

Abstract

Characterizing near-Earth asteroids (NEAs) can help to assess the risk of possible impactors. Over many decades, asteroids have been spectrally classified into numerous taxonomic systems, most notably those of Tholen, Bus, and Bus-DeMeo. By mapping these various taxonomic systems to broader categories called complexes, it is easier to study the relationship between classifications and other physical parameters. There has recently been an increase in the number of objects with measured albedos which is advantageous for characterization because the albedo and absolute magnitude can be used to determine diameter. Knowing an asteroid's diameter helps us better understand dangers they may pose.

History of Taxonomies

Whereas diameter and albedo measurements are difficult to acquire, taxonomies are relatively easy to obtain because they can use lower-resolution spectra. In the 1980s, Tholen developed a taxonomy system that grouped asteroids based on spectral characteristics. The Bus system expanded upon the Tholen system by incorporating more data from CCD spectra. The Bus-DeMeo taxonomy system is an extension of the Bus system and uses visible and near-IR data.

Table 1. Taxonomic Systems and Classes				
Taxonomic	Classes			
System				
Tholen	14 classes			
	A, B, C, D, E, F, G, M, P, Q, R, S, T, V			
	With albedo: E, M, P			
	Others: I, K, U, X			
Bus	26 classes			
	A, B, C, Cb, Cg, Cgh, Ch, D, K, L, Ld, O, Q, R,			
	S, Sa, Sk, Sl, Sq, Sr, T, V, X, Xc, Xe, Xk			
Bus-DeMeo	24 classes			
	A, B, C, Cb, Cg, Cgh, Ch, D, K, L, O, Q, R, S, Sa, Sq, Sr, Sv, T, V, X, Xc, Xe, Xk			

Bus-DeMeo eliminates SI, Sk, and Ld and defines Sv. In addition, Bus-DeMeo adds a "w" notation to represent taxonomies with similar spectral features but different slopes.

Taxonomic System:	Tholen (1984)	Gaffey (1993)	Bus (2002)	Bus-DeMeo (2009)	Taxonomy Notes	Relevant minerals possible meteorite analogs	
Wavelength Range:	0.33-1.1 um	0.35-2.50 um	0.45-0.90 um	0.45-2.45 um		(for more details see Burbine et al., Asteroids III)	
S-Complex	S	SI SIII SIV SV SVI SVI	S Sa Sq Sr Sk Sl	Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	Tholen: Defined only S. Gaffey: 7 mineralogic classes based on Band I center & Band II / Band I area ratio. Primarily separates olivine to orthopyroxene ratio. Bus: Separates based on strength of 0.9um drop, indicative of 1um band. B-D: Definition largely preserved from Bus. Now includes full 1um feature and 2 um feature in near-ir. SI & Sk are removed, Sv is added.	Minerals: olivine, pyroxene Meteorites: S(I): Pallasites?, R chondrites, Brachinites, S(IV): many are ordinary chondrite- like, S(V): Primitive achondrites?, S(VII): Basaltic Achondrites	
C-Complex	B C F G		B C Cb Cg Cgh Ch	B C Cb Cg Cgh	Tholen: Primarily distinguished by the 0.3-0.5um UV dropoff region. Bus & 8-D do not cover this region, thus do not make these distinctions Bus: Defined by UV dropoff and/ or by 0.7um Cgh, Ch feature. B-D: Definition largely preserved from Bus. Near-infrared is largely degenerate.	Minerals: opaques, carbon, phyllosilicates, some have weak features indicating olivine, pyroxene Meteorites: carbonaceous chondrites (except CV), possibly impact melts from ordinary chondrites and HEDs?	
X-Complex	E M P		X Xc Xe Xk	X Xc Xc Xc Xk	Tholen: EMP are spectrally degenerate. Distinguished by high (E), med (M) and low (P) albedo. Bus: X class defined by shape of curve and/or 0.49um Xe feature. B-D: Definition largely preserved from Bus. Near-infrared is largely degenerate.	Minerals: M,P: opaques, carbon, low-Fe pyroxene. E: enstatite, oldhamite Meteorites: M,P: carbonaceous chondrites (not CV). M w/high radar albedo: irons, CB condrites, Silicate rich irons. E: enstatites	
Other: End Members, Outliers	TD ORV A		T D Q O R V A K L	TDQORVAKL	Definitions for each of these classes are relatively consistent among taxonomies as they are each spectrally distinct.	D opaques, organics Q mostly LL OCs O pyroxene, olivine R olivine, pyroxene V HEDs, pyroxene, plagioclase feldspar A pallasite, brachinite, R chondrites, olivine. K CO,CV. olivine L CAI-rich, spinel-rich	

