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Abstract

In this article an overview of the history of surface topology is given. From
the Euler-formula, to the Kerékjártó Theorem we follow the development
process of the fundamental theorem of compact and non-compact surfaces.
We refer to the works of Riemann, Möbius, Jordan, Klein and others, but
our main focus point is to show the work of the Hungarian mathematician,
Béla Kerékjártó.
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1. Introduction

We can observe many similarities between the developmental process of mathe-
matics and the teaching process of a particular topic. Among others, Imre Lakatos
was dealt with these similarities. In his work, Proofs and Refutations [16] he demon-
strated the creative and informal nature of a real mathematical discovery, and
suggested a way of teaching in which the concepts and theorems are thought by
reproducing the historical steps.

“Mathematics develops, according to Lakatos, . . . by a process of conjecture,
followed by attempts to ’prove’ the conjecture (i.e. to reduce it to other conjec-
tures) followed by criticism via attempts to produce counter-examples both to the
conjectured theorem and to the various steps in the proof.”1

The development of topology, especially of surface topology is similar to the
process of teaching mathematics in two aspects: First, the development of surface

1J. Worrall: Imre Lakatos (1922-1974) : philosopher of mathematics and philosopher of science,
Z. Allgemeine Wissenschaftstheorie 5 (2) (1974), 211-217.
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topology gives an instructive example of the difficulties of formulating an intuitive
and practical problem into a precise mathematical model. Such problems in topol-
ogy include: The definition of the topological transformation: From the intuitive
idea of “a change in form without tearing and sticking together” researchers reached
the mathematical concept of the one to one and continuous mapping. The defin-
ition of the surface: from the intuitive idea through the concept of triangulation
mathematicians developed the concept of two dimensional topological manifolds.
Second, studying the developmental process of surface topology we can observe
definitions and theorems that precede the birth of a concrete result. In our paper
we illustrate this process describing the fundamental theorem of compact and non-
compact surfaces. Since the development of the theorem includes the same phases
that students go through when formulating and solving a problem, the history
of fundamental theorem of surface topology is a useful parallel to the process of
teaching and learning mathematics.

The starting point of the theory of 2-dimensional manifolds as well as for many
topological theories was the Euler-theorem (1750). Euler’s famous formula is for a
polyhedron: v − e + f = 2, where v is the number of the vertices, e is the number
of edges and f is the number of faces.

The generalisation by L‘Huilier (1811) led to the first known result on a topo-
logical invariant.

Another type of generalization was made by Schläfli and Poincare. The Euler-
formula was extended to n-dimensional spaces by Schläfli, and proved by Poincaré
(1893): N0 − N1 + N2 − · · · + (−1)n−1Nn−1 = 1 − (−1)n , where N0 = v, N1 =
e, N2 = f , and Nk is analogically the number of k-dimensional figures. [6]

Riemann examined the connectivity of surfaces in 1851 and 1857. The Euler-
formula for an n-connected polyhedron is the following: v − e + f = 3 − n, where
n is the connectivity number of the polyhedron. [11]

In the 1860-s Möbius(1863, 1865) and Jordan (1866) worked independently from
each other on the problem of topological equivalent surfaces. They elaborated the
classification of compact orientable surfaces. Although Listing (1862) mentioned
first the so called Möbius-strip as an example of a one-sided surface, Möbius (1865)
described its properties in terms of non-orientability.

In the 1870-s, Schläfli and Klein discussed on the orientability of the real 2-
dimensional subspaces of the projective space. Klein introduced the concept of
relative and absolute properties of a manifold, and identified orientability as an
absolute property. In 1882 he described the so called Klein-bottle, one of the most
famous non-orientable closed surfaces.

The classification of non-orientable compact surfaces was published in the paper
of van Dyck in 1888. Seeing that neither the concept of homeomorfism nor the
concept of an abstract surface was completely precise, the first essentially rigorous
proof of the classification theorem for compact surfaces was given only in 1907 by
Dehn and Heegaard. After Brahana’s exact algebraic proof in 1921 some additional
proofs were made in the 20. century too.

