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ABSTRACT 41 

 42 

It is generally accepted that year-to-year variability in moisture conditions and drought are linked 43 

with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface 44 

moisture state at seasonal lead-times has been challenging due to the absence of a long soil 45 

moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. 46 

Here we apply model simulations of surface soil moisture that numerically assimilate observations 47 

from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with the US Forest 48 

Service’s historical Fire-Occurrence Database over the contiguous United States. We quantify the 49 

relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by 50 

land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25-51 

degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires 52 

when months preceding fire season are wet, while larger fires are more frequent when soils are 53 

dry. This result is consistent with the concept of increased fuel accumulation under wet conditions 54 

in the pre-season. These results demonstrate the fundamental strength of the relationship between 55 

soil moisture and fire activity at long lead-times and are indicative of that relationship’s utility for 56 

the future development of national-scale predictive capability. 57 

 58 

1. INTRODUCTION 59 

  60 

Wildfires in the United States have increasingly become larger and more frequent during the last 61 

several decades, contributing to greater environmental degradation, property damage, and 62 

economic losses (Dennison et al. 2014, Morton et al. 2003). By 2025, the cost of fire suppression 63 

in the United States is predicted to increase to nearly $1.8 billion per year (United States 64 

Department of Agriculture Forest Service 2015). As a result, there is growing need for the 65 

capability to direct operational fire resources before the fire season begins. This points to the 66 

growing importance of seasonal to sub-seasonal forecasting capacity for wildfires, similar to those 67 

that are being developed for weather and natural resources management (National Academies of 68 

Sciences, 2016). 69 

 70 

Wildfires are typically defined as uncontrolled fires that occur in areas of combustible vegetation, 71 

and depend greatly on vegetation type, structure, arrangement, and moisture. In the contiguous 72 

United States, 90% of wildfire ignitions are associated with human activity, but several other 73 

environmental factors such as fuel availability, fuel moisture, wind, and lightning strikes can be of 74 

critical importance in ignition and growth. The largest contributing factors to general wildfire risk 75 

are the pre-fire-season accumulation of fuels and changing fuel moisture content (FMC), both of 76 

which can contribute to greater fire severity in a given region. Depending on the vegetation class, 77 

more fuels and lower FMC generally indicate higher fire risk and greater fire severity potential—78 

the degree of environmental change caused by a fire (e.g. Verbesselt et al. 2002; Van Der Werf et 79 

al. 2008). 80 

 81 
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The spatial distribution and the moisture content of transient (i.e. fast-growing) fuels tend to be 82 

associated with precipitation and soil moisture conditions at the land surface over the months prior 83 

to fire season, when some regions experience an annual wet period or rainy season (Chuvieco et 84 

al. 2004; Krueger et al. 2015). These results suggest that soil moisture may be a good predictor of 85 

fire occurrence and fire severity, even at seasonal lead times. 86 

 87 

However, in order to understand this relationship, the required local-scale that are adequately 88 

discretized and have a spatially and temporally uniform structure are difficult to obtain over large 89 

domains (Famiglietti et al. 2008). Therefore it is challenging to develop a quantitative description 90 

of the relationship between land surface wetness conditions in the period before fire-season and 91 

wildfire occurrence during the fire season, and the specific impacts of surface moisture conditions 92 

on wildfire occurrence across land cover types is largely unquantified. 93 

 94 

The National Interagency Fire Center currently publishes seasonal fire potential outlook reports 95 

for the United States (Predictive Services, National Interagency Fire Center 2016). These reports 96 

use the US Drought Monitor, past monthly temperature and precipitation deviations from average, 97 

and one and three-month weather outlooks to qualitatively assess regional fire potential. The fire 98 

potential maps produced offer a tercile assessment—normal, above normal, or below normal—of 99 

fire potential over broad geographic regions. This method does not currently apply a numerical 100 

relationship between seasonal fire occurrence and variability in contributing environmental factors 101 

such as soil moisture. It also does not yet produce a quantitative estimate of probable fire 102 

occurrence that could be used in a risk-assessment framework. 103 

 104 

The Palmer Drought Severity Index (PDSI), additionally, has been shown to have utility in 105 

assessing drought impacts on wildfire activity (Xiao and Zhuang 2007). However, the PDSI, 106 

similar to the National Interagency Fire Center outlook reports, is based on temperature and 107 

precipitation sums and not actual soil moisture observations, and has been shown to be biased for 108 

assessment of drought conditions in some cases (Sheffield et al. 2012). Burgan et al. (1998) also 109 

developed a fire danger fuel model map across different ecoregions, largely based on satellite 110 

