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Thesis abstract 

Many non-human animals demonstrate some level of numerical ability which includes an 

understanding of complex numerical concepts such as arithmetic, sequential ordering of 

numbers, or an understanding the concept of zero. Although very little research has been 

done on numerical ability in invertebrates, honeybees and several other insects have been 

shown to possess some numerical capabilities. In my thesis, I have assessed the capacity of 

bees to exhibit complex numeric skills such as number categorisation, extrapolation, and 

simple arithmetic. I show that the use of appetitive-aversive differential conditioning 

improves the honeybees’ ability to discriminate between quantities above the subitizing range 

compared to appetitive-differential conditioning. Honeybees have demonstrated an 

understanding of the quantitative value of nothing and placed an empty set in the correct 

position along a line of sequential numbers, learnt to categorise numbers as greater or lesser 

in context, acquired abstract colour-based rules to solve elementary incremental and 

decremental problems, and demonstrated an ability to match symbols with specific quantities. 

In some cases, honeybees have mastered numerical concepts at a level that parallels abilities 

demonstrated by primates, mammals, birds, and other vertebrates. I discuss these findings in 

relation to how number processing developed in human culture, and how subsequent work 

can search for number processing regions in animal brains. 



2 

Contents 

Title Page  ..........................................................................................................................  I 

Declaration ........................................................................................................................  II 

Preface  ...............................................................................................................................  III 

Acknowledgements  ..........................................................................................................  VI 

Thesis abstract ...................................................................................................................  1 

Contents .............................................................................................................................  2 

List of diagrams and tables ..............................................................................................  5 

Chapter 1: Introduction  ..................................................................................................  7 

Part I: Numerical and quantical concepts and tasks................................................  8 

Part II: Numerical ability as an evolved capacity ...................................................  28 

Part III: A model invertebrate species for the study of animal numerical ability ...  32 

Part IV: Outline and summary of thesis ..................................................................  37 

Part V: References ..................................................................................................  39 

Chapter 2: Surpassing the subitizing threshold: Appetitive-aversive conditioning 

improves quantity discrimination in honeybees ............................................................  53 

Abstract ...................................................................................................................  54 

Introduction .............................................................................................................  54 

Methods and materials ............................................................................................  59 

Results .....................................................................................................................  62 

Discussion ...............................................................................................................  64 

References ...............................................................................................................  72 

Chapter 3: Numerical ordering of zero in honey bees ..................................................  79 

Abstract ...................................................................................................................  80 

Main text .................................................................................................................  80 

References ...............................................................................................................  84 



3 

Supplementary material ..........................................................................................  92 

Chapter 4: Numerical cognition in honeybees enables addition and subtraction  .....  137 

Abstract ...................................................................................................................  138 

Introduction .............................................................................................................  139 

Results .....................................................................................................................  141 

Discussion ...............................................................................................................  143 

Methods and materials ............................................................................................  145 

References ...............................................................................................................  151 

Supplementary materials .........................................................................................  159 

Chapter 5: Symbolic representation of number in the honeybee (Apis mellifera) .....  165 

Abstract ...................................................................................................................  166 

Introduction .............................................................................................................  166 

Results .....................................................................................................................  168 

Discussion ...............................................................................................................  170 

Methods and materials ............................................................................................  179 

References ...............................................................................................................  184 

Extended data  .........................................................................................................  189 

Chapter 6: Discussion .......................................................................................................  191 

Honeybee numerical capacity .................................................................................  193 

Explanation for the honeybee’s capacity to learn and perform numerical tasks ....  206 

Evolutionary implications .......................................................................................  208 

Neurobiological inferences .....................................................................................  210 

Bees as a model for bio-inspired technology ..........................................................  211 

Conclusions .............................................................................................................  212 

References ...............................................................................................................  214 

Appendices  ........................................................................................................................  224 

Appendix 1 ..............................................................................................................  226 



4 

Appendix 2 ..............................................................................................................  229 

Appendix 3 ..............................................................................................................  241 

Appendix 4 ..............................................................................................................   253 

Appendix 5 ..............................................................................................................  262 

Appendix 6 ..............................................................................................................  263 

Appendix 7 ..............................................................................................................  273 

Appendix 8 ..............................................................................................................  288 

 

 

 

 

 



5 

List of diagrams and tables 

Chapter 1: Introduction  ..................................................................................................  7 

Figure 1  ..................................................................................................................  12 

Figure 2  ..................................................................................................................  14 

Table 1  ...................................................................................................................  16 

Figure 3  ..................................................................................................................  36 

Chapter 2: Surpassing the subitizing threshold: Appetitive-aversive conditioning 

improves quantity discrimination in honeybees  ...........................................................  53 

Figure 1  ..................................................................................................................  68 

Figure 2  ..................................................................................................................  69 

Figure 3  ..................................................................................................................  70 

Chapter 3: Numerical ordering of zero in honey bees ..................................................  79 

Figure 1  ..................................................................................................................  88 

Figure 2  ..................................................................................................................  90 

Figure S1  ................................................................................................................  106 

Figure S2  ................................................................................................................  107 

Figure S3  ................................................................................................................  108 

Figure S4  ................................................................................................................  110 

Table S1  .................................................................................................................  112 

Chapter 4: Numerical cognition in honeybees enables addition and subtraction  .....  137 

Figure 1  ..................................................................................................................  156 

Figure 2  ..................................................................................................................  157 

Figure S1  ................................................................................................................  163 

Figure S2  ................................................................................................................  164 

Chapter 5: Symbolic representation of number in the honeybee (Apis mellifera) ......  165 



6 

Figure 1  ..................................................................................................................  174 

Figure 2  ..................................................................................................................  176 

Figure 3  ..................................................................................................................  177 

Extended Data Figure 1  .........................................................................................  189 

Chapter 6 Discussion  .......................................................................................................  191 

Figure 1  ..................................................................................................................  195 

Figure 2  ..................................................................................................................  197 

 



7 

Chapter 1 
 

1. Introduction 

In this introduction, I will explore the literature on numerical ability in humans, non-human 

vertebrates, and invertebrates with a final focus on the honeybee, as cognitive studies on this 

species are numerous and my later experimental chapters present data demonstrating the 

numerical capacity of honeybees. As each experimental chapter is written in manuscript form 

and thus contains a subject-specific introduction, the Chapter 1 Introduction is general to the 

field and our current understanding of numerical abilities in humans and non-human animals. 

It is hypothesised by some authors that relatively complex numerical competency (e.g. 

numerical cognition such as arithmetic; Figure 1) is not an evolved capacity and is in fact an 

artefact of the development of human language and culture (Núñez, 2017a; Núñez, 2017b). 

Other authors argue that non-human animals are both capable of performing complex 

numerical tasks and that some of these tasks may be evolved capacities in humans and non-

human animals (Nieder, 2005; Nieder, 2017). The experimental work I will present in 

Chapters 2 – 5 will add valuable data and insight into this debate. I examined whether an 

invertebrate could learn and perform complex numerical tasks. The model species I have 

tested is the honeybee, as invertebrates are relatively understudied for their numerical 

capacity compared to vertebrates (Figure 1; Carazo et al., 2009; Gross et al., 2009), and bees 

demonstrate both complex natural (Biesmeijer and Seeley, 2005; Gallo and Chittka, 2018; 

Grüter and Farina, 2009; Riley et al., 2005; Srinivasan, 2014; Srinivasan et al., 2000; Von 

Frisch, 1967) and learnt behaviours (Avarguès-Weber and Giurfa, 2013; Dyer, 2012; 

Srinivasan, 2010; Zhang, 2006). Additionally, the honeybee is separated from humans by 600 

million years of evolution (Consortium, 2006; Grimaldi et al., 2005), thus experimental data 
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on the numeric capacity of honeybees could inform the evolutionary processes by which 

numerical capacity may, or may not, have evolved. 

In this review chapter, I will discuss the current and emerging literature regarding definitions 

and examples of numerical categorises including basic vs. complex numerical abilities, the 

mechanisms of counting, and numerosity discrimination. I will also discuss and evaluate the 

role of human language and culture in number faculty with input from studies of human 

adults, infants, and pre-verbal children across cultures. In this chapter, there will be a focus 

on numerical abilities in non-human animals, which will include a discussion of the different 

levels of numerical abilities which non-human animals exhibit, neurobiological evidence of 

numerical ability, limitations of animal number skills, and the understanding of complex 

numerical concepts across species. Finally, I will introduce the study species used in my 

empirical research, Apis Mellifera, and discuss the current literature which identifies the 

honeybee as a model species for the study of cognition and numerical competency in 

invertebrates.  

1.1. Part I: Numerical and quantical concepts and tasks 

Numerical abilities differ by their complexity. For example, the ability of a species to choose 

a greater quantity of food could be influenced by non-numerical cues that correlate with 

increasing numerosity, such as surface area, weight, or perimeter, and thus this would be 

considered a more basic use of numerical cues than performing arithmetic operations such as 

addition, subtraction, multiplication, or division. In the following sections I will discuss the 

specific tasks and behaviours required for demonstrating numerical competency, use of the 

approximate number system (ANS) or object file system (OFS), quantical cognition, 

numerical cognition, arithmetic, and an understanding of zero numerosity, which have 

requirements varying from basic numerosity tasks to the use of symbolic number 

representation (Figure 1). It is important to note that often numerical tasks are required for 
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demonstrating more than one numerical concept. For example, the demonstration of true 

counting and numerical cognition requires an individual, or species, to symbolically represent 

numerosities and quantitatively value those symbols (Figure 1; see definitions below). 

1.1.1. Numerical competency 

Numerical competency can be classified into three categories: cardinal number (cardinality or 

numerosity), ordinal number, and nominal number (Nieder, 2005). Cardinality is the ability 

to quantitatively value sets discretely and continuously. Ordinality is the ranking of 

individual elements in a sequence. Nominal number assignment can be considered non-

numerical and uses number to classify individual objects within a set. Nominal number is 

believed to only be used by linguistic humans (Nieder, 2005). 

1.1.1.1.  Cardinality: 

Cardinality involves the ability to value and quantitatively order sets of items (Nieder, 2005). 

The valuation of sets of objects differing in their numerosity is observed in chimpanzees 

(Beran et al., 1998; Biro and Matsuzawa, 1999; Biro and Matsuzawa, 2001; Boysen and 

Berntson, 1989; Boysen et al., 1995; Boysen et al., 1993; Murofushi, 1997) and rhesus 

monkeys (Brannon and Terrace, 2000). Additionally, both rhesus monkeys (Brannon and 

Terrace, 2000; Merritt et al., 2009) and chimpanzees (Beran and Rumbaugh, 2001; Beran et 

al., 1998; Biro and Matsuzawa, 1999; Boysen and Berntson, 1989), are able to correctly place 

sets of objects in the correct order following the quantitative number line. 

1.1.1.2.  Ordinality: 

Ordinality is the ranking of different elements in a set, for example, a runner coming 5
th

 in a 

race (Nieder, 2005). Animals demonstrate an ability to rank non-numerical items with 

training, but also in natural environments. For example, baboons demonstrate a tendency to 

rank conspecifics in their group by dominance (Bergman et al., 2003), thus establishing an 
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ordering system of individual rank. Both rhesus monkeys (Swartz et al., 1991; Terrace et al., 

2003) and pigeons (Straub et al., 1979) were able to learn to order different lists of items, 

such as abstract photographs of objects, humans, and animals, in an exact rank position for 

each item with training on the tasks. 

1.1.1.3.  Nominal number: 

Nominal number is used to label objects, for example, in a laboratory a scientist may label 

samples 1, 2, 3, 4… etc. to differentiate them from each other. Nominal number is not 

considered a numerical skill and is believed to only be used by humans (Figure 1; Nieder, 

2005). 

1.1.2. Object File System (OFS) vs. Approximate Number System (ANS)/ Analog 

Magnitude System (AMS) 

There are two well accepted mechanisms for numerical discrimination involved for different 

number ranges (Agrillo et al., 2008; Kaufman et al., 1949; Piazza et al., 2002; Tomonaga and 

Matsuzawa, 2002; Trick and Pylyshyn, 1994). The first is known as subitizing or the object 

file system, the quick and accurate estimation of four and fewer objects (Figure 2a). The 

second mechanism is the approximate number system (ANS), also known as the analog 

magnitude system (AMS) for quantifying numerosities above four objects.  

These different mechanisms may have led to a phenomenon observed across species, where 

the threshold of accurately estimating objects, ‘counting’, and discriminating between 

numerosities is set at about four objects. This threshold is reported in humans (Carazo et al., 

2009; Dehaene and Cohen, 1994; Jevons, 1871; Piazza et al., 2002; Riggs et al., 2006; 

Starkey and Cooper Jr, 1995), fish (Agrillo et al., 2008; Gómez-Laplaza and Gerlai, 2011; 

Seguin and Gerlai, 2017), and bees (Chittka and Geiger, 1995; Dacke and Srinivasan, 2008; 

Gross et al., 2009). Some species can surpass this threshold through the use of the AMS, 
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however this results in more errors, or the need for a larger magnitude to separate two 

quantities for discrimination (see definitions and examples below). 

1.1.2.1.  Subitizing/ Object File System (OFS) 

Subitizing, also called the object file system (OFS) or the parallel individuation system, is 

considered to be a type of counting mechanism with low quantities. The object-file system 

represents each individual object symbolically, rather than representing the set symbolically. 

There is a limit on the number of object files available so that this system can only represent 

up to three or four individual elements (Brannon, 2006; Feigenson et al., 2004; Hyde, 2011). 

