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Abstract: A decision framework is developed for quantifying the economic value of information 1	

(VOI) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for 2	

drought monitoring, with a focus on the potential contributions of groundwater storage and soil 3	

moisture measurements from the GRACE Data Assimilation (GRACE-DA) System. The study 4	

consists of: (a) the development of a conceptual framework to evaluate the socioeconomic value 5	

of GRACE-DA as a contributing source of information to drought monitoring; (b) structured 6	

listening sessions to understand the needs of stakeholders who are affected by drought 7	

monitoring; (c) econometric analysis based on the conceptual framework that characterizes the 8	

contribution of GRACE-DA to the US Drought Monitor (USDM) in capturing the effects of 9	

drought on the agricultural sector; and (d) a demonstration of how the improved characterization 10	

of drought conditions may influence decisions made in a real-world drought disaster assistance 11	

program. Results show that GRACE-DA has the potential to lower the uncertainty associated 12	

with our understanding of drought, and that this improved understanding has the potential to 13	

change policy decisions that lead to tangible societal benefits. 14	

 15	
Keywords: Drought; GRACE; Groundwater; Soil moisture; Value of information.  16	
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1. Introduction 17	

Droughts are some of the costliest natural disasters in the United States. Average annual losses 18	

that are attributable to drought nationwide are estimated to be in the range of $6 to $8 billion 19	

(FEMA 1995). The drought in California, which imposed a cost of US$ 2.7 billion on the state in 20	

2015 (Howitt et al. 2015), serves as a reminder of the losses that these disasters can impose on 21	

economic sectors. Current federal, state, and municipal policies seek to provide assistance to 22	

minimize the economic and environmental impacts of droughts. However, identifying the 23	

optimal allocation of these financial resources is complicated because droughts impose societal 24	

costs unevenly across the landscape and over time. For this reason, it is desirable for decision 25	

makers in drought management to have the best possible understanding of the location, timing, 26	

and severity of droughts.  27	

Decision makers often rely on a template or model that monitors current drought 28	

conditions to inform management actions. In the United States, many government programs that 29	

allocate resources for drought assistance utilize the US Drought Monitor (USDM). The USDM is 30	

an expert-based risk map that provides information about the severity of droughts across the 31	

country on a weekly basis1 and is used to inform major drought management decisions. These 32	

maps are used to determine farmer eligibility for federal drought assistance programs and issue 33	

drought emergency declarations. However, the USDM represents the actual state of the 34	

environment in a simplified manner. In other words, a USDM severity categorization for a given 35	

location in a given week is estimated with a mean and variance, and the size of the variance can 36	

affect the expected socioeconomic benefits of management decisions. For example, a large 37	

variance in USDM categorizations can result in potentially costly misclassifications to receive 38	

																																																													
1 The USDM map for any given week can be accessed at http://droughtmonitor.unl.edu/. 
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government program assistance. Modifications to the USDM that reduce the uncertainty 39	

associated with an estimate of current drought conditions can lead to improved societal outcomes 40	

in the form of reduced economic losses due to drought. 41	

Studies have argued that the USDM could describe drought conditions more 42	

comprehensively and more objectively if additional soil moisture and groundwater information 43	

were incorporated into the map (Houborg et al. 2012). In this paper, a multi-method framework 44	

is developed for quantifying the economic value of information (VOI) derived from the National 45	

Aeronautics and Space Administration’s (NASA) Gravity Recovery and Climate Experiment 46	

(GRACE) satellite mission for drought monitoring. We evaluate the potential contribution of 47	

groundwater storage and soil moisture measurements from the GRACE Data Assimilation 48	

(GRACE-DA) System to the USDM. The analysis consists of four main components. First, a 49	

statistical decision framework is presented that utilizes a Bayesian updating procedure to 50	

establish the informativeness of a particular combination of scientific data and indicators that are 51	

organized into an information structure for a specific decision (Lawrence 1999). This framework 52	

demonstrates analytically that the value of information from GRACE-DA increases if 53	

incorporation of this information into the USDM can increase the correlation between the USDM 54	

drought category assigned to a location and the actual drought intensity in that location. 	Second, 55	

we conducted structured listening sessions to understand the needs of stakeholders who are 56	

affected by drought monitoring. Third, an econometric analysis is performed to test whether 57	

there are significant statistical improvements in the prediction of county drought impacts if 58	

models include GRACE-DA explanatory variables. We use these models to predict the effect of 59	

drought on the agricultural sector and test whether models that include GRACE-DA information 60	

exhibit better measures of goodness of fit compared to models that do not include GRACE-DA 61	



5 
	

information.  Fourth, we demonstrate how the improved characterization of drought effects 62	

afforded by GRACE-DA information may influence decisions made in a real-world drought 63	

disaster assistance program. Our example addresses the US Department of Agriculture’s 64	

Livestock Assistance Grant Program (LAGP), a state block fund designed to recover forage 65	

production losses resulting from the 2006 summer drought.  66	

2. Bayesian decision framework 67	

The Bayesian decision framework described in this section formalizes how GRACE-DA drought 68	

indicators can be employed to analyze decisions in the agricultural sector. Bayesian models 69	

previously have been applied to decisions in the agricultural sector in a variety of ways. 70	

Examples include: Bradford and Kelejian (1977) employed a two-period Bayesian statistical 71	

model to evaluate the effect of the quality of information on decisions associated with weather 72	

forecasts for an agricultural harvest. Crean et al. (2014) applied state-contingent production 73	

theory in a Bayesian model to assess the value of seasonal climate forecasts for long-term farm 74	

planning. Bayesian models have also been employed in regulatory analyses. Bernknopf et al. 75	

(2001) demonstrate the VOI of applying regional scale nonpoint source groundwater 76	

vulnerability assessments for pesticide use, crop yield, and groundwater treatment regulations. 77	

2.1.Decision model 78	

The value of the GRACE-based information depends on (a) what is at stake as an outcome of the 79	

decision and (b) how uncertain is the decision maker’s information. Estimation of the economic 80	

impact requires an explanation of how the decision maker’s information changes as a result of 81	

the acquisition of new information and a way to quantify that value. Figure 1 illustrates how the 82	

Bayesian decision approach can be applied in the context of a drought disaster assistance 83	

program. The influence diagram includes: (1) a random variable of the possible states of the 84	
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environment S, (2) a decision represented as a management action A, (3) an expected payoff 85	

associated with a specific combination of a state of the environment and an action ! ", $ , and 86	

