
Methodology and Application of HPC
I/O Characterization with MPIProf and IOT

Yan-Tyng Sherry Chang, Henry Jin
NASA Advanced Supercomputing Division

NASA Ames Research Center
Moffett Field, CA 94035-1000, USA

{sherry.chang,haoqiang.jin}@nasa.gov

John Bauer
I/O Doctors, LLC

15054 County Road 20, P. O. Box 223
Hanska, MN 56041-0323

bauerj@iodoctors.com

Abstract—Combining the strengths of MPIProf and IOT, an
efficient and systematic method is devised for I/O
characterization at the per-job, per-rank, per-file and per-call
levels of HPC programs running on the NASA Advanced
Supercomputing Center. This method is applied to answer four
I/O questions in this paper. A total of 13 MPI programs and 15
cases, ranging from 24 to 5968 ranks, are analyzed to establish
the I/O landscape from answers to the four questions. Four of the
13 programs use MPI I/O and the behavior of their collective
writes depends on the specific implementation of the MPI library
used. The SGI MPT library, the prevailing MPI library for our
systems, was found to gather small writes from a large number of
ranks to perform larger writes by a small subset of collective
buffering ranks. The number of collective buffering ranks
invoked by MPT depends on the Lustre stripe count and the
number of nodes used for the run. A demonstration of varying
the stripe count to achieve double-digit speedup of one program's
I/O was presented. Another program, which concurrently opens
private files by all ranks and could potentially create a heavy
load on the Lustre servers, was identified. The ability to
systematically characterize I/O for a large number of programs
running on a supercomputer, seek I/O optimization opportunity
and identify programs that could cause a high load and
instability on the filesystems is important for pursuing exascale
in a real production environment.

Keywords—MPI I/O; POSIX I/O; Lustre; Stripe

I. INTRODUCTION
The advances in high-performance computing (HPC)

processor, memory, network and storage technologies are
pushing to materialize exascale computing in the near future.
The June 2016 Top500 list [1] shows that 95 supercomputers
in the world have achieved more than 1 PetaFlops. Aside from
the temporary glory of such achievement, a few important
tasks of HPC centers are: (i) ensuring the availability and
stability of resources for their users, (ii) educating users on
how to effectively utilize these shared resources, and (iii)
planning for future infrastructure where scientists and
engineers can continue pursuing larger scale simulations and
generating increasing amounts of data to solve problems with
higher fidelity and complexity.

When pursuing exascale for real applications, I/O is
becoming more important. An application cannot scale well if
it is hampered by its I/O. A large-scale simulation can fail due

to single points of failure in the processor, memory or network,
and HPC users are advised to increase the frequency of
checkpointing to avoid losing valuable results due to system
failures. The shared parallel filesystems commonly deployed at
HPC centers also require users to know not only how to better
exploit them but also how not to create issues that may impact
other users. HPC centers often create their own monitoring
tools to check the health of their filesystems and identify user
jobs that cause harm to them. A more challenging task is how
to correlate issues seen at the system level to the characteristics
of I/O performed by user codes.

At the NASA Advanced Supercomputing (NAS) Center,
the Lustre [2] shared filesystems have grown over the years to
a total of approximately 1300 Object Storage Targets (OSTs)
and 30 PetaBytes (PB). A software tool [3] based on SGI’s
Performance Co-Pilot was developed recently to provide, at the
end of each user job, Lustre statistics such as (i) the amount of
data read and written, (ii) the number of files opened and
closed, and (iii) the I/O size distribution. Such job-level
statistics, though useful to the system administrators, are harder
for the users to comprehend. In this study, a robust
methodolgy which combines the strengths of two performance
analysis tools, MPIProf [4] and IOT [5], is applied to reveal in-
depth I/O characteristics of real user programs. The end results
of this study include:

• Establishing the I/O landscape of codes at NAS

• Exposing details in the MPI I/O implementation

• Improving I/O for better scaling for some code(s)

• Identifying code(s) which cause heavy load on Lustre

The ability to provide quantitative I/O measurement of real
applications to identify potential optimization in user codes
and/or the institution’s I/O infrastructure will bring users and
HPC centers one step closer to pursuing exascale in the long
term.

II. RELATED WORK

Throughout the years, many research and commercial tools
have been developed to analyze application performance and
study I/O characteristics. Only a few that have relevance to the
current work for I/O characterization are cited here. Full-scale

https://ntrs.nasa.gov/search.jsp?R=20190000271 2019-08-30T05:13:03+00:00Z

profiling tools, such as TAU [6] and OpenSpeedshop [7],
provide certain level of support for I/O profiling and tracing.
But it is often challenging for a user to fully master these tools,
since they are designed as a workhorse for application
performance optimization with an emphasis on deep-diving,
comprehensive performance analysis. A closer tool to MPIProf
in functionality is MPInside [8] from SGI, which has a simple
interface for collecting MPI and I/O statistics of MPI
applications. Unfortunately the tool is a commercial product
only available on SGI machines and is not currently well-
maintained.