NDVI observations, but no soil moisture record was then available. These studies provide both a 111 

precedent and evidential basis for the use of large-scale climatological variables in wildfire 112 

assessment. The recent availability of large-coverage soil moisture products, specifically those 113 

produced in a combination of remote sensing and land-surface model simulations through 114 

numerical data assimilation, now offer the ability to quantify such relationships at finer scales and 115 

across large-domains.  The development of these data sets should provide a unique opportunity for 116 

advancement in seasonal wildfire risk assessment. 117 

 118 

This study thus seeks to integrate NASA earth observation data and the USDA Forest Service’s 119 

historical fire record to quantify climatic relationships with fire activity. Model-assimilated 120 

hydrology observations are leveraged to examine finer spatial and longer temporal scales and to 121 
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establish the quantitative basis for seasonal forecasting relationships. Since pre-season soil 122 

moisture can serve as a proxy for pre-season fuel accumulation and live fuel moisture conditions, 123 

a historical record of remotely sensed soil moisture data products was examined to disentangle the 124 

bearing pre-fire season soil moisture conditions have on a succeeding year’s fire activity. With a 125 

proven statistical relationship, the methods developed herein can in turn be applied to improve fire 126 

prediction and risk assessment capabilities in the contiguous US. As more communities in the earth 127 

sciences work at achieving seasonal to sub-seasonal (S2S) predictive capabilities, the importance 128 

to society of knowing what might happen at several months lead-time is clear. 129 

 130 

Launched in 2002, NASA’s Gravity Recovery and Climate Experiment (GRACE) mission 131 

provides monthly observations of terrestrial water storage anomalies (TWSA) that describe spatial 132 

and temporal changes in the amount of water stored in soils, groundwater and above the land 133 

surface (Tapley et al. 2004), which have proven useful in the monitoring of changing hydrologic 134 

conditions (e.g. Famiglietti et al. 2011). However, GRACE observations have an intrinsically low 135 

spatial resolution (~150,000 km2), due to the altitude of the satellites. This makes GRACE TWSA 136 

observations difficult to apply for natural resource management. One way to circumvent the 137 

resolution limitations of GRACE is to perform a physical downscaling of the GRACE observations 138 

through numerical data assimilation. This has been done with much success for drought and flood 139 

monitoring applications (Houborg et al. 2012, Reager et al. 2015), and is currently included as an 140 

input to the U.S. Drought Monitor framework (Hobourgh et al. 2012). The resulting surface soil 141 

moisture data, downscaled from raw GRACE data with the CLSM, form the base climatic 142 

independent variable in this study. 143 

 144 

Building upon these successes, we investigate the relationship between GRACE-assimilated 145 

seasonal surface (top several centimeters) soil moisture (Zaitchick et al. 2008) as a proxy for fuel 146 

moisture content and yearly wildfire occurrence and burn extent. We apply GRACE-assimilated 147 

soil moisture simulations downscaled with the Catchment Land Surface Model (CLSM) and in-148 

situ wildfire observations over the continental United States during the 2003-2012 period (Short 149 

2015), at 0.25-degree spatial resolution, with the 2012-2013 data withheld for validation. Each 150 

grid cell represents approximately 785.18 km^2, or 194022.02 acres. While other remotely sensed 151 

soil moisture data products exist, such as those derived from Soil Moisture and Ocean Salinity 152 

(SMOS) and AMSR-E/Aqua, these GRACE-assimilated data offer monthly datasets over a long 153 

temporal record and with higher spatial resolution that are more ideal for calibrating a historical 154 

regression model over the contiguous United States. We disaggregate the study domain by land 155 

cover type (Homer et al. 2015), under the hypothesis that wetness should modulate different land 156 

cover responses to wildfire ignition differently. Surface soil moisture alone, as opposed to root 157 

zone moisture content and total terrestrial water storage, was utilized in order to optimally capture 158 

seasonal variance in wetness that affects all dominant species across land cover types, including 159 

grasses with shallow roots (Famigietti et al. 1999). Additionally, utilizing surface soil moisture in 160 

this way provides a reference model that can then be applied with future Soil Moisture Active 161 