(4) and a random variable of the state of the environment observations D.  87	

Both S and D are uncertain quantities and are probability densities that are denoted by 88	

oval nodes in Figure 1. These probabilities are characterized in the next section. A management 89	

action shown as a rectangular node in Figure 1 is a decision and when combined with the 90	

conditional probability % & ' , yields a probabilistic payoff, which the decision maker 91	

maximizes at the expected value. The payoff shown as a hexagonal node in Figure 1 is an 92	

outcome of an action A that results from a decision and an information structure. For a given 93	

decision problem, information structures can provide different qualities of information that will 94	

lead to potentially different expected payoffs that can be ranked (Laffont 1989). A USDM 95	

information structure has greater informativeness if the correlation coefficient increases between 96	

S and D with the addition of GRACE-DA indicators (Lawrence 1999). The comparison of the 97	

information structures provides an incremental economic value of the change in the quality of the 98	

input to a decision (Qian et al 2009, Gossner 2000). 99	

The following two sections formally describe how incremental VOI can be generated by 100	

adding GRACE-DA indicators to the USDM. 101	

2.2. Probabilities for the Bayesian approach 102	

The Bayesian approach is a way to evaluate whether a decision maker’s probability density over 103	

an outcome of interest will change as a result of new information (Lawrence 1999). Prior to 104	

receiving new information, the decision maker’s belief regarding the probability of occurrence is 105	

referred to as the decision maker’s prior belief regarding the probability density. Upon receipt of 106	

new information, the decision maker makes an observation that provides an improvement in the 107	
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prediction of the outcome of interest. This expected outcome is referred to as the decision 108	

maker’s posterior belief regarding the probability of occurrence.  109	

Let the continuous random variable &(,) represent the intensity of drought in county * in 110	

week +. The decision maker is uncertain about the value of &(,), but has beliefs about this value. 111	

For simplicity, suppose the decision maker considers &(,) to be normally distributed with mean 112	

,-.,/ and variance 01.,/
2 . The decision maker also expects to obtain information from the USDM, 113	

which will assign a drought category 3(,) to county * in week +. Based on the USDM information 114	

from previous weeks, '(,) is assumed to be continuous and normally distributed with mean ,4.,/ 115	

and variance 04.,/
2 . 116	

The decision maker believes that &(,) and '(,) are correlated. Following Lawrence (1999), 117	

the decision maker’s beliefs are estimated as a bivariate normal distribution: 118	

&(,), '(,) 	~	78 ,-.,/ , 0-.,/
2 ; ,4.,/ , 04.,/

2 ; : ,      (1) 119	

where : is the correlation coefficient between the two variables.  120	

Now, suppose that the decision maker observes that the USDM has assigned drought 121	

category 3(,)	 to county * in week +. The distribution of &(,), conditional on observing '(,) = 3(,), 122	

is given by: 123	

&(,) '(,) = 3(,) 	~	8 ,-.,/ + :
=>.,/
?

=@.,/
? 3(,) − ,4.,/ , 1 − :

2 0-.,/
2 .   (2) 124	

This is the decision maker’s posterior probability distribution, where the conditional 125	

posterior mean is equal to: 126	

D &(,) '(,) = 3(,) = ,-.,/ + :
=>.,/
?

=@.,/
? 3(,) − ,4.,/ ,     (3) 127	

and the conditional posterior variance is equal to: 128	
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E$F &(,) '(,) = 3(,) = 1 − :2 0-.,/
2 .       (4) 129	

Equation 4 shows that the conditional posterior variance is decreasing in the correlation 130	

coefficient	:. This relationship implies that any change in the USDM that increases :, i.e. the 131	

correlation between the USDM drought category assigned to a county and the actual drought 132	

intensity in that county, can reduce the variance that the decision maker faces. It follows that if 133	

we are able to show that the incorporation of GRACE-DA in a statistical model of drought is 134	

able to produce a new set of drought categories '(,)G  (GRACE-DA categorical variables) that 135	

correlate better with &(,), the posterior variance is smaller than the variance associated with 136	

current USDM drought categories '(,).  137	

2.3.Payoff and VOI 138	

The contributions of an increase in	the correlation between USDM drought categorizations and 139	

actual drought intensity on value for the decision maker is characterized through a payoff 140	

function. The most effective decision is to use the expected value (first moment) of a probability 141	

distribution of payoffs (Berger 1985). Deviation away from the expected value in either direction 142	

is a loss that can be represented as the variance (second moment) of a probability distribution 143	

(Freixas and Kihlstrom 1984). The symmetric loss associated with an increase in the deviation 144	

from the expected value increases as the square of the error for USDM drought severity 145	

classification. There is a greater penalty or economic impact derived from the decision as the 146	

variance of the probability distribution becomes larger. To represent the impact of the 147	

misclassification, we apply a quadratic loss function in the eligibility selection decision. Suppose 148	

that the risk neutral decision maker’s payoff associated with an action H(,) for county * in week + 149	

can be represented as being quadratic in the level of the action and the intensity of drought &(,): 150	

! &(,), H(,) = IJ + I2&(,) + IKH(,) + IL&(,)H(,) + IM&(,)2 − INH(,)2 ,   (5) 151	
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where IN > 0. In the context of using the USDM to make decisions about drought assistance, 152	

H(,) could signify the amount of drought assistance allocated to county * in week +, while the 153	

payoff ! &(,), H(,)  could represent the value of losses in the agricultural sector that were avoided 154	

given that a county experienced a drought of intensity &(,) and received drought assistance in the 155	

amount of H(,).
2 Derivation of the first-order condition shows that the optimal prior choice is 156	

H(,)∗ =
RSTRUV>.,/

2RW
, while the optimal conditional choice is H(,)∗ '(,) = 3(,) =

RSTRUD -.,/ 4.,/XY.,/
2RW

. 157	

Given the quadratic payoff function in Equation 5, the decision rule is linear in the expectation of 158	

&(,). Substituting the optimal decision rules into the payoff function yields the value of the prior 159	

and conditional decisions: 160	

Z$[
\.,/

D ! &(,), H(,) = ]J D &(,) '(,) = 3(,)
2
+ ]2D &(,)2 '(,) = 3(,) + ]KD &(,) '(,) = 3(,) + ]L (6) 161	

where ]J, ]2, ]K, and ]L are constants. It can be shown that the value of information is 162	

