The South Residual CO₂ Cap on Mars: Investigations with a Mars Global Climate Model

Melinda A. Kahre¹, Julie Dequaire², Jeffery L. Hollingsworth¹, and Robert M. Haberle¹

¹NASA Ames Research Center

²Oxford University

The CO₂ cycle is one of the three controlling climate cycles on Mars. One aspect of the CO₂ cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere could control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO₂ snowfall over the hemisphere where the residual cap resides. Since precipitated CO₂ ice produces higher surface albedos than directly deposited CO₂ ice, it is plausible that CO₂ snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. Our current work builds on these initial investigations with a version of the NASA Ames Mars Global Climate Model (GCM) that includes a sophisticated CO₂ cloud microphysical scheme. Processes of cloud nucleation, growth, sedimentation, and radiative effects are accounted for. Simulated results thus far agree well with the Colaprete et al. study—the zonally asymmetric nature of the atmospheric circulation produces enhanced snowfall over the residual cap hemisphere throughout much of the winter season. However, the predicted snowfall patterns vary significantly with season throughout the cap growth and recession phases. We will present a detailed analysis of the seasonal evolution of the predicted atmospheric circulation and snowfall patterns to more fully evaluate the hypothesis that the atmosphere controls the placement of the south residual cap.