Darshan [9] is an I/O characterization tool that was
designed to report per-file I/O behavior and access patterns of
applications. It has low overhead in collecting I/O statistics
(both MPI I/O and POSIX I/O) and has been successfully
demonstrated for applications at extreme scale. Ftracer [10] is a
trace-based I/O analysis tool with an aim at more detailed
tracing information. It uses a double-buffered mechanism to
reduce tracing overhead. Attempts have been made in defining
high-level metrics for I/O characterization and understanding
different workloads at data centers. Uselton and Wright [11]
introduced a metric called file system utilization (FSU) to
connect different I/O characteritics. Work has also been carried
out to characterize I/O bebaviors of scientific applications in
data centers [12,13]. The main difference of our approach in
this work is that we define a methodology combining the
strengths of two tools for I/O characterization and apply it to a
set of production NASA applications.

III. METHODOLOGY

A. MPIProf
MPIProf is a NASA in-house tool developed initially as an

MPI profiling tool and later expanded to add support for
memory usage and I/O profiling. Similar to the SGI MPInside
[8] and Intel MPI Performance Snapshot (MPS) [14], the tool
was designed to gather statistics of MPI functions, including
MPI I/O, and POSIX I/O calls made by an application.
MPIProf provides information such as time spent, number of
calls, and number of bytes transferred at both the job level and
the per-MPI rank level.

Detailed description of MPIProf can be found in [4].
Briefly, MPIProf gathers statistics in a counting mode and
instruments MPI functions by the PMPI interface and POSIX
I/O via wrappers for shared libraries. The tool takes a
lightweight approach in collecting performance data and has a
very simple command-line interface without the need for
modifying or recompiling applications. The most
straightforward way to perform profiling with MPIProf is as
follows:

 mpiexec –np <n> mpiprof [-options] a.out [args]

where the tool loads the proper profiling environment,
including libraries, and writes results at the end of the run. In
its text output, MPIProf provides an overall run summary, per-
function summary, data size histograms, aggregated and per-
rank time spent, number of calls and transfer size. To focus on
I/O profiling, the –ios option in MPIProf reports I/O statistics

only, including MPI I/O functions, POSIX I/O called by MPI
I/O, and other POSIX (non-MPI) I/O.

B. IOT
IOT [5] is a licensed toolkit developed by I/O Doctors,

LLC, for I/O instrumentation and optimization of HPC
programs. It allows detailed analysis at various levels: per-
job, per-rank, per-file, and per I/O operation. In addition to
information such as time spent, number of calls and number of
bytes transferred, IOT also provides information on when and
where in the file the I/O occurs.

iot is a utility program of the IOT toolkit that configures
the runtime environment for instrumentation. All child
processes of iot can be subject to iot instrumentation. The
user-supplied iot configuration allows fine-grained control of
iot layers and layer options that will be applied to selected
programs and files. The instrumentation result of each child
process is recorded in an ilz stream for post-mortem analysis
with IOT’s Pulse GUI. There is minimal change to the user
script as the iot command is a pre-command, similar to time.
On NASA Supercomputing system Pleiades [15], the
following command is used for instrumenting an executable,
represented as a.out below:

iot -m mpiflavor -f cfg.icf -c pfe:`pwd`/prg.${JOB_ID}.ilz \
 mpiexec -np <n> a.out [args]

where

• -m specifies the MPI implementation used, typically it
is mpt for applications running on Pleiades

• -f specifies the iot configuration file
• -c merges all ilz streams from all instrumented

processes into a single stream
• pfe is one of the Pleiades front-end nodes where iot

collects all the ilz streams from the child processes
running on various compute nodes

• ${JOB_ID} is the JOBID from Pleiades batch job
scheduling system PBS

Among the layers available in IOT, the trc layer provides
low overhead instrumentation of intercepted I/O calls. The trc
layer has multiple levels of user selectable instrumentation
allowing the user to control the level of detail and volume of
instrumentation data. The detail can range from a per process
aggregation of the counts, sizes, and wall clock deltas of each
I/O operation type to the collection of the metrics of every I/O
operation for every file of every process.

In addition to the process-specific trc layer
instrumentation, IOT can also monitor system performance
information such as memory, network, disk, and cpu
utilization (via the /proc filesystem), at a user selectable time
interval. This allows correlation of a process's activity with
system activity. IOT also has Lustre-specific monitoring for
lnetstat (Lustre network statistics) and OSC (Object Storage
Client) behavior.