Spectroscopic Classes

An asteroid's surface composition can be known by its spectra because distinct spectral features are indicative of certain elements. Using visible and infrared data, asteroids are broadly classified into three main groups: S-type, Ctype, and X-type.

Figure 1. Comparison of various taxonomies.

Taxonomies and Albedos of Near-Earth Asteroids

Kate Napier¹, Dr. Jessie Dotson², Dr. Diane Wooden² ¹Georgia Institute of Technology Atlanta, Georgia (email: knapier3@gatech.edu), ²Ames Research Center- SSA Moffett Field, California

Motivation and Method

With an increasing number of NEAs being discovered, there is a need to uniformly cla and compare them. We combined albedo values, thermally derived diameter values, taxonomy classifications from the literature make this dataset. We developed a set of to classify objects with multiple measurem for a single parameter. The measurement I is based on the highest S/N and the most IR bands. We mapped taxonomies to complexes and complexes to prime complexes.

Table 3. Symbols

Symbol	Meaning
&	Complex; when a letter is prepended by &, it refers to the complex of taxonomies (which
	might include numerous specific taxonomies).
\$	Complex Prime; when a letter is prepended by \$, it refers to the roll up of complexes to thei
	primary complexes of either S, X, or C.
/	Two taxonomy assignments because on boundary of two principal components.
;	Separator between multiple taxonomy assignments.
:	Uncertainty in taxonomy assignment (e.g., Binzel et al. 2004). Not used in the manner of
	DeMeo et al. 2014 where specifically Q: means uncertain between Sq and Q, and S: means
	not Sq and not Sr.
^	Spectrum shows excess thermal emission. Object cannot be formally classified (without
	some uncertainty) due to the presence of a thermal tail (Thomas et al. 2014 Table 2).
*	Three or more taxonomy assignments; or, placed on more than one principal component
	boundary; a Bus taxonomy excluded from naming in the Bus-DeMeo system thus
	incorporating it into a less specific group of taxonomic assignments.

Various symbols are used to modify the primary taxonomies.

Table 5. Complex to ComplexPrime

ComplexPrime	complexes included
\$S	&S, &Q, &K, &L, &A, &V
\$C	&C, &B
\$X	&X, &D
&X/C	&X/C
\$U	&U (Unknown)

Complexes are grouped into ComplexPrime, a classification based on broad compositional groups.

Figure 2. Albedo/ Taxonomic Type relationship for the objects listed in Mainzer et al. (2011) in various taxonomic systems.

The majority (~98%) of the albedo measurements are for main-belt asteroids (MBAs). Albedo varies by taxonomy. Although the Bus and Bus-DeMeo albedos are similar, the Tholen ones are different.

