On the Fourier coefficients of Hilbert modular forms of half-integral weight over arbitrary algebraic number fields

Hisashi KOJIMA

Tsukuba Journal of Mathematics

Volume 37

Number 1

Page range 1-11

Year 2013-07

URL http://hdl.handle.net/2241/00154299

Provided by Tsukuba Repository
ON THE FOURIER COEFFICIENTS OF HILBERT MODULAR FORMS OF HALF-INTEGRAL WEIGHT OVER ARBITRARY ALGEBRAIC NUMBER FIELDS

By
Hisashi KOJIMA

Abstract. In Theorem 2.5 in previous paper [4], we determined the Fourier coefficients of the image of Shimura correspondence of modular forms \(f \) of half integral weight over arbitrary algebraic number fields in terms of those of \(f \). It seems that there is a gap in the proof. We give a correct proof of Theorem 2.5 in [4]. Moreover, we deduce useful formulas between the product of Fourier coefficients of \(f \) and the central value of quadratic twisted \(L \)-series associated with the image of Shimura correspondence of \(f \).

Introduction

Shimura [7] proved that the square of Fourier coefficients of a holomorphic Hilbert modular form of half-integral weight over a totally real number field gives essentially the critical value of the zeta function of the corresponding form of integral weight, which generalizes a previous result of Waldspurger [9] in the elliptic modular case. In [3] and [4], we extended Shimura [6] and [7] in the case of Hilbert modular forms of half-integral weight over arbitrary algebraic number fields. It seems that there is a gap in the proof of Theorem 2.5 in [4].

The purpose of this note is to deduce another useful formula between the product of Fourier coefficients of a modular form \(f \) of half-integral weight over an arbitrary algebraic number field and the central value of quadratic twisted \(L \)-series associated with the image of Shimura correspondence of \(f \). In the last section, we shall give a correct proof of Theorem 2.5 in [4].
§ 1. Fourier Coefficients of Modular Forms of Half-Integral Weight

Our notation follows closely that of [2], [4], [5] and [7]. Let \(x \in G_0 \) (resp. \(C_n' \)) be the element (resp. set) given in [4, pp. 29–30]. Take \(x \in G \cap U e^{-1} \), for \(U \) a sufficiently small open subgroup of \(C_n' \). Let \(f \) be an element of \(\mathcal{S}_{m+1/2} \), where \(\mathcal{S}_{m+1/2} \) is the space given in [4, p. 31] and [5, (2)]. Then define the inversion \(f^* \) of \(f \) by

\[
(1.1) \quad f^* = \psi(x) f \mid_{m+1/2}.
\]

Here \(\delta \) and \(f \mid_{m+1/2} \) are given in [4, p. 30] and [4, (1.16)]. We see that \(f^* \) belongs to \(\mathcal{S}_{m+1/2} \) (cf. [2, (4.19)]). Take a \(f \in \mathcal{S}_{m+1/2} \) (b, b'; \(\psi \)). Let \(\tau \) be an element of \(F^\times \) such that \(\tau > 0 \), \(\tau b = q^2 \tau \) with a fractional ideal \(q \) and a square free integral ideal \(I \). From [4, Lemma 1.2], we find an element \(h \in \mathcal{S}_{m+1/2} \) (b, b'; \(\phi \)) such that

\[
(1.2) \quad \mu_q(\xi, m) = \mu_f((r, q^{-1} m))
\]

for every \(\xi \in F^\times \) and fractional ideal \(m \) in \(F \), where \(\phi = \psi \), with the Hecke character \(\psi \), associated with the quadratic extension \(F(\sqrt{\xi})/F \). Let \(D \) be the set given in [4, (1.9)]. Define a function \(\Psi_{\tau, \xi}(f)(w) \) on \(D \) by

\[
(1.3) \quad \Psi_{\tau, \xi}(f)(w) = \int_{\mathfrak{C} \setminus D} \Theta_1(\xi, w; \eta_2) \Theta(-z)^{m+1/2} m \, d\chi
\]

for every \(w \in D \), where \(C = i^{m+2} \Gamma_{\tau} \Gamma_{\xi} \phi(\tau, \xi) N(\tau, \xi) \), \(\Gamma_{\tau} \) and \(\Theta_1(\xi, w; \eta_2) \) are given in [4, p. 39]. We deduced the following theorem [4, (2.33)].