The resulting ilz stream can then be analyzed via Pulse:

 java –jar Pulse.jar prg.jobid.ilz

Pulse will present the data in multiple hierarchical fashions,
including a hierarchical tree format, table format, and graphical
format, to facilitate the interpretation of the data.

C. Procedure
In this section, a procedure is described for analyzing a

given test case of a program. This procedure combines the
strengths of MPIProf and IOT where MPIProf is used to
provide a quick overview of the program’s I/O at every single
MPI rank, and IOT is then deployed on selected ranks for
deeper analysis at the per-file or even per-call levels. As a
result, I/O analysis can be done quickly without the burden of
creating a huge amount of analysis data from all MPI ranks.

There are multiple questions one can address with this
procedure. A small subset is included in this paper:

• Does the program do MPI I/O and/or POSIX I/O?

• Is the I/O dominated by a single rank, multiple ranks or
all ranks?

• What is the amount of time spent doing I/O and what
I/O operation (open, close, read, write, etc.) dominates
(in terms of time)?

• When does I/O occur during the run?

Answers obtained from the analysis of these questions at a
per-job and/or per-rank level will be useful for an HPC center
to establish the I/O patterns of programs running on a system
and to help determine future I/O infrastructure better suited for
its user community. Additional information obtained at a per-
file and/or per I/O call level from the analysis may be useful to
the program developer and users for potential I/O
optimization.

The procedure for analyzing each un-recompiled program
and/or test case is as follows:

• Modify user’s job script and run the executable under
MPIProf with the –ios option to focus on I/O.

 The first three questions above at the per-job and per-
rank levels are addressed from this step. In addition,
results obtained for the first two questions will be
useful to help choose the MPI ranks to track by IOT in
the next two steps.

• Modify job script and run the executable under IOT
with the trc.totaliops and trc.iops options enabled on
selected MPI ranks.

 This step will address the last two questions at a per-
rank and per-file level. Results obtained from this step
also verify the results obtained from MPIProf.

• Modify the IOT configuration file to enable the
trc.totaliops, trc.iops and trc.events options and run the
executable under iot on selected MPI ranks.

 This step will provide more detailed information on a
per-I/O-call level.

• If needed, change the runtime environment (such as the
filesystem, stripe count, or stripe size used, etc.) and
repeat steps.

IV. APPLICATION
The methodology is applied to user programs running on

the NAS Pleiades supercomputer. Pleiades [15] is comprised
of 11,472 compute nodes of four Intel processor generations
(Sandy Bridge, Ivy Bridge, Haswell and Broadwell) connected
via two InfiniBand (IB) fabrics in a partial 11-dimensional
hypercube topology. One IB fabric is used for MPI
communication while the other is mainly used for I/O.
Multiple Lustre filesystems (/nobackupp[1-9]), with a total of
1300 OSTs and 30 PB, are shared among ~1600 users.
Compute resources are allocated to each user project in
Standard Billing Units (SBU) [16], where 1 SBU is 1 node-
hour on the recently retired Westmere processors. For Sandy
Bridge, Ivy Bridge, Haswell and Broadwell nodes, using 1
node-hour will cost more SBUs due to the better capability of
these processors. The total allocatable SBUs per month are
more than 10 million. The top-10 codes, in terms of SBU
usage, frequently consume more than 50% of the total SBUs.

Table I lists a total of 13 programs and 15 cases analyzed.
Among these 13 programs, ATHENA, ENZO, FLASH,
MCONV and SOLARBOX are Astrophysics programs.
ECCO, FVCORE and WRF are used for weather modeling.
FUN3D, LOCI-STREAM, OVERFLOW and USM3D are
Computational Fluid Dynamics (CFD) codes for various aero-
related fields. All executables and test cases were obtained
directly from users except FLASH, which was downloaded
from the Parallel I/O Benchmarking Consortium web site [17].
The ATHENA program, provided by a user, comes with two
versions, C and C++, and they are labeled in Table I
accordingly. The programs marked with * in the table, are
among the top-10 codes on Pleiades.

