrm{C}$ (endotherm); $146.37 / 167.04 / 186.96 / 205.24 / 220.99^{\circ} \mathrm{C}$ (exotherm). TGA: onset of mass loss, $279{ }^{\circ} \mathrm{C}$. Anal. Calcd (\%) for $\mathrm{C}_{45} \mathrm{H}_{84} \mathrm{ClO}_{3} \mathrm{P}_{2} \operatorname{Re}$ (956.75): C, 56.49; H 8.85. Found C, 56.21; H 8.50.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{46}{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz}) 2.29-1.89\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.88-1.62$ (br m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.60-1.18 (br m, 60 H , remaining CH_{2}) ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(75 \mathrm{MHz}$) 192.1/191.6/191.3 (apparent s/s/m, unassigned ${ }^{2} J_{\mathrm{CP}}, 3 \mathrm{CO}$), 31.2 (virtual t, ${ }^{41}{ }^{3} J_{\mathrm{CP}}=6.4$ Hz), $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 29.1 (virtual t, $\left.{ }^{41}{ }^{3} J_{\mathrm{CP}}=5.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.5$ (virtual $\left.\mathrm{t},{ }^{41}{ }^{1} J_{\mathrm{CP}}=18.6 \mathrm{~Hz}, \mathrm{PCH}_{2}\right),{ }^{53} 27.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.9\left(\right.$ virtual $\mathrm{t},{ }^{41}{ }^{1} J_{\mathrm{CP}}$ $\left.=18.2 \mathrm{~Hz}, \mathrm{PCH}_{2}\right){ }^{5}{ }^{5} 26.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.2(\mathrm{~s}$, CH_{2}), $22.6\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.4\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-15.7(\mathrm{~s}) . \mathbf{I R}\left(\mathrm{cm}^{-1}\right.$, powder film): $2019\left(\mathrm{~m}, v_{\mathrm{CO}}\right), 1930\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1880\left(\mathrm{~s}, v_{\mathrm{CO}}\right) . \mathbf{M S}^{43} 957\left(\mathbf{M}^{+}, 30 \%\right), 929$ $\left(\mathbf{M}^{+}-\mathbf{C O}, 70 \%\right), 922\left(\mathbf{M}^{+}-\mathrm{Cl}, 100 \%\right)$.
 sized fac-11c ($0.329 \mathrm{~g}, 0.331 \mathrm{mmol}$; the entire quantity prepared above), THF (15 mL), and $\mathrm{PtO}_{2}(0.020 \mathrm{~g}, 0.088 \mathrm{mmol})$ were combined in a procedure analogous to that for fac-

12'c. ${ }^{54}$ A similar workup (alumina column, $3 \times 20 \mathrm{~cm}, 2: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave $f a c$ $13 ' \mathbf{c}(0.062 \mathrm{~g}, 0.062 \mathrm{mmol}, 19 \% ; 15 \%$ from fac-11c) as a white solid, mp (capillary) 66 ${ }^{\circ} \mathrm{C}$. $\quad \mathbf{D S C}\left(\mathrm{T}_{i} / \mathrm{T}_{e} / \mathrm{T}_{p} / \mathrm{T}_{c} / \mathrm{T}_{f}\right):{ }^{37}$ 146.26/170.84/191.10/241.88/242.08 ${ }^{\circ} \mathrm{C}$ (exotherm); 242.24/247.99/263.74/282.72/289.73 ${ }^{\circ} \mathrm{C}$ (exotherm, minor). TGA: onset of mass loss, 289 ${ }^{\circ} \mathrm{C}$. Anal. Calcd (\%) for $\mathrm{C}_{45} \mathrm{H}_{84} \mathrm{BrO}_{3} \mathrm{P}_{2} \operatorname{Re}$ (1001.21): C 53.98; H 8.46. Found C, 53.87; H 8.33.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{46}{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz}) 2.25-1.82\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.80-1.59$ (br m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.58-1.05 (br m, 60 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(100 \mathrm{MHz}$) 191.4/191.2/ 191.0/190.8/190.5 (apparent $\mathrm{s} / \mathrm{s} / \mathrm{s} / \mathrm{s} / \mathrm{m}$, unassigned ${ }^{2} J_{\mathrm{CP}}, 3 \mathrm{CO}$), 31.1 (virtual $\mathrm{t},{ }^{41}{ }^{3} J_{\mathrm{CP}}=6.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.0\left(\mathrm{br} \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.5$ (virtual $\left.\mathrm{t},{ }^{41}{ }^{1} J_{\mathrm{CP}}=13.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right),{ }^{53} 27.4\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 27.1\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 26.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.5\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 26.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.03\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 25.95\left(\right.$ virtual $\mathrm{t},{ }^{41}{ }^{1} J_{\mathrm{CP}}=13.9 \mathrm{~Hz}$, $\left.\mathrm{PCH}_{2}\right),{ }^{53} 24.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 22.6\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.4\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})$ $-21.4(\mathrm{~s})$. IR (cm^{-1}, powder film): $\left.2019\left(\mathrm{~m}, \mathrm{v}_{\mathrm{CO}}\right), 1934\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1888\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right) . \mathbf{M S}\right)^{43}$ $1001^{52}\left(\mathbf{M}^{+}, 15 \%\right), 972\left(\mathbf{M}^{+}-\mathbf{C O}, 70 \%\right), 944\left(\mathbf{M}^{+}-2 \mathrm{CO}, 35 \%\right), 921^{49}\left(\mathbf{M}^{+}-\mathrm{Br}, 100 \%\right)$.

Thermolyses of Platinum Complexes. The following are representative and additional experiments are described in the APPENDIX A. A. An NMR tube was charged with cis-2c $(0.0071 \mathrm{~g}, 0.0078 \mathrm{mmol})$ and $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ and kept at $185^{\circ} \mathrm{C}$. The tube was periodically cooled and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded (Figure 2.9; $\delta / \mathrm{ppm}: 6.46\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2395 \mathrm{~Hz},{ }^{42}\right.$ trans-2c), $4.04\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3540 \mathrm{~Hz},{ }^{42}\right.$ cis-2c)$)$. The trans-2e/cis-2c ratios were 5:95 (1 d), 72:28 (3 d), 87:13 (4 d), 89:11 (5 d), and 89:11 (6 d). B. An NMR tube was charged with cis-2g ($0.0081 \mathrm{~g}, 0.0065 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}(0.7$ mL) and kept at $150^{\circ} \mathrm{C}$. The tube was periodically cooled and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded (Figure 2.10; $\delta / \mathrm{ppm}: 5.32\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2388 \mathrm{~Hz}{ }^{42}\right.$ trans-2g), 3.21 (s, oligomer), $2.87\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3530 \mathrm{~Hz},{ }^{42}\right.$ cis-2g)$)$. The trans- $\mathbf{2 g} /$ cis- $\mathbf{2 g} /$ oligomer ratios were 74:7:19 (1
d) and 65:6:29 (2 d). C. An NMR tube was charged with cis-2c ($0.0085 \mathrm{~g}, 0.0093 \mathrm{mmol}$) and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}(0.7 \mathrm{~mL})$ and kept at $150{ }^{\circ} \mathrm{C}$. The tube was periodically cooled and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded (Figure s2.5; $\delta / \mathrm{ppm}: 7.21$ (s, ${ }^{1} J_{\mathrm{PPt}}=2395 \mathrm{~Hz},{ }^{42}$ trans-2c), 5.25 (s , oligomer), $4.59\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3540 \mathrm{~Hz},{ }^{42}\right.$ cis-2c), $2.94\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2344 \mathrm{~Hz},{ }^{42}\right.$ trans$\stackrel{\left.\mathrm{PtBr}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right)^{4 \mathrm{~b}, 25}\right) \text {. The trans-2g/cis-2g/oligomer/trans- }-\mathrm{PtBr}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right)}{1}$ ratios were 16:78:6: <1 (1 d), 22:62:16: <1 (2 d), and 22: $<1: 48: 30(3 \mathrm{~d})$.

Thermolyses of Rhenium Complexes. The following is representative and additional experiments are described in the APPENDIX A. A. A flask was charged with fac- $\mathbf{1 0 c}(0.700 \mathrm{~g}, 0.649 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(30 \mathrm{~mL})$ and heated to $140^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. After 21 h , conversion was complete. The solvent was removed by oil pump vacuum. The residue was chromatographed (alumina column, $3 \times$ $20 \mathrm{~cm}, 1: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product-containing fractions by rotary evaporation and oil pump vacuum to give previously reported mer, trans $-11 \mathrm{c}(0.625 \mathrm{~g}, 0.580 \mathrm{mmol}, 89 \%)^{6 \mathrm{a}, \mathrm{b}}$ as a yellow viscous oil.

NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz}) 5.77\left(\mathrm{ddt},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} c i s}=\right.$ $10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}=$), 5.04 (br d, ${ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}$), 4.99 (br d, ${ }^{3} J_{\mathrm{HH} \text { cis }}=10.3 \mathrm{~Hz}, 6 \mathrm{H},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}$), 2.11-2.00 (br m, $12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.99-1.91 (br m, $12 \mathrm{H}, \mathrm{PCH}_{2}$), 1.69-1.51 (br m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.49-1.20 (br m, 36H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})$-13.2 (s$)$. IR (cm^{-1}, oil film): $2026\left(\mathrm{~m}, \mathrm{v}_{\mathrm{CO}}\right), 1999\left(\mathrm{~m}, \mathrm{v}_{\mathrm{CO}}\right)$, $1934\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1888\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1640\left(\mathrm{~m}, \mathrm{v}_{\mathrm{C}=\mathrm{C}}\right)$.

Crystallography. A. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of cis-1f was allowed to slowly concentrate. After 9 d , colorless plates were collected and data obtained as outlined in Table A-1. Cell parameters were obtained from 45 data frames using a 1° scan and refined with 32664 reflections. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3. ${ }^{\text {A10 }}$ Lorentz and polarization
corrections were applied. Data were scaled, and absorption corrections were applied using the program SADABS. ${ }^{\text {A11 }}$ No reflections were observed for $2 \theta>100$. The structure was solved by direct methods using SHELXTL (SHELXS) and refined (weighted least squares refinement on F^{2}) using SHELXTL. ${ }^{\text {A12 }}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. Some terminal carbon atoms exhibited elongated thermal ellipsoids, suggesting disorder. For C31-C33, the disorder could be modeled between two positions (occupancy ratio of 52:48); appropriate restraints were used to keep the metrical parameters meaningful. The absence of additional symmetry or voids was confirmed using PLATON (ADDSYM). ${ }^{\mathrm{A} 13} \mathbf{B}$. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of cis-2c was layered with pentane. After 14 d , colorless needles were collected and data were obtained as outlined in Table A-1. The structure was solved as in A (10 frames, 10° scan, 10162 reflections) with some minor differences in the software employed. ${ }^{\text {A12,A14 }}$ Scattering factors were taken from literature. ${ }^{\text {A15 }} \mathbf{C}$. A THF solution of cis-2d was allowed to slowly concentrate. After 7 d, colorless plates were collected and data were obtained as outlined in Table A-1. The structure was solved as in A (45 frames, 1° scan, 18089 reflections) but with newer software for some steps (e.g., Olex2 ${ }^{\text {A16 }}$). Two independent molecules were present in the unit cell. D. A THF solution of cis-2f was allowed to slowly concentrate. After 10 d , colorless plates were collected and data were obtained as outlined in Table A-1. The structure was solved as in C (45 frames, 1° scan, 64213 reflections). Two independent molecules were present in the unit cell. Some of the carbon atoms showed unusual thermal ellipsoids. Efforts to model the disorder were unsuccessful. Appropriate restraints were placed to keep the metrical parameters meaningful. E. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of cis- $\mathbf{6 c}$ was layered with hexanes. After 14 d , colorless needles were collected and the structure solved as in $\mathrm{B}\left(10\right.$ frames, 10° scan, 11632 reflections). \mathbf{F}. $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}$ solution of cis-5a was
layered with hexanes and stored at $4{ }^{\circ} \mathrm{C}$. After 2 d , colorless needles were collected and the structure solved as in B (10 frames, 10° scan, 13085 reflections). Two independent molecules were present in the unit cell. G. $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}$ solution of cis- $\mathbf{5 b}$ was layered with hexanes and stored at $4{ }^{\circ} \mathrm{C}$. After 2 d , colorless needles were collected and the structure solved as in B (10 frames, 10° scan, 2894 reflections). Some carbon atoms in one of the methylene chains were disordered, but this could not be resolved. The structure exhibited a two-fold symmetry axis that passed through the platinum atom and bisected the Cl-PtCl angle.

2.5. References

(1) Review: "Multifold Ring Closing Olefin Metatheses in Syntheses of Organometallic Molecules with Unusual Connectivities", Fiedler, T.; Gladysz, J. A. in Olefin Metathesis - Theory and Practice, Grela, K., Ed.; John Wiley \& Sons: Hoboken, New Jersey, 2014, 311-328.
(2) Representative examples since the coverage in reference 1: (a) Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Science, 2017, 358, 1434-1439. (b) Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J.F.; Stephens, A. J.; Vitorica-Yrezabel, I. J.; Woltering, S. L. Science 2017, 355, 159-162. (c) Ogasawara, M.; Tseng, Y.-Y.; Liu, Q.; Chang, N.; Yang, X.; Takahashi, T.; Kamikawa, K. Organometallics 2017, 36, 1430-1435 and earlier papers by this group cited therein. (d) Masuda, T.; Arase, J.; Inagaki, Y.; Kawahata, M.; Yamaguchi, K.; Ohhara, T.; Nakao, A.; Momma, H.; Kwon, E.; Setaka, W. Cryst. Growth Des. 2016, 16, 4392-4401 and earlier papers by this group cited therein. (e) Gil-Ramírez, G.; Hoekman, S.; Kitching, M. O.; Leigh, D. A.; Vitorica-Yrezabal, I. J.; Zhang, G. J. Am. Chem. Soc. 2016, 138, 1315913162. (f) Cain, M. F.; Forrest, W. P., Jr.; Peryshkov, D. V.; Schrock, R. R.; Müller, P. J. Am. Chem. Soc. 2013, 135, 15338-15341.
(3) (a) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed. 2004, 43, 5537-5540; Angew. Chem. 2004, 116, 5653-5656. (b) Lang, G. M.; Shima, T.; Wang, L.; Cluff, K. J.; Hampel, F.; Blumel, J.; Gladysz, J. A. J. Am. Chem. Soc. 2016, 138, 76497663. (c) Lang, G. M.; Skaper, D.; Hampel, F.; Gladysz, J. A. Dalton Trans. 2016, 45, 16190-16204. (d) Steigleder, E.; Shima, T.; Lang, G. M.; Ehnbom, A.; Hampel, F.; Gladysz, J. A. Organometallics 2017, 36, 2891-2901.
(4) (a) Nawara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128, 4962-4963. (b) Nawara-Hultzsch, A. J.; Stollenz, M.; Barbasiewicz, M.;

Szafert, S.; Lis, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. Chem. Eur. J. 2014, 20, 4617-4637. (c) Joshi, H.; Kharel, S.; Bhuvanesh, N.; Gladysz, J. A. Organometallics, submitted.
(5) (a) Wang, L.; Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed. 2006, 45, 4372-4375; Angew. Chem. 2006, 118, 4479-4482. (b) Wang, L.; Shima, T.; Hampel, F.; Gladysz, J. A. Chem. Commun. 2006, 4075-4077.
(6) (a) Hess, G. D.; Hampel, F.; Gladysz, J. A. Organometallics 2007, 26, 51295131. (b) Hess, G. D.; Fiedler, T.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2017, 56, 74547469. (c) Fiedler, T.; Bhuvanesh, N.; Hampel, F.; Reibenspies, J. H.; Gladysz, J. A. Dalton Trans. 2016, 45, 7131-7147.
(7) See also (a) Zeits, P. D.; Rachiero, G. P.; Hampel, F.; Reibenspies, J. H.; Gladysz, J. A. Organometallics 2012, 31, 2854-2877. (b) Lang, G. M.; Bhuvanesh, N.; Reibenspies, J. H.; Gladysz, J. A. Organometallics 2016, 35, 2873-2889.
(8) (a) Setaka, W.; Yamaguchi, K. J. Am. Chem. Soc. 2013, 135, 14560-14563 and earlier work cited therein. (b) Setaka, W.; Inoue, K.; Higa, S.; Yoshigai, S.; Kono, H.; Yamaguchi, K. J. Org. Chem. 2014, 79, 8288-8295. (c) Setaka, W.; Higa, S.; Yamaguchi, K. Org. Biomol. Chem. 2014, 12, 3354-3357. (d) Shionari, H.; Inagaki, Y.; Yamaguchi, K.; Setaka, W. Org. Biomol. Chem. 2015, 13, 10511-10516. (e) Nishiyama, Y.; Inagaki, Y.; Yamguchi, K.; Setaka, W. J. Org. Chem. 2015, 80, 9959-9966.
(9) In exploratory efforts, the reaction mixture derived from trans $\mathbf{- 1 b}(m=5)$ was analyzed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. A multitude of signals were present, but chromatography gave a yellowish oil of moderate purity with a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal very close to that of trans-2c ($\delta / \mathrm{ppm} \mathrm{CDCl} 3: 7.1$ vs. $7.9, \mathrm{~s} ;{ }^{1} J_{\mathrm{PPt}}$ (satellite) 2393 vs .2398 Hz). The sample decomposed with repeated chromatography.
(10) Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. Rev. 2005, 105,
(11) For additional relevant platinum complexes, see Taher, D.; Nawara-Hultzsch, A. J.; Bhuvanesh, N.; Hampel, F.; Gladysz, J. A. J. Organomet. Chem. 2016, 821, 136141.
(12) (a) Khuong, T.-A. V.; Nuñez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A. Acc. Chem. Res. 2006, 39, 413-422. (b) Nuñez, J. E.; Natarajan, A.; Saeed, K. I.; GarciaGaribay, M. A. Org. Lett. 2007, 9, 3559-3561.
(13) (a) Prack, E.; O'Keefe, C. A.; Moore, J. K.; Lai, A.; Lough, A. J.; Macdonald, P. M.; Conradi, M. S.; Schurko, R. W.; Fekl, U. J. Am. Chem. Soc. 2015, 137, 1346413467. (b) Li, W.; He, C.-T.; Zeng, Y.; Ji, C.-M.; Du, Z.-Y.; Zhang, W.-X.; Chen, X.-M. J. Am. Chem. Soc. 2017, 139, 8086-8089.
(14) Nawara-Hultzsch, A. J.; Skopek, K.; Shima, T.; Barbasiewicz, M.; Hess, G. D.; Skaper, D.; Gladysz, J. A. Z. Naturforsch. 2010, 65b, 414-424.
(15) (a) Marshall, J. A. Acc. Chem. Res. 1980 13, 213-218. (b) Chang, M. H.; Dougherty, D. A. J. Am. Chem. Soc. 1983, 105, 4102-4103. (c) Marshall, J. A.; Audia, V. H.; Jenson, T. M.; Guida, W. C. Tetrahedron 1986, 42, 1703-1709. (d) Kanomata, N.; Ochiai, Y. Tetrahedron Lett. 2001, 42, 1045-1048. (e) Ciogli, A.; Cort, A. D.; Gasparrini, F.; Lunazzi, L.; Mandolini, L.; Mazzanti, A.; Pasquini, C.; Pierini, M.; Schiaffino, L.; Mihan, F. Y. J. Org. Chem. 2008, 73, 6108-6118. (f) Castillo, A.; Greer, A. Struct. Chem. 2009, 20, 399-407. (g) Romuald, C.; Ardá, A.; Clavel, C.; Jiménez-Barbero, J.; Coutrot, F. Chem. Sci. 2012, 3, 1851-1857.
(16) Estrada, A. L.; Jia, T.; Bhuvanesh, N.; Blümel, J.; Gladysz, J. A. Eur. J. Inorg. Chem. 2015, 2015, 5318-5321.
(17) Kharel, S.; Joshi, H.; Bierschenk, S.; Stollenz, M.; Taher, D.; Bhuvanesh, N.; Gladysz, J. A. J. Am. Chem. Soc. 2017, 139, 2172-2175.
(18) Stollenz, M.; Barbasiewicz, M.; Nawara-Hultzsch, A. J.; Fiedler, T.; Laddusaw, R. M.; Bhuvanesh, N.; Gladysz, J. A. Angew. Chem., Int. Ed. 2011, 50, 66476651; Angew. Chem. 2011, 123, 6777-6781
(19) Skopek, K.; Barbasiewicz, M.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2008, 47, 3474-3476.
(20) Grim, S. O.; Keiter, R. L.; McFarlane, W. Inorg. Chem. 1967, 6, 1133-1137.
(21) (a) Skopek, K. Doctoral thesis, Universität Erlangen-Nürnberg, 2008. (b) A reviewer has noted that Grubbs' catalyst can contain ruthenium hydride impurities that can effect $\mathrm{C}=\mathrm{C}$ isomerizations of terminal alkenes. See for example Chase, P. A.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. J. Mol. Cat. A 2006, 254, 2-19.
(22) Crispini, A.; Harrison, K. N.; Orpen, A. G.; Pringle, P. G.; Wheatcroft, J. R. J. Chem. Soc., Dalton Trans. 1996, 1069-1076.
(23) (a) Ahmad, N.; Ainscough, E. W.; James, T. A.; Robinson, S. D. J. Chem. Soc., Dalton Trans. 1973, 1148-1150. (b) van der Vlugt, J. I.; Ackerstaff, J.; Dijkstra, T. W.; Mills, A. M.; Kooijman, H.; Spek, A. L.; Meetsma, A.; Abbenhuis, H. C. L.; Vogt, D. Adv. Synth. Catal. 2004, 346, 399-412.
(24) Skopek, K.; Gladysz, J. A J. Organomet. Chem. 2008, 693, 857-866.
(25) Another logical product would be the mixed bromide/chloride complex trans$\left.\stackrel{\mathrm{PtBrCl}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right.}{ }\right)$, and it could be questioned whether this might correspond to the ${ }^{31} \mathrm{P}$ NMR signal assigned to oligomer. In this context, the palladium analog has been characterized, ${ }^{4 \mathrm{~b}}$ and is easily eluted on a silica gel column. In contrast, the presumedly oligomeric product remains at the origin.
(26) Budzelaar, P. H. M., gNMR: NMR Simulation Program, Version 5.0.6.0, Adept Scientific: Luton, U.K. 2006.
(27) (a) Boag, N. M.; Kasez, H. D. Technetium and Rhenium. In Comprehensive

Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Eds; Pergamon: Oxford, 1982. Vol. 4, pp 173-176. (b) Bauer, E. B.; Hampel, F.; Gladysz, J. A. Adv. Synth. Catal. 2004, 346, 812-822.
(28) (a) Jung, J. H.; Ono, Y.; Shinkai, S. Chem. Lett. 2000, 29, 636-637. (b) Aoki, K.; Kudo, M.; Tamaoki, N. Org. Lett. 2004, 6, 4009-4012. (c) Thalladi, V. R.; Nüsse, M.; Boese, R. J. Am. Chem. Soc. 2000, 122, 9227-9236.
(29) Alder, R. W.; Butts, C. P.; Orpen, A. G.; Read, D.; Oliva, J. M. J. Chem. Soc., Perkin Trans. 2, 2001, 282-287, and references therein.
(30) (a) Bauer, I.; Gruner, M.; Goutal, S.; Habicher, W. D. Chem. Eur. J. 2004, 10, 4011-4016. (b) Earlier papers in this series have been reviewed: Bauer, I.; Habicher, W. D. Collect. Czech. Chem. Commun. 2004, 69, 1195-1230.
(31) (a) Stollenz, M.; Bhuvanesh, N.; Reibenspies, J. H.; Gladysz, J. A. Organometallics 2011, 30, 6510-6513. (b) Stollenz, M.; Taher, D.; Bhuvanesh, N.; Reibenspies, J. H.; Baranová, Z.; Gladysz, J. A. Chem. Commun. 2015, 51, 16053-16056.
(32) Lewanzik, N.; Oeser, T.; Blümel, J.; Gladysz, J. A. J. Mol. Catal. A. 2006, 254, 20-28.
(33) (a) Bondi, A. J. Phys. Chem. 1964, 68, 441-451. (b) Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2009, 113, 5806-5812.
(34) Ehnbom, A.; Gladysz, J. A. manuscript in preparation.
(35) (a) Eliel, E. N.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp 837-838 and 1208. (b) Ward, R. S. Selectivity versus specificity. Chemistry in Britain 1991, 803-804.
(36) (a) Holt, M. S.; Nelson, J. H. Inorg. Chem. 1986, 25, 1316-1320. (b) Canac, Y.; Debono, N.; Lepetit, C.; Duhayon, C.; Chauvin, R. Inorg. Chem. 2011, 50, 1081010819. (c) Jarvis, A. G.; Schnal, P. E.; Bajwa, S. E.; Whitwood, A. C.; Zhang, X.; Cheung,
M. S.; Lin, Z.; Fairlamb, I. J. S. Chem. Eur. J. 2013, 19, 6034-6043.
(37) Cammenga, H. K.; Epple, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1171 1187; Angew. Chem. 1995, 107, 1284-1301. The T_{e} values best represent the temperature of phase transition or endotherm. DSC measurements were generally not continued above the temperature of initial mass loss (TGA).
(38) This microanalysis poorly or marginally agrees with the empirical formula, but is nonetheless reported as the best obtained to date. The NMR spectra indicate high purities ($\geq 98 \%$). See also Gabbaï, F. P.; Chirik, P. J.; Fogg, D. E.; Meyer, K.; Mindiola, D. J.; Schafer, L. L.; You, S.-L. Organometallics 2016, 35, 3255-3256.
(39) The $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of cis-1g and cis-2d,g were assigned by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H} \operatorname{COSY},{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{COSY},{ }^{13} \mathrm{C}\left\{{ }^{13} \mathrm{C}\right\} \operatorname{COSY}$, and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HMBC experiments. Representative spectra have been given for related compounds in earlier papers. ${ }^{6 c, 40}$ The corresponding signals of cis-1f and cis-2b,c,e,f were assigned analogously.
(40) Lang, G. M.; Skaper, D.; Shima, T.; Otto, M.; Wang, L.; Gladysz, J. A. Aust. J. Chem. 2015, 68, 1342-1351.
(41) The J values given for virtual triplets represent the apparent couplings between adjacent peaks, and not the mathematically rigorously coupling constants. See Hersh, W. H. J. Chem. Educ. 1997, 74, 1485-1488.
(42) This coupling represents a satellite ($\mathrm{d},{ }^{195} \mathrm{Pt}=33.8 \%$), and is not reflected in the peak multiplicity given.
(43) FAB, 3-NBA, m / z (relative intensity, $\%$); the most intense peak of the isotope envelope is given.
(44) The ortho proton signal was assigned by analogy to that of trans-6c (two downfield signals due to restricted ${\mathrm{Pt}-\mathrm{C}_{i p s o}}$ rotation, $\delta 7.38$ and $7.08,2 \mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.0-7.2$
$\mathrm{Hz}) .{ }^{4 \mathrm{~b}}$ The chemical shifts and multiplicities of the meta and para proton signals are also in close agreement.
(45) The signal for the ipso phenyl carbon atom was not observed.
(46) The $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of cis-7b and fac-10c were made by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ COSY experiments. The corresponding signals of fac11c, $f a c-12 ' \mathbf{c}$, and $f a c-13 ' \mathbf{c}$ were assigned analogously.
(47) Schmidt, S. P.; Trogler, W. C.; Basolo, F.; Urbancic, M. A.; Shapley, J. R. Inorg. Synth. 1985, 23, 41-46.
(48) The exact mass of the most intense $[\mathbf{M}]^{+}$peak should be 1034.56. It is presumed that the instrument, which provides masses to the nearest whole integer, rounded the value down, and thus it does not represent the ion $[\mathbf{M}-\mathrm{H}]^{+}$. All peak assignments were checked versus the theoretical isotope envelope pattern.
(49) The situation with this ion is similar to that described in footnote 48.
(50) These dirhenium peaks deviate by as many as ± 3 mass units from that expected for the ion given. However, the isotope envelopes are otherwise in good agreement with those calculated.
(51) The situation with this ion is similar to that described in footnote 48 (calculated exact mass of most intense $[\mathbf{M}]^{+}$peak $=994.42$; the instrument is presumed to have rounded the value up, such that it does not represent the ion $[\mathbf{M}+\mathrm{H}]^{+}$).
(52) The situation with this ion is similar to that described in footnote 51.
(53) One peak of this triplet is obscured; the chemical shift and coupling constant are extrapolated from the two that are visible.
(54) This reaction was carried out with a Fischer-Porter bottle and H_{2} (5 bar), instead of a balloon pressure of H_{2} (1 bar).
(55) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.;

Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.
(56) Lichtenberger, D. L.; Gladysz, J. A. Organometallics 2014, 33, 835-835.