(Lawrence 1999): 163	

E^_ = ]J D &(,) '(,) = 3(,)
2
− ,-.,/

2  = ]J 0-.,/
2 − E$F &(,) '(,) = 3(,) . (7) 164	

Because E$F &(,) '(,) = 3(,) = 1 − :2 0-.,/
2  if &(,), '(,)  has a bivariate normal distribution, it 165	

follows that: 166	

E^_ = ]J :20-.,/
2 .          (8) 167	

As a result, the VOI is proportional to the variance of drought and the square of the correlation 168	

coefficient. Thus, the value of information increases with :2. 169	

3. Application background 170	

																																																													
2 Payoffs (!) might be influenced by drought assistance allocations (H(,)) in several ways. For example, drought 
assistance may allow agricultural producers to undertake mitigation actions that reduce the impact of drought on 
crop or livestock output. Drought assistance funds may also be used directly to enhance farm revenues, which in 
some cases may prevent higher debt or bankruptcy on the part of the producer. 
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3.1.The US Drought Monitor 171	

The USDM classification scheme identifies general drought areas, labelling droughts by 172	

intensity, with Category D1 being the least intense and Category D4 being the most intense. 173	

Category D0 is used to indicate drought watch areas. The categorizations for a USDM map are 174	

the result of a well-documented process (Svoboda et al. 2002) conducted by climatologists from 175	

the National Oceanic and Atmospheric Administration (NOAA), the US Department of 176	

Agriculture (USDA), and the National Drought Mitigation Center (NDMC). 177	

In addition to reviewing literature describing the USDM (Svoboda et al. 2002), a series of 178	

structured listening sessions were conducted with USDM authors to better understand how 179	

drought severity categorizations are assigned and to what extent GRACE-DA information 180	

influence these categorizations. The right portion of the information flow diagram in Figure 2 181	

depicts the process by which USDM authors, who take turns serving as the lead author each 182	

week, evaluate a suite of objective inputs. One set of inputs is summarized in an explicitly 183	

weighted combination of inputs known as the Objective Blend of Drought Indicators. USDM 184	

authors also refer to higher-resolution information including field observations. In addition to 185	

these objective inputs, the authors deliberate with local experts to assess drought conditions. This 186	

regional and local expert input and dialogue allow for identification of localized and severe 187	

droughts experienced by communities. During the listening sessions, we found that most USDM 188	

authors are aware of GRACE-DA and some use it as a data source for verification purposes. The 189	

USDM relies on both conventional water supply metrics with long archives and remotely sensed 190	

data as inputs, which are transformed into categorizations or indicators that are simple enough 191	

for practical use.  192	
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The USDM is used as a screening instrument by various USDA programs to determine 193	

who is eligible for financial assistance during and after a drought disaster. An example of the 194	

application of the USDM for a specific drought decision is stated in the USDA Agricultural Act 195	

of 2014 for the LAGP. To be eligible, a county must have experienced exceptional (USDM 196	

category D4) or extreme (USDM category D3) drought during March 7, 2006 to August 31, 197	

2006.   198	

The USDM information structure that supports eligibility decisions can contain a variety 199	

of different indicators that vary over space and time.  Using Equation 8, alternative versions of 200	

the inputs to the USDM can be indexed by their relative informativeness. By being able to index 201	

various combinations of indicators and other input data, it is possible to rank alternative 202	

information structures according to their VOI. A case can be made for a county level application 203	

of reducing the societal cost of drought severity misclassification by adding GRACE-DA 204	

variables to the USDM.  205	

The VOI of GRACE observations consists of the gains that result from reducing the 206	

uncertainty in decisions that are based on incremental information. In this context, information 207	

from GRACE-DA could improve the correlation between the message (i.e., the USDM drought 208	

severity category) and the outcome (i.e., eligibility for government assistance or insurance), 209	

leading to a more cost-effective allocation of assistance funds. 210	

3.2.The GRACE-DA System 211	

The GRACE satellites are sensitive to variations in water stored at all levels above and within the 212	

land (Rodell and Famiglietti 2001). Through a series of processes that include removal of the 213	

atmospheric and oceanic influences and elimination of correlated errors, scientists are able to use 214	

GRACE’s precise observations of gravitational effects on the orbits of its two satellites to 215	
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produce monthly maps of terrestrial water storage anomalies (deviations from the long term 216	

mean) (Swenson and Wahr 2006; Landerer and Swenson 2012).  However, the coarse spatial 217	

(>150,000 km2) and temporal (monthly) resolutions of the maps limit their direct applicability 218	

for drought monitoring, and the vertically integrated nature of the measurements does not allow 219	

for distinction between anomalies related to snow, surface water, soil moisture, or groundwater 220	

(Li et al. 2012; Houborg et al. 2012). The left portion of Figure 2 highlights relevant data sources 221	

and the steps required to turn low resolution GRACE terrestrial water storage anomaly data into 222	

useful drought indicators as an additional informational component of the USDM (Houborg et al. 223	

2012). In order to increase resolution, disaggregate the measurement vertically, and eliminate the 224	

time lag associated with GRACE data releases, NASA scientists developed GRACE-DA 225	

(Zaitchik et al. 2008). GRACE-DA uses ensemble Kalman smoother type data assimilation to 226	

integrate GRACE data with ground- and space-based meteorological inputs (e.g., precipitation, 227	

solar radiation, etc.) within a Catchment Land Surface Model (Koster et al. 2000). 228	

The GRACE-DA system produces estimates of soil moisture and groundwater storage 229	

variations that are used to generate probabilistic drought indicators. These indicators are defined 230	

relative to the baseline cumulative distribution function of wetness conditions during 1948-2009 231	

as simulated by the Catchment model. Three indicators are produced: (1) a surface soil moisture 232	

percentile, based on soil moisture anomalies in the top two centimeters of the column, (2) a root 233	

zone soil moisture percentile, based on the top 100 centimeters, and (3) a groundwater percentile, 234	

based on storage below the root zone. GRACE-DA drought indicators are provided to the 235	

NDMC in the form of maps and datasets to be consistent with the USDM. The horizontal 236	

resolution of the GRACE-DA drought indicators was approximately 25 km at the time of this 237	
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study, although it has recently been improved to 12 km. The products are produced and 238	

distributed in time to support production of the official, weekly USDM drought maps. 239	

4. Econometric analysis 240	

The Bayesian decision framework in Section 2 provides the foundation for empirical estimation 241	

of the correlation between the USDM drought severity categories and the true state of drought. 242	