Theorem 0.1. Let \(f \) be an element of \(\mathcal{S}_{m+1/2} \) (b, b'; \(\psi \)). Then

\[
(1.4) \quad \Psi_{\tau, \xi}(f)(w) = N(t, i, i) \sum_{m} \sum_{l \in \mathfrak{C} \setminus \mathfrak{C}} N(m) l^{m-1/2} \phi(l) \phi^*(l, i, i, m) \\times \mu_f((r, q^{-1} m)) e_1(f\mathfrak{C}(z)) e_1(lu) \prod_{i} c(\text{sgn}(l)) \\times \exp(-2\pi i \mathfrak{C}(z)vK_{2n}(4\pi l, llv))
\]

where \(m \) runs over all integral ideals, \(l \) runs over \(t, i, i, m \) under the condition \((h_i^{-1} m, t, i, i) = 1 \), \(w = (z_1, \ldots, z_{i+1}, \ldots, z_{i+2}) \), \(z = (z, \ldots, z) \), \(\delta_i = u_i + i j u_i (1 \leq i \leq l) \), \(a = (u_{i+1}, \ldots, u_{i+2}) \), \(v = (u_{i+1}, \ldots, u_{i+2}) \), \(l^{m-1} = \prod_{i} (l)\phi(l) \phi(l) \phi(l) \phi(l) \phi(l) \), and \(|l| = \prod_{i=1}^n |l|^{l} \).
We shall give a correct proof of Theorem 0.1, that is, Theorem 2.5 in [4] in Section 2.

We showed the following in [4, pp. 47-48].

THEOREM 0.2. Let f be an element of $S_{2m,\omega}(b, b'; \psi)$. Suppose that f is a common eigenform of T_v for each $v \in \mathfrak{h}$, i.e.,

$$(1.5) \quad f|T_v = \chi(v)N_v^{-1}f$$

for each $v \in \mathfrak{h}$.

Then there exists the normalized eigenform g belonging to $S_{2m,\omega}(2^{-1}c, \psi^2)$ attached to χ such that

$$(1.6) \quad \mu_f(r, a^{-1}) g = (\gamma, \ldots, \gamma)$$

where $\gamma = (0, \ldots, 0, 4\omega_0 + 3, \ldots, 4\omega_r + 3)$ with $\omega = (0, \ldots, 0, \omega_{r+1}, \ldots, \omega_{r+s})$.

Let g be the above element of $S_{2m,\omega}(2^{-1}c, \psi^2)$ in Theorem 0.2. Take the matrix $\pi = \begin{pmatrix} s & 1 \\ 0 & 1 \end{pmatrix}$ with $s \in F_f^\times$ such that $\omega = 2^{-1}c$. Define

$$(1.7) \quad (J_2, g)(p) = \psi(\det p)^{-1} g(p\pi)$$

for every $p \in \mathfrak{G}_A$.

Then $J_2 g$ belongs to $S_{2m,\omega}(2^{-1}c, \psi^{-2})$. We put $g^* = J_2^{-1} g = (g^*_1)$.

Here we assume the following condition.

$$(1.8) \quad \begin{array}{l}
(i) \quad \psi_p(x) = (\text{sgn } x_p)^{m_p} |x_p|^{2\mu_p} (x \in F^\times_p), \text{ where } (\text{sgn } x_p)^{m_p} = \\
\prod_{i=1}^{m_p} |x_p|^{|\sum_{j=1}^{\infty} |x_p|x_p|^{2\mu_p}} (x_0, \ldots, x_{r_1}) \in F^\times_0, \\
|\mu_p|^{2\mu_p} = \prod_{i=1}^{m_p} |\mu_p|^{2\mu_p} (x_0, \ldots, x_{r_1}) \in \mathbb{R}^{m_p} \text{ and } \sum_{i=1}^{m_p} \lambda_i + \sum_{i=1}^{m_p} \mu_{r_1+i} = 0.
\end{array}$$

(ii) If v is a common prime of 2 and r, then φ_e satisfies either

(a) $(\tau r)_e = h_e = 4r$ and $\varphi_e(1 + 4x) = \varphi_e(1 + 4x^2)$ for every $x \in \mathfrak{a}_e$, or

(b) $(\tau r)_e \neq h_e < 4r$.

(iii) If $f' \in S_{2m+(1/2)m_r,\omega}(b, b'; \psi)$ and $f'|T_{r} = N_{r}^{-1} \chi(v)x'$ for every $v \not\mid h^{-1}r$, then f' is a constant times f.

We shall deduce the following theorem.

