National Aeronautics and Space Administration

Low Cost Entry, Descent, and Landing (EDL) Instrumentation for Planetary Missions

Helen H. Hwang

Science Missions Development Manager, Entry Systems and Technology Division NASA Ames Research Center

Michelle M. Munk,¹ Robert A. Dillman,¹ Milad Mahzari,² Gregory T. Swanson,² and Todd R. White³

¹NASA Langley Research Center, Hampton, VA ²Analytical Mechanics Associates, Inc., Moffett Field, CA ³NASA Ames Research Center, Moffett Field, CA

IPPW 13, Laurel, MD June 2016

Outline

- Background and Motivation
- Workshop Recap
- Commercial Data Acquisition Systems
- Drivers for Cost and Mitigation Methods
- Current Status and Future Work

EDL Instrumentation Overview

- Mission opportunities are limited, and most are unique; every lost opportunity is a setback
- Types of flight instrumentation/measurements: thermocouples, pressure sensors, heat flux gages, recession sensors, radiometers, spectrometers, etc.

EDL Instrumentation on Missions

Year	Mission	Planet	Forebody TPS	Afterbody TPS	TCs	Pressure	Heat Flux	Calorimeter	Radiometer/ Spectrometer	Recession/ Isotherm
1965	FIRE II	Earth	Beryllium	Fiberglass	Х	Х	Х	Х	Х	
1966	Apollo AS-201	Earth	Avcoat	Avcoat	Х	Х	Х	Х		
1966	Apollo AS-202	Earth	Avcoat	Avcoat	Х	Х	Х	Х		
1967	Apollo 4	Earth	Avcoat	Avcoat	Х	Х		Х	Х	
1968	REENTRY-F	Earth	Beryllium	Glass-Phenolic	Х	Х	Х			
1968	Apollo 6	Earth	Avcoat	Avcoat	Х	Х		Х	Х	
			Beryllium & Silicon	Silicon						
1971	PAET	Earth	Ealstomer	Elastomer	Х	x	х		x	
1975	Viking	Mars	SLA-561	None	Х	Х				
	Pioneer Venus									
1978	Large	Venus	Carbon-Phenolic	Phenolic-nylon	Х					
	Pioneer Venus									
1978	Small	Venus	Carbon-Phenolic	Phenolic-nylon	Х					
1981	Shuttle	Earth	Reuseable	Reuseable	Х	Х	Х			
1995	Galileo	Jupiter	Carbon-Phenolic	Phenolic-nylon	Х			Х		Х
	Mars									
1997	Pathfinder	Mars	SLA-561V	SLA-561S/SIRCA	Х					
			Rigid nose & Flexible							
2012	IRVE-3	Earth	Insulator	None	Х	x	Х			
2012	MSL-MEDLI	Mars	PICA	SLA-561V	Х	Х				Х
2014	Orion EFT-1	Earth	Avcoat	Tiles	Х	Х			Х	Х
2015	LDSD-SIAD	Earth	Kevlar Attached	None	Х	Х				
2018	Orion EM-1	Earth	Avcoat	Tiles	Х	Х			Х	
	Mars2020-									
2020	MEDLI2	Mars	PICA	SLA-561V	Х	X	Х		x	

Compiled from B. A. Woollard, R. D. Braun, and D. Bose, "Aerodynamic and Aerothermal TPS Instrumentation Reference Guide," IEEE Aerospace Conference, March 2016, Big Sky, MT.

EDL Instrumentation on Missions

Year	Mission	Planet	Forebody TPS	Afterbody TPS	TCs	Pressure	Heat Flux	Calorimeter	Radiometer/ Spectrometer	Recession/ Isotherm
1965	FIRE II	Earth	Beryllium	Fiberglass	Х	Х	Х	Х	Х	
1966	Apollo AS-201	Earth	Avcoat	Avcoat	Х	Х	Х	Х		
1966	Apollo AS-202	Earth	Avcoat	Avcoat	Х	Х	Х	Х		
1967	Apollo 4	Earth	Avcoat	Avcoat	Х	Х		Х	Х	
1968	REENTRY-F	Earth	Beryllium	Glass-Phenolic	Х	Х	Х			
1968	Apollo 6	Earth	Avcoat	Avcoat	Х	Х		Х	Х	
			Beryllium & Silicon	Silicon						
1971	PAET	Earth	Ealstomer	Elastomer	Х	Х	Х		Х	
1975	Viking	Mars	SLA-561	None	Х	Х				
	Pioneer Venus									
1978	Large	Venus	Carbon-Phenolic	Phenolic-nylon	Х					
	Pioneer Venus									
1978	Small	Venus	Carbon-Phenolic	Phenolic-nylon	Х					
1981	Shuttle	Earth	Reuseable	Reuseable	Х	Х	Х			
1995	Galileo	Jupiter	Carbon-Phenolic	Phenolic-nylon	Х			Х		Х
	Mars									
1997	Pathfinder	Mars	SLA-561V	SLA-561S/SIRCA	Х					
			Rigid nose & Flexible							
2012	IRVE-3	Earth	Insulator	None	Х	Х	Х			
2012	MSL-MEDLI	Mars	PICA	SLA-561V	Х	Х				Х
2014	Orion EFT-1	Earth	Avcoat	Tiles	Х	Х			Х	Х
2015	LDSD-SIAD	Earth	Kevlar Attached	None	Х	Х				
2018	Orion EM-1	Earth	Avcoat	Tiles	Х	Х			Х	
	Mars2020-									
2020	MEDLI2	Mars	PICA	SLA-561V	Х	Х	Х		Х	