However, identifying the size of this correlation is difficult because there is no objective source 243	

of information on the “true” state of drought that can be compared to USDM drought severity 244	

categorizations. One way to overcome this challenge is to examine the statistical relationship 245	

between the USDM drought categorizations and observed data in the agricultural sector that is 246	

likely to be affected. In the following econometric analysis, we use farm income and crop yield 247	

data as proxies for the “true” state of drought. 248	

Drought can affect agricultural income in several ways. For example, drought can 249	

adversely affect crop conditions and yields, thereby reducing farm revenues. Drought also can 250	

increase on-farm production costs by increasing the amount of irrigation water that must be 251	

applied or increasing the use of inputs that can substitute for water, such as labor and fertilizer. 252	

On the other hand, drought may increase net farm income if agricultural markets respond to 253	

reduced supply with higher crop or livestock prices, or if the drought triggers additional 254	

government or crop insurance payments to farmers and ranchers. Because of these various 255	

impacts of drought on the agricultural sector, one would expect a statistical analysis to show that 256	

a drought indicator is correlated with farm income, even if the analysis is unable to identify the 257	

exact mechanism that generates the correlation. 258	

The econometric models are specified to estimate the marginal effect of drought, while 259	

accounting for the fact that some of the determinants of the outcome (including some dimensions 260	
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of drought) cannot be observed. The degree to which these unobserved determinants affect the 261	

ability of an individual or organization to use the observed data to predict the economic outcome 262	

is quantified by the standard errors associated with each of the models. As a result, the addition 263	

of GRACE-DA information to these models can reduce standard errors. This reduction in error 264	

can be interpreted as an improvement in our understanding of the impacts of drought. 265	

4.1.Data 266	

The econometric analysis employs data from the USDM and GRACE-DA as key explanatory 267	

variables. The NDMC maintains weekly USDM drought designation data, which is archived 268	

online back to the year 2000 in the form of county-level statistics.3 The University of Nebraska-269	

Lincoln maintains weekly GRACE-DA spatial data online; Tagged Image File Format (TIFF) 270	

images of these spatial data are available for every week between August 2002 and September 271	

2014.4 272	

The USDM and GRACE-DA county data were merged, resulting in a dataset with 273	

drought designations by the USDM and the three GRACE-DA indicators for every county in the 274	

continental United States, for every week between 2002 and 2014. We then assigned a single 275	

drought category to each county-week observation by taking the highest drought category. For 276	

example, if 10 percent of a county is classified as D4 and the remainder is classified in a lower 277	

category in a given week, category D4 is assigned to that county-week observation. Then, for 278	

each county, the total number of weeks in each year that the county was assigned to each drought 279	

category under the USDM and the three GRACE-DA indicators is calculated. 280	

																																																													
3 This archive can be accessed at http://droughtmonitor.unl.edu/MapsAndData/GISData.aspx. 
4 The GRACE-DA drought indicator data are described in Section 2.2. The spatial data can be accessed at 
http://seca.unl.edu/web_archive/nasa/GRACE.	
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Farm income data were obtained from the Bureau of US Economic Analysis (BEA) for 281	

each county and year covered by the drought indicator data. The economic indicator of interest in 282	

the analysis is the sum of realized net income and the value of inventory change. Realized net 283	

income consists of total cash receipts and other income for farms, minus total production 284	

expenses. The value of inventory change is the value of the net change in farm inventories of 285	

livestock and crops that are held for sale during a calendar year. As a result, we obtain an 286	

estimate of farm proprietors’ income for a given year that includes farm income from production 287	

during that year only, and not that of previous years. Inventories are an important factor to 288	

control for in an analysis of the impacts of drought on farm income since inventories contain 289	

value of production generated in previous years for which current drought status does not apply. 290	

BEA data on farm income are annual and were available until 2013; thus, the final panel data set 291	

covers the 2002 to 2013 period. 292	

Corn yield data were obtained from the USDA’s National Agricultural Statistics Service. 293	

While farm income data are available for every county in every year during the 2002 to 2013 294	

period, yield data are not available for every county-year. Yield observations are missing when 295	

counties do not experience corn production, have a sufficiently small number of producers such 296	

that information is not disclosed for privacy reasons, or are simply not surveyed. 297	

One important implication of the choice for an agricultural indicator is the relationship 298	

between a drought severity signal and agriculture production is subject to many biophysical and 299	

behavioral processes in addition to impacts on crop and livestock conditions. As a result, the 300	

correlations capture the potentially countervailing effects of on-farm drought management and 301	

adaptation, including changes in irrigation practices, crop choice, and seed type choice, as well 302	

as policy-driven effects on farm income such as payments from drought relief programs and crop 303	



16 
	

insurance. Therefore, the correlations identified below should not be interpreted as only 304	

representing the direct impact of drought on crop and livestock conditions, rather it is the impact 305	

of drought on farm income given all the adjustments that are available to farmers and ranchers. 306	

4.2.Model estimation 307	

Our econometric approach enables the comparison of the degree of correlation between different 308	

sets of drought indicators and realized net farm income. Estimation of realized net farm income 309	

in a county in a specific year involves USDM indicators only as explanatory variables: 310	

 `$FZa() = b + cde&'f4dgh1./ + ⋯+ cLe&'f4Lgh1./ + j) + k( + l().    (9) 311	

In Equation 9, `$FZa() represents realized net farm income plus the value of inventory change 312	

or corn yield in county * in year +, depending on the specification. e&'f_'0no"() represents 313	

the number of weeks in year + that county * was designated as being in drought category D0, 314	

e&'f_'1no"()represents the number of weeks in year + that county * was designated as being 315	

in drought category D1, etc. Equation 9 includes a set of year dummies, j), which controls for 316	

unobserved, time-varying determinants of farm income that are equivalent for all counties. These 317	

effects can include changes in crop or livestock prices at the national level, or changes in the 318	

availability of modern seed varieties and other improved agricultural production technologies. 319	

Finally, county fixed effects are included, represented by k(, which allows us to obtain unbiased 320	

parameter estimates in the presence of unobserved, county-specific characteristics that do not 321	

vary over time. 322	

In a similar equation, USDM and GRACE-DA indicators are combined to estimate the 323	

effect of additional parameters. First, groundwater storage indicators are added as explanatory 324	

variables: 325	
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`$FZa() = b + cde&'f4dgh1./ + ⋯+ cLe&'f4Lgh1./ + cMpqHrsGt@uvwx./
+ ⋯