However, it can also be used to explain thresholds of quantity discrimination and estimation 

in non-human animals. The threshold of subitizing, the ability to accurately identify a small 

numerosity ‘at a glance’ without sequential counting, is considered to be at about four or 

sometimes five (Agrillo et al., 2008; Kaufman et al., 1949; Piazza et al., 2002; Tomonaga and 

Matsuzawa, 2002; Trick and Pylyshyn, 1994). Other literature suggests the threshold could 

be in the range of four to seven (Cowan, 2010; Miller, 1956; Saaty and Ozdemir, 2003; 

Simons and Langheinrich, 1982). Different species have been tested for their upper 

numerosity limits in the form of matching-to-sample tasks, quantity discrimination, 

spontaneous choice, among other protocols. The German zoologist, Otto Koehler 

(Hassenstein, 1974), determined the upper numerosity limit of different species, showing a 

limit of five for pigeons, six for budgerigars and jackdaws, and seven for ravens, African grey 

parrots, Amazones, magpies, and squirrels (Davis and Pérusse, 1988; Hassmann, 1952; 

Nieder, 2005). More recent studies on non-human animals show that the discrimination 

between two quantities of objects which differ by one element is four. For example, 

honeybees tested on the ability to discriminate between 2 vs. 3 were successful at these 

quantities as well as 3 vs. 4, but not 4 vs. 5 or 5 vs. 6 (Gross et al., 2009). A similar result is 

found in angelfish, mosquitofish, and zebrafish, where the ability to choose the larger shoal  
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Figure 1: A schematic describing the relative complexities of different numerical concepts 

(overall titles) and numerical tasks (smaller titles), how the numerical concepts relate, and 

which species have demonstrated each task and concept. The diagram shows which tasks 

belong at varied levels of complexity ranging from non-numerical through to basic, mid-

range, and high complexity tasks. The tasks are grouped into overall concepts which are 

defined across the literature. In some cases all tasks need to be demonstrated for a concept to 

be shown (e.g. true counting required all criteria to be met), in other cases a single task needs 

to be shown to demonstrate the concept (e.g. any task in quantical cognition is evidence of 

using quantical cognition). The interaction between concepts is also shown by the dark areas 

of the diagram. Some concepts have overlapping tasks needed to demonstrate more than one 

concept. Beside or below each task I have shown the animal species which have successfully 

performed the task. The star in the key classifies the task as having been demonstrated by all 

species shown on the schematic. The non-numerical level includes representations of 

number which do not require numerical capacity. At the non-numerical level, there is the 

lowest level of understanding zero numerosity which is a sensory representation of ‘nothing’, 

such as neurons not firing in relation to the absence of a stimulus (Nieder, 2016b). There is 

also nominal number representation, which is the use of number to label elements of a set 

which does not correlate with numerosity or rank of that element (Nieder, 2005). Between the 

non-numerical and basic numerical sections, there is an overlap. This overlap includes the use 

of non-numerical cues to judge numerosity or discriminate between numerosities. These cues 

can include parameters such as size, weight, or surface area. The basic level of numerical 

capacity includes quantity discrimination of numerosities below five elements. At the overlap 

between the basic and mid-range complexity, there is the task of subitizing, the ability to 

quickly and accurately enumerate four or less elements (Agrillo et al., 2008; Kaufman et al., 

1949; Piazza et al., 2002; Tomonaga and Matsuzawa, 2002; Trick and Pylyshyn, 1994). This 

task is within the overlap as it is defined as a mechanism of counting and is a basis for true 

counting. Within the mid-range numerical complexity, two of the levels of understanding 

zero numerosity are based. The categorical understanding of ‘nothing’ and the quantitative 

understanding of zero numerosity are fairly complex tasks which lead to the final fourth stage 

of understanding zero (Nieder, 2016b). The lowest level of complexity of arithmetic is also 

included in this section where species can use arithmetic-like reasoning, without training, to 

solve problems. In this section is also the most complex type of quantity discrimination 

which I have identified, quantity discrimination which obeys Weber’s Law. The reason this is 

considered of higher complexity than quantity discrimination is due to the research 

demonstrating that Weber’s Law mechanisms allow species to discriminate between 

numerosities well-above the subitizing range of four elements (AMS). This mid-range section 

also includes the translation of number tasks to novel representations of numerosities and 

novel numerosities, both aspects of true counting. Ordinality, the ranking of elements in a set 

is also included in the mid-range under the concept of numerical competency. In the overlap 

between the mid-range and high-level complexity of numerical tasks is the ability to 

discriminate between numbers about four as this surpasses the common threshold of 

enumerating, or discriminating between numerosities, however is not yet showing the most 

advanced level of complexity in numerical tasks. Finally, the most complex numerical tasks 

include the final understanding of zero numerosity, the use of symbolic representation of 

numbers in arithmetic, all stages of numerical cognition (symbol and number matching; exact 

number use, arithmetic using abstract elements, and the symbolic representation and 

quantitative valuing of symbols). This final section also includes many of the tasks needed to 

demonstrated true counting (serially counting past four elements, translation of number tasks 

to a different modality, symbol and number matching, cardinality, the translation of number 

tasks between modalities, and the symbolic valuation of numerosities). 
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Figure 2: Subitizing is defined as the quick and accurate estimation of positive integer 

quantities one to four (a). True counting is defined as the slow and sometimes error-prone 

process of serially counting more than four items. It is also known as the AMS/ANS (b). 

Accurate quantity estimation (subitizing) can be extended when the quantity pattern is 

ordered in a common configuration, such as dots on dice (c) (Krajcsi et al., 2013). 

 

(group of conspecifics) option when the shoals differ by one fish is successful in 1 vs. 2, 2 vs. 

3, and 3 vs. 4, but not 4 vs. 5. A classic study by Jevons (1871) also demonstrated that human 

estimation of items is 100 % accurate when there are four or less objects, but when there are 

five or more, the estimation of the numerosities of objects results in errors. These studies 

show that a threshold limit of about four objects exists for species as evolutionarily distant as 

honeybees and humans which have been separated for 600 million years (Consortium, 2006; 

Grimaldi et al., 2005). 
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1.1.2.2.  Approximate Number System (ANS) 

The approximate number system (ANS), also known as the Analog Magnitude System 

(AMS), is a non-symbolic representational system of processing of quantities above the 

subitizing range (Núñez 2017b). Animals which are able to process quantities above four are 

considered to be using the ANS/AMS mechanism of numerosity judgement. The ANS is 

thought to be an ancient evolutionary foundation, shared with non-human animals, for our 

ability to perform mathematics and use symbolic numerositiy mechanisms (Brannon and 

Merritt, 2011; DeWind et al., 2015; Feigenson et al., 2004). While symbolic number systems, 

such as the use of Arabic numerals to discriminate between numerosities, allows us to easily 

discriminate between two numbers, non-symbolic number systems, such as ANS, show that 

ratio-dependent number discrimination exists. This means that two numbers close together in 

magnitude are harder to discriminate between than two numbers which are distant in 

magnitude (Brannon and Merritt, 2011; Nieder, 2016 This phenomenon is also known as 

Weber’s Law which describes how well two stimuli are able to be differentiated based on 

their proportional difference, such as time, sound, numerosity, and touch, among other 

examples (Akre and Johnsen, 2014; Fechner, 1965; Weber, 1978). Thus, humans and non-

human animals share the evolutionary ancient quantification system known as the 

approximate number system. 

1.1.3.  True counting 

True counting is considered to only be accessible to humans as it is considered to use 

symbolic numerosity mechanisms (Núñez 2017b). True counting is the ability to enumerate 

and discriminate between numbers above four but requires a set number of criteria to be met 

before a species or individual can be identified as performing true counting (Figure 1; Table 

1). The literature (Agrillo et al., 2008; Davis and Pérusse, 1988; Kaufman et al., 1949; 



16 
 

Lazareva and Wasserman, 2017; Piazza et al., 2002; Tomonaga and Matsuzawa, 2002; Trick 

and Pylyshyn, 1994) identifies these criteria as: 

1. Serially counting numerosities of five and higher. 

2. Extrapolation to novel representations of numerosities. 

3. Extrapolation to novel numerosities. 

4. Symbolic representation of number. 

5. Quantitative valuing of sets (cardinality). 

6. Translation of number tasks to different modalities. 

7. Translation of number tasks to different procedures.  

Table 1: The criteria for demonstration of ‘true counting’ as defined across the literature. 

Criteria Description Example 

Serially counting more than four 

elements 

The error-prone and slow process 

of counting elements one-by-one 

above four 

Being able to count the number of 

apples you put in a basket as 1, 2, 

3, 4, 5, 6, 7, and so on. 

Extrapolation to novel 

representation of numerosity 

The ability to transfer numerical 

knowledge to novel stimuli. 

Three blue circles is the same 

number of items as three birds. 

Extrapolation to novel numerosities The ability to transfer numerical 

knowledge to unfamiliar 

numerosities 

A child learning to count from one 

to four and then understanding that 

five is higher than four even 

though they have not been taught 

the quantitative value of five. 

Symbolic representation of number Being able to match symbols to 

specific numerosities for 

representation and manipulation  of 

number 

Symbols such as Arabic numerals 

(1, 2, 3) or Roman numerals (I, II, 

III). 

Quantitatively valuing sets of 

objects 

Assigning quantitative value to 

different sets of objects and being 

able to order them by this value 

Understanding that a set of six 

circles is greater in number than a 

set of five circles. 

Translation of numerosity between 

modalities 

Number skills should be 

transferable between modalities 

(e.g. visual to tactile) 

Being able to understand that three 

flashes of light is the numerical 

equivalent to three bell rings. 

Translation of numerosity between 

procedures 

Number skills should be 

transferable between 

procedures (e.g. sequential to 

simultaneous) 

 

Seeing a set of items and being 

able to sequentially count to that 

numerosity 
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1.1.3.1.  Serial counting: 

Serially counting above four elements is a necessary aspect of true counting (Agrillo et al., 

2008; Davis and Pérusse, 1988; Kaufman et al., 1949; Lazareva and Wasserman, 2017; 

Piazza et al., 2002; Tomonaga and Matsuzawa, 2002; Trick and Pylyshyn, 1994). The ability 

to serially count more than four objects is demonstrated by chimpanzees and rhesus monkeys. 

Chimpanzees have demonstrated serial counting of up to seven elements (Beran and 

Rumbaugh, 2001). When shown an Arabic numeral of 1 – 7, chimpanzees could serially 

select elements until they reached the quantitative value of the Arabic numeral as shown by 

the number of selected elements. For example, if shown a ‘7’, the chimpanzee could serially 

select seven dots from a pool of ten dots to match the numeral. When rhesus monkeys were 

presented with a number of items on a screen, the monkeys had to respond by touching the 

sets of objects in either an ascending or descending order. Rhesus monkeys could order 

numerosities one – nine by quantitative value when presented with a number of abstract 

elements (Brannon and Terrace, 2000). 

1.1.3.2.  Extrapolation to novel representation of numerosities: 

The demonstration of true counting and numerical ability should be object-independent 

(Dacke and Srinivasan, 2008; Davis and Pérusse, 1988). Thus if a species, or individual, 

learns to count using sets of circles, they should be able to count sets of apples, lemons, or 

buildings. The requirement of transferring counting to novel items is known as the 

‘abstraction principle’. Without this transfer to novel elements the behaviour is not classified 

as true counting but ‘protocounting’ (Davis and Pérusse, 1988). The extrapolation of counting 

to novel representations is demonstrated by dolphins, which can transfer to novel 

representations of stimuli, such as transferring number tasks from three-dimensional objects 

to two dimensional objects (Kilian et al., 2003). 
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1.1.3.3.  Extrapolation to novel numerosities: 

The extrapolation of counting to novel numerosities is also required for the demonstration of 

true counting (Davis and Pérusse, 1988; Lazareva and Wasserman, 2017). For example, 

rhesus monkeys were trained to count from one to four items. The monkeys were then able to 

extrapolate this counting task to the novel numerosities of five to nine (Brannon and Terrace, 

1998; Brannon and Terrace, 2000), thereby demonstrating extrapolation of numerical 

ordering and counting to new and unfamiliar numerosities (Lazareva and Wasserman, 2017). 

1.1.3.4.  Symbolic representation of number: 

The symbolic representation of number and ordering of those symbolic representations is 

considered a necessary aspect of true counting (Lazareva and Wasserman, 2017). Alex, the 

African grey parrot, was able to learn the English names of numbers and subsequently use 

those labels to count and add, thereby demonstrating numerical skills required for numerical 

cognition and true counting (Pepperberg, 1987; Pepperberg, 1994; Pepperberg, 2006a; 

Pepperberg, 2006b; Pepperberg, 2012; Pepperberg and Carey, 2012; Pepperberg and Gordon, 

2005). Chimpanzees which have learnt Arabic numerals can then order them quantitatively 

(Beran, 2004b; Beran and Rumbaugh, 2001; Beran et al., 1998; Biro and Matsuzawa, 1999; 

Biro and Matsuzawa, 2001; Boysen and Berntson, 1989; Boysen et al., 1995; Boysen et al., 

1993; Murofushi, 1997) as well as sum the numerals (Boysen et al., 1996). Rhesus monkeys 

have also learned to choose the larger of two Arabic numerals to receive a corresponding 

number of food pellets (Washburn and Rumbaugh, 1991).  

1.1.3.5.  Translation of number tasks to different modalities:  

Numerical ability should not be restricted to a certain modality (Davis and Pérusse, 1988). 

There should be an ability to transfer numerical tasks, such as counting, across modalities 

(e.g. visual to auditory or tactile to visual). The ability to transfer between modalities was 

demonstrated in rats (Church, 1984), which were able to learn to press a right lever when two 
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sounds were presented and a left lever when four sounds were presented. This is potentially 

the only study which successfully demonstrates cross-modal transfer of a numerical task in a 

non-human species, according to a recent review (Lazareva and Wasserman, 2017), which 

more likely indicates the difficulty of testing the transfer of numerical tasks between 

modalities than the inability of a non-human animal to demonstrate it under the appropriate 

conditions. 

1.1.3.6.  Translation of number tasks to different procedures:  

Numerical ability should not be limited to a certain procedure. Numerical tasks should be 

transferable across different procedures (e.g. simultaneous to successive presentation; 

Lazareva and Wasserman, 2017). Chimpanzees, as described in section 1.1.3.1, could view 

an Arabic numeral (e.g. seven) and sequentially count objects to reach this numerosity (Beran 

et al., 1998). 

1.1.3.7.  True counting criteria: 

It appears that true counting should consist of an ability to serially count objects above four, 

extrapolate counting to novel objects and numerosities, demonstrate quantitative ordering of 

sets of objects, demonstrate symbolic representation of number, and transfer numerical ability 

to different modalities and procedures. This is a substantial list of criteria to fulfil in order to 

demonstrate true counting, all of which have not been demonstrated in a single non-human 

animal species (Figure 1). However, true counting is considered to be a level of numerical 

ability not accessible to nonhuman animals as it requires symbolic numerosity, which 

nonhuman animals are not thought to be capable of performing. 

In Chapters 2 – 5 of my thesis, I examine the capacity of honeybees to demonstrate some of 

these true counting characteristics in numerical tasks. I specifically test the ability to 

discrimination between numerosities greater than four elements, the extrapolation of number 
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tasks to novel representations and numerosities, the ability to make symbol and numerosity 

associations, and the ability to demonstrate cardinality. 

1.1.4. Quantical cognition  

Quantical cognition includes the biologically evolved preconditions for numerical cognition 

which are non-symbolic and imprecise. Importantly, quantical cognition does not scale up to 

number and arithmetic, which require cultural mediation (Núñez, 2017a). Quantical cognition 

encompasses the following capacities (Figure 1): 

1. The use of non-numerical cues which correlate with numerosity to solve numerical 

problems. 

2. The ability to discriminate between low numerosities (four or less) based on numerical 

cues. 

3. The ability to discriminate between high quantities (five and greater) through mechanisms 

which are consistent with Weber’s Law – performance increases as magnitude between 

numerosities increases. 

1.1.4.1.  Non-numerical cues: 

Quantical cognition includes the ability to judge quantity using non-numerical cues such as 

surface area, weight, perimeter, or movement. For example, golden orb-web spiders (Nephila 

clavipes) can keep track of the number of prey in their webs using numerical information 

combined with non-numerical cues, such as the weight of prey (Rodríguez et al., 2015). 

1.1.4.2.  Quantity discrimination: 

Quantical cognition also encompasses low-level quantity discrimination for numerosities 

below five elements. Many animals demonstrate quantical cognition in the form of natural 

activities such as resource management, predator avoidance, and navigation. For example, 

fish, such as mosquitofish and angelfish, can discriminate between two shoals of different 
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quantities when they differ by just one element at low numerosities (e.g. 1 vs. 2, 2 vs. 3, 3 vs. 

4) but fail at 4 vs. 5 in some studies (Agrillo et al., 2008; Gómez-Laplaza and Gerlai, 2011). 

1.1.4.3.  Quantity discrimination and Weber’s Law: 

An aspect of quantical cognition, which is observed in multiple species, is the improved 

ability to differentiate between two quantities as the magnitude between two quantities 

increases. This is observed when comparing numerosities of four or more elements. For 

example, the ability of fish to discriminate between two shoals (groups of conspecifics) 

consisting of four or more individual fish appears to be related to mechanisms consistent with 

Weber’s Law (Agrillo et al., 2008; Gómez-Laplaza and Gerlai, 2011). Weber’s Law 

describes how sensory systems distinguish between two stimulus magnitudes based on their 

proportional difference (Akre and Johnsen, 2014; Fechner, 1965; Weber, 1978). Also known 

as proportional processing, Weber’s Law is used by a number of animals to detect changes in 

sound, light, odours, electrical fields, pressure, number, and time (Akre and Johnsen, 2014). 