Passive (SMAP) data. We then determine the historic relationship between wildfire occurrence 162 
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and CLSM-assimilated surface soil moisture across land cover types, and cross-validate a 163 

predicted response to show the strength of the relationship. In doing so, this study reveals complex 164 

nonlinearities in the influence of fuel moisture content on wildfire severity, and further establishes 165 

the need to incorporate accurate surface moisture information in the quantitative assessment of fire 166 

risk and potential in the United States. The aim of this study is to demonstrate a relationship 167 

between pre-season soil moisture and fire occurrence likelihood and to characterize large-scale 168 

fire sensitivity to seasonal moisture patterns. 169 

 170 

2. DATA AND MODELS 171 

 172 

2.1 GRACE AND CLSM-DA 173 

 174 

NASA’s GRACE mission consists of two Earth-observing satellites orbiting in tandem and spaced 175 

about 220 kilometers apart at roughly 450 km altitude. A K-band Ranging System (KBR) provides 176 

precise measurements (within 10 µm) of the distance between the satellites caused by spatial and 177 

temporal fluctuations in the Earth’s gravity field (Tapley et al. 2004). These measurements are 178 

used to determine variations in the Earth’s mass distribution at a horizontal resolution of 150,000 179 

km2, with generally higher measurement accuracy across larger spatial scales (Wahr et al. 2004). 180 

The monthly to decadal temporal changes in the gravity field are attributed primarily to mass 181 

redistribution in the atmosphere, ocean, continents and solid earth. After isolation and correction 182 

of ‘unwanted’ signals for hydrology applications (i.e. ocean, atmosphere, and postglacial rebound), 183 

these measurements, referred to as terrestrial water storage anomalies (TWSA), are assumed to 184 

approximate the movement of water mass over time. Swenson and Wahr (2004) and Wahr et al. 185 

(1998) offer general post-processing logistics and Landerer and Swenson (2012) offer specifics on 186 

scaling, signal restoration, and regional error calculation. The GRACE dataset utilized for this 187 

project is processed by the Texas Center for Space Research (CSR; version CSR-RL05) and 188 

NASA’s Jet Propulsion Laboratory. It is a global, monthly, one degree gridded, scaled GRACE 189 

land data product available for download at grace.jpl.nasa.gov. The data for this project is from 190 

the time period April 2002 to December 2013.  191 

  192 

Developed at the NASA Goddard Space Flight Center, The Catchment Land Surface Model 193 

(CLSM) is a physically based land surface model (Koster et al. 2000). For the model forcing, the 194 

horizontal structure of a rectangular atmospheric grid is separated into topographically-defined 195 

catchments with an estimated average area of 4000 km2. Water is spatially and vertically 196 

distributed in the model determined by topography and the model’s hydrologic processes are 197 

generally determined by the catchment’s topographical statistics. In the assimilation algorithm, the 198 

model-generated terrestrial water storage moisture elements are corrected with the GRACE 199 

observational estimate using an Ensemble Kalman Smoothing Filter method (EnKS) as described 200 

in Zaitchik et al. (2008). Assimilation incorporates the relative uncertainty in the model and the 201 

observations. In this process, a two-step smoother is applied to manage GRACE's monthly 202 

temporal resolution both forward and backwards in time. In order to create consistency among 203 
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observed and modeled variables, the GRACE water storage anomalies are changed to absolute 204 

values by adding the simulated time mean water storage variable from the CLSM output to the 205 

observations. The observations are directly applied to the column-integrated forecasted variable 206 

(the catchment deficit) and the primary non-equilibrium prognostic (the root zone excess 207 

moisture), and the vertical disaggregation occurs based on covariance. The CLSM-Data 208 

Assimilation (CLSM-DA) data used in this study extend from January 2003 to December 2014, 209 

and the outputs are reported on 0.25-degree grid cells for the contiguous United States. The gridded 210 

analysis used in this paper is an interpolation of catchment tiles to an equally spaced model grid 211 

for consistency with the other data sets used. Resampling these other datasets to the coarser 212 

resolution always introduces uncertainty but captures more first order climatic characteristics. 213 

 214 

2.2 FIRE PROGRAM ANALYSIS-FIRE OCCURRENCE DATABASE 215 

 216 

The USDA Forest Service’s Fire Program Analysis Fire-Occurrence database (FPA FOD) is a 217 

comprehensive geospatial database of wildfires in the United States from 1992 to 2013. It includes 218 

