Challenges in Planetary Mapping and Surface Navigation

Ara Nefian

Navigation Challenges

- Lack of surface imagery
- Low gravity
- Terrain uncertainty impacts
 - obstacle avoidance direct communication with Earth illumination conditions
- Lunar Polar reflectance conditions (albedo, reflectance models)
- Rock distribution
- Gaps in regolith and surface characterization
- Lunar temperature conditions
- Low computational complexity available
- Low power systems
- High radiation environment

Lunar Reflectance and Illumination

Lunar Albedo

Incidence, emission and phase angles

Planetary Rover Navigation

Stereo Reconstruction from Orbital Imagery

Apollo Zone reconstructed color shade over Clementine imagery in Google Earth (left) and reconstructed oblique view of Apollo landing site (right).

Albedo Reconstruction

http://byss.arc.nasa.gov/oleg/albedo_04_09_2012/albedo_04_09_2012.kml

Apollo Zone reconstructed albedo over Clemntine imagery (Google Earth)

LOLA to Image Coregistration

Original

Adjusted

Alignment of LOLA

Apollo Imagery using

the Lunar Lambertian

reflectance model.

altimetry data to

Original

Adjusted

Planetary Rover Navigation

On-board Navigation

Structured Light: Onboard Hazard Detection

Structured Light: Onboard Hazard Detection

Structure Light Day Time with Color Filter

Structure Light at Night Time

Planetary Rover Navigation

Mars Science Lab

Top view of MSL rover panoramas over Gale Crater HiRISE terrain

top (top) and oblique (bottom) views.

The final partially automatic localization is shown by the rover panorama positions over the Gale crater HiRISE terrain.

odometry is shown in purple lines in both

Impact on automatic localization for

planetary rover missions

MSL mission localization through

The offset between odometry and final rover localization is generally of about **10-20m**.

Fully or partially automatic localization using the system prototyped here will allow MSL and future missions for rapid turn around localization and support long traverse autonomous navigation.

Oblique view of MSL rover panoramas over Gale Crater HiRISE terrain

Off board Localization System

Off board Localization System

Stereo Processing

Rectified left image

Disparity map

calibration package using OpenCV block matching based disparity computation OpenCV outlier rejection using morphological filtering run time 6 fps terrain reconstruction at 40m, 30cm baseline, 1388x1088 image size

Off board Localization System

Stereo Visual Odometry

BRISK Visual Feature Matching.

SURF Visual Feature Matching.

Stereo Visual Odometry

Mapping results of the stereo visual odometry system.

Uses stereo reconstructed terrain. Visual feature extraction SIFT, SURF, **BRISK**,ORB. Descriptor matching using FLANN, homography based outlier detection (RANSAC). Pairwise 3D pose estimation using stereo results. 3D outlier rejection Running time: 8 fps (BRISK)

Off board Localization System

Horizon Detection

Real time horizon detection.

Method for gray scale imagery to be used in various planetary environments.

No training set imagery is used.

Rectified rover image

Sky and ground distribution

Horizon Detection

Edge detection response.

Intensity and edge density pixel segmentation

Horizon Detection

Horizon Rendering

rendered (red) horizon from rover pose and high res low coverage terrain

rendered rover view from rover pose and high res low coverage terrain

rendered (red) horizon from rover pose and high res low coverage + low res high coverage terrain

rendered rover view from rover pose and high res low coverage + low res high coverage (red)terrain

Horizon Matching

Horizon Rendering and Matching

Horizon Matching Cost Function $Q_h(\mathbf{R}, \mathbf{T}) = \sum_i (Hd_i - Hr_i(\mathbf{R}, \mathbf{T})))^2$

i is the image column

 Hd_i , Hr_i are the rows corresponding to the detected and rendered horizon.

- multiple restart solution

- number of restarts increases over time to account for accumulated errors

- every 500 frames, <5s/frame.

$$Conf(\mathbf{R}, \mathbf{T}) = \frac{Q_h(\mathbf{R}, \mathbf{T})}{\sum_k Q_h \mathbf{R}_k, \mathbf{T}_k}$$

Horizon Rendering

Orbital Terrain Generation Ames Stereo Pipeline form Digital Globe Imagery 0.5m/pixel Overlay over USGS Terrain models at 10m/pixel. OpenGL or Mesa based solution for terrain rendering.

Localization Results

Localization errors wheel odometry (red) vs advanced navigation (blue)

Estimated traverse tracks over Basalt Hills area

ara.nefian@nasa.gov

Monday, August 15, 16