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1. Introduction

Subadditive functions, with various homogeneity properties, play important
roles in many branches of mathematics. First of all, they occur in the Hahn-
Banach theorems and the derivation of vector topologies. (See, for instance, [2]
and [14].)

A positively homogeneous subadditive function is usually called sublinear.
While, an absolutely homogeneous subadditive function may be called a seminorm.
However, some important subadditive functions are only preseminorms.

Moreover, it is also worth noticing that subbadditive functions are straight-
forward generalizations of the real-valued additive ones. Therefore, the study of
additive functions should, in principle, be preceded by that of the subadditive ones.

Subadditive functions have been intensively studied by several authors. Their
most basic algebraic and analytical properties have been established by R. Cooper
[5], E. Hille [7, pp. 130-145], R.A. Rosenbaum [17], E. Berz [1], M. Kuczma
[9, pp. 400-423] and J. Matkowski [11].

In this paper, we are only interested in the most simple homogeneity proper-
ties of subadditive functions. Besides collecting some well-known basic facts, for
instance, we prove the following theorem.
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Theorem 1.1. If p is a quasi-subadditive function of a vector space X over Q,
and moreover x € X and 0#k € Z, then

(1) %p(lw)ﬁp(%x) forall 1€Z;
(2) p(%x) Slp(%x)Z%p(w) forall 0<I€Z;
() p(%x)Elp(%x)ﬁ%p(w) forall 0>1€Z.

Remark 1.2. If p is a subodd subadditive function of X, then p is additive.
Therefore, the corresponding equalities are also true.

While, if p is an even subadditive function of X, then we can only prove that
1 l 1
_— < _ < —
arrtn se(ge) <l pe)

forall z€ X, 0#ke€Z and l€Z.

2. Superodd and subhomogeneous functions

Definition 2.1. A real-valued function p of a group X will be called

(1) subodd if p(—z) < —p(x) forall ze€ X;

(2) superodd if —p(z) < p(—z) forall ze X.
Remark 2.2. Note that thus p may be called odd if it is both subodd and
superodd.

Moreover, p is superodd if and only if —p is subodd. Therefore, superodd
functions need not be studied separately.

However, because of the forthcoming applications, it is more convenient to study
superodd functions. By the above definition, we evidently have the following

Proposition 2.3. If p is a superodd function of a group X, then

(1) 0<p(0); (2) —p(~2) <p(z) forall e X,
Hint. Clearly, —p(0) < p(—0) = p(0). Therefore, 0 < 2p(0), and thus (1)
also holds.

Remark 2.4. Note that if p is subodd, then just the opposite inequalities hold.
Therefore, if in particular p is odd, then the corresponding equalities are also true.

Analogously to Definition 2.1, we may also naturally introduce the following
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Definition 2.5. A real-valued function p of a group X will be called
(1) N-subhomogeneous if p(nz) < np(z) forall neN and z € X;
(2) N-superhomogeneous if np(z) < p(nz) forall neN and z € X.

Remark 2.6. Note that thus p may be called N-homogeneous if it is both
N-subhomogeneous and N-superhomogeneous.

Moreover, p is N—superhomogeneous if and only if —p is N—subhomogeneous.
Therefore, N-superhomogeneous functions need not be studied separately.

Concerning N-subhomogeneous functions, we can easily establish the following
Proposition 2.7. If p is an N—subhomogeneous function of a group X, then
p(kz) < —kp(—z).
forall z€ X and 0>ke€Z.

Proof. Under the above assumptions, we evidently have p (kz) =p ((—k) (—2))
< (=k)p(=z)=—kp(=z). O

Now, as an immediate consequence of Definition 2.5 and Proposition 2.7, we
can also state

Proposition 2.8. If p is an N-subhomogeneous function of a group X and
z € X, then

(1) +p(kz)<p(x) forall 0<keZ;
(2) —p(—z)< 4 p(kz) forall 0>keZ.