The problem of non-compact surfaces didn’t occur in works in the 19. century.
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The starting point for the compactification was perhaps the concept of the pro-
jective plane. Kerékjártó in 1923 gave the classification theorem of non-compact
surfaces after introducing boundary components to compactify the open surface.
Richards (1962) and Goldmann (1971) proved more precisely the theorem and gave
some consequences to it.

Of course there exists the generalisation of the theory of surfaces for higher
dimensions, but this is not the topic of the present paper.

2. Compact surfaces

One of the earliest topological results is the Euler-formula2 from 1750 (v−e+f =
2). Euler was looking for a relation similar to that, which exists between the
numbers of vertices and sides of a polygon (v = s). At that time the concept of
polyhedron was an intuitive extending of the fives Platonic solids (pyramids, prisms
etc.). Before the appearance of the Euler-theorem it was no reason to give a precise
definition.

After trying to prove the theorem, and in connection with this, after the ap-
pearance of different counterexamples, it was necessary to define a polyhedron.
Cauchy’s proof in 18133, and L’Huilier’s well-known counterexamples4 led the ex-
aminations to the direction of topology. The novelty of Cauchy’s proof was that
he considered a polyhedron not a rigid body, but a surface. He omitted one of the
faces of polyhedron, and embedded it in the plane admitting some deformations
of edges and faces, and examined a connected graph on the plane. At that time
the concepts of function and geometrical transformation was not developed to the
level, that Cauchy would reach the idea of topological transformation.

Observing transparent crystals L’Huilier tried to prove the Euler-theorem for
polyhedron with holes. He became the result, that the number v − e + f is not
always 2, there exists surfaces with other numbers too.

Works of Poinsot, Vandermonde, Cauchy, Poincare, and others led to further
counterexamples, and to the generalization of the Euler-theorem, as well as to the
concept of Euler-characteristics.

In the 1850-s and 1860-s the surface topology was developed through the works
of Möbius, Jordan, Riemann and Listing. Möbius and Jordan gave a definition of
topological transformation, and with Riemann used the concept of surfaces more
generally as others before.

2L. Euler: Opera Omnia I, Bd. 26, 71-93.
3A. L. Cauchy: Recherches sur les polyédres. In: Journal de l’École Polytechnique, 1813,

68-86.
4S. A. J. L’Huillier: Mémoire sur la polyédrométrie, In: Annales de Mathématiques, Pures et

Appliquées, 1812-13, 179, 194.
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2.1. Topological transformation

Let A, B two sets of points, and f : A → B a function. We can see that f is a
mapping of the set A into the set B. The distance between two points in the sets
A and B is defined.

A function f : A → B is continuous at a point x0 ∈ A, if for ∀ ε > 0, ∃ δ > 0
such that whenever x differs from x0 by less then δ, f(x) differs from f(x0) by less
then ε. If a mapping f : A → B is continuous at every point x0 ∈ A, then we say
that f is continuous.

A mapping f : A → B is said to be bijective, if the preimage of every point of
B is exactly one point of A. For a bijective mapping f : A → B we can define the
inverse mapping f−1 : B → A.

A mapping f : A → B is said to be a homeomorphism or topological trans-
formation, if it is both bijective, and f as well as its inverse f−1 are continuous.
Intuitively, homeomorphism is a mapping of a set on another set that involves no
tearing (the continuity condition) and no gluing together (the bijective condition).

Two figures A and B are homeomorphic or topologically equivalent if there
exists a mapping f : A → B, which is homeomorphism. For example the cube is
homeomorphic to a sphere. (See Figure 1.)

Figure 1.

Properties of figures unchanged by homeomorphisms are called topological prop-
erties, or topological invariants. One of the first known topological invariant of a
surface S was the Euler-characteristic, the number χ(S) = v − e + f .

2.2. Concept of surfaces

There are many definitions of surface, in geometry, in differential geometry,
in topology. The modern topological definition is the following: A surface is a
connected two-dimensional manifold.

Our terminology must be start from the generalization of the Euler-theorem:
The relation v−e+f = 2 is true for any polyhedron whose surface is homeomorphic
to a sphere and each of whose faces is homeomorphic to a disk. A figure is called
surface without boundary, if each of its points x has a neighbourhood homeomorfic
to a disk. (A neighbourhood of a point x is a set, whose points differ from x less
then a given positive number.)
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To our further review of history of surface topology we need the definition of
triangulation. Triangulation is a method dividing a surface in set of triangles,
which are in bijective relation to planar triangles. We dealt with triangulable
surfaces only.