THEOREM 1. Let $f \in S_{m+(1/2)m_r,\omega}(b, b'; \psi)$ be an eigenform of all Hecke operators T_v satisfying $f|T_v = N_v^{-1} \chi(v)f$. Suppose that f, τ, h, c, ψ and φ satisfy the condition (1.8), and g and g^* are the elements in Theorem 0.2. Then
\[\mu(\tau, q^{-1}b; f, \psi) \mu(\tau, q^{-1}b; f^*, \bar{\psi}) \langle g, g \rangle / \langle f, f \rangle \]
\[= Q \sum_{\sigma \in \Gamma} \mu(\tau) \psi(\tau) N(\tau) \Gamma(\tau) D(0, g, \varphi, t^{-1}h^{-1}r), \]
where \(D(0, g, \varphi, t^{-1}h^{-1}r) \) is given in \([4, \text{ p. } 37]\), \(Q = 2^{(r/2)-(m)+3n-1} \pi^{-m} \).

Let \(\eta \) be an element in \([4, \text{ p. } 38]\). Put \(\hat{h}(\xi) = \langle \Theta(\xi, \rho; \eta, g(p)) \rangle \), where \(\Theta(\xi, \rho; \eta, g(p)) \) is the function given in \([4, (2.4)]\) and \(g \) is the function given in Theorem 0.2. By \([7, \text{ Proposition } 5.8]\) and \([2, \text{ Theorem } 5.2 \text{ and the arguments in p. } 440]\), we have
\[\hat{h}(\xi) = A h(\xi) \]
with a constant \(A \) under the assumption (1.8), where \(h(\xi) \) is the function given in (1.2). Since \(\langle h, h \rangle = e^{m^{-1}/2} \varphi(\xi) N(\rho)^{-1} \psi(\xi)^{-1} \langle f, f \rangle \) and
\[\langle \Theta(\xi, \rho; \eta, g(p)) \rangle = \int \Theta(\xi, \rho; \eta, g(p)) \rho(p) \frac{1}{\rho(\xi)} \varphi(\xi) \psi(\xi) N(\rho)^{-1} \psi(\xi)^{-1} \langle f, f \rangle, \]
we obtain
\[\hat{h}(\xi) = A h(\xi) \]
with \(\Phi, h, C \) as in \([4, \text{ p. } 39]\). As shown at \([7, \text{ p. } 340]\), \(A h(\xi) = \langle \Theta(\xi, \rho; \eta, g(p)) \rangle \) implies that
\[\hat{h}(\xi) = \langle \Theta(\xi, \rho; \sigma), g^*(p) \rangle = \sum \langle \Theta(\xi, w; \sigma, g^*(p)) \rangle, \]
where \(\sigma, g^* \) (resp. \(\Theta(\xi, \rho; \sigma) \)) is the symbol given in \([7, (6.2)]\) (resp. \([4, (2.4)]\)).

Given a function \(f \) on \(D \) and \(z = (\xi, \sigma) \) in \(G \), we put
\[f_{\mid \sigma}(\sigma(\xi)) = (c_{\xi} + d_{\xi})^{-1} f(\sigma(\xi)), \]
where \(\sigma = (\xi_1, \ldots, \xi_n, \delta_{n+1}, \ldots, \delta_{n+k}) \), \(z = (\xi_1, \ldots, \xi_n) \) and \(\delta_{n+i} = z_{n+i} + j w_{n+i} \).

Let \(\Gamma = \Gamma[z, b] \) (cf. \([4, \text{ p. } 29]\)). We put
\[f_{\mid \sigma}(\xi) = (c_{\xi} + d_{\xi})^{-1} f(\xi), \]
where \(\xi = (z_1, \ldots, z_n) \).

Hisashi Kojima
On the Fourier coefficients of Hilbert modular forms

\begin{equation}
E(\mathfrak{f}, \varphi; \Gamma) = \sum_{z \in R} \varphi_{\sigma}(d_z) \psi(\varphi(d_z) \Phi^{-1}) N(\mathfrak{f})^{2s} \zeta_{\varphi}(d_z, 2^m z + (i\delta - m)/2, w, 2^m z + iy)_{|m|z}
\end{equation}

\[C(\mathfrak{f}, \varphi; \Gamma) = L_{2s}(2s, \varphi) E(3, \varphi; \Gamma) \]

Here \(R \) is a set of representatives for \(P \setminus \{ G \cap P \Delta]\{x, h\} \), for \(x \in R \), we define \(\mathfrak{f}_x \) by writing \(\alpha = p^x \) with \(p \in P \) and \(x \in D(x, h) \), and setting \(\mathfrak{f}_x = d_p \). We put

\begin{equation}
L_{2s}(s, \varphi) = \sum_{m=0}^{\infty} \varphi^*(m) N(m)^{-s}.
\end{equation}

We obtain the following proposition.