1.73 million geo-referenced wildfire records, representing a total of 126 million acres burned 219 

during the 22-year period (Short 2015). It also contains vital information for each of these fires, 220 

including date, cause, fire size, fire class, burned area, and coordinates. These data were imported 221 

as points into a geographic information system and processed into two separate raster datasets that 222 

matched the spatial and temporal resolution of the GRACE derived soil moisture data. The first 223 

dataset aggregated the annual number of fires in each 0.25 × 0.25 degree cell for May through 224 

April of the following year, while the second summed the total burned area (in acres) for each cell 225 

in that timeframe. 226 

 227 

2.3 NATIONAL LAND COVER DATABASE 228 

 229 

The land cover type dataset used in this study was the USGS’ National Land Cover Database 2011 230 

(NLCD 2011) (Homer et al. 2015). This dataset maps land cover and land use across the United 231 

States at a 30 meter resolution. The NLCD data were first reclassified for generalization and 232 

resampled to the same spatial extent and resolution as the previous two datasets using a majority 233 

resampling technique that allocates each pixel’s class based on the most popular value within a 3 234 

by 3 window. This allowed each grid cell to have a unique land cover classifier, which could then 235 

be programmatically used to extract values and characterize each relevant vegetation type’s 236 

relationship between soil moisture and wildfire. For the purposes of this study, only vegetated land 237 

cover types are of importance to wildfires. Accordingly, the Developed/Urban, Barren Land, and 238 

Planted/Cultivated classes were not considered in the analysis. The Mixed Forest class was not 239 

considered due to its unsuitably small number of pixels. Additionally, even though model 240 

simulations of wetland soil moisture may not be accurate due to missing physical processes, we 241 

include this class to represent general wet/dry responses in wetland environments. Figure 1 shows 242 

a visualization of this processed land cover data along with the other two datasets mentioned above. 243 

 244 
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3. METHODS 245 

 246 

3.1 DATA PROCESSING 247 

 248 

The first step in algorithm development was to disaggregate the fire data by wildfire size class 249 

(Table 1). Annual January through April (2003-2014) soil moisture from the GRACE-derived 250 

CLSM-DA data were averaged into single two-dimensional maps (latitude × longitude) for each 251 

year that depict a fire season’s antecedent moisture conditions (Xystrakis et al. 2014). Annual total 252 

fire occurrence and cumulative burned area maps, aggregated from the rasterized FPA FOD data, 253 

were produced for each wildfire class, covering the period ranging May through April of the 254 

following year. This time period was selected in order to delineate a nominal fire season in line 255 

with the beginning of the Western US fire season, although true fire season tends to vary in time 256 

and by location (Westerling et al. 2003). Within each land cover type, all burned area and fire 257 

occurrence values—which here refers to the total number of fires occurring in a given grid cell—258 

were plotted against corresponding CLSM-DA soil moisture values for the entire population of 259 

0.25-degree grid cells. While wildfires belonging to a smaller size class constitute only a fraction 260 

of a percent of their parent grid cell, the frequency of their occurrence within each discretized area 261 

is an important climatological figure linking soil moisture to fire activity. 262 

 263 

This produced a distribution of fire occurrence, visible in Figure 1, and burned area as a function 264 

of soil moisture for each land cover class. These data were then binned by soil moisture ranges to 265 

calculate average fire occurrence and burned area values over each range. These distributions 266 

reveal the unique relationship in each land cover class between occurrence of wildfires of 267 

increasing size classification as a function of soil moisture state. These relationships were then 268 

individually modeled by fitting an exponential or linear function depending on which resulted in 269 

a higher R2 value. If neither function’s R2 surpassed 0.5, meaning pre-season soil moisture explains 270 

less than 50% of the variance in fire activity, mean number of fires and mean burned area were 271 

plotted instead. This methodology is displayed for fire occurrence in Figure 2 for each land cover 272 

type and fire size class, and the same method was followed for burned area. 273 

 274 

We also investigated whether the information contained in these relationships with soil moisture 275 

demonstrated predictive utility. Comprehensive deterministic prediction is challenging, because 276 

we don't include all of the information required to determine the comprehensive source and forcing 277 

for all fire occurrence and severity; variables such as lightning strikes, human activity, wind gusts, 278 

and fuel loading all contribute substantially to actual wildfire predictability. Instead, we investigate 279 

a statistical tendency of soil moisture to affect wildfire occurrence by lumping a large population 280 

of observations into a single model, and evaluating how the population responds as whole to this 281 

single factor. We assume that the population captures the probable best estimate of the relationship 282 

that would occur at a single location under different conditions and across time. A comprehensive 283 

fire prediction model could likely include other forcing variables. 284 

 285 

Page 7 of 18 AUTHOR SUBMITTED MANUSCRIPT - ERL-103939.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3.2 PREDICTIVE MODEL 286 