When animals adhere to Weber’s law, they compare stimuli on the basis of proportional 

differences. In quantity discrimination, Weber’s Law allows fish to surpass the threshold 

limit of four by comparing quantities based on their proportional differences, this is also 

evident when animals use AMS/ANS. Thus, the ability of mosquitofish and angelfish to 

discriminate between two shoals (as described above in section 1.1.2.2.) improved as the 

numerical distance between the shoals increased (Agrillo et al., 2008; Gómez-Laplaza and 

Gerlai, 2011). Mosquitofish are successfully able to compare the quantities of 1 vs. 2, 2 vs. 3 

and 3 vs. 4. When the limit of discriminating between numbers in the subitizing range is 

reached, mosquitofish are unable to successfully discriminate between quantities of 4 vs. 5, 4 

vs. 6, 4 vs. 7, 5 vs. 6, 6 vs. 7, 6 vs. 8, 7 vs. 8, or 8 vs. 12. However, when the magnitude of 

difference between the two quantities at and above the subitizing threshold is increased to a 
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ratio of 1 : 2, fish are successfully able to discriminate between quantities of 4 vs. 8, 8 vs. 16, 

and 4 vs. 10 (Agrillo et al., 2008). 

In Chapter 2, I examine the quantity discrimination ability of honeybees above the subitizing 

range and demonstrate that different conditioning procedures will yield different 

discrimination limits in this invertebrate species. 

1.1.5. Numerical cognition 

Numerical cognition is the exact and symbolic use of number including arithmetic 

operations and symbolic representation of numerosities (Núñez, 2017a). Unlike quantical 

cognition, numerical cognition tasks cannot rely on non-numerical traits to make 

discriminations between numerosities. Numerical cognition encompasses tasks including: 

1. Exact number use (including arithmetic and symbolic representation).

2. Arithmetic (e.g. operations such as addition, subtraction, multiplication, and division)

3. Symbolic representation and quantitative valuation of symbols, including symbol and

number matching. 

1.1.5.1.  Arithmetic: 

Arithmetic operations, such as addition and subtraction, are demonstrated widely throughout 

the animal kingdom. In addition to adult humans (Pica et al., 2004), they are exhibited by 

human infants (McCrink and Wynn, 2004; Wynn, 1992), chimpanzees (Beran, 2004a), orang-

utans (10), rhesus monkeys (Sulkowski and Hauser, 2001), vervet monkeys (Tsutsumi et al., 

2011), an African grey parrot (Pepperberg, 2006a; Pepperberg, 2012), and pigeons (Brannon 

et al., 2001). Some invertebrates are able to utilize arithmetic-type reasoning under natural 

conditions (Figure 1). For example, jumping spiders (Portia Africana) are able to use 

numerical information, independent from non-numerical cues, to keep track of prey counts in 
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their webs (Cross and Jackson, 2017). The numerical concept of arithmetic is discussed in 

more detail below (Section 1.1.6). 

1.1.5.2.  Symbolic representation of numerosity and valuation of symbols: 

A few vertebrates have demonstrated the ability to match specific symbols with quantities. 

For example, pigeons (Xia et al., 2001; Xia et al., 2000) can learn to match different symbols 

with a certain number of pecks. Three non-human species have demonstrated symbolic 

number use in arithmetic operations and through quantitative valuation, including an African 

grey parrot (Pepperberg, 1987; Pepperberg, 1994; Pepperberg, 2006a; Pepperberg, 2006b; 

Pepperberg, 2012; Pepperberg and Carey, 2012; Pepperberg and Gordon, 2005), chimpanzees 

(Beran, 2004b; Beran and Rumbaugh, 2001; Beran et al., 1998; Biro and Matsuzawa, 1999; 

Biro and Matsuzawa, 2001; Boysen and Berntson, 1989; Boysen et al., 1995; Boysen et al., 

1993; Murofushi, 1997), and rhesus monkeys (Washburn and Rumbaugh, 1991). With the 

exception of spiders (Cross and Jackson, 2017; Nelson and Jackson, 2012; Rodríguez et al., 

2015), evidence of numerical cognition in invertebrates is uncommon, thus in the following 

experimental chapters (Chapters 2 – 5) I explore numerical cognition abilities in an 

invertebrate species, the honeybee. 

In Chapter 4, I determine the ability of bees to learn and perform an arithmetic-type task 

consisting of learning to add or subtract one element from a sample stimulus based on colour 

cues. In Chapter 5, I examine the capacity of honeybees to acquire symbol and numerosity 

associations to determine if an invertebrate could learn a symbolic number language created 

by humans at a basic level. 

1.1.6. Arithmetic 

Arithmetic can be identified as the operational use of numbers such as in addition, 

subtraction, multiplication and division. Arithmetic, such as addition and subtraction problem 
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solving, requires complex management of quantities in both working memory and longer 

term rule based memory (Tsutsumi et al., 2011). Arithmetic is thus a complex concept, 

cognitively challenging, and is considered an aspect of numerical cognition (Figure 1; Núñez, 

2017a; Núñez, 2017b). Arithmetic can be demonstrated at varying levels of complexity 

(Figure 1): 

1. Spontaneous arithmetic-type reasoning.  

2. Arithmetic problems using abstract objects.  

3. Symbolic representation of numerosity for use in arithmetic (including the symbolic 

representation of zero numerosity). 

Human infants (McCrink and Wynn, 2004; Wynn, 1992), vervet monkeys (Tsutsumi et al., 

2011), chimpanzees (Beran, 2004a; Beran and Beran, 2004; Boysen and Berntson, 1989), 

orang-utans (Call, 2000), rhesus monkeys (Sulkowski and Hauser, 2001), Alex the parrot 

(Pepperberg, 2006a; Pepperberg, 2012), pigeons (Brannon et al., 2001), and spiders (Nelson 

and Jackson, 2012; Rodríguez et al., 2015) demonstrate the ability to add and/or subtract. 

1.1.6.1.  Spontaneous arithmetic-type reasoning: 

As shown in Figure 1, arithmetic can vary in complexity with the lowest level of arithmetic 

classified as the spontaneous use of arithmetic-like reasoning which is shown in wild vervet 

monkeys. Vervet monkeys observing an experimental apparatus in their environment 

understood subtraction-like problems with no training on the tasks. When shown food pieces 

being placed in an opaque cup and then observing when none or some were removed, the 

monkeys preferred to approach the cup when the subtraction operation should result in food 

being present (e.g. 2 – 1) rather than absent (e.g. 1 – 1) resulting in a spontaneous 

understanding of a subtraction problem (Tsutsumi et al., 2011). 

1.1.6.2.  Arithmetic problems using abstract objects: 
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The next level of complexity in arithmetic is the addition and subtraction of abstract elements 

(Figure 1). This is where a species, or individual, is able to add two quantities of objects to 

get a correct answer. For example, when human infants observe a number of objects become 

covered by an opaque screen and then see either more objects added (addition) or some 

objects removed (subtraction), they will stare longer when the screen is removed if the 

resulting number of objects is not consistent with the addition or subtraction problem they 

had witnessed. If infants observed five objects become occluded, then saw five more objects 

added behind the screen, once the screen is removed they will stare longer if the result is five 

objects rather than ten objects (McCrink and Wynn, 2004). 

1.1.6.3.  Symbolic representation of numerosity for use in arithmetic: 

Arithmetic using symbolic representations of numerosities is a complex problem (Núñez, 

2017a). Some primates have been trained to use symbolic representations of number such as 

Arabic numerals. For example, a chimpanzee was able to sum Arabic numerals ranging from 

0 – 4 (Boysen and Berntson, 1989). 

There is currently a paucity of research on the ability of invertebrates to perform arithmetic-

like problem solving. Thus, in Chapter 4, I examine the capacity of honeybees to 

simultaneously learn simple addition and subtraction tasks and apply these rules to unfamiliar 

stimuli and novel numerosities. 

1.1.7. Zero numerosity 

The concept of zero is processed at a number of levels ranging from the sensory 

representation of zero up to the symbolic use of zero in mathematics. Zero numerosity is the 

understanding that the null amount of zero has a quantitative value and belongs at the low 

end of the positive integer number line. There are considered to be four stages of 
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understanding zero numerosity across human culture, ontogeny, phylogeny, neurophysiology, 

learning, and non-human animal understanding (Figure 1; Nieder, 2016b): 

1. The first stage is defined as a ‘sensory representation’ understanding of zero, the absence 

of stimulation.  

2. The second stage is a categorical understanding of zero (e.g. nothing vs. something). 

3. The third stage is the understanding of zero numerosity as having a quantitative value and 

belonging at the low end of the positive number line.  

4. The final fourth stage is the symbolic representation of zero for the use in mathematics. 

A categorical understanding of zero (stage 2) is evident by Alex the parrot who could answer 

with the word “none” spontaneously when asked how many items of a particular object there 

were when the object in question was not present (Pepperberg, 2006a; Pepperberg and 

Gordon, 2005). A quantitative understanding of zero numerosity (stage 3) is demonstrated by 

rhesus monkeys, which were able to order sets of objects including an empty set containing 

no objects (Merritt et al., 2009). The fourth stage of understanding zero numerosity, the use 

of a symbolic representation of zero in mathematics, may be accessible to a chimpanzee 

which was able to sum Arabic numerals ranging from 0 – 4 (Boysen and Berntson, 1989), 

however it is not yet confirmed that this constitutes the fourth level of understanding zero 

numerosity. 

Additionally, monkeys have demonstrated a neural representation of zero numerosity 

(Ramirez-Cardenas et al., 2016). When monkeys were performing a number matching task 

consisting of matching numerosities including an empty set stimulus, the ventral intraparietal 

area (VIP) encoded the empty set as a separate category to other numerosities, however 

neurons in the prefrontal cortex (PFC) represented the empty set stimulus as similar to 

numerosity one, and less similar to higher numerosities. These results demonstrate numerical 



27 
 

distance effects of zero numerosity in the brain, suggesting a neural understanding of zero at 

the third stage, a quantitative representation. 

Early, under-developed concepts of zero are evidenced in Chinese, Babylonian, and Mayan 

mathematics (Boyer, 1944; Houston et al., 2001; Joseph, 2008; Nieder, 2016b). The 

understanding of zero in early human culture ranged from defining it as a placeholder for a 

lack of a numerical value in the Babylonian number system to Egyptian mathematics having 

a magnitude or direction-separator concept of zero (i.e. separating the numbers above zero 

from those below zero) over four thousand years ago (Joseph, 2008; Joseph, 2011). However, 

these representations of ‘zero’ did not have a quantitative value associated with them (Boyer, 

1944; Nieder, 2016b). It was not until 628AD that zero had a written record which noted it as 

a number in its own right, thus giving it a quantitative value and rules for its use in arithmetic 

(Boyer, 1944; Nieder, 2016b). 

Considering advanced ancient human civilizations did not fully understand the importance 

and necessity of zero in their own numeric system, it is of particular interest that non-human 

animal species are able to learn the quantitative value of zero (Biro and Matsuzawa, 2001; 

Merritt et al., 2009; Ramirez-Cardenas et al., 2016) and represent an empty set as a 

quantitative value in the brain (Ramirez-Cardenas et al., 2016). 

The question of whether animals such as fish or insects are “able to represent empty sets as a 

quantitative category”, as posed by Nieder (2016b), is addressed in Chapter 3. I examine the 

capacity of honeybees to apply previously learnt numerical rules to an empty set to determine 

if, and to what level, bees understand zero numerosity. 

 

 



28 
 

1.2. Part II: Numerical ability as an evolved capacity 

1.2.1. Evolution of numerical capacity 

Language has provided humans with the ability to develop advanced mathematical skills and 

a high level of numerical ability (Gelman and Gallistel, 2004; Nieder, 2005), and research in 

humans has established counting and numerical competency as an important ability evident 

across cultures of verbal and written systems (Brannon and Van de Walle, 2001). Quantical 

cognition, such as quantity discrimination, is widely accepted as a part of ‘number sense’ 

which has evolved in humans and non-human human animals (Núñez, 2017a). More 

advanced numerical abilities involving complex concepts, such as arithmetic, are thought to 

be an artefact of the evolution of human culture and language (Núñez, 2017a; Núñez, 2017b) 

and accordingly some authors believe non-human animals do not possess the general 

“intelligence” to solve these problems (Lenneberg, 1971). Conversely, other authors argue 

that numerical capacity has in fact developed separately to language (Nieder, 2005; Nieder, 

2017). The argument that numerical ability is linked to language (Brannon and Van de Walle, 

2001; Lenneberg, 1971), is disputed by the evidence of numerical ability in pre-verbal 

children (McCrink and Wynn, 2004; Wynn, 1992; Wynn, 1998), humans who speak 

languages lacking number nomenclature (Pica et al., 2004), and non-human animals (Nieder, 

2005; Nieder, 2017). In this section I will examine the evidence for the evolution of complex 

numerical skills in humans and non-human animals. 

Human infants have demonstrated the ability to discriminate between small numbers (four 

and less) of objects (Antell and Keating, 1983; Starkey and Cooper, 1980; Strauss and Curtis, 

1981; Wynn, 1998) and the capacity to understand addition and subtraction of small (Wynn, 

1992) or large (greater than four) numbers of items (McCrink and Wynn, 2004). Arithmetic 

such as addition and subtraction is considered an aspect of numerical cognition (Figure 1; 

Núñez, 2017a). Thus, the demonstration of numerical cognition skills in human infants 
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supports the argument that even complex numerical skills cannot be exclusively linked to the 

development of human language and culture. 

In addition to pre-verbal children and infants, some languages have limited or no words to 

describe number. For example, those who speak Mundurukú, an Amazonian language, do not 

have words to describe numbers above five, however can still add large groups of elements 

(Pica et al., 2004). In studies where verbal counting was difficult or not possible, humans 

were able to accurately compare sets of elements (evidence of cardinality; Figure 1; Cordes et 

al., 2001; Whalen et al., 1999). These studies support the argument that verbal language is not 

a necessary prerequisite for basic or even advanced numerical skills (Butterworth et al., 2008; 

Frank et al., 2008), however other authors argue that the spoken or written systems of number 

that humans use will impact the level of numerical cognition they can reach (Gordon, 2004). 

Nieder (2005) suggests that humans adults, infants, and non-human animals demonstrate an 

evolutionarily ancient quantification system that operates independently of language, as 

supported by studies of non-verbal number tasks in humans (Butterworth et al., 2008; Frank 

et al., 2008; Pica et al., 2004). 

It is interesting to attempt to quantify what skills and behaviours constitute the use of 

language in numerical tasks. Chimpanzees and rhesus monkeys can be taught to use and give 

quantitative value to Arabic numerals (Beran, 2004b; Biro and Matsuzawa, 2001; Harris et 

al., 2007), Alex the parrot could count, sum numbers of items, respond to questions with the 

correct English label for numerals (Pepperberg, 2006b). Furthermore, training on the Arabic 

numeral symbolic number system in monkeys resulted in the analogous populations of 

neurons activating in monkeys as in human children (Diester and Nieder, 2007), 

demonstrating a precursor of human symbolic language in moneys (see section 1.2.2. below). 
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Thus, the evidence that learning a symbolic language for number tasks activates analogous 

neurons in a monkey’s brain as in humans (Diester and Nieder, 2007) suggests a similar 

evolution of numerical processing in the brain. 