+ cypqHrsGt@Uvwx./
+ j) + k( + l(), 

(10) 

where pqHrs_pz_'0no"() represents the number of weeks in year + that county * was 326	

designated as being in drought category D0 by the GRACE groundwater indicator, 327	

pqHrs_pz_'1no"()  represents the number of weeks in year + that county * was designated as 328	

being in drought category D1 by the GRACE groundwater indicator, etc. We then repeat the 329	

estimation of Equation 10 by replacing the GRACE-DA groundwater storage indicators with the 330	

GRACE-DA surface and root zone soil moisture indicators to quantify the correlation of these 331	

indicators with net farm income independently. Next, versions of Equation 10 were estimated 332	

with two of the three GRACE-DA indicators as explanatory variables. This involves three 333	

additional regressions (i.e. one including GRACE-DA groundwater storage and surface soil 334	

moisture, one including GRACE-DA groundwater storage and root zone soil moisture, and one 335	

including GRACE-DA surface soil moisture and root zone soil moisture). Finally, a version of 336	

Equation 10 includes all three GRACE-DA indicators. In total, this procedure involves seven 337	

regressions. Use of linear specifications for statistical analysis of panel data is standard practice 338	

in the economics literature (Greene 2011). 339	

Equation 9 and all versions of Equation 10 are estimated using robust standard errors 340	

clustered at the county level to account for any heteroskedasticity in the data. When farm income 341	

is the dependent variable, each model is estimated for all counties in the lower 48 states to obtain 342	

goodness-of-fit measures that apply to the nation as a whole. For corn yield, each model is 343	

estimated for the subset of counties for which yield data are available. In addition, we explore 344	
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whether GRACE-DA affects the goodness of fit differentially across six regions, the Northeast, 345	

Southeast, Midwest, South, High Plains, and West.5 346	

4.3.Goodness-of-fit for comparing information structures 347	

Table 1 presents results from estimation of Equations 9 and 10, where we only present 348	

coefficient estimates for a specification of Equation 10 that includes all three GRACE indicators. 349	

The results illustrate how the magnitude of the coefficient estimates associated with the USDM 350	

variables change substantially when GRACE indicators are also included as variables in the 351	

regression. In addition to identifying differences in the coefficient estimates arising from 352	

estimation of Equations 9 and 10, we compare the goodness of fit of the two models by 353	

calculating three statistics and performing one statistical test. The three statistics are: 354	

1. Adjusted R-squared; 355	

2. Akaike Information Criterion (AIC); and 356	

3. Bayesian Information Criterion (BIC). 357	

Adjusted R-squared is a variant of the commonly used R-squared statistic. For a particular 358	

regression, the adjusted R-squared is equal to the percentage of the variation in net farm income 359	

or corn yield explained by the drought indicators included as explanatory variables. The adjusted 360	

R-squared accounts for the fact that R-squared automatically increases when extra explanatory 361	

variables are added to a model, and is thus more suitable when comparing the explanatory power 362	

of regression models that contain different numbers of predictors. An adjusted R-squared is 363	

necessary since the regressions that include GRACE-DA indicators have a larger number of 364	

predictors than the one that only includes USDM indicators. The AIC and BIC are alternative 365	

																																																													
5 States were aggregated into these regions based on the convention used by the USDM.  Colorado and Wyoming, 
which are double-counted in USDM maps as being in both the West and High Plains regions, were both placed in 
the High Plains region for this study. 
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measures to aid model selection, with the BIC imposing a heavier penalty on model complexity. 366	

Taken together, improvements in these three statistics for models that include GRACE-DA 367	

variables suggest that their inclusion in a model improves the goodness of fit between drought, 368	

net farm income, and crop yields. F tests were conducted to estimate the joint significance of the 369	

GRACE-DA variables in those regressions that included them as predictors. Joint significance of 370	

the GRACE-DA variables suggests that their inclusion in models of drought, farm income, and 371	

crop yields is statistically appropriate. 372	

Tables 2 and 3 list the outcomes for the three goodness-of-fit tests and the p-values 373	

associated with the F test for joint significance of the GRACE-DA indicators. The statistic is 374	

highlighted in bold font for the combination of UMDM and GRACE-DA variables that yields a 375	

better goodness of fit than all other combinations. With only a few exceptions, the econometric 376	

models indicate an improvement in the prediction of the impact of drought on farm income and 377	

corn yield by adding GRACE-DA drought indicators as supplemental information to the USDM 378	

drought severity categories. When considering all counties in the lower 48 states, the adjusted R-379	

squared statistic improves by 13.1 percent for farm income and 2.5 percent for corn yield when 380	

going from a model with USDM indicators only to one in which all three GRACE-DA indicators 381	

are added. This improvement varies by region, from 3.3 percent in the Midwest to 38.9 percent 382	

in the South for farm income, and from 1.0 percent in the Northeast to 30.0 percent in the West 383	

for corn yield. Generally, the best goodness of fit is achieved in models in which one or more 384	

GRACE-DA indicators are present in addition to the USDM indicators. This is particularly true 385	

for the High Plains, Midwest, and South. Results for the Northeast, Southeast, and West are more 386	

mixed. The results of the F tests lead to a similar conclusion. 387	
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Expressing improvements in goodness of fit in terms of statistics and information criteria 388	

can make it difficult to assess whether the improvements are economically significant. In order 389	

to address this issue, we calculated the prediction of the error component from the estimation of 390	

Equations 9 and 10. These prediction errors (residuals) represent the difference between the 391	

actual farm income and crop yield values that occurred during the sample period and the farm 392	

income and crop yield values that are predicted by the two models. For farm income, the 393	

prediction errors are already expressed in terms of dollars, so they provide a more intuitive sense 394	

of the difference in the accuracy of the models. For corn yields, we calculate a dollar 395	

representation of the residuals by multiplying predicted corn yields with observed corn acreage 396	

and prices, thus obtaining values for revenue from corn production. Table 4 provides the number 397	

of county-year observations for all lower 48 states that are associated with different prediction 398	

error sizes for the model with USDM indicators only and the model with all three GRACE-DA 399	

indicators added. For farm income, there are 36,624 county observations during the period of the 400	

analysis with prediction errors that ranged from $4 to as much as $121M. For corn yields, there 401	

are 21,079 county observations with prediction errors that ranged from $0 to $133M. The counts 402	

comparison shows that adding GRACE-DA variables to the model alters the distribution of 403	

prediction errors. For both farm income and corn yields, the impact of this change in the 404	

distribution with GRACE-DA was to reduce the number of prediction errors in the larger ranges 405	

of, which are replaced by errors in the smaller ranges. The magnitude of the errors that are 406	