A surface is a set of triangles satisfying the following properties:
1. The inner points of a triangle belong to this triangle only.
2. Every edge of a triangle belongs to exactly two triangles, which do not have any
other common points besides this edge.
3. Every vertex of a triangle belongs to a finite, cyclically ordered set of triangles,
in which set every two consecutive triangles have a common edge containing this
vertex.
4. For every pair of triangles there exists a not necessarily unique finite sequence
of triangles, in which the first and last elements are the given triangles, and every
two consecutive triangles have exactly one common edge.

If the number of triangles is finite then the surface is called closed, otherwise,
it is called open.

A bordered surface is a finite set of triangles satisfying the following properties:
1’. The inner points of a triangle belong to this triangle only.
2’. Every edge of a triangle belongs to exactly one triangle, or belongs to exactly
two triangles, which do not have any other common points besides this edge.
3’. Every vertex of a triangle belongs to a finite, cyclically or linearly ordered
set of triangles, in which set every two consecutive triangles have a common edge
containing this vertex.
4’. For every pair of triangles there exists a not necessarily unique finite sequence
of triangles, in which the first and last elements are the given triangles, and every
two consecutive triangles have exactly one common edge. [14]

A boundary of a surface consists of edges of triangles belonging to exactly one
triangle. The boundary contains finite number of simple closed curves without
common points, they are called boundary components.

2.3. Johann Benedict Listing (1808-1882)

He wrote two important works related to topology. In 1847 in his paper Vorstu-
dien zur Topologie he used the term topology instead of Analysis Situs. This means
that his main focus was on connection, relative position and continuity.

In 1862 in his other work Der Census Räumlicher Complexe oder Verallge-
meinerung des Eulerschen Satzes von der Polyedern the Möbius-strip as an example
appeared, and he denoted, that it has “quite different properties”, and it’s bound by
one closed curve but did not describe exactly this one-sided surface. He generalized
the Euler-formula to a sphere and to surfaces homeomorphic to a sphere. [12]

2.4. Bernhard Riemann (1826-1866)

The interpretation of complex numbers and functions of a variable complex
quantity in Riemann’s works lead to the concept of connectivity of surfaces. In his
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dissertation Grundlagen für eine allgemeine Theorie der Functionen einer verän-
derlichen complexen Grösse, in 1851 he defined surfaces which cover a domain in
the complex plane, the “Riemann-surfaces”.

He recognised the importance of topological ideas and applied topological meth-
ods to his problems in complex analysis. In his study Theorie der Abelschen Func-
tionen in 1857 he introduced the connectivity number as a topological invariant.
He said that surface S is simply connected, if it falls in two parts by any cross
cut (a line which runs through the interior of the surface without self-intersections,
and joins one boundary point to another). For not simply connected surfaces he
described a cutting method which gives the minimal number of cutting resulting
only simply connecting surfaces. If the surface is closed, also without boundary,
Riemann made a surface with boundary through a perforation.

According to this method we give a closed curve on the surface, and give the
second curve so, that it joins two not necessary different points of the first curve.
Drawing of curves should be continued until, till it is possible to draw a new curve
without intersecting of the sequence of previous curves. For example the sphere is
simply connected surface, and the connectivity number of the torus is 3.

He recognised the relation between the Euler-characteristic and the number of
connectivity: n = 3− χ(S). [12]

2.5. August Ferdinand Möbius (1790-1868)

In our point of view Möbius had two important papers. The first, Theorie der
elementaren Verwandtschaft in 1863 described the concept of topological transfor-
mation as an “elementary relationship” in the following intuitive way: Two points
of a figure which are infinitely near each other are corresponding to two points of
the other figure which are infinitely near each other too.