TABLE I. LIST OF PROGRAMS AND CASES ANALYZED

Program Resources
Number of
MPI Ranks

*ATHENA-C 84 Has x 24 2048
*ATHENA-C++ 136 Has x 24 3264
*ATHENA-C++ 214 Bro x 28 5968
*ECCO 5 Has x 24 120
*ENZO 12 Ivy x 20 240
FLASH 1 Has x 24 24
FLASH 5 Has x 24 120
*FUN3D 40 Has x 24 960
FVCORE 59 Ivy x 20 1176
*LOCI-STREAM 120 Ivy x 20 2400
*MCONV 202 Ivy x 20 4032
*OVERFLOW 5 Has x 24 120
*SOLARBOX. 80 Ivy x 20 1600
USM3D 10 Has x 24 240
WRF 16 Has x 24 384

*One of Pleiades’ top-10 programs

All of these programs and cases use only MPI for parallel
processing (i.e., no OpenMP), which is typical for jobs running
on Pleiades. The computing resources used for each of these
MPI programs and cases are shown in the 2nd column, where
Ivy, Has and Bro represent the Intel Ivy Bridge (20
cores/node), Haswell (24 cores/node) and Broadwell (28
cores/node) processor nodes [15]. The number of ranks used,
shown in the last column, ranges from 24 to 5968, which is
also representative of the workload on Pleiades. For
ATHENA-C++, two test cases were provided by the user, one
with 3264 MPI ranks and the other with 5968 MPI ranks. For
FLASH, two cases were tested, one with 24 MPI ranks, and the
other with 120 MPI ranks. All programs, with one exception,
were built by users with SGI MPT library and run with MPT
version 2.12r26. The MCONV program was built by the user
with Intel MPI library and run with Intel MPI version
5.0.3.048.

Unless stated explicitly, all runs were performed on
/nobackupp8, which includes a total of 312 OSTs and 6.6 PB
of disk space, with a stripe count of 1 and a stripe size of 4 MB
on the run directories and files.

V. RESULTS

A. MPI I/O and/or POSIX I/O
The MPIProf text output file contains a section of

“Instrumented function list” which displays the functions
intercepted from a program. Fig. 1 shows an example from the
ATHENA-C++ program where multiple MPI I/O functions are
called. For clarity purpose, MPIProf uses short names (e.g.
mread, mwrite, ewrite, ewritec, etc.,) to represent the MPI
functions in its tabulated output sections. Since the MPI I/O
functions eventually call POSIX I/O functions, the table marks
those POSIX I/O called by MPI I/O functions with “<”. In
addition to POSIX I/O called by MPI I/O, there are other
POSIX I/O which are not called by MPI I/O and they are
shown without “<”.

Fig. 1. I/O functions called by ATHENA-C++

Among all the programs analyzed, ATHENA-C++ (A),
FLASH (F), MCONV (M) and SOLARBOX (S) are the only
four that use MPI I/O in addition to non-MPI POSIX I/O. The
MPI I/O functions called by each of these four programs are

listed in Table II. Interestingly, all four of them fall in the
Astrophysics discipline.

TABLE II. MPI I/O FUNCTIONS CALLED BY PROGRAMS

MPI I/O Function A F M S

MPI_File_open x x x x
MPI_File_read_all x
MPI_File_write_all x

MPI_File_write_at_all x x
MPI_File_read_ordered x
MPI_File_write_ordered x

MPI_File_read x
MPI_File_write x
MPI_File_write_at x x

MPI_File_read_shared x
MPI_File_write_shared x

MPI_File_close x x x x

B. I/O Dominant Rank(s)
MPIProf text output contains multiple sections about the

time used, number of function calls and amount of data
read/written by each rank. From these sections, one can
determine whether the program’s I/O is dominated by a single
rank, multiple ranks or all ranks. Although there are
exceptions, in many programs analyzed, these sections depict
the same dominance pattern. For the programs that do not use
MPI I/O, all except ATHENA-C show I/O dominated by rank
0. Except for FUN3D, these programs also have small amounts
of I/O done by all other ranks. For ATHENA-C, I/O is evenly
distributed among all ranks.

For programs that do MPI I/O, the behavior is more
complicated. In particular, the ranks that dominate the
collective writes, if called by the program, could be different
depending on the specific implementation of the MPI library
used. With the SGI MPT library, when multiple processes are
writing to the same file in a coordinated manner, the different
processes send their writes to a subset of collective buffering
ranks to do a smaller number of bigger writes, which could
potentially improve the I/O performance. The two main factors
in the MPT algorithm for choosing how many ranks to do the
writes are: the stripe count and number of nodes. When the
number of nodes is greater than the stripe count, the number of
collective buffering ranks is the stripe count. Otherwise, the
number of collective buffering ranks is the largest integer less
than the number of nodes that evenly divides the stripe count.
In addition, MPT chooses the first rank from the first n nodes
to come up with n collective buffering ranks. This is
demonstrated in Fig. 2 and Fig. 3 of the FLASH program
where the <px-io call counts from the ranks that actually
perform the underlying POSIX I/O are shown in blue while
those of collective MPI I/O (c-mpio) calls from all ranks are in
red.