avoided by the addition of GRACE-DA indicators is economically significant given the fact that 407	

mean net farm income in our dataset is only $21.3M. Furthermore, reducing the frequency of 408	

large errors is important for decision makers because larger errors are likely to be associated with 409	

societal costs that are proportionately larger than those associated with small errors.  410	
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There is a social loss from wrongly categorizing county drought severity, which to the 411	

decision maker is measured as the uncertainty (variance) of the probability function and 412	

increases with the magnitude of the misclassification. The social loss is due to the limitation in 413	

accuracy of drought severity with the data inputs that make up the USDM. In the next section, 414	

we illustrate how this reduction in the magnitude of errors can translate to meaningful changes in 415	

a policymaking setting. 416	

5. Policy implications and Discussion 417	

Because many drought assistance programs seek to direct a finite amount of disaster funds to the 418	

regions that are most affected by drought during the most susceptible periods, having access to a 419	

drought indicator (or set of drought indicators) that correlates well with agricultural outcomes 420	

would generate significant societal value. The LAGP made $50 million available to states with 421	

eligible counties. To be eligible, a county must have experienced exceptional (USDM category 422	

D4) or extreme (USDM category D3) drought during March 7, 2006 to August 31, 2006. To 423	

evaluate how decision-making might be affected by incorporating GRACE-DA into the USDM, 424	

we developed county eligibility schedules under both datasets. 425	

Results of this evaluation are presented in Figure 3. The three maps on the top row show 426	

counties that were deemed eligible for assistance based on USDM status but for which GRACE-427	

DA indicators for groundwater storage, surface soil moisture, and root zone soil moisture 428	

(respectively) did not indicate any drought status. Maps in the lower row show counties that were 429	

deemed ineligible for assistance based on USDM status but for which GRACE-DA indicated 430	

either extreme drought (D3) or exceptional drought (D4). Counties that were deemed eligible for 431	

assistance under the USDM but had no indications of drought according to the GRACE-DA 432	

groundwater indicator were clustered near the Ogallala Aquifer. Counties that were not in 433	
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drought according to the USDM but were in D3 or D4 status under the three GRACE-DA 434	

indicators were clustered in the Pacific Northwest, Nevada, Utah, Michigan, and New England. 435	

These counties would have been the most likely to switch eligibility status had GRACE-DA 436	

information influenced the production of the USDM in 2006, highlighting the practical 437	

implications of harnessing the remotely sensed data. 438	

In order to get a sense of the magnitude of the potential changes in assistance allocation, 439	

we replicated the allocation approach that USDA outlines in their LAGP program fact sheet,6 440	

using GRACE and USDM drought indicators to determine eligibility, using the same time period 441	

(7 March 2006 – 31 August 2006) and severity levels (D3 or D4). Once eligibility is determined 442	

using all relevant indicators, the funding allocation was estimated based on the number of adult 443	

beef cattle and sheep in eligible counties in each state, using USDA data. Keeping total funding 444	

constant at $50 million, the allocation that would have occurred had eligibility been determined 445	

using the GRACE-DA indicators is calculated. 446	

Basing the allocation decision entirely on GRACE-DA indicators would have increased 447	

program allocation to a large number of states and reduced allocations to a small number of 448	

states, most notably Oklahoma, South Dakota, and Texas. If GRACE-DA had a greater influence 449	

on the program’s eligibility decision, up to $16 million of the $50 million distributed by the 450	

LAGP would have been allocated to different states than what they actually were. One obvious 451	

caveat regarding these hypothetical changes in eligibility is that they assume that the eligibility 452	

decisions would be made entirely based on a GRACE-DA indicator, which is unlikely to occur in 453	

practice. It is also possible that policymakers may wish to make allocations based on 454	

vulnerability considerations that the USDM is able to capture but that are not captured by 455	

																																																													
6 The LAGP Fact Sheet is available at https://www.fsa.usda.gov/Internet/FSA_File/live_a_grant_prog06.pdf. 
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GRACE-DA or by farm income or crop yield data. However, the simulations are illustrative in 456	

that they show the counties that would most likely have switched eligibility status had GRACE-457	

DA been further incorporated into eligibility decisions, as well as provide an upper bound on the 458	

financial implications of alternative allocations under the LAGP. 459	

The USDM is an important tool that is used by private and public sectors decision makers 460	

for drought management. Because, in some cases, it is the sole criterion for a community’s 461	

eligibility for disaster assistance, it is imperative that the USDM be as accurate as possible for 462	

cost effective drought policy. In this paper, a Bayesian framework is developed for quantifying 463	

the VOI of GRACE-DA soil moisture and groundwater indicators for drought monitoring, 464	

including the development of a conceptual decision model, an econometric analysis to 465	

characterize the contribution of GRACE-DA to the USDM in capturing the effects of drought on 466	

the agricultural sector, and hypothetical simulations of a real-world drought assistance policy. 467	

GRACE-DA has the potential to lower the uncertainty associated with our understanding of 468	

drought, and that this improved understanding has the potential to change policy decisions that 469	

lead to tangible societal benefits. 470	

 Although we explored the policy relevance of our findings by examining how GRACE-471	

DA data may have changed county eligibility for drought assistance under the LAGP program, 472	

we are unable to quantify the actual VOI in this application because we do not have access to 473	

data on county-level allocations of aid funds. Such data would have allowed the estimation of the 474	

effect of drought assistance on local agricultural outcomes. Future research may be able to 475	

directly estimate the VOI of GRACE-DA for drought monitoring by explicitly modeling the 476	

socioeconomic outcomes associated with different drought management actions. 477	

 478	
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Figure captions 563	
 564	
Figure 1: Influence diagram describing the decision problem of issuing financial assistance. 565	
Oval nodes indicate uncertain quantities, rectangular node relates to decisions and hexagonal 566	
nodes relate to outcomes (adapted from Economou et al 2016). 567	
 568	
Figure 2: Information flow diagram form GRACE-DA and the U.S. Drought Monitor weekly 569	
mapping process 570	
 571	
Figure 3: Comparison of county eligibility for the Livestock Assistance Grant Program (2006) 572	
using USDM and GRACE DAS indicators. Maps in the top row show counties that were deemed 573	
eligible for assistance based on USDM status but GRACE DAS indicators for groundwater 574	
storage, surface soil moisture, and root zone soil moisture (respectively) did not indicate any 575	
drought status. Maps in the lower row show counties that were deemed ineligible for assistance 576	
based on USDM status but GRACE DAS indicators for groundwater storage, surface soil 577	
moisture, and root zone soil moisture (respectively) indicated either extreme drought (D3) or 578	
exceptional drought (D4). 579	
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Tables 580	
Table 1: Effects of drought on net farm income and corn yield estimated using USDM and 581	
GRACE-DA indicators 582	
 583	