Figure 3. Albedo/ Complex relationship for main-belt asteroids (MBAs) and near-Earth asteroids. It is unclear if the properties for MBAs represent those for NEAs. The references for MBA albedos include DeMeo & Carry (2013), Mainzer (2011), Mainzer (2012), and Warner (2009). The references for NEA albedos include Stuart & Binzel (2004) and Thomas (2011).

assify
, and
e to
rules
nents
listed

Table 2. Bus to Bus-DeMeo			
Bus	Bus-DeMeo		
Ld	D:		
Sk	S*		
SI	S		
Sq	S*		
Sq:	S*		
Sr	S		
S(IV)	S*		
U	NA (Non-Assignment		
	also is a carat without		
	2 of Thomas et al.		
	2014)		
Bus taxonomies			
are mapped to			
the			
corresponding			
Dus-Delvieu			
••••••••••••••••••••••••••••••••••••••			

Table 4. Complex

٢	Taxonomies Included
	S, Sa, Sk, Sl, Sr, Sw, Srw, Svw, S*, S:, S/Sq, S/Sr, Sv/Sr
	Q, Sq, Sq/Q, Sqw
	к
	L
	A
	L
	V,V:
	C, Cb, Cg, Ch, Cgh, C:, C*, C/Cb, C/Ch, C/Ch/^
	В
	D, T, D:
	X, Xc, Xk, Xe, E, M, P, E/M, M/P, P/M, T, X:, X*, X/E, Xc/C, Xe/E, Xk:
	C/X, X/C
	U (Unknown); C/X/T

The Bus-DeMeo taxonomies are grouped into complexes based on work by DeMeo et al 2009 and Demeo & Carry 2013.

Preliminary Analysis

Our dataset: Number of NEOs with taxonomy = 833 Number of NEOs with diameter = 1188 Number of NEOs with taxonomy & diameter = 336

Figure 4. Albedo/ Complex relationship for our dataset. The complexes included have at least five objects in them.

Figure 5. Albedo/ Complex relationship comparing the average of our dataset with those from Stuart & Binzel (2004) and Thomas et al. (2011). Whereas the Stuart & Binzel data is debiased, our dataset and the Thomas et al. data are not debiased. Our average albedos tend to be higher than those reported in the literature.

Future Work

Addressing biases:

• Our dataset is brighter than the known population. • Closer objects are under-represented. Albedos from infrared data are significantly lower than

those from optical data.

In August 2016, the results of our research will be available via a searchable interface to the public at neoproperties.nasa.org. Currently the properties listed, including diameter and taxonomy, can be calculated from remote sensing. In the future, the website will be expanded to include the connections between meteorite and asteroid physical properties.

	References
Binzel et al 2004 <i>Icarus</i> 170 , 259	
Carry et al 2016 Icarus 268, 340	
Delbo 2006 EAR-A-KECK1LWS/ETAL-5-DELBO-V1.0. NASA Planetary Data	System
Delbó et al 2003 <i>Icarus</i> 166 116	
de León et al 2010 A&A 517	
DeMeo, Binzel and Lockhart 2014 Icarus 227 112	
DeMeo & Carry Icarus 226 1	
JPL Solar System Dynamics / Horizons (<u>http://ssd.jpl.nasa.gov</u>)	
Lazzarin et al 2004 Icarus 169 373; Marchi et al 2004 Astronomy and Ast	trophysics 4
Mainzer et al 2011 ApJ 741 90	
Mainzer et al 2011 ApJ 743 156	
Mainzer et al 2012 ApJ 745 7	
Mainzer et al 2014 ApJ 784 110	
Minor Planet Center (http://www.minorplanetcenter.net)	
Nugent et al 2015 <i>ApJ</i> 814 117	
Perna et al 2016 The Astronomical Journal 151 1	
Stuart & Binzel 2004 Icarus 170 294	
Thomas et al 2011 The Astronomical Journal 142 85	
Thomas et al 2014 <i>Icarus</i> 228 217	

Trilling et al, 2016, in preparation Warner, Harris, & Pravec 2009 Icarus 202 134 Ye, Q.-Z. 2011 *The Astronomical Journal* **141** 32

5; Marchi et al 2005 *Icarus* **175** 170; Lazzarin et al 2005 *MNRAS* **359** 1575