“Zwei geometrische Figuren sollen einander elementar verwandt heissen, wenn
jedem nach allen Dimensionen unendlich kleinen Elemente der einen Figur ein der-
gleichen Element in der anderen dergestalt entspricht, dass von je zwei an eiander
gremzenden Elementen der einen Figur die zwei ihnen entsprechende Elemente der
anderen ebenfalls zusammenstossen; oder, was dasselbe ausdrückt: wenn je einem
Puncte der einen Figur ein Punct der anderen also entspricht, dass von je zwei
einander unendlich nahen Puncten der einen auch die ihnen entsprechenden der
anderen einander unendlich nahe sind.” [17]

Möbius examined elementary relationships of closed and bordered surfaces
which are without self-intersection in the Euclidien plane or space. He showed
that each such surface can be constructed from two elementary equivalent surfaces
each with n boundary components which are pasted together at the boundary com-
ponents. He called n the class of the surface. On a surface nth class we can draw
n− 1 closed curves not decomposing it.

He said the classification theorem the following way: Two closed surfaces are
elementary equivalents if and only if they belong to the same class.

“Je zwei geschlossene Fläche ϕ und ϕ′, welche zu derselben Klasse gehören,
sind elementar verwandt. Dagegen sind zwei zu verschiedenen Klassen gehörige
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geschlossene Flächen nicht in elementarer Verwandschaft. [17]
Möbius generalized the Euler-theorem from the direction of surface topology

and not from the direction of counterexamples. He gave the normal forms of closed
or bordered, orientable surfaces. The relation between the number n and the Euler-
characteristic is: χ = 2(2− n).

Since all surfaces were considered as embedded into R3, non-orientable surfaces
were found quite late. In his paper Über die Bestimmung des Inhaltes eines Poly-
eders in 1858 (printed in 1865) Möbius defined the orientation of surfaces, and
described one-sided and two sided surfaces.

He defined an orientation of a surface (polyhedron) nearly the following way:
Let S be, a triangulable closed or bordered surface. Give orientation to the edges
of triangles so that if H1 and H2 are neighbouring triangles (with one common
edge), then their common edge has different orientations. (See Figure 2.)

Figure 2.

Den Perimetern der ein Polyeder umgrenzenden Flächen können solche Sinne
beigelegt werden, dass für jede Kante des Polyeders die zwei Richtungen, welche
derselben, als der gemeinschaftlichen Kante zweier Polyederflächen, in Folge der
Sinne dieser zwei Flächen zukommen, einander entgegengesetzt sind. [18]

Möbius called this construction “rule of edges” (Der Gesetz der Kannten). If
there exists a H1,H2, . . . , Hn,H1 closed chain containing neighbouring triangles
of S, and the orientation of H1 triangle is changed, then the surface S is called
non-orientable. If such a chain doesn’t exist, then S is called an orientable surface.

Möbius found a surface, by which the “rule of edges” could not apply. This was
the Möbius-strip, the first example of a non-orientable surface. It is a bordered
surface which is obtained by taking a rectangular strip, twisting it once and gluing
its ends together. (See Figure 3.)

Figure 3.

This is a one-sided surface, if we go over a Möbius-strip with a “paintbrush”,
then we return to the starting point on the “opposite side”.

“Auch hat diese Fläche nur eine Seite; denn wenn man sie von einer beliebigen
Stelle aus mit einer Farbe zu überstreichen anfängt und damit fortfährt, ohne mit
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dem Pinsel über die Grenzlinie hinaus auf die andere Seite überzugehen, so wer-
den nichtsdestoweniger zuletzt an jeder Stelle die zwei daselbst einander gegenüber-
liegenden Seiten der Fläche gefärbt sein.” [18]

2.6. Camille Jordan (1838-1921)
Independently from Möbius Jordan defined the topological transformation as

mapping, and classified the orientable surfaces too. In his work Sur la deformation
des surfaces in 1866 he wrote the following theorem: The maximal number of
recurrent cuts which do not dissect the surface into disconnected pieces, and the
number of boundary components are invariant properties and classifies uniquely
the compact orientable surfaces. [12]

2.7. Felix Klein (1849-1925)
He distinguished absolute and relative properties of surfaces. For example non-

orientability is an absolute, but one-sidedness is a relative property. The definition
of one-sidedness involves not only the surface, but also its disposition in space.
Orientability depends only on the surface. (Über den Zusammenhang der Flächen,
1875) In his paper Über Riemanns Theorie der algebrischen Functionen und ihre
Integrale, in 1882 Klein gave the normal forms of closed surfaces and described
a non-orientable closed surface, the Klein-bottle. It is impossible to embed this
surface in three-dimensional Euclidean space without self-intersection. [22] (See
Figure 4.)

