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Design of Heterogeneous Organocatalyst for the
Asymmetric Michael Addition of Aldehydes to Maleimides
György Szőllősi*[a] and Viktória Kozma[b]

Dedicated to Prof. Mihály Bartók on his 85th birthday.

Asymmetric Michael additions of isobutyraldehyde to malei-

mides catalyzed by optically pure diamines and their sulfona-

mides were investigated to develop heterogeneous chiral

catalysts for these reactions. Encouraging results, i. e. complete

transformations and optically pure products, were obtained

using para-toluenesulfonamide or methanesulfonamide deriva-

tives. Chiral solid materials were prepared by covalent bonding

of the diamines on sulfonyl chloride functionalized supports.

Immobilization of the amines was confirmed by FT-IR spectro-

scopy. The heterogeneous catalyst prepared by bonding

optically pure 1,2-diphenylethane-1,2-diamine to polystyrene

support was highly enantioselective, giving results approaching

those obtained using soluble sulfonamide derivatives. The

anchored catalyst was recyclable few times keeping its activity

followed by gradual small decrease in conversion, however, still

providing high, up to 97%, enantiomeric excesses. These

materials are among the first efficient recyclable catalysts used

in the enantioselective Michael addition of aldehydes to

maleimides.

Introduction

Asymmetric catalytic procedures are the most versatile meth-

ods to produce optically pure chiral chemicals.[1] During the last

few decades optically pure organocatalysts became frequently

applied in the synthesis of chiral organic building blocks.[2]

Initially natural compounds and their simple, easily prepared

derivatives were employed. Broadening the applicability of

these catalysts required finely tuned derivatives. Accordingly,

similar with the chiral metal complexes,[3,4] heterogenization of

organocatalysts became of paramount importance to obtain

products using economic, sustainable and environmentally

benign processes.[3,5]

Chiral organocatalysts are applied in various C@C bond

forming enantioselective reactions. Among these, conjugate

additions and more specifically, Michael additions, have out-

standing practical importance, due to the possible application

of a large variety, structurally diverse Michael donors and

acceptors.[6] Asymmetric additions of carbon nucleophiles on

maleimides result in the formation of chiral succinimide

derivatives,[7] which may be transformed in valuable biologically

active products.[8] Aliphatic aldehydes are among the frequently

investigated carbon nucleophiles. Various chiral amine deriva-

tives were used as catalysts in these reactions,[9] such as primary

diamine derivatives having 1,2-diphenylethylene or 1,2-

cyclohexyl backbone bearing a hydrogen-bond donor

group.[7,10] These reactions occur through enamine type mecha-

nisms, during which the enamine formed by condensation of

the aldehyde and catalyst reacts with the maleimide interacting

with the catalyst through hydrogen-bonds. Among the most

efficient hydrogen-bond donors is the sulfonamide group.

Tuning the catalyst structure by modification of the steric and

electronic properties of the substituents on the sulfonamide

group was used to improve the performance of the catalysts.

However, increasing the complexity of these organocatalysts

diminished their major advantages, such as their low price and

availability.

Since the reports of Noyori and co-workers on the use of

chiral 1,2-diamine sulfonamides as ligands,[11] various diamine

derivatives were applied as chiral ligands and organocata-

lyst.[7,10,12] During the present work our aim was to examine the

effect of the structure of 1,2-diamine sulfonamides, in order to

use these results in the development of efficient heterogeneous

chiral organocatalyst for the asymmetric Michael addition of

aldehydes to maleimides. To our knowledge, heterogeneous

catalysts have not been applied in these enantioselective

additions so far.

Results and Discussion

Effect of the Catalyst Structure

Additions to N-phenylmaleimide (1a) and N-benzylmaleimide

(1b) of isobutyraldehyde (2) were selected as test reactions

(Scheme 1) for studying the influence of the chiral catalyst

structure. We focused our investigations on using commercially
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available 1,2-cyclohexane and 1,2-diphenylethane derivatives

(see Figure 1). Simple para-toluenesulfonamide derivatives

were not yet applied as catalysts in these reactions. Selected

results are summarized in Table 1. During an initial screening

with using 1a and (S,S)-7 catalyst in toluene, ClCH2CH2Cl or

CHCl3 solvents the best results were obtained in the latter, both

at room temperature (rt, 24 8C) and 70 8C (not included). Thus,

further investigations were carried out in CHCl3.