 Realized Net Income + Value 
of Inventory Change 

Corn Yield (bushels per 
acre) 

 No GRACE 
indicators 

(USDM only) 

All GRACE 
indicators 

No GRACE 
indicators 

(USDM only) 

All GRACE 
indicators 

Total weeks in D0 (USDM) 22.616*** 21.921*** -0.316*** -0.304*** 
 (5.037) (5.889) (0.023) (0.024) 
Total weeks in D1 (USDM) 8.905 14.767** -0.402*** -0.386*** 
 (6.772) (7.333) (0.024) (0.025) 
Total weeks in D2 (USDM) -18.067** -4.858 -0.636*** -0.615*** 
 (8.609) (8.577) (0.030) (0.032) 
Total weeks in D3 (USDM) -46.115*** -39.366*** -0.556*** -0.544*** 
 (5.821) (6.590) (0.038) (0.040) 
Total weeks in D4 (USDM) -96.279*** -50.429*** -0.735*** -0.634*** 
 (8.378) (8.656) (0.058) (0.061) 
Total weeks in D0 (RZSM)   25.583   0.096 
   (22.600)   (0.089) 
Total weeks in D1 (RZSM)   74.346***   0.175 
   (28.775)   (0.106) 
Total weeks in D2 (RZSM)   99.579***   -0.002 
   (32.986)   (0.137) 
Total weeks in D3 (RZSM)   192.634***   0.095 
   (37.585)   (0.165) 
Total weeks in D4 (RZSM)   377.925***   1.076*** 
   (36.112)   (0.187) 
Total weeks in D0 (SFSM)   -40.530   -0.082 
   (26.020)   (0.091) 
Total weeks in D1 (SFSM)   -93.538***   -0.331*** 
   (29.912)   (0.108) 
Total weeks in D2 (SFSM)   -166.727***   0.020 
   (34.478)   (0.138) 
Total weeks in D3 (SFSM)   -184.068***   -0.228 
   (38.299)   (0.165) 
Total weeks in D4 (SFSM)   -414.534***   -1.161*** 
   (36.779)   (0.185) 
Total weeks in D0 (GWS)   28.165***   0.007 
   (9.173)   (0.028) 

Continued on next page 
    

Table 1 (Continued) 
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Total weeks in D1 (GWS)   28.751***   0.123*** 
   (8.571)   (0.029) 
Total weeks in D2 (GWS)   18.354*   0.097** 
   (10.139)   (0.042) 
Total weeks in D3 (GWS)   53.009***   -0.057 
   (11.762)   (0.056) 
Total weeks in D4 (GWS)   2.401   0.180*** 
   (8.123)   (0.039) 
Constant -743.947*** -752.698*** 111.459*** 111.221*** 
 (89.329) (93.035) (0.457) (0.465) 
R2 0.075 0.085 0.290 0.298 
Adjusted-R2 0.074 0.084 0.290 0.297 
RMSE 6,620 6,585 20 19 
Akaike Information Criterion 748,372 747,999 185,481 185,281 
Bayesian Information Criterion 748,508 748,263 185,608 185,528 
N 36,624  36,624  21,109  21,109  

	  584	
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Table 2: Statistics and F tests for assessing the goodness of fit of net farm income models with and without GRACE-DA indicators 585	

All lower 48 states (N = 36,624) (Realized Net Income + Value of Inventory Change) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.075  0.075  0.075  0.075  0.083  0.077  0.077  0.084  

Akaike Information Criterion 748,372  748,366  748,349  748,344  748,046  748,286  748,294  747,999  

Bayesian Information Criterion 748,508  748,545  748,528  748,523  748,267  748,508  748,516  748,263  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.008 <0.001 <0.001 0.000 0.000 0.000 0.000 

                  
High Plains (N = 4,848) 

Adjusted R squared 0.180 0.183 0.184 0.188 0.186 0.191 0.190 0.194 

Akaike Information Criterion 101,627  101,609  101,605  101,582  101,597  101,565  101,573  101,555  

Bayesian Information Criterion 101,730  101,745  101,741  101,719  101,766  101,734  101,742  101,756  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.004 <0.001 <0.001 <0.001 0.000 <0.001 <0.001 

                  
Midwest (N = 10,296) 

Adjusted R squared 0.284 0.286 0.289 0.286 0.292 0.288 0.292 0.294 

Akaike Information Criterion 212,589  212,570  212,525  212,576  212,493  212,544  212,489  212,467  

Bayesian Information Criterion 212,705  212,722  212,677  212,728  212,681  212,733  212,677  212,692  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A <0.001 0.000 0.019 0.000 <0.001 0.000 0.000 

Continued on next page 
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Table 2 (Continued) 

Northeast (N = 3,564) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.096 0.098 0.099 0.097 0.101 0.098 0.099 0.101 

Akaike Information Criterion 63,369  63,367  63,361  63,372  63,361  63,372  63,366  63,364  

Bayesian Information Criterion 63,468  63,497  63,491  63,502  63,521  63,532  63,527  63,555  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.062 0.026 0.169 0.006 0.163 0.098 0.002 

                  
South (N = 7,764) 

Adjusted R squared 0.117 0.127 0.121 0.132 0.148 0.144 0.139 0.162 

Akaike Information Criterion 155,364  155,273  155,329  155,233  155,097  155,128  155,178  154,970  

Bayesian Information Criterion 155,475  155,419  155,475  155,379  155,278  155,309  155,359  155,185  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.000 <0.001 0.000 0.000 0.000 0.000 0.000 

                  
Southeast (N = 6,228) 

Adjusted R squared 0.210 0.212 0.212 0.211 0.217 0.213 0.213 0.218 

Akaike Information Criterion 113,219 113,214 113,211 113,222 113,176 113,209 113,204 113,172 

Bayesian Information Criterion 113,326 113,356 113,353 113,364 113,351 113,385 113,379 113,381 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.013 0.001 0.293 <0.001 0.001 <0.001 0.000 

         
West(N=3,924) 

Adjusted R squared 0.036 0.040 0.040 0.039 0.041 0.042 0.041 0.042 

Akaike Information Criterion 80,949 80,938 80,938 80,942 80,939 80,937 80,938 80,939 