Figure 4.

2.8. Walter von Dyck (1856-1934)
In his study Beiträge zur Analysis Situs, in 1888 he dealt with absolute proper-

ties of compact orientable and non-orientable 2-dimensional manifolds. He defined
surfaces with recurrent and non-recurrent indicatrix. We draw a small circle around
a point of the surface, which is not a boundary point, and oriented it. The circle
with its orientation (clockwise or anticlockwise) is called an indicatrix. If there is
a closed path on the surface, whose traversal reverses the orientation of the indi-
catrix, the surface with recurrent indicatrix is non-orientable, and the surface with
non-recurrent indicatrix is orientable.
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He described the cross-cap, a surface homeomorphic to a Möbius-strip. (See
Figure 5.) (We cut a square from a half-sphere, and glue together the diagonally
opposite vertices of the square.) This representation of the Möbius-strip has a self
intersection, but its boundary curve is homeomorphic to a circle, hence cross-caps
can be glued into holes in a sphere.

Figure 5.

He proved the following fundamental theorem of compact surfaces:
Two closed or bordered triangulable surfaces are topological equiv-

alents if and only if, they have the same number of boundary curves,
the same Euler-characteristic and are either both orientable or non-
orientable.

Classification of closed or bordered surfaces:
Let H(p, r) a surface which is derived from a sphere with r holes by adding p

handles. (See Figure 6.)

Figure 6.

Let C(q, r) be a surface which is derived from a sphere with r holes by adding
q cross-caps. (See Figure 7.)

Figure 7.

It is proved, that every closed or bordered surface belongs to one and only one
of these classes. [7]
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Roughly speaking, the number of handles or cross-caps is called the genus of the
surface. This concept appeared in Riemanns work already as the largest number
of nonintersecting simple closed curves that can be drawn on the surface without
separating it. The genus is related to the Euler- characteristic. More precisely,
if the compact surface is orientable, the genus: g = 1/2(2 − χ − r), where χ is
the Euler-characteristic, r the number of boundary components. The genus of a
non-orientable surface is g = 2− r − χ. The genus of a surface is one of the oldest
known topological invariants and much of topology has been created in order to
generalize this concept of surface topology.

Examples of the connection between invariant properties: (See Table 1.) [15]

The surface χ g r Orientable Class
sphere 2 0 0 yes H(0,0)
cube 2 0 0 yes H(0,0)
torus 0 1 0 yes H(1,0)
Möbius-strip 0 1 1 no C(1,1)
sphere with 1 cross-cap 1 1 0 no C(1,1)
Klein-bottle 0 2 0 no C(2,0)
disk 1 0 1 yes H(0,1)
half-sphere 1 0 1 yes H(0,1)
sphere with 2 handles -2 2 0 yes H(2,0)
ring 0 0 2 yes H(0,2)
cylinder 0 0 2 yes H(0,2)
sphere with 1 handle and 1 hole -1 1 1 yes H(1,1)
cross-cup 0 1 1 no C(1,0)

Table 1.

2.9. Max Dehn (1878-1952) and Poul Heegaard (1871-1948)

In an encyclopaedia article, in 1907 they elaborated the axiomatic structure of
combinatorial topology, this approach allowed them to establish a normal form of
surfaces and give the first rigorous proof of the fundamental theorem of compact
surfaces. (Analysis Situs, Enzyklopädie der Mathematischen Wissenschaften).

2.10. Henry R. Brahana

In his doctoral thesis, Systems of circuits on two-dimensional manifolds (1921)
he gave on algebraic proof of the classification of closed two-dimensional surfaces,
and gave a method of reducing any two-dimensional manifold to one of the known
polygonal normal forms through a series of transformations by cutting and joining
them. [4]
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3. Noncompact surfaces

3.1. Béla Kerékjártó (1898-1946)
The work of the Hungarian mathematician, Béla Kerékjáró according to the

non-compact surfaces was the last step in the process of development of surface
topology. The process started with the Euler-theorem for polyhedron and went
through the classification of compact orientable, then compact non-orientable sur-
faces till the classification of non-compact surfaces.