In accordance with previous reports both diamines, (R,R)-4
and (S,S)-6, were less efficient than the corresponding sulfona-

mides ((R,R)-5 and (S,S)-7) and provided lower conversions and

ee values in reactions of both 1a and 1b, respectively. Close to

complete conversions could be reached with the cyclohexane-

1,2-diamine derived para-toluenesulfonamide derivative (R,R)-5
in 5 hours at rt using 2 equivalents (eq.) isobutyraldehyde

(Table 1, entry 3). However, the product resulted only in 95% ee.

In contrast, using the 1,2-diphenylethane-1,2-diamine derivative

(S,S)-7 longer reaction time (24 h), higher temperature (70 8C)
and higher reactant concentrations (less solvent) were neces-

sary for close to complete transformation of the maleimide

derivatives (entry 5). Satisfyingly, this catalyst afforded the 3a
product as single enantiomer (ee over 99%), whereas 3b also

resulted in high ee (up to 99%). At rt the transformation of the

maleimides was not complete even in less solvent following 3

days (entries 6, 7). Slight differences in the results obtained in

reactions of 1a and 1b were observed, especially when the

amount of 2 and catalyst were reduced to half (entries 8, 9).

Products resulted in one day reactions using doubled amounts

of reactants could be isolated in high yields (entry 5). Interest-

ingly, the methanesulfonamide (R,R)-8 was similarly or even

more efficient as the para-toluenesulfonamide derivatives

(entry 10). Based on these results we considered possible that

bonding optically pure 1,2-diphenylethane-1,2-diamine through

either aromatic or aliphatic sulfonamide groups to insoluble

supports may provide efficient enantioselective heterogeneous

catalysts for the above reactions. This type of chiral solid

materials waswere prepared and used previously as chiral

ligands for preparing heterogenized metal complexes.[3e,13]

Scheme 1. Addition of isobutyraldehyde (2) to N-phenylmaleimide (1a) or N-
benzylmaleimide (1b).

Figure 1. Structures of the chiral 1,2-diamine derivatives used as catalysts.

Table 1. Enantioselective addition of 2 to 1a or 1b catalyzed by chiral 1,2-diamines and their sulfonamides.[a]

Entry Catalyst Vol (CHCl3);
T [mL; 8C]

t [h] Conv 1a[b] [%] ee[c] [%] Conv 1b[b] [%] ee[c] [%]

1[d] (R,R)-4 2; 24 3 22 5 (R) 18 8 (R)
2[d] (R,R)-5 2; 24 3 92 95 (R) 73 89 (R)
3 (R,R)-5 2; 24 5 >99 95 (R) 93 90 (R)
4 (S,S)-6 1; 70 24 93 75 (S) 88 72 (S)
5 (S,S)-7 1; 70 24 98; 88[f] >99 (S) 95; 86[f] 98 (S)
6 (S,S)-7 1; 24 72 55 99 (S) 43 98 (S)
7 (S,S)-7 0.5; 24 72 71 >99 (S) 62 99 (S)
8[d] (S,S)-7 1; 70 24 99 >99 (S) 92 97 (S)
9[d,e] (S,S)-7 1; 70 24 88 97 (S) 80 97 (S)
10 (R,R)-8 1; 70 24 99 >99 (R) 98 99 (R)

[a] Reaction conditions: 0.03 mmol catalyst, 0.3 mmol 1a or 1b and 1.2 mmol 2 in CHCl3 solvent; [b] conversions of 1a or 1b determined by gas-
chromatography (GC); [c] enantiomeric excess (ee) determined by GC, in brackets the absolute configuration (abs. conf.) of the product according to previous
reports[10]; [d] using 0.6 mmol 2; [e] 0.015 mmol catalyst; [f] isolated yields of purified (by flash-chromatography) products obtained in reactions using
0.6 mmol 1a or 1b.
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Preparation and Application of Heterogeneous Chiral
Catalysts

Immobilization of chiral organocatalysts on insoluble supports

is a convenient method to prepare enantioselective heteroge-

neous chiral catalysts.[3,5,14] Various solid catalysts were devel-

oped for application in asymmetric Michael additions.[13]

However, to our knowledge heterogeneous chiral catalysts

were not yet applied in the enantioselective addition of

aldehydes to maleimide derivatives. According to results

obtained in homogeneously catalyzed reactions using optically

pure 1,2-diamine-derived sulfonamides, anchoring 1,2-diamines

by sulfonamide linkers on solid materials may results in efficient

chiral catalysts, due to formation of the sulfonamide hydrogen-

bond donor group on the surface during immobilization.