EDL Instrumentation on Missions

Year	Mission	Planet	Forebody TPS	Afterbody TPS	TCs	Pressure	Heat Flux	Calorimeter	Radiometer/ Spectrometer	Recession/ Isotherm
1965	FIRE II	Earth	Beryllium	Fiberglass	Х	Х	Х	Х	Х	
1966	Apollo AS-201	Earth	Avcoat	Avcoat	Х	Х	Х	Х		
1966	Apollo AS-202	Earth	Avcoat	Avcoat	Х	Х	Х	Х		
1967	Apollo 4	Earth	Avcoat	Avcoat	Х	Х		Х	Х	
1968	REENTRY-F	Earth	Beryllium	Glass-Phenolic	Х	Х	Х			
1968	Apollo 6	Earth	Avcoat	Avcoat	Х	Х		Х	Х	
			Beryllium & Silicon	Silicon						
1971	PAET	Earth	Ealstomer	Elastomer	Х	Х	Х		Х	
1975	Viking	Mars	SLA-561	None	Х	Х				
	Pioneer Venus									
1978	Large	Venus	Carbon-Phenolic	Phenolic-nylon	Х					
	Pioneer Venus									
1978	Small	Venus	Carbon-Phenolic	Phenolic-nylon	Х					
1981	Shuttle	Earth	Reuseable	Reuseable	Х	Х	Х			
1995	Galileo	Jupiter	Carbon-Phenolic	Phenolic-nylon	Х			Х		Х
	Mars									
1997	Pathfinder	Mars	SLA-561V	SLA-561S/SIRCA	Х					
			Rigid nose & Flexible							
2012	IRVE-3	Earth	Insulator	None	Х	Х	Х			
2012	MSL-MEDLI	Mars	PICA	SLA-561V	Х	Х				Х
2014	Orion EFT-1	Earth	Avcoat	Tiles	Х	Х			Х	Х
2015	LDSD-SIAD	Earth	Kevlar Attached	None	Х	Х				
2018	Orion EM-1	Earth	Avcoat	Tiles	Х	Х			Х	
	Mars2020-									
2020	MEDLI2	Mars	PICA	SLA-561V	Х	Х	Х		Х	

Motivation

- To date, no Discovery or New Frontiers missions have EDL instrumentation
- In 2014, Agency leaders agreed to consider incorporating EDL instrumentation for every mission early in the planning phases
- Discovery-12 Announcement of Opportunity in 2014 had a requirement for an Engineering Science Investigation (ESI) for all mission concepts involving EDL
 - Goals and Objectives document prioritized possible measurements
 - 2 High and 1 Medium priorities had to be addressed, from 2 different categories
- New Frontiers-4 Community Announcement also indicated that ESI would be required for the mission concepts involving EDL
 - 5 out of the 6 mission concepts require EDL
 - Mission concepts: Comet Surface Sample Return, Lunar South Pole Aitken Basin Sample Return, Venus In-Situ Explorer, Saturn Probe, and Ocean Worlds (Titan).

Need for a Standardized ESI Suite NAS

- Principal Investigator-led missions are cost-capped, leading to concepts with high heritage and low risk tolerance
 - Typically entry systems have limited volume, mass, power, and data rate transfer
- A NASA-selected and endorsed ESI solution that is "off the shelf" would streamline design phase and provide mission proposers with a solution that satisfies the EDL community while remaining low risk
 - Advantage: lower cost and risk
 - Mission proposers would understand early in the mission definition stage what would need to be integrated in their concept (hardware, operations, etc)
 - But how to create a "one size fits most" sensor suite?