Kerékjártó was born in 1898 in Budapest, and died in 1946 in Gyöngyös. He
received his Phd in 1920, and 2 years later he became a Full Professor at the
University of Szeged. In 1922-23 he was a visiting professor at the University of
Göttingen, where he wrote his book Vorlesungen über Topologie. This was the first
research monograph, and the first textbook on this topic. A chapter of this book
contains the theorem of open surfaces, which is known as Kerékjártó’s Theorem.
With this theorem the problem of topological equivalence of compact and non-
compact surfaces is completely solved.

Kerékjártó’s main idea was that he defined the ideal boundary of an open
surface. This compactification process is a generalisation of the projective closure
of the Euclidean space. With the help of these ideal points he compactified the
open surface to a closed surface.

An ideal point of a surface S is a nested sequence G1 ⊃ G2 ⊃ G3 ⊃ . . . of
connected, unbounded regions (open connected sets) in S satisfying the following
properties:

- The boundary curves of Gk regions are simple closed curves of S, for ∀k ∈ N
- The sequence of regions doesn’t have any common points.
This sequence of regions defines an ideal point, a boundary point. (See Figure

8.)

Figure 8.

For example the ideal boundary of a disk can be realized as a circle or the
Euclidian plane can be compactified with one point.

Two G1, G2, . . . and G′1, G
′
2, . . . sequences of regions define the same ideal point

if for ∀k ∈ N there is a corresponding integer n such that G′n ⊃ Gk and Gn ⊃ G′k.
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The invariants of compact surfaces can be generalized to open surfaces.
We distinguish planar and orientable ideal points. A closed surface is planar, if

every Jordan curve separates it. The ideal points of an open surface are planar or
orientable, if Gk, the element of the sequence of regions are planar or orientable for
k sufficiently large. [14] An open surface S is of finite genus, if there is a bounded
subsurface A such that S−A is homeomorphic to a subset of the Euclidean plane.
Otherwise S is of infinite genus. We have four orientability classes of surfaces: If
the surface S is non-orientable, then it is either finitely or infinitely non-orientable.
S is infinitely non-orientable, if there is no subset A so that S −A is orientable. If
S is finitely non-orientable, we distinguish odd or even non-orientability according
to whether every sufficiently large bounded subsurface has an odd or even genus.
[20]

Kerékjártó’s Theorem
Let S′ and S′′ be two open triangulable surfaces of the same genus

and orientability class. Then S′ and S′′ are homeomorphic if and only
if their ideal boundaries are homeomorphic, and the sets of planar and
orientable ideal points are homeomorphic too.

Examples of open surfaces that are homeomorphic include:
I. The Euclidean plane and a sphere perforated in one point
II. Grate-surface and a sphere with infinite handles (See Figure 9.)

Figure 9.

III. The Euclidean plane with one cross-cap and a cross-cap-surface perforated
in one point

We can construct every surface from the following five bordered surface-
elements: (See Figure 10.)

Figure 10.

The way of the construction: We take one from these surface-elements, then
stick an other one to all its every boundary curves, so we get a new bordered
surface. We repeat this construction so that we have different surfaces stuck to
different curves. [14]
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3.2. Further results

Of course the formulation of Kerékjártó’s Theorem in 1922 did not correspond to
the level of exactness in modern abstract mathematics. New versions and proofs of
the theorem have been published. The ideal points for open surfaces are generalized
as boundary components of a surface imbedded in a topological space.

- Kerékjártó Béla: A nyílt felületek topológiájáról (1931)
He gave a new definition of ideal points. [13]

- Ian Richards: On the classification of noncompact 2-manifolds (1960)
He described a complete topological classification of non-compact triangulable sur-
faces, and gave a concrete model for arbitrary surface, similar to the classical normal
form. He reconceptualised the Kerékjártó’s Theorem and made more precise the
proof. [20]

- M. E. Goldmann: An algebraic classification of noncompact 2-manifolds (1971)
He proved a theorem, which is for an open surface an algebraic version of the
Kerékjártó Classification Theorem. [9]
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