1.2.2. Number neurons 

Evidence of the evolution of numerical capacity in non-human animals is strengthened by 

studies on the neurobiology of number skills (Dehaene, 2003; Nieder, 2016a; Nieder et al., 

2002; Nieder and Miller, 2003). In some non-human animals there is evidence of neurons 

which only activate with specific numbers, known as ‘number neurons’ (Nieder, 2016a). 

Number-encoding neurons (Dehaene, 2002) are observed in different species of monkeys, 

domestic cats, and crows. Number-encoding neurons are activated in the parietal cortex of the 

monkey (Macaca fuscata) brain (predominantly the superior parietal lobule; Sawamura et al., 

2002). These neurons are also observed in rhesus monkeys (Macaca mulatta) within the 

prefrontal cortex (Nieder et al., 2002; Nieder and Merten, 2007; Nieder and Miller, 2003; 

Nieder and Miller, 2004; Viswanathan and Nieder, 2013), posterior parietal cortex (Nieder 

and Miller, 2004; Tudusciuc and Nieder, 2007), parietal lobe (Nieder et al., 2006; Tudusciuc 

and Nieder, 2007; Viswanathan and Nieder, 2013), and the lateral and ventral intraparietal 

areas of the intraparietal sulcus (IPS) (Nieder, 2012; Nieder and Miller, 2004; Viswanathan 

and Nieder, 2013). The cortex of the domestic cat (Felis catus; Thompson et al., 1970), and 

the crow (Corvus corone corone) endbrain (nidopallium caudolaterale (NCL); Ditz and 

Nieder, 2015) also have similar responses of neurons to number stimuli. The evidence of 

number-encoding neurons in species as evolutionary separate as monkeys, domestic cats, and 

crows suggests that numerical processing and abilities are a result of convergent evolution 

(Nieder, 2016a). 

One of the arguments supporting the view that numerical competency has not evolved and is 

an artefact of the development of human language and culture (Núñez, 2017a; Núñez, 
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2017b), is that animals have not demonstrated numerical cognition, including symbolic 

representation of number. However, monkeys demonstrate the activation of similar neuron 

populations as children after having been taught the quantitative values of Arabic numerals 

(Diester and Nieder, 2007). 

Further research on more evolutionary distant animals will inform whether numerical 

competency is a conserved or convergent trait. For example honeybees and humans have 

been separated for 600 million years (Consortium, 2006; Grimaldi et al., 2005), thus the 

demonstration of similar numerical skills and limits of such evolutionary distant species 

would suggest convergent evolution is a likely explanation (see section 1.2.3), as the common 

ancestor for both species must have been less neurologically complex than either. 

1.2.3. Outstanding questions 

I aim to give insight into the question of whether basic and advanced numerical abilities 

could have evolved in an invertebrate species evolutionarily separated from humans for 600 

million years (Consortium, 2006; Grimaldi et al., 2005). I examine the numerical competency 

of the honeybee to determine what level of numeric understanding and performance this 

species could reach to provide an insight into whether high-level numeric skills are restricted 

to humans with culture and language, and to determine whether number sense in other non-

human animals has evolved via convergent evolution or conserved evolution. 

If the honeybee is able to perform numerical tasks of a high-complexity, this would suggest 

the evolution of numerical capacity in humans and non-human animals. If numerical capacity 

is a conserved trait, it would be expected that the last common ancestor of honeybees and 

humans had the capacity to perform analogous tasks common to both honeybees and humans. 

If numerical capacity is a result of convergent evolution, then this suggests that over time 

different species from humans to invertebrates have separately developed an ability to 
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perform numerical tasks due to the demands in their own environments. If the honeybee is 

not able to perform numerical tasks, this suggests that numerical capacity may not be an 

evolved trait (Núñez, 2017a; Núñez, 2017b), or conserved evolution of numerical abilities of 

ancestors common to humans, non-human primates, and perhaps other vertebrate species 

occurred, or that convergent evolution of numerical abilities in vertebrate species 

demonstrating numerical capacities has occurred (Figure 1). 

Therefore, in my experimental chapters (Chapters 2 – 5), I explore the ability of honeybees to 

learn, apply, and solve numerical problems to determine what level of numeric ability they 

can reach and how this may compare to humans and other vertebrates. The ability to compare 

numeric abilities in an invertebrate species with our current knowledge of animal numeric 

ability will give insights into the possible evolutionary pathways of numeric ability. 

1.3. Part III: A model invertebrate species for the study of animal numerical ability 

1.3.1. Cognition in bees 

Bees have long been used as a classic research model for understanding insect sensory 

perception (Dyer and Arikawa, 2014; Von Frisch, 1914; Von Frisch, 1967). Honeybees, Apis 

mellifera, demonstrate very complex, naturally evolved behaviours such as comb-building 

(Gallo and Chittka, 2018) and dance communication of the location of food sources to nest 

mates (Biesmeijer and Seeley, 2005; Grüter and Farina, 2009; Riley et al., 2005; Srinivasan, 

2014; Srinivasan et al., 2000; Von Frisch, 1967). In addition to these observed behaviours, 

honeybees can learn a number of complex tasks with extended visual experience that were 

previously assumed to require a large mammalian brain (Chittka and Niven, 2009; Dyer, 

2012; Srinivasan, 2010). 

Honeybees can be trained to perform simple and conceptual tasks with the use of classical 

conditioning, providing a food source of sucrose (sugar water) for a correct choice 
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(Avarguès-Weber and Giurfa, 2013; Dyer, 2012; Srinivasan, 2010; Zhang, 2006). For 

example, they can solve problems using rules such as ‘left vs. right’ and maze navigation 

(Collett et al., 1993; Zhang et al., 1996; Zhang et al., 2000), ‘above vs. below’ (Avarguès-

Weber et al., 2011), ‘same vs. different’ (Giurfa et al., 2001), ‘larger vs. smaller’ (Avarguès-

Weber et al., 2014; Howard et al., 2017a; Howard et al., 2017b), and they can combine learnt 

rules, known as dual concept use (Avarguès-Weber et al., 2012). Honeybees have also 

demonstrated counting (Chittka and Geiger, 1995; Dacke and Srinivasan, 2008; Menzel et al., 

2010) and number discrimination (Gross et al., 2009) up to four objects. The capacity of bees 

to learn and apply rules to solve problems creates many new questions in invertebrate 

cognition, learning, and goal-orientated tasks.  

1.3.2. Numerical limits in bees 

In previous studies on honeybee numerical ability, bees reached a number competency 

threshold at four (Chittka and Geiger, 1995; Dacke and Srinivasan, 2008; Gross et al., 2009; 

Skorupski et al., 2018). As discussed above, this phenomenon is also seen across other animal 

species (Agrillo et al., 2008; Cowan, 2010; Gómez-Laplaza and Gerlai, 2011; Jevons, 1871; 

Seguin and Gerlai, 2017; Simons and Langheinrich, 1982). 

Honeybees have demonstrated an ability to count landmarks to find the correct position of 

food sources (Figure 3; Chittka and Geiger, 1995; Dacke and Srinivasan, 2008; Menzel et al., 

2010). A study conducted in a field showed that honeybees were able to learn the correct 

position of a food source after one, two, three, or four landmarks, large yellow tents (Chittka 

and Geiger, 1995), although some bees preferred to use distance rather than landmark number 

(Figure 3a; Chittka and Geiger, 1995; Menzel et al., 2010). In another study, honeybees were 

trained to collect sucrose solution at positions of up to four objects in a flight tunnel that 

allowed the exclusion of other cues that might occur in natural environments (Figure 3b; 

Dacke and Srinivasan, 2008). In both studies bees could not count beyond four landmarks. 
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Honeybees have also shown the capacity to match patterns containing up to four elements by 

number alone (Gross et al., 2009). When viewing a pattern of up to four elements bees were 

able to view the pattern, fly into a tunnel that presented multiple options, and choose the 

correct option, the stimulus that contained the same number of elements as the sample, 

independent of the shape, colour, or pattern of the individual elements. For example, bees 

could match three blue circles with three yellow stars (Figure 3c). Honeybees were unable to 

discriminate between the quantities of 4 vs. 5 or 5 vs. 6 in this experiment. 

1.3.3. Conditioning procedures in bees 

More recently, a study explored the effect of using either classical appetitive conditioning, or 

appetitive-aversive conditioning on honeybee performance in cognitive and visual tasks 

(Avarguès-Weber et al., 2010). Appetitive and absolute conditioning rewards bees for a 

correct choice while appetitive-aversive conditioning results in a rewarding or aversive 

outcome for correct and incorrect choices respectively. Avarguès-Weber et al. (2010) showed 

that appetitive-aversive conditioning significantly increased bee performance in perceptually 

difficult goal-orientated tasks. As previous studies on honeybee numerical competency were 

performed using classical appetitive conditioning, further research should aim to determine if 

the numerical competency of honeybees could be extended using the appetitive-aversive 

framework that has proven effective in many other cognitive and visual tasks (Avarguès-

Weber et al., 2014; Avarguès-Weber et al., 2012; Avarguès-Weber et al., 2011; Howard et 

al., 2017a; Howard et al., 2017b; Ravi et al., 2016). Thus, perhaps the use of appetitive-

aversive differential conditioning could improve the numerical ability of honeybees. 

In Chapter 2, I test the impact of using appetitive-aversive conditioning on quantity 

discrimination in the honeybee to answer this question. 
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1.3.4. Conclusions 

Due to the impressive but limited amount of research into invertebrate numerical competency 

(Carazo et al., 2009; Dacke and Srinivasan, 2008), further studies should be carried out 

testing numerical capacity in these species. The honeybee is an ideal model species to test 

how numerical skills may be modulated or improved with appetitive-aversive differential 

conditioning as they have previously demonstrated learning and application of concepts and 

rules, and have shown some numerical competency in previous studies (Chittka and Geiger, 

1995; Dacke and Srinivasan, 2008; Gross et al., 2009). In addition, the comparison of the 

capacity for an invertebrate, separated from humans for 600 million years (Consortium, 2006; 

Grimaldi et al., 2005), to perform numeric tasks will greatly inform the current debate on 

numerical ability in non-human animals and the evolutionary pathway which may have 

resulted in ‘number sense’. 

This introduction has explored the current ideas and research surrounding numerical 

capacities of vertebrate and invertebrate species, and has outlined some of the on-going 

discussions in this area. I suggest that basic and more advanced numerical skills such as 

addition, subtraction, and understanding the concept of zero may not have developed 

alongside verbal language as human infants, non-human primates, and birds have 

demonstrated some level of understanding in these areas (Biro and Matsuzawa, 2001; 

McCrink and Wynn, 2004; Merritt et al., 2009; Pepperberg, 2006a; Pepperberg and Gordon, 

2005; Wynn, 1992). 
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Figure 3: The representation of three studies on honeybee counting and number matching 

which have informed this research. a) A representation of the methodological set-up of 

Chittka & Geiger (1995). A number of yellow tents were placed 200 meters apart. Bees were 

trained to visit a feeder dispensing sucrose between the 3
rd

 and 4
th

 tent. When the number of 

tents before the distance of the feeder was increased, some bees (yellow and black icon) 

chose to visit the location of the 3
rd

 and 4
th

 tent in the new location suggesting they used 

landmark number as a cue while other bees (white and black icon) chose the return to the 

distance the original feeder was at suggesting they preferred to use distance rather than 

landmark number as a cue. This was also found when the number of tents before the original 

feeder was decreased. While some bees preferred to visit at the correct landmark number 

(yellow and black icon), between the 3
rd

 and 4
th

 tents, other bees preferred to use distance 

cues (white and black icon), visiting the original distance of the feeder. b) A representation of 

the methodological set-up of Dacke & Srinivasan (2008). Bees were trained to enter a flight 

tunnel to find sucrose solution at a certain number of landmarks. Non-numerical cues such as 

distance and the use of other landmarks were controlled for using the flight tunnel. Bees 

demonstrated that they could count to four landmarks of different representations in the flight 

tunnel to find sucrose when distance and other cues were controlled. c) A representation of 

the methodological set-up of Gross et al. (2009). Bees were trained to use a Y-maze 

apparatus which presented a sample stimulus (e.g. three blue dots) in a tunnel, and then two 

options one meter along the tunnel. Bees learnt to match the sample number of two or three 

elements to novel representations of elements containing two, three, but not four (e.g. yellow 

stars). 
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1.4. Part IV: Outline and summary of thesis 

Number sense is a vital aspect of survival for foraging, predator avoidance, and navigation in 

non-human animals. Both spontaneous numerical abilities and learnt numerical tasks are 

demonstrated across species, which can extend to very high-level number skills (Figure 1). 

Despite the arguments that complex number skills and concepts are only accessible to 

humans with developed culture and language (Lenneberg, 1971; Núñez, 2017a; Núñez, 

2017b), pre-verbal human infants, non-verbal adult humans, and non-human animals have 

displayed evidence of numerical cognition. In my thesis, I use the honeybee as a model 

species to formally test the numerical ability of an invertebrate, separated from humans by 

600 million years. 

Chapter Two presents experimental evidence that honeybees are able to surpass their 

previous number discrimination limit of four items through changes to training and 

conditioning. I demonstrate that with appetitive-aversive differential conditioning, the 

honeybee can be trained to discriminate between numerosities at and above the subitizing 

range. This is in comparison to honeybees trained with classical appetitive-conditioning 

which do not clearly demonstrate quantity discrimination above the subitizing range. These 

results are important precursors to the following chapters where I extend the limits of 

honeybee numeric ability to more advanced concepts and tasks. 

Chapter Three presents my research on the ability of honeybees to learn the relational rules of 

‘greater than’ vs. ‘less than’. Honeybees were able to learn these numeric rules and apply 

them to novel numerosities, representations of number, and even use the rules to understand 

the quantitative value of an empty set. 

Chapter Four presents experimental results demonstrating that honeybees are able to learn 

simple arithmetic. Bees were able to learn a symbolic representation (colour) of addition and 
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subtraction and subsequently perform the operations + 1 or – 1 using novel numerosities and 

representation of numerosities. 

Chapter Five presents my research on the ability of bees to match symbols and numerosities. 

Honeybees were able to learn to match two numerosities to two symbols in either a symbol-

to-number-matching task or a number-to-symbol-matching task. Bees could also transfer the 

task to novel representations of the quantities but were unable to reverse the association. 

Chapter Six provides a discussion on the addition of my research to the existing literature. I 

compare the ability of bees to perform numerical tasks in my experimental work to other 

species and past research on honeybees. I discuss the implications of my experimental 

research on the debate regarding evolved numeric ability and numerical competency in non-

human animals. 

 



39 
 

1.5.  References 

 Agrillo, C., Dadda, M., Serena, G. and Bisazza, A. (2008). Do fish count? 

Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition 11, 495-

503. 

 Akre, K. L. and Johnsen, S. (2014). Psychophysics and the evolution of behavior. 

Trends in Ecology & Evolution 29, 291-300. 

 Antell, S. E. and Keating, D. P. (1983). Perception of numerical invariance in 

neonates. Child Development 54, 695-701. 

 Avarguès-Weber, A., d’Amaro, D., Metzler, M. and Dyer, A. G. (2014). 

Conceptualization of relative size by honeybees. Frontiers in Behavioral Neuroscience 8, 1-

8. 

 Avarguès-Weber, A., de Brito Sanchez, M. G., Giurfa, M. and Dyer, A. G. 

(2010). Aversive reinforcement improves visual discrimination learning in free-flying 

honeybees. PLoS One 5, e15370. 

 Avarguès-Weber, A., Dyer, A. G., Combe, M. and Giurfa, M. (2012). 