Several sulfonyl chloride functionalized inorganic and organic

materials are available commercially, which may be used as

supports. Applying such materials we have prepared chiral

solids both from optically pure cyclohexane-1,2-diamines and

1,2-diphenylethane-1,2-diamines, respectively (Scheme 2). Sup-

ports used in these experiments had different functional group

loadings, different particle sizes, moreover the resins were

cross-linked to different extent, as indicated by suppliers (see

Experimental Section). Therefore, the obtained materials con-

tained various amounts of anchored chiral amine, as calculated

based on their N contents, as follows: 9-R,R-6 0.75 mmol/g; 10-
R,R-6 1.15 mmol/g, 10-S,S-6 1.15 mmol/g, 11-S,S-6 1.25 mmol/g

and 10-R,R-4 1.10 mmol/g, respectively.

Immobilization of the chiral diamines by covalent bonding

on supports was examined by infrared spectroscopy (FT-IR). The

FT-IR spectra of 10-S,S-6 and 10-R,R-6 are shown in Figure 2 (b,

c). These spectra were compared with that of the sulfonyl

chloride functionalized support 10 (Figure 2, a) and those of

(S,S)-7 and (S,S)-6 (Figure 2, d, e). The two chiral solids gave

identical spectra. In accordance with previously published

observations,[15] the symmetric O=S=O valence vibration band

(at 1367 cm@1 in the spectrum of 10) appeared at 1323 cm@1 in

the spectra of the chiral solids, whereas the asymmetric O=S=

O band shifted from 1168 cm@1 (in the spectrum of 10) to

1142 cm@1. Additionally, the band corresponding to the stretch-

ing vibration of the C@N bond may be identified at 1094 cm@1.

Several other absorption bands found in the spectrum of (S,S)-7

also appeared in the spectra of the chiral resins overlapped

with the characteristic vibration bands of the polymer support.

The broad intense band at 1662 cm@1 may be attributed to

swelling of the polymer in N,N-dimethylformamide (DMF), the

solvent used during the preparation of these materials. The

above observations are indicative of polymer-bonded sulfona-

mide group formation.[15] Accordingly, we concluded that the

chiral diamines were immobilized on the resin by sulfonamide

linker groups.

The scanning electron micrographs of the support 10 and

10-S,S-6 showed that the spherical shape of the particles was

not altered during the preparation of the chiral catalyst

(Figure 3). However, the particle diameter increased from 70–

120 mm to 130–170 mm due to swelling of the polymer in DMF;

the presence of this solvent was detected by FT-IR spectroscopy

(see above). This means a 2–6-fold increase in the volume of

the particles.

Results obtained using the chiral solid catalysts in the

addition of 2 to 1a are summarized in Table 2. All heteroge-

neous chiral materials provided better ees than the correspond-

Scheme 2. Chiral solid catalysts prepared by immobilization of optically pure diamines through sulfonamide linkers (abbreviation of the catalysts: support-abs.
conf.-diamine).

Figure 2. FT-IR spectra of 10 (a), 10-S,S-6 (b), 10-R,R-6 (c), (S,S)-7 (d) and (S,S)-
6 (e).
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ing soluble diamines, i. e. (S,S)-6 or (R,R)-4 (compare Table 1,

entries 1 and 4 with Table 2). Using the functionalized silica gel

9 or the polystyrene (PSt) resin 11 (higher degree of cross-

linking as compared with 10, see Experimental Section) as

supports for bonding 6, resulted in less active and less

enantioselective catalysts (entries 1, 2 and 8), as compared with

materials obtained from 10. We assume that the silica surface

had detrimental effect on the catalytic performance (9-R,R-6),
due to involvement of the oxide surface both in bonding the