Table 2.1. Summary of crystallographic data for $c i s-\mathbf{1 f}, \mathbf{2 c}, \mathbf{d}, \mathbf{f}, \mathbf{6 c}, \mathbf{5 a}, \mathbf{b}$.

	cis-1f	cis-2c	cis-2d ${ }^{\text {a }}$
empirical formula	$\mathrm{C}_{66} \mathrm{H}_{126} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{42} \mathrm{H}_{84} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{48} \mathrm{H}_{96} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$
formula weight	1247.59	917.02	1001.17
temperature [K]	100.0	173(2)	110.0
diffractometer	Bruker Venture	Nonius Kappa CCD	Bruker Quest X-ray
wavelength [\AA]	1.54178	0.71073	0.71073
crystal system	monoclinic	monoclinic	triclinic
space group	$P_{1} 2_{1} / \mathrm{c}_{1}$	$P 2_{1} / \mathrm{c}$	$P-1$
unit cell dimensions:			
$a[\AA]$	24.469(2)	15.8988(3)	14.0147(19)
$b[\AA]$	13.8800(12)	13.9099(4)	18.709(3)
$c[\AA]$	20.2636(18)	20.4188(6)	20.052(3)
$\alpha\left[{ }^{\circ}\right]$	90	90	80.5030(10)
$\beta\left[{ }^{\circ}\right]$	95.492(5)	93.141(2)	87.9950(10)
$\gamma\left[{ }^{\circ}\right]$	90	90	85.6440(10)
$V\left[\AA^{3}\right]$	6850.6(11)	4508.8(2)	5169.5(12)
Z	4	4	4
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{-3}\right]$	1.210	1.351	1.286
$\mu\left[\mathrm{mm}^{-1}\right]$	5.235	3.328	2.908
$\mathrm{F}(000)$	2656	1912	2104
crystal size [mm^{3}]	$0.21 \times 0.108 \times 0.037$	$0.30 \times 0.15 \times 0.10$	$0.372 \times 0.366 \times 0.076$
Θ limit [${ }^{\circ}$]	3.629 to 49.998	2.22 to 27.45	2.223 to 25.00
index range (h, k, l)	-24, 24; -13, 13; -20, 19	-20, 20; -17, 15; -26, 26	-16, 16; -21, 22; 0, 23
reflections collected	32664	18048	18089
independent reflections	6880	10243	18089
R (int)	0.0685	0.0420	0.0653
completeness to Θ	98.0	99.5	99.9
max. and min. transmission	0.8303 and 0.3770	0.7320 and 0.4351	0.262 and 0.158
data/restraints/parameters	6880/136/668	10243/0/424	18089/1338/956
goodness-of-fit on F^{2}	1.127	1.020	1.063

Table 2.1 continued.

	cis-1f	cis-2c	cis-2d a
R indices (final) $[I>2 \sigma(I)]$			
R_{1}	0.0550	0.0436	0.0452
$w R_{1}$	0.1128	0.0947	0.1035
R indices (all data)	0.0712		
R_{2}	0.1260	0.0849	0.0514
$w R_{2}$	1.530 and -0.692	1.101 and -1.428	0.1076
largest diff. peak and hole			1.666 and -1.722
$\left[\mathrm{e} \AA^{-3}\right]$			

Table 2.1 continued.

	cis-2f ${ }^{\text {a }}$	cis-6c	cis-5a ${ }^{\text {a }}$	cis-5b
empirical formula	$\mathrm{C}_{60} \mathrm{H}_{120} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{54} \mathrm{H}_{94} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{30} \mathrm{H}_{60} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$
formula weight	1169.48	1000.32	760.55	844.71
temperature [K]	110.0	173(2)	173(2)	173(2)
diffractometer	Bruker Quest X-ray	Nonius Kappa CCD	Nonius Kappa CCD	Nonius Kappa CCD
wavelength [\AA]	0.71073	0.71073	0.71073	0.71073
crystal system	triclinic	triclinic	triclinic	trigonal
space group	$P-1$	$P-1$	$P-1$	$R-3 \mathrm{c}$
unit cell dimensions:				
$a[\AA]$	13.8635(12)	13.1005(1)	10.5573(2)	27.3660(7)
b [\AA]	18.4284(16)	13.3774(2)	16.0058(3)	$27.3660(7)$
c [\AA]	25.106(2)	15.5372(2)	17.6476(9)	26.3180(8)
$\alpha\left[{ }^{\circ}\right]$	83.861(2)	77.946(1)	94.620(9)	90
$\beta\left[{ }^{\circ}\right]$	88.110(2)	79.853(1)	91.338(8)	90
$\gamma\left[{ }^{\circ}\right]$	86.673(2)	82.140(1)	97.183(9)	120
$V\left[\AA^{3}\right]$	6364.3(9)	2607.05(6)	2947.35(17)	17068.9(8)
Z	4	2	4	18
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{-3}\right]$	1.221	1.274	1.714	1.479
$\mu\left[\mathrm{mm}^{-1}\right]$	2.372	2.785	5.086	3.960
$\mathrm{F}(000)$	2488	1052	1528	7740

Table 2.1 continued.

	cis-2 ${ }^{\text {a }}$	cis-6c	cis-5a ${ }^{a}$	cis-5b
crystal size [mm^{3}]	$0.286 \times 0.087 \times 0.017$	$0.20 \times 0.15 \times 0.15$	$0.25 \times 0.15 \times 0.15$	$0.35 \times 0.25 \times 0.25$
Θ limit $\left[{ }^{\circ}\right]$	2.168 to 18.962	2.24 to 27.52	2.30 to 27.49	2.31 to 25.06
index range (h, k, l)	-12, 12; -16, 16; -22, 22	$-15,17 ;-17,17 ;-20,20$	$-13,13 ;-20,20 ;-22,22$	-32, 32; $-32,31 ;-31,28$
reflections collected	64213	22639	25666	6654
independent reflections	10049	11958	13515	2664
R (int)	0.0710	0.0197	0.0192	0.1292
completeness to Θ	98.5	99.6	99.8	78.9
max. and min. transmission	0.4243 and 0.3060	0.6801 and 0.6058	0.5159 and 0.3629	0.4376 and 0.3378
data/restraints/parameters	10049/1702/1171	11958/0/514	13515/0/632	2664/1/186
goodness-of-fit on F^{2}	1.175	1.024	1.020	1.050
$\begin{gathered} R \text { indices (final) }[I> \\ 2 \sigma(I)] \end{gathered}$				
R_{1}	0.0506	0.0258	0.0251	0.0608
$w R_{1}$	0.0966	0.0592	0.0576	0.15464
R indices (all data)				
R_{2}	0.0671	0.0319	0.0357	0.1032
$w R_{2}$	0.1062	0.0618	0.0617	0.1813
largest diff. peak and hole $\left[\mathrm{e} \AA^{-3}\right.$]	1.394 and -1.002	1.226 and -1.138	1.390 and -1.249	1.752 and -0.939

$\overline{{ }^{a}}$ There are two independent molecules in the unit cell. The empirical formula is for one of the two molecules, and the Z values represent the total number of molecules of both types.

Table 2.2. Key crystallographic bond lengths $[\AA]$ and angles $\left[^{\circ}\right]$ for cis- $\mathbf{1 f}, \mathbf{2 c}, \mathbf{d}, \mathbf{f}$.

	cis-1f	cis-2c	cis-2d ${ }^{\text {a }}$	cis-2d ${ }^{\text {a }}$	cis-2f ${ }^{a}$
$\mathrm{Pt}-\mathrm{P}$	2.256(2)	2.2507(14)	2.2506(18)	2.258(2)	2.245(3)
	2.263(2)	2.2563(14)	$2.248(2)$	2.2492(19)	2.243(3)
$\mathrm{Pt}-\mathrm{X}^{c}$	2.352(2)	2.3661(14)	2.351(2)	2.360 (2)	2.347 (3)
	2.354(2)	2.3689(14)	2.774(19)	2.371(2)	$2.365(3)$
P-Pt-P	100.27(9)	104.37(5)	104.59(7)	104.70(7)	104.66(11)
P-Pt-X	83.94(9)	83.23(5)	83.42(7)	83.66(7)	83.52(10)
	90.72(8)	84.98(5)	84.17(7)	84.23(7)	84.08(11)
	168.69(8)	170.65(5)	171.22(7)	171.07(7)	171.22(10)
	174.59(8)	172.35(5)	171.97(7)	171.61(7)	171.66(11)
X-Pt-X	84.94(9)	87.42(6)	87.82(7)	87.42(7)	87.77(10)
	cis-2 ${ }^{\text {a }}$	cis-6c	cis-5a ${ }^{\text {a }}$	cis-5a ${ }^{\text {a }}$	cis-5b ${ }^{\text {b }}$
Pt-P	2.250(3)	$2.3188(6)$	2.2138(7)	2.2167(7)	2.209(3)
	2.231(3)	2.3204(6)	$2.2248(8)$	2.2191(8)	
$\mathrm{Pt}-\mathrm{X}^{c}$	2.345 (3)	$2.056(3)$	$2.3509(7)$	$2.3455(7)$	$2.352(3)^{d}$
	2.373(3)	2.070 (3)	$2.3548(7)^{d}$	$2.3492(7)^{d}$	
P-Pt-P	104.29(11)	105.00(2)	100.11(3)	99.37(3)	91.07(16)
P-Pt-X	83.17(11)	85.66(8)	82.84(3)	83.99(3)	$\begin{gathered} 91.17(13) \\ 172.7(1) \end{gathered}$
	84.13(11)	86.10(7)	88.73(3)	89.38(3)	
	171.36(11)	168.08(8)	170.85(3)	171.15(3)	
	172.23(11)	168.45(7)	176.87(3)	175.77(3)	
X-Pt-X	88.51(11)	83.61(10)	88.29(3)	87.21(3)	87.5(2)

${ }^{\bar{a}}$ Values for the two independent molecules in the unit cell. ${ }^{b} \mathrm{~A} \mathrm{C}_{2}$ symmetry axis renders the Pt-P and Pt-X bond lengths and other parameters equivalent. ${ }^{c}$ Distances from platinum to the ligating atoms of the non-phosphine ligands. ${ }^{d}$ The phosphorusoxygen and oxygen-carbon bond lengths in cis-5a,b fall into the ranges 1.557(2)-1.593(2) \AA and 1.432(17)-1.475(4) \AA.

3. SYNTHESES, STRUCTURES, AND THERMAL PROPERTIES OF GYROSCOPE LIKE COMPLEXES CONSISTING OF PtCl_{2} ROTATORS ENCASED IN MACROCYCLIC DIBRIDGEHEAD DIPHOSPHINES P((CH2) $)_{3}$ P WITH EXTENDED METHYLENE CHAINS ($n=20 / 22 / 30$), AND ISOMERS THEREOF

3.1. Introduction

The design and synthesis of sterically protected molecular rotors is under intense study in a number of laboratories. ${ }^{1,2}$ In many cases, these are envisioned as components of various types of molecular devices. ${ }^{3}$ In previous efforts, we have reported ring closing alkene metatheses of platinum bis(phosphine) dichloride complexes of the formula trans$\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}(\text { trans }-\mathbf{1})^{4}$ with Grubbs' first generation catalyst, and subsequent hydrogenations. ${ }^{5}$ When m is six to eight, gyroscope like platinum complexes of the formula trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}\right)($ trans $-2 ; n=\mathbf{c} / 14, \mathbf{d} / 16, \mathbf{e} / 18)$ can be isolated, where n is the number of carbon atoms in the methylene chains $(n=2 m+2) .{ }^{5}$ As shown in Scheme 3.1, these feature cage like, triply trans spanning dibridgehead diphosphine ligands.

Scheme 3.1. Three fold ring closing metatheses of trans-1c-e; syntheses of gyroscope like complexes trans-2c-e.

In some cases, the yields of trans-2 are modest. However, trigonal bipyramidal $\mathrm{Fe}(\mathrm{CO})_{3}$ adducts of the same dibridgehead diphosphines (as well as homologs with fewer methylene groups) can be similarly accessed in higher yields, as rationalized elsewhere. ${ }^{6}$ Palladium analogs of trans-2 have also been described. ${ }^{5}$ With all MCl_{2} adducts, rotation is fast on the NMR time scale, even at $-100^{\circ} \mathrm{C}$.

In all of the above reactions, varying amounts of isomeric monoplatinum coproducts, trans $\left.-\mathrm{PtCl}_{2}\left(\left(\mathrm{H}_{2}{ }_{2}\right)_{n} \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right) \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n}\right)\right) \quad$ (trans-2'a-c $)$, have also been isolated. ${ }^{5 \mathrm{~b}}$ Whereas trans-2a-c are derived from three fold interligand alkene metathesis, trans-2'a-c are derived from combinations of intraligand (two fold) and interligand (single fold) metathesis. The latter cyclization mode has also been seen with other metal fragments. However, except for a few octahedral systems with certain values of $n,{ }^{7}$ it is always a minor pathway. DFT calculations (gas phase) suggest that trans-2 is more stable than trans-2' for $n<16$, but trans-2' is more stable for $n \geq 20 .{ }^{8,9}$

We have sought to fully explore the topological space associated with the preceding compounds, as well as the free diphosphine ligands, and have systematically targeted various types of stereoisomers that may be isolable. ${ }^{8,10}$ One of these, trans-2" in Scheme 3.1, is also derived from three fold interligand alkene metathesis, but two of the methylene chains "cross", unlike the disposition in trans-2. A dimetallic adduct of a bridgehead diphosphine, as well as a free dibridgehead diphosphine dioxide, with crossed methylene chains have in fact been isolated. ${ }^{10,11}$

Another variable is the cis/trans sense at platinum. First consider the educts 1. Only trans-1b-g, which lack permanent dipole moments, are obtained when the precursors are reacted in the nonpolar solvent benzene. ${ }^{4}$ In contrast, cis-1b-g, which are shown in Scheme 3.2 and have dipole moments, dominate when syntheses are carried out in the polar solvent water. ${ }^{4,8}$ Related phenomena have been observed with other bis(phosphine)
platinum dichloride complexes. ${ }^{12}$ In any event, cis-1b-g undergo three fold interligand alkene metathesis followed by hydrogenation to give cis-2b-g (Scheme 3.2). ${ }^{8}$ For reasons detailed elsewhere, such complexes are often referred to as parachute like ${ }^{8}$ - a counterpart to the gyroscope like attribute of trans-2. When kept in halobenzene solutions at 150-185 ${ }^{\circ} \mathrm{C}$, cis-2c,g isomerize to trans-2c,g..8 DFT calculations indicate the gas phase stability trend trans $>$ cis for 2a-g. ${ }^{8}$

Scheme 3.2. Three fold ring closing metatheses of cis-1b-g; syntheses of parachute like complex cis-2b-g.

In this study, we sought to extend the syntheses of gyroscope like complexes trans2 in Scheme 3.1 to higher values of n. Questions to be addressed included the following: (1) Might additional types of products, such as trans-2", form? (2) Do trans-2/trans-2' selectivities vary? (3) Is the stability order trans-2 > cis-2 maintained? Additional motivation was provided by earlier observations that reactions of trans-2c,e and excesses of appropriate nucleophiles liberate the dibridgehead diphosphines $\mathbf{3 c}, \mathbf{e}$ as shown in Scheme 3.3. ${ }^{13-15}$ These can serve as "container molecules" for the selective transport of PtCl_{2} and PdCl_{2} away from $\mathrm{NiCl}_{2} .{ }^{15}$ It was thought that diphosphines with larger
macrocycles might exhibit complementary selectivities, as well as other interesting chemistry.

Scheme 3.3. Syntheses of dibridgehead diphosphines 3c,e.

3.2. Results

3.2.1. Syntheses of Title Compounds. The alkene containing phosphines $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ were prepared from PCl_{3} and Grignard reagents $\left.\mathrm{MgBr}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ as described earlier $(m=9)^{4,8}$ or by applying analogous protocols to Grignard reagents with longer methylene chains ($m=10,14$; experimental section). As shown in Scheme 3.4, PtCl_{2} and the phosphines (2.0 equiv) were combined in the nonpolar solvent toluene. Workups gave the new platinum complexes trans$\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}\right)_{2}$ (trans-1f,g,k$)$ as yellow oils or solids in $63-42 \%$ yields.

Complexes trans-1f,g,k and all other homogeneous new species below were characterized by IR and NMR ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)$ spectroscopy. Satisfactory microanalyses were also obtained. The ${ }^{1} J_{\mathrm{PPt}}$ values $(2382-2375 \mathrm{~Hz})$ were characteristic of trans stereoisomers, ${ }^{16}$ and much lower than those of cis-1a-g (3511-3518 Hz). ${ }^{8}$ Other spectroscopic properties were similar to those of the lower homologs in Scheme 3.1

Scheme 3.4. Syntheses of title complexes with $n=20$ and 22 .

As shown in Scheme 3.4, dilute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of the two complexes with shorter methylene chains, trans-1f,g (ca. 0.00057 M), and Grubbs' first generation catalyst ($12.4 \mathrm{~mol} \%$) were refluxed. The crude reaction mixtures were filtered through alumina and then treated with $\mathrm{H}_{2}(5 \mathrm{bar})$ and $\mathrm{PtO}_{2}(5 \mathrm{~mol} \%)$ at $50{ }^{\circ} \mathrm{C}$. In each case, two monoplatinum products could be isolated by silica gel column chromatography, trans-2f,g and trans-2'f,g. These paralleled those obtained in the earlier work in Scheme 3.1. However, with trans-2f and trans-2'f, the latter dominated (25% vs. 3%). This represents the first time a complex derived from intraligand and interligand metathesis has preferentially formed from a non-octahedral educt.

Careful efforts to detect other monoplatinum products were unsuccessful. Thus, the low mass balance was presumed to reflect the formation of oligomers and polymers, which would be retained on the column. The structures of trans-2'f,g were evidenced by a diagnostic pattern of ${ }^{13} \mathrm{C}$ NMR signals (two sets of $n / 2$ signals in a ca. 2:1 area ratio), and supported by the crystal structures of their cis isomers below. Readers are referred to earlier papers for analyses of additional NMR properties. ${ }^{5,8}$

An analogous reaction sequence for the complex with the longest methylene chain, trans-2k, is presented in Scheme 3.5. However, analogous products were not obtained. Rather, a single monoplatinum complex could be isolated in 39% yield. It exhibited a much larger ${ }^{1} J_{\mathrm{PPt}}$ value (3530 vs . 2389-2307 Hz), suggesting a cis coordination geometry and the parachute like complex cis-2k, as proven by additional experiments below. This result was reproduced by two coworkers several times (although in one case a minor coproduct was detected).

Scheme 3.5. Syntheses of title complexes with $n=30$.

Given the thermodynamic relationships established below, this requires a species on the trans $\mathbf{- 1 \mathbf { k }}$ to cis $\mathbf{- 2} \mathbf{k}$ reaction coordinate that is more stable as a cis isomer (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and an accessible mechanism for isomerization. Thus, a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the soluble crude metathesis product prior to hydrogenation was recorded $\left(\mathrm{CDCl}_{3}\right)$. As usual, numerous signals were observed, with some presumably reflecting a distribution of $E / Z \mathrm{C}=\mathrm{C}$ isomers. These included two prominent singlets at 1.5 and 2.5 ppm, and a cluster near 5.5 ppm . Based upon chemical shift trends, ${ }^{17}$ the last group can be confidently be assigned to trans $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ isomers, and the first singlet to a cis $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ isomer.

When analogous experiments were conducted, but ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra recorded prior to complete metathesis, there were additional signals in the 1.5 ppm region, consistent with the presence of cis-1k. However, in none of these spectra were any platinum satellites (${ }^{1} J_{\mathrm{PPt}}$) resolved. When trans $\mathbf{- 1 \mathbf { k }}$ was subjected to the initial conditions in Scheme 3.5, but in the absence of Grubbs' catalyst, it was recovered unchanged.
3.2.2. Thermal Equilibrations. In order to provide context for the first step in Scheme 3.5, various thermolyses were carried out, with the goal of effecting equilibrations. First, an o- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ (ortho-dichlorobenzene) solution of cis-2k was kept at $180{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. Clean isomerization to gyroscope like trans-2k

- the product initially expected in Scheme 3.5 - was observed. Workup after 48 h gave trans-2k in 72% yield (${ }^{1} J_{\mathrm{PPt}}=2364 \mathrm{~Hz}$). This result is in line with analogous isomerizations of cis-2c,g (Scheme 3.2) to trans-2c,g reported earlier, as well as extensive gas phase DFT calculations. ${ }^{8}$

Next, room temperature $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of the educts trans-1f,g were monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR for several months. As shown in Scheme 3.6 (top) and Figures 3.1 and 3.2, $40-60 \%$ conversions to cis- $\mathbf{1 f}, \mathbf{g}^{4,8}$ (very) gradually occurred. An analogous experiment with trans-1g in toluene gave only a 9% conversion to cis- $\mathbf{1 g}$. When this sample was kept at $100^{\circ} \mathrm{C}$ for 2 d , no further reaction occurred. Hence, it is concluded that the isomerization of trans $\mathbf{- 1 g}$ is thermodynamically unfavorable in the less polar medium toluene, but favorable in the more polar medium $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The isomerization of trans-1f appears slightly unfavorable in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, suggesting a modest dependence of the equilibrium upon the methylene chain length.

$n=20$, trans-2'f

22, trans-2'g

$$
n=20, \text { cis-2'f }
$$

22, cis-2'g

Scheme 3.6. Additional thermal isomerizations.

Figure 3.1. Isomerization of trans-1f (\star) to cis- $\mathbf{1 f}(\star)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at RT (62:38 after 151 d).

Figure 3.2. Isomerization of trans $\mathbf{- 1 g}(\star$ or $\bullet)$ to cis $\mathbf{- 1 g}(\star$ or $\bullet)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene at RT (39:61 or 91:09 after 195 d).

Analogous experiments were conducted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene solutions of trans-2'f,g. As shown in Scheme 3.6 (bottom) and Figures 3.3 and 3.4, 58-56\% conversions to cis-2'f,g were observed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, but only a 7% conversion to cis-2'f in toluene. When the last sample was kept at $100^{\circ} \mathrm{C}$ for 2 d , no further reaction occurred. The toluene was replaced by $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ and the sample kept at $150^{\circ} \mathrm{C}$ for 2 d . Again, no further reaction occurred. Hence, toluene and $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ are insufficiently polar to drive the equilibrium towards the cis isomers. These results are in line with gas phase DFT
calculations reported earlier. ${ }^{8}$

Figure 3.3. Isomerization of trans-2'f($\left(\stackrel{\text { or } \bullet)}{ }\right.$ to cis-2'f($(\diamond \bullet)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene at RT (42:58 or 93:07 after 187 d or 86 d).

Figure 3.4. Isomerization of trans-2'g (\diamond) to cis-2'g (\star) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\mathrm{RT}(44: 56$ after $161 \mathrm{~d})$.
3.2.3. Crystal Structures. In view of the potential for interesting structural features, efforts were made to crystallize all of the cyclic compounds in Schemes 3.4-3.6. Crystals of a THF solvate of gyroscope like trans-2g, and two complexes representing the alternative ring closing metathesis mode, cis-2'f,g, were grown as described in the experimental section. X-ray data were collected, and the structures solved, as summarized in Table 3.1 and the experimental section. The molecular structures are depicted in Figures
3.5 and 3.6. Key bond lengths and angles are given in Table 3.2.

Complex trans-2g represents the gyroscope like complex with the largest macrocycles (twenty five membered) that has been structurally characterized to date. The THF molecule is sandwiched between two macrocycles, as opposed to occupying the cavity of only one. The structure illustrates two limiting modes by which increasingly larger macrocycles can fill space. The left most macrocycle in either view can be considered "horizontally extended" with an "all anti" $\left(\mathrm{CH}_{2}\right)_{9}$ segment emanating from each phosphorus atom (torsion angle range $180.0(4)^{\circ}$ to $\left.169.7(4)^{\circ}\right)$; average 176.5°). The ninth methylene group then initiates a gauche C-C-C-C linkage (torsion angles 65.2(6) ${ }^{\circ}$ and $\left.60.6(6)^{\circ}\right)$, several of which are necessary for closing any carbocyclic ring. The other macrocycles extend somewhat in the (vertical) direction of the P-Pt-P axis, as reflected by two Pt-P-C-C linkages with anti conformations (torsion angles $178.3(3)^{\circ}$ and $\left.179.2(3)^{\circ}\right)$. This leads to particularly spacious macrocycle cavities, as seen in the space filling representation in the toc graphic.

Figure 3.5. Thermal ellipsoid plot (50\% probability) of trans-2g•THF (top) and view along P-Pt-P axis (bottom).

As is evident from Figure 3.6, cis-2'f,g adopt quite similar solid state conformations, with several homologous gauche/anti sequences. Furthermore, both crystallize in the space group $P 2_{1} / \mathrm{c}$ with $Z=4$. Accordingly, the unit cell dimensions are similar, with the volume of the former slightly smaller (6246.7 vs. $6798.9 \AA^{3}$). The greatest difference is found in the lengths of the a axes (24.5316(12) vs. 26.533(3) \AA), the directions of which nearly coincide with the long dimensions of the roughly elliptical macrocycles in Figure 3.6.

Figure 3.6. Thermal ellipsoid plots (50% probability) of cis-2'f (top) and cis-2'g (bottom).

The bond lengths and angles in Table 3.2 fall within standard ranges. However, the platinum-phosphorus bonds that are trans to phosphorus atoms are distinctly longer than those that are trans to chlorine atoms (2.3199(11)-2.3100(11) \AA vs. 2.263(4)-
$2.2468(15) \AA$), and the platinum-chlorine bonds that are trans to phosphorus atoms are distinctly longer than those that are trans to chlorine atoms (2.3717(16)-2.359(4) Å vs. $2.3125(11)-2.3099(11) \AA)$. These trends follow logically from the trans influence, and are paralleled in other series of related complexes. ${ }^{18}$

3.3. Discussion

The results in Schemes 3.4 and 3.5 establish that an upper limit has not yet been reached with respect to macrocycle sizes in gyroscope like complexes accessed by three fold intramolecular alkene metatheses. Extensions beyond the thirty three membered rings in trans-2k would seemingly only require α, ω-haloalkene building blocks $\mathrm{X}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}$ with $m \geq 14$, for which viable synthetic routes exist. ${ }^{19}$ This also augurs well for the availability of increasingly larger dibridgehead diphosphines of the type $\mathbf{3}$ (Scheme 3.3).

However, the initial formation of the parachute like complex cis-2k is a proverbial "elephant in the room" with respect to future extensions. On a positive note, there seems to be a beneficial effect upon yield relative to those of trans-2f,g in Scheme 3.4, and the subsequent thermal isomerization to trans $\mathbf{2 k}$ is spectroscopically quantitative. Importantly, the isomerizations of the model compounds in Scheme 3.6 and Figures 3.13.4 show that cis isomers are generally favored in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solvent for the metatheses and hydrogenations in Schemes 3.4 and 3.5. However, equilibrations require months at room temperature, and should not be appreciably accelerated under the reflux conditions of the metatheses.

The detection of some cis adducts among the crude metathesis products, as well as the apparent trans/cis isomerization of the educt $\mathbf{1 k}$, supports the possibility of a catalyzed isomerization. Indeed, the interconversion of cis/trans isomers of platinum(II) complexes is known to be catalyzed by both phosphines and anions, ${ }^{20}$ either of which can be supplied
by Grubbs' first generation catalyst. This scenario poses the question as to why analogous phenomena are not seen with the reactions in Scheme 3.1, which in several cases were carefully scrutinized for cis products. Although it represents an extrapolation from only two points, the data for trans-1f,g (Figures 3.1 and 3.2) seem to indicate that in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, trans- $\mathbf{1}$ becomes progressively more favored as the methylene chains are shortened.

Grubbs' catalyst has often been applied in toluene, ${ }^{21}$ and occasionally in haloarenes. ${ }^{7,8,22}$ Thus, another test of the preceding interpretation would be to conduct analogous metatheses in these less polar solvents. This might enable a direct route from trans-1k to trans-2k. However, in preliminary experiments, the metathesis in Scheme 3.5 was much slower in toluene, even at higher catalyst loadings (conversion still incomplete after 7 d).

Another open question is whether it will prove possible, with increasing methylene chain lengths, to access additional types of isomers, such as the topologically novel species trans-2" in Scheme 3.1. As noted above, such chain crossing has now been documented in derivatives of dibridgehead diphosphines 3 that lack P-M-P linkages. ${ }^{10,11}$ All that seemingly would be needed are methylene bridges that are sufficiently long to accommodate both a svelte $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ moiety and a methylene chain. Towards this end, the macrocycle size in trans-2g already seems adequate (see toc graphic).

However, there are additional considerations. On the reaction coordinate to gyroscope like complexes trans-2, the final ring closing step involves the bicyclic intermediate I with $\operatorname{syn}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}$ chains (Figure 3.7). In contrast, the final ring closing step en route to trans-2" requires the bicyclic intermediate II, with "mismatched" anti $\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}$ chains. This insight suggests a more sophisticated synthetic approach, inspired by an earlier synthesis of a related diphosphine complex III ($n=14$) which features two anti pentafluorophenyl groups. ${ }^{23}$ The optimum precursor to trans-2"
would be IV, in which the aryl groups of III have been replaced by $\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}$ moieties. A subsequent reaction with Grubbs' catalyst is certain to give oligomer, but some amount of trans-2" would (after hydrogenation) logically be anticipated. The challenge is to realize a viable route to IV, possibly from an analog of III with appropriate anti P-X groups.

I

III

II

IV

Figure 3.7. Additional relevant structures.

In summary, this study has greatly expanded the range of m / n dimensions available to the types of platinum complexes in Schemes 3.1 and 3.2. The new monophosphine ligands $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ can also likely be applied to other metals and coordination geometries to yield numerous new gyroscope like complexes, with enhanced possibilities for topologically novel coproducts. These and related themes will be the subject of future studies from this laboratory.

3.4. Experimental Section

General. All reactions except hydrogenations were conducted under inert atmospheres using standard Schlenk techniques. Chemicals were treated as follows: hexanes, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, and THF, dried and degassed using a Glass Contour solvent purification system; o- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$, distilled under reduced pressure and degassed; CDCl_{3} (Cambridge Isotope Laboratories), magnesium turnings (Aldrich, 98%), anhydrous PtCl_{2} (ABCR, 99.9\%), PCl_{3} (Merck, 99\%), $\mathrm{NH}_{4} \mathrm{Cl}$ (Mallinckrodt Chemicals, 99.9\%), Grubbs' first generation catalyst $\left(\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{RuCl}_{2}(=\mathrm{CHPh})\right.$; Aldrich, $\left.97 \%\right), \mathrm{PtO}_{2}$ (Aldrich, 99.9\%), 16-bromo-1-hexadecene (Amadis Chemical, 95\%), SiO_{2} (Silicycle), and neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Macherey-Nagel), used as received.