Moreover, by using this proposition, we can easily prove the following

Theorem 2.9. If p is an N—-subhomogeneous function of a vector space X over
Q, and moreover x € X and |l €Z, then

(1) }fp(lx)ﬁp(ix) forall 0O<keZ;
(2) ;p(zx)gp(,gx) forall 0>keZ.
Proof. If 0 < k € Z, then by Proposition 2.8 it is clear that
]tp(la:)zllﬂp@c(]im)) Sp(]iw)-
While, if 0 > k € Z, then by the above inequality it is clear that
1 l

—?p(—la?) = %p(l(—m)) < p(_lk(—x)) =p<kw>~
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Remark 2.10. Note that if p is N-superhomogeneous, then just the opposite
inequalities hold. Therefore, if in particular p is N-homogeneous, then the corres-
ponding equalities are also true.

3. Subadditive and quasi-subadditive functions

Following the terminology of Hille [7, p. 131] and Rosenbaum [17, p. 227],
we may also naturally have the following

Definition 3.1. A real-valued function p of a group X will be called

(1) subadditive if p(z+y) <p(z)+p(y) forall z,ye X,

(2) superadditive if p(x)+p(y) <p(x+y) forall z,ye X.
Definition 3.2. Note that thus p is additive if and only if it is both subadditive
and superadditive.

Moreover, p is superadditive if and only if —p is subadditive. Therefore,
superadditive functions need not be studied separately.

The appropriateness of Definitions 2.1 and 2.5 is apparent from the following
theorem whose proof can also be found in Kuczma [9, p. 401].

Theorem 3.3. If p is a subadditive function of a group X, then p is superodd
and N-subhomogeneous.

Proof. Clearly, p(0) =p(0+0) < p(0)+p(0), and thus 0 < p(0). Moreover,
if £ € X, then we have

0<p(0)=p(z+(-2)) <ple)+p(-z).

Therefore, —p(z) < p(—xz), and thus p is superodd.

Moreover, if p(nz) < np(xz) for some n € N, then we also have
p((n—l—l)x) =p(nx+z) <p(nz)+pz)<npx)+plz)=(n+1)p(x).

Hence, by the induction principle, it is clear that p(nz) < np(z) forall n € N.
Therefore, p is N—subhomogeneous. U

Remark 3.4. Note that if p is superadditive, then p is subodd and N—superhomo-
geneous. Therefore, if in particular p is additive then p is odd and N-homogeneous.

Because of Theorem 3.3, we may also naturally introduce the following
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Definition 3.5. A real-valued function p of a group X will be called

(1) quasi-subadditive if it is superodd and N—subhomogeneous ;

(2) quasi-superadditive if it is subodd and N-superhomogeneous.
Remark 3.6. Note that thus p may be called quasi-additive if it is both quasi-
subadditive and quasi-superadditive.

Moreover, p is quasi-superadditive if and only if —p is quasi-subadditive.
Therefore, quasi-superadditive functions need not be studied separately.

Now, in addition to Propositions 2.7 and 2.8, we can also prove the following

Proposition 3.7. If p is a quasi-subadditive function of a group X and =z € X,
then

(1) kp(z) <
(2) fp(kz)

(kx) forall 0>keZ;

IN =

p(z) forall 0#keZ.

Proof. If 0 > k € Z, then by the corresponding definitions we have

—p(kz) < p(=(kz))=p((=k)z) < (=k)p(x) = —kp(z).

Therefore,
1
kp(z) < p(kzx), and hence Ep(kx)gp(:c).

Moreover, from Proposition 2.8 we know that the latter inequality is also true for
0<keZ. O

Now, by using the above proposition, we can easily prove the following coun-
terpart of Theorem 2.9.

Theorem 3.8. If p is a quasi—subadditive function of a vector space X over Q,
and moreover x € X and 0#k € Z, then

(1) %p(lw)ﬁp(%x) forall 1€Z;

|~
=2
~——
AN

_lp(%w)Z%p(x) forall 0<leZ;
ia:)>l (L ><i
= >ip(gz) < gplx) forall 0>1€Z.

Proof. If | € Z, then by Proposition 3.7 (2), it is clear that

o) = 1o (6 (o)) <o)
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Moreover, if 0 <! € Z, then by using the N—subhomogeneity of p and the [ =1
particular case of Theorem 3.8 (1) we can see that

p(ém) :p<l%x) < lp(%x) and %p(x):l%p(x) < lp(%ac).