Simultaneous mastering of two abstract concepts by the miniature brain of bees. Proceedings 

of the National Academy of Sciences 109, 7481-7486. 

 Avarguès-Weber, A., Dyer, A. G. and Giurfa, M. (2011). Conceptualization of 

above and below relationships by an insect. Proceedings of the Royal Society of London B: 

Biological Sciences 278, 898-905. 

 Avarguès-Weber, A. and Giurfa, M. (2013). Conceptual learning by miniature 

brains. Proceedings of the Royal Society of London B: Biological Sciences 280, 20131907. 

 Beran, M. J. (2004a). Chimpanzees (Pan troglodytes) respond to nonvisible sets after 

one-by-one addition and removal of items. Journal of Comparative Psychology 118, 25-36. 



40 
 

 Beran, M. J. (2004b). Long-term retention of the differential values of Arabic 

numerals by chimpanzees (Pan troglodytes). Animal Cognition 7, 86-92. 

 Beran, M. J. and Beran, M. M. (2004). Chimpanzees remember the results of one-

by-one addition of food items to sets over extended time periods. Psychological Science 15, 

94-99. 

 Beran, M. J. and Rumbaugh, D. M. (2001). "Constructive" enumeration by 

chimpanzees (Pan troglodytes) on a computerized task. Animal Cognition 4, 81-89. 

 Beran, M. J., Rumbaugh, D. M. and Savage-Rumbaugh, E. S. (1998). 

Chimpanzee (Pan troglodytes) counting in a computerized testing paradigm. The 

Psychological Record 48, 3-19. 

 Bergman, T. J., Beehner, J. C., Cheney, D. L. and Seyfarth, R. M. (2003). 

Hierarchical classification by rank and kinship in baboons. Science 302, 1234-1236. 

 Biesmeijer, J. C. and Seeley, T. D. (2005). The use of waggle dance information by 

honey bees throughout their foraging careers. Behavioral Ecology and Sociobiology 59, 133-

142. 

 Biro, D. and Matsuzawa, T. (1999). Numerical ordering in a chimpanzee (Pan 

troglodytes): Planning, executing, and monitoring. Journal of Comparative Psychology 113, 

178-185. 

 Biro, D. and Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee 

(Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition 4, 193-

199. 

 Boyer, C. B. (1944). Zero: The symbol, the concept, the number. National 

Mathematics Magazine 18, 323-330. 

 Boysen, S. T. and Berntson, G. G. (1989). Numerical competence in a chimpanzee 

(Pan troglodytes). Journal of Comparative Psychology 103, 23-31. 



41 
 

 Boysen, S. T., Berntson, G. G., Hannan, M. B. and Cacioppo, J. T. (1996). 

Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes). 

Journal of Experimental Psychology: Animal Behavior Processes 22, 76-86. 

 Boysen, S. T., Berntson, G. G., Shreyer, T. A. and Hannan, M. B. (1995). 

Indicating acts during counting by a chimpanzee (Pan troglodytes). Journal of Comparative 

Psychology 109, 47-51 

 Boysen, S. T., Berntson, G. G., Shreyer, T. A. and Quigley, K. S. (1993). 

Processing of ordinality and transitivity by chimpanzees (Pan troglodytes). Journal of 

Comparative Psychology 107, 208-215. 

 Brannon, E. M. and Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by 

monkeys. Science 282, 746-749. 

 Brannon, E. M. and Terrace, H. S. (2000). Representation of the numerosities 1–9 

by rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: Animal 

Behavior Processes 26, 31-49. 

 Brannon, E. M. and Van de Walle, G. A. (2001). The development of ordinal 

numerical competence in young children. Cognitive Psychology 43, 53-81. 

 Brannon, E. M., Wusthoff, C. J., Gallistel, C. R. and Gibbon, J. (2001). Numerical 

subtraction in the pigeon: Evidence for a linear subjective number scale. Psychological 

Science 12, 238-243. 

Brannon, E. M. (2006). The representation of numerical magnitude. Current Opinion in 

Neurobiology 16, 222-229. 

Brannon, E. M. and Merritt, D. J. (2011). Evolutionary foundations of the approximate 

number system. In Space, time and number in the brain (pp. 207-224). 



42 
 

 Butterworth, B., Reeve, R., Reynolds, F. and Lloyd, D. (2008). Numerical thought 

with and without words: Evidence from indigenous Australian children. Proceedings of the 

National Academy of Sciences 105, 13179 –13184. 

 Call, J. (2000). Estimating and operating on discrete quantities in orangutans (Pongo 

pygmaeus). Journal of Comparative Psychology 114, 136-147. 

 Carazo, P., Font, E., Forteza-Behrendt, E. and Desfilis, E. (2009). Quantity 

discrimination in Tenebrio molitor: evidence of numerosity discrimination in an invertebrate? 

Animal Cognition 12, 463-470. 

 Chittka, L. and Geiger, K. (1995). Can honey bees count landmarks? Animal 

Behaviour 49, 159-164. 

 Chittka, L. and Niven, J. (2009). Are bigger brains better? Current Biology 19, 

R995-R1008. 

 Church, R. M. (1984). The numerical attribute of stimuli. Animal Cognition, 16, 

1107-1140. 

 Collett, T., Fry, S. and Wehner, R. (1993). Sequence learning by honeybees. 

Journal of Comparative Physiology A 172, 693-706. 

 Consortium, H. G. S. (2006). Insights into social insects from the genome of the 

honeybee Apis mellifera. Nature 443, 931-949. 

 Cordes, S., Gelman, R., Gallistel, C. R. and Whalen, J. (2001). Variability 

signatures distinguish verbal from nonverbal counting for both large and small numbers. 

Psychonomic Bulletin & Review 8, 698-707. 

 Cowan, N. (2010). The magical mystery four how is working memory capacity 

limited, and why? Current Directions in Psychological Science 19, 51-57. 

 Cross, F. R. and Jackson, R. R. (2017). Representation of different exact numbers of 

prey by a spider-eating predator. Interface Focus 7, 20160035. 



43 
 

 Dacke, M. and Srinivasan, M. V. (2008). Evidence for counting in insects. Animal 

Cognition 11, 683-689. 

 Davis, H. and Pérusse, R. (1988). Numerical competence in animals: Definitional 

issues, current evidence, and a new research agenda. Behavioral and Brain Sciences 11, 561-

579. 

 Dehaene, S. (2002). Single-neuron arithmetic. Science 297, 1652-1653. 

 Dehaene, S. (2003). The neural basis of the Weber–Fechner law: a logarithmic 

mental number line. Trends in Cognitive Sciences 7, 145-147. 

 Dehaene, S. and Cohen, L. (1994). Dissociable mechanisms of subitizing and 

counting: Neuropsychological evidence from simultanagnosic patients. Journal of 

Experimental Psychology: Human Perception and Performance 20, 958-975. 

DeWind, N. K., Adams, G. K., Platt, M. L. and Brannon, E. M. (2015). Modeling the 

approximate number system to quantify the contribution of visual stimulus features. 

Cognition 142, 247-265. 

 Diester, I. and Nieder, A. (2007). Semantic associations between signs and 

numerical categories in the prefrontal cortex. PLoS Biology 5, e294. 

 Ditz, H. M. and Nieder, A. (2015). Neurons selective to the number of visual items 

in the corvid songbird endbrain. Proceedings of the National Academy of Sciences 112, 7827-

7832. 

 Dyer, A. G. (2012). The mysterious cognitive abilities of bees: why models of visual 

processing need to consider experience and individual differences in animal performance. 

The Journal of Experimental Biology 215, 387-395. 

 Dyer, A. G. and Arikawa, K. (2014). A hundred years of color studies in insects: 

with thanks to Karl von Frisch and the workers he inspired. Journal of Comparative 

Physiology A 200, 409-410. 



44 
 

 Fechner, G. (1965). Elements of psychophysics. New York: Rinehart & Winston. 

Feigenson L, Dehaene S, Spelke E. (2004) Core systems of number. Trends in Cognitive 

Sciences 8, 307–314. 

 Frank, M. C., Everett, D. L., Fedorenko, E. and Gibson, E. (2008). Number as a 

cognitive technology: Evidence from Pirahã language and cognition. Cognition 108, 819-824. 

 Gallo, V. and Chittka, L. (2018). Cognitive aspects of comb-building in the 

honeybee? Frontiers in Psychology 9. 

 Gelman, R. and Gallistel, C. R. (2004). Language and the origin of numerical 

concepts. Science 306, 441-443. 

 Giurfa, M., Zhang, S., Jenett, A., Menzel, R. and Srinivasan, M. V. (2001). The 

concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410, 930-933. 

 Gómez-Laplaza, L. M. and Gerlai, R. (2011). Can angelfish (Pterophyllum scalare) 

count? Discrimination between different shoal sizes follows Weber’s law. Animal Cognition 

14, 1-9. 

 Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. 

Science 306, 496-499. 

 Grimaldi, D., Engel, M. S. and Engel, M. S. (2005). Evolution of the Insects: 

Cambridge University Press. 

 Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J. and Zhang, S. (2009). Number-

based visual generalisation in the honeybee. PLoS One 4, e4263. 

 Grüter, C. and Farina, W. M. (2009). The honeybee waggle dance: can we follow 

the steps? Trends in Ecology & Evolution 24, 242-247. 

 Harris, E. H., Washburn, D. A., Beran, M. J. and Sevcik, R. A. (2007). Rhesus 

monkeys (Macaca mulatta) select Arabic numerals or visual quantities corresponding to a 

number of sequentially completed maze trials. Animal Learning & Behavior 35, 53-59. 



45 
 

 Hassenstein, B. (1974). Otto Koehler--his life and his work. Zeitschrift fur 

Tierpsychologie 35, 449-464. 

 Hassmann, M. (1952). Vom Erlernen unbenannter Anzahlen bei Eichhörnchen 

(Sciurus vulgaris). Zeitschrift fur Tierpsychologie 9, 294-321. 

 Houston, S. D., Mazariegos, O. F. C. and Stuart, D. (2001). The decipherment of 

ancient maya writing: University of Oklahoma Press. 

 Howard, S. R., Avarguès-Weber, A., Garcia, J. and Dyer, A. G. (2017a). Free-

flying honeybees extrapolate relational size rules to sort successively visited artificial flowers 

in a realistic foraging situation. Animal Cognition 20, 627-638. 

 Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Stuart-Fox, D. and Dyer, A. 

G. (2017b). Perception of contextual size illusions by honeybees in restricted and unrestricted 

viewing conditions. Proceedings of the Royal Society of London B: Biological Sciences 284, 

20172278. 

Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition. Frontiers in human 

neuroscience, 5, 150. 

 Jevons, W. S. (1871). The power of numerical discrimination. Nature 3, 281-282. 

 Joseph, G. (2008). A Brief History of Zero. Iranian Journal for the History of 

Science 6, 37-48. 

 Joseph, G. G. (2011). The crest of the peacock: Non-European roots of mathematics: 

Princeton University Press. 

 Kaufman, E. L., Lord, M. W., Reese, T. W. and Volkmann, J. (1949). The 

discrimination of visual number. The American Journal of Psychology 62, 498-525. 

 Kilian, A., Yaman, S., von Fersen, L. and Güntürkün, O. (2003). A bottlenose 

dolphin discriminates visual stimuli differing in numerosity. Animal Learning & Behavior 31, 

133-142. 



46 
 

 Krajcsi, A., Szabó, E. and Mórocz, I. Á. (2013). Subitizing is sensitive to the 

arrangement of objects. Experimental Psychology 60, 227-234. 

 Lazareva, O. F. and Wasserman, E. A. (2017). Categories and concepts in animals. 

In J. Stein (Ed.), Reference module in neuroscience and biobehavioral psychology (pp. 1–29). 

New York, NY: Elsevier. 

 Lenneberg, E. H. (1971). Of language knowledge, apes, and brains. Journal of 

Psycholinguistic Research 1, 1-29. 

 McCrink, K. and Wynn, K. (2004). Large-number addition and subtraction by 9-

month-old infants. Psychological Science 15, 776-781. 

 Menzel, R., Fuchs, J., Nadler, L., Weiss, B., Kumbischinski, N., Adebiyi, D., 

Hartfil, S. and Greggers, U. (2010). Dominance of the odometer over serial landmark 

learning in honeybee navigation. Naturwissenschaften 97, 763-767. 

 Merritt, D. J., Rugani, R. and Brannon, E. M. (2009). Empty sets as part of the 

numerical continuum: Conceptual precursors to the zero concept in rhesus monkeys. Journal 

of Experimental Psychology: General 138, 258-269. 

 Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on 

our capacity for processing information. Psychological Review 63, 81-97. 

 Murofushi, K. (1997). Numerical matching behavior by a chimpanzee (Pan 

troglodytes): Subitizing and analogue magnitude estimation. Japanese Psychological 

Research 39, 140-153. 

 Nelson, X. J. and Jackson, R. R. (2012). The role of numerical competence in a 

specialized predatory strategy of an araneophagic spider. Animal Cognition 15, 699-710. 

 Nieder, A. (2005). Counting on neurons: the neurobiology of numerical competence. 

Nature Reviews Neuroscience 6, 177-190. 



47 
 

 Nieder, A. (2012). Supramodal numerosity selectivity of neurons in primate 

prefrontal and posterior parietal cortices. Proceedings of the National Academy of Sciences 

109, 11860-11865. 

 Nieder, A. (2016a). The neuronal code for number. Nature Reviews Neuroscience 17, 

366-382. 

 Nieder, A. (2016b). Representing Something Out of Nothing: The Dawning of Zero. 

Trends in Cognitive Sciences 20, 830-842. 

 Nieder, A. (2017). Number faculty is rooted in our biological heritage. Trends in 

Cognitive Sciences 21, 403-404. 

 Nieder, A., Diester, I. and Tudusciuc, O. (2006). Temporal and spatial enumeration 

processes in the primate parietal cortex. Science 313, 1431-1435. 

 Nieder, A., Freedman, D. J. and Miller, E. K. (2002). Representation of the 

quantity of visual items in the primate prefrontal cortex. Science 297, 1708-1711. 

 Nieder, A. and Merten, K. (2007). A labeled-line code for small and large 

numerosities in the monkey prefrontal cortex. Journal of Neuroscience 27, 5986-5993. 

 Nieder, A. and Miller, E. K. (2003). Coding of cognitive magnitude: Compressed 

scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149-157. 

 Nieder, A. and Miller, E. K. (2004). A parieto-frontal network for visual numerical 

information in the monkey. Proceedings of the National Academy of Sciences 101, 7457-

7462. 

 Núñez, R. E. (2017a). Is there really an evolved capacity for number? Trends in 

Cognitive Sciences 21, 409-424. 

 Núñez, R. E. (2017b). Number–biological enculturation beyond natural selection. 

Trends in Cognitive Sciences 21, 404-405. 



48 
 

 Pepperberg, I. M. (1987). Evidence for conceptual quantitative abilities in the 

African grey parrot: Labeling of cardinal sets. Ethology 75, 37-61. 

 Pepperberg, I. M. (1994). Numerical competence in an African gray parrot 

(Psittacus erithacus). Journal of Comparative Psychology 108, 36-44. 

 Pepperberg, I. M. (2006a). Grey parrot (Psittacus erithacus) numerical abilities: 

Addition and further experiments on a zero-like concept. Journal of Comparative Psychology 

120, 1-11. 

 Pepperberg, I. M. (2006b). Grey parrot numerical competence: a review. Animal 

Cognition 9, 377-391. 

 Pepperberg, I. M. (2012). Further evidence for addition and numerical competence 

by a Grey parrot (Psittacus erithacus). Animal Cognition 15, 711-717. 