diamine and in the asymmetric reaction. Moreover, upon

recycling of the used catalyst the conversion decreased

significantly (entry 3). The poor results obtained with catalyst

11-S,S-6 may be ascribed to less accessible catalytic species

under the reaction conditions (different solvents are used

during immobilization and Michael additions, i. e. DMF and

CHCl3, respectively) as compared with the catalysts prepared

from 10.
Slightly lower ees were attained with catalysts prepared

using 10 as support as compared with the soluble sulfonamide

(S,S)-7 (entries 5–7). However, these values were much higher

as compared with those resulted by the use of diamine (S,S)-6.
These results showed that immobilization of diamines by

sulfonamide linkers to solid materials may result in efficient

chiral catalyst when a proper support is used. Lower ee was

obtained using the immobilized cyclohexane-1,2-diamine 10-
R,R-4 (entry 4), when compared with (R,R)-5, however, this solid
catalyst also performed better than the corresponding soluble

diamine (R,R)-4.
We considered possible that the lower ee values obtained

with solid catalyst may be due to the presence of the

corresponding chiral diamine bonded by ionic interactions on

sulfonic acid surface groups. These groups could be generated

during the immobilization process by hydrolysis of the surface

sulfonyl chloride in the presence of trace amounts of water.

Accordingly, control experiments were carried out to check the

effect of a sulfonic acids using (S,S)-6 catalyst and para-

toluenesulfonic acid (TsOH) additive (entries 9, 10). Half eq. acid

(as compared with the chiral diamine) resulted in decrease in

the conversion and ee (compare Table 1, entry 4 with Table 2,

entry 9). In presence of 1 eq. TsOH the conversion decreased

drastically and the ee approached but didn’t reached those

obtained with the catalyst 10-S,S-6 or the soluble sulfonamide

(S,S)-7. These results confirmed that the presence of surface

sulfonic acid groups might decrease slightly both the con-

version and the ee. However, the high stereoselectivities

obtained using the solid catalysts may be attributed to the

active surface sites resulted by bonding 1,2-diamines through

sulfonamide linkers.

The recyclability of the enantioselective catalysts obtained

using the polymeric support 10 was also examined. Selected

results obtained by reusing these catalysts are shown in

Figure 4. The activity of 10-S,S-6 decreased gradually starting

from the forth use while the ee value was unaltered even in the

sixth run (Figure 4, a). The conversion decrease may be

attributed to either deactivation of the surface chiral centers or

the decrease of the number of the active sites due to

deterioration of the solid material during reactions. However,

the high ee values showed that the remaining sites were

unaffectedly stereoselective. The catalyst having surface-

bonded cyclohexane-1,2-diamine (10-R,R-4) also started to lose

its activity following three uses (Figure 4, b). Interestingly,

during the first three reactions the ee increased from 62% to

85%, followed by small decrease in succeeding runs. This initial

ee increase may be explained by the previously suggested

immobilization of the diamine by ionic bonding. These species

will catalyze the reaction with lower stereoselectivity. However,

may leach easily into solution during reactions. Accordingly, the

remaining covalently bonded chiral sites will provide higher

enantioselectivities in the second and third run as compared

with the first. Following this the deterioration and deactivation

of the chiral surface sites occurs.

Figure 3. SEM micrographs of 10 (a) and 10-S,S-6 (b).

Table 2. Enantioselective addition of 2 to 1a catalyzed by 1,2-diamines
immobilized on the support through sulfonamide groups.[a]

Entry Catalyst T [8C] t [h] Conv[b] [%] ee[c] [%]

1 9-R,R-6 70 24 54 86 (R)
2 9-R,R-6 24 168 86 90 (R)
3[d] 9-R,R-6 24 168 46 82 (R)
4 10-R,R-4 24 24 >99 62 (R)
5 10-R,R-6 70 24 95[e] 96 (R)
6 10-S,S-6 70 24 94 96 (S)
7 10-S,S-6 24 72 44 95 (S)
8 11-S,S-6[f] 70 24 35 87 (S)
9 (S,S)-6+TsOH[g] 70 24 80 64 (S)
10 (S,S)-6+TsOH[h] 70 24 25 92 (S)

[a] Reactions performed using 100 mg chiral catalyst, 0.3 mmol 1a and
1.2 mmol 2 in 1 mL CHCl3; [b] conversions of 1a determined by GC; [c]
enantiomeric excess (ee) determined by GC, in brackets the abs. conf. of the
excess enantiomer; [d] result with reused catalyst; [e] the product was
isolated in 80% yield; [f] 60 mg catalyst; [g] reaction using 0.03 mmol (S,S)-
6 and 0.015 mmol TsOH; [h] reaction using 0.03 mmol (S,S)-6 and
0.03 mmol TsOH.
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Leaching of the material due to mechanical deterioration

during stirring was verified using catalyst 10-S,S-6 in experi-

ments carried out at room temperature by shaking the reaction

mixture instead of magnetic stirring. The conversion hardly

decreased even in the fifth run (from 44% to 41%), whereas

the ee remained 95%. Thus, the decrease of the catalyst activity

may be ascribed in part to leaching of the material owing to

attrition of the particles. Deterioration of the catalyst particles

during reactions was checked by SEM measurements (Figure 5).