While, if 0> 1 € Z, then by using Proposition 3.7 (1) and the ! =1 particular
case of Theorem 3.8 (1) we can see that

lp(%x) < p(l%m) :p(%x> and lp(%x) < lzp(x):?p(x).

Remark 3.9. Note that if p is quasi-superadditive, then just the opposite inequa-
lities hold. Therefore, if p is in particular quasi-additive, then the corresponding
equalities are also true.

4. Some further results on subadditive functions

Whenever p is subadditive, then in addition to Theorem 3.8 we can also prove
the following

Theorem 4.1. If p is a subadditive function of a group X, then for any =,y € X
we have

(1) —p(—(z—vy)) <p(z)-py) <plz-y);
2) —p(=(~y+z)) <px)-ply) <pl-y+z).

Proof. We evidently have
p()=p(r—y+y)<plz-y)+p(y),
and hence also
p(y) <ply—z)+p(@)=p(=(z-y)) +p@).

Therefore, (1) is true.

Moreover, quite similarly we also have
p(x)=ply—y+z)<ply) +pr(-y+z),
and hence also
p(y) <p@)+p(—z+y)=p@)+p(-(-y+z)).

Therefore, (2) is also true. t
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Now, as a useful consequence of the above theorem, we can also state

Corollary 4.2. If p is a subadditive function of a group X, then for any
z,y € X we have

(1) |p(x)—py)| < max{p(z—y), p(—(z—y))};
(2) |p@)—py)| < max{p(-y+z), p(—(-y+z))}.

Proof. If
M =max{p(x—y), p(—(z—y))},

then by Theorem 4.1 we have

p(x)—p(y) < p(z—y) <M and  —(p(2)-p(y)) < p(—(2-y)) < M.
Therefore, |p(xz) —p(y)| < M, and thus (1) is true. The proof of (2) is quite
similar. g

By using Theorem 4.1, we can easily prove the following improvement of
Kuczma’s [9, Lemma 9, p. 402]. (See also Cooper [5, Theorem IX, p. 430].)

Theorem 4.3. If p is a real-valued function of a group X, then the following
assertions are equivalent :

(1) p is additive;
(2) p is odd and subadditive.
(8) p is subodd and subadditive .

Proof. If (1) holds, then by Remark 3.4 it is clear that p is odd, and thus (2)
also holds. Therefore, since (2) trivially implies (3), we need actually show that
(3) implies (1).

For this, note that if (3) holds, then by Remark 2.4 and Theorem 4.1 we have
p(x)+p(y) < p(x)+(-p(-y)) =p(x) —p(-y) < plez—(-y)) =p(z+y)

for all =,y € X. Hence, by the subadditivity of p, it is clear that (1) also holds.
d
From the above theorem, by using Remark 3.9, we can immediately get

Corollary 4.4. If p is a subodd subadditive function of a vector space X over
Q, then p(rx)=rp(x) forall r€Q and z € X.

Hence, it is clear that in particular we also have

Corollary 4.5. If p is a subodd subadditive function of Q, then p(r)=p(1)r
forall m€Q.
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5. Even superodd and subhomogeneous functions

Because of quasi-subadditive functions, it is also worth studying even superodd
and N-subhomogeneous functions.

Definition 5.1. A real-valued function p of a group X will be called even if
p(—z)=p(z) foral zeX.

Remark 5.2. Now, in contrast to Definition 2.1, the subeven and supereven func-
tions need not be introduced. Namely, we have evidently the following

Proposition 5.3. If p is a real-valued function of a group X, then the following
assertions are equivalent :

(1) p iseven;

(2) p(—z) < p(x) forall zeX;

(3) p(z) < p(—z) foral zeX.

Hint. If (3) holds, then for each € X wealsohave p(—z) < p(—(—z)) =p(z).
Therefore, p(—x) =p(z), and thus (1) also holds.

Remark 5.4. Note that a counterpart of the above proposition fails to hold for
odd functions. Namely, if for instance p(x) = |z| for all = € R, then p is
superodd, but not odd.

By using Definition 5.1, in addition to Proposition 2.3, we can also easily es-
tablish the following extension of Cooper’s [5, Theorem X, p. 430]. (See also
Kuczma [9, Lemma 8, p. 402].)

Proposition 5.5. If p is an even superodd function of a group X, then
0 <p(z) forall ze€X.

