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Example application: 
Image reconstruction 
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image 

Unsupervised learning (generative models) 
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Learn the “best” model distribution that 
can generate the same kind of data. 
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Supervised learning (discriminative models) 

Learn the “best” model that can 
perform a specific task 

Example application: 
Image recognition 
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Outline

• Why is it hard and interesting to sample from a Boltzmann distribution? Why, in principle, is it 

possible to do classical Gibbs sampling with a quantum annealer? 

General BMs
 Deep architectures


0 1000 2000 3000 4000 5000
iteration

�14

�12

�10

�8

�6

�4

L a
v

QuALe @ Te↵

QuALe @ T = 0.08
QuALe @ Tav ⇡ 0.1

QuALe @ T = 0.16

CD-1
CD-10
CD-100

0 100 200 300 400 500
iteration

�12

�11

�10

�9

�8

�7

�6

L a
v

CD-1
QuALe with restart @ 250
QuALe @ T = 0.033 with restart @ 250

s
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Amin. PRA, 92, 052323 (2015) 

• Overcoming the “curse of limited connectivity” in hardware. How to work with general probabilistic 
graphical models beyond RBM? How to cope with noisy devices and future directions. 

 

• How to do it experimentally? Results on our quantum-assisted learning (QuALe) algorithm for 
sampling applications. Feasibility question. 



“Most of the previous work in generative models has focused on variants of 
Boltzmann Machines [...] While these models are very powerful, each 
iteration of training requires a computationally costly step of MCMC to 
approximate derivatives of an intractable partition function (normalization 
constant), making it difficult to scale them to large datasets.” 
 
Mansimov, Parisotto, Ba, Salakhutdinov, under review for ICLR 2016 

Unsupervised learning relies on sampling 

“In the context of the deep learning approach to undirected modeling, it is rare 
to use any approach other than Gibbs sampling. Improved sampling 
techniques are one possible research frontier.” 
 
Goodfellow, Bengio, Courville, Deep Learning, book in preparation for MIT Press, 2016 

“Unsupervised learning [... has] been overshadowed by the successes of 
purely supervised learning. [... We] expect unsupervised learning to 
become far more important in the longer term. Human and animal learning 
is largely unsupervised: we discover the structure of the world by  observing it, 
not by being told the name of every object.” 
 
LeCun, Bengio, Hinton, Deep Learning, Nature 2015 
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Deep Belief Networks 

such that

RBM’s:

Model:
Computationally 
bottleneck

Training Method: Stochastic gradient ascent

Restricted Boltzmann Machines and Beyond 



Foundational Theory of Quantum Annealing

Simulated	Annealing		
(Kirkpatrick	et	al.,	1983)	

•  Transitions between states are over the barrier and 
due to thermal fluctuation 

•  Algorithm: Start with a high temperature. Slowly 
reduce the intensity of these thermal fluctuations 
aiming for low cost configs.. 
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	 	Quantum	Annealing		
(Finnila	et	al.,	1994,	Kadawaki	and	Nishimori,	1998,	Farhi	et.al.,	2001)	

• Transitions between states due to 
quantum fluctuations (tunneling) 

• Algorithm: Start with large amplitude 
A(τ) responsible for quantum 
fluctuations. Then, slowly turn it off 
while turning on the cost function 
amplitude, B(τ). 

Time, τ 

E({z}): Free energy 
Surface (cost funct.) 

Final states: bit strings 
encoding the solution. 
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initialize in an easy to 
prepare full quantum 
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quantum states 
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D-Wave System Capability

1) As a discrete optimization solver: 

2) As a physical device to sample from Boltzmann distribution: 

PBoltzmann ∝ exp[−ξ (s1,..., sN ) /Teff ]
Potential NASA applications in 
machine leaning (e.g., training 
of deep-learning networks) 

Potential NASA applications: 
planning, scheduling, fault 
diagnosis, graph analysis, 
communication networks, etc. 

QUBO: Quadratic Unconstrained 
Binary Optimization  
(Ising model in physics jargon). 

NP-hard 
problem 

Computationally 
bottleneck

Our recent work: Benedetti et al. PRA, 94, 022308 (2015) 
Early work:
Bian et al. 2010. The Ising model: teaching an old problem new tricks.