Using magnetic stirring the catalyst shredded in small pieces

following five reactions (b). By shaking the mixture besides

some smaller catalyst pieces most of the particles kept their

spherical shape and size (c). However, irreversible transforma-

tion of the surface primary chiral amines by reaction with the

excess aldehyde is also a possible reason of catalyst deactiva-

tion, as suggested in other asymmetric reactions catalyzed by

heterogenized organocatalysts.[16]

The performances of the above heterogeneous chiral

catalysts were also examined in the addition of 2 to 1b. The
amount of 2 was reduced to half (2 eq. instead of 4) in order to

diminish the effect of the undesired irreversible transformation

of the surface primary amine in reactions with the large excess

of aldehyde. We also kept the conversions at slightly lower

values to reveal clearly the catalysts performances upon reuse.

Selected results are presented in Table 3. Similar tendencies

were observed in this reaction, as in the previous (1a+2). The
initial activity of 10-S,S-6, which afforded around 85% con-

versions in three consecutive reactions, decreased in the fourth

run, while the ee didn’t alter by recycling the catalyst. In this

reaction ee values as high as 97% could be obtained. Increase

in the ee by recycling of 10-S,S-4 was observed in this reaction,

too, similarly with the reaction of 1a, accompanied by a more

significant conversion decrease as compared with the 10-S,S-6
catalyst.

Figure 4. Conversions (black bars) and ees (grey bars) obtained in recycling
experiments of 10-S,S-6 (a) and 10-R,R-4 (b) catalysts in the Michael addition
of 2 to 1a; for reaction conditions see Table 2 entry 6 (a) and entry 4 (b).

Figure 5. SEM micrographs of the as prepared 10-S,S-6 (a), 10-S,S-6 following 5 runs using magnetic stirring (b) or using agitation in a shaker (c).

Table 3. Enantioselective addition of 2 to 1b catalyzed by 1,2-diamines
immobilized through sulfonamide linkers.[a]

Entry Catalyst Run no. T [8C] Conv[b] [%] ee[c] [%]

1 10-R,R-6 1 70 83[d] 97 (R)
2 10-R,R-6 2 70 86[d] 97 (R)
3 10-R,R-6 3 70 84[d] 97 (R)
4 10-R,R-6 4 70 75 97 (R)
5[e] 10-R,R-6 1 24 25 96 (R)
6 10-S,S-6 1 70 81 97 (S)
7 10-R,R-4 1 24 >99 61 (R)
8 10-R,R-4 2 24 >99 78 (R)
9 10-R,R-4 3 24 92 85 (R)
10 10-R,R-4 4 24 70 86 (R)

[a] 100 mg chiral catalyst, 0.3 mmol 1b and 0.6 mmol 2 in 1 cm3 CHCl3,
24 h; [b] conversions of 1b determined by GC; [c] enantiomeric excess (ee)
determined by GC, abs. conf. of the excess enantiomer; [d] products
obtained in these runs were unified and isolated in 75% yield. [e] 72 h.
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Conclusions

In the present study, we designed heterogeneous chiral

materials to catalyze the asymmetric Michael addition of

aldehydes to N-substituted maleimides. For this purpose, the

performances of simple optically pure 1,2-diamines and their

commercially available sulfonamides were investigated. Accord-

ing to the results of these experiments we found promising the

immobilization of the diamines through sulfonamide linkers

starting from sulfonyl chloride functionalized supports. The

chiral solid catalysts obtained using a polystyrene support and

optically pure 1,2-diphenylethane-1,2-diamines were highly

active and enantioselective heterogeneous catalysts, giving

results which approached those attained with soluble catalysts.