Proof. Namely, if = € X, then —p(z) < p(—z) = p(x). Therefore, 0 <
2p(z), and thus 0 < p(x) also holds. O

Remark 5.6. Hence, it is clear that if p is an even subodd function of X, then
p(z) <0 forall e X.

Therefore, if in particular p is an even and odd function of X, then we
necessarily have p(z) =0 for all z € X.

Moreover, by using Proposition 2.7 and Theorem 2.9, we can also easily prove
the following counterparts of Proposition 3.7 and Theorem 3.8.

Proposition 5.7. If p is an even N-subhomogeneous function of a group X,
then

p(kz) < |k[p(z)
forall z€ X and 0#£keZ.
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Proof. If 0 < k € 7Z, then the corresponding definitions we evidently have
p(kz) < kp(z)=|k|p(z).

While, if 0 > k € Z, then by Proposition 2.7 and the corresponding definitions
we also have p(kx) < —kp(—z)=|k|p(z). O

Theorem 5.8. If p is an even N-subhomogeneous function of a vector space X
over Q, then

1 l 1
——p(z)<p(pa) <lp( o)
|k‘p( z)sp(pe)<lp( Lo
forall ve€X and k,l€Z with k,1#0.
Proof. If k> 0, then Theorem 2.9 (1) and Proposition 5.7 it is clear that
1

ﬁp(lm)zép(lx) < p(%l") :p(l%m) < |l|p<%x>

While, if k£ < 0, then by Theorem 2.9 (2) and Proposition 5.7, it is clear that
1

ﬁp(m:—%p(—zx) <p(va)=p(1pe) <ltlp(+e).

O

Remark 5.9. To compare the above theorem with Theorem 3.8, note that by the
Il =1 particular case of Theorem 5.8 now we also have

Lo < 1 ().

Finally, we note that by Corollary 4.2 we can also state the following

Proposition 5.10. If p is an even subadditive function of a group X, then

|p(z) —p(y)| < min{p(z—y), p(~y+z)}.

for all z, y € X.

6. Homogeneous subadditive functions

Definition 6.1. A real-valued function p of a vector space X over K=R or C
will be called

(1) homogeneous if p(Az)= Ap(x) forall AeK and z € X;
(2) positively homogeneous if p(Az) = Ap(xz) forall A >0 and z € X;
(3) absolutely homogeneous if p(Az) = |A|p(x) forall A€ K and z € X.
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Remark 6.2. Note that if p is homogeneous (absolutely homogeneous), then p
is, in particular, odd (even) and positively homogeneous.

Moreover, if p is positively homogeneous, then in particular we have p(0) =
p(2-0)=2p(0), and hence p(0) =0. Therefore, p(0z)=p(0)=0=0p(x)
is also true.

Now, as some useful characterizations of positively and absolutely homogeneous
functions, we can also easily prove the following two propositions.

Proposition 6.3. If p is a real-valued function of a vector space X over R, then
the following assertions are equivalent :

(1) p is positively homogeneous
(2) p(Az) < Ap(z) forall A >0 and z€ X;
(3) Ap(z) < p(Az) forall A>0 and z € X.

Proposition 6.4. If p is a real-valued function of a vector space X over K, then
the following assertions are equivalent :

(1) p is absolutely homogeneous;;
(2) p(Az) < |A|p(z) forall 0#£XeK and z€ X;
3) [N p(x)<p(Azx) forall 0AAER and z€ X.

Hint. If (3) holds, then for any 0 # XA € R and = € X we also have

p()\x) = |)\|’§‘p(>\x) < \/\|p(§>\x) = |/\|p(z)
Therefore, the corresponding equality is also true. Moreover, from Remark 6.2, we
can see that p(0x)=p(0)=0=1|0]|p(z). Therefore, (1) also holds.
In addition to the above propositions, it is also worth establishing the following
Theorem 6.5. If p is a real-valued function of a vector space X over R, then

(1) p is homogeneous if and only if p is odd and positively homogeneous ;

(2) p is absolutely homogeneous if and only if p is even and positively homo-
geneous .

Hint. If p is even and positively homogeneous, then for any A <0 and z € X
we also have p(Az) = p(=A(—z)) = =Ap(—z) = |A|p(x). Hence, by the
second part of Remark 6.2, it is clear that p is absolutely homogeneous.

