GMAO Seasonal Forecast Ensemble Exploration

Anna Borovikov^{1,2}, Siegfried Schubert^{1,2}, Jelena Marshak¹

(1) NASA Global Modeling and Assimilation Office, Goddard Space Flight Center, Greenbelt, MD, USA (2) Science Systems and Applications, Inc., Greenbelt, MD, USA

Model, data, experiment

The GMAO coupled global seasonal forecast system S2S version 1 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The S2S version 2 came into production in December 2017. For 35 years, every 5 days, a 9-month coupled seasonal hindcast has been run for both versions, allowing for evaluation of the forecast skill and a study of various characteristics of the ensemble forecasts in particular.

The AGCM component of version 1 is Fortuna-2.5 (at 1° × 1¼° horizontal resolution). For version 2 the AGCM is Heracles-5 4 p3 (at ½° horizontal resolution), both at 72 hybrid vertical levels. The OGCM component has been upgraded from Modular Ocean Model version 4 (MOM4) for version 1 to MOM5 (Griffies, 2012) for version 2, both at ½° horizontal resolution with a meridional equatorial refinement to $\frac{1}{4}^{\circ}$ and 40 vertical levels.

Motivation

Studying the characteristic of an ensemble forecast system we attempt to answer several questions:

- Consistency: do the observations statistically belong to the distributions of the forecast ensembles?
- Is the ensemble spread an indicator of forecast uncertainty?
- To what extent is the ensemble spread related to the model's climatological variability and is that variability realistic?

Rank Histogram as a measure of ensemble consistency

For the computations described here we assembled a sample of 135 instances of 4-member ensembles by combining all winter forecasts for 35 years.

histogram, the more consistent is the ensemble. Shown here are rank histograms for Niño4, Niño3.4, Niño3 and Niño1+2 SST indices winter hindcasts for leads 1,3 and 6 months.

Mean intra-ensemble standard deviation vs the standard error of the estimate (SEE) as a measure of forecast uncertainty (following Barnston et al 2015)

Let SDy be the standard deviation of the observation (y), cor_{xy}^2 the squared correlation between the ensemble mean forecast (x) and the observation, σ the standard deviation of the intra-ensemble spread, then $SEE = SDy \sqrt{1 - cor_{xy}^2}$ and $R = \sigma/SEE$, which should be close to 1 for a perfect model:

