

Comparison of Cross Correlation and Optical Flow Methods for Processing Retroreflective and Natural Background BOS data

17th International Symposium on Flow Visualization June 19-22 2016, Gatlinburg TN

Nathanial T. Smith¹ Michael A. Hill² James T. Heineck³, and Edward T. Schairer⁴

¹ Research Engineer, Aerospace Computing Inc., Moffett Field CA

² Aerospace Engineer, NASA Armstrong Flight Research Center, Edwards CA

³ Photographic Technician, NASA Ames Research Center, Moffett Field CA

⁴ Aerospace Engineer, NASA Ames Research Center, Moffett Field CA

Introduction

- Motivation
- Processing methods
 - Normalized cross-correlation
 - Optical flow
- Data sets
 - <u>Wind tunnel data</u>: retroreflective BOS NASA plume/shock interaction
 - Flight data: natural background AirBOS T-38
- Schlieren image results
- Conclusions

Motivation

• Cakebos/BOSCO early initial oflow?

- Displacement calculation between wind-on and reference
- Normalized cross-correlation
 - Well established technique in BOS, PIV
 - "Window matching" displacement
 - Subpixel localization via correlation peak finding
- Optical flow
 - Technique from computer vision community to detect motion, segmentation, and identification in video
 - Directly solve for the "brightness velocities"
- Registration, map to grayscale, and sequence averaging

Optical Flow I

- Horn Schunck: global regularization method
 - Dense solution method
 - Intuitive formulation
- Brightness constancy: $I_x u + I_y v = -I_t$,
- Smoothness constraint:

 $\|\nabla u\|^2 + \|\nabla v\|^2$

- Minimize the functional:

$$\int (I_x u + I_y v + I_t)^2 + \alpha^2 (\|\nabla u\|^2 + \|\nabla v\|^2) \, \mathrm{d}x \, \mathrm{d}y$$

Optical Flow II

- Euler-Lagrange yields simple iterative method
 - Jacobi vs. Gauss-Seidel
 - Converge to 10E-6

$$u = \bar{u} - I_x \frac{I_x \bar{u} + I_y \bar{v} + I_t}{\alpha^2 + I_x^2 + I_y^2} \qquad \qquad v = \bar{v} - I_y \frac{I_x \bar{u} + I_y \bar{v} + I_t}{\alpha^2 + I_x^2 + I_y^2}$$

- Numerical considerations
 - u, \overline{u} separated via 9-pt Laplacian stencil (window)
 - 8th order spatial derivatives
 - Image spatial derivatives from 2 frames

NASA shock-plume interaction wind tunnel data

- Shock Interaction studies with nominal Mach 2 jet exit
 - Freestream Mach 1.6 and 2
 - Multiple shock generating geometries
- RBOS speckle pattern below pressure rail

RBOS Raw data

AirBOS Flight Data

- Desert used as natural background speckle pattern
- Observer plane photographs target from above
- Pass 1 5000ft separation, Pass 2 2000ft separation

Use of multiple reference images

- Multiple AirBOS reference images available
 - Reduce freestream noise, Moiré patterns
 - Potentially clarify additional structure
- Standard deviation of freestream ROI
 - Significant reduction after 5 images
 - Tradeoff between cost and noise
- Difficult to used in RBOS images
 - Backgrounds must be distinct
 - Out of plane model rotation

Shock-plume interaction I: double-wedge airfoil

Shock-plume interaction II: aft-swept deck

AirBOS pass 1: single instance

AirBOS pass 1: full sequence average

AirBOS pass 2: single instance

AirBOS pass 2: full sequence average

Conclusions

- Optical Flow
 - Improved flow feature detail over cross-correlation, for both flight and wind tunnel data
 - Regularization method appears robust to data sets
 - Easily parallelized
- Use of multiple reference images
 - Decrease solution noise
 - Significant improvement with five distinct reference images
- Provided most detailed AirBOS schlieren images to date
- First use of optical flow for production test at NASA Ames Research Center
- Caveats
 - More sensitive to hard shadows than cross-correlation
 - Additional lighting considerations for wind tunnel applications
 - "Brightness constancy" violations: no solution in shadowed region

Questions?