\textbf{Proposition 2.} Let \(\Gamma = \Gamma[2^{-1}]\{1, 2, 3\} \) and let \(\mathcal{A}(\varphi) \) be the function in [4, (4.1)]. Then

\begin{equation}
\int_{\Gamma \setminus \mathcal{A}} h(\mathfrak{f}) \mathcal{A}(\varphi) E(3, \varphi + 1/2, \Gamma) \zeta^{m+(1/2)} v_{1/2} w^2 d \mathfrak{f} = D_{\varphi}^{1/2} \mathcal{A}(\varphi) \mathcal{A}(\psi) (2\pi)^{-2m_2 - m_1 + (1/2)} e^{-2m_2 + (1/2)v} \times \Gamma(2m_2 - m_1 + (1/2)v)
\end{equation}

By (1.13) and Proposition 2, we see that \(\mathcal{A} \) times the integral in (1.17) is equal to

\begin{equation}
\sum_{\mathfrak{f}} \left(\int_{\Gamma \setminus \mathcal{A}} \mathcal{A}(\varphi) \Theta^2(\mathfrak{f}, w; \sigma_z) E(3, \varphi + 1/2, \Gamma) \zeta^{m+(1/2)} v_{1/2} w^2 d \mathfrak{f}, \mathcal{A}(\varphi) \right).
\end{equation}

By the same method as that of [7, pp. 543–544], we have the following equation (cf. [4, (4.19)])

\begin{equation}
A N(\eta r)^{-1} \mathcal{A}(\mathfrak{f})^{-1} \mathcal{A}(\varphi) \mathcal{A}(\psi) \zeta^{m+(1/2)} v_{1/2} \pi^{1/2} \pi^{1/2}
\end{equation}

By the same method as that of [7, pp. 543–544], we have the following equation (cf. [4, (4.19)])

\begin{equation}
A N(\eta r)^{-1} \mathcal{A}(\mathfrak{f})^{-1} \mathcal{A}(\varphi) \mathcal{A}(\psi) \zeta^{m+(1/2)} v_{1/2} \pi^{1/2} \pi^{1/2}
\end{equation}

By the same method as that of [7, pp. 543–544], we have the following equation (cf. [4, (4.19)])

\begin{equation}
A N(\eta r)^{-1} \mathcal{A}(\mathfrak{f})^{-1} \mathcal{A}(\varphi) \mathcal{A}(\psi) \zeta^{m+(1/2)} v_{1/2} \pi^{1/2} \pi^{1/2}
\end{equation}
\[\times \Gamma'(2a+n, -i\mu + i\nu) \sum_{m} \mu_f, (\tau, q^{-1}\text{int}) N(m)^{-2\tau} \]

\[= \sum_{\ell} \left(\sum_{\mathfrak{p} \in B} \psi^* (\mathfrak{p}) N(\mathfrak{p})^{2\ell + 1} S_{\mathfrak{p}} (w, \bar{s}, \theta_{\mathfrak{p}} (w)) \right), \]

where \(B \) is determined by \(G \cap P_a D [2^{-1} b^{-1} \mathfrak{n}, 2b] = \prod_{\mathfrak{p} \in B} P_{\mathfrak{p}} \Gamma \). The ideals \(\mathfrak{p} \) are as in (1.15), and run through a set of representatives for the ideal class group of \(F \). Here

\[(1.20) \quad S_{\mathfrak{p}} (w, s) = \sum_{\zeta, b} \sigma_1 (\gamma \zeta) \mu_f (b) |\zeta, w|^{-m} |\zeta, w|/ |\eta(w)|^{-2m_{\mathfrak{p}} - n_{\mathfrak{p}} + mi} \]

\[\times \left| \frac{\zeta + b \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}{\eta(w)} \right|^{-2(m_{\mathfrak{p}} + n_{\mathfrak{p}} + mi)}, \]

where \([*, *]\) and \(\eta(*)\) are symbols given in [4, (2.3)] and the sum is over the pairs \((\zeta, b) \in V \times \mathfrak{p} / \sigma^x \) such that \(\zeta \neq 0 \) and \(\det \zeta = -b^2 \) with \(V = \{ \zeta \in M_2 (F) | \text{tr} \zeta = 0 \} \). Furthermore, we have chosen \(\gamma \in F_x^* \) such that \(\gamma v = \mathfrak{p} \gamma \) and \(\gamma_s = 1 \) for \(v \in \mathfrak{p} \). By [7, 7.14a, 7.14b], we have the following.