Remark 6.6. >From Remark 6.2 and Theorem 4.3, we can see that a homoge-
neous subadditive function is necessarily linear.

Therefore, only some non-homogeneous subbadditive functions have to be stud-
ied separately. The most important ones are the norms.
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Definition 6.7. A real-valued, absolutely homogeneous, subadditive function p
of a vector space X is called a seminorm on X .

In particular, the seminorm p is called a norm if p(z) # 0 forall z € X \{0}.

Remark 6.8. Note that if p is a seminorm on X, then by Remark 6.2, Theorem
3.3 and Proposition 5.5, we necessarily have 0 < p(z) forall z € X.

Definition 6.9. A real-valued subadditive function p of a vector space X over
K is called a preseminorm on X if

(1) ){imop()\x):() for all =€ X;

(2) p(Az) <p(z) forall x€ X and A€ K with |[A| < 1.

In particular, the preseminorm p is called a prenorm if p(z) # 0 for all
xz e X \{0}.

Remark 6.10. By Remark 6.8, it is clear that every seminorm p on X is, in
particular, a preseminorm.

Moreover, if p is a preseminorm on X, then defining p* (z) = min{ 1, p(x) }
(or p*(z) =p(z)/(1+p(z))) forall x € X, it can be shown that p* is a
preseminorm on X such that p* is not a seminorm.

Most of the following basic properties of preseminoms have also been established
in [18] . The simple proofs are included here for the reader’s convenience.

Theorem 6.11. If p is a preseminorm on a vector space X over K and z € X,
then

(1) p(0)=0 (2) 0<p(x);

(3) p(Az)=p(|A|lx) foral XeK;

(4) |p(z)=p(y)| <p(z—y) fordl ycX;

(5) p(Az) < p(pz) foral X peK with |A < |pf;

(6) p(Az) < np(x) forall e K and ne€N with |A| < n;

(1) re(a) <p(te) <p(fe) foral k1€Z with k#0.

Proof. By Definition 6.9 (1), we evidently have

p(0) = lim p(0) = lim p(A0)=0.

Moreover, if A, p € K such that |A| < |u| and p # 0, then by using
Definition 6.9 (2) we can see that p(Az) =p((A/p)pz) < p(pz). Hence,
since |A| < |p| and p=0 imply A =0, it is clear (5) is also true.
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Now, by (5) and the inequalities |A| < [|A]| < |AJ, it is clear that in
particular we also have p(Az) < p(|A|z) < p(Az). Therefore, (3) is also
true.

Moreover, if n € N such that |A| < n, then by (5) and Theorem 3.3, it is
clear that p(Az) < p(nz) < np(z) also holds.

Finally, to complete the proof, we note that by (3) p is, in particular, even.
Therefore, by Propositions 5.3 and 5.10 and Theorem 5.8, assertions (2), (4) and
(7) are also true. O

Remark 6.12. From the above proof, it is clear that if p is a subadditive function
of a vector space X over K such that in addition to Definition 6.9 (2) we only
have infyxo p(Axz) < 0 for all € X, then p is already a preseminorm.

Finally, we note that by using Theorem 6.11 (2) and (6) we can also prove

Corollary 6.13. If p is a nonzero preseminorm on a one-dimensional vector
space X over K, then p is necessarily a prenorm on X.

Proof. Namely, if this not the case, then there exists = € X such that z # 0
and p(xz) = 0. Hence, by using dim(X) = 1, we can see that X = Kuz.
Moreover, if A € K, then by choosing n € N such that |A| < n we can see that
0 < p(Azx) < np(r)=0, and thus p(Az) = 0. Therefore, p is identically
zero, which is a contradiction. O

Remark 6.14. The importance of preseminorms lies mainly in the fact that in
contrast to seminorms, a nonzero preseminorm can be bounded by Remark 6.10.

Thus, by an idea of Fréchet, any sequence (p,)5; preseminorms on X can
be replaced by a single preseminorm ¢ = >~ (1/2") p; which induces the same
topology on X.

In this respect, it is also worth mentioning that, in contrast to seminorms, each
vector topology on X can be derived from a family preseminorms on X. ( See, for
instance, [14].)
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