Bayesian Information Criterion 81,050 81,070 81,070 81,074 81,102 81,100 81,101 81,133 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A <0.001 0.001 0.036 0.000 0.001 0.002 <0.001 
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Table 3: Statistics and F tests for assessing the goodness of fit of corn yield models with and without GRACE-DA indicators 586	

All lower 48 states (N = 21,109) (Corn Yield (bushels per acre) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.290 0.291 0.290 0.292 0.296 0.293 0.293 0.297 

Akaike Information Criterion 185,481 185,445 185,482 185,440 185,321 185,412 185,417 185,281 

Bayesian Information Criterion 185,608 185,612 185,649 185,607 185,528 185,619 185,624 185,528 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.005 0.173 <0.001 0.000 <0.001 <0.001 0.000 

                  
High Plains (N = 3,633) 

Adjusted R squared 0.341 0.350 0.352 0.343 0.360 0.350 0.352 0.359 

Akaike Information Criterion 31,214 31,166 31,156 31,207 31,119 31,171 31,162 31,127 

Bayesian Information Criterion 31,313 31,296 31,286 31,337 31,280 31,332 31,323 31,319 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A <0.001 <0.001 0.023 0.000 <0.001 <0.001 <0.001 

                  
Midwest (N = 8,812) 

Adjusted R squared 0.437 0.441 0.442 0.445 0.442 0.447 0.448 0.448 

Akaike Information Criterion 75,533 75,475 75,466 75,420 75,463 75,391 75,380 75,386 

Bayesian Information Criterion 75,646 75,624 75,614 75,568 75,647 75,576 75,564 75,605 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Continued on next page 
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Table 3 (Continued) 

Northeast (N = 1,758) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.498 0.502 0.502 0.501 0.502 0.502 0.502 0.503 

Akaike Information Criterion 14,768 14,759 14,760 14,761 14,764 14,762 14,763 14,766 

Bayesian Information Criterion 14,856 14,874 14,875 14,876 14,906 14,904 14,905 14,936 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.007 0.016 0.013 0.016 0.007 0.024 0.020 

                  
South (N = 3,192) 

Adjusted R squared 0.287 0.292 0.288 0.292 0.292 0.300 0.298 0.301 

Akaike Information Criterion 27,681 27,663 27,681 27,663 27,667 27,634 27,643 27,634 

Bayesian Information Criterion 27,778 27,791 27,808 27,791 27,825 27,792 27,801 27,822 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.001 0.144 <0.001 0.010 0.000 <0.001 <0.001 

                  
Southeast (N = 3,120) 

Adjusted R squared 0.356 0.360 0.359 0.360 0.376 0.362 0.365 0.378 

Akaike Information Criterion 27,989 27,976 27,978 27,975 27,901 27,968 27,953 27,897 

Bayesian Information Criterion 28,086 28,103 28,105 28,102 28,059 28,125 28,111 28,085 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.012 0.011 0.009 0.000 0.001 <0.001 0.000 

                  
West (N = 594) 

Adjusted R squared 0.101 0.133 0.120 0.106 0.135 0.130 0.115 0.131 

Akaike Information Criterion 5,028 5,011 5,020 5,030 5,014 5,018 5,028 5,022 

Bayesian Information Criterion 5,098 5,103 5,112 5,122 5,129 5,132 5,142 5,158 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A  0.005 0.094 0.261 0.010 0.009 0.289 0.028 
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Table 4: Distribution of the magnitudes of prediction errors for farm income models with and without GRACE-DA indicators 587	

Magnitude of error Number of county-year observations 
Net farm income Corn yield 

USDM only With 
GRACE-DA 

USDM only With 
GRACE-DA 

≥ $131,072,000 and < $262,144,000 0 0 1 1 
≥ $65,536,000 and < $131,072,000 35 36 12 15 
≥ $32,768,000 and < $65,536,000 187 183 91 88 
≥ $16,384,000 and < $32,768,000 864 839 363 361 
≥ $8,192,000 and < $16,384,000 2,199 2,177 971 958 
≥ $4,096,000 and < $8,192,000 4,675 4,687 1,986 1,965 
≥ $2,048,000 and < $4,096,000 9,070 9,217 2,697 2,688 
≥ $1,024,000 and < $2,048,000 8,033 8,433 2,830 2,829 
≥ $512,000 and < $1,024,000 5,379 5,057 2,655 2,683 
≥ $256,000 and < $512,000 2,932 2,918 2,363 2,374 
≥ $128,000  and < $256,000 1,600 1,473 2,093 2,107 
≥ $64,000 and < $128,000 833 790 1,682 1,714 
≥ $32,000 and < $64,000 401 455 1,342 1,294 
≥ $16,000 and < $32,000 205 170 864 881 
≥ $8,000 and < $16,000 114 103 495 454 
≥ $4,000 and < $8,000 59 37 253 268 
≥ $2,000 and < $4,000 13 26 115 131 
≥ $1,000 and < $2,000 11 14 75 71 
≥ $0 and < $1,000 14 9 161 167 

 588	
  589	
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Figures 590	
Figure 1: Influence diagram describing the decision problem of issuing financial assistance. Oval nodes indicate uncertain quantities, 591	
rectangular node relates to decisions and hexagonal nodes relate to outcomes (adapted from Economou et al 2016). 592	
 593	
 594	

  595	
 596	

 597	
 598	
 599	
 600	
 601	
 602	
 603	
 604	
 605	
 606	
 607	
 608	
 609	
 610	

 611	

Observations	D States	of	nature	S

! " #

Action	A
Select	for	drought

assistance
Payoff

$ = ", '
Economic	value	
of	reduced	payoff

uncertainty	



36 
	

Figure 2: Information flow diagram form GRACE-DA and the U.S. Drought Monitor weekly mapping process 612	
 613	
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Figure 3: Comparison of county eligibility for the Livestock Assistance Grant Program (2006) using USDM and GRACE DAS 619	
indicators. Maps in the top row show counties that were deemed eligible for assistance based on USDM status but GRACE DAS 620	
indicators for groundwater storage, surface soil moisture, and root zone soil moisture (respectively) did not indicate any drought 621	
status. Maps in the lower row show counties that were deemed ineligible for assistance based on USDM status but GRACE DAS 622	
indicators for groundwater storage, surface soil moisture, and root zone soil moisture (respectively) indicated either extreme drought 623	
(D3) or exceptional drought (D4). 624	
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