Proposition 3. Let \(q \) range through a set of representatives for \(2^{-1} t_x \text{rch}/t_x \text{rch} \) and let \(\Gamma^x = \Gamma [2^{-1} b^{-1}, t_x \text{rch}] \). Then there exist functions \(T_{\mathfrak{p}} (w, s) \) such that

\[(1.21) \quad S_{\mathfrak{p}} (w, s) = (-1)^{[m]} 2^n \sum_q T_{\mathfrak{p}} (w, s) (q, 0, 1) \]

\[\sum_{\mathfrak{p} \in B} \psi^* (\mathfrak{p}) N(\mathfrak{p})^{2\ell} T_{\mathfrak{p}} (w, s - 1/2) = N(2^{-1} t_x \text{rch})^{2\ell} C(w, s; \Gamma \gamma) E(w, s; \Gamma \gamma) \]

By Proposition 3, we find that the expression of (1.19) is equal to the value at \(s = t \) of

\[(1.22) \quad (-1)^{[m]} 2^d \sum_{\lambda} \langle N(2^{-1} t_x \text{rch})^{4 + t + 1} C(\lambda, s + 1/2; \Gamma \gamma) E(\lambda, t + 1/2; \Gamma \gamma), \theta' (\lambda) \rangle. \]

The equality (1.22) becomes

\[(1.23) \quad (-1)^{[m]} 2^d \text{vol} (\Gamma [2b^{-1}, 2^{-1} \text{rch}] \setminus D)^{-1} \sum_{\lambda} N(2^{-1} t_x \text{rch})^{4 + t + 1} \]

\[\times \int_{\Gamma \setminus D} \frac{C(\lambda, s + 1/2; \Gamma \gamma) E(\lambda, t + 1/2; \Gamma \gamma) \theta' (\lambda) \gamma^{2m}}{d\lambda}. \]
The integral appeared in (1.23) is equal to

\[\int_{\Gamma \backslash \mathcal{O}} \frac{C(z)E(z, i + 1/2; \Gamma')}{\Gamma'} \, d\gamma = \sum_{\varphi \neq \psi} \phi_\varphi(d_2) \phi_\psi^*(d_2 \mathcal{O}_z^{-1}) N(\mathcal{O}_z)^{2s+1} \times \int_{\Psi_\varphi} \gamma_\varphi^2(\delta) C_\varphi(z) \gamma^{n+2(\mu+3m-i\zeta)/2} w^{2(i+1/2)\mu+\mu} \, d\mu, \]

where \(\Psi_\varphi = \Gamma \cap \mathcal{O}_z^{-1} \backslash \mathcal{O} \), \(g_\varphi = g_\varphi \|_{2m} \mathfrak{a}^{-1} \) and \(C_\varphi(z) = C(z, i + 1/2; \Gamma') \|_{m} \mathfrak{a}^{-1} \).

By [7, Lemma 3.8], we have

\[\int_{\Psi_\varphi} g_\varphi^2(\delta) C_\varphi^2(z) \gamma^{n+2(\mu+3m-i\zeta)/2} w^{2(i+1/2)\mu+\mu} \, d\mu = \frac{1}{\mu} \log(\delta^2 \gamma^{n+2(\mu+3m-i\zeta)/2} w^{2(i+1/2)\mu+\mu}) \gamma \frac{\mu}{\delta} \gamma^{n+2(\mu+3m-i\zeta)/2} w^{2(i+1/2)\mu+\mu} \, d\mu, \]

and

\[\phi_\varphi(d_2) \phi_\psi^*(d_2 \mathcal{O}_z^{-1}) N(\mathcal{O}_z)^{-2s+1} \gamma^{n+2(\mu+3m-i\zeta)/2} w^{2(i+1/2)\mu+\mu} C_\varphi(z) \]

where \(\phi_\varphi(d_2) \phi_\psi^*(d_2 \mathcal{O}_z^{-1}) N(\mathcal{O}_z)^{-2s+1} \gamma^{n+2(\mu+3m-i\zeta)/2} w^{2(i+1/2)\mu+\mu} C_\varphi(z) \)

where \(\Phi_\varphi \) is given in [4, (1.36) and (1.37)] and [2, p. 409] for a fractional ideal \(\mathfrak{m} \) and a signature \(\sigma \in \{ \pm 1 \}^n \), and \(\zeta(y, w, bh; \delta u + (u + m + i\zeta)/2, \delta u + (u - m + i\zeta)/2, 2(s + 1/2) + i\mu) \) is given in [4, (3.21)].