NMR spectra were recorded on a Varian NMRS 500 MHz instrument at ambient probe temperatures and referenced as follows $(\delta, \mathrm{ppm}):{ }^{1} \mathrm{H}$, residual internal $\mathrm{CHCl}_{3}(7.26)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, internal CDCl_{3} (77.16); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}$ (0.00). IR spectra were recorded on a Shimadzu IRAffinity-1 spectrometer with a Pike MIRacle ATR system (diamond $/ \mathrm{ZnSe}$ crystal). Melting points were recorded using a Stanford Research Systems MPA100 (OptiMelt) automated apparatus. Microanalyses were conducted by Atlantic Microlab, Inc.
$\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{10} \mathbf{C H}=\mathbf{C H}_{2}\right)_{3}$. A round bottom flask was charged with $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}=\mathrm{CH}_{2}(5.014 \mathrm{~g}, 20.3 \mathrm{mmol})^{24}$ and degassed ($3 \times$ freeze-pump-thaw). THF $(25 \mathrm{~mL})$ was added, the mixture was cooled to $0^{\circ} \mathrm{C}$, and magnesium turnings (0.984 g , 40.5 mmol) were added with stirring. After 1 h , the cooling bath was removed. The mixture was stirred overnight and then filtered (glass frit). The filtrate was cooled to $0^{\circ} \mathrm{C}$. A solution of $\mathrm{PCl}_{3}(0.49 \mathrm{~mL}, 5.6 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added dropwise via syringe over 5 min . After 1 h , the cooling bath was removed. The mixture was stirred overnight an again cooled to $0{ }^{\circ} \mathrm{C}$. Aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added dropwise over 5 min . After

1 h , the cooling bath was removed. The mixture was stirred for 2 h and the colorless aqueous phase removed via syringe. The solvent was removed from the organic phase by rotary evaporation, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. The solution was filtered under a nitrogen atmosphere through a short pad of silica gel $(5 \times 3 \mathrm{~cm})$, which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The solvent was removed by oil pump vacuum to give $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(2.036 \mathrm{~g}, 3.82 \mathrm{mmol}, 68 \%)$ as a greenish yellow oil.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.80\left(\mathrm{ddt}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}=\right), 4.98\left(\mathrm{br} \mathrm{d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.92(\mathrm{br}$ d, $\left.3 \mathrm{H},{ }^{3} J_{\mathrm{HH} c i s}=10.2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.07-1.99\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.45-1.21(\mathrm{~m}, 54 \mathrm{H}$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{\mathbf{2 5}}$ (126 MHz) $139.0(\mathrm{~s}, \mathrm{CH}=), 114.0\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.8(\mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 31.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=10.6 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.53\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.48\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.4$ (s, CH_{2}), $29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=12.4 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$,

$\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}$. THF $(30 \mathrm{~mL}), \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}=\mathrm{CH}_{2}(7.085 \mathrm{~g}, 23.3 \mathrm{mmol})$, magnesium turnings ($1.162 \mathrm{~g}, 48.4 \mathrm{mmol}$), a solution of $\mathrm{PCl}_{3}(0.56 \mathrm{~mL}, 6.46 \mathrm{mmol})$ in THF (10 mL), and aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ were combined in a procedure analogous to that given for $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$. An identical workup gave $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ $(2.090 \mathrm{~g}, 4.13 \mathrm{mmol}, 64 \%)$ as a greenish yellow oil.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz}) 5.83\left(\mathrm{ddt}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=\right), 5.00\left(\mathrm{br} \mathrm{d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.94(\mathrm{br}$ $\left.\mathrm{d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.8 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.09-2.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.46-1.20(\mathrm{~m}, 78 \mathrm{H}$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{\mathbf{2 5}}$ (126 MHz) $139.2(\mathrm{~s}, \mathrm{CH}=), 114.1\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.8(\mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\right), 31.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=10.3 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.70\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.69\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2}\right)$, $29.64\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.58\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.41\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.37\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.17(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.6 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 25.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=12.6 \mathrm{~Hz}, \mathrm{PCH}\right)$;
${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ (202 MHz) -25.7 (s).
trans $-\mathrm{PtCl}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathrm{CH}_{2}\right)_{\mathbf{9}} \mathbf{C H}=\mathbf{C H}_{2}\right)_{\mathbf{3}}\right)_{\mathbf{2}}$ (trans-1f). A Schlenk flask was charged with $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(1.596 \mathrm{~g}, 3.25 \mathrm{mmol}),{ }^{4}$ toluene $(10 \mathrm{~mL})$, and $\mathrm{PtCl}_{2}(0.433 \mathrm{~g}, 1.63$ mmol) with stirring. After 48 h , the mixture was concentrated to ca. 2 mL and placed at the top of a silica column $(3.5 \times 20 \mathrm{~cm})$, which was eluted with hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(90: 10$ to $80: 20 \mathrm{v} / \mathrm{v}$) and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the product fractions by oil pump vacuum to give trans-1f ($0.821 \mathrm{~g}, 1.02 \mathrm{mmol}, 63 \%$) as a pale yellow oil. Anal. Calcd (\%) for $\mathrm{C}_{66} \mathrm{H}_{126} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1247.67): C, 63.54; H, 10.18; found C, 63.80; H, 10.34.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.80\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=\right), 4.99\left(\mathrm{br} \mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right)$, $4.92\left(\mathrm{br} \mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.3 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.09-1.98\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.87-1.77(\mathrm{br}$ $\mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}$), 1.60-1.51 (br m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.45-1.21 ($\mathrm{m}, 72 \mathrm{H}$, remaining CH_{2}); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{\mathbf{2 5}}(126 \mathrm{MHz}) 139.2(\mathrm{~s}, \mathrm{CH}=), 114.1\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.8\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{CH}=\right), 31.2$ (virtual $\left.\mathrm{t},{ }^{27}{ }^{3} J_{\mathrm{CP}}=6.48 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2}\right), 29.22\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.15\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.7\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 20.4$ (virtual t, $\left.{ }^{27}{ }^{1} J_{\mathrm{CP}}=16.3 \mathrm{~Hz}, \mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202}$ $\mathrm{MHz}) 5.09\left(\mathrm{~s}, J_{\mathrm{PPt}}=2375 \mathrm{~Hz}^{28}\right)$. IR (cm^{-1}, powder film): $2924(\mathrm{~s}), 2855(\mathrm{~m}), 1458(\mathrm{~m})$, 718 (m).
trans- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 0}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \quad$ (trans $\left.-\mathbf{1 g}\right)$. Toluene $\quad(10 \mathrm{~mL})$, $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(1.529 \mathrm{~g}, 2.87 \mathrm{mmol})$, and $\mathrm{PtCl}_{2}(0.382 \mathrm{~g}, 1.44 \mathrm{mmol})$ were combined in a procedure analogous to that for trans-1f. An identical workup gave trans$\mathbf{1 g}(1.186 \mathrm{~g}, 0.891 \mathrm{mmol}, 62 \%)$ as a pale yellow oil. Anal. Calcd (\%) for $\mathrm{C}_{72} \mathrm{H}_{138} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1331.83): C, 64.93; H, 10.44; found C, $65.21 ; \mathrm{H}, 10.54$.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.79\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.67 \mathrm{~Hz}, \mathrm{CH}=\right), 4.98\left(\mathrm{br} \mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.91$ (br d, $\left.6 \mathrm{H},{ }^{3} J_{\mathrm{HH} c i s}=10.3 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.06-1.99\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.87-1.77(\mathrm{br} \mathrm{m}$,
$12 \mathrm{H}, \mathrm{PCH}_{2}$), 1.59-1.50 (br m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.45-1.33 (m, $24 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.32-1.20 ($\mathrm{m}, 60 \mathrm{H}$, remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 139.1(\mathrm{~s}, \mathrm{CH}=), 114.1\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.8$ (s, $\mathrm{CH}_{2} \mathrm{CH}=$), 31.2 (virtual t, ${ }^{27}{ }^{3} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.5(\mathrm{~s}, 2 \times$ $\left.\mathrm{CH}_{2}\right), 29.22\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.17\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.6\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 20.4\left(\right.$ virtual t, ${ }^{27}$
 powder film): $2924(\mathrm{~s}), 2847(\mathrm{~m}), 1458(\mathrm{~m}), 718(\mathrm{~m})$.
trans- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \quad$ (trans $\left.\mathbf{- 1 k}\right)$. Toluene $\quad(10 \mathrm{~mL})$, $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(1.614 \mathrm{~g}, 2.30 \mathrm{mmol})$, and $\mathrm{PtCl}_{2}(0.3061 \mathrm{~g}, 1.151 \mathrm{mmol})$ were combined in a procedure analogous to that for trans-1f. An identical workup gave trans$1 \mathbf{k}(0.941 \mathrm{~g}, 0.564 \mathrm{mmol}, 49 \%)$ as a light yellow solid, mp (capillary) $57^{\circ} \mathrm{C}$. Anal. Calcd (\%) for $\mathrm{C}_{96} \mathrm{H}_{186} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1668.48): C, 69.11; H, 11.24; found C, 69.12; H, 11.41.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.82\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}=\right), 5.00\left(\mathrm{br} \mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.93(\mathrm{br}$ $\left.\mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.9 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.09-2.01\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.88-1.80(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 1.61-1.52\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.45-1.35\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}_{2}\right), 1.34-1.20(\mathrm{~m}, 108 \mathrm{H}$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 139.2(\mathrm{~s}, \mathrm{CH}=), 114.1\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.8$ (s , $\mathrm{CH}_{2} \mathrm{CH}=$), 31.2 (virtual t, ${ }^{27}{ }^{3} J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.71\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2}\right), 29.74(\mathrm{~s}$, $\left.2 \times \mathrm{CH}_{2}\right), 29.67\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.58\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.56\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $27.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.7\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 20.4\left(\right.$ virtual t, $\left.{ }^{27}{ }^{1} J_{\mathrm{CP}}=16.1 \mathrm{~Hz}, \mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}(202)}$ $\mathrm{MHz}) 4.69\left(\mathrm{~s}, J_{\mathrm{PPt}}=2379 \mathrm{~Hz}^{28}\right)$. IR (cm^{-1}, powder film): $2916(\mathrm{~s}), 2850(\mathrm{~m}), 1465(\mathrm{~m})$, 911 (m), 717 (m).

$\mathbf{H}_{\mathbf{2}} \mathbf{)}_{\mathbf{2 0}}$)) (trans-2'f). A Schlenk flask was charged with trans-1f ($0.545 \mathrm{~g}, 0.437 \mathrm{mmol}$), Grubbs' first generation catalyst ($0.0444 \mathrm{~g}, 0.054 \mathrm{mmol}, 12.4 \mathrm{~mol} \%$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (750 mL ; the resulting solution is 0.00058 M in trans-1f), and fitted with a condenser. The
solution was refluxed with stirring (48 h). The solvent was removed by oil pump vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The sample was passed through a short pad of neutral alumina, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A Fischer-Porter bottle was charged with the filtrate (reduced to 20 $\mathrm{mL}), \mathrm{PtO}_{2}(0.200 \mathrm{~g}, 0.022 \mathrm{mmol})$, and $\mathrm{H}_{2}(5 \mathrm{bar})$. The mixture was kept at $50^{\circ} \mathrm{C}$ (venting H_{2} to maintain 5 bar) and stirred (48 h). The solvent was removed by oil pump vacuum. The residue was placed at the top of a silica column $(3.5 \times 26 \mathrm{~cm})$, which was eluted with hexanes $(1000 \mathrm{~mL})$ and then hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1$ to $6: 1 \mathrm{v} / \mathrm{v})$. The solvent was removed from the product fractions by rotary evaporation to give trans $\mathbf{- 2 f}(0.0175 \mathrm{~g}, 0.015 \mathrm{mmol}$, $3 \%)$ and trans-2'f ($0.1263 \mathrm{~g}, 0.108 \mathrm{mmol}, 25 \%$) as a pale yellow waxy oils that solidified after 48-72 h.

Data for trans-2f. mp $47{ }^{\circ} \mathrm{C}$ (capillary). Anal. Calcd (\%) for $\mathrm{C}_{60} \mathrm{H}_{120} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1169.55): C, 61.62; H, 10.34; found C, 61.40; H, 10.40.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 1.90-1.75(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH} 2), 1.70-1.58(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.50-1.38 (m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.38-1.19 (m, 84H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 30.9\left(\right.$ virtual t, $\left.{ }^{27}{ }^{3} J_{\mathrm{CP}}=6.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $28.9(\mathrm{~s}$, $\left.\mathrm{CH}_{2}\right), 28.71\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.66\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.46\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.45\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.0$ (s, CH_{2}), $23.6\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 20.6$ (virtual t, $\left.{ }^{27}{ }^{1} J_{\mathrm{CP}}=16.2 \mathrm{~Hz}, \mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202$ $\mathrm{MHz}) 5.06\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2307 \mathrm{~Hz}^{28}\right)$. IR $\left(\mathrm{cm}^{-1}\right.$, powder film): $2916(\mathrm{~s}), 2847(\mathrm{~m}), 1458(\mathrm{~m})$, 718 (m).

Data for trans-2'f. mp $66{ }^{\circ} \mathrm{C}$ (capillary). Anal. Calcd (\%) for $\mathrm{C}_{60} \mathrm{H}_{120} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1169.55): C, 61.62; H, 10.34; found C, 61.89; H, 10.46.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 2.06-1.89\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.88-1.53(\mathrm{~m}$, $24 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.52-1.21 (m, 90 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 31.2$ (virtual $\mathrm{t},{ }^{27}{ }^{3} J_{\mathrm{CP}}=6.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 30.7 (virtual $\mathrm{t},{ }^{27}{ }^{3} J_{\mathrm{CP}}=6.3 \mathrm{~Hz}$, $\left.2 \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.24\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.17\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.5(\mathrm{~s}$,
$\left.2 \times 2 \mathrm{CH}_{2}\right), 28.3\left(\mathrm{~s}, \mathrm{CH}_{2} / 2 \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 28.01\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 27.97\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.6(\mathrm{~s}$, $\left.2 \mathrm{CH}_{2}\right), 27.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.5\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.0\left(\mathrm{~s}, 2 \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 22.2$ (virtual t, ${ }^{27}{ }^{1} J_{\mathrm{CP}}=16.4 \mathrm{~Hz}, \mathrm{PCH}_{2}$), 19.3 (virtual t, ${ }^{27}{ }^{1} J_{\mathrm{CP}}=16.3 \mathrm{~Hz}, 2 \mathrm{PCH}_{2}$); ${ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}}$ $(202 \mathrm{MHz}) 4.93\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2375 \mathrm{~Hz}^{28}\right) . \mathbf{I R}\left(\mathrm{cm}^{-1}\right.$, powder film$): 2916(\mathrm{~s}), 2844(\mathrm{~m}), 1459$ (m), 716 (m).
 $\mathbf{H}_{\mathbf{2}} \mathbf{2}_{\mathbf{2 2}} \mathbf{)}$) (trans-2'g). Grubbs' first generation catalyst ($0.0427 \mathrm{~g}, 0.052 \mathrm{mmol}, 12.4 \mathrm{~mol} \%$), trans $\mathbf{- 1 g}(0.557 \mathrm{~g}, 0.418 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(750 \mathrm{~mL}$; the resulting solution is 0.00056 M in trans $\mathbf{- 1 g}), \mathrm{PtO}_{2}(0.200 \mathrm{~g}, 0.022 \mathrm{mmol})$, and $\mathrm{H}_{2}(5 \mathrm{bar})$ were combined in a procedure analogous to that given for trans-2f and trans-2'f. An identical workup gave trans-2g ($0.1015 \mathrm{~g}, 0.081 \mathrm{mmol}, 19 \%$) and trans-2'g ($0.0652 \mathrm{~g}, 0.052 \mathrm{mmol}, 12 \%$) as a pale yellow waxy oils that solidified after 48-72 h .

Data for trans-2g. mp $47{ }^{\circ} \mathrm{C}$ (capillary). Anal. Calcd (\%) for $\mathrm{C}_{66} \mathrm{H}_{132} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1253.71): C, 63.23; H, 10.61; found C, 63.53; H, 10.77.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz})$ 1.88-1.80 (br m, $12 \mathrm{H}, \mathrm{PCH} \mathrm{P}_{2}$), 1.63-1.55 (br m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.45-1.39 (br m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.36-1.24 (br m, 96 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 31.1\left(\right.$ virtual t, ${ }^{27}{ }^{3} J_{\mathrm{CP}}=6.6 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.91\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.88\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $28.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.7\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 20.6$ (virtual t, ${ }^{27}{ }^{1} J_{\mathrm{CP}}=16.2 \mathrm{~Hz}, \mathrm{PCH}$); ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 4.85\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2389 \mathrm{~Hz}^{28}\right) . \mathbf{I R}\left(\mathrm{cm}^{-1}\right.$, powder film$): 2916(\mathrm{~s}), 2847$ (m), 1458 (m), 718 (m).

Data for trans-2'g. mp $53{ }^{\circ} \mathrm{C}$ (capillary). Anal. Calcd (\%) for $\mathrm{C}_{66} \mathrm{H}_{132} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1253.71): C, 63.23; H, 10.61; found C, 63.46; H, 10.78.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 2.01-1.90\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.82-1.75(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.68-1.54\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.47-1.37\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.30-$
$1.22\left(\mathrm{~m}, 96 \mathrm{H}\right.$, remaining $\left.\mathrm{CH} \mathrm{C}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 31.2$ (virtual t, ${ }^{27}{ }^{3} J_{\mathrm{CP}}=6.76 \mathrm{~Hz}$, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 30.8 (virtual t, ${ }^{27}{ }^{3} J_{\mathrm{CP}}=6.76 \mathrm{~Hz}, 2 \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $29.31\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.25$ (s, CH2), $29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.1\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 28.91\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.86\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 28.64(\mathrm{~s}, 2 \times$ $\left.2 \mathrm{CH}_{2}\right), 28.63\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 28.48\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.45\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 28.1\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 28.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $27.91\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.88\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 27.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.3\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.0\left(\mathrm{~s}, 2 \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$, 22.0 (virtual $\mathrm{t},{ }^{27}{ }^{1} J_{\mathrm{CP}}=16.6 \mathrm{~Hz}, \mathrm{PCH}_{2}$), 19.4 (virtual $\mathrm{t},{ }^{27}{ }^{1} J_{\mathrm{CP}}=16.6 \mathrm{~Hz}, 2 \mathrm{PCH}_{2}$); ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 4.85\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2369 \mathrm{~Hz}^{28}\right) . \mathbf{I R}\left(\mathrm{cm}^{-1}\right.$, powder film$): 2916(\mathrm{~s}), 2847$ (m), 1458 (m), 718 (m).
cis- $\left.\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3 0}}\right)_{\mathbf{3}} \mathbf{P}\right)(c i s-\mathbf{2 k})$. Grubbs' first generation catalyst $(0.0138 \mathrm{~g}$, $0.017 \mathrm{mmol}, 8.9 \mathrm{~mol} \%)$, trans $-1 \mathrm{k}(0.3125 \mathrm{~g}, 0.187 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{~mL}$; the resulting solution is 0.00031 M in trans $-\mathbf{1 k}), \mathrm{PtO}_{2}(0.0164 \mathrm{~g}, 0.072 \mathrm{mmol})$, and H_{2} (5 bar) were combined in a procedure analogous to that given for trans-2f. An identical workup gave cis-2k ($0.1159 \mathrm{~g}, 0.073 \mathrm{mmol}, 39 \%$) as a white solid, mp (capillary) $153.6^{\circ} \mathrm{C}$. Anal. Calcd (\%) for $\mathrm{C}_{90} \mathrm{H}_{180} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1590.36): C, 67.97; H, 11.41; found C, 67.88; H, 11.53.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 2.05-2.91\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.60-1.50(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.46-1.37 ($\mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.34-1.21 (m, 144H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 31.2\left(\right.$ virtual t, $\left.{ }^{27}{ }^{3} J_{\mathrm{CP}}=7.1 \mathrm{~Hz}, 4 \mathrm{C}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.70$ (s, CH_{2}), $29.65\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.6\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2}\right), 29.5\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.8($ br s,
 powder film): 2916 (s), $2850(\mathrm{~m}), 1465(\mathrm{~m}), 717(\mathrm{~m})$.
trans- $\left.\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3 0}}\right)_{\mathbf{3}} \mathbf{P}\right)($ trans-2k). A Schlenk flask was charged with cis-1k $(0.0685 \mathrm{~g}, 0.043 \mathrm{mmol})$ and $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and heated to $180^{\circ} \mathrm{C}$. The isomerization was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. After 48 h , conversion was complete. The solvent was removed by oil pump vacuum. The residue was chromatographed (silica column, 3×20
$\mathrm{cm}, 6: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product fractions by rotary evaporation and oil pump vacuum to give trans-2k as a pale yellow waxy oil, which solidified after $24 \mathrm{~h}(0.0495 \mathrm{~g}, 0.031 \mathrm{mmol}, 72 \%), \mathrm{mp}$ (capillary) $46^{\circ} \mathrm{C}$. Anal. Calcd (\%) for $\mathrm{C}_{90} \mathrm{H}_{180} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$ (1590.36): C, 67.97; H, 11.41; found C, $67.83 ; \mathrm{H}, 11.58$.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 1.89-1.80\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.62-1.53(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.46-1.39 (m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.36-1.23 (m, 144H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}^{25}(126 \mathrm{MHz}) 31.2\left(\right.$ virtual t, $\left.{ }^{27}{ }^{3} J_{\mathrm{CP}}=6.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.6(\mathrm{~s}, 2$ $\left.\times \mathrm{CH}_{2}\right), 29.54\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.48\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.34\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.28\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.72\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.65\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.7(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 20.5\left(\right.$ virtual t, $\left.{ }^{27}{ }^{1} J_{\mathrm{CP}}=16.2 \mathrm{~Hz}, \mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 4.73\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}} .\right.}$ $\left.=2364 \mathrm{~Hz}^{28}\right)$. IR (cm^{-1}, powder film): $2916(\mathrm{~s}), 2847(\mathrm{~m}), 1458(\mathrm{~m}), 718(\mathrm{~m})$.

Equilibration Experiments. The following are representative. A (Figure 3.2). An NMR tube was charged with trans $\mathbf{- 1 g}(0.0065 \mathrm{~g}, 0.0049 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were periodically recorded (after $\left.195 \mathrm{~d}, \delta / \mathrm{ppm}\right): 4.99\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=\right.$ $2382 \mathrm{~Hz},{ }^{28}$ trans-1g, 39\%), 0.96 (s, ${ }^{1} J_{\mathrm{PPt}}=3515 \mathrm{~Hz},{ }^{28} \mathrm{cis} \mathbf{- 1 g}, 61 \%$). B (Figure 3.2). An NMR tube was charged with trans $-1 \mathbf{g}(0.0064 \mathrm{~g}, 0.0048 \mathrm{mmol})$ and toluene $(0.7 \mathrm{~mL})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were periodically recorded (after $\left.195 \mathrm{~d}, \delta / \mathrm{ppm}\right): 5.21\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=\right.$ $2385 \mathrm{~Hz},{ }^{28}$ trans-1g, 91%), $1.18\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3518 \mathrm{~Hz},{ }^{28}\right.$ cis-1g, $\left.9 \%\right)$. The tube was kept at $100{ }^{\circ} \mathrm{C}$ for 2 d . The sample was cooled and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded $(8 / \mathrm{ppm})$: $5.21\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2380 \mathrm{~Hz},{ }^{28}\right.$ trans-1g, $\left.91 \%\right), 1.18\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3513 \mathrm{~Hz},{ }^{28}\right.$ cis- $\left.\mathbf{1 g}, 9 \%\right) . \mathbf{C}$ (Figure 3.3). An NMR tube was charged with trans-2'f ($0.0059 \mathrm{~g}, 0.0050 \mathrm{mmol}$) and toluene $(0.7 \mathrm{~mL}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were periodically recorded (after $86 \mathrm{~d}, \delta / \mathrm{ppm}$): $4.93\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2374 \mathrm{~Hz},{ }^{28}\right.$ trans-2'f, 93%), $1.33\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3515 \mathrm{~Hz},{ }^{28}\right.$ cis-2'f, 7\%). The tube was kept at $100{ }^{\circ} \mathrm{C}$ for 2 d . The sample was cooled and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded (δ / ppm): $5.20\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2380 \mathrm{~Hz},{ }^{28}\right.$ trans-2'f, 93%), $1.17\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=3513 \mathrm{~Hz},{ }^{28}\right.$
cis-2'f, 7%). The solvent was removed by rotary evaporation and $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added. The tube was kept at $150{ }^{\circ} \mathrm{C}$ for 2 d . The sample was cooled and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra was recorded (δ / ppm): $5.27\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2380 \mathrm{~Hz},{ }^{28}\right.$ trans-2'f, 93\%), $1.33\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}\right.$ $=3514 \mathrm{~Hz},{ }^{28}$ cis-2'f, 7\%).

Crystallography. A. A THF solution of trans-2g was allowed to slowly concentrate. After 7 d, colorless blocks were obtained. Data were collected as outlined in Table B-1. Cell parameters were obtained from 45 frames using a 1° scan and refined with 164010 reflections. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3. ${ }^{29}$ Lorentz and polarization corrections were applied. Data were scaled, and absorption corrections were applied using the program SADABS. ${ }^{30}$ The space group was determined from systematic reflection conditions and statistical tests. The structure was refined (weighted least squares refinement on F^{2}) to convergence, ${ }^{31,32}$ which revealed a THF molecule for each trans-2g molecule. Olex 2^{32} was employed for the final data presentation. Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were fixed in idealized positions using a riding model. Some carbon atoms exhibited elongated thermal ellipsoids, suggesting disorder. For C57-C60, the disorder could be modeled between two positions (occupancy ratio of 61:39); appropriate restraints were used to keep the metrical parameters meaningful. The absence of additional symmetry or voids was confirmed using PLATON (ADDSYM). ${ }^{33}$ B. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of trans-2'f was allowed to slowly concentrate. After 16 d, colorless thin plates were obtained. Data were collected (64049 reflections) and the structure was solved as in A. C. A THF solution of trans-2'g was allowed to slowly concentrate. After 15 d , colorless plates were obtained. Data were collected (123992 reflections) and the structure was solved as in A.