 287 

Each modeled distribution’s fitted function or mean was referenced for mapping fire probability 288 

and predicted burned area. Fire probability and average burned area were calculated by applying 289 

each individual pre-season soil moisture value to the function corresponding to its land cover type 290 

for the relevant fire size class. Probable total burned area (Equation 1) is then estimated by 291 

multiplying the modeled fire occurrence by the modeled average burned area value for each cell’s 292 

soil moisture value as broken down by land cover type and fire size class.  293 

 294 

Probable Burned Area(𝑖) = Fire Occurrence(𝑆𝑀𝑖, 𝐿𝐶𝑖)  ×  Average Burned Area(𝑆𝑀𝑖, 𝐿𝐶𝑖) 295 

 (1) 296 

 297 

In Equation 1, i is a given 0.25 degree grid cell, and SMi and LCi are the corresponding values of 298 

soil moisture and land cover classification. Maps for both predicted number of fires and predicted 299 

burned area were thus created for each fire size class. These maps, binned by fire size for each 300 

parameter, can be added together to create maps for a year’s total predicted number of fires and 301 

total burned acreage. 302 

 303 

4. RESULTS 304 

 305 

Figure 2 shows that within each land cover type, there are different distributions of fire occurrence 306 

as a function of soil moisture for each fire class. For example, within the evergreen forest type, the 307 

smaller fire classes B, C, and D tend to be more frequently associated with a higher average number 308 

of fires following high pre-fire season soil moisture. Meanwhile, the larger fire classes E, F, and 309 

G, show the opposite trend whereby dryer soil moisture conditions in January – April are 310 

associated with more fires throughout the following year. Some distributions are relatively uniform 311 

and showing little variability. This indicates the absence of a clear relationship between soil 312 

moisture and fire occurrence, or that other factors tend to mask that relationship. Each vegetation 313 

type differs from the other in its surface soil moisture and fire occurrence and size patterns. 314 

Deciduous forest tends to be the wettest modeled ecosystem (mean volumetric water content 315 

fraction = 0.31, standard deviation = 0.06) and shrubland tends to be the driest (mean volumetric 316 

water content fraction = 0.19, standard deviation = 0.05). Wetland ecosystems have the most fires 317 

per cell on average (11.46 fires per year, standard deviation = 16.79), while shrublands have the 318 

fewest (3.48 fires per year, standard deviation = 9.16). These values were calculated by compiling 319 

the preseason surface soil moisture and fire occurrence values across all cells within each land 320 

cover type for each year in the study period. These values indicate the need to disaggregate the 321 

relationship between fire occurrence and soil moisture by land cover type, as each type shows a 322 

significantly different fire response to soil moisture levels. 323 

 324 

Figure 3 provides an example of results by hindcasting the May 2012 – April 2013 fire year. The 325 

top map shows the total number of fires expected to occur in each cell that year based on the 326 
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preceding January – April average soil moisture. Figure 3 (bottom) shows total predicted burned 327 

acreage. The spatial gaps in the predictive maps represent the withheld land cover classes. These 328 

maps were created for each year in the study period, and their summary statistics for predicted 329 

number of fires and total burned acres were compiled and charted in Table 2 and Figure 4. 330 

 331 

To validate these results, predicted fire occurrence and burned area maps that were generated for 332 

the 2012 – 2013 fire year (i.e. the most recent year in the FPA FOD dataset), and compared against 333 

the observations. For proper cross-validation, this fire year was held out of the algorithmic step. 334 

Results are compiled in Table 2. Additionally, the processed FPA FOD data was disaggregated by 335 

land cover type and charted next to the predicted fire data, as shown for May 2012 – April 2013 336 

in Figure 4, showing the relative accuracy of the algorithm’s prediction for each vegetation type 337 

with standard percent error calculations (Equation 2). 338 

 339 

%𝑒𝑟𝑟𝑜𝑟 =  |
#𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙− #𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

#𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
| ×  100     (2) 340 

 341 

Vegetation types that were deemed unsuitable for the analysis (i.e. mixed forest, agricultural, and 342 

urban) were removed from the data sets. Figure 4 shows that in the 2012 – 2013 case study, the 343 

values for predicted fire occurrence and burned area match the actual data within an error of 344 

13.89% and 9.52% respectively, compared to an average error 13.10% for predicted fires and 345 

119.40% for predicted burned area for the entire study period. 346 

 347 

5. DISCUSSION AND CONCLUSIONS 348 

 349 

It should be noted that the predictive maps presented are not intended to offer an accurate hindcast 350 

of actual fire occurrence and severity in individual 0.25–degree grid cells. Rather, they offer an 351 

assessment of the relationship between seasonal soil moisture and wildfire potential, specifically 352 

the sensitivity of fires in the fire season to pre-season surface moisture conditions. The modeled 353 

functions and validation results show that the total number of fires and burned area predicted is in 354 

fact correlated with the pre-season soil moisture data for the corresponding year, across the land 355 

cover grouping. A positive correlation would indicate that high pre-season soil moisture is 356 

followed by high fire activity, while a negative correlation would see low fire activity. Regional 357 

hindcasting of fire occurrence was performed by aggregating the land-cover consistent regions in 358 

their entirety over the contiguous US, and optimizing the fire response model for each land cover 359 

type. This improves upon an ecoregion approach for which a number of included land cover types 360 

may exist, and a corresponding number of fire responses to moisture may occur (e.g. Parks et al. 361 

2014). The strong correlation achieved in our results highlights the principal importance of 362 

preseason soil moisture in governing fire risk and potential, likely as a proxy for preseason fuel 363 

accumulation.  364 

 365 
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These results provide the first evidence that pre-season soil moisture and wildfire occurrence can 366 

be strongly negatively correlated across land cover types. In all land covers, the smaller fire classes 367 

(i.e. class “D” or smaller, <300 acres) are generally (11 out of 20 scenarios) associated with higher 368 

pre-season soil moisture, not lower soil moisture as hypothesized. This likely describes a situation 369 

in which smaller and quick-growing vegetation (e.g. grasses and understory) are more prolific in 370 

wet years, and tend to contribute to wildfire persistence and propagation after ignition. As the 371 

resampled NLCD 2011 data was implemented in our algorithm, land cover is assumed to be static 372 

over the study period. It is possible that this represents an additional error source in our regression, 373 

though there is no clear pattern in the percent error figures (Table 2) and land cover changes may 374 

represent a small fraction of the regressed relationships across the entire aggregated domain. The 375 

random error structure suggests that the model error is more associated with year-to-year weather 376 

and soil moisture patterns rather than land-cover change. As soil moisture in this study is used as 377 

a proxy for vegetation moisture and general climate conditions, a wet pre-season in certain 378 

vegetation types is correlated with more primary production creating increased fuel availability 379 

when fire season arrives. This is further corroborated by observations made by Xystrakis et al. 380 

(2014), which saw high spring precipitation succeeded by high burned area values. The case that 381 

would lead to the most fires in these land cover types is likely that of a very wet pre-season, 382 

followed by a very dry fire season. This relationship has been studied before using precipitation 383 

observations (e.g. Holden et al. 2007). 384 

  385 

While the necessity is clear, the feasibility of wildfire predictive capabilities is increasing with the 386 

advent of innovative applications of new remote sensing data. As our analysis focused on 387 

quantifying and validating the overall relationship between pre-season soil moisture and 388 

succeeding fire activity rather than providing accurate annual fire activity predictions, model 389 

outputs are not intended to be applied as accurate annual fire activity predictions. While the model 390 

illuminates this relationship, its performance may be negatively affected by limitations in the 391 

datasets and omitted environmental factors. For one, resampling the NLCD land cover to the 392 

coarser GRACE-DA resolution inevitably decreased the purity of each pixel’s designated land 393 

cover type. Using finer-scale SMAP data to expand this analysis may mitigate these effects, and 394 

additionally improve the retrieval of burned area. Since accurate, observation-based surface soil 395 

moisture information has been difficult to obtain over large domains, GRACE-assimilated model 396 

outputs may offer a unique contribution to fire severity prediction methods. This builds upon 397 

successes in using GRACE-assimilated model outputs for hydrologic drought monitoring 398 