We note the formula (cf. [1, p. 334]),

\[\int_{\mathfrak{m}} y^s K_v(y) K_{-v}(y) \, dy = 2^{i-2} \frac{\Gamma(\frac{1-s^+ + s^+ + 1}{2}) \Gamma(\frac{1-s^- + s^- + 1}{2}) \Gamma(\frac{1-s^+ + s^- + 1}{2}) \Gamma(\frac{1-s^+ + s^- + 1}{2})}{\Gamma(i+1)} \]

By the same method as that of [4, p. 59], we see that the integral (1.24) is equal to

\[\text{(1.26)} \int_{\mathfrak{m}} y^s K_v(y) K_{-v}(y) \, dy = 2^{i-2} \frac{\Gamma(\frac{1-s^+ + s^+ + 1}{2}) \Gamma(\frac{1-s^- + s^- + 1}{2}) \Gamma(\frac{1-s^+ + s^- + 1}{2}) \Gamma(\frac{1-s^+ + s^- + 1}{2})}{\Gamma(i+1)} \]
\begin{equation}
(1.27) \quad \bar{\gamma}(\phi) 2^{\gamma} \mathcal{N}(2x, b^{-1} d^{-1}) \sum_{x} \mathcal{N}(x) 2^{x+2i} \sum_{f, a} \mu(f) \bar{\phi}^{*}(f) \mathcal{N}(1)^{1-x} \mathcal{N}(\eta)^{2x} \times \sum_{a \in F, a \neq 0} c(a) \mathcal{N}(a) \mathcal{N}(b)^{-2a} \times \frac{\phi^{*}(ab^{-1}) \mathcal{N}(2\pi)^{1/2} \gamma^{*}(\mathcal{N}(\eta)^{1-x})}{\gamma^{*}(\mathcal{N}(\eta)^{1-x})} \times \Gamma^{*}((t - s)u_{r} + v + (1/2)u_{z})^{-1} \times \Gamma^{*}((t + s)u_{r} - v + (1/2)u_{z})^{-1} \times \Gamma^{*}((t + s)u_{r} - v + (1/2)u_{z}) M(s, t). \tag{1.28}
\end{equation}

where

\begin{equation}
M(s, t) = \int_{y > 0} \exp(-2\pi y) \xi(y, t; \mathcal{N}(\eta)^{1-x}) dy \tag{1.29}
\end{equation}

Here \(\xi(y, t; \mathcal{N}(\eta)^{1-x})\) is the function in \([7, p. 530]\). Therefore we find that the equality (1.23) is equal to

\begin{equation}
(1.28) \quad (-1)^{l+m} 2^{\mu} \text{vol}(\mathbb{H}^{l+m} \setminus \mathbb{D})^{-1} \mathcal{D}^{\mu} \mathcal{D}^{\nu} \mathcal{N}(\eta)^{1-x} \times \sum_{\mathcal{N}(\eta)^{1-x}} \mu(f) \bar{\phi}^{*}(f) \mathcal{N}(1)^{1-x} \times \mathcal{N}(\mathcal{N}(\eta)^{1-x}) \times \sum_{m, n} c(t^{-1} \mathcal{N}(\eta)^{1-x}) \mathcal{N}(\mathcal{N}(\eta)^{1-x}) \times 2^{2u_{z} - i\eta} \frac{(4\pi)^{-u_{z} + (2x - 2)b^{-1} d^{-1}}}{2^{2u_{z} - i\eta}} \times \Gamma^{*}(2\mathcal{N}(\eta)^{1-x} + (1/2)u_{z})^{-1} \times \Gamma^{*}((t - s)u_{r} + v + (1/2)u_{z})^{-1} \times \Gamma^{*}((t + s)u_{r} - v + (1/2)u_{z})^{-1} \times \Gamma^{*}((t + s)u_{r} - v + (1/2)u_{z}) M(s, t) \tag{1.28}
\end{equation}

where \(u = (1, \ldots, 1)\). Put \(Y_{l}(s, t) = \sum_{m, n} c(t^{-1} \mathcal{N}(\eta)^{1-x}) \mathcal{N}(\mathcal{N}(\eta)^{1-x}). \)
We note that
\[
\lim_{s \to \pm \infty} Y_i(s, s) = D(0, g^*, \varphi, t^{-1} \text{htc})
\]
and
\[
M(s, s) = i^{\lfloor m \rfloor} 2^{-\lfloor u \rfloor - \lfloor m \rfloor + 3 \lfloor u \rfloor} \Gamma'(m)(2\pi)^{\lfloor m \rfloor - \lfloor m \rfloor} (2\pi)^{-(1/2)u} \\
\times 2^{-(1/2)u} \zeta(2m) \psi_i(s + (m - i\lambda)/2) \Gamma''(s + (1 + m - i\lambda)/2)^{-1}
\]
(cf. [7, (4.18)])