 Pepperberg, I. M. and Carey, S. (2012). Grey parrot number acquisition: The 

inference of cardinal value from ordinal position on the numeral list. Cognition 125, 219-232. 

 Pepperberg, I. M. and Gordon, J. D. (2005). Number comprehension by a grey 

parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative 

Psychology 119, 197-209. 

 Piazza, M., Mechelli, A., Butterworth, B. and Price, C. J. (2002). Are subitizing 

and counting implemented as separate or functionally overlapping processes? Neuroimage 

15, 435-446. 

 Pica, P., Lemer, C., Izard, V. and Dehaene, S. (2004). Exact and approximate 

arithmetic in an Amazonian indigene group. Science 306, 499-503. 

 Ramirez-Cardenas, A., Moskaleva, M. and Nieder, A. (2016). Neuronal 

representation of numerosity zero in the primate parieto-frontal number network. Current 

Biology 26, 1285-1294. 



49 
 

 Ravi, S., Garcia, J. E., Wang, C. and Dyer, A. G. (2016). The answer is blowing in 

the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making 

complex foraging decisions. Journal of Experimental Biology 219, 3465-3472. 

 Riggs, K. J., Ferrand, L., Lancelin, D., Fryziel, L., Dumur, G. and Simpson, A. 

(2006). Subitizing in tactile perception. Psychological Science 17, 271-272. 

 Riley, J. R., Greggers, U., Smith, A. D., Reynolds, D. R. and Menzel, R. (2005). 

The flight paths of honeybees recruited by the waggle dance. Nature 435, 205-207. 

 Rodríguez, R. L., Briceño, R., Briceno-Aguilar, E. and Höbel, G. (2015). Nephila 

clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense 

of numerosity in an orb-weaver. Animal Cognition 18, 307-314. 

 Saaty, T. L. and Ozdemir, M. S. (2003). Why the magic number seven plus or 

minus two. Mathematical and Computer Modelling 38, 233-244. 

 Sawamura, H., Shima, K. and Tanji, J. (2002). Numerical representation for action 

in the parietal cortex of the monkey. Nature 415, 918-922. 

 Seguin, D. and Gerlai, R. (2017). Zebrafish prefer larger to smaller shoals: analysis 

of quantity estimation in a genetically tractable model organism. Animal Cognition 20, 813-

821. 

 Simons, D. and Langheinrich, D. (1982). What is magic about the magical number 

four? Psychological Research 44, 283-294. 

 Skorupski, P., MaBouDi, H., Dona, H. S. G. and Chittka, L. (2018). Counting 

insects. Philosophical Transactions of the Royal Society B 373, 20160513. 

 Srinivasan, M. V. (2010). Honey bees as a model for vision, perception, and 

cognition. Annual Review of Entomology 55, 267-284. 

 Srinivasan, M. V. (2014). Going with the flow: a brief history of the study of the 

honeybee’s navigational ‘odometer’. Journal of Comparative Physiology A 200, 563-573. 



50 
 

 Srinivasan, M. V., Zhang, S., Altwein, M. and Tautz, J. (2000). Honeybee 

Navigation: Nature and Calibration of the "Odometer". Science 287, 851-853. 

 Starkey, P. and Cooper Jr, R. G. (1995). The development of subitizing in young 

children. British Journal of Developmental Psychology 13, 399-420. 

 Starkey, P. and Cooper, R. G. (1980). Perception of numbers by human infants. 

Science 210, 1033-1035. 

 Straub, R., Seidenberg, M., Bever, T. G. and Terrace, H. (1979). Serial learning in 

the pigeon. Journal of the Experimental Analysis of Behavior 32, 137-148. 

 Strauss, M. S. and Curtis, L. E. (1981). Infant perception of numerosity. Child 

Development 52, 1146-1152. 

 Sulkowski, G. M. and Hauser, M. D. (2001). Can rhesus monkeys spontaneously 

subtract? Cognition 79, 239-262. 

 Swartz, K. B., Chen, S. and Terrace, H. (1991). Serial learning by rhesus monkeys: 

I. Acquisition and retention of multiple four-item lists. Journal of Experimental Psychology: 

Animal Behavior Processes 17, 396. 

 Terrace, H. S., Son, L. K. and Brannon, E. M. (2003). Serial expertise of rhesus 

macaques. Psychological Science 14, 66-73. 

 Thompson, R. F., Mayers, K. S., Robertson, R. T. and Patterson, C. J. (1970). 

Number coding in association cortex of the cat. Science 168, 271-273. 

 Tomonaga, M. and Matsuzawa, T. (2002). Enumeration of briefly presented items 

by the chimpanzee (Pan troglodytes) and humans (Homo sapiens). Animal Learning & 

Behavior 30, 143-157. 

 Trick, L. M. and Pylyshyn, Z. W. (1994). Why are small and large numbers 

enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review 

101, 80-102. 



51 
 

 Tsutsumi, S., Ushitani, T. and Fujita, K. (2011). Arithmetic-Like Reasoning in 

Wild Vervet Monkeys: A Demonstration of Cost-Benefit Calculation in Foraging. 

International Journal of Zoology 2011, 1-11. 

 Tudusciuc, O. and Nieder, A. (2007). Neuronal population coding of continuous and 

discrete quantity in the primate posterior parietal cortex. Proceedings of the National 

Academy of Sciences 104, 14513-14518. 

 Viswanathan, P. and Nieder, A. (2013). Neuronal correlates of a visual “sense of 

number” in primate parietal and prefrontal cortices. Proceedings of the National Academy of 

Sciences 110, 11187-11192. 

 Von Frisch, K. (1914). Der farbensinn und formensinn der biene: Zool Jb Physiol 

37:1–238. 

 Von Frisch, K. (1967). The dance language and orientation of bees: Belknap Press of 

Harvard University Press, Cambridge, (Massachusetts)/Oxford University Press, London. 

 Washburn, D. A. and Rumbaugh, D. M. (1991). Ordinal judgments of numerical 

symbols by macaques (Macaca mulatta). Psychological Science 2, 190-193. 

 Weber, E. H. (1978). EH Weber: The sense of touch: Academic Pr. 

 Whalen, J., Gallistel, C. and Gelman, R. (1999). Nonverbal counting in humans: 

The psychophysics of number representation. Psychological Science 10, 130-137. 

 Wynn, K. (1992). Addition and subtraction by human infants. Nature 358, 749-750. 

 Wynn, K. (1998). Psychological foundations of number: Numerical competence in 

human infants. Trends in Cognitive Sciences 2, 296-303. 

 Xia, L., Emmerton, J., Siemann, M. and Delius, J. D. (2001). Pigeons (Columba 

livia) learn to link numerosities with symbols. Journal of Comparative Psychology 115, 83-

91. 



52 
 

 Xia, L., Siemann, M. and Delius, J. D. (2000). Matching of numerical symbols with 

number of responses by pigeons. Animal Cognition 3, 35-43. 

 Zhang, S. (2006). Learning of abstract concepts and rules by the honeybee. 

International Journal of Comparative Psychology 19, 318-341. 

 Zhang, S., Bartsch, K. and Srinivasan, M. (1996). Maze learning by honeybees. 

Neurobiology of Learning and Memory 66, 267-282. 

 Zhang, S., Mizutani, A. and Srinivasan, M. V. (2000). Maze navigation by 

honeybees: learning path regularity. Learning & Memory 7, 363-374. 

 

 



53 
 

Chapter 2 
 

Title: Surpassing the subitizing threshold: Appetitive-aversive conditioning improves 

discrimination of numerosities in honeybees 

Running title: Surpassing the subitizing threshold 

Scarlett R Howard*
1
, Aurore Avarguès-Weber

2
, Jair Garcia

1
,
 
Andrew Greentree

3
, and Adrian 

G Dyer
1,4 

1 
Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT 

University, Melbourne, VIC, Australia 

2 
Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), 

Université de Toulouse, CNRS, UPS, Toulouse, France 

3 
ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT 

University, Melbourne, VIC, Australia 

4 
Department of Physiology, Monash University, Clayton, VIC, Australia 

*Corresponding author: scarlett.howard@rmit.edu.au 

Keywords: conditioning, counting, number, numerical, quantity discrimination, subitizing. 

A version of this chapter has been submitted to a journal: 

Howard, S.R., Avarguès-Weber, A., Garcia, J.E., Greentree, A.D. and Dyer, A.G., 

(Submitted). Surpassing the subitizing threshold: Appetitive-aversive conditioning improves 

quantity discrimination in honeybees.



54 
 

Summary statement 

We show that appetitive-aversive differential conditioning enables bees to learn to 

discriminate quantities of 1- 10 elements, whereas classical appetitive conditioning does not 

allow bees to learn the same task.  

Abstract 

Animals including humans, fish, and honeybees have demonstrated a quantity discrimination 

threshold at four objects, often known as subitizing elements. Discrimination between 

numerosities at or above the subitizing range is considered a complex capacity. In the current 

study, we trained and tested two groups of bees on their ability to differentiate between 

quantities (4 vs. 5 through to 4 vs. 8) when trained with different conditioning procedures. 

Bees trained with appetitive (reward) differential conditioning demonstrated no significant 

learning of this task, and limited discrimination above the subitizing range. In contrast, bees 

trained using appetitive-aversive (reward-aversion) differential conditioning demonstrated 

significant learning and subsequent discrimination of all tested comparisons from 4 vs. 5 to 4 

vs. 8. Our results show conditioning procedure is vital to performance on numerically 

challenging tasks, and may inform future research on numerical abilities in other animals. 

Introduction 

Quantity discrimination has been explored in a number of species through different methods 

(e.g. spontaneous choice or training on quantities; limited vs. extensive training), which 

sometimes yield different results (Agrillo and Bisazza, 2014; DeWind and Brannon, 2012; 

Gatto et al., 2017; Gazes et al., 2018; Miletto Petrazzini et al., 2018). The ability to 

discriminate quantities varies across different species, with insects such as mealworm beetles 

able to discriminate ratios (calculated by dividing the lower number by the higher number) of 

0.25 – 0.33 (Carazo et al., 2009). Species which can discriminate the more difficult ratio of 
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0.80 include monkeys (Addessi et al., 2008; Gazes et al., 2018), jungle crows (Bogale et al., 

2011), ponies (Gabor and Gerken, 2018), Clark’s nutcrackers (Tornick et al., 2015), and 

dolphins (Jaakkola et al., 2005). Somme animals including elephants (Irie-Sugimoto et al., 

2009), Great apes (Hanus and Call, 2007), Mexican jays (Kelly, 2016), Western scrub jays 

(Kelly, 2016), and guppies (Bisazza et al., 2014; Lucon-Xiccato et al., 2017) can discriminate 

ratios over 0.80, an impressive feat. Previous studies on quantity discrimination suggest some 

variation between low quantities (four and less) and high quantities (four and greater). For 

example, frogs (Bombina orientalis) are able to discriminate ratios of 0.67 with four items or 

less but only ratios of 0.5 with four or more items (Stancher et al., 2015). Discrimination 

ability can also vary with different number comparisons of the same ratio, for example North 

Island robins can discriminate a ratio of 0.875 when comparing the quantities of seven vs. 

eight, but not with the quantities of 14 vs. 16, despite both comparisons being at the same 

ratio (Garland et al., 2012). 

Several species, including humans, exhibit a numerical competency threshold at four (Agrillo 

et al., 2008; Cowan, 2010; Gómez-Laplaza and Gerlai, 2011a; Jevons, 1871; Kaufman et al., 

1949; Simons and Langheinrich, 1982; Trick and Pylyshyn, 1994). This threshold is observed 

in visual object and tactile stimulation estimation in humans (Dehaene and Cohen, 1994; 

Jevons, 1871; Piazza et al., 2002; Riggs et al., 2006; Starkey and Cooper Jr, 1995), quantity 

discrimination in fish (Agrillo et al., 2008; Gómez-Laplaza and Gerlai, 2011a; Seguin and 

Gerlai, 2017), as well as counting and number-generalisation in honeybees (Boysen, 1988; 

Dacke and Srinivasan, 2008; Gross et al., 2009). The threshold phenomenon is observed 

across a diverse range of species and may be due to the hypothesis that ‘counting’ has two 

mechanisms: ‘subitizing’ (accurately and quickly recognising four or less objects) and ‘true 

counting’ (the process of sequentially incrementing the number of identified elements, 

theoretically without bound; Agrillo et al., 2008; Kaufman et al., 1949; Piazza et al., 2002; 
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Tomonaga and Matsuzawa, 2002; Trick and Pylyshyn, 1994). Some non-human animal 

species have been shown to surpass this threshold limit of four. For example, the ability of 

mosquitofish to discriminate between two shoals (groups of conspecifics) consisting of more 

than four individuals was shown to improve as the numerical distance between them 

increased. The ability to discriminate between two shoals consisting of four or more fish was 

found only with ratios of 0.50 or smaller (4 vs. 8, 8 vs. 16 and 4 vs. 10; Agrillo et al., 2008). 

It appears that Weber’s Law may have an impact on counting and estimation. Weber’s Law 

describes how sensory systems distinguish between two stimulus magnitudes based on their 

proportional difference (Akre and Johnsen, 2014; Fechner, 1965; Weber, 1978). Also known 

as proportional processing, Weber’s Law is used by a number of animals to detect changes in 

sound, light, odours, electrical fields, pressure, number, and time (Akre and Johnsen, 2014). 

When animals adhere to Weber’s law, they compare stimuli on the basis of proportional 

differences. This is also the case in angelfish, where Weber’s Law plays a role in their ability 

to discriminate between numbers four and above. Angelfish can discriminate between 

‘higher-level’ numbers (four and higher) at a ratio of 0.50 (Gómez-Laplaza and Gerlai, 

2011a). Recent studies suggest that numerical processing may be flexible in animals when 

using different training and/or testing procedures (Bisazza et al., 2014; Lucon-Xiccato et al., 

2017); thus comparative studies of different animals can provide important insights into 

general principles of numeric processing. 

Honeybees have exhibited a numerical threshold at four. Studies testing the ability of bees to 

count landmarks in either open natural environments or controlled laboratory conditions both 

found that bees were able to reliably count up to four landmarks, but failed at counting more 

than four landmarks, in order to find a source of food (Chittka and Geiger, 1995; Dacke and 

Srinivasan, 2008). In a study using a delayed-matching-to-sample (DMTS) procedure in a Y-

maze, bees were able to accurately match specific quantities of up to three elements 
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irrespective of shape, colour, and pattern of the objects to receive a reward of sucrose, but 

were unable to do this with higher numbers (Gross et al., 2009). Gross et al. (2009) showed a 

discrimination ability of 2 vs. 3 and 3 vs. 4 but not 4 vs. 5 or 4 vs. 6. These studies were 

important steps in determining that bees could both count and match numbers, and that 

numerical ability was a biologically meaningful skill for either navigation (Chittka and 

Geiger, 1995; Dacke and Srinivasan, 2008; Menzel et al., 2010), or counting the numbers of 

flowers in a flower patch during foraging (Gross et al., 2009). 

While many studies have explored the numerical abilities of vertebrates, relatively little 

research has been done on the numerical competency of invertebrates (Carazo et al., 2009; 

Dacke and Srinivasan, 2008), even in well-studied model species, such as the honeybee, 

which has demonstrated a limited numerical ability when using classical conditioning. The 

previous studies on number matching and counting in honeybees used classic appetitive or 

appetitive-differential conditioning frameworks, where bees received a reward of sucrose for 

a correct choice and no outcome for an incorrect choice (Chittka and Geiger, 1995; Dacke 

and Srinivasan, 2008; Gross et al., 2009). Relatively recent advancements in training protocol 

have shown that when bees are trained on a perceptually difficult colour task, performance 

significantly increases when appetitive-aversive differential conditioning is used in training 

compared to appetitive-differential conditioning (Avarguès-Weber et al., 2010; Dyer, 2012). 