if *R* < 1 the model is under dispersive if R > 1 model is over dispersive

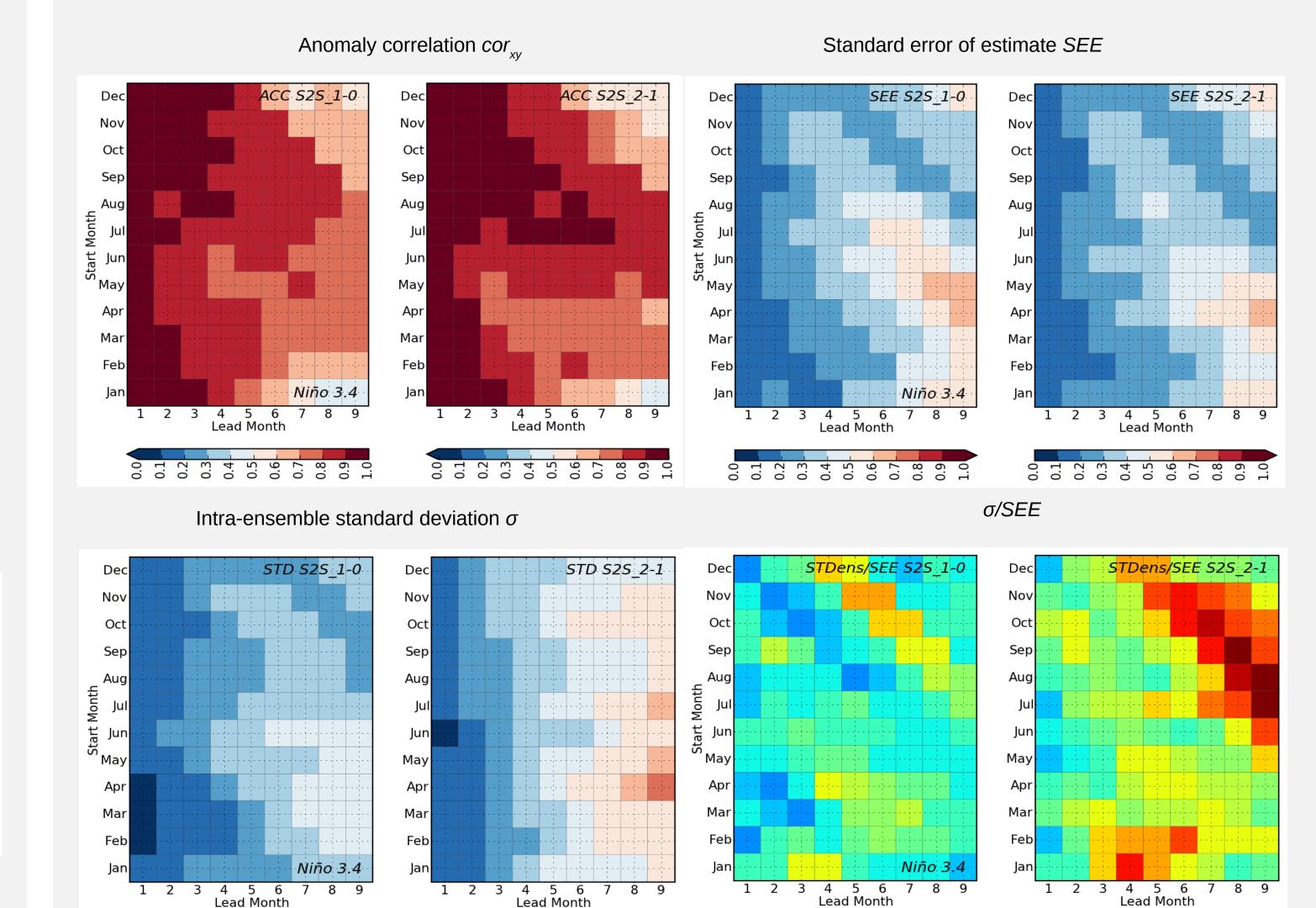


Fig. 2. Shown here are the four quantities described above for both forecast system versions for for Niño3.4 SST, all initial months, all leads.