Therefore, by (1.12), (1.19) and (1.28), we have
\[
(1.29) \quad i^{\lfloor m \rfloor} 2^{-\lfloor u \rfloor + 3 \lfloor u \rfloor} (1/\sqrt{2\pi})^{\lfloor m \rfloor} \theta_d(1/2) \tau_s^{\lfloor u \rfloor + (1/2)u} |\tau_s|^{-3} N(qz)^{-1} \langle g, g \rangle \\
\times \mu_f(\tau, q^{-1}) \text{vol}(\Gamma[2b^{-1}, 2^{-1} \text{htc}] \backslash D)^{-1} \langle f, f \rangle^{-1} N(qz^{-1}) \\
\times 2^{-n/2 - \lfloor u \rfloor} 2^{-3/2} \psi_d(\tau) |\tau_s|^{(1/2)u} \psi_i(\tau) \pi^{n/2} \tau^{2\lfloor u \rfloor} 2^2 \tau^{2\lfloor u \rfloor} \\
\times \sum_m \mu_f(\tau, q^{-1} bm) N(m)^{-1} \\
= (-1)^{\lfloor m \rfloor} 2^d \text{vol}(\Gamma[2b^{-1}, 2^{-1} \text{htc}] \backslash D)^{-1} h(2\tau)^{-1} N(qz)^{-1} Y_i(s, s)(2\pi)^{2} 2^{-2n} \tau(4\pi)^{-u} \\
\times \Gamma''(v + 1/2) \Gamma'(-v + 1/2) i^{\lfloor m \rfloor} 2^{-\lfloor m \rfloor + i\lambda} \Gamma'(m) \\
\times (2\pi)^{\lfloor m \rfloor - \lfloor m \rfloor} (2\pi)^{-(1/2)u} \zeta(2m) 2^{-n/2} \zeta(1/2 + \lfloor m \rfloor - i\lambda).
\]

Letting \(s \) tend to \(+\infty \) we deduce our Theorem 1.

§ 2. A Correct Proof of Theorem 0.1

We use the notation in [4] and [5]. The changes of [4] are as follows:

(1) [4, (2.15)] should read
\[
ev_r(z) = \prod_{i=1}^{r} e^{-2\Re(\zeta^{(r+1)} u_{n+1})}. \quad ev_r(z/2) = \prod_{i=1}^{r} e^{\Re(\zeta^{(1)} z_{n+1})}.
\]

(2) [4, (2.24)] should read
\[
\text{This proposition implies that}
\]
\[
\mathfrak{S}(y(\beta^{-1}(\delta)))^{-n}\mathcal{G}_{m-n}(\beta^{-1}(\delta), tu, t(\beta^2)) \phi_n(t(\beta^2)/2)
\]
\[\times \varepsilon_s(\sqrt{-1}(\tau^2) 3\mathfrak{S}(\beta(\beta^{-1}(\delta)))^{-1}/4) \exp(-\pi(|t|v)^2w(\beta(\beta^{-1}(\delta)))^{-1})
\]
\[\times \mathfrak{S}(\beta^{-1}(\delta))^{m+1/2}m^1n^1(j(\beta, \beta^{-1}(\delta)))^n\mathcal{W}(\beta^{-1}(\delta))
\]
\[= (y'/j(y^{-1}\beta^{-1}, \delta')(j(y^{-1}\beta^{-1}, \delta'))^{-n}J_{m-n}(y^{-1}\beta^{-1}, \delta')
\]
\[\times \mathcal{G}_{m-n}(\delta', tu)\phi_n(t(\beta^2)/2)(y^{-1}\beta^{-1}, \delta')^{-n}
\]
\[\times \varepsilon_s(\sqrt{-1}(\tau^2) 3\mathfrak{S}(\beta'')^{-1}/4) \exp(-\pi(|t|v)^2w(\beta'^{-1}(\delta''))^{-1})h(y^{-1}\beta^{-1}(\delta''))
\]
\[\times \mathfrak{S}(y^{-1}\beta^{-1}(\delta'))^{m+1/2}m^1n^1w(y^{-1}\beta^{-1}(\delta'))^2;
\]