Fig. 2. Rank 0 dominating case of FLASH

Fig. 3. 4 ranks dominating case of FLASH

Similar to FLASH, all MPI ranks for the 3264-rank and
5968-rank runs of ATHENA-C++ and the 1600-rank runs of
SOLARBOX call collective MPI write functions. These
programs also show the change from rank 0 dominating <px-io
with a stripe count of 1 to multiple ranks dominating <px-io
with a stripe count > 1. For example, running SOLARBOX
with 80 Ivy Bridge nodes, each with 20 MPI ranks, and using a
stripe count of 16, the 16 ranks dominating <px-io are ranks 0,
20, 40, …, 300.

Results from runs with IOT also verify the I/O dominant
ranks seen with MPIProf. In addition, more details on how the
SGI MPT library dispatches data to the collective buffering
ranks for writes are revealed by runs using the IOT trc.events
level enabled. With a stripe count of 1, data are dispatched in 4
MB chunks to rank 0. When the stripe count is n, data are
dispatched in 1 MB chunks to the n collective buffering ranks
in a round-robin manner. This is demonstrated in Fig. 4 using
SOLARBOX’s writing of a large restart file via the
MPI_File_write_ordered as an example. Specifically, with a
stripe count of 16 where 16 ranks (i.e., ranks 0, 20, 40, …, 300)
collect data from all 1600 ranks for <write, rank 0 writes the
1st, 17th, 33th, 49th… 1 MB chunks, rank 20 writes the 2nd, 18th,
34th, 50th… chunks, …, and rank 300 writes the 16th, 32th, 48th,
64th, … chunks. For clarity, only ranks 0, 100, 200 and 300 are
shown in Fig. 4. Furthermore, analysis with IOT at a per-call
level also reveals that these <writes are done mostly
sequentially, a common characteristic for all programs
analyzed in this study.

Fig. 4. Sequential, round-robin dispatching of data in SOLARBOX

Contrary to what is observed with SGI MPT, using the only
program (MCONV) built with Intel MPI library, no collective
buffering for <write is observed. That is, all the ranks that
invoke the collective write MPI functions call the underlying
POSIX write functions.

For MPI collective reads, neither SGI MPT nor Intel MPI
implements the use of collective buffering ranks as in the MPI
collective writes.

C. Amount of Time Spent in I/O Functions
Both MPIProf and IOT report the amount of time spent in

I/O. Each one has its advantage over the other. MPIProf reports
separate I/O time between MPI I/O and non-MPI I/O. For the
MPI I/O portion, one can also deduce the contribution between
communication and the POSIX I/O called underneath. IOT has
the advantage of tracking some I/O functions, such as stat(),
unlink(), etc., that are not tracked by MPIProf. It also shows
the I/O on a per-file and per-call level.

To get a landscape of I/O time spent among the programs,
results from IOT for each program/case with the trc.iops
enabled but with trc.events disabled and with a stripe count of
1 are shown in Table III. For ease of comparison, timing in this
table is from rank 0 only. Column 2 shows the total runtime in
sec. Columns 3 and 4 show the total I/O time in sec (including
POSIX I/O time from both MPI I/O and non-MPI I/O, but not
the communication time from MPI I/O) by this rank and the
percentage time spent in I/O relative to the total runtime.

TABLE III. RANK 0 TIMING WITH STRIPE COUNT OF 1 FROM IOT

Program Runtime I/O I/O %
ATHENA-C 584 20.7 3.5
ATHENA-C++ (3264) 520 354.3 68.1
ATHENA-C++ (5968) 1659 1163.2 70.1
ECCO 35 12.4 35.4
ENZO 740 51.8 7.0
FLASH (24) 11 5.1 46.4
FLASH (120) 25 16.8 67.2
FUN3D 1299 14.8 1.1
FVCORE 1161 0.9 0.0
LOCI-STREAM 3692 103.0 2.8
MCONV 2969 47.1 1.6
 OVERFLOW 195 17.1 8.8
SOLARBOX. 4207 86.4 2.1
USM3D 377 45.4 12.0
WRF 1358 16.4 1.2

Among these programs and cases, ATHENA-C++ and
FLASH show more than 40% of runtime spent in I/O. The two
ATHENA-C++ cases provided by a user contain a higher
frequency of I/O operations than his normal production runs.
The FLASH case was downloaded from web and is designed to
study I/O. It is thus expected that the percentage time spent in
I/O would be smaller for production cases of these two
programs. Nonetheless, a long runtime and high I/O% as in the
ATHENA-C++ cases provide incentive to seek I/O
optimization opportunity. Timing analysis of four I/O function
types in Fig. 5 shows that most I/O time of ATHENA-C++
cases is spent in write operations followed by open operations
and no time is spent in read and close operations. The analysis
described below illustrates the use of MPIProf and IOT to
improve the I/O performance of the ATHENA-C++ program.