3.5. References

(1) (a) Khuong, T.-A. V.; Nuñez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A. Acc. Chem. Res. 2006, 39, 413-422. (b) Nuñez, J. E.; Natarajan, A.; Khan, S. I.; GarciaGaribay, M. A. Org. Lett. 2007, 9, 3559-3561. (c) Vogelsberg, C. S.; Garcia-Garibay, M. A. Chem. Soc. Rev. 2012, 41, 1892-1910. (d) Pérez-Estrada, S.; Rodríguez-Molina, B.; Xiao, L.; Santillan, R.; Jiménez-Osés, G.; Houk, K. N.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2015, 137, 2175-2178. (e) Acros-Ramos, R. Rodriguez-Molina, B.; GonzalezRodriguez, E.; Ramirez-Montes, P. I.; Ochoa, M. E.; Santillan, R.; Farfán, N.; GarciaGaribay, M. A. RSC Adv. 2015, 5, 55201-55208. (f) Jiang, X.; O'Brien, Z. J.; Yang, S.; Lai, L. H.; Buenaflor, J.; Tan, C.; Khan, S.; Houk, K. N.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2016, 138, 4650-4656. (g) Catalano, L.; Perez-Estrada, S.; Wang, H.-H.; Ayitou, A. J.-L.; Khan, S. I.; Terraneo, G.; Metrangolo, P.; Brown, S.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 2017, 139, 843-848.
(2) (a) Setaka, W.; Yamaguchi, K. J. Am. Chem. Soc. 2013, 135, 14560-14563 and earlier work cited therein. (b) Setaka, W.; Inoue, K.; Higa, S.; Yoshigai, S.; Kono, H.; Yamaguchi, K. J. Org. Chem. 2014, 79, 8288-8295. (c) Setaka, W.; Higa, S.; Yamaguchi, K. Org. Biomol. Chem. 2014, 12, 3354-3357. (d) Shionari, H.; Inagaki, Y.; Yamaguchi, K.; Setaka, W. Org. Biomol. Chem. 2015, 13, 10511-10516. (e) Nishiyama, Y.; Inagaki, Y.; Yamguchi, K.; Setaka, W. J. Org. Chem. 2015, 80, 9959-9966. (f) Masuda, T.; Arase, J.; Inagaki, Y.; Kawahata, M.; Yamaguchi, K.; Ohhara, T.; Nakao, A.; Momma, H.; Kwon, E.; Setaka, W. Cryst. Growth Des. 2016 16, 4392-4401.
(3) Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Chem. Rev. 2005, 105, 12811376.
(4) Nawara-Hultzsch, A. J.; Skopek, K.; Shima, T.; Barbasiewicz, M.; Hess, G. D.; Skaper, D.; Gladysz, J. A. Z. Naturforsch. 2010, 65b, 414-424.
(5) (a) Nawara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128, 4962-4963. (b) Nawara-Hultzsch, A. J.; Stollenz, M.; Barbasiewicz, M.; Szafert, S.; Lis, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. Chem. Eur. J. 2014, 20, 4617-4637.
(6) (a) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem., Int. Ed. 2004, 43, 5537-5540; Angew. Chem. 2004, 116, 5653-5656. (b) Lang, G. M.; Shima, T.; Wang, L.; Cluff, K. J.; Skopek, K.; Hampel, F.; Blümel, J.; Gladysz, J. A. J. Am. Chem. Soc. 2016, 138, 7649-7663. (c) Lang, G. M.; Skaper, D.; Hampel, F.; Gladysz, J. A. Dalton Trans. 2016, 45, 16190-16204.
(7) (a) Fiedler, T.; Bhuvanesh, N.; Hampel, F.; Reibenspies, J. H.; Gladysz, J. A. Dalton Trans. 2016, 45, 7131-7147. (b) Hess, G. D.; Fiedler, T.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2017, 56, 7454-7469.
(8) Joshi, H.; Kharel, S.; Ehnbom, A.; Skopek, K.; Hess, G. D.; Fiedler, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. J. Am. Chem. Soc. 2018, 140, in press. DOI: 10.1021/jacs.8b02846.
(9) See also Steigleder, E.; Shima, T.; Lang, G. M.; Ehnbom, A.; Hampel, F.; Gladysz, J. A. Organometallics 2017, 36, 2891-2901.
(10) Stollenz, M.; Taher, D.; Bhuvanesh, N.; Reibenspies, J. H.; Baranová, Z.; Gladysz, J. A. Chem. Commun. 2015, 51, 16053-16056.
(11) Kharel, S.; Jia, T.; Bhuvanesh, N.; Reibenspies, J. H.; Blümel, J.; Gladysz, J. A. Chem. Asian J. 2018, accepted.
(12) Hartley, F. R. Organometal. Chem. Rev. A. 1970, 6, 119-137.
(13) Stollenz, M.; Barbasiewicz, M.; Nawara-Hultzsch, A. J.; Fiedler, T.; Laddusaw, R. M.; Bhuvanesh, N.; Gladysz, J. A. Angew. Chem., Int. Ed. 2011, 50, 66476651; Angew. Chem. 2011, 123, 6777-6781.
(14) See also Estrada, A. L.; Jia, T.; Bhuvanesh, N.; Blümel, J.; Gladysz, J. A. Eur. J. Inorg. Chem. 2015, 2015, 5318-5321.
(15) Kharel, S.; Joshi, H.; Bierschenk, S.; Stollenz, M.; Taher, D.; Bhuvanesh, N.; Gladysz, J. A. J. Am. Chem. Soc. 2017, 139, 2172-2175.
(16) Grim, S. O.; Keiter, R. L.; McFarlane, W. Inorg. Chem. 1967, 6, 1133-1137.
(17) Relevant ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$ for isolated complexes from this work and reference 8 are as follows: trans/cis-1f, 5.1/0.97; trans/cis-1g, 4.7/0.92; trans-1k, 4.7; trans/cis-2f, 5.1/2.8; trans/cis-2g, 4.9/2.3; trans/cis-2k, 4.7/1.8.
(18) (a) Rigamonti, L.; Forni, A. Manassero, M.; Manassero, C.; Pasini, A. Inorg. Chem. 2010, 49, 123-135, and earlier work cited therein. (b) For analogous bond length trends in a complex with both cis and trans $\mathrm{PtCl}_{2}\left(\mathrm{PArMe}_{2}\right)_{2}$ units, see Table 1 of Drahoš, B.; Rohlik, Z.; Kotek, J.; Císařová, I.; Hermann, P. Dalton Trans. 2009, 48, 4942-4953.
(19) (a) Balachander, N.; Sukenik, C. N. Langmuir 1990, 6, 1621-1627. (b) Effenberger, F.; Heid, S. Synthesis 1995, 1126-1130.
(20) (a) Louw, W. J. Inorg. Chem. 1977, 16, 2147-2160. (b) Cooper, M. K.; Downes, J. M. Inorg. Chem. 1978, 17, 880-884. (c) Anderson, G. K.; Cross, R. J. Chem. Soc. Rev. 1980, 9, 185-215.
(21) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 65436554.
(22) (a) Marvey, B. B.; Segakweng, C. K.; Vosloo, M. H. C. Int. J. Mol. Sci. 2008, 9, 615-625. (b) Martinez, A.; Gutiérrez, S.; Tienkopatchev, M. A. Nat. Sci. 2013, 5, 857864 (DOI: org./10.4236/ns.2013.57103).
(23) Shima, T.; Bauer, E. B.; Hampel, F.; Gladysz, J. A. Dalton Trans. 2004, 33, 1012-1028.
(24) Roux, M.-C.; Paugam, R.; Rousseau, G. J. Org. Chem. 2001, 66, 4304-4310.
(25) The $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signal assignments of the free phosphines were confirmed by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ COSY experiments. The corresponding signals in the platinum complexes were assigned by analogy to those of closely related complexes reported earlier. ${ }^{5 b}$ Representative 2D NMR spectra that provide the basis for these assignments have been published. ${ }^{7 \mathrm{a}, 26}$
(26) Lang, G. M.; Skaper, D.; Shima, T.; Otto, M.; Wang, L.; Gladysz, J. A. Aust. J. Chem. 2015, 68, 1342-1351.
(27) The J values given for virtual triplets represent the apparent couplings between adjacent peaks, and not the mathematically rigorously coupling constants. See Hersh, W. H. J. Chem. Educ. 1997, 74, 1485-1488.
(28) This coupling represents a satellite ($\mathrm{d},{ }^{195} \mathrm{Pt}=33.8 \%$), and is not reflected in the peak multiplicity given.
(29) APEX3, Bruker AXS Inc., Madison, WI, USA, 2012.
(30) Sheldrick, G. M. SADABS, Bruker AXS Inc., Madison, WI, USA, 2001.
(31) (a) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122. (b) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8. (c) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
(32) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
(33) Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.

Table 3.1. Summary of crystallographic data for trans-2g•THF, cis-2'f,2'g.

	trans-2g.THF	cis-2'f	cis-2'g
empirical formula	$\mathrm{C}_{70} \mathrm{H}_{140} \mathrm{Cl}_{2} \mathrm{OP}_{2} \mathrm{Pt}$	$\mathrm{C}_{60} \mathrm{H}_{120} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$	$\mathrm{C}_{66} \mathrm{H}_{132} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}$
formula weight	1325.74	1169.48	1253.64
temperature [K]	100	100	100
diffractometer	Bruker Quest X-ray	Bruker Venture X-ray	Bruker Venture X-ray
wavelength [\AA]	0.71073	1.54178	1.54178
crystal system	monoclinic	monoclinic	monoclinic
space group	C2/c	$P 2 /{ }_{1}$	$P 2{ }_{1} / \mathrm{c}$
unit cell dimensions:			
$a[\AA]$	31.5078(19)	24.5316(12)	26.553(3)
$b[\AA]$	9.1437(5)	14.6896(7)	14.4341(19)
$c[\AA]$	50.793(3)	18.6506(8)	18.775(2)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	98.675(4)	111.651(2)	109.127(6)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{3}\right]$	14466.1(14)	6246.7(5)	6798.9(14)
Z	8	4	4
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.217	1.244	1.225
$\mu\left[\mathrm{mm}^{-1}\right]$	2.096	5.706	5.275
F(000)	5680	2488	2680
crystal size $\left[\mathrm{mm}^{3}\right]$	$0.446 \times 0.314 \times 0.165$	$0.875 \times 0.38 \times 0.038$	$0.408 \times 0.186 \times 0.036$
Θ limit [${ }^{\circ}$]	2.321 to 23.990	3.579 to 70.270	3.523 to 65.380
index range (h, k, l)	-35, 35; -10, 10; -57, 57	-29, 26; -17, 17; -22, 22	-31, 31; -16, 16; -22, 22
reflections collected	164010	64049	123992
independent reflections	11239	11722	11189
R (int)	0.0569	0.0657	0.0915
completeness to θ	99 (23.990)	98.8 (67.679)	95.9(65.380)
max. and min. transmission	0.3299 and 0.2060	0.2833 and 0.0441	0.4433 and 0.2394
data/restraints/parameters	11239/149/722	11722/299/586	11189/1059/640
goodness-of-fit on F^{2}	1.243	1.090	1.264
R indices (final) $[I>2 \sigma(I)]$			
R_{1}	0.0389	0.0600	0.1265
$w R_{1}$	0.0701	0.1295	0.2770

Table 3.1 continued.

	trans-2g-THF	cis-2'f	cis-2'g
R indices (all data)			
R_{2}	0.0466	0.0766	0.1521
$w R_{2}$	0.0721	0.1431	0.2918
largest diff. peak and hole $\left[\mathrm{e}^{-3}\right]$	0.835 and -1.538	2.145 and -1.295	3.639 and -2.450

Table 3.2. Key crystallographic bond lengths $\left[\AA \AA\right.$] and angles [${ }^{\circ}$] for trans- $\mathbf{2 g} \cdot \mathrm{THF}$, cis-2'f,2'g.

	trans-2g•THF	cis-2'f	cis-2'g
$\mathrm{Pt}-\mathrm{P}$	$2.3100(11)$	$2.2576(15)$	$2.251(4)$
	$2.3199(11)$	$2.2468(15)$	$2.263(4)$
$\mathrm{Pt}-\mathrm{Cl}$	$2.3099(11)$	$2.3717(16)$	$2.367(4)$
	$2.3125(11)$	$2.3590(16)$	$2.359(4)$
P-Pt-P	$177.06(4)$	$103.90(6)$	$104.35(14)$
	$93.97(4)$	$84.93(6)$	$83.59(16)$
$\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}$	$86.29(4)$	$84.16(6)$	$84.31(13)$
	$85.91(4)$	$171.62(6)$	$170.67(15)$
	$93.86(4)$	$169.94(6)$	$172.03(14)$
Cl-Pt-Cl	$179.59(5)$	$87.25(6)$	$87.81(15)$

4. HOMEOMORPHIC ISOMERIZATION AS A DESIGN ELEMENT IN CONTAINER MOLECULES; BINDING, DISPLACEMENT, AND SELECTIVE TRANSPORT OF MCl_{2} SPECIES ($\mathrm{M}=\mathbf{P t}, \mathbf{P d}, \mathbf{N i}$)*

4.1. Introduction

A variety of types of "container molecules" have been developed. ${ }^{1}$ By definition, they are capable of encapsulating suitable guest molecules, often with objectives such as sequestration or transport/release. ${ }^{1 \mathrm{f}}$ The nature of the container/guest interaction can vary widely, ranging from modest van der Waals forces ${ }^{1 a-e, j}$ to much stronger covalent bonds. ${ }^{1 \mathrm{~h}}$ One means of acquiring transport data involves triphasic U-tube experiments, as illustrated in Figure 4.1. ${ }^{2}$ The container molecule is commonly localized in a lower liquid phase, and the guest molecule equilibrates from an orthogonal liquid phase in one arm to the same phase in the other.

We have described the syntheses and a limited range of reactions of the in/out isomers of the dibridgehead diphosphine $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}(\mathbf{1}){ }^{3,4}$ which feature thirtymembered macrocycles. These molecules have a fascinating ability to turn themselves inside out, which has been termed homeomorphism. ${ }^{5}$ As shown in Scheme 4.1, this rapidly interconverts in,in-1 (more stable) and out,out-1 (less stable). Phosphorus inversion, which would initially give in,out-1, only occurs at much higher temperatures.

Since the lone pairs are directed in an exo sense in out,out-1, and an endo sense in in,in-1, we thought that such diphosphines might be used to scavenge suitable Lewis acids and possibly transport them as payloads to an orthogonal phase. Hence, a proof of principle was sought. Accordingly, in this section, we report that $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of in-

[^1]-,in/out,out- $\mathbf{1}$ can transport MCl_{2} fragments between aqueous phases in U-tubes, and with appreciable selectivities $\left(\mathrm{PdCl}_{2}>\mathrm{PtCl}_{2}\right)$.

Figure 4.1. U-tube apparatus commonly used to assay guest transport in host/guest chemistry (left), metrical parameters of the apparatus used in this work (right).

Scheme 4.1. Dibridgehead diphosphine 1: in, in and out,out isomers and proposed mode of MCl_{2} binding.

4.2. Results and Discussion

In an initial set of experiments, basic binding properties of in,in/out,out $\mathbf{- 1}$ were established. As shown in Scheme 4.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions were treated with $\mathrm{PtCl}_{2}, \mathrm{PdCl}_{2}$, or NiCl_{2} (all insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Workups gave the corresponding 1:1 adducts trans$\mathrm{MCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\right)(\mathrm{M}=\mathrm{Pt} / \mathbf{2}, \mathrm{Pd} / \mathbf{3}, \mathrm{Ni} / \mathbf{4})$ in $93 \%, 94 \%$, and 68% yields, respectively. The generation of $\mathbf{2}$ by this route has already been reported. ${ }^{6}$ In the case of $\mathbf{3}$, this represents a new synthesis of an independently prepared complex. ${ }^{6}$ In the case of 4 , this represents a new complex. High yields of 2-4 were also obtained when the soluble complexes $\mathrm{MCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}$ were used in place of MCl_{2}. All of these adducts gave distinct ${ }^{31}$ P NMR chemical shifts, and the new complex 4 was fully characterized as described in the Supporting Information (SI). The crystal structure was also determined. As shown in Figure 4.2, the "filled container" has a roughly ovoid shape.

Figure 4.2. Thermal ellipsoid plot of the molecular structure of 4 (50\% probability level).

To set the stage for transport experiments, equilibrations involving the MCl_{2} moieties were attempted. First, the nickel complex 4 was treated either with PtCl_{2} or PdCl_{2} (1.2 equiv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, heterogeneous, 5 d), or $\mathrm{PtCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}$ or $\mathrm{PdCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(1.2$ equiv, THF, homogeneous, 2 d). Workups gave the platinum and palladium complexes 2 and $\mathbf{3}$ in $62-63 \%$ and $69-70 \%$ yields, respectively. Analogous experiments were conducted with all other possible combinations of nickel, palladium, and platinum reactants. However, the PtCl_{2} and PdCl_{2} moieties in $\mathbf{2}$ and $\mathbf{3}$ could not be replaced by any other MCl_{2} source. Identical results were obtained when $\mathrm{PdCl}_{2} / \mathrm{PtCl}_{2}$ exchange was attempted in $\mathrm{CH}_{3} \mathrm{CN}$ at $70{ }^{\circ} \mathrm{C}(6 \mathrm{~d})$. Hence, the binding enthalpy of NiCl_{2} to in, in $-\mathbf{1}$ is lower than those of PdCl_{2} or PtCl_{2}, but the relative affinities of the last two fragments remain unknown.

Next, attention was turned to the U-tube experiments represented in Figure 4.3. Thus, 0.246 mmol of in,in/out,out $-\mathbf{1}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and 0.361 mmol of a PtCl_{2} source, $\mathrm{K}_{2} \mathrm{PtCl}_{4}$, was dissolved in water (7.0 mL). The former solution was added to the U-tube (bottom), and the latter was added to the charging arm. The receiving arm was loaded with an aqueous solution of $\mathrm{KCl}(3.68 \mathrm{mmol}$ in 7.0 mL$)$ to regenerate $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the transported PtCl_{2}. Since this represents only a five-fold excess above the 0.722 mmol needed for complete conversion and a $50: 50$ equilibrium distribution, there is only a modest "driving force" for transport. Furthermore, the in,in/out,out-1 would be expected to retain an equilibrium quantity of PtCl_{2} in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase was stirred (450 rpm , all experiments) and the slow disappearance/appearance of the $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the charging/receiving arms was monitored by UV-visible spectroscopy. As shown in Figure 4.4 (top), after one day there was a drop of concentration in the charging arm roughly equal to the amount of in,in/out,out- $\mathbf{1}$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. This suggested the saturation of the host molecules with PtCl_{2} to give $\mathbf{2}$.

Subsequently, slow PtCl_{2} transport to the receiving arm began, with equal concentrations of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ realized after 8-11 days. However, the low values suggested that the in, in/out,out-1 remained saturated with PtCl_{2} in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Figure 4.3. Transport of MCl_{2} from aqueous $\mathrm{K}_{2} \mathrm{MCl}_{2}$ to aqueous KCl or KCN via $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of in,in/out,out-1.

Figure 4.4. Data for Figure 4.3. Top: disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the charging arm $(\bullet ; 0.361 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the receiving arm $(\bullet ; 3.68 \mathrm{mmol} \mathrm{KCl})$ using in, in/out, out $\mathbf{- 1}(0.246 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. Bottom: disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the charging arm $(\bullet ; 0.357 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ in the receiving arm $(\bullet ; 3.59 \mathrm{mmol} \mathrm{KCN})$ using in, in/out,out- $\mathbf{1}(0.245 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

To support this hypothesis, an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.150 \mathrm{mmol}$ in 3.5 mL) was layered onto a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of in,in/out,out-1 (0.101 mmol in 20 mL) in an "I tube" (see Figure 4.5). As can be seen in Figure 4.6, the $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ concentration decreased on the same time scale as in the transport experiment in Figure 4.4. The data indicate that after 1 and $7 \mathrm{~d},>76 \%$ and $>99 \%$ of the in,in/ out,out -1 has been converted to 2, as verified by ${ }^{31} \mathrm{P}$ NMR spectra of aliquots. The expected amount of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.049$ mmol) remained in the aqueous phase.

Figure 4.5. I-tube experiment for probing biphasic equilibria.

Figure 4.6. Equilibration of PtCl_{2} between an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(\bullet ; 0.150$ $\mathrm{mmol}, 3.5 \mathrm{~mL})$ and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of in,in/out,out-1 $(0.101 \mathrm{mmol}, 20 \mathrm{~mL})$ in an "Itube".

The slow time scale in Figure 4.4 (top) is typical of U-tube experiments. ${ }^{2}$ Nonetheless, in the interest of accelerating PtCl_{2} transport, a stronger driving force was sought. When $K_{2} \mathrm{PtCl}_{4}$ and KCN (4.0 equiv) are combined in water, complete conversion to the tetracyanide complex $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ rapidly occurs. ${ }^{7}$ The formation constants ($\log \beta_{4}$,
$\left.\beta_{4}=\left[\mathrm{MX}_{4}{ }^{2-}\right] /[\mathrm{M}]\left[\mathrm{X}^{-}\right]^{4}: \mathrm{PtCl}_{4}{ }^{2-}, \quad 16 ; \mathrm{PtCN}_{4}{ }^{2-}, 41\right)^{8}$ indicate a much higher thermodynamic stability for the latter. Thus, the preceding experiment was repeated, but with the receiving arm charged with an aqueous KCN solution (3.59 mmol in 7.0 mL). As shown in Figure 4.4 (bottom), over 24 h there was a similar drop in concentration of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the charging arm. But now transport was faster, with an equal concentration of platinum in the two arms after 43 h . With additional time, all of the platinum was carried from the charging to the receiving arm. No color or detectable amount of $2\left({ }^{31} \mathrm{P}\right.$ NMR) remained in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Next, experiments analogous to those in Figure 4.4 were conducted with the palladium salt $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ in the charging arm. Although minor differences were evident, transport rates were very close to those obtained with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$, both with KCl and KCN in the receiving arm (Figure 4.7). However, similar experiments with $\mathrm{K}_{2} \mathrm{NiCl}_{4}{ }^{9}$ did not give any NiCl_{2} transport, even though the viability of the required intermediate $\mathbf{4}$ has been unambiguously demonstrated (Scheme 4.1, Figure 4.2). The reason appears to involve the facile aquation of NiCl_{2} to give the very stable blue complex $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (trans$\left.\mathrm{NiCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) .{ }^{10}$

We wondered whether in,in/out,out-1 might be able to selectively transport one of several MCl_{2} species. Thus, the experiments in Figures 4.4 and 4.6 were repeated, but with $50: 50 \mathrm{~K}_{2} \mathrm{PtCl}_{4} / \mathrm{K}_{2} \mathrm{PdCl}_{4}$ mixtures. That conducted with KCN in the receiving arm gave the more striking results, and is presented in Figure 4.8 (see Figure 4.9 for that with KCl in the receiving arm). After an initial drop in both the $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ concentrations in the charging arm (10 h), the former was much more rapidly consumed, reaching parity with $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ in the receiving arm after $50 \mathrm{~h}(0.015 \mathrm{mmol})$ and drop-

Figure 4.7. Additional data for Figure 4.3. Top: disappearance of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ from the charging arm $(\bullet ; 0.371 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ in the receiving arm $(\bullet ; 3.66$ $\mathrm{mmol} \mathrm{KCl})$ using in, in/out,out- $\mathbf{1}(0.244 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. Bottom: disappearance of $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ from the charging arm $(\bullet ; 0.371 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ in the receiving arm $(\bullet ; 3.70 \mathrm{mmol} \mathrm{KCN})$ using in, in/out,out- $\mathbf{1}(0.244 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.
-ping to $<0.003 \mathrm{mmol}$ after 120 h . In contrast, appreciable amounts of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ remained in the charging arm after $50-120 \mathrm{~h}(0.069-0.020 \mathrm{mmol})$. These trends were mirrored by the $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{CN})_{4}$ and $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ quantities in the receiving arm, with the former greatly dominating at $75-150 \mathrm{~h}(0.054-0.158 \mathrm{mmol})$. At 254 h , nearly all of the $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{K}_{2^{-}}$ PtCl_{4} had been transferred to the receiving arm (98% and 96%). Thus, PdCl_{2} transport is
favored kinetically, in line with the rate trends observed for many substitution reactions. ${ }^{11}$

Figure 4.8. Additional data for Figure 4.3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(\triangle, 0.185 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}(\bullet, 0.192 \mathrm{mmol})$ from the charging arm and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}(\boldsymbol{\Delta})$ and $\mathrm{K}_{2} \mathrm{Pd}(\mathrm{CN})_{4}(\bullet)$ in the receiving arm $(3.67 \mathrm{mmol} \mathrm{KCN})$ using in, in/out,out- $\mathbf{1}(0.243$ $\mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Figure 4.9. Additional data for Figure 3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ ($\left.\triangle ; 0.185 \mathrm{mmol}\right)$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}(\bullet ; 0.185 \mathrm{mmol})$ from the charging arm and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(\mathbf{\Delta})$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}(\bullet)$ in the receiving arm (3.69 mmol KCl) using in,in/out,out- $\mathbf{1}(0.246 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Figure 4.10. Additional data for Figure 3. Disappearance of $K_{2} \mathrm{PtCl}_{4}$ from the charging $\operatorname{arm}(\bullet ; 0.374 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the receiving arm $(\bullet ; 3.72 \mathrm{mmol}$ $\mathrm{KCl})$ using in,in/out,out-5 $(0.241 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

A final issue concerns the breadth of phosphorus donor ligands that are effective for MCl_{2} transport. Can homologs of in,in/out,out-1, or even acyclic diphosphines or simple monophosphines, behave similarly? First, a dibridgehead diphosphine with four additional carbon atoms in each methylene chain, in,in/out,out- $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{18}\right)_{3} \mathrm{P}$ (in,in/out,out-5), was similarly synthesized as described in the experimental section. The types of experiments with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in Figure 4.4 were repeated. That conducted with KCN in the receiving arm gave the more striking results, and is presented in Figure 4.11 (see Figure 4.10 for that with KCl in the receiving arm). Importantly, the time scale and extent of PtCl_{2} transport are very close to that with in,in/out,out-1.

U-tube experiments were conducted with 1,2-bis(dimethylphosphino)ethane (DMPE) and (n-Oct) $)_{3}$ P. As shown in Figures B-3 and B-5 (Appendix B), no transport was observed after 12 d when KCl was used in the receiving arm, although DMPE did extract an equivalent of PtCl_{2} into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. When KCN was used in the receiving arm, very low levels of transport could be detected (DMPE, 8% after 12 d ; (n-Oct) ${ }_{3} \mathrm{P}, 7 \%$ after

12 d (Figures B-4 and B-6 (Appendix B))). In both cases, significant quantities of PtCl_{2} were extracted into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phases. Finally, when the amounts of in, in/out,out-1 in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phases in Figure 4.4 were decreased, the transport rates also decreased.

As a concluding perspective, we note that container molecules span a diverse range of architectures. Major classes include assemblies derived from hydrogen bonded subunits, ${ }^{1 a-d}$ and Platonic or Archimedean solids composed of metal-based corners and organic linkers. ${ }^{1 \mathrm{~g}, \mathrm{i}, \mathrm{j}}$ In both cases, encapsulation is achieved by partial disassembly and reassembly. The new host systems reported herein do not require disassembly, but rather incorporate guests by an uncommon dynamic process, homeomorphism. ${ }^{3,5}$ Our data clearly establish the viability of guest transport, together with some thermodynamic $\left(\mathrm{PtCl}_{2} / \mathrm{PdCl}_{2}>\mathrm{NiCl}_{2}\right)$ and kinetic $\left(\mathrm{PdCl}_{2}>\mathrm{PtCl}_{2}\right)$ selectiveity trends.

Figure 4.11. Additional data for Figure 3.3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ from the charging arm $(\bullet ; 0.365 \mathrm{mmol})$ and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ in the receiving arm $(\bullet$; $3.67 \mathrm{mmol} \mathrm{KCN})$ using in,in/out,out-5 $(0.249 \mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Although the experiments in Figures 4.3-4.11 operate on the time scales of hours or days, this is an artificial distinction as faster rates would be attained at higher
temperatures with less volatile solvents. Indeed, container molecules based upon noncovalent bonding are likely to be entropically destabilized at higher temperatures, but the dibridgehead diphosphines in,in/out,out-1 and -5 are thermally robust. Since potential real world applications for binding and transport of metallic species can involve extreme conditions, this class of compounds has exceptional promise. Additional relevant properties and extensions of these concepts will be disclosed in future publications.

4.3. Experimental Section

General. Reactions were conducted under nitrogen or argon using standard techniques. Chemicals were treated as follows: hexanes, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, and THF, dried and degassed us-ing a Glass Contour solvent purification system; $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ (Acros), $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ (Aldrich), $\mathrm{K}_{2} \mathrm{M}(\mathrm{CN})_{4}\left(\mathrm{M}=\mathrm{Pt} / \mathrm{Pd} / \mathrm{Ni} ; 3 \times \mathrm{Strem}\right.$), PtCl_{2} (Aldrich), PdCl_{2} (Pressure Chemical), anhydrous $\mathrm{NiCl}_{2}, \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2 \times$ Aldrich $), \mathrm{KCl}$ (Aldrich), KCN (Alfa Aesar), 1,2-bis(dimethylphosphino)ethane (DMPE; Aldrich), (n-Oct) ${ }_{3} \mathrm{P}$ (Aldrich), $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}\left(2 \times\right.$ Cambridge Isotope Laboratories), and SiO_{2} (Silicycle, 40-63 $\mu \mathrm{m} .230-$ 400 mesh), used as purchased; $\mathrm{K}_{2} \mathrm{NiCl}_{4},{ }^{12} \mathrm{PtCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2},{ }^{13} \mathrm{PdCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2},{ }^{14}$ $\mathrm{NiCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2},{ }^{15} \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}(\mathbf{1}),{ }^{16}$ and trans- $\left.\mathrm{PtCl}_{2}\left(\mathrm{P}_{\left(\left(\mathrm{CH}_{2}\right)_{18}\right)}\right)_{3} \mathrm{P}\right),{ }^{17}$ prepared by literature procedures.

NMR spectra were recorded on a Varian NMRS 500 MHz instrument at ambient probe temperatures and referenced as follows (δ, ppm): ${ }^{1} \mathrm{H}$, residual internal CHCl_{3} (7.26) or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ (7.16); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, internal CDCl_{3} (77.16) or $\mathrm{C}_{6} \mathrm{D}_{6}(128.0) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}(0.00)$. IR spectra were recorded on a Shimadzu IRAffinity-1 spectrometer with a Pike MIRacle ATR system (diamond/ZnSe crystal). Mass spectra were obtained on an Applied Biosystem STR Voyager (APCI) instrument. UV-visible spectra were recorded on a Shimadzu UV 1800 spectrometer. Melting points were recorded using a Stanford Research Systems MPA100 (OptiMelt) automated apparatus. Microanalyses were conducted by Atlantic Microlab, Inc.
trans- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{14}\right)_{3} \mathbf{P}\right)$ (2). A. A round bottom flask was charged with in, in/out,out $\mathbf{- 1}(0.0635 \mathrm{~g}, 0.097 \mathrm{mmol}), \mathrm{PtCl}_{2}(0.0306 \mathrm{~g}, 0.115 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 24 h and chromatographed $\left(\mathrm{SiO}_{2}\right.$ column, $1 \times$ $5 \mathrm{~cm}, 4: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by rotary evaporation to give $2(0.0825 \mathrm{~g}, 0.090 \mathrm{mmol}, 93 \%)$ as a yellow
powder. ${ }^{17}$ B. A round bottom flask was charged with in,in/out,out- $\mathbf{1}(0.0629 \mathrm{~g}, 0.096$ $\mathrm{mmol}), \mathrm{PtCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0400 \mathrm{~g}, 0.115 \mathrm{mmol})$, and THF $(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 h and chromatographed $\left(\mathrm{SiO}_{2}\right.$ column, $1 \times 5 \mathrm{~cm}, 4: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by rotary evaporation to give $2(0.0835 \mathrm{~g}, 0.091 \mathrm{mmol}, 95 \%)$ as a yellow powder. ${ }^{17}$
trans- $\mathbf{P d C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{14}\right)_{\mathbf{3}} \mathbf{P}\right) \mathbf{(3)}$. A. A round bottom flask was charged with in,in/out,out $\mathbf{- 1}(0.0668 \mathrm{~g}, 0.102 \mathrm{mmol}), \mathrm{PdCl}_{2}(0.0216 \mathrm{~g}, 0.122 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7$ mL) in a glove box. The mixture was stirred for 24 h and chromatographed (SiO_{2} column, $1 \times 5 \mathrm{~cm}, 4: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by rotary evaporation to give $3(0.0795 \mathrm{~g}, 0.096 \mathrm{mmol}, 94 \%)$ as a yellow powder. ${ }^{17}$ B. A round bottom flask was charged with in,in/out,out-1 $(0.0740 \mathrm{~g}, 0.113$ $\mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0311 \mathrm{~g}, 0.120 \mathrm{mmol})$, and THF $(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 h and chromatographed $\left(\mathrm{SiO}_{2}\right.$ column, $1 \times 5 \mathrm{~cm}, 4: 1 \mathrm{v} / \mathrm{v}$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by rotary evaporation to give $3(0.0886 \mathrm{~g}, 0.107 \mathrm{mmol}, 95 \%)$ as a yellow powder. ${ }^{17}$
trans- $\mathbf{N i C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{14}\right)_{\mathbf{3}} \mathbf{P}\right)$ (4). A. A round bottom flask was charged with a solution of in, in/out,out $-\mathbf{1}(0.0812 \mathrm{~g}, 0.124 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ in a glove box, and anhydrous $\mathrm{NiCl}_{2}(0.0196 \mathrm{~g}, 0.151 \mathrm{mmol})$ was added. The mixture was stirred for 48 h , turning first pink (4 h) and then red, and then chromatographed $\left(\mathrm{SiO}_{2}\right.$ column, $2 \times 7 \mathrm{~cm}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing fractions by rotary evaporation to give $4(0.0662 \mathrm{~g}, 0.084 \mathrm{mmol}, 68 \%)$ as a red solid. B. A round bottom flask was charged with a solution of in,in/out,out $\mathbf{- 1}(0.0576 \mathrm{~g}, 0.088 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ in a glove box, and $\mathrm{NiCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0276 \mathrm{~g}, 0.130 \mathrm{mmol})$ was added. The mixture was stirred for 14 h , turning first pink (1 min) and then deep red, and then chromatographed (SiO_{2} column, $2 \times 7 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The solvent was removed from the product containing
fractions by rotary evaporation to give $4(0.0604 \mathrm{~g}, 0.077 \mathrm{mmol}, 87 \%)$ as a red solid, mp (capillary) 179-181 ${ }^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{42} \mathrm{H}_{84} \mathrm{P}_{2} \mathrm{NiCl}_{2}$ (780.66): C 64.62, H 10.85; found C 64.07, H 10.73.