•  Algorithm uses the same samples that will be used for the 
estimation of the gradient

•  We provide a robust algorithm to estimate the effective temperature of 
problem instances in quantum annealers. 

Recent work:
Raymond et al. 2016. Global warming: Temperature estimation in 
annealers.  

Widely used in 
unsupervised 
learning

Visible units

Hidden units
RBM

Also, quantum ML work by Google/DW. 



Why sampling from classical Gibbs?


2) As a physical device to sample from Boltzmann distribution: 

PBoltzmann ∝ exp[−ξ (s1,..., sN ) /Teff ]
Potential NASA applications in 
machine leaning (e.g., training 
of deep-learning networks) 

Amin. PRA, 92, 052323 (2015)
s Teff > TDW2X



Quantum-Assisted Learning Vs. Contrastive Divergence
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Bars and Stripes dataset

Fisher and Igel. Pattern Recognition, 47, 25 (2014) 

Embedding on the D-Wave 2X
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Added features: Restart from CD-k
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Comparison with pseudo-likelihood
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Quantum-assisted unsupervised learning on digits

Overcoming the curse of limited connectivity

7 logical (visible) variables

18 physical qubits



Quantum-assisted unsupervised learning on digits

Overcoming the curse of limited connectivity 
in physical devices.

42 fully-connected 
logical (visible) variables

794 physical qubits

How do we train this 794 qubit problem? 
(How do we analyze the (Gibbs) samples 
from this physical model? 

Benedetti et al. In preparation.

Immediate solution: Keep an eye on a paper coming out 
with a new gray-model approach for training noisy QA.



Quantum-assisted unsupervised learning on digits

OptDigits Datasets

Dataset: Optical Recognition of Handwritten Digits (OptDigits) 

8x8 7x6 7x6, binarized 

32x32



Quantum-assisted unsupervised learning on digits

OptDigits Datasets

Dataset: Optical Recognition of Handwritten Digits (OptDigits) 



Quantum-assisted unsupervised learning on digits

Dataset: Optical Recognition of Handwritten Digits (OptDigits) 

corruptedoriginal

Benedetti et al. In preparation.



Quantum-assisted unsupervised learning on digits

Dataset: Optical Recognition of Handwritten Digits (OptDigits) 

corruptedoriginal

•  Experimental realization of quantum-assisted learning algorithm 
on 794 qubits, for a 42 fully-connected model. 

•  Fully unsupervised learning and generative model on a digit.

After 1 
learning iter.

Benedetti et al. In preparation.
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Quantum-assisted unsupervised learning on digits

46 fully-connected 
logical (visible) variables

917 physical qubits

Are the results from this training on 917 qubit 
experiment meaningful? Is the model capable 
of generating digits, as expected?

42 for pixels + 4 to one-hot encode the class 
(only digits 1-4)

Overcoming the curse of limited connectivity 
in hardware.



Quantum-assisted unsupervised learning on digits

Human or (quantum) machine? (Turing test)

Benedetti et al. In preparation.Dataset: Optical Recognition of Handwritten Digits (OptDigits) 



Quantum-assisted unsupervised learning on digits

(quantum)  
machine 

Human 

Human or (quantum) machine? (Turing test)

Dataset: Optical Recognition of Handwritten Digits (OptDigits) Benedetti et al. In preparation.

•  Experimental realization of quantum-assisted learning algorithm 
on 917 qubits, for a 46 fully-connected model. 



Quantum-assisted unsupervised: artificial model
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Reference model: Ising spin 
glass with 20 fully-connected 
spins (10 instances).



Numerical simulations show that main 
limitation of current quantum annealers for 
Boltzmann machines applications is its sparse 
connectivity. 

Extensions to deep learning architectures.

Possible further boosting protocols by considering models to account explicitly for the noise 
in the quantum device.

Ongoing research directions


General BMs


Deep architectures


Inference by using quantum distributions, such as those coming from future generation 
quantum computing technologies.

How “Boltzmannian” need the samples to be for 
QuALE to work.

Is quantum tunneling, or any other quantum computational resource, relevant for machine 
learning/sampling applications? Can it be any faster than MCMC? Is it possible to achieve 
quantum supremacy in this domain?



Support slides 