Fig. 5. Percentage I/O time spent in open, read, write, and close

As described earlier, with SGI MPT, only rank 0 is used as
the collective buffering rank in the collective MPI write
operations when the stripe count is 1, while multiple ranks are
used when the stripe count is > 1. In addition, the write size is
changed from 4 MB for stripe 1 to 1 MB for stripe > 1. Using
either MPIProf or IOT, it was observed that changing the stripe
count from 1 to a larger number also affects the I/O time. Figs.
6 and 7 compare the timing among different stripe counts for
the ATHENA-C++ 3264-rank and the 5968-rank cases,
respectively, using results obtained from IOT. In Fig. 6 for the
3264-rank case, it is observed that (i) the total write time
dominates the total I/O time for all three stripe counts, (ii) the
total write time decreases from 348 sec for stripe 1 to 33.2 sec
for stripe 16 and 28.5 sec for stripe 64, (iii) the total open time
stays about the same at ~6 sec for all three stripe counts. The
improvement in the total write time with a stripe count of 16 vs
a stripe count of 1 results in a speedup factor of 10x for the
total write time, 9x for the total I/O time and 4x for the total
runtime. Comparing timing between stripe count of 64 and
stripe count of 1, the speedup factor is 12x for the total write
time, 10x for the total I/O time and 4x for the total runtime. A
similar trend is seen in Fig. 7 for the 5968-rank case, except
that the improvement for the total write time is even more
dramatic - 1152, 47.5, 26.0 and 21.0 sec for stripe counts of 1,
16, 64 and 128, respectively. This improvement results in (a) a
speedup factor of 24x for total write, 20x for total I/O and 5x
for total runtime for a stripe count of 16 vs 1, (b) a speedup
factor of 44x for total write, 30x for total I/O and 6x for total
runtime for a stripe count of 64 vs 1, and (c) a speedup factor

of 55x for total write, 36x for total I/O and 8x for total runtime
for a stripe count of 128 vs 1. Although timing results from
MPIProf are not shown here, they portray very similar speedup
factors as those obtained from IOT for both the 3264-rank and
the 5968-rank cases.

Fig. 6. Rank 0 timing of ATHENA-C++ 3264 ranks from IOT

Fig. 7. Rank 0 timing of ATHENA-C++ 5968 ranks from IOT

Further characterization of the I/O timing for the
ATHENA-C++ program at the per-file level was obtained by
combining information from both MPIProf and IOT. As shown
in Table II, in addition to the non-MPI POSIX write function,
ATHENA-C++ calls three different MPI write functions – the
collective MPI_File_write_at_all and the non-collective
MPI_File_write and MPI_File_write_at. Since MPIProf does
not profile I/O for each file, in the absence of the program
source code, one can only speculate on the type of write calls
for different files. Table IV combines results from different
output sections of MPIProf for the ATHENA-C++ 5968-rank
case with a stripe count of 1. It was deduced from this table
that the POSIX writes from (i) the collective
MPI_File_write_at_all was done by rank 0 with a total size of
about 323 GB. This 323 GB is close to the total size of 6 output
files with suffix .rst; (ii) the non-collective MPI_File_write_at
was done by all ranks with a total size of about 14 GB. This 14
GB is close to the total size of 6 output files with suffix .athdf;
(iii) the non-MPI write was done only by rank 0 for a total size
of about 60 KB. This 60 KB is close to the total size of 6
output files with suffix .xdmf. Since the time spent in
MPI_File_write is zero, no attempt was made to figure out

what files were written by these calls. Changing the stripe
count from 1 to > 1 only increases the number of collective
buffering ranks used for the collective MPI_File_write_at_all.
It does not affect the number of ranks used for POSIX I/O from
the non-collective MPI write and the non-MPI write functions.

TABLE IV. POSIX WRITES OF ATHENA-C++ 5968-RANK CASE

POSIX write from Rank(s) Time (sec) Size (Byte)
MPI_File_write_at_all 0 ~590* ~323G
MPI_File_write_at all ~640 (rank 0)* ~14G
MPI_File_write 0 ~0 ~20K
Non-MPI 0 ~2 ~60K