Data from route B. NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 1.93-1.79(\mathrm{br} \mathrm{m}, 12 \mathrm{H}$, PCH_{2}), 1.56-1.43 (br m, $24 \mathrm{H}, \mathrm{CH}_{2}$), 1.43-1.36 (br m, $24 \mathrm{H}, \mathrm{CH}_{2}$), 1.36-1.29 (br m, 24 H , $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}){ }^{18} 30.15\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 27.74\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.00\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $26.72\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 26.61\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 23.36\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 21.35\left(\right.$ virtual $\mathrm{t}, J_{\mathrm{CP}}=15.3 \mathrm{~Hz}$, $\left.\mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz})-0.92(\mathrm{br} \mathrm{s}) . \mathbf{I R}\left(\mathrm{cm}^{-1}\right.$, powder film$): 2924(\mathrm{~m}), 1258(\mathrm{~s})$, 1088 (w), 1011 (w), 964 (w), 795 (w), 702 (m).
in,in/out,out- $\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 8}}\right)_{\mathbf{3}} \mathbf{P}$ (in,in/out,out-5). A Schlenk flask was charged with trans $-\mathrm{PtCl}_{2}\left(\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{18}\right)_{3} \mathrm{P}\right)(0.2529 \mathrm{~g}, 0.233 \mathrm{mmol}), \mathrm{KCN}(0.2319 \mathrm{~g}, 3.561 \mathrm{mmol} ; 15$ equiv $)$, THF (15 mL), and degassed water (0.5 mL). The mixture was stirred. After 24 h , the mixture was filtered. The filter cake was washed with THF $(2 \times 5 \mathrm{~mL})$. The solvent was removed from the filtrate by oil pump vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added to the solid residue. The sample was filtered through a pad of celite $(1.5 \times 1 \mathrm{~cm})$. The filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The solvent was removed from the filtrate by oil pump vacuum to give in,in/out,out-5 ($0.1622 \mathrm{~g}, 0.198 \mathrm{mmol}, 85 \%$) as a white solid, mp (capillary) $54-57{ }^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{54} \mathrm{H}_{108} \mathrm{P}_{2}$ (819.38): C 79.15, H 13.29; found C 79.16, H 13.48.

NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 1.60-1.52\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.40(\mathrm{br}$ m, $24 \mathrm{H}, \mathrm{CH}_{2}$), 1.40-1.29 (br m, $\left.72 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 32.09\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right), 30.34\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 30.32\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 30.29\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 30.24\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 30.13\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $29.95\left(\mathrm{~s}, C \mathrm{H}_{2}\right), 28.42\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 26.76\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}, C \mathrm{H}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ (202 MHz) -32.8 (s). IR (cm ${ }^{-1}$, powder film): $2916(\mathrm{~s}), 2847(\mathrm{~s}), 1466(\mathrm{~s}), 1442(\mathrm{~s}), 725$ (s). MS ($\mathrm{APCI}^{+}, \mathrm{m} / \mathrm{z}$): calcd for MH^{+}(isotope envelope) 819.8/820.8/821.8 100:58:17;
found: 819.6/820.6/821.6 100:58:17.
Addition of in,in/out,out-1 and $\mathbf{N i C l}_{\mathbf{2}} \cdot \mathbf{6} \mathbf{H}_{\mathbf{2}} \mathbf{O}$. A Schlenk flask was charged with a solution of in, in/out,out-1 $(0.0653 \mathrm{~g}, 0.099 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Then a blue solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (trans $-\mathrm{NiCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} ; 0.0288 \mathrm{~g}, 0.121 \mathrm{mmol}$) in water (3.5 mL) was added. The biphasic mixture was stirred for 2 d . No reaction occurred, as indicated by a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the colorless organic phase.

Addition of 2 and KCN. A Schlenk flask was charged with 2 (0.4356 g, 0.475 mmol), $\mathrm{KCN}(0.4674 \mathrm{~g}, 7.177 \mathrm{mmol}$, 15 equiv), THF (20 mL) and degassed water (0.5 mL). The mixture was stirred for 24 h and filtered to remove a yellow precipitate. The solvent was removed from the filtrate by oil pump vacuum to give in,in/out,out-1 (0.2692 g, $0.411 \mathrm{mmol}, 87 \%$) as a white solid. ${ }^{17} \mathrm{~A}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the yellow precipitate showed signals $\left(\mathrm{D}_{2} \mathrm{O}, \delta / \mathrm{ppm}\right)$ for $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}\left(126.5\right.$; lit 19 126.5) and KCN (166.8). The precipitate was dissolved in water (5 mL) and the solution allowed to slowly concentrate. After 7 d , colorless thin plates were obtained, as verified by X-ray crystallography. ${ }^{20}$

Addition of 2 and $\mathbf{P d C l}_{\mathbf{2}}$. A round bottom flask was charged with $2(0.0916 \mathrm{~g}$, $0.099 \mathrm{mmol}), \mathrm{PdCl}_{2}(0.0213 \mathrm{~g}, 0.120 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of 2 and $\mathbf{N i C l}_{\mathbf{2}}$. A round bottom flask was charged with $2(0.0880 \mathrm{~g}$, $0.096 \mathrm{mmol}), \mathrm{NiCl}_{2}(0.0149 \mathrm{~g}, 0.115 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of 3 and $\mathbf{P t C l}_{\mathbf{2}}$. A round bottom flask was charged with $\mathbf{3}(0.0845 \mathrm{~g}$, $0.102 \mathrm{mmol}), \mathrm{PtCl}_{2}(0.0327 \mathrm{~g}, 0.123 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of $\mathbf{3}$ and $\mathbf{N i C l}_{\mathbf{2}}$. A round bottom flask was charged with $\mathbf{3}$ (0.0837 g ,
$0.101 \mathrm{mmol}), \mathrm{NiCl}_{2}(0.0158 \mathrm{~g}, 0.122 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of $\mathbf{4}$ and $\mathbf{P t C l}_{\mathbf{2}}$. A round bottom flask was charged with $\mathbf{4}(0.0801 \mathrm{~g}$, $0.102 \mathrm{mmol}), \mathrm{PtCl}_{2}(0.0327 \mathrm{~g}, 0.123 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a glove box. The red mixture was stirred for 5 d , turning yellow. The sample was placed on top of a column $\left(\mathrm{SiO}_{2}, 1 \times 5 \mathrm{~cm}\right)$, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the rinses by rotary evaporation to give $2(0.0577 \mathrm{~g}, 0.063 \mathrm{mmol} 62 \%)$ as a yellow powder. ${ }^{17}$

Addition of 4 and $\mathbf{P d C l}_{2}$. A round bottom flask was charged with $\mathbf{4}(0.0816 \mathrm{~g}$, $0.104 \mathrm{mmol}), \mathrm{PdCl}_{2}(0.0219 \mathrm{~g}, 0.124 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in a glove box. The red mixture was stirred for 5 d , turning yellow. The sample was placed on top of a column $\left(\mathrm{SiO}_{2}, 1 \times 5 \mathrm{~cm}\right)$, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the rinses by rotary evaporation to give $3(0.0589 \mathrm{~g}, 0.071 \mathrm{mmol}, 69 \%)$ as a yellow powder. ${ }^{17}$

Addition of 2 and $\mathbf{P d C l}_{\mathbf{2}}\left(\mathbf{N C C H}_{3}\right)_{2}$. A round bottom flask was charged with $\mathbf{2}$ $(0.0898 \mathrm{~g}, 0.098 \mathrm{mmol})$ and a solution of $\mathrm{PdCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0306 \mathrm{~g}, 0.118 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of 2 and $\mathbf{N i C l}_{\mathbf{2}}\left(\mathbf{N C C H}_{\mathbf{3}}\right)_{\mathbf{2}}$. A round bottom flask was charged with $\mathbf{2}$ $(0.0898 \mathrm{~g}, 0.098 \mathrm{mmol})$ and a solution of $\mathrm{NiCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0249 \mathrm{~g}, 0.118 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of 3 and $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{N C C H}_{3}\right)_{2}$. A round bottom flask was charged with $\mathbf{3}$ $(0.0927 \mathrm{~g}, 0.112 \mathrm{mmol})$ and a solution of $\mathrm{PtCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0463 \mathrm{~g}, 0.133 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of 3 and $\mathbf{N i C l}_{\mathbf{2}}\left(\mathbf{N C C H}_{3}\right)_{2}$. A round bottom flask was charged with $\mathbf{3}$
$(0.0845 \mathrm{~g}, 0.102 \mathrm{mmol})$ and a solution of $\mathrm{NiCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0265 \mathrm{~g}, 0.125 \mathrm{mmol})$ in THF (7 mL) in a glove box. The mixture was stirred for 6 d . No reaction occurred, as assayed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Addition of $\mathbf{4}$ and $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{N C C H}_{3}\right)_{2}$. A round bottom flask was charged with $\mathbf{4}$ $(0.0816 \mathrm{~g}, 0.104 \mathrm{mmol})$ and a solution of $\mathrm{PtCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0456 \mathrm{~g}, 0.131 \mathrm{mmol})$ in THF (7 mL) in a glove box. The red mixture was stirred for 2 d , turning yellow. The sample was placed on top of a column $\left(\mathrm{SiO}_{2}, 1 \times 5 \mathrm{~cm}\right)$, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the rinses by rotary evaporation to give $2(0.0605 \mathrm{~g}, 0.066$ $\mathrm{mmol}, 63 \%$) as a yellow powder. ${ }^{17}$

Addition of $\mathbf{4}$ and $\mathbf{P d C l}_{\mathbf{2}}\left(\mathbf{N C C H}_{3}\right)_{2}$. A round bottom flask was charged with $\mathbf{4}$ $(0.0824 \mathrm{~g}, 0.105 \mathrm{mmol})$ and a solution of $\mathrm{PdCl}_{2}\left(\mathrm{NCCH}_{3}\right)_{2}(0.0332 \mathrm{~g}, 0.128 \mathrm{mmol})$ in THF (7 mL) in a glove box. The red mixture was stirred for 2 d , turning yellow. The sample was placed on top of a column $\left(\mathrm{SiO}_{2}, 1 \times 5 \mathrm{~cm}\right)$, which was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed from the rinses by rotary evaporation to give $3(0.0613 \mathrm{~g}, 0.074$ $\mathrm{mmol}, 70 \%$) as a yellow powder. ${ }^{17}$

U-Tube Transport Experiments (Single Component); General Aspects. A glass U-tube (Figure 4.1) was charged with a solution of $\mathbf{1}$ (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 mL). The charging arm of the tube was filled with an aqueous solution of $\mathrm{K}_{2} \mathrm{MCl}_{4}(0.051-0.053$ M ; 1.5 equiv, $\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni}$). The receiving arm was charged with an aqueous solution of KCl or KCN ((2.0-2.5 M ; 15 equiv). The organic phase was stirred (450 rpm). The diffusion of MCl_{2} into the receiving arm was monitored by UV-visible spectroscopy. Samples of the two arms were taken with a micropipette (0.25 mL) at different time intervals and diluted into quartz crystal cells (10 mm path length). A series of aqueous solutions of $\mathrm{K}_{2} \mathrm{MCl}_{4}$ or $\mathrm{K}_{2} \mathrm{M}(\mathrm{CN})_{4}$ (known concentrations) were prepared and used to calibrate the UV-visible response at the $\lambda_{\text {max }}$ of each species $\left(\mathrm{K}_{2} \mathrm{PtCl}_{4}, 391 \mathrm{~nm} ; \mathrm{K}_{2} \mathrm{PdCl}_{4}\right.$,
$\left.305 \mathrm{~nm} ; \mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}, 279 \mathrm{~nm} ; \mathrm{K}_{2} \operatorname{Pd}(\mathrm{CN})_{4}, 240 \mathrm{~nm}\right)$. All gave linear fits across the concentrations employed which allowed the Beer-Lambert law to be applied for calculations.

Specific quantities employed for individual experiments: A (Figure 4.4, top), $1 / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{KCl}=(0.1611 \mathrm{~g}, 0.246 \mathrm{mmol}) /(0.1498 \mathrm{~g}, 0.361 \mathrm{mmol}) /(0.2743 \mathrm{~g}, 3.679$ $\mathrm{mmol}) . \mathbf{B}$ (Figure 4.4, bottom), $\mathbf{1} / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{KCN}=(0.1605 \mathrm{~g}, 0.245 \mathrm{mmol}) /(0.1482 \mathrm{~g}$, $0.357 \mathrm{mmol}) /(0.234 \mathrm{~g}, 3.587 \mathrm{mmol}) . \mathbf{C}$ (Figure 4.7, top), $\mathbf{1} / \mathrm{K}_{2} \mathrm{PdCl}_{4} / \mathrm{KCl}=(0.1600 \mathrm{~g}$, $0.244 \mathrm{mmol}) /(0.1212 \mathrm{~g}, 0.371 \mathrm{mmol}) /(0.2728 \mathrm{~g}, 3.659 \mathrm{mmol}) . \mathbf{D}$ (Figure 4.7, bottom), $1 / \mathrm{K}_{2} \mathrm{PdCl}_{4} / \mathrm{KCN}=(0.1601 \mathrm{~g}, 0.244 \mathrm{mmol}) /(0.1210 \mathrm{~g}, 0.371 \mathrm{mmol}) /(0.2410 \mathrm{~g}, 3.701$ $\mathrm{mmol}) . \mathbf{E}$ (Figure B-3, Appendix), DMPE $/ \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{KCl}=(0.0554 \mathrm{~g}, 0.368 \mathrm{mmol}) /(0.1545$ $\mathrm{g}, 0.372 \mathrm{mmol}) /(0.1830 \mathrm{~g}, 2.455 \mathrm{mmol})$. F (Figure B-4, Appendix), DMPE $/ \mathrm{K}_{2} \mathrm{PtCl}_{4}$ $/ \mathrm{KCN}=(0.0368 \mathrm{~g}, 0.245 \mathrm{mmol}) /(0.1527 \mathrm{~g}, 0.368 \mathrm{mmol}) /(0.2401 \mathrm{~g}, 3.687 \mathrm{mmol}) . \mathbf{G}$ (Figure B-5, Appendix $),(n-\mathrm{Oct})_{3} \mathrm{P} / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{KCl}=(0.0914 \mathrm{~g}, 0.247 \mathrm{mmol}) /(0.1647 \mathrm{~g}$, $0.379 \mathrm{mmol}) /(0.2815 \mathrm{~g}, 3.776 \mathrm{mmol})$. \mathbf{H} (Figure B-6, Appendix), ($n-$ Oct $)_{3} \mathrm{P} / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{KCN}=(0.0914 \mathrm{~g}, 0.247 \mathrm{mmol}) /(0.1546 \mathrm{~g}, 0.372 \mathrm{mmol}) /(0.2364 \mathrm{~g}, 3.630$ $\mathrm{mmol})$. I (Figure 4.10), $\mathbf{5} / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{KCl}=(0.1974 \mathrm{~g}, 0.241 \mathrm{mmol}) /(0.1552 \mathrm{~g}, 0.374$ $\mathrm{mmol}) /(0.2773 \mathrm{~g}, 3.72 \mathrm{mmol}) . \mathbf{J}($ Figure 4.11$), 5 / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{KCN}=(0.2040 \mathrm{~g}, 0.249 \mathrm{mmol}) /$ $(0.1515 \mathrm{~g}, 0.365 \mathrm{mmol}) /(0.2389 \mathrm{~g}, 3.67 \mathrm{mmol})$.

U-Tube Transport Experiments (Double Component); General Aspects. The apparatus described in the single component experiment was charged with a solution of $\mathbf{1}$ (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The charging arm was filled with an aqueous solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}(2 \times 0.026 \mathrm{M} ; 0.75$ equiv); the receiving arm was charged with an aqueous solution of KCl or $\mathrm{KCN}((2.0-2.5 \mathrm{M} ; 15$ equiv). The organic phase was stirred (450 rpm). The samples were analyzed as described for the single component transport experiments above at an absolute or local $\lambda_{\max }$ for each species $\left(\mathrm{K}_{2} \mathrm{PtCl}_{4}, 215 \mathrm{~nm}\right.$;
$\left.\mathrm{K}_{2} \mathrm{PdCl}_{4}, 317 \mathrm{~nm} ; \mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}, 279 \mathrm{~nm} ; \mathrm{K}_{2} \mathrm{Pd}(\mathrm{CN})_{4}, 216 \mathrm{~nm}\right)$.
Specific quantities employed for individual experiments: A (Figure 4.9). $1 / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{K}_{2} \mathrm{PdCl}_{4} / \mathrm{KCl}=(0.1612 \mathrm{~g}, 0.246 \mathrm{mmol}) /(0.768 \mathrm{~g}, 0.185 \mathrm{mmol}) /(0.6039 \mathrm{~g}$, $0.185 \mathrm{mmol}) /(0.2752 \mathrm{~g}, 3.691 \mathrm{mmol}) . \mathbf{B}$ (Figure 4.8). $1 / \mathrm{K}_{2} \mathrm{PtCl}_{4} / \mathrm{K}_{2} \mathrm{PdCl}_{4} / \mathrm{KCN}=(0.1592$ $\mathrm{g}, 0.243 \mathrm{mmol}) /(0.0768 \mathrm{~g}, 0.185 \mathrm{mmol}) /(0.0627 \mathrm{~g}, 0.192 \mathrm{mmol}) /(0.239 \mathrm{~g}, 3.672 \mathrm{mmol})$.

I-Tube Experiment. A Schlenk tube was charged with a solution of $\mathbf{1}(0.0662 \mathrm{~g}$, $0.101 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. A solution of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.0623 \mathrm{~g}, 0.150 \mathrm{mmol})$ in water $\left(3.5 \mathrm{~mL}\right.$) was carefully layered on top of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase. The mixture was then stirred. Samples were taken from the aqueous layer with a micropipette $(0.25 \mathrm{~mL})$ at different time intervals and assayed by UV-visible spectroscopy.

Crystallography. Two methods provided crystals with identical unit cell dimensions. A. A $4: 1 \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ solution of 4 was allowed to slowly concentrate. After 3 d at room temperature, thin red plates were obtained. B. Diethyl ether vapor was allowed to slowly diffuse into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 4 (ca. 0.036 mmol in 5 mL$)$ at $4{ }^{\circ} \mathrm{C}(3$ d) and then $-35^{\circ} \mathrm{C}$. This gave red blocks of 4 .

Data were collected as outlined in Table 4.1. Cell parameters were obtained from 180 frames using a 0.5° scan and refined with 6518 reflections. Lorentz, polarization, and absorption corrections were applied. ${ }^{21}$ The space group was determined from systematic reflection conditions and statistical tests. The structure was refined (weighted least squares refinement on F^{2}) to convergence. ${ }^{22,23} \mathrm{X}-$ seed 24 was employed for the final data presentation. Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were fixed in idealized positions using a riding model.

4.4. References

(1) Most of the following citations are taken from a special issue of Chem. Soc. Rev. entitled "Molecular Containers" (Guest Editors: Ballester, P.; Fujita, M.; Rebek, J.): (a) Ajami, D.; Liu, L.; Rebek, J. Chem. Soc. Rev. 2015, 44, 490-499. (b) Jordan, J. H.; Gibb, B. C. Chem. Soc. Rev. 2015, 44, 547-585. (c) Hermann, K.; Ruan, Y.; Hardin, A. M.; Hadad, C. M.; Badjić, J. D. Chem. Soc. Rev. 2015, 44, 500-514. (d) Kobayashi, K.; Yamanaka, M. Chem. Soc. Rev. 2015, 44, 449-466. (e) Assaf, K. I.; Nau, W. M. Chem. Soc. Rev. 2015, 44, 394-418. (f) Kim, D. S.; Sessler, J. L. Chem. Soc. Rev. 2015, 44, 532546. (g) Zarra, S.; Wood, D. M.; Roberts, D. A.; Nitschke, J. R. Chem. Soc. Rev. 2015, 44, 419-432. (h) Rebilly, J.-N.; Colasson, B.; Bistri, O.; Over, D.; Reinaud, O. Chem. Soc. Rev. 2015, 44, 467-489. (i) Breiner, B.; Clegg, J. K.; Nitschke, J. R. Chem. Sci. 2011, 2, 51-56. (j) Leenders, S. H. A. M.; Becker, R.; Kumpulainen, T.; de Bruin, B.; Sawada, T.; Kato, T.; Fujita, M.; Reek, J. N. H. Chem. Eur. J. 2016, 22, 15468-15474 and earlier work of these authors cited therein.
(2) (a) Newcomb, M.; Toner, J. L.; Helgeson, R. C.; Cram, D. J. J. Am. Chem. Soc. 1979, 101, 4941-4947. (b) Ameerunisha, S.; Srinivas, B.; Zacharias, P. S. Bull. Chem. Soc. Jpn. 1994, 67, 263-266. (c) Govender, T.; Hariprakasha, H. K.; Kruger, H. G.; Marchand, A. P. Tetrahedron: Asymmetry 2003, 14, 1553-1557. (d) Verkuijl, B. J. V.; Minnaard, A. J.; de Vries, J. G.; Feringa, B. L. J. Org. Chem. 2009, 74, 6526-6533. (e) Urban, C.; Schmuck, C. Chem. Eur. J. 2010, 16, 9502-9510.
(3) Stollenz, M.; Barbasiewicz, M.; Nawara-Hultzsch, A. J.; Fiedler, T.; Laddusaw, R. M.; Bhuvanesh, N.; Gladysz, J. A. Angew. Chem., Int. Ed. 2011, 50, 66476651; Angew. Chem. 2011, 123, 6777-6781.
(4) (a) Stollenz, M.; Bhuvanesh, N.; Reibenspies, J. H.; Gladysz, J. A. Organometallics 2011, 30, 6510-6513. (b) Stollenz, M.; Taher, D.; Bhuvanesh, N.;

Reibenspies, J. H.; Baranová, Z.; Gladysz, J. A. Chem. Commun. 2015, 51, 16053-16056.
(5) Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2429-2431.
(6) (a) Nawara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128, 4962-4963. (b) Nawara-Hultzsch, A. J.; Stollenz, M.; Barbasiewicz, M.; Szafert, S.; Lis, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. Chem. Eur. J. 2014, 20, 4617-4637.
(7) Brown, C.; Heaton, B. T.; Sabounchei, J. J. Organomet. Chem. 1977, 142, 413421.
(8) Livingstone, S. E. The Chemistry of Ruthenium, Rhodium, Palladium, Osmium, Iridium and Platinum. In Pergamon Texts in Inorganic Chemistry; Pergamon Press: UK, 1973; Vol. 25, p 1339.
(9) Durand, B.; Paris, J. M.; Behrman, E. C.; Huang, A.; Wold, A. Inorg. Synth. 1980, 20, 50-53.
(10) (a) Mizuno, J. J. Phys. Soc. Jpn. 1961, 16, 1574-1580. (b) Although $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and diphosphines can react under homogeneous conditions in protic solvents to give $(\mathrm{L})_{2} \mathrm{Ni}(\mathrm{Cl})_{2}$ species, no reactions occur on the time scale of days (dppe, in, in/out,out-1) under biphasic conditions that mimic those in the U-tube experiments. See Van Hecke, G. R.; Horrocks, D. W., Jr. Inorg. Chem. 1966, 5, 1968-1974.
(11) (a) Basolo, F. Adv. Chem. Ser. 1965, 49, 81-106. (b) Hynes, M. J.; Brannick, P. F. Proc. R. Ir. Acad. B. 1977, 77, 479-493.
(12) Durand, B.; Paris, J. M.; Behrman, E. C.; Huang, A.; Wold, A. Inorg. Synth. 1980, 20, 50-53.
(13) Muñoz, M. P.; Méndez, M.; Nevado, C.; Cárdenas D. J.; Echavarren, A. M. Synthesis 2003, 18, 2898-2902.
(14) Andrews, M. A.; Chang, T. C. T.; Cheng, C. W. F.; Emge, T. J.; Kelly, K. P.;

Koetzle, T. F. J. Am. Chem. Soc. 1984, 106, 5913-5920.
(15) Hathaway, B. J.; Holah, D. G. J. Chem. Soc. 1964, 2400-2408.
(16) Nawara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128, 4962-4963.
(17) The identity and spectroscopic purity of this previously reported compound was confirmed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$. Nawara-Hultzsch, A. J.; Stollenz, M.; Barbasiewicz, M.; Szafert, S.; Lis, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. Chem. Eur. J. 2014, 20, 4617-4637.
(18) The ${ }^{13} \mathrm{C}$ NMR assignments were made by analogy to those of related complexes in reference 17, which were established by 2D NMR experiments.
(19) Brown, C.; Heaton, B. T.; Sabounchei, J. J. Organomet. Chem. 1977, 142, 413-421.
(20) Mühle, C.; Nuss, J.; Jansen, M. Z. Kristallogr., New Cryst. Struct. 2009, 224, 9-10.
(21) (a) "Collect" data collection software, Nonius, B. V., 1998. (b) "Scalepack" data processing software: Otwinowski, Z.; Minor, W. in Methods in Enzymology 1997, 276 (Macromolecular Crystallography, Part A), 307-326.
(22) (a) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122. (b) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8. (c) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
(23) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
(24) Barbour, L. J. J. Supramol. Chem. 2001, 1, 189-191.

Table 4.1. Summary of crystallographic data for 4.

empirical formula	$\mathrm{C}_{42} \mathrm{H}_{84} \mathrm{Cl}_{2} \mathrm{NiP}_{2}$
formula weight	780.64
Diffractometer	Bruker Gadds X-ray (three-circle)
Temperature [K]	110.15
Wavelength [\AA]	1.54178
crystal system	monoclinic
space group	$P 2{ }_{1} / \mathrm{n}$
unit cell dimensions :	
$a[\AA]$	16.1660(6)
$b[\AA]$	13.7100(5)
$c[\AA]$	19.9425(7)
$\alpha\left[{ }^{\circ}\right]$	90
$\beta\left[{ }^{\circ}\right]$	92.391(2)
$\gamma\left[{ }^{\circ}\right]$	90
$V\left[\AA^{3}\right]$	4416.1(3)
Z	4
$\rho_{\text {calcd }}\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.174
$\mu\left[\mathrm{mm}^{-1}\right]$	2.611
$\mathrm{F}(000)$	1712
crystal size [mm^{3}]	$0.15 \times 0.03 \times 0.01$
θ limit [${ }^{\circ}$]	3.450 to 60.000
index ranges [$h, k, l]$	-17, 18; -15, 15; -22, 22
reflections collected	40048
independent reflections	6518
$R($ int $)$	0.0809
completeness to θ	99.3 (60.00)
max. and min. transmission	0.7522 and 0.5495
data/restraints/parameters	6518/0/424
goodness-of-fit on F^{2}	1.041
R indices (final) [$I>2 \sigma(I)]$	
R_{1}	0.0564
w R_{2}	0.1318
R indices (all data)	
R_{1}	0.0694
$w R_{2}$	0.1380
$\underline{\text { Largest diff. peak and hole }\left[\mathrm{e} \AA^{-3}\right]}$	0.958 and -0.528

5. A NON-TEMPLATED ROUTE TO MACROCYCLIC DIBRIDGEHEAD DIPHOSPHORUS COMPOUNDS: CRYSTALLOGRAPHIC CHARACTERIZATION OF A "CROSSED CHAIN" VARIANT OF in/out STEREOISOMERS*

5.1. Introduction

In principle, most macrocyclic bicyclic molecules - or more economically expressed, macrobicycles - with pyramidal or tetrahedral bridgehead atoms can exhibit in/out stereoisomerism. ${ }^{1}$ This refers to the directional sense of the bridgehead lone pair or substituent with respect to the bicyclic framework. However, this duality is seldom exploited. Thus, only recently have in/out isomers begun to evolve from curiosities to task specific substances that can (for example) serve as container molecules and separate homologous platinum and palladium complexes from those of the base metal nickel. ${ }^{2}$

Our interest in in/out isomerism was in part prompted by the unexpected discovery of facile routes to aliphatic dibridgehead diphosphines of the formula $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}(\mathbf{1} ; n=$ $14, \mathbf{c} ; 18, \mathbf{e}) .{ }^{2-5}$ As depicted in Scheme 5.1, these were first stitched together in metal coordination spheres via threefold intramolecular ring closing alkene metatheses of trans phosphine ligands $\left.\mathrm{P}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(n=2 m+2)$ followed by hydrogenations. ${ }^{3,4 \mathrm{a}}$ Reactions with excesses of appropriate nucleophiles then afforded the demetalated diphosphines in good yields. ${ }^{2-5}$ Interestingly, the "largest" such diphosphine previously synthesized consisted of one $\left(\mathrm{CH}_{2}\right)_{3}$ and two $\left(\mathrm{CH}_{2}\right)_{4}$ bridges. ${ }^{6}$

Macrobicyclic dibridgehead diphosphines such as 1c,e are capable of homeomorphism, ${ }^{7}$ a dynamic process that was defined fifty years ago but remains unfami-

[^2]-liar to many chemists. As exemplified with 1c and adducts thereof in Scheme 5.2, one bridge is threaded through the other two, effectively turning the molecules inside out.