The catalysts were recyclable keeping their activity few runs

followed by gradual small decrease in conversions, however still

providing high, up to 97%, enantiomeric excesses. These chiral

solid materials are the first heterogeneous catalysts, which were

used in the enantioselective addition of an aldehyde to

maleimides.

Experimental Section

Supports used for preparing the heterogeneous chiral catalysts: 4-
ethyl benzenesulfonyl chloride functionalized silica gel, 200–400
mesh, 1 mmol/g loading (9, Aldrich); polymer-bound sulfonyl
chloride, 100–200 mesh, 1.5–2.0 mmol/g loading, 1% cross-linked
(10, Aldrich) and polymer-bound sulfonyl chloride, 70–90 mesh,
2.5–3.0 mmol/g loading, 8.5% cross-linked with divinylbenzene (11,
Aldrich) were commercial products. The optically pure diamines
and sulfonamides, maleimides and isobutyraldehyde were obtained
from Aldrich and used without purification. Solvents and reagents
used in the preparation of the catalysts, in the asymmetric Michael
additions and during chromatographic purifications were of
analytical grade.

Preparation and Characterization of the Heterogeneous
Catalysts

All heterogeneous catalysts were prepared according to the
following procedure; however, the support or reactants quantities
were modified depending on the support functional group loading.
In a 50 mL cylindrical glass flask having two inlets and containing a
glass filter (Merrifield vessel) 1 g functionalized support (10) was
suspended in 10 mL DMF. Following 5 min. swelling 4 mmol Et3N
and 4 mmol (S,S)-6 was added and the suspension was shaken
24 h. The liquid was removed by suction and the remaining solid
material was washed once with 10 mL DMF and twice with 10 mL
CH2Cl2, dried at rt and stored in a glass vial until use. By this
method 1.11 g 10-S,S-6 catalyst was obtained from 10 and (S,S)-6.
The chiral compound content was calculated based on results of
elemental analysis using a Perkin-Elmer 2400 CHNS elemental
analyser. Infrared spectra were collected with a Bio-Rad Digilab
Divison FTS-65 A/896 FT-IR spectrometer operated in diffuse
reflectance mode between 4000 and 400 cm@1 at 2 cm@1 resolution
by averaging 256 scans. Scanning electron microscopic (SEM)
measurements were carried out on a Hitachi S-4700 Tyle II FE-SEM
microscope. The samples were mounted on a conductive carbon
tape and sputter coated by a thin Au/Pd layer in Ar atmosphere
prior to measurements.

Michael Additions: General Procedure and Product Analysis

Michael additions were carried in 4 mL closed glass vials. In a
typical run the given amount of catalyst was introduced into the
reactor dissolved or suspended in the given amount of CHCl3
followed by addition of 0.3 mmol N-fenil- or N-benzylmaleimide
and the required amount of isobutyraldehyde (0.6 or 1.2 mmol).
The vial was closed and was either stirred or shaken at room
temperature or immersed in a preheated oil bath and stirred
magnetically. After the given time the mixture was diluted to 3 mL
with CHCl3. The soluble catalysts were extracted with 1 mL
saturated NH4Cl aqueous solution, the aqueous phase was washed
twice with 2 mL CHCl3, the unified organic phases were dried over
MgSO4 and analyzed. The suspensions obtained using heteroge-
neous catalysts were diluted to 3 mL with CHCl3 and the catalyst
was centrifuged. The solid was washed twice with 1 mL CHCl3 and
the obtained unified organic solution was treated as described for
homogeneous reactions.

Products were identified by mass spectrometric analysis using
Agilent Techn. 6890 N GC – 5973 MSD and a 30 m DB1-MS UI
capillary column. Conversions and enantiomeric excesses (ee) were
determined by gas-chromatographic analysis using Agilent 6890 N
GC-FID equipped with a 30 m Cyclosil-B chiral capillary column
(Agilent, J&W) and n-decane as internal standard. Products were
isolated by flash chromatography on silica gel 60, 40–63 mm, using
hexane isomers/ethyl acetate 2/1 (3a) or 4/1 (3b) mixtures as
eluent. The purity of the fractions was checked by thin-layer
chromatography on Kieselgel-G (Merck Si 254 F) layers. NMR
spectra of the purified products were recorded on a Bruker Ascend
500 instrument at 500 (1H NMR) or 125 MHz (13C NMR) using CDCl3
as solvent (see the Supporting Information).
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