* Time includes both communication and <write

Results from IOT confirm the inference obtained from
multiple MPIProf output sections. That is (i) the .rst files by
the collective MPI write function are written by 1 rank with a
stripe count of 1, 16 ranks with a stripe count of 16, and so on.
When multiple ranks are used, data in each file is equally
divided and dispatched in 1 MB chunks in a round-robin
fashion to the ranks; (ii) the .athdf files by the non-collective
MPI write function are written by all ranks irrespective of the
stripe count, where data in each file is equally divided and
dispatched in 8 – 16 KB chunks among all ranks; and (iii) the
.xdmf files by non-MPI POSIX write are written by only rank
0 regardless of the stripe count in either 4 or 8 KB chunks. As
seen in Figs. 6 and 7, increasing the stripe count has the most
dramatic speedup for the writing of the 6 .rst files due to a
combination of (a) the large sizes of these files (~44 GB in
total for the 3264-rank case and ~323 GB for the 5968-rank
case), (b) the use of multiple ranks for parallel writes, and (c)
the use of multiple OSTs of the Lustre filesystem which
provides additional parallelism. The speedup for writing the 6
smaller .athdf files is significant but levels off faster than the
writing of the 6 .rst files. Since the 6 .athdf files are written by
all ranks regardless of the stripe count, the speedup only
comes from further parallel handling of writing data through
multiple OSTs of Lustre. For the 6 .xdmf files, only rank 0 is
used for writes, and increasing the stripe count actually slows
them down, though the effect is quite small due to the very
small sizes of these files.

The analysis of the ATHENA-C++ 3264-rank and 5968-
rank cases with both MPIProf and IOT allows for better
understanding of the I/O characteristics of this program and
why using a stripe count of 1, as was originally used in the
user’s production runs, prevents scaling to larger number of
ranks. With a larger problem size and a larger number of MPI
ranks, it is important to increase the stripe count accordingly to
better take advantage of multiple parallelism from both the
MPI I/O library and the Lustre filesystem in order to minimize
the I/O time for better scaling. For the production cases of the
ATHENA-C++ program where the I/O time is a much smaller
fraction of the total runtime, the user has reported performance
improvement of the total runtime by 10 – 20% simply by
increasing the stripe count from 1 to 16. The ability to associate
specific MPI I/O calls with files and their I/O time, as
demonstrated in this study, would help the ATHENA-C++

developer to experiment different I/O approaches for individual
files when trying to scale this program to more than 10,000
MPI ranks.

D. When Does I/O Occur?
In addition to knowing what ranks, what I/O sizes and the

amount of time spent in the I/O functions, knowing when the
I/O occurs can sometimes be useful. This is demonstrated with
the ATHENA-C program, which does not use MPI I/O.

As shown in Fig. 5, for most programs and cases analyzed,
more time is spent in writing than opening, reading or closing
files. One exception is the ATHENA-C program where the
time spent in open is much larger than the time spent in write.
From both MPIProf and IOT, it was found that all 2048 ranks
in this program do I/O. Furthermore, IOT reveals that each
rank opens, writes and closes 48 private .rst files and 48
private .vtk files. In addition to the .rst and .vtk files, rank 0
also opens, writes and closes 48 .hst files. To understand why
the open operations are so costly, it helps to examine when the
open operations occur during the run. Fig. 8 shows the
occurrence of the opens during the run from 3 representative
ranks - ranks 0, 128 and 256. It is clear from this figure that
the 48 sets of opening 2 private files (or 3 files from rank 0)
happen at about the same time among all the ranks. Having
2048 ranks each sending 2 to 3 open calls to the Lustre server
at the same time creates contention for Lustre, thus the costly
time spent in opens.

Fig. 8. ATHENA-C open events by 3 representative ranks

Programs that create a heavy load on Lustre, as exhibited
in the ATHENA-C case, have the potential of not only hurting
their own I/O performances, but also those of other users’
jobs. Even more detrimental is the possibility of slowing down
Lustre to the extent of making it inaccessible to all users. The
NAS system administrators regularly monitor the Lustre

filesystems and identify programs that cause heavy load on the
systems. When necessary, the offending jobs are killed to
bring Lustre back to life. Killing jobs sends a strong signal to
users but does not help them figure out how to pinpoint the
cause in their codes. The methodology with MPIProf and IOT
provides a mechanism that users can employ to understand the
I/O of their codes in order to find ways to eliminate
problematic I/O behaviors.

VI. CONCLUSION
The combined use of MPIProf and IOT enabled an

efficient and systematic analysis of many real programs with
number of MPI ranks up to 5968. Of the 13 programs
analyzed, the I/O landscape shows:

• 4 programs use MPI I/O and 9 do not.

• Except for ATHENA-C, I/O is dominated by rank 0 for
all programs that do not use MPI I/O.

• I/O patterns for programs with MPI I/O vary depending
on the specific MPI I/O calls used and the choice of
MPI library.

• I/O is mostly dominated by write operations for most
programs.

• All programs do mostly sequential I/O.

The prevalent use of single rank I/O in many existing
programs implies that most users have not explored parallel
I/O. Converting these programs from serial to parallel I/O will
take significant education and effort. Supporting serial I/O is
inevitable for the near term and options are to be investigated.