Scheme 5.1. Syntheses of gyroscope like platinum and rhodium complexes and dibridgehead diphosphines derived therefrom.

For many dibridgehead diphosphines, there would also be a parallel pathway involving pyramidal inversion at both phosphorus atoms. However, this would require on the order of $30 \mathrm{kcal} / \mathrm{mol},{ }^{8}$ which is far too high for processes that are rapid below room temperature. In any case, this enables the direct equilibration of in, in and out,out isomers. Analogous in,out and out, in isomers can similarly equilibrate, but these will be degenerate when the top and bottom hemispheres of the molecule are identical. Surprisingly, homeomorphic isomerization has been explicitly demonstrated only for a handful of molecules. ${ }^{1,9}$

In previous efforts, we have sought to probe the expanded manifold of relationships between in/out isomers depicted in Scheme 5.3, 5,10 in which the bridgeheads are generalized as X-E. A "half turn" denotes that only one of the two X-E units rotates by 180°; two such turns are required to complete a homeomorphic isomerization. Of
particular relevance to certain results below are the intermediates with "crossed" or "intertwined" chains (II, IV, VI). Do any represent energy minima, and if so could the minima be made deep enough to permit isolation? Indeed, we could ultimately show that adducts of dibridgehead diphosphines and appropriately designed Lewis acids adopt "crossed chain" structures both in solution and the solid state (vide infra). ${ }^{10 b}$

Scheme 5.2. Homeomorphic isomerization of the dibridgehead diphosphine 1c or Lewis acid adducts thereof.

With regard to further developing the chemistry of $\mathbf{1 c}, \mathbf{e}$ and related diphosphorus compounds, one problem has been the requirement for stoichiometric quantities of precious metals in the syntheses in Scheme 5.1. Interestingly, the analogous trigonal bipyramidal $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes undergo metathesis and hydrogenation in significantly higher overall yields. ${ }^{11}$ However, it has proved problematic to detach the dibridgehead diphosphine ligands from the $\mathrm{Fe}(\mathrm{CO})_{3}$ moieties. So far, oxidative methods that give the corresponding dibridgehead diphosphine dioxides $(\mathrm{O}=) \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{n}\right)_{3} \mathrm{P}(=\mathrm{O})(\mathbf{2})$ have shown the most promise, but purification issues remain. ${ }^{12}$

in/in

IV

out/out
(crossed chains)

Scheme 5.3. Relationships between the traditional in/out isomers I, III, and V and "crossed chain" variants II, IV, and VI (X = lone pair or Lewis acid).

Hence, it has been of interest to investigate routes to $\mathbf{1}$ or $\mathbf{2}$ or Lewis acid adducts thereof that do not require metal templates. As shown in Scheme 5.4, we subjected the phosphine borane $\left(\mathrm{H}_{3} \mathrm{~B}\right) \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ to an alkene metathesis/hydrogenation sequence analogous to those in Scheme 5.1. ${ }^{5}$ However, only very low yields of the target compound $\left(\mathrm{H}_{3} \mathrm{~B}\right) \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}\left(\mathrm{BH}_{3}\right) \quad\left(\mathbf{1} \cdot 2 \mathrm{BH}_{3}\right)$ were obtained. Not unexpectedly, oligomeric and polymeric products dominated.

In this section, we describe a new metal free strategy based upon dialkylphosphonate building blocks that leads to dibridgehead diphosphine dioxides - and presumably, after reduction, the analogous dibridgehead diphosphines. The two phosphorus atoms are first linked in an alkylation step by a methylene chain, and subsequent metathesis/hydrogenation steps install the second and third methylene chains.

While this methodology is superior to the metal free route in Scheme 5.4, it still falls short of the platinum and rhodium mediated syntheses in Scheme 5.1. Nonetheless, there is unexpected novelty, as one of the diphosphine dioxides crystallizes with "crossed chains", as described below. This further substantiates their viability as energy minima in sequences such as Scheme 5.3.

Scheme 5.4. A phosphine borane precursor to bis $\left(\mathrm{BH}_{3}\right)$ adducts of the dibridgehead diphosphine 1c.

5.2. Results

5.2.1. Substrates for alkene metathesis. The compound $(\mathrm{O}=) \mathrm{PH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}$, commonly termed both diethyl phosphonate and diethyl phosphite, reacts with Grignard reagents RMgX to give secondary or dialkylphosphine oxides, $(\mathrm{O}=) \mathrm{PHR}_{2} .{ }^{13}$ For both the starting material and product, the tautomeric structures with trivalent phosphorus atoms, HO-PX ${ }_{2}$, are much less stable. ${ }^{14}$ Thus, the commercially available α, ω-olefinic alkyl bromides $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}(m=\mathbf{a} / 4, \mathbf{b} / 5, \mathbf{c} / 6)$ were converted to the corresponding Grignard reagents $\mathrm{BrMg}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}$. As shown in Scheme 5.5, these were added in 3.2-4.9 fold excesses to $(\mathrm{O}=) \mathrm{PH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}$. Presumably one equiv of the Grignard reagent is quenched by an acidic $(\mathrm{O}=) \mathrm{PH}$ or $\mathrm{H}-\mathrm{OP}$ proton of the reactant.

Workups gave the corresponding dialkylphosphine oxides
$(\mathrm{O}=) \mathrm{PH}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2} \quad(\mathbf{2 a - c})$ as white solids in $77-81 \%$ yields. These new compounds and all others below were characterized by NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$) and IR spectroscopy, and in most cases microanalyses, as summarized in the experimental section. All features were routine, and representative spectra for each compound type are provided in the Supporting Information (SI). The $\mathrm{PH}{ }^{1} \mathrm{H}$ NMR signals were doublets that were strongly coupled to phosphorus $\left({ }^{1} J_{\mathrm{HP}}=445-436 \mathrm{~Hz}, \delta / \mathrm{ppm} 6.62-6.83, \mathrm{CDCl}_{3}\right)$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed three phosphorus coupled doublets for the $\mathrm{P} \underline{C} \mathrm{H}_{2} \mathrm{CH}_{2} \underline{C H}_{2}$ signals (${ }^{1} J_{\mathrm{CP}}>{ }^{3} J_{\mathrm{CP}}>{ }^{2} J_{\mathrm{CP}}$). Assignments (experimental section) were confirmed by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ COSY, and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HMBC experiments.

It has been previously shown that secondary phosphine oxides $(\mathrm{O}=) \mathrm{PH}(\mathrm{R})_{2}$ can be deprotonated with suitable bases, and that the conjugate bases are readily alkylated. ${ }^{15}$ Thus, 2a-c were treated with NaH and then different α, ω-dibromides $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Br}$ (0.490.32 equiv) as shown in Scheme 5.5 ($\left.n=\mathbf{a}^{\mathbf{1}} / 8, \mathbf{b}^{\prime} / 10, \mathbf{c}^{\prime} / 12, \mathbf{d}^{\prime} / 14\right)$. Workups gave the bis(trialkylphosphine oxides) $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{m}\right)_{2} \mathrm{P}(=\mathrm{O})\left(\mathrm{CH}_{2}\right)_{n}(\mathrm{O}=) \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}$ (3ab', 3bc', 3cd', 3ca') as white solids in 79-84\% yields based upon the dibromide. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals were downfield of those of the precursors 2a-c (δ / ppm 48.6-48.9 vs. 34.4-35.0, CDCl_{3}). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed six phosphorus coupled doublets $\left(\mathrm{P}_{\mathrm{C}} \mathrm{H}_{2} \underline{C H}_{2} \underline{C H}_{2}\right)$, three of which were approximately twice as intense as the others. These and other signals were assigned as described above.

5.2.2. Alkene metatheses. The stage was now set to probe whether dibridgehead diphosphorus compounds could be accessed more efficiently by alkene metathesis when one phosphorus-phosphorus linkage had first been installed (rendering the initial step intramolecular), as opposed to the "all at once" strategy in Scheme 5.4 (initial step intermolecular). Two substrates were selected for emphasis. The first, 3bc', would, after the hydrogenation step, afford a dibridgehead diphosphine dioxide with three identical bridges $\left(\left(\mathrm{CH}_{2}\right)_{12}\right)$. The second, 3ca', would afford a diphosphine dioxide in which one linkage was shorter than the other two $\left(\left(\mathrm{CH}_{2}\right)_{8}\right.$ vs. $\left.\left(\mathrm{CH}_{2}\right)_{14}\right)$.

Accordingly, a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3 b c}{ }^{\prime}(0.00105 \mathrm{M})$ and Grubbs' first generation catalyst ($10 \mathrm{~mol} \%$) was heated to reflux (48 h). As shown in Scheme 5.5, the crude product was hydrogenated (5 bar H_{2}, cat. PtO_{2}) and then chromatographed on a silica column to give the target compound $(\mathrm{O}=) \mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{12}\right)_{3} \mathrm{P}(=\mathrm{O})\left(\mathbf{4 b c} \mathbf{c}^{\prime}\right)$ as a light brown solid in 19% yield. One other easily identified phosphine oxide eluted, $(\mathrm{O}=) \mathrm{PCy}_{3}$ derived from Grubbs' catalyst. Trace amounts of other products were noted, one of which could be crystallized as described below. Per extensive experience with the types of alkene metatheses in Scheme 5.1, oligomers were presumed to be retained on the column.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 b c}$ ' showed two closely spaced signals at (δ / ppm) 50.9 and 51.3 in a $70: 30$ area ratio. Several ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals were similarly doubled, such as the $\mathrm{P} \underline{C} \mathrm{H}_{2} \underline{C H}_{2} \underline{C H}_{2}$ peaks at (major/minor) 27.5/28.1 (${ }^{1} J_{\mathrm{CP}}=64.6 / 64.6 \mathrm{~Hz}$), $21.4 / 21.6\left({ }^{2} J_{\mathrm{CP}}=3.4 / 3.8 \mathrm{~Hz}\right)$, and $30.6 / 30.7\left({ }^{3} J_{\mathrm{CP}}=14.1 / 12.2 \mathrm{~Hz}\right)$. Given the unequal ratios, the sample must contain two isomers. The in,in and out,out isomers (see Scheme 5.5) would each give one ${ }^{31} \mathrm{P}$ NMR signal, provided that homeomorphic isomerization were slow on the NMR time scale; the in,out isomer would give one signal if (degenerate) homeomorphic isomerization were fast.

To probe the latter possibility, a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was recorded at $-90^{\circ} \mathrm{C}$
$\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. However, there was no decoalescence or change in the signal ratio. In the case of the in,out-1 c, a diphosphine with fourteen methylene groups in each bridge (cf. Scheme 5.2), one signal was observed at room temperature, but two (50:50) at $-73^{\circ} \mathrm{C}$. The decoalescence data gave a $\Delta \mathrm{G}^{\neq}{ }_{200 \mathrm{~K}}$ value of $8.5 \mathrm{kcal} / \mathrm{mol} .^{5}$ It seems probable that a homeomorphic isomerization involveing larger bridgehead groups ($(\mathrm{O}=) \mathrm{P}$ vs. : P) and shorter methylene bridges would have a signifycantly higher barrier and a more readily observed decoalescence. Thus, $\mathbf{4 b c}$ ' is tentatively assigned as a mixture of in, in and out,out isomers.

When an analogous sequence and workup was carried out with 3ca', the target compound $(\mathrm{O}=) \mathrm{P}\left(\mathrm{CH}_{2}\right)_{8}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{2} \mathrm{P}(=\mathrm{O})(4 \mathbf{c a})$ was isolated as a light brown solid in 14% yield. This sample also exhibited two closely spaced ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals at (δ / ppm) 50.11 and 49.95 (relative integrals again 70:30). More than one set of ${ }^{13} \mathrm{C}$ NMR signals were again observed, as listed in the experimental section. By analogy to 4bc', the tendency would be to assign this sample as a mixture of in,in-4ca' and out,out-4ca'. However, the following section reveals a "twist".
5.2.3. Crystallography. Crystals of the dibridgehead diphosphine dioxides were sought. When CHCl_{3} solutions of $4 \mathbf{c a}$ ' were allowed to slowly concentrate, colorless plates were obtained. X-ray data were acquired for two different crystals grown some years apart. The structures were solved as outlined in Table 5.1 and the experimental section. Interestingly, two distinct forms of 4ca' were obtained, as shown in Figure 5.1. Key metrical parameters are given in Table 5.2. The bond lengths and angles were quite similar. However, the phosphorus-phosphorus distance was somewhat greater in the second structure (bottom; 12.15 vs. $11.54 \AA$), which also exhibited a C_{2} symmetry axis that exchanged the $(\mathrm{O}=) \mathrm{P}$ moieties.

Figure 5.1. Thermal ellipsoid plots (50\% probability) obtained from different crystals of 4ca' (left), and alternative representations (right). Top, traditional out,out isomer; bottom, "crossed chain" out,out isomer.

The first structure in Figure 5.1 (top) is a traditional out,out isomer. This is somewhat obscured by the shorter $\left(\mathrm{CH}_{2}\right)_{8}$ chain, which ratchets the phosphorus atoms closer together and pivots the $(\mathrm{O}=) \mathrm{P}$ moieties into roughly parallel orientations. The second (bottom) is also best termed an out,out isomer. However, in addition there is a "crossed chain" feature. Note that with respect to the macrocycle defined by the two longer $\left(\mathrm{CH}_{2}\right)_{14}$ bridges (i.e., $\overparen{\mathrm{P}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{14} \text { in bottom right structure), the shorter }\left(\mathrm{CH}_{2}\right)_{8}}$ bridge connects a P-C linkage that extends above the macrocycle plane (left side) to a PC linkage that extends below the macrocycle plane (right side). As shown in Scheme 5.6, this type of structure is formally derived by conformationally contorting a traditional in,out isomer (VII \rightarrow VIII, analogous to $\mathbf{V} \rightarrow$ VI in Scheme 5.3). This represents an altogether new type of isolable in/out isomer, namely a "crossed chain" out,out species. ${ }^{10 \mathrm{~b}}$

Scheme 5.6. Conversion of a traditional in,out dibridgehead diphosphine dioxide (VII) to a "crossed chain" out,out isomer (VIII; Figure 5.1, bottom), or a "crossed chain" in,in isomer (IX; not observed).

Crystals of 4bc' were similarly sought, but without success. However, a minor byproduct crystallized from a trailing chromatography fraction, and X-ray data gave the structure shown in Figure 5.2. This diphosphine dioxide, which features two remotely situated thirteen membered rings, is derived from the metathesis of $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}_{2}$ moieties on the same as opposed to different phosphorus atoms. In previous papers, ${ }^{3 b}, 16,17$ we have designated such isomers by a prime following the Arabic numeral (i.e., 4'bc'). This structure also exhibits a C_{2} symmetry axis that exchanges the $(\mathrm{O}=) \mathrm{P}$ moieties. In the course of carrying out the preceding chemistry, crystals of 3ab' and 3bc' were also obtained.

Figure 5.2. Thermal ellipsoid plot (50\% probability) of 4'bc'.

The structures were similarly solved and are depicted in Figure 5.3, and data are summarized in the SI. The P-C and P-O bond lengths and C-P-O and C-P-C bond angles all fall into typical and narrow ranges (average values with standard deviations in parentheses: $\left.1.807(12) \AA, 1.149(7) \AA, 113.1(5)^{\circ}, 105.5(12)^{\circ}\right)$, similar to those of out,out4ca' and "crossed chain" out,out-4ca' (Table 5.2). The spatial arrangements of the four vinyl groups in 3ab' and 3bc' are not conducive to intramolecular alkene metathesis (Figure 5.3), consistent with the modest yields of the title molecules. In contrast, there is evidence for favorable or "pre-organized" conformations with hexaolefinic bis(phosphine) $\mathrm{Fe}(\mathrm{CO})_{3}$ complexes analogous to the platinum and rhodium educts in Scheme 5.1.11a These give much higher overall yields of gyroscope like products (50-70\%).

Figure 5.3. Thermal ellipsoid plot (50\% probability) of 3ab' (top) and 3bc' (bottom).

5.3. Discussion

This study represents another chapter in the evaluation of alkene metathesis based strategies for syntheses of dibridgehead diphosphorus compounds. In contrast to the three fold ring closing metatheses in Scheme 5.1, the new approach (Scheme 5.5) lacks a metal template. This methodology does constitute a distinct improvement over the very low yielding template-less route in Scheme 5.4. This is due to the initial introduction of a phosphorus-phosphorus linkage that renders subsequent alkene metathesis steps intramolecular. However, the route is not competitive with Scheme 5.1, despite eliminating the need for a precious metal. Screening reactions with the other tetraalkenes in Scheme 5.5 (e.g., 3cd') indicated similarly modest yields. Also, although dibridgehead diphosphine dioxides represent very interesting and potentially useful molecules, an additional reduction step is required if dibridgehead diphosphines are the ultimate goal.

In this context, several macrocyclic dibridgehead diphosphine dioxides have been reported. ${ }^{18-20}$ However, all are based upon triarylphosphorus units, which confer added rigidity. For example, the tris(alkynyl) triarylphosphine oxide 5 (Scheme 5.7, top) could be oxidatively coupled to a tris(1,3-diyne) and then hydrogenated a mixture of to out,out6 and in,out-6. ${ }^{19}$ Stereochemical assignments were verified crystallographically. Whereas out,out-6 exhibited a single ${ }^{31} \mathrm{P}$ NMR signal, in,out- $\mathbf{6}$ exhibited two, indicating a high energy barrier for homeomorphic isomerization.

out,out-7

in,out-7

Scheme 5.7. Previously characterized macrocyclic dibridgehead diphosphine dioxides.

The larger macrocycles out,out-7 and in,out-7 (Scheme 5.7, bottom) were prepared by Williamson ether syntheses in surprisingly high yields (61\% combined, final macrocyclization step), ${ }^{20}$ likely aided by the quaternary centers and Thorpe-Ingold effect. ${ }^{21}$ Now the in,out isomer exhibited one ${ }^{31} \mathrm{P}$ NMR signal, indicative of a low barrier for homeomorphic isomerization. Reductions gave the analogous dibridgehead diphosphines and phosphine $/ \mathrm{BH}_{3}$ adducts, ${ }^{20 \mathrm{~b}}$ and related dibridgehead diphosphites and diphosphates were also prepared. ${ }^{18,22}$

The crystal structures of $\mathbf{4} \mathbf{c} \mathbf{a}^{\prime}$ expand the range of molecular topologies that can be realized with in/out isomers. That of out,out-4ca' appears unusual due to the large deviation of the $(\mathrm{O}=) \mathrm{P}$ vectors from colinearity, imposed by the shorter methylene chain. However, comparable phenomena have been observed with related carbocycles. ${ }^{1}$ In contrast, "crossed chain" out,out-4ca' is virtually unprecedented. The likelihood of
"crossed chain" species on the reaction coordinates for homeomorphic isomerizations has been recognized in the literature, ${ }^{1,9 a, 18}$ but usually in the context of transition states as opposed to ground states. ${ }^{9 a}$ Our inability to isolate "crossed chain" out,out-4ca' in pure form has hampered a more definitive characterization. If it represents a global energy minimum, then one ${ }^{31} \mathrm{P}$ NMR signal is expected at all temperatures. In contrast, if the progenitor in,out-4ca' is lower in energy (see VII, Scheme 5.6), two signals should be found at sufficiently low temperatures. For the sake of completeness, it should be noted that in,out-4ca' can also equilibrate with "crossed chain" in,in-4ca', per the green lasso in VII.

Scheme 5.8. Chain crossing in gold Lewis acid adducts of dibridgehead diphosphines.

To our knowledge, there is only a single precedent for "crossed chain" out,out$\mathbf{4 c a}$ '. In earlier work, we prepared a variety of AuX adducts of dibridgehead diphosphines in which the sizes of the gold substituents X were systematically increased. ${ }^{10}$ All of the AuX moieties were easily accommodated by the out,out diphosphines. This was not the case with the in,out diphosphines. As depicted in Scheme 5.8, when the in bridgehead substituent became sufficiently large, it "flipped" to the out position ("half turn") with concomitant crossing of one chain through the macrocycle defined by the other two ($\mathbf{X} \rightarrow$
XI). This required phenyl groups substituted with very bulky ortho substituents. Importantly, two sets of ${ }^{13} \mathrm{C}$ NMR signals were observed (ca. 2:1 area ratio), which requires XI (as opposed to \mathbf{X}) to be the ground state in solution.

Since the crystal structures in Figure 5.1 represent conformers of different isomers of 4ca', they are not polymorphs. Nonetheless, the volumes of the unit cells can be compared. After normalizing for Z (4 and 1 , respectively), one obtains 904.9(4) \AA^{3} and $923.3(13) \AA^{3}$. These correspond to densities of 1.099 and $1.067 \mathrm{Mg} / \mathrm{m}^{3}$, respectively. With polymorphs, it is generally found that the denser modification is the thermodynamically more stable crystal, ${ }^{23}$ as would typically be assayed by DSC data. Towards related ends, we are engaged in an extensive computational study of the gas phase stabilities of a variety of dibridgehead diphosphorus compounds. We had (incorrectly) thought it more likely that the "crossed chain" species would be denser due to the "occupancy" of the cavity associated with the macrocycle defined by the other two chains.

In summary, this study has explored another alkene metathesis based route to dibridgehead diphosphorus compounds. While the methodology is superior to that involving phosphine boranes in Scheme 5.4, it does not attain the efficiency of those involving precious metals in Scheme 5.1. Nonetheless, a very rare "crossed chain" variant of an in/out isomer could be characterized. Additional approaches to these target molecules, as well as a variety of unusual phenomena and applications, will be detailed in future reports.

5.4. Experimental Section

General. Reactions (except hydrogenations) were conducted under inert atmospheres using standard Schlenk techniques. Solvents were treated as follows: THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexanes, and diethyl ether, distilled by rotary evaporation or purified using a Glass Contour system; $\mathrm{CH}_{3} \mathrm{OH}$, pentane, CDCl_{3} (Cambridge Isotope Laboratories), used as received. Mg turnings (Aldrich, 99.9%), $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Br}(\mathrm{TCI}, 97 \%), \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}=\mathrm{CH}_{2}$ ($n=4$, 5; Matrix Scientific, 95%), $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{Br}$ (Aldrich, 97%), $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{Br}$ (Aldrich, 98%), NaH (Aldrich, $60 \% \mathrm{w} / \mathrm{w}$ dispersion in (solid) mineral oil), $(\mathrm{O}=) \mathrm{PH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}$ (Aldrich, 98%), Grubbs' first generation catalyst $\left(\mathrm{Cy}_{3} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Ru}=\mathrm{CHPh}\right.$ (Aldrich, 97\%), and PtO_{2} (Aldrich, 99.9\%) were used as received; $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}{ }^{24}$ and $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{Br}^{25}$ were prepared by literature procedures.

NMR spectra were recorded on a Varian NMRS 500 MHz instrument at ambient probe temperatures and referenced as follows (δ, ppm): ${ }^{1} \mathrm{H}$, residual internal CHCl_{3} (7.26) or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ (7.15); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, internal CDCl_{3} (77.16) or $\mathrm{C}_{6} \mathrm{D}_{6}(128.0) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, external $\mathrm{H}_{3} \mathrm{PO}_{4}(0.00)$. IR spectra were recorded on a Shimadzu IRAffinity-1 spectrometer with a Pike MIRacle ATR system (diamond/ZnSe crystal). Microanalyses were conducted by Atlantic Microlab.
$(\mathrm{O}=) \mathbf{P H}\left(\left(\mathrm{CH}_{2}\right)_{4} \mathbf{C H}=\mathbf{C H}_{2}\right)_{2}$ (2a). A Schlenk flask was charged with $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}(6.201 \mathrm{~g}, 38.03 \mathrm{mmol})$ and THF $(50.0 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. Then Mg turnings ($1.092 \mathrm{~g}, 44.9 \mathrm{mmol}$) were added in portions with stirring (ca. 2 min). After 6 h , the cooling bath was removed. After 14 h , the mixture was filtered under nitrogen. The filtrate was cooled to $0{ }^{\circ} \mathrm{C}$ and $(\mathrm{O}=) \mathrm{PH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}(1.081 \mathrm{~g}, 7.83 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added dropwise with stirring (ca. 15 min). The cooling bath was removed. After 3 h , the flask was cooled to $0{ }^{\circ} \mathrm{C}$ and aqueous $\mathrm{HCl}(0.10 \mathrm{M}, 20 \mathrm{~mL})$ was added dropwise over 5 min . After 1 h , the organic phase was separated. The aqueous phase was
extracted with THF ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvents were removed by rotary evaporation to give a colorless oil. Hexane was added, and the sample was cooled to $-35^{\circ} \mathrm{C}$. After $4-10 \mathrm{~h}$, the white solid was rapidly collected by filtration, as it melted with warming. The sample was dried by oil pump vacuum to give $\mathbf{2 a}(1.292 \mathrm{~g}, 6.03 \mathrm{mmol}, 77 \%)$ as a colorless liquid.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz}) 6.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{\mathrm{HP}}=445 \mathrm{~Hz}, \mathrm{PH}\right), 5.63(\mathrm{ddt}$, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}=\right), 4.82(\mathrm{br} \mathrm{d}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{HH} \text { trans }}=16.0 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.86\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=9.6 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.02-1.88$ (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 1.75-1.57 (m, $4 \mathrm{H}, \mathrm{PCH}_{2}$), 1.55-1.41 (m, 8 H , remaining CH_{2}); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 137.5(\mathrm{~s}, C \mathrm{H}=), 114.7\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 32.8\left(\mathrm{~s}, C \mathrm{H}_{2} \mathrm{CH}=\right), 29.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=\right.$ $\left.13.7 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 27.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=65.1 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 20.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right.$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 34.4(\mathrm{~s})$. IR (cm ${ }^{-1}$, powder film): $2914(\mathrm{~s}), 2849(\mathrm{~m})$, 1641 (w), 1154 (s), 990 (m), 914 (s).
$\left.\mathbf{(O =}) \mathbf{P H}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{5}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{2}} \mathbf{(2 b}\right)$. The bromide $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}_{2}(5.851 \mathrm{~g}, 33.0$ $\mathrm{mmol})$, THF $(50.0 \mathrm{~mL})$, Mg turnings $(0.9752 \mathrm{~g}, 40.1 \mathrm{mmol}),(\mathrm{O}=) \mathrm{PH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}(1.080$ $\mathrm{g}, 7.82 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$, and $\mathrm{HCl}(0.10 \mathrm{M}, 20 \mathrm{~mL})$ were combined in a procedure analogous to that for $\mathbf{2 a}$. An identical workup gave $\mathbf{2 b}(1.535 \mathrm{~g}, 6.33 \mathrm{mmol}, 81 \%)$ as a white solid, mp (capillary) $48-51^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{OP}$ (242.34): C, 69.39; H, 11.23; found C, 67.05; H, 11.07. ${ }^{26}$

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 6.83\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{\mathrm{HP}}=442.5 \mathrm{~Hz}, \mathrm{P} H\right), 5.76$ (ddt, 2H, $\left.{ }^{3} J_{\mathrm{HH} \text { trans }}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}=\right), 4.97(\mathrm{br} \mathrm{d}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{HH} \text { trans }}=16.0 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.94\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=9.6 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.07-1.99$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.86-1.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.66-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.46-1.35$ (m, 8 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 138.5(\mathrm{~s}, \mathrm{CH}=), 114.6\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.3(\mathrm{~s}$, $\left.C \mathrm{H}_{2} \mathrm{CH}=\right), 30.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=13.8 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 28.3\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 28.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}\right.$
$\left.=64.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 21.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 34.8(\mathrm{~s}) . \mathbf{I R}$ (cm^{-1}, powder film): $2914(\mathrm{~s}), 2849(\mathrm{~m}), 1641(\mathrm{w}), 1154(\mathrm{~s}), 990(\mathrm{~m}), 914(\mathrm{~s})$.
$\mathbf{(O}=) \mathbf{P H}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{6}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{2}} \mathbf{(2 c)}$. The bromide $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}=\mathrm{CH}_{2}(9.640 \mathrm{~g}, 50.4$ $\mathrm{mmol})$, THF $(50.0 \mathrm{~mL}), \mathrm{Mg}$ turnings $(1.431 \mathrm{~g}, 58.9 \mathrm{mmol}),(\mathrm{O}=) \mathrm{PH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}(2.176$ $\mathrm{g}, 15.8 \mathrm{mmol})$ in THF $(90 \mathrm{~mL})$, and $\mathrm{HCl}(0.10 \mathrm{M}, 20 \mathrm{~mL})$ were combined in a procedure analogous to that for 2a. An identical workup gave $\mathbf{2 c}(3.348 \mathrm{~g}, 12.4 \mathrm{mmol}, 79 \%)$ as a white solid, mp (capillary) $62-64{ }^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{OP}$ (270.40): C, 71.07; H, 11.56; found C, 70.46; H, 11.47.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz}) 6.62\left(\mathrm{~d}, 1 \mathrm{H},{ }^{1} J_{\mathrm{HP}}=435.6 \mathrm{~Hz}\right), 5.78(\mathrm{ddt}$, $2 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=$), 4.98 (br d, 2 H , ${ }^{3} J_{\mathrm{HH} \text { trans }}=16.0 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}$), $4.95\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=9.6 \mathrm{~Hz},=\mathrm{CH}_{E} H_{Z}\right), 2.07-1.99$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=$), 2.00-1.89 (m, 4H, PCH_{2}), 1.89-1.80 (m, 4H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.76-1.72 (m, 4H, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.72-1.2 (br m, 8 H , remaining CH_{2}); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 138.8$ ($\mathrm{s}, \mathrm{CH}=$), $114.4\left(\mathrm{~s},=C \mathrm{H}_{2}\right), 33.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 30.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=13.8 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} C \mathrm{H}_{2}\right)$, 28.5 (double intensity s, $\left.\mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{2}\right), 28.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=65.1 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 21.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}\right.$ $\left.=3.8 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 35.0(\mathrm{~s}) . \mathbf{I R}\left(\mathrm{cm}^{-1}\right.$, powder film$): 2913(\mathrm{~s})$, 2849 (m), 1641 (w), 1154 (s), 990 (m), 914 (s).