(Houborg et al. 2012), and reinforces the importance of the relationship between large-scale 399 

hydrologic forcing and fire response. The current NASA SMAP mission (Entekhabi et al. 2010), 400 

launched January, 2015, offers global observations of radiometer-based surface soil moisture at a 401 

base 36-km spatial resolution that can be used in conjunction with GRACE-assimilation efforts 402 

and should generally improve this methodology. The expanding temporal and spatial coverage of 403 

soil moisture brought about by SMAP will additionally allow this methodology to be applied in 404 

regions with more heterogeneous land cover conditions due to higher resolutions. These more 405 

complex regions may also be approached with regionally sensitive environmental parameters to 406 
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generate more accurate regional predictive fire maps. For example, the classification of large 407 

swaths of Minnesota and Michigan as wetland in the NLCD (Figure 1) caused those areas’ fire 408 

frequency to be greatly overestimated as a result of the high fire activity in Florida’s Everglades 409 

and other wetland regions (Figure 3). Indeed, the wetland regression models (Figure 2) do not 410 

show high correlation coefficients except in the case of large fires, indicating regional processes 411 

controlling the majority of the variance. Other regional drivers of fire activity that see great spatial 412 

and temporal variability, such as fuel moisture, wind, and lightning patterns may (Veraverbeke et 413 

al. 2017) may further reduce the modeled discrepancies in fire occurrence and intensity. Along 414 

with the finer-scale SMAP data, the fundamental relationship between soil-moisture and fire 415 

activity observed in this study could be built upon using other environmental variables to generate 416 

monthly regional predictive fire maps. 417 

  418 
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8. TABLES 521 

 522 

Table 1. Fire Size Class Definitions1 523 

Class 
Burned 

Acres 

A 0 – 0.25 

B 0.26 – 9.9 

C 10 – 99.9 

D 100 – 299 

E 300 – 999 

F 1000 – 4999 

G 5000 + 

1Class size ranges are defined by (Short 2015) 524 

 525 

 526 

Table 2. Predicted and Actual Fire Data with Associated Prediction Errors 527 

 528 

 529 

 530 

 531 

 532 

 533 

 
Predicted 

Fires 

Actual 

Fires 

Predicted 

Burned 

Acres 

Actual 

Burned 

Acres 

Predicted 

Fires Percent 

Error 

Predicted 

Burned Area 

Percent Error 

5/2003 - 4/2004 59410 53542 7356289.94 3333260.32 10.96 120.69 

5/2004 - 4/2005 58131 44304 7429770.21 1288883.79 31.21 476.45 

5/2005 - 4/2006 61526 72461 7472239.08 6710199.52 11.36 15.09 

5/2006 - 4/2007 56998 66903 7343697.15 7181219.66 2.26 14.81 

5/2007 - 4/2008 57954 62238 7427601.87 8680825.32 6.88 14.44 

5/2008 - 4/2009 56177 59937 7357446.45 3887901.30 6.27 89.24 

5/2009 - 4/2010 56337 43507 7407664.38 1603893.48 29.49 361.86 

5/2010 - 4/2011 61071 55468 7510430.96 4935915.82 10.10 52.16 

5/2011 - 4/2012 57448 52897 7423439.20 5312742.66 8.60 39.73 

5/2012 - 4/2013 55442 48679 7559133.21 8354888.73 13.89 9.52 
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9. FIGURES 534 

 535 

Figure 1. The datasets used in this study: (a) GRACE-derived volumetric surface soil moisture 536 

expressed as percent. This example shows average January – April surface soil moisture from 2003 537 

– 2013. (b) All fires from the 2003 – 2013 study period in the FPA FOD mapped as points by fire 538 

cause. (c) The NLCD 2011 resampled to a 0.25-degree resolution.  539 
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 540 

 541 

Figure 2. Binned average fire occurrence over each complete year and associated fitted functions 542 

or mean values for each analyzed land cover type by fire size class. The x-axis of each chart denotes 543 

surface soil moisture as a percentage, and the y-axis shows the average number of fires per 0.25 544 

degree cell for that soil moisture bin. The fire size classes are defined by Short (2015), displayed 545 

in Table 1. 546 

 547 

 548 
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 549 

Figure 3. Predictive maps for (a) individual fires and (c) burned area to assess fire risk and 550 

potential from May 2012 – April 2013. These predictive results are compared against the (b) actual 551 

fire distribution and (d) actual burned area for that year for validation. 552 

  553 
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 554 

 555 

Figure 4. Validation of total predicted fires and burned acres from May 2012 – April 2013. 556 
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