Since the SGI MPT library is the recommended MPI
library for jobs running on Pleiades, the lessons learned from
this study about the collective writes handled by MPT
emphasize the need for users to understand their program’s
MPI I/O and find the optimum stripe counts for specific cases.
This is demonstrated in the I/O characterization of ATHENA-
C++ and the speedup obtained for this program. In some
situations, it may require setting different stripe count for
different files for better overall I/O performance. One of the
recently introduced capabilities of IOT is a mechanism where
different stripe counts and stripe sizes can be easily set for
different files.

Most programs spend more time writing than opening,
reading or closing files. Investing in new hardware or tuning
Lustre system parameters for faster writes is a worthwhile
effort.

The ATHENA-C program with concurrent opens from all
ranks is one example where contention is created in Lustre
servers. Using the methodology described in this study will
help users identify such behavior in order to find a proper
remedy which in turn will improve the stability of the
filesystems.

Only 4 I/O questions are addressed in this paper for the 13
programs studied. Other questions such as the distribution of

I/O sizes, correlation of I/O performance with system
activities, why a program performs better on one filesystem vs
another, etc., can be addressed through other features of
MPIProf and IOT.

ACKNOWLEDGMENT
Communication with SGI MPT lead engineer, Michael

Raymond, regarding MPI I/O implementation in MPT is
greatly appreciated. Yanfei Jiang, Jahed Djomehri, Samson
Cheung, Doug Westra, Robert Stein, Dennis Jespersen, Irina
Kitiashvili and Alan Wray are acknowledged for making their
programs and test cases available. We thank Johnny Chang
and Dale Talcott for reviews, corrections, and comments on
the manuscript.

REFERENCES
[1] Top500 List - June 2016, https://www.top500.org/list/2016/06/
[2] P. J. Braam and P. Schwan, "Lustre: the intergalactic file system," in

Proceedings of Ottawa Linux Symposium, 2002.
[3] S. Saini, J. Rappleye, J. Chang, D. Barker, P. Mehrotra, and R. Biswas,

“I/O performance characterization of Lustre and NASA applications on
Pleiades,” 19th International Conference on High Performance
Computing (HiPC), 2012.

[4] H. Jin, "Using MPIProf for performance analysis,"
http://www.nas.nasa.gov/hecc/support/kb/using-mpiprof-for-
performance-analysis_525.html

[5] IOT FAQ, http://iodoctors.com/faq.html
[6] S. Shende and A.D. Malony, “The TAU parallel performance system,”

International Journal of High Performance Computing Applications,
Vol. 20-2, pp. 287-331, 2006.

[7] The Krell Institute, Open|SpeedShop, https://openspeedshop.org/
[8] D. Thomas, J.-P. Panziera, and J. Baron, “MPInside: a performance

analysis and diagnostic tool for MPI applications,” WOSP/SIPEQ ’10,
Proceedings of the First Joint WISP/SIPEW International Conference on
Performance Engineering, pp. 79-86, 2010.

[9] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, "24/7
characterization of petascale I/O workloads," in 2009 IEEE International
Conference on Cluster Computing and Workshops, pp. 1-10. IEEE,
2009.

[10] W. Dong, G. Liu, J. Yu, and Y. Zuo, "Characterizing I/O workloads of
HPC applications through online analysis," in 2015 IEEE 34th
International Performance Computing and Communications Conference
(IPCCC), pp. 1-2. IEEE, 2015.

[11] A. Uselton and N Wright, “A file system utilization metric for I/O
characterization,” in Proc. of the Cray User Group conference, 2013.

[12] P. C. Roth, “Characterizing the I/O behavior of scientific applications on
the Cray XT,” in Proc. of the 2nd International Petascale Data Storage
Workshop (PDSW’07), November 11, 2007, Reno, NV.

[13] F. Pan, Y. Yue, J. Xiong, and D. Hao, "I/O characterization of big data
workloads in data centers," in Workshop on Big Data Benchmarks,
Performance Optimization, and Emerging Hardware, pp. 85-97. Springer
International Publishing, 2014.

[14] Intel Developer Zone document, “Getting started with the MPI
performance snapshot,” https://software.intel.com/en-us/articles/getting-
started-with-the-mpi-performance-snapshot.

[15] NASA High-End Computing Capability Project, Pleiades
Supercomputer, http://www.nas.nasa.gov/hecc/resources/pleiades.html

[16] Standard Billing Units, http://www.hec.nasa.gov/user/policies/sbus.html
[17] Parallel I/O Benchmarking Consortium,

http://www.mcs.anl.gov/research/projects/pio-benchmark/