$\left.\left(\mathrm{H}_{2} \mathrm{C}=\mathbf{C H}\left(\mathrm{CH}_{2}\right)_{\mathbf{4}}\right)_{\mathbf{2}} \mathrm{P}(=\mathbf{O})\left(\mathrm{CH}_{2}\right)_{\mathbf{1 0}}(\mathrm{O}=) \mathbf{P}\left(\left(\mathrm{CH}_{2}\right)_{\mathbf{4}} \mathbf{C H}=\mathbf{C H}_{2}\right)_{\mathbf{2}} \mathbf{(3 a b}{ }^{\prime}\right)$. A Schlenk

 flask was charged with $\mathbf{2 a}(0.220 \mathrm{~g}, 1.03 \mathrm{mmol}), \mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil; $0.131 \mathrm{~g}, 3.28 \mathrm{mmol})$, and THF (20.0 mL), and fitted with a condenser. The mixture was heated to $65^{\circ} \mathrm{C}$. After $10 \mathrm{~min}, \operatorname{Br}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{Br}(0.150 \mathrm{~g}, 0.500 \mathrm{mmol})$ was added dropwise. The solution was refluxed overnight. The solvent was removed by rotary evaporation, and water $(10 \mathrm{~mL})$ and diethyl ether $(10 \mathrm{~mL})$ were added. The organic phase was separated, and the aqueous phase was extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed by rotary evaporation to give acolorless viscous oil. Pentane was added, and the sample was cooled to $-35^{\circ} \mathrm{C}$. After 410 h , the white solid was collected by filtration and dried by oil pump vacuum to give 3ab' $(0.227 \mathrm{~g}, 0.401 \mathrm{mmol}, 80 \%), \mathrm{mp}$ (capillary) $59-61^{\circ} \mathrm{C}$.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.75\left(\mathrm{ddt}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}=\right), 4.98\left(\mathrm{br} \mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.4 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.93(\mathrm{br}$ $\left.\mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.4 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.10-1.01(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}=), 1.68-1.59\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right)$, 1.57-1.43 (m, 20H, CH2), 1.39-1.30 (br m, 4H, CH2), 1.29-1.21 (br m, 8 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 138.0(\mathrm{~s}, 4 \mathrm{CH}=), 114.9\left(\mathrm{~s}, 4=\mathrm{CH}_{2}\right), 33.1\left(\mathrm{~s}, 4 \mathrm{CH}_{2} \mathrm{CH}=\right), 31.1$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=13.7 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\right), 30.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=13.7 \mathrm{~Hz}\right.$, $\left.4 \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\right)$, 29.2 and $29.0\left(2 \mathrm{~s}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}\right), 27.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=\right.$ $\left.64.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{P}\right), 27.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=64.9 \mathrm{~Hz}, 4 \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\right), 21.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}\right.$ $\left.=3.7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}\right), 21.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}, 4 \mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\right)$; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 48.8(\mathrm{~s})$. IR (cm ${ }^{-1}$, powder film): $2920(\mathrm{~s}), 2850(\mathrm{~m}), 1641(\mathrm{w}), 1155$ (s), 991 (m), 908 (s).
$\left(\mathrm{H}_{2} \mathrm{C}=\mathbf{C H}\left(\mathrm{CH}_{2}\right)_{5}\right)_{2} \mathbf{P}(=\mathbf{O})\left(\mathrm{CH}_{2}\right)_{\mathbf{1 2}}(\mathrm{O}=) \mathbf{P}\left(\left(\mathrm{CH}_{2}\right)_{5} \mathbf{C H}=\mathrm{CH}_{2}\right)_{\mathbf{2}}$ (3bc'). Compound 2b ($0.251 \mathrm{~g}, 1.04 \mathrm{mmol}$), $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil; $0.132 \mathrm{~g}, 3.31 \mathrm{mmol}$), THF (20.0 mL), and $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{Br}(0.163 \mathrm{~g}, 0.497 \mathrm{mmol})$ were combined in a procedure analogous to that for 3ab'. An identical workup gave 3bc' ($0.271 \mathrm{~g}, 0.416 \mathrm{mmol}, 84 \%$) as a white solid, mp (capillary) 59-61 ${ }^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{40} \mathrm{H}_{76} \mathrm{O}_{2} \mathrm{P}_{2}$ (650.99): C, 73.80; H, 11.77; found C, 73.93; H, 11.93.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.76\left(\mathrm{ddt}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}=\right), 4.96\left(\mathrm{br} \mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.4 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.93(\mathrm{br}$ $\left.\mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.4 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.08-1.97(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}=), 1.69-1.58\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right)$, 1.58-1.48 (m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.45-1.19 (br m, 32 H , remaining CH_{2}); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126$ $\mathrm{MHz}) 138.6(\mathrm{~s}, 4 C \mathrm{H}=), 114.5\left(\mathrm{~s}, 4=\mathrm{CH}_{2}\right), 33.5\left(\mathrm{~s}, 4 \mathrm{CH}_{2} \mathrm{CH}=\right), 31.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=13.8 \mathrm{~Hz}\right.$,
$\left.\mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\right), 30.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=13.9 \mathrm{~Hz}, 4 \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\right)$, $29.5\left(\mathrm{~s}, 4 \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right)$, 29.3, 29.1, and $28.4\left(3 \mathrm{~s}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{6}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}\right)$, $27.94\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=64.7 \mathrm{~Hz}, \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{10} C \mathrm{H}_{2} \mathrm{P}\right), 27.91\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=64.7 \mathrm{~Hz}\right.$, $\left.4 \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\right), 21.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}\right), 21.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}\right.$ $\left.=3.7 \mathrm{~Hz}, 4 \mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right){ }_{4} \mathrm{CH}=\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 48.9(\mathrm{~s})$. IR $\left(\mathrm{cm}^{-1}\right.$, powder film): 2920 (s), 2850 (m), 1641 (w), 1155 (s), 991 (m), 908 (s).
$\left(\mathrm{H}_{2} \mathrm{C}=\mathbf{C H}\left(\mathrm{CH}_{2}\right)_{6}\right)_{\mathbf{2}} \mathbf{P}(=\mathbf{O})\left(\mathrm{CH}_{2}\right)_{\mathbf{1 4}}(\mathrm{O}=) \mathbf{P}\left(\left(\mathrm{CH}_{2}\right)_{\mathbf{6}} \mathbf{C H}=\mathbf{C H}_{2}\right)_{\mathbf{2}}$ (3cd'). Compound $\mathbf{2 c}(0.314 \mathrm{~g}, 1.16 \mathrm{mmol}), \mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil; $0.131 \mathrm{~g}, 3.28 \mathrm{mmol})$, THF (40.0 mL), and $\operatorname{Br}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{Br}(0.180 \mathrm{~g}, 0.547 \mathrm{mmol})$ were combined in a procedure analogous to that for 3ab'. A similar workup (all water and diethyl ether quantities doubled) gave 3cd' ($0.3176 \mathrm{~g}, 0.432 \mathrm{mmol}, 79 \%$) as a white solid, mp (capillary) 58-60 ${ }^{\circ}$ C. Anal. calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{88} \mathrm{O}_{2} \mathrm{P}_{2}$ (735.16): C, 75.15; H, 12.07; found C, 74.40; H, $12.29 .{ }^{26}$

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.79\left(\mathrm{ddt}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}=\right), 4.98\left(\mathrm{br} \mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.93(\mathrm{br}$ $\left.\left.\mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.09-1.99(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}=), 1.69-1.60(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH})_{2}\right)$, 1.59-1.50 (m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.42-1.23 (br m, 44H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126$ $\mathrm{MHz}) 138.8(\mathrm{~s}, 4 \mathrm{CH}=), 114.3\left(\mathrm{~s}, 4=\mathrm{CH}_{2}\right), 33.6\left(\mathrm{~s}, 4 \mathrm{CH}_{2} \mathrm{CH}=\right), 31.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=14.2 \mathrm{~Hz}\right.$, $\left.\mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\right), 31.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=14.2 \mathrm{~Hz}, 4 \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\right)$, 29.58, 29.6, 29.4, and $29.1\left(4 \mathrm{~s}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{8}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}\right), 28.59$ and 28.57 (2s, $\left.4 \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 27.96\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=64.7 \mathrm{~Hz}, \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{2} \mathrm{P}\right), 27.95(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=64.7 \mathrm{~Hz}, \quad 4 \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\right), \quad 21.69 \quad\left(\mathrm{~d}, \quad{ }^{2} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right.$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}\right), 21.66\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}, 4 \mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\right)$; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{\mathbf{1}^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 48.7$ (s). IR (cm^{-1}, powder film): 2916 (s), $2850(\mathrm{~m}), 1641(\mathrm{w}), 1157$ (s), 991 (m), 901 (s).

$\left(\mathrm{H}_{2} \mathrm{C}=\mathbf{C H}\left(\mathrm{CH}_{2}\right)_{6}\right)_{\mathbf{2}} \mathbf{P}(=\mathbf{O})\left(\mathrm{CH}_{2}\right)_{\mathbf{8}}(\mathrm{O}=) \mathbf{P}\left(\left(\mathrm{CH}_{2}\right)_{\mathbf{6}} \mathbf{C H}=\mathbf{C H}_{2}\right)_{\mathbf{2}} \quad$ (3ca'). Compound

 $\mathbf{2 c}(0.686 \mathrm{~g}, 2.54 \mathrm{mmol}), \mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil; $0.236 \mathrm{~g}, 5.90 \mathrm{mmol})$, THF (40.0 mL), and $\operatorname{Br}\left(\mathrm{CH}_{2}\right){ }_{8} \mathrm{Br}(0.222 \mathrm{~g}, 0.816 \mathrm{mmol})$ were combined in a procedure analogous to that for 3ab'. A similar workup (all water and diethyl ether quantities doubled) gave 3ca' ($0.441 \mathrm{~g}, 0.677 \mathrm{mmol}, 83 \%$) as a white solid, mp (capillary) $57-59{ }^{\circ} \mathrm{C}$. Anal. calcd (\%) for $\mathrm{C}_{40} \mathrm{H}_{76} \mathrm{O}_{2} \mathrm{P}_{2}$ (650.99): C, 73.80; H, 11.77; found C, 73.59; H, 11.79.NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{1} \mathbf{H}(500 \mathrm{MHz}) 5.79\left(\mathrm{ddt}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}=\right), 4.98\left(\mathrm{br} \mathrm{d}, 4 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.93(\mathrm{br}$ $\left.\left.\mathrm{d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH} c i s}=10.2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.07-1.99(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}=), 1.67-1.59(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH})_{2}\right)$, 1.58-1.49 (m, 12H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.41-1.35 (m, 16H, CH2), 1.35-1.26 (br m, 16H, CH2); ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 138.8(\mathrm{~s}, 4 \mathrm{CH}=), 114.3\left(\mathrm{~s}, 4=\mathrm{CH}_{2}\right), 33.6\left(\mathrm{~s}, 4 \mathrm{CH}_{2} \mathrm{CH}=\right), 31.1(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=14.2 \mathrm{~Hz}, \quad \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\right), 30.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=14.2 \mathrm{~Hz}\right.$, $\left.4 \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\right)$, $28.9\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}\right)$, 28.57 and 28.56 (2s, $\left.4 \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 28.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=64.7 \mathrm{~Hz}, 4 \mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\right.$ and $\left.\mathrm{PCH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{P}\right), 21.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.5 \mathrm{~Hz}, 4 \mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\right), 21.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.5\right.$ $\left.\mathrm{Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 48.6(\mathrm{~s})$. IR (cm^{-1}, powder film): 2926 (s), 2855 (m), 1638 (w), 1144 (s), 991 (m), 905 (s).
 0.788 mmol), Grubbs' first generation catalyst ($0.0632 \mathrm{~g}, 0.077 \mathrm{mmol}, 9.8 \mathrm{~mol} \%$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(750 \mathrm{~mL})$, and fitted with a condenser. The solution $(0.00105 \mathrm{M}$ in $\mathbf{3 b c}$) was refluxed with stirring (48 h), concentrated to ca. 20 mL by rotary evaporation, and transferred to a Fischer-Porter bottle. Then $\mathrm{PtO}_{2}(0.1004 \mathrm{~g}, 0.442 \mathrm{mmol})$ and H_{2} (5 bar) were added. The mixture was stirred (48 h). The solvent was removed by rotary evaporation, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The sample was chromatographed on silica ($3.5 \times$ 14 cm column), which was eluted with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 50 \mathrm{v} / \mathrm{v})$. The solvents were
removed from the main product containing fraction to give 4bc' $(0.0916 \mathrm{~g}, 0.153 \mathrm{mmol}$, 19%) as a light brown solid, mp (capillary) $67-69^{\circ} \mathrm{C}$. Other fractions containing smaller amounts of other products were saved for crystallizations described below $\left(\mathrm{R}_{\mathrm{f}}\right.$, TLC, 95:5 $\left.\mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right): \mathbf{4 b c} \mathbf{c}^{\prime}, 0.20$; $\left.\mathbf{4}^{\prime} \mathbf{b c} \mathbf{c}^{\prime}, 0.18\right)$.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 1.76-1.63\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.61-1.50(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.47-1.37 (m, 12H, $\mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$), 1.36-1.23 (br m, 36 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 30.2$ (minor, d, ${ }^{3} J_{\mathrm{CP}}=11.4 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right){ }_{2} \mathrm{CH}_{2}$), 30.1 (major, d, ${ }^{3} J_{\mathrm{CP}}=13.8 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$), 28.7 (major, $\mathrm{s}, \mathrm{CH}_{2}$), 28.3 (major, $\mathrm{s}, \mathrm{CH}_{2}$), 28.21 (minor s, CH_{2}), 28.1 (minor, s, CH_{2}), 28. (minor, CH_{2}), 27.9 (major, s, CH_{2}), 27.1 (major + minor, d, ${ }^{1} J_{\mathrm{CP}}=64.4 \mathrm{~Hz}, 2 \mathrm{PCH}_{2}$), 21.5 (minor, d, ${ }^{2} J_{\mathrm{CP}}=3.5 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 21.0 (major, d,
 1, powder film): $2914(\mathrm{~s}), 2851(\mathrm{~m}), 1655(\mathrm{~s}), 1255(\mathrm{w}), 1145(\mathrm{~m}), 990(\mathrm{~s})$.
$\left.(\mathbf{O}=) \mathbf{P}\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{8}}\left(\mathbf{(} \mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{1 4}}\right)_{\mathbf{2}} \mathbf{P}(=\mathbf{O})\left(\mathbf{4} \mathbf{c a}^{\prime}\right)$. Compound $\mathbf{4} \mathbf{c a}^{\prime}(0.477 \mathrm{~g}, 0.732 \mathrm{mmol})$, Grubbs' first generation catalyst ($0.0643 \mathrm{~g}, 0.078 \mathrm{mmol}, 10.7 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (750 mL ; the resulting solution is 0.00098 M in $\left.\mathbf{4 c a} \mathbf{c a}^{\mathbf{\prime}}\right), \mathrm{PtO}_{2}(0.1002 \mathrm{~g}, 0.441 \mathrm{mmol})$, and $\mathrm{H}_{2}(5 \mathrm{bar})$ were combined in a procedure analogous to that for $\mathbf{4 b c} \mathbf{c}^{\prime}$. An identical workup gave 4ca' $(0.0629 \mathrm{~g}, 0.105 \mathrm{mmol}, 14 \%)$ as a light brown solid, mp (capillary) $67-69^{\circ} \mathrm{C}$.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{27}{ }^{1} \mathbf{H}(500 \mathrm{MHz}) 1.74-1.61\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.60-1.50(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.441.36 (m, $12 \mathrm{H}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$), 1.33-1.25 (br m, 36 H , remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(126 \mathrm{MHz}) 30.7$ (minor, d, ${ }^{3} J_{\mathrm{CP}}=12.2 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$), 30.6 (major, d, $\left.{ }^{3} J_{\mathrm{CP}}=14.1 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 29.25\left(\mathrm{~s}, 3 \mathrm{CH}_{2}\right), 29.01$ (minor, $\mathrm{s}, C \mathrm{H}_{2}$), 29.03 (minor, s , CH_{2}), 28.9 (major, s, CH_{2}), 28.8 (minor, s, CH_{2}), 28.7 (minor, s, CH_{2}), 28.5 (major, s, CH_{2}), 28.1 (minor, d, ${ }^{1} J_{\mathrm{CP}}=64.6 \mathrm{~Hz}, \mathrm{PCH}_{2}$), $27.5\left(\right.$ major, d, ${ }^{1} J_{\mathrm{CP}}=64.6 \mathrm{~Hz}, \mathrm{PCH}_{2}$), 21.6
 (202 MHz) $50.11(\mathrm{~s}, 70 \%), 49.95(\mathrm{~s}, 30 \%)$. IR (cm^{-1}, powder film): $2918(\mathrm{~s}), 2849(\mathrm{~m})$,

1728 (s), 1260 (w), 1145 (m), 991 (s).
Crystallography. A. A $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 3ab' was layered with pentane. After 7 d, colorless needles were collected and data obtained as outlined in Table 5.1. Cell parameters were obtained from 180 data frames using a 0.5° scan and refined with 9519 reflections. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX2. ${ }^{28}$ Lorentz and polarization corrections were applied. Data were scaled, and absorption corrections were applied using the program SADABS. ${ }^{29}$ The structure was solved by direct methods using SHELXTL (SHELXS) and refined (weighted least squares refinement on F^{2}) using SHELXTL. ${ }^{30}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. B. $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3 b c}$ 'was layered with hexane. After 5 d , colorless blocks were collected and data obtained as outlined in Table 5.1. The structure was solved as in A (45 frames, 1° scan, 29802 reflections), but using APEX3 ${ }^{31}$ in place of APEX2 and SADABS. The elongated thermal ellipsoids on C25 and C26 suggested that these two atoms were disordered, and refinement gave an occupancy ratio of $63: 37$. C. $\mathrm{A}_{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text { solution of one of the minor product }}$ fractions obtained upon chromatographic purification of $\mathbf{4 b c}$ ' was layered with hexane. After 2 d , colorless needles were collected and data obtained as outlined in Table 5.1. The structure (4bc') was solved as in A (12866 reflections). D. A CHCl_{3} solution of $\mathbf{4} \mathbf{c a} \mathbf{a}^{\prime}$ was allowed to slowly concentrate. After 2 d , colorless plates were collected and data obtained as outlined in Table 5.1. The structure was solved as in A (2100 frames, 0.5° scan, 20742 reflections) but using SAINT ${ }^{32}$ in place of APEX2. E. A second CHCl_{3} solution of 4ca' was allowed to slowly concentrate. After 1 d , colorless plates were collected and data obtained as outlined in Table 5.1. The structure - different from that in D - was solved as in A (7297 reflections).

5.5. References

(1) Alder, R. W.; East, S. P. Chem. Rev. 1996, 96, 2097-2011.
(2) Kharel, S.; Joshi, H.; Bierschenk, S.; Stollenz, M.; Taher, D.; Bhuvanesh, N.; Gladysz, J. A. J. Am. Chem. Soc. 2017, 139, 2172-2175.
(3) (a) Nawara, A. J.; Shima, T.; Hampel, F.; Gladysz, J. A. J. Am. Chem. Soc. 2006, 128, 4962-4963. (b) Nawara-Hultzsch, A. J.; Stollenz, M.; Barbasiewicz, M.; Szafert, S.; Lis, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. Chem. Eur. J. 2014, 20, 4617-4637.
(4) (a) Wang, L.; Shima, T. Hampel, F.; Gladysz, J. A. Chem. Commun. 2006, 4075-4077. (b) Estrada, A. L.; Jia, T.; Bhuvanesh, N.; Blümel, J.; Gladysz, J. A. Eur. J. Inorg. Chem. 2015, 2015, 5318-5321.
(5) Stollenz, M.; Barbasiewicz, M.; Nawara-Hultzsch, A. J.; Fiedler, T.; Laddusaw, R. M.; Bhuvanesh, N.; Gladysz, J. A. Angew. Chem., Int. Ed. 2011, 50, 66476651; Angew. Chem. 2011, 123, 6777-6781.
(6) Alder, R. W.; Butts, C. P.; Orpen, A. G.; Read, D.; Oliva, J. M. J. Chem. Soc., Perkin Trans. 2 2001, 282-287, and references therein. The conjugate acid of the analog with three $\left(\mathrm{CH}_{2}\right)_{4}$ bridges has been reported, but attempted deprotonations afford deepseated rearrangements.
(7) Park, C. H.; Simmons, H. E. J. Am. Chem. Soc. 1968, 90, 2429-2431.
(8) Baechler, R. D.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 3090-3093.
(9) (a) Haines, A. H.; Karntiang, P. J. Chem. Soc. Perkin Trans. 1 1979, 25772587. (b) Wareham, R. S.; Kilburn, J. D.; Turner, D. L.; Rees, N. H.; Holmes, D. S. Angew. Chem., Int. Ed. Engl. 1995, 34, 2660-2662; Angew. Chem. 1995, 107, 2902-2904. (c) Saunders, M.; Krause, N. J. Am. Chem. Soc. 1990, 112, 1791-1795. (d) Alder, R. W.; Heilbronner, E.; Honegger, E.; McEwan, A. B.; Moss, R. E.; Olefirowicz, E.; Petillo, P.
A.; Sessions, R. B.; Weisman, G. R.; White, J. M.; Yang, Z.-Z. J. Am. Chem. Soc. 1993, 115, 6580-6591.
(10) (a) Stollenz, M.; Bhuvanesh, N.; Reibenspies, J. H.; Gladysz, J. A. Organometallics 2011, 30, 6510-6513. (b) Stollenz, M.; Taher, D.; Bhuvanesh, N.; Reibenspies, J. H.; Baranová, Z.; Gladysz, J. A. Chem. Commun. 2015, 51, 16053-16056.
(11) (a) Lang, G. M.; Shima, T.; Wang, L.; Cluff, K. J.; Skopek, K.; Hampel, F.; Blümel, J.; Gladysz, J. A. J. Am. Chem. Soc. 2016, 138, 7649-7663. (b) Lang, G. M.; Skaper, D.; Hampel, F.; Gladysz, J. A. Dalton Trans. 2016, 45, 16190-16204.
(12) Hilliard, C. R. Diphosphine Dioxide Cages and Hydrogen Peroxide Adducts of Phosphine Oxides: Syntheses and Applications in Surface Science. Doctoral dissertation, Texas A\&M University, Texas, USA, 2013.
(13) (a) Williams, R. H.; Hamilton, L. A. J. Am. Chem. Soc. 1952, 74, 5418-5420. (b) Williams, R. H.; Hamilton, L. A. J. Am. Chem. Soc. 1955, 77, 3411-3412. (c) Miller, R. C.; Bradley, J. S.; Hamilton, L. A. J. Am. Chem. Soc. 1956, 78, 5299-5303. (d) Hunt, B. B.; Saunders, B. C. J. Chem. Soc. 1957, 2413-2414. (e) Hays, H. R. J. Org. Chem. 1968, 33, 3690-3694.
(14) (a) Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 3594-3595. (b) Kenttämaa, H. I.; Cooks, R. G. J. Am. Chem. Soc. 1985, 107, 1881-1886.
(15) (a) Tsvetkov, E. N.; Bondarenko, N. A.; Malakhova, I. G.; Kabachnik, M. I. Synthesis 1986, 198-208. (b) Kendall, A. J.; Seidenkranz, D. T.; Tyler, D. R. Organometallics 2017, 36, 2412-2417.
(16) (a) Fiedler, T.; Bhuvanesh, N.; Hampel, F.; Reibenspies, J. H.; Gladysz, J. A. Dalton Trans. 2016, 45, 7131-7147. (b) Hess, G. D.; Fiedler, T.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2017, 56, 7454-7469.
(17) (a) Joshi, H.; Kharel, S.; Ehnbom, A.; Skopek, K.; Hess, G. D.; Fiedler, T.;

Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. J. Am. Chem. Soc. 2018, 140, in press. DOI: 10.1021/jacs.8b02846. (b) Steigleder, E.; Shima, T.; Lang, G. M.; Ehnbom, A.; Hampel, F.; Gladysz, J. A. Organometallics 2017, 36, 2891-2901. (c) Fiedler, T.; Chen, L.; Wagner, N. D.; Russell, D. R.; Gladysz, J. A. Organometallics 2016, 35, 2071-2075.
(18) Bauer, I.; Habicher, W. D. Collect. Czech. Chem. Commun. 2004, 69, $1195-$ 1230.
(19) Friedrichsen, B. P.; Powell, D. R.; Whitlock, H. W. J. Am. Chem. Soc. 1990, 112, 8931-8941.
(20) (a) Däbritz, F.; Jäger, A.; Bauer, I. Eur. J. Org. Chem. 2008, 5571-5576. (b) Däbritz, F.; Theumer, G.; Gruner, M.; Bauer, I. Tetrahedron 2009, 65, 2995-3002.
(21) Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735-1766.
(22) Zong, J.; Mague, J. T.; Kraml, C. M.; Pascal, R. A. Jr. Org. Lett. 2013, 15, 2179-2181.
(23) Burger, A.; Ramberger, R. Mikrochimica Acta 1979, 72, 259-271.
(24) (a) Roux, M.-C.; Paugam, R.; Rousseau, G. J. Org. Chem. 2001, 66, 43044310. (b) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801-811; Angew. Chem. 1975, 87, 863-874.
(25) Nguyen, T. B.; Castanet, A.-S.; Nguyen, T.-H.; Nguyen, K. P. P.; Bardeau, J.-F.; Gibaud, A.; Mortier, J. Tetrahedron 2006, 62, 647-651.
(26) This microanalysis poorly or marginally agrees with the empirical formula, but is nonetheless reported as the best obtained to date. The NMR spectra indicate high purities ($\geq 98 \%$). See also Gabbaï, F. P.; Chirik, P. J.; Fogg, D. E.; Meyer, K.; Mindiola, D. J.; Schafer, L. L.; You, S.-L. 2016, 35, 3255-3256.
(27) For this compound, the ${ }^{13} \mathrm{C}$ NMR signals labeled minor can refer to the $\left(\mathrm{CH}_{2}\right)_{8}$ chain (lowered intensity compared to the signals for the two $\left(\mathrm{CH}_{2}\right)_{14}$ chains), or
the minor component by ${ }^{31} \mathrm{P}$ NMR.
(28) APEX2, Bruker AXS Inc., Madison, WI, USA, 2012.
(29) Sheldrick, G. M. SADABS, Bruker AXS Inc., Madison, WI, USA, 2001.
(30) (a) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122. (b) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8. (c) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
(31) APEX3, Bruker AXS Inc., Madison, WI, USA, 2012.
(32) SAINT, Bruker AXS Inc., Madison, WI, USA, 2012.

Table 5.1. Summary of crystallographic data for the isomers of 4ca'.

	out,out-4ca'	"crossed chain" out,out-4ca'
empirical formula	$\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{O}_{2} \mathrm{P}_{2}$
formula weight	598.88	598.88
temperature [K]	110(2)	110(2)
diffractometer	Bruker Gadds X-ray	Bruker Gadds X-ray
wavelength [\AA]	1.54178	1.54178
crystal system	monoclinic	triclinic
space group	$P 2_{1} / \mathrm{c}$	$P-1$
unit cell dimensions:		
$a[\AA]$	21.448(6)	5.639(5)
$b[\AA]$	$5.7115(17)$	$11.995(9)$
$c[\AA]$	30.969(8)	14.560(11)
$\alpha\left[{ }^{\circ}\right]$	90	100.25(4)
$\beta\left[{ }^{\circ}\right]$	107.440(13)	96.86(4)
$\gamma\left[{ }^{\circ}\right]$	90	102.74(4)
$V\left[\AA^{3}\right]$	3619.4(17)	932.3(13)
Z	4	1
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.099	1.067
$\mu\left[\mathrm{mm}^{-1}\right]$	1.288	1.250
F(000)	1336	334
crystal size [mm^{3}]	$0.10 \times 0.01 \times 0.01$	$0.08 \times 0.08 \times 0.03$
Θ limit [${ }^{\circ}$]	2.16 to 64.04	3.127 to 59.985
index range (h, k, l)	-24, 24; -24, 6; -35, 32	-6, 6; -13, 12; -15, 16
reflections collected	20742	7297
independent reflections	5695	2596
R (int)	0.3090	0.0817
completeness to Θ	94.6	93.2
max. and min. transmission	0.7524 and 0.5155	0.7522 and 0.6150
data/restraints/parameters	5695/0/362	2596/0/182
goodness-of-fit on F^{2}	1.011	0.954
R indices (final) [$I>2 \sigma(I)$]		
R_{1}	0.1024	0.0802
$w R_{1}$	0.1908	0.2032
R indices (all data)		
R_{2}	0.2216	0.1187
$w R_{2}$	0.2291	0.2375
largest diff. peak and hole $\left[\mathrm{e} \AA^{-3}\right]$	0.467 and -0.467	0.521 and -0.350

Table 5.2. Key crystallographic distances $\left[\AA\right.$] and angles [${ }^{\circ}$] for the isomers of $4 \mathbf{c a}^{\prime}$

	out,out- 4ca'	"crossed chain" out,out- 4ca' ${ }^{\prime}$
P-O	$1.493(5)$	$1.496(3)$
	$1.505(5)$	$1.786(7)$
	$1.789(7)$	$1.809(5)$
P-C	$1.814(7)$	$1.791(5)$
	$1.779(7)$	$1.807(5)$
	$1.779(7)$	
P-P	$1.796(7)$	
	11.540	12.152
	$110.2(3)$	
C-P-O	$113.7(3)$	$113.4(3)$
	$110.6(3)$	$112.8(2)$
	$113.8(3)$	$110.9(2)$
	$112.8(4)$	
C-P-C	$106.9(4)$	
	$106.1(3)$	$107.2(4)$
	$106.5(3)$	$106.2(2)$
	$106.4(3)$	$105.8(2)$
	$106.4(4)$	

${ }^{a}$ There are fewer values for the "crossed chain" isomer due to the C_{2} symmetry axis.

