CO₂ Capacity Sorbent Analysis using Volumetric Measurement Approach

Roger Huang¹ KBR Wyle, NASA Ames Research Center, Moffett Field, CA 94035

Grace Belancik² and Darrell Jan³ NASA Ames Research Center, Moffett Field, CA 94035

Gregory Cmarik⁴ Jacobs ESSSA Group, NASA Marshall Space Flight Center, Huntsville, AL 35812

> Armin D. Ebner⁵ and James Ritter⁶ University of South Carolina, Colombia, SC 29208

> > and

James Knox⁷ NASA Marshall Space Flight Center, Huntsville, AL 35812

In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO₂ capacity tests on various sorbents to complement structural strength tests from Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13x, Honeywell UOP APG III, VSA-10, BASF 13x, and Grace Davison Grade 522 5A. Each sorbent's CO₂ capacity was measured using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These datasets were then extrapolated using Langmuir 3-Site and Toth isotherm models to compare with previously measured capacity data from MSFC using a thermogravimetric analysis approach. The modeling and extrapolation from ARC data correlated well with data measured at MSFC.

Nomenclature

ARC	=	Ames Research Center
CDRA	=	Carbon Dioxide Removal Assembly
CO_2	=	Carbon Dioxide
MSFC	=	Marshall Space Flight Center

¹ Engineer, KBR Wyle, Bioengineering Branch, ARC, CA 94035

² Physical Scientist, Bioengineering Branch, ARC, CA 94035

³ Physical Scientist, Bioengineering Branch, ARC, CA 94035

⁴ Chemical Engineer, ECLSS Development and Test Branch, MSFC, AL 35812

⁵ Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, SC 29208

⁶ Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, SC 29208

⁷ CO₂ Removal Lead Engineer, ECLSS Development and Test Branch, MSFC, AL 35812

TGA = Thermogravimetric Analysis