(3) The line 11 in [4, p. 44]:
\[
\phi_{\tau}(t(\beta^2)/2)\phi_{\tau}(\alpha, t) = \phi_{\tau}(t(\beta^2)/2)
\]
should read
\[
-\phi_{\tau}(t(\beta^2)/2)\phi_{\tau}(\alpha, t) = \phi_{\tau}(t(\beta^2)/2)
\]

(4) [4, (2.25)] should read
\[
(y')^{-n}\phi_{\tau}(t(\beta^2)/2)\mathcal{G}_{m-n}(\delta', tu)J_{m}(\beta, \beta^{-1}(\delta')) t^n h(\beta^{-1}(\delta'))
\]
\[\times \varepsilon_s(\sqrt{-1}(\tau^2) 3\mathfrak{S}(\beta'')^{-1}/4) \exp(-\pi(|t|v)^2w(\beta'^{-1}(\delta''))^{-1})\mathfrak{S}(\beta'^{-1}(\delta'))^{m+1/2}m^1n^1.
\]

(5) The element \(\ell \) in [4, (2.33)] runs over \(t, t_0, n \) under the condition that \(\ell \).

We sketch a correct proof of Theorem 0.1. Let \(f \) be an element of \(\mathcal{S}_{m+1}^{(1/2)}(b, b'; \psi) \). Since \(f \) is holomorphic with respect to \(z_1, \ldots, z_n \), the function \(g_{\tau, \lambda}(w) \) in [4, (2.11)] is holomorphic with respect to \(z'_1, \ldots, z'_{n+2} \), where \(w = (z'_1, \ldots, z'_n, \lambda_{n+1}, \ldots, \lambda_{n+2}) \) (cf. [4, p. 408], [4, (2.14)] and [5, (2)]). To determine the Fourier coefficients of \(g_{\tau, \lambda}(w) \), it is sufficient to calculate \(g_{\tau, \lambda}(w) \) for \(z'_1 = i y'_1, \ldots, z'_n = i y'_n (y'_1 > 0, \ldots, y'_n > 0) \). We put \(h_1 = 0, \ldots, h_{n+1} = 0 \) in [4, (2.15) and (2.16)]. By [6, pp. 772–777], [6, pp. 783–785], [8, pp. 1015–1024], [8, Theorem 1.2] and [8, Proposition 1.3], we can prove the proposition 2.3 in [4] in the case of \((h_1, \ldots, h_{n+1}) = (0, \ldots, 0) \). We note [5, (6), (7), (8) and (9)]. By the same method as that of [4], we deduce
On the Fourier coefficients of Hilbert modular forms

\[\Psi_{r,i}(f)(w) = N(t_i/t) \sum \sum_{m, l | t_i, t^{-1}m} N(m)l^{-1} |l|^{-1} \varphi_{r,l}(f) \varphi^*(f/t) \mu_f(r, (r \cdot q)^{-1} m) \]

\[\times e_{\overline{r}}(hu) \prod_{i=1}^{\ell} \left(\frac{c(\text{sgn}(|l_i|)) \exp(-2\pi \Im(z)) v K_2, (4\pi |l|/v)}{2} \right) \]

for \(w = (iy_1', \ldots, iy_{r_i+1}', \ldots, iy_{r_i+r_j}') \), where \(m \) runs over all integral ideals, \(l \) runs over \(t_i \tau^{-1} m \) under the condition \((m^{-1} r/t_i, r \tau) = 1 \), \(\bar{a}_{r_i} = u_{r_i+1} + \bar{b}_{r_i+1} \), \(z = (iy_1', \ldots, iy_{r_i}') \), \(u = (u_{r_i+1}', \ldots, u_{r_i+r_j}') \), \(v = (v_{r_i+1}', \ldots, v_{r_i+r_j}') \), \(l^{m-1} = \prod_{i=1}^{t_i} (|l_i|)^{m-1} \) and \(|l| = \prod_{i=1}^{t_i} |l_i^{r_i+1}| \). Therefore we deduce Theorem 0.1.

References

Department of Mathematics
Graduate school of Science and Engineering
Saitama University, Saitama, 338-8570
Japan
E-mail: hkojima@rimath.saitama-u.ac.jp