Table 5.3. Summary of crystallographic data for other structurally characterized compounds.

	3ab'	3bc'	4'bc'
empirical formula	$\mathrm{C}_{34} \mathrm{H}_{64} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{76} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{O}_{2} \mathrm{P}_{2}$
formula weight	566.79	650.94	598.87
temperature [K]	110(2)	150.0	296(2)
diffractometer	Bruker Gadds X-ray	Bruker Venture X-ray	Bruker Gadds X-ray
wavelength [\AA]	1.54178	1.54178	1.54178
crystal system	monoclinic	monoclinic	monoclinic
space group	$P_{2} 1$	$C_{1} 2_{1}$	$P_{1} 2_{1} / \mathrm{c}_{1}$
unit cell dimensions:			
$a[\AA]$	$5.1106(9)$	36.634(2)	21.021(3)
$b[\AA]$	32.060(4)	5.0635(3)	5.0517(7)
$c[\AA]$	10.7574(17)	24.2310(12)	17.302(2)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\beta\left[{ }^{\circ}\right]$	97.043(10)	112.966 (2)	107.507(7)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{3}\right]$	1749.2(5)	4138.5(4)	1752.2(4)
Z	2	4	2
$\rho_{\text {calc }}\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.076	1.045	1.135
$\mu\left[\mathrm{mm}^{-1}\right]$	1.311	1.161	1.330
F(000)	628	1448	668
crystal size $\left[\mathrm{mm}^{3}\right]$	$0.47 \times 0.02 \times 0.01$	$0.207 \times 0.09 \times 0.029$	$0.098 \times 0.022 \times 0.005$
Θ limit [${ }^{\circ}$]	2.76 to 49.99	2.596 to 70.273	2.204 to 49.968
index range (h, k, l)	-5, 4;-31, 30; -10, 9	-44, 44; -5, 6; -28, 29	-20, 20; -4, 4; -16, 16
reflections collected	9519	29802	12866
independent reflections	3054	7623	1754
R (int)	0.0456	0.0745	0.1732
completeness to Θ	96.8	99.6	55.6
max. and min. transmission	0.9870 and 0.5778	0.7533 and 0.5832	0.7519 and 0.5344
data/restraints/paramete rs	3054/1/344	7623/69/417	1754/16/181
goodness-of-fit on F^{2}	1.070	1.127	1.068
$\begin{gathered} R \text { indices (final) }[I> \\ 2 \sigma(I)] \end{gathered}$			
R_{1}	0.0434	0.0630	0.0698
$w R_{1}$	0.1133	0.1252	0.1613
R indices (all data)			
R_{2}	0.0496	0.0761	0.1101
$w R_{2}$	0.1190	0.1237	0.1775
largest diff. peak and hole $\left[\mathrm{e} \AA^{-3}\right.$]	0.397 and -0.244	0.365 and -0.392	0.276 and -0.588

Table 5.4. Key crystallographic bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for other structurally characterized compounds.

	3ab'	3bc'	4'bc ${ }^{\text {a }}$
P-O	1.498(4)	1.488(4)	1.501(4)
	1.490(4)	$1.486(4)$	
P-C	1.778(5)	1.807(4)	$\begin{aligned} & 1.800(6) \\ & 1.794(6) \\ & 1.801(5) \end{aligned}$
	$1.811(5)$	1.811(4)	
	$1.826(5)$	$1.809(4)$	
	$1.802(6)$	1.807(4)	
	$1.819(5)$	1.808(4)	
	$1.826(5)$	$1.813(4)$	
C-P-O	112.9(2)	113.56(19)	$\begin{aligned} & 113.4(2) \\ & 112.9(2) \\ & 113.4(2) \end{aligned}$
	$113.2(2)$	113.4(2)	
	112.6(2)	113.0(2)	
	$113.2(2)$	113.4(2)	
	112.2(2)	113.7(2)	
	113.8(2)	112.4(2)	
C-P-C	105.6(2)	104.6(2)	$\begin{aligned} & 105.0(3) \\ & 105.9(3) \\ & 105.5(3) \end{aligned}$
	106.9(2)	104.6(2)	
	104.9(2)	106.8(2)	
	106.1(2)	103.9(2)	
	107.3(3)	107.8(2)	
	103.4(2)	104.8(2)	

${ }^{a}$ There are fewer values for this diphosphine dioxide due to the C_{2} symmetry axis.

6. SUMMARY AND CONCLUSION

Section 1 has described the literature precedent of both cis and trans coordinated platinum complexes. The work in this dissertation focused on expanding the compound scope and accessing their utility.

Section 2 has provided a general synthetic route towards cis coordinated square planar platinum dichloride complexes bearing dibridgehead diphosphine ligands termed "parachute like". In addition, similar complexes with diphosphite ligands were also synthesized. The macrocycles on these complexes varied in size and could jump over the platinum chloride moiety when sufficiently large. This rare topological isomerism known as "jump rope" isomerism is reminiscent of a triple axel. Thermal equilibrations and DFT calculations suggested that these "parachute like" complexes are less stable than their isomeric form that has chlorine atoms trans at the platinum. The diphosphite analogs of these complexes, however, were more stable in their cis geometry than trans form, as suggested by DFT calculations.

Section 3 has expanded the size of trans platinum gyroscope complexes by increasing the number of atoms in the macrocycle. Gyroscopes bearing 33 membered macrocycles have been synthesized. Thermal equilibrations also showed that the compounds obtained from interligand ring closing metathesis reactions are thermodynamically more stable in their trans platinum dichloride form as opposed to cis. The same applied for bisphosphine platinum dichloride complexes. The possibilities for topologically novel compounds are endless if new monophosphine ligands $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{m} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}$ are applied to other metals and coordination geometries.

The container molecules described in section 4 were efficient in transporting metal dichlorides, and even distinguished one metal from the other, indicative of bearing a great
potential. These systems incorporated guests by an uncommon dynamic process, homeomorphism and did not require disassembly as many other container molecules in this field do. Thermodynamic selectivity of guest transport was obtained from several Utube transport experiments and found to be $\mathrm{PtCl}_{2} / \mathrm{PdCl}_{2}>\mathrm{NiCl}_{2}$, while kinetic selectivity was $\mathrm{PdCl}_{2}>\mathrm{PtCl}_{2}$.

The study in section 5 has explored a low-yielding, yet viable synthesis of dibridgehead diphosphorus compounds via alkene metathesis. Though its efficiency still falls behind the schemes involving precious metals, the methodology is superior to that involving phosphine boranes. A very rare "crossed chain" variant of an in/out isomer was characterized crystallographically. This isomer was not interconvertible to the out/out variant via homeomorphic isomerism, but rather required cleavage of P-C bond, thus, rendering the process unfeasible. The crystal structure of the product obtained from intraligand ring closing metathesis reactions was also characterized via X-ray crystallography. This type of ring closing pathway was found to be rare as compared to the complexes involving precious metals.

The studies in this dissertation have greatly expanded the scope of the platinumbased gyroscopes and provided detailed structural and dynamic properties providing relevant insight for related complexes. Future studies should focus on synthesizing larger empty diphosphine cages and utilizing them to capture small molecules. This application can potentially be helpful in the field of drug delivery. Another project should focus on study of radioactive metal capture using diphosphine dioxide cages. There is enough literature precedent that phosphine oxides can be used to capture lanthanides, however, the cage molecules presented in this dissertation could have an added benefit of cage effect, hence selectivity.

APPENDIX A

A-1. Additional NMR data for section 2.

cis- $\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{9}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \quad$ (cis-1f$)$. Degassed distilled water $(10 \mathrm{~mL})$, $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.2998 \mathrm{~g}, 0.7223 \mathrm{mmol})$, and $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(0.7092 \mathrm{~g}, 1.445 \mathrm{mmol})^{\mathrm{A} 1}$ were combined in a procedure analogous to that for cis-1b. ${ }^{\mathrm{A} 1} \mathrm{An}$ identical workup gave trans-1f $(0.1472 \mathrm{~g}, 0.118 \mathrm{mmol}, 16 \%)^{\mathrm{A} 2}$ as a yellow oil and cis-1f $(0.4629 \mathrm{~g}, 0.371 \mathrm{mmol}$, 51%) as a white solid, mp (capillary) $46-47^{\circ} \mathrm{C}$. Data for the latter follow. Anal. Calcd. (\%) for $\mathrm{C}_{66} \mathrm{H}_{126} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$ (1247.64): C, 63.54; H, 10.18. Found C, 63.25; H, 10.33.

NMR $\left(\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.77\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.4 \mathrm{~Hz}, \mathrm{CH}=\right), 4.95\left(\mathrm{br} \mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.2 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.89(\mathrm{br}$ $\left.\mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { cis }}=10.3 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.06-1.97\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right), 1.97-1.88(\mathrm{~m}, 12 \mathrm{H}$, $\mathrm{PCH})_{2}$, 1.57-1.46 (m, 12H, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 1.42-1.20\left(\mathrm{~m}, 72 \mathrm{H}\right.$, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ $(126 \mathrm{MHz})^{\mathrm{A} 3} 138.9(\mathrm{~s}, C \mathrm{H}=), 114.0\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.6\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 30.9\left(\right.$ virtual $\mathrm{t},{ }^{\mathrm{A} 4} J_{\mathrm{CP}}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, 2 \mathrm{CH}_{2}\right), 29.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.0\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, 24.6 (br s, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$), $24.3\left(\mathrm{br} \mathrm{s}, \mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(202 \mathrm{MHz}) 0.97\left(\mathrm{~s}, J_{\mathrm{PPt}}=3516 \mathrm{~Hz}^{\mathrm{A} 5}\right)$. IR $\left(\mathrm{cm}^{-1}\right.$, powder film): $2915(\mathrm{~s}), 2849(\mathrm{~m}), 1641(\mathrm{~m}), 1466(\mathrm{~m}), 909(\mathrm{~s}), 716(\mathrm{~m})$.
cis- $\left.\mathbf{P t C l}_{\mathbf{2}}\left(\mathbf{P}\left(\left(\mathbf{C H}_{2}\right)_{\mathbf{1 0}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{(c i s} \mathbf{- 1 g}\right)$. Degassed distilled water $(10 \mathrm{~mL})$, $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.3001 \mathrm{~g}, 0.7230 \mathrm{mmol})$, and $\mathrm{P}\left(\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}=\mathrm{CH}_{2}\right)_{3}(0.7701 \mathrm{~g}, 1.445 \mathrm{mmol})^{\mathrm{A} 2}$ were combined in a procedure analogous to that for $c i s-\mathbf{1 b}$. ${ }^{\text {A1 }}$ An identical workup gave trans $-\mathbf{1 g}(0.2144 \mathrm{~g}, 0.161 \mathrm{mmol}, 22 \%)^{\mathrm{A} 2}$ as a yellow oil and cis $\mathbf{- 1 g}(0.4248 \mathrm{~g}, 0.319 \mathrm{mmol}$, 44%) as a white solid, mp (capillary) $42-43^{\circ} \mathrm{C}$. Data for the latter follow. Anal. Calcd. (\%) for $\mathrm{C}_{72} \mathrm{H}_{138} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Pt}$ (1331.80): C, 64.93; H, 10.44. Found C, 64.65; H, 10.45.

NMR ($\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H}(500 \mathrm{MHz}) 5.80\left(\mathrm{ddt}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=17.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH} \text { cis }}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, \mathrm{CH}=\right), 4.98\left(\mathrm{br} \mathrm{d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{HH} \text { trans }}=16.9 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{E}} H_{\mathrm{Z}}\right), 4.92(\mathrm{br}$
d, $\left.6 \mathrm{H},{ }^{3} J_{\mathrm{HH} c i s}=10.2 \mathrm{~Hz},=\mathrm{C} H_{\mathrm{E}} \mathrm{H}_{\mathrm{Z}}\right), 2.09-1.99\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}\right), 1.99-1.89(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{PCH}_{2}\right), 1.57-1.47\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$, 1.44-1.20 (m, 84H, remaining $\left.\mathrm{CH}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ $(126 \mathrm{MHz})^{\mathrm{A} 3} 139.1(\mathrm{~s}, \mathrm{CH}=), 114.1\left(\mathrm{~s},=\mathrm{CH}_{2}\right), 33.8\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 31.1$ (virtual t, ${ }^{\mathrm{A} 4} J_{\mathrm{CP}}$ $\left.=7.0 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.6\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.53\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.50\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right)$, $29.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 28.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 24.7\left(\mathrm{br} \mathrm{s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 24.5\left(\mathrm{br} \mathrm{s}, \mathrm{PCH}_{2}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}\{\mathbf{1} \mathbf{H}\}(202$ $\mathrm{MHz}) 0.92\left(\mathrm{~s}, J_{\mathrm{PPt}}=3518 \mathrm{~Hz}^{\mathrm{A} 5}\right)$. IR $\left(\mathrm{cm}^{-1}\right.$, powder film): $2915(\mathrm{~s}), 2844(\mathrm{~m}), 1466(\mathrm{~m})$, 906 (s), 716 (m).

A-2. Calculation, limiting $\Delta \mathrm{G}^{\dot{\ddagger}}$ value, methylene bridge exchange for cis-2c.

Applicable equations include the following: ${ }^{\text {A6 }}$

$$
\begin{gathered}
\Delta \mathrm{G}^{\neq} \mathrm{T} \text { coal }(\mathrm{kcal} / \mathrm{mol})=(0.004575) \mathrm{T}_{\text {coal }}\left[10.319+\log \left(\mathrm{T}_{\text {coal }} / k_{\mathrm{A}}\right)\right] \\
k_{\mathrm{A}}=\mathrm{p}_{\mathrm{B}} / \tau_{c} ; \\
\tau_{c}=\mathrm{X} / 2 \pi \delta \mathrm{v} ;
\end{gathered}
$$

All $\left(\mathrm{CH}_{2}\right)_{14}$ positions of cis-2c are equally populated, so the values of p_{B} and p_{A} are each 0.50 . Per the $25^{\circ} \mathrm{C}$ spectrum in Figure s1 (see asterisked peaks):

$$
\delta v=v_{\mathrm{A}}-v_{\mathrm{B}}=0.38 \mathrm{ppm}=47.88 \mathrm{~Hz}
$$

A lower limit for $\mathrm{T}_{\text {coal }}\left(120^{\circ} \mathrm{C}, 393.15 \mathrm{~K}\right)$ is available from the $120^{\circ} \mathrm{C}$ spectrum in Figure s1.

Table 6.1 in reference A 6 gives $\mathrm{X}=1.4142 \mathrm{~Hz} \cdot \mathrm{~K}^{-1}$ for $\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}=0$.
This in turn gives the following values: $\tau_{c}=0.004701 \mathrm{~K}^{-1}$ and $k_{\mathrm{A}}=106.3637 \mathrm{~K}$ These terms are substituted into the preceding equations, with equation (1) becoming:

$$
\begin{gathered}
\Delta \mathrm{G}_{393 \mathrm{~K}}^{\neq}(\mathrm{kcal} / \mathrm{mol}) \geq(0.004575)(393)[10.319+\log (393 / 106.3637)] \\
\Delta \mathrm{G}^{\neq} 393 \mathrm{~K} \geq 19.6 \mathrm{kcal} / \mathrm{mol}
\end{gathered}
$$

Figure A-1. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis-2c $\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right)$ as a function of temperature. The signals used for the $\Delta \mathrm{G} \not \neq$ calculation are denoted with a \S.

Figure A-2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis-2d $\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right.$, methylene signals only) as a function of temperature. The partial spectra in Figure 11 were taken from these traces.

Figure A-3. Eyring plot using rate constants derived from Figure 11 for the "jump rope" bridge exchange in cis-2d.

Figure A-4. Partial ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis- $\mathbf{6 d}\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}\right)$ as a function of temperature.

A-3. Thermolyses of Platinum Complexes (continued from section 2). D. An NMR tube was charged with trans-2c ($0.0074 \mathrm{~g}, 0.0081 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}(0.7 \mathrm{~mL})$ and heated to $150{ }^{\circ} \mathrm{C}$. After 2 d , the sample was cooled. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ / ppm): $7.21\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}\right.$ $=2395 \mathrm{~Hz},{ }^{\text {s5 }} 100 \%$; trans-2c). E. A NMR tube was charged with trans-2c $(0.0050 \mathrm{~g}$, $0.0055 \mathrm{mmol})$ and $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, and heated at $180^{\circ} \mathrm{C}$. After 14 h , the sample was cooled. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ / ppm), $5.9\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=2426 \mathrm{~Hz},{ }^{\mathrm{A} 5} 92 \%\right.$, trans-2c), 4.5 (s, 8\%). F. An NMR tube was charged with trans-2g ($0.0068 \mathrm{~g}, 0.0054 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}(0.7$ mL) and heated to $150{ }^{\circ} \mathrm{C}$. After 2 d , the sample was cooled. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ / ppm): 5.32 (s, ${ }^{1} J_{\mathrm{PPt}}=2388 \mathrm{~Hz},{ }^{\mathrm{A} 5} 100 \%$; trans-2g). G. An NMR tube was charged with cis-5b $(0.0016 \mathrm{~g}, 0.0019 \mathrm{mmol})$ and $o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ and heated to $110^{\circ} \mathrm{C}$. After 1 d , the
sample was cooled. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ / ppm): $66.2\left(\mathrm{~s},{ }^{1} J_{\mathrm{PPt}}=5759 \mathrm{~Hz},{ }^{\mathrm{A} 5} 100 \%\right.$; cis-5b). The tube was heated to $185{ }^{\circ} \mathrm{C}$. After 2 d , the sample was cooled. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was unchanged.

Figure A-5. Thermolysis of cis-2c in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Br}$ at $150^{\circ} \mathrm{C}(2 \mathrm{~d})$ and then $185^{\circ} \mathrm{C}(1 \mathrm{~d})$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (§ denotes an unidentified substance believed to be oligomer).

A-4. Thermolysis of Rhenium Complexes (continued from section 2). B (fac-12'c). An

 NMR tube was charged with fac-12'c ($0.050 \mathrm{~g}, 0.052 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}(0.7 \mathrm{~mL})$ and heated to $130{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. After 6 h , conversion was complete. The sample was filtered through alumina, which was rinsed with THF. The solvent was removed from the combined filtrates by oil pump vacuum to give previously reported mer, trans-12'c $(0.009 \mathrm{~g}, 0.009 \mathrm{mmol}, 17 \%)^{\mathrm{A} 7}$ as a sticky white gum.NMR $\left(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}, \delta / \mathrm{ppm}\right):{ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}(300 \mathrm{MHz})$ 2.13-1.60 (br m, $12 \mathrm{H} / 12 \mathrm{H}$, $\mathrm{PCH}_{2} / \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.58-1.03 (br m, 60 H , remaining CH_{2}); ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}(121 \mathrm{MHz})-7.2$ (s). IR (cm^{-1}, oil film): $2013\left(\mathrm{w}, \mathrm{v}_{\mathrm{CO}}\right), 1994\left(\mathrm{w}, \mathrm{v}_{\mathrm{CO}}\right), 1927\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1880\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right)$.
$\mathbf{C}(\mathbf{f a c} \mathbf{- 1 3} \mathbf{~} \mathbf{c})$. An NMR tube was charged with fac-13'c $(0.050 \mathrm{~g}, 0.050 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}(0.7 \mathrm{~mL})$ and heated to $140{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. After 2 d , conversion was complete. The sample was filtered through alumina, which was rinsed with THF. The solvent was removed from the combined filtrates by oil pump vacuum to give mer, trans-13'c $(0.011 \mathrm{~g}, 0.011 \mathrm{mmol}, 22 \%)$ as a sticky white gum.

NMR ($\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}, \delta / \mathrm{ppm}$): ${ }^{\mathbf{1}} \mathbf{H}(300 \mathrm{MHz}) 2.25-1.88\left(\mathrm{br} \mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.85-1.55$ (br m, $12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$), 1.54-1.03 (br m, 60 H , remaining CH_{2}); ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ (121 MHz) -12.2 (s). IR (cm ${ }^{-1}$, oil film): $2023\left(\mathrm{w}, \mathrm{v}_{\mathrm{CO}}\right), 1934\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right), 1888\left(\mathrm{~s}, \mathrm{v}_{\mathrm{CO}}\right)$. MS: ${ }^{\mathrm{A} 8} 1000$ $\left(\mathbf{M}^{+}, 5 \%\right), 972\left(\mathbf{M}^{+}-\mathbf{C O}, 70 \%\right), 944\left(\mathbf{M}^{+}-2 \mathrm{CO}, 35 \%\right), 921^{\mathrm{A} 9}\left(\mathbf{M}^{+}-\mathrm{Br}, 40 \%\right), 684$ $\left(\mathrm{OP}\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{PO}^{+}, 100 \%\right), 668\left(\mathrm{P}^{\left.\left(\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{PO}^{+}, 60 \%\right),} 652\left(\mathrm{P}^{(}\left(\mathrm{CH}_{2}\right)_{14}\right)_{3} \mathrm{P}^{+}, 35 \%\right)$.

Figure A-6. Thermal ellipsoid plots (50\% probability) for the two independent molecules of cis-2d in the unit cell.

Figure A-7. Thermal ellipsoid plots (50\% probability) for the two independent molecules of cis-2f in the unit cell.

Figure A-8. Thermal ellipsoid plots (50\% probability) for the two independent molecules of cis-5a in the unit cell.

A-5. DFT and molecular dynamics experiments from section 2. Computations were performed with the Gaussian09 program package, employing the ultrafine grid $(99,590)$ to enhance accuracy. ${ }^{\text {A17 }}$ The gas phase geometries were optimized using DFT and the frequencies were analyzed to confirm that the structures were local minima. The B3LYP ${ }^{\text {A18-A20 }}$ functional was employed with an all-electron $6-311+G(d){ }^{\text {A21 }}$ basis set on all atoms except the transition metals, which were treated using an effective core potential (ECP), SDD. ${ }^{\text {A22 }}$ The heavier elements bromine and iodine used other ECPs. ${ }^{\text {A22,A23 }}$ Dispersion corrections were implemented using the D3 version of Grimme's dispersion function with Becke-Johnson damping (referred to as GD3BJ). ${ }^{\text {A24 }}$ A sample input file for a platinum complex with chloride ligands is given after the reference section.

Each structure output from the DFT calculations was subjected to molecular
dynamics computations, specifically simulated annealing, in order to sample the conformational space and identify the lowest energy conformer. This used the Materials Studio program package ${ }^{\text {A25 }}$ with the Forcite component. ${ }^{\text {A26 }}$ The lowest energy conformation was subsequently optimized by DFT as described above to obtain accurate energetics. The structure of each calculated species is disclosed in an xyz formatted text file (Supporting Information File 1) that can be opened with a variety of programs, e.g. Mercury. ${ }^{\text {A27 }}$

Figure A-9. Comparison of DFT results (purple atoms) using functionals uncorrected (left) and corrected for dispersion (right). top: cis-2d, superimposed over the crystal structure (one of two independent molecules); bottom: cis-2f.

A-6. Additional references for section 2.

(A1) Nawara-Hultzsch, A. J.; Skopek, K.; Shima, T.; Barbasiewicz, M.; Hess, G. D.; Skaper, D.; Gladysz, J. A. Z. Naturforsch. 2010, 65b, 414-424.
(A2) Kharel, S.; Joshi, H.; Bhuvanesh, N.; Gladysz, J. A. submitted to

Organometallics.

(A3) The $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of cis- $\mathbf{1 g}$ and cis-2d,g were assigned by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ COSY, ${ }^{13} \mathrm{C}\left\{{ }^{13} \mathrm{C}\right\} \operatorname{COSY}$, and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ HMBC experiments. The corresponding signals of cis-1f and cis-2b,c,e,f were assigned analogously.
(A4) The J values given for virtual triplets represent the apparent couplings between adjacent peaks, and not the mathematically rigorously coupling constants. See Hersh, W. H. J. Chem. Educ. 1997, 74, 1485-1488.
(A5) This coupling represents a satellite ($\mathrm{d},{ }^{195} \mathrm{Pt}=33.8 \%$), and is not reflected in the peak multiplicity given.
(A6) Sandström, J. Dynamic NMR Spectroscopy; Academic Press: New York, 1982; pp 93-123.
(A7) Hess, G. D.; Fiedler, T.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2017, 56, 7454-7469.
(A8) FAB, 3-NBA, m / z (relative intensity, $\%$); the most intense peak of the isotope envelope is given.
(A9) The situation with this ion is similar to that described in footnote 48 of section 2.
(A10) APEX3, Bruker AXS Inc., Madison, WI, USA, 2012.
(A11) Sheldrick, G. M. SADABS, Bruker AXS Inc., Madison, WI, USA, 2001.
(A12) (a) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122. (b) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8. (c) Sheldrick, G. M. 2015, C71, 3-8.
(A13) Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.
(A14) (a) Hooft, R. W. W. Collect; data collection software; Nonius BV: Delft, Netherlands, 1998. (b) Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data
collected in oscillation mode. In Methods in Enzymology; Carter, C. W., Jr.; Sweet, R. M., Eds.; Macromolecular Crystallography, Vol. 276, Part A; Academic Press: New York, 1997; pp 307-326.
(A15) (a) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography, Table 2.2 A. Kynoch Press, Birmingham, England. 1974. (b) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781-782.
(A16) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
(A17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford CT, 2009.
(A18) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
(A19) Becke, A. D. 1993, 98, 5648-5652.
(A20) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
(A21) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta, 1973, 28, 213-222.
(A22) Peterson, K. A.; Shepler, B.C.; Figgen, D.; Stoll, H. J. Phys. Chem. A 2006, 110, 13877-13883.
(A23) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113-11123.
(A24) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 14561465.
(A25) Dassault Systèmes BIOVIA, Materials Studio, 6.0, San Diego: Dassault Systèmes, 2017.
(A26) The specific parameters used with the Forcite module were as follows: NVT ensemble with random initial velocities, initial temperature of 300 K , mid-cycle temperature of $700 \mathrm{~K}, 10$ heating ramps per cycle, 100 dynamic steps per ramp. Thus, the total number of steps was 100,000 . The sampled structures were automatically geometry optimized after each cycle using the smart algorithm with a fine convergence tolerance (energy of $0.0001 \mathrm{kcal} / \mathrm{mol}$, force of $0.005 \mathrm{kcal} / \mathrm{mol} \cdot \AA$, displacement of $0.00005 \AA$, maximum of 10,000 iterations; the time steps associated with the annealing were 1.0 fs frames).
(A27) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. 2008, 41, 466-470.

APPENDIX B

	Nべ	\bar{m}	으융
	mo	N	

Figure B-1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the soluble crude product following partial completion of the metathesis step in Scheme 5 in section 3.

Figure B-2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the soluble crude product following completion of the metathesis step in Scheme 5 in section 3.

Figure B-3. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.372 \mathrm{mmol})$ from the charging arm (\bullet) and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the receiving arm $(\bullet ; 2.45 \mathrm{mmol} \mathrm{KCl})$ using DMPE $(0.368$ $\mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Figure B-4. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.368 \mathrm{mmol})$ from the charging arm (\bullet) and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ in the receiving arm $(\bullet ; 3.69 \mathrm{mmol} \mathrm{KCN})$ using DMPE (0.245 $\mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Figure B-5. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.379 \mathrm{mmol})$ from the charging arm (\bullet) and appearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in the receiving arm $(\bullet ; 3.77 \mathrm{mmol} \mathrm{KCl})$ using (n-Oct) $)_{3} \mathrm{P}(0.247$ $\mathrm{mmol})$ in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Figure B-6. Disappearance of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(0.372 \mathrm{mmol})$ from the charging arm (\bullet) and appearance of $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4}$ in the receiving arm $(\bullet ; 3.63 \mathrm{mmol} \mathrm{KCN})$ using (n-Oct) $)_{3} \mathrm{P}$ (0.247 mmol) in the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phase.

Figure B-7. NMR spectra of $\mathbf{2 c}$ in $\mathrm{CDCl}_{3}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (top), ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ with inset expanding the aliphatic carbon signals (middle), ${ }^{1} \mathrm{H}$ (bottom).

Figure B-8. NMR spectra of 3cd' in $\mathrm{CDCl}_{3}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (top), ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ with inset expanding the aliphatic carbon signals (middle), ${ }^{1} \mathrm{H}$ (bottom).

115	105	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10

Figure B-9. NMR spectra of $\mathbf{4 b c}$ ' in $\mathrm{CDCl}_{3}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (top), ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ with inset expanding the aliphatic carbon signals (middle), ${ }^{1} \mathrm{H}$ (bottom).

[^0]: *Reproduced with permission from Joshi, H. ${ }^{\ddagger}$; Kharel, S. \ddagger; Ehnbom, A.; Skopek, K.; Hess, G. D.; Fiedler, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J. A. J. Am. Chem. Soc. 2018, 140, in press. DOI: 10.1021/jacs.8b02846. ${ }^{\ddagger}=$ equal contribution)

[^1]: *Reproduced with permission from Kharel, S.; Joshi, H.; Bierschenk, S.; Stollenz, M.; Taher, D.; Bhuvanesh, N.; Gladysz, J. A. J. Am. Chem. Soc. 2017, 139, 2172-2175.

[^2]: ${ }^{*}$ Reproduced with permission from Kharel, S.; Jia, T.; Bhuvanesh, N.; Reibenspies, J. H.; Blümel, J.; Gladysz, J. A. Chem. Asian J. 2018. accepted. DOI: 10.1002/asia.201800739R1.