Climatological variability represented by the ensemble spread

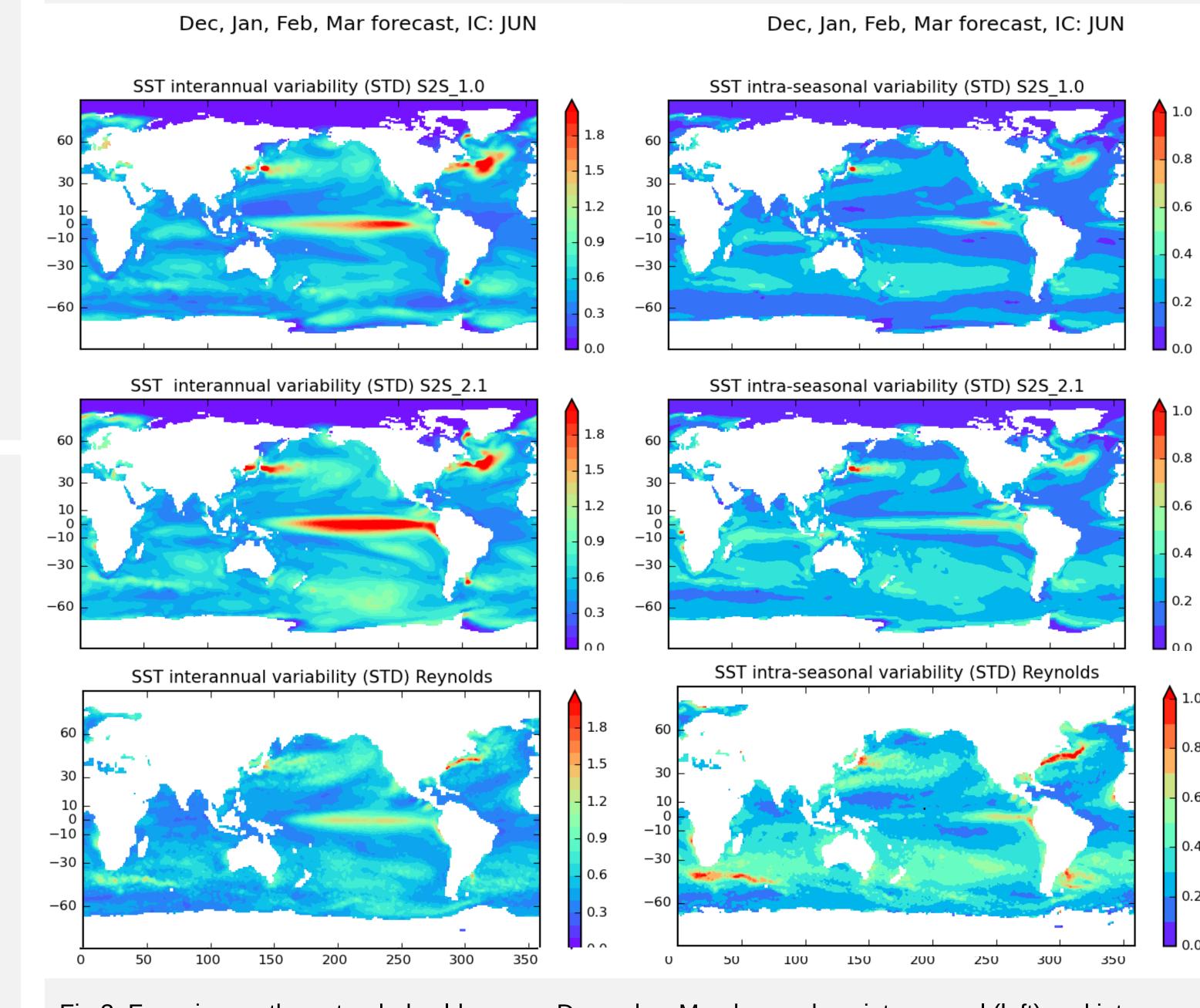


Fig.3. Focusing on the extended cold season December-March, we show interannual (left) and intraseasonal (right) variability from the ensemble of hindcasts initialized in June for version 1 (top), version 2 (middle row) and compare it to the observed variability computed using Reynolds SST

Conclusions

- ▶While the results are based on a small ensemble size, all indications are that the version 2 model has increased dispersion (intra-ensemble spread) compared to version 1.
- The marked reduction in the forecast bias in the version 2 (indicated by the rank histogram) for the eastern equatorial Pacific SST can be attributed to the new AGCM cloud physics.
- The version 2 system appears to be over-dispersive in Niño3.4 SST index when comparing with the forecast error at long leads verifying in spring (possibly linked to excessive ENSO variability in spring when observations show reduced variability).
- The version 2 system tends to be slightly underdispersive at short (1 month) leads, though still better than version 1 – perhaps an indication that the initial errors are too small or don't project sufficiently on the growing modes of SST.
- The DJFM intra-seasonal SST variability appears to be more realistic (greater) in version 2, consistent with the increased dispersion in this system.
- The version 2 system has excessive interannual SST variability especially over the tropical Pacific (possibly linked to strong or overactive ENSO).

References

Barnston, A.G., M.K. Tippett, H.M. van den Dool, and D.A. Unger, 2015: Toward an Improved Multimodel ENSO Prediction. J. Appl. Meteor. Climatol., 54, 1579–1595, DOI 10.1175/JAMC-D-14-0188.1 Borovikov, A., Cullather, R., Kovach, R. et al. 2017: GEOS-5 seasonal forecast system. Clim Dyn 1-27 DOI 10.1007/s00382-017-3835-2

Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Technical Report No. 7, NOAA/Geophysical Fluid Dynamics Laboratory