Appetitive-aversive differential conditioning is where a bee receives a reward of sucrose for a 

correct choice and an aversive outcome of quinine for an incorrect choice, whereas 

appetitive-differential conditioning rewards a bee for a correct choice and gives no outcome 

for an incorrect choice. When a colour discrimination task was easy to learn, the conditioning 

procedure had no significant effect on performance during training or in unconditioned tests, 

however, when the task was perceptually challenging, only bees which were trained with 

appetitive-aversive conditioning demonstrated learning in tests (Avarguès-Weber et al., 2010; 
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Dyer, 2012). There is evidence that including a distractor associated with an aversive 

outcome also improves the strength of the association between correct option and the reward 

in vertebrates (Rescorla and Wagner, 1972), which is potentially linked to attentional 

resources (Avarguès-Weber et al., 2010; Dyer, 2012; Giurfa, 2004; Rescorla and Wagner, 

1972). Recent work on spatial visual processing in honeybees shows that learning and 

behavioural outcomes can be significantly influenced by the conditioning procedure 

employed during training (Dyer and Griffiths, 2012; Dyer et al., 2005; Giurfa et al., 1999; 

Howard et al., 2017; Stach and Giurfa, 2005), and so bees have become an important model 

species for understanding comparative visual perception and cognition. 

Recently honeybees were shown to learn the rules of ‘less than’ and ‘greater than’ and apply 

these rules to the novel numerosities of zero and five using appetitive-aversive differential 

conditioning (Howard et al., 2018). Bees demonstrated an ability to learn to discriminate 

between all combinations of the numbers zero up to six during training in one of the 

experiments, a discrimination ability which has not been previously shown in honeybees 

(Howard et al., 2018). This result is likely a due to the use of appetitive-aversive differential 

conditioning during training and thus in this study we formally test and compare the 

numerical discrimination ability of bees when trained with appetitive-differential 

conditioning or appetitive-aversive differential conditioning. We will determine whether 

numerical discrimination is improved with different conditioning procedures, and thus 

provide some insights into why different quantity discrimination results are observed across a 

range of animal taxa. 
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Materials and Methods 

Study design: 

We aimed to determine if there was a difference in quantity discrimination performance 

between bees which were trained using appetitive-differential conditioning (Group 1) 

compared to bees trained with appetitive-aversive differential conditioning (Group 2). To do 

this, we trained bees to choose four elements when presented against the quantities one to ten. 

We then tested bees on their ability to discriminate between quantities of four vs. five, six, 

seven, and eight. 

Study species: 

We used 22 free-flying honeybees (Apis mellifera) foragers for this experiment. All bees 

were marked with a coloured dot on the thorax to identify individuals. A gravity feeder was 

set up within 20 meters of the experiment to provide 10 – 30 % sucrose which attracted a 

regular number of bees for use in experiments. Bees were randomly assigned to test groups. 

Apparatus: 

Individual honeybees were trained to enter a Y-maze (Fig. 1; as described in Avarguès-

Weber et al., 2011). Each bee had to fly through an entrance hole to enter an initial chamber 

and then fly through another hole into the decision chamber where the bee would be 

presented with two different options in each arm of the chamber, one correct and one 

incorrect (Fig. 1). 

Stimuli were presented on grey backgrounds located 5 cm away from the decision lines to 

ensure each element was above the minimum resolution threshold for free-flying honeybees 

(Srinivasan and Lehrer, 1988). During training in Group 1, a 10 μL drop of 50 % sucrose 

solution (appetitive/rewarding outcome) was paired with a correct choice and a 10 μL drop of 
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water (neutral unreinforced outcome) was paired with the incorrect choice (appetitive-

differential conditioning). During training in Group 2, a 10 μL drop of 50 % sucrose solution 

(appetitive/rewarding outcome) was paired with a correct choice and a 60 mM quinine 

solution (aversive outcome) was paired with an incorrect choice (appetitive-aversive 

differential conditioning). Each stimulus had a transparent landing pole located below it 

which held either the drop of sucrose, quinine, or water. Poles were replaced when touched 

by a bee and cleaned with 20 % ethanol then water and dried to exclude olfactory cues. The 

side of correct and incorrect stimuli were randomly changed between choices. If a bee made 

an incorrect choice and started to imbibe the quinine; it was allowed to fly to the pole in front 

of the correct stimulus to collect sucrose to maintain motivation; but only the first choice was 

recorded for statistical analysis following standard procedures (Avarguès-Weber et al., 2015). 

Once the bee was finished imbibing the sucrose, it was allowed to fly back to the hive if 

satiated or make another decision by re-entering the maze from behind an opaque screen. 

During the non-reinforced tests, a drop of water was placed on each of the poles placed in 

front of the stimuli. Ten choices (touches of the poles) were recorded for each of the four 

tests to enable statistical comparisons, consistent with standard testing procedures for 

honeybees (Avarguès-Weber et al., 2015; Howard et al., 2018; Howard et al., 2017). 

Stimuli: 

Each stimulus was a 6 x 6 cm white square card containing a number of black elements (Fig. 

2), and was covered with 80 µm Lowell laminate. Elements in the learning phase could be 

one of five shapes: square, diamond, circle, triangle, or star. Randomised shapes were used 

for the four tests to ensure patterns and shapes were unfamiliar to bees during tests (Fig. 3A). 

Stimuli ranged from having one to ten elements, and no stimulus was shown in more than a 

single bout (return to hive to offload sucrose; approximately 2 – 5 choices). 
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There were 3 sets of stimuli consisting of (i) equal overall surface area (set 1; n = 164; 

surface area = 10 ± 0.3 cm
2
), (ii) consistently equal element size (set 2; n = 160), or (iii) 

novel randomised shapes (set 3; n = 20; Fig. 2). There were 344 stimuli in total; and 

furthermore stimuli were rotated to one of four orientation positions determined randomly by 

dice roles to provide training and testing sets with over 1000 options.  

Training procedure: 

Bees were incrementally trained to enter the Y-maze and both arms of the apparatus over 30 

– 60 minute periods. Once each bee was able to fly into the entrance hole and the hole that 

led to the decision chamber and could find the poles in both Y-maze arms, the experiment 

began. 

Each bee completed either 50 appetitive-differential conditioning choices (Group 1) or 50 

appetitive-aversive differential conditioning choices (Group 2). Bees in group 1 were 

rewarded with sucrose for a choice of four elements and received no outcome (a drop of 

water on pole) for an incorrect choice of any other number. Bees in group 2 were rewarded 

with sucrose for a choice of four elements and received an aversive outcome, quinine, for a 

choice of any other number of elements ranging from one to ten (excluding four; Fig. 3A). 

Testing procedure: 

Once bees had completed the training, there were four tests of 10 unreinforced choices each 

for bees in either group. Between each of the four tests there were 10 refresher reinforced 

choices to maintain bee motivation (same procedure as the learning phase). The sequence of 

these tests was randomised. The tests were non-reinforced (no reward or punishment) and 

used a 10 μL drop of water (neutral outcome) instead of quinine or sucrose to motivate bees 

to land. Bees were shown comparisons of four vs. five, four vs. six, four vs. seven and four 
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vs. eight elements (Fig. 3A), these tests were comparing quantity ratio discriminations of 

0.80, 0.67, 0.57 and 0.50, respectively. 

Statistical analysis: 

To test for the effect of training on bee performance (number of correct choices) in both 

groups, data from the learning phase of 50 choices were analysed with a generalized linear 

mixed-effect model (GLMM) with a binomial distribution using the ‘glmer’ package within 

the R environment for statistical analysis. We fitted a full model with trial number as a 

continuous predictor, and subject as a random factor to account for repeated choices of 

individual bees.  

To determine whether bees were able to learn to choose four elements in tests, we analysed 

the test data by employing a GLMM including only the intercept term as fixed factor and 

subject as a random term. The proportion of ‘correct’ choices (MPCC) recorded from the 

tests were used as response variable in the model. The Wald statistic (z) tested if the mean 

proportion of correct choices recorded from the learning test, represented by the coefficient of 

the intercept term, was significantly different from chance expectation, i.e. H0: MPCC = 0.5. 

All analyses were performed within the R environment for statistical analysis. 

Results 

Training phase: 

In this experiment, bees were trained to choose four elements, when presented against 

quantities ranging from one to ten elements. Two groups of bees were trained for 50 trials of 

either appetitive-differential conditioning (Group 1), or appetitive-aversive differential 

conditioning (Group 2) using sets of stimuli with either equal overall surface area (set 1) or 

consistently equal element size (set 2; Fig. 3A). Only bees trained using appetitive-aversive 
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differential conditioning demonstrated significant learning over the period of 50 trials 

(statistical test: generalized linear mixed-effect model (GLMM) with a binomial distribution 

with trial number as a continuous predictor, and subject as a random factor to account for 

repeated choices of individual bees; Group 1: z = 0.102; P = 0.918; n = 10; Fig. 3B; Group 2: 

z = 5.48; P < 0.001; n = 12; Fig. 3C). 

Testing phase 

After the acquisition phase, honeybees were evaluated on their discrimination ability between 

four elements and higher numbers in four tests (4 vs. 5, 4 vs. 6, 4 vs. 7 and 4 vs. 8), for ten 

unreinforced choices per comparison using randomly-shaped novel elements (set 3), 

presented in a random order. Bees trained using an appetitive only procedure were unable to 

differentiate between 4 vs. 5 (statistical test: logistic regression with individual as random 

term tested differences between observed proportion of bee choices and chance level, y = 0.5; 

51.0 ± 3.8 % (mean ± s.e.m.); z = 0.200; P = 0.841), 4 vs. 6 (50.0 ± 4.90 %; z = 0.000; P = 

1.000) or 4 vs. 8 (54.0 ± 5.00 %; z = 0.600; P = 0.549) at a level significantly different from 

chance, except during the test of 4 vs. 7 (62.0 ± 3.60 %; z = 2.18; P = 0.029; Fig. 3D). 

Because the bees were unable to discriminate 4 vs. 8, it is likely that the 4 vs. 7 

discrimination is a statistical anomaly, although more studies are required to confirm this 

hypothesis. In contrast, bees trained using appetitive-aversive differential conditioning were 

able to discriminate between  4 vs. 5 (mean = 59.2 ± 3.10 %; z = 2.00; P = 0.046), 4 vs. 6 

(mean = 60.8 ± 3.80 %; z = 2.35; P = 0.019), 4 vs. 7 (mean = 63.3 ± 3.30 %; z = 2.89; P = 

0.004), and 4 vs. 8 (mean = 64.2 ± 3.40 %; z = 3.06; P = 0.002; Fig. 3E), all at a level 

significantly different to chance expectation. Thus our results show that bees perform 

quantity discrimination at a level significantly different to chance expectation when trained 

using appetitive-aversive differential conditioning, but not with appetitive-differential 

conditioning. 
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Discussion 

Our results show that numerical discrimination above the subitising range is possible with 

appetitive-aversive differential conditioning. Bees trained using this method were able to 

discriminate quantities over four at a ratio of 0.80 (4 vs. 5), a finer discrimination than what 

was previously observed in honeybees considering appetitive conditioning (Gross et al., 

2009). There is some evidence that bees trained with appetitive-differential conditioning may 

be able to discriminate ratios of 0.57 (4 vs. 7) above the threshold of four objects, however 

this is still an open question as these bees failed at discriminating the less challenging ratio of 

0.50 (4 vs. 8). Honeybees are currently at a level of quantity discrimination observed in 

species such as African grey parrots (Al Aïn et al., 2009), capuchin monkeys (Addessi et al., 

2008; Gazes et al., 2018), squirrel monkeys (Gazes et al., 2018), dolphins (Jaakkola et al., 

2005), ponies (Gabor and Gerken, 2018), jungle crows (Bogale et al., 2011), and guppies 

(Bisazza et al., 2014). The question of whether the introduction of an aversive outcome for an 

incorrect choice improves performance has been asked for colour discrimination tasks in bees 

(Avarguès-Weber et al., 2010; Chittka et al., 2003), but this is the first time appetitive and 

appetitive-aversive differential conditioning have been directly compared for a numerical 

visual task.  

A potential explanation for why bees perform better at numerosity discrimination with 

appetitive-aversive differential conditioning may be that the attentional processes are 

improved due to the presence of an aversive outcome for an incorrect choice (Avarguès-

Weber et al., 2010). When the penalty for making an incorrect decision is low there is less 

motivation to ensure performance is as accurate as possible, however, when the penalty is 

increased, there is an increase in motivation to be more accurate and thus attention may be 

modulated by conditioning procedure (Avarguès-Weber et al., 2010). By pairing the incorrect 

option with an aversive outcome, the conditioning procedure is also improving the strength of 
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the association between the rewarding outcome and the correct option, as demonstrated in 

vertebrates (Rescorla and Wagner, 1972). 

Through the possible modulation of attention, we show that previous studies on animal 

numerical ability, specifically quantity discrimination, may be underestimating the potential 

numeric ability of non-human animals. In the current study we found a difference in the 

results considering both the training and test phases of honeybee quantity discrimination 

when bees were trained with the respective procedures. Our result is supported by previous 

quantity discrimination studies that show varied results within the same species when 

different methods are employed. For example, guppies are a well-studied species for their 

quantity discrimination abilities (Agrillo et al., 2012; Bisazza et al., 2014; Gatto et al., 2017; 

Lucon-Xiccato and Dadda, 2017; Lucon-Xiccato et al., 2017; Lucon-Xiccato et al., 2015; 

Piffer et al., 2012; Piffer et al., 2013), but their discrimination ability appears dependent on 

the procedure by which they are tested (Agrillo and Bisazza, 2014). Guppies tested on 

quantity discrimination using spontaneous choice, training, extensive training, or new 

methods exhibit different limits of discrimination. Recording the spontaneous choices of 

guppies has resulted in a discrimination ability at the ratio of 0.75 for low (four and less) 

number comparisons (Piffer et al., 2012) and 0.67 for high (four and higher) number 

comparisons (Miletto Petrazzini and Agrillo, 2016), however with extensive training, this has 

been extended to 0.80 with higher numbers (Bisazza et al., 2014), and even 0.83 using a 

recently developed method (Lucon-Xiccato et al., 2017). In the current study, we also show 

that different methods yield different results and quantity discrimination abilities, thus 

perhaps non-human animals in other studies which are not as motivated to avoid incorrect 

choices may not have been pushed to their cognitive limits. Numerical processing is likely to 

be a valuable skill for animals operating successfully in complex environments (Gómez-

Laplaza and Gerlai, 2011a; Gómez-Laplaza and Gerlai, 2011b; Lucon-Xiccato et al., 2017; 
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Miletto Petrazzini and Agrillo, 2016; Nieder, 2017; Seguin and Gerlai, 2017), and we show 

that motivation, as modulated through conditioning, is critical to understanding what level of 

numerical abilities an animal demonstrates. 
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Figure 1: Y-maze apparatus set-up for the experiments. The diagram shows parts of the Y-

maze and the stimuli positions. Bees were trained to choose four elements when presented 

against the incorrect options of one – ten (excluding four).   
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Figure 2: An example subset of the stimuli used in the training (set 1; set 2) and the testing 

(set 3) phases. We provide an example of one stimulus per quantity per set. Stimuli rotational 

axis was randomized to one of four positions to further exclude low-level cues. 
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Figure 3: Graphic representation of the method and results of Group 1 and 2 training and 

testing. A) Examples of possible stimuli combinations during trials and tests. B-C) 

Performance during the training phase of 50 trials of either appetitive-differential 

conditioning (B) or appetitive-aversive differential conditioning (C). D-E) Performance 

during the unreinforced testing phases of Group 1 (D) and 2 (E). Data shown are means ± 
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s.e.m. for both groups. Broken black line at 50 % indicates chance level performance. 