EDL Instrumentation Workshop

- Workshop held at Ames on August 19, 2015
 - Purpose was to formulate a Game-Changing Development (GCD) effort for FY17+, to produce a low-cost EDL instrumentation suite for Discovery and New Frontiers class missions
 - Attendees were NASA and DoD stakeholders and EDL instrumentation implementers
- Target was to create a ~\$5M sensor package for competed missions (high TRL components)
 - A commercial, off-the-shelf (COTS) data acquisition system (DAS) best solution (not a custom-built electronics system)
 - Baseline sensor suite would be TPS thermal plugs only (forebody and/or aftbody)
- Identified the need for other optional sensors, depending on mission concept, planetary destination, vehicle configuration
- Sensors requiring development identified and deemed a high priority
 - In-depth thermal measurements in Heatshield for Extreme Entry Environment Technology (HEEET)
 - Recession sensor
 - Radiometer in an ablating material
 - Wireless sensors

Baseline: In-Depth TCs in TPS

Option: Pressure Transducers

Option: Recession Sensors

Commercial Data Acquisition Systems

IP

- Following the workshop, a subgroup developed a set of requirements and desired known quantities for COTS-based DAS
- A Request For Information (RFI) was issued on November 16, 2015. Responses were received a month later, with 4 vendors responding. Two of the units described by the vendors met most of the requirements. Would need to test to confirm several aspects, such as:
 - Cold soak temperature survivability during interplanetary cruise
 - Dry Heat Microbial Reduction (DHMR) bake-out survivability
- Cost of the unit itself is inexpensive but for documentation and qualification by vendor, cost increases by about 3 times

	Notes
Environments/survivability	
Operational temperature range	-40C to +80C
Non-operational temp range	
Cold soak exposure time (cruise)	hours to months/years
Launch/EDL exposure times	minutes to hours (thermal soak)
Ground testing thermal cycling	+/- 10C above/below max/min flight
DHMR/sterilization	
Acceleration loads	0 to 200 G
Shock loads (mechanical/pyro)	
Radiation	
SEU handling	
Mechanical interface	
Footprint	as small as possible desired
Total volume	as small as possible desired
Mass/mass properties	as small as possible desired
Mounting hardware/attachments	describe
Modularity (data storage, etc) and # of	describe
Orientation constraints	describe any constraints
Mating connector type	list recommended type, height may be an
Electrical interface	
	MEDLI was 30W, less for smaller
Power Consumption: max, average	missions?
	Lower than 28V operating voltages needs
Operating Voltage	a power regulator
Over Voltage Protection	Desired
Transient Voltage Protection	Desired
	RS422 is a fairly standard spacecraft
Data System Serial Interface (UART, RS4	serial interface
Programming Interface and Software	Info Requested (Not a Requirement)
***Thermocouples	0
Thermocouple Type	Type R, K used 9

Cost Drivers

- Qualification (including environmental tests) and calibration testing are expensive
 - High heritage sensor hardware is relatively inexpensive
 - For TCs and pressure transducers, each sensor generally < \$10k
 - However, many units need to be procured: flight units, flight spares, qualification units, development units, etc.
- Integrating the sensors onto the vehicle is not difficult, but standardized methods for installation would reduce cost
 - Limit developing new processes, procedures, tooling for every mission
 - New drawings may still need to be generated
- Off-the-shelf sensors may not meet mission specific requirements
 - Example: supersonic pressure transducers for MEDLI2 (heatshield cold temperatures during interplanetary cruise)

Methods to Minimize Cost

- Use TRL 6+ sensors only
- Qualify and calibrate sensors for bounding cases (such as Saturn/Venus entries)
 - TCs in different materials: SLA, PICA, HEEET: arcjet testing at high heat fluxes/loads/pressures/shear
 - Environmental testing
- Use heritage integration/installation procedures
- Accept higher data return risk (but at no harm to the mission)—there may be failures or incomplete data sets

From D. Prabhu, I. Terrazas-Salinas, E. Noyes, and J.Balboni, NASA TM-2015-218934, Nov 2015

- Strategic Capabilities Assets Program (SCAP) is in the process of purchasing 2 of the COTS DAS units identified in the RFI process
- GCD Program unlikely to fund project with a FY17 start, based on current budget projections
 - A NASA-developed ESI package will not be offered to proposers for NF-4
 - Proposing teams must develop custom solutions to meet ESI requirement for NF-4
- Science Mission Directorate has funded Ames to develop indepth thermal instrumentation for HEEET, starting immediately
 - Leverage HEEET team's arcjet coupon model designs and processes
 - Develop plug installation and integration techniques
 - Deliver designs and "best practices" to NF-4 teams that utilize HEEET

Questions?