Significance from chance level performance is indicated by * ≥ 0.05, ** ≥ 0.01, *** ≥ 0.001, 

NS indicates performance which was not significant from chance. 
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Abstract: 

Some vertebrates demonstrate complex numerosity concepts including addition, sequential 

ordering of numbers, or even the concept of zero, but whether an insect can develop an 

understanding for such concepts remains unknown. We trained individual bees to the 

numerical concepts of ‘greater than’ or ‘less than’ using stimuli containing 1 – 6 elemental 

features. Bees could subsequently extrapolate the concept of ‘less than’ to order zero 

numerosity at the lower end of the numerical continuum. Bees demonstrated an 

understanding that parallels animals such as an African grey parrot, non-human primates, and 

even pre-school children.  

One Sentence Summary: Honeybees use the acquired number rule of ‘less than’ to place an 

empty set at the low end of the numerical continuum. 

Main Text:  

Four stages are used to describe the acquisition of understanding zero in human history, 

psychology, animal cognition, and neurophysiology (1). First is the ability to define zero as 

nothing – the absence of a stimulus. Second is the categorical classification of zero as 

‘‘nothing’’ versus ‘‘something’’. The third stage is understanding zero as a quantity at the 

low end of the positive integer numerical continuum. The fourth, and currently designated as 

the most advanced stage of understanding zero, is the symbolic representation of zero, as with 

an Arabic number, as employed in modern mathematics and calculations (1). 

Several ancient human civilizations lacked the full understanding and importance of zero, 

leading to constraints in their numeric systems (1). Interestingly, some vertebrate animals 

have recently demonstrated a capacity to acquire and understand this numerical concept. 

Rhesus monkeys learnt that empty sets of objects occupy a position on a numerical 
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continuum (2, 3), vervet monkeys used subtraction-like reasoning to determine if food was 

present or absent (4), a chimpanzee reached near-perfect performance on zero-concept tasks 

with training (5), and an African grey parrot spontaneously labeled absent objects as 

‘none’(6). 

Honeybees have previously demonstrated the capacity to count and discriminate up to four 

objects (7-10) using classic conditioning techniques. Recent advancements in conditioning 

protocols (11) reveal that bees can acquire rule-based relational concepts (12, 13), thus 

enabling remarkable plasticity to acquire and apply seemingly advanced concepts such as size 

ordering (14). In this study, we test the capacity of honeybees to extrapolate the acquired 

concepts of ‘greater than’ and ‘less than’ as shown in primates (15, 16), and thus formally 

demonstrate that an invertebrate can understand the concept of zero numerosity.  

We designed a set of experiments to test the extent to which honeybees may understand the 

concept of zero numerosity (17). In Experiment 1, we trained bees to understand the concepts 

of ‘less than’ and ‘greater than’ using appetitive-aversive differential conditioning (11). Bees 

were trained to the respective concepts using white square stimuli containing 1 – 4 black 

elements (Figure 1A; S1; Table S1). After reaching a criterion of ≥ 80 % accuracy, bees 

demonstrated in non-reinforced tests they had learnt the concept of ‘numerically less’ (75.0 ± 

4.1 % (mean ± standard error of the mean (s.e.m.)); H0 = 50 %, z = 5.08, P < 0.001, n = 10) 

and ‘numerically greater’ (75.5 ± 3.3 %; z = 6.556, P < 0.001, n = 10) when presented with 

novel stimuli of 1 – 4 elements. Furthermore, bees were able to apply these concepts to 

determine that five elements were greater than two or three elements (‘less than’: 68.0 ± 5.0 

%; z = 3.411, P < 0.001, n = 10; ‘greater than’: 75.0 ± 3.9 %; z = 5.333, P < 0.001; n = 10). 

Interestingly, bees demonstrated an understanding that zero numerosity lies at the lower end 

of the numerical continuum by choosing an ‘empty set’ stimulus containing no elements if 

trained to ‘less than’ (64.0 ± 5.4 %; z = 2.795, P = 0.005, n = 10; Figure 1C), or choosing 
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stimuli containing elements if trained to ‘greater than’ (74.5 ± 2.6 %; z = 6.609, P < 0.001; n 

= 10; Figure 1C). 

In Experiment 2, we tested the extent to which bees may understand the quantitative concept 

of zero in comparison with other animals. As some animals find it challenging to differentiate 

between the numbers zero and one (5, 6, 18), we trained bees to ‘less than’ using stimuli 

containing 2 – 5 elements and then tested their ability to differentiate between the novel 

numerosities of one and zero (Figure 1B). After reaching a criterion of ≥ 80 % accuracy, bees 

demonstrated the learnt concept of ‘numerically less’ when presented with numbers 2 – 5 

(73.8 ± 1.9 %; z = 10.18, P < 0.001). When presented with the novel numbers of 1 vs. 0, bees 

chose the lower number of zero (63.0 ± 2.9 %; z =  4.23, P < 0.001; Figure 1D) showing an 

understanding that an empty set is lower than one, which is challenging for some other 

animals (5, 6, 18). 

When bees were presented with two conflicting pieces of information, 2 vs. 0, where the two 

element stimuli had always been rewarding in training, and zero was the correct lower 

number, bees chose the empty set at a level which was not significantly different from chance 

(56.2 ± 3.4 %; z = 1.64, P = 0.101; Figure 1D); thus, bees perceived both plausible 

alternatives as consistent with their conditioning experience. These results demonstrate that 

bees were using both an associative mechanism for choosing two elements, and a concept-

based mechanism for choosing zero numerosity. This phenomenon was also observed in a 

dolphin trained to choose the numerically less option using white dots on a black background. 

This result is explained in terms of an artifact of training set conditioning causing a bias 

towards consistently rewarding stimuli (19). 

To test if bees understood an empty set quantitatively along the numerical continuum, we 

evaluated numerical distance effects, where accuracy of performance potentially improves as 
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the difference in magnitude between two respective numbers increases (1). In Experiment 3, 

we trained and tested bees on the ‘less than’ concept using numbers 0 – 6. If bees considered 

zero numerosity as a number along the numerical continuum, we would expect accuracy of 

decisions to be the greatest with 0 vs. 6 and poorer for lower numbers vs. zero numerosity. 

Figure 2A photographically shows that bee vision, as described in (22), is able to easily view 

our stimuli. After reaching a criterion of ≥ 80 % accuracy during training, bees demonstrated 

in tests that they could discriminate an empty set from numbers 1 – 6 accurately (ESM 1; 

Figure 2B). While bees could accurately discriminate all numbers from zero numerosity, 

there was a significant effect of numerical distance on accuracy (Figure 2B). Bees were more 

accurate when numbers were numerically more distant (0 vs. 5 and 0 vs. 6) than when 

numerically closer (0 vs. 1), showing bees are impacted by number magnitude and thus 

exhibit numerical distance effects.  

An alternative explanation for our results could be that bees have a preference for the novel 

presentation of an empty set stimulus. However, control experiments showed that the bees’ 

understanding of zero belonging at the lower end of the numerical continuum was rule-based, 

and not driven by a novel preference (ESM 2; Figure S2). The spatial frequencies of stimuli 

are also ruled out as a potential explanation for results (ESM 1; Table S1). We additionally 

conducted further control experiments to exclude bees learning to match pairs of numbers 

during training (ESM 3; Figure S2).  

Our findings show that honeybees can learn and apply the concepts of ‘greater than’ and ‘less 

than’ to interpret a blank stimulus as representing the conceptual number of zero and place 

zero in relation to other numerical values. Bees thus perform at a consistent level to that of 

non-human primates by understanding that zero is lower than one (5).  
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An open question remains as to whether such advanced numerical understandings may be 

widespread across many animals that deal with complexity in their environments, or if our 

findings are the result of independent evolution in honeybees. Recent comparative studies of 

primate and crow brains found that similar levels of numeric processing are facilitated by 

very different brain structures, suggesting independent evolution of numeric processing (20, 

21). By demonstrating than an insect, with a different brain structure from primates and birds, 

can understand the concept of zero, it would be of high value to consider such capacities in 

other animals. 
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Fig. 1. Graphic representation of the method and results of Experiment 1 and 2. A-B) 

Examples of possible stimuli combinations during trials and tests in Experiments 1 and 2. C-

D) Performance during the unreinforced testing phases during Experiment 1 and Experiment 

2. Data shown are means ± s.e.m. for both treatment groups (Bees trained to ‘less than’ are 

shown in dark blue, bees trained to ‘greater than’ are shown in turquoise). Stimuli above the 

columns represent the choices for those stimuli in the data. In Experiment 1 the conflict test 

evaluating the bee’s concept of zero, data shown for the ‘less than’ group (n = 10) are choices 
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for zero, and data shown for the ‘greater than’ (n = 10) group are choices for stimuli 

containing elements. In the transfer test to a higher number, data shown for bees trained to 

‘less than’ are choices for a lower number, and for bees trained to ‘greater than’, data shown 

are choices for the higher number of five. In Experiment 2 (n = 25) the conflict and transfer 

tests show the bee’s choices for zero. Broken black line at 50 % indicates chance level 

performance. Significance from chance level performance is indicated by * ≥ 0.05, ** ≥ 0.01, 

*** ≥ 0.001.  
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Fig. 2. Photographic representation of stimuli and results from Experiment 3. A) 

Representation of honeybee spatial vision when viewing stimuli of either zero or one (22). B) 

Honeybee performance during Experiment 3 testing the behavioural effects of numerical 
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distance of numerosity zero. Data shown are means ± s.e.m. for the choice of the zero stimuli. 

Broken black line at 50 % indicates chance level performance. Significance from chance 

level performance and from other tests is indicated by * ≥ 0.05, ** ≥ 0.01, *** ≥ 0.001, non-

significance is indicated by NS. 
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Materials and Methods 

Experimental Design 

The objective of this study was to determine if bees could learn the concepts of ‘greater 

than’ and ‘less than’ and then extrapolate these acquired rules to the novel number of zero. 

This enabled us to determine if, and to what extent, bees may understand the concept of zero. 

A set of five experiments were designed to test: i) whether bees could extrapolate the learnt 

rules of ‘greater than’ and ‘less than’ to zero numerosity and five elemental features 

(Experiment 1); (ii) if bees understood that zero elements was less than one elemental feature 

(Experiment 2); (iii) if bees displayed number magnitude effects with zero numerosity 

(Experiment 3); (iv) whether bees had a preference for choosing the zero stimulus which 

lacked any elements (Experiment 4); and (v) whether bees could replicate the results of 

Experiment 1 using a completely novel pair of numbers during the testing phase. 

 

General Procedure 

Study site and species: 

Experiments were conducted with free-flying honeybees (Apis mellifera) from 

maintained hives. Foragers were marked on the thorax with a coloured dot to identify 

individuals used in the experiments. An ad-lib von Frisch type gravity feeder providing ca. 10 

- 30 % sucrose was set-up to maintain a regular number of bees available for testing (13). 

 

Apparatuses: 

Honeybees were trained to visit a rotating screen for Experiments 1, 2, 4 and 5 (ESM 2; 

ESM 3; Figure S1a) which was 50 cm in diameter (23). By using this screen, the spatial 

arrangement of stimulus choices could be randomly changed, thus excluding position 

orientation cues. Stimuli were presented vertically on 6 x 8 cm hangers with a landing 

platform attached below the presentation area. The screen and landing platforms were made 
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of a colour which is perceived by humans as being ‘grey’. Hangers and surrounding screen 

areas were washed with 30 % ethanol between foraging bouts and before each test was 

conducted to exclude the use of olfactory cues.  

In Experiment 3, a y-maze was used (Figure S1b). One bee was tested at a time during 

training and testing phases, typically taking 2 – 4 hours/bee to complete the protocol for each 

individual bee. Landing poles and surrounding areas were washed with 30 % ethanol between 

foraging bouts and before each test was conducted to exclude the use of olfactory cues.  

 

Stimuli: 

Each stimulus was a 6 x 6 cm white square with black elements presented on it, and was 

covered with 80 µm Lowell laminate. Elements could be one of three shapes: square, 

diamond, or circle. Two of these shapes were used in training, and the other novel shape was 

used for testing to ensure patterns and shapes were novel to bees (Figure S2). To control for 

surface area, each stimulus presented a pattern of elements culminating to a surface area of 10 

± 0.3 cm2 regardless of shape, pattern, or number of elements; and each element was above 

the minimum resolution threshold for honeybee vision as based on previous psychophysics 

findings (24). 

There were a total of 82 different patterns, comprising of 0 - 5 elements of the three 

different shapes (square; diamond; circle) which could be presented throughout Experiments 

1, 2 and 5. In Experiment 3, there were a total of 97 different stimuli patterns also comprising 

of three different shapes ranging from 0 – 6 elements. This large diversity of stimuli with 

closely matched spatial parameters controlled for the potential use of an associative 

mechanism by bees to learn the outcomes of each stimulus (Figure S2). This was especially 

the case with the requirement to solve non-reinforced tests with novel stimuli. In addition to 

this array, stimuli were randomly rotated to one of four possible positions (numbers 2 – 6) to 

further exclude low-level cues resulting in 376 possibilities, however bees were not exposed 

al all possibilities during training. 

 

General Training Procedure 

A 10 μL drop of either a 50 % sucrose solution (CS+) or a 60 mM quinine solution 

(CS−) were used as rewarding and punishing outcomes for correct or incorrect choices 

respectively during the learning phase, as this conditioning method promotes visual attention 

(9). 

In all four experiments, the choices of individual bees were recorded until a criterion of 

≥ 80 % for any 10 consecutive choices was reached (after a minimum of 20 conditioned 

choices). A choice was defined as an individual landing on a platform or pole and touching 

the solution (sucrose or quinine) with the proboscis, leg, or antenna. Stimuli were randomly 

allocated for each bee and changed between bouts (returns to hive to offload sucrose). After a 

bee had made a correct choice, new stimuli were presented and the previous stimuli were 

cleaned with 30 % ethanol solution. When the bee completed imbibing the sucrose, it could 

choose to make additional choices or return to the hive if satiated. If a bee made an incorrect 

choice, it would taste the bitter quinine solution and then was allowed to continue making 

choices until a correct choice was made, at which point the same procedure for a correct 

choice would be followed. 

 

General Testing Procedure 

To collect data for analysis of concept learning and extrapolation, each bee underwent 

non-reinforced tests. For all non-reinforced tests, we put a 10 μL drop of water on platforms 

to motivate bees to land. A random number of refreshing conditioned choices (range 2 – 6 

choices) were presented between each non-reinforced test to maintain bee motivation.  
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(a) Experiment 1: Can bees apply acquired numerical information to understand a novel zero-

concept problem? 

 

Training and testing phases: 

A counter-balanced design was used for this experiment, where one group of bees was 

trained to associate stimuli consisting of more elements with a reward (n = 10), while a 

second group of bees was trained to associate stimuli consisting of less elements with a 

reward (n = 10). 

On the rotating screen, four stimuli (two identical correct stimuli; two identical incorrect 

stimuli) were presented simultaneously above landing platforms on the hangers which could 

be positioned in different random spatial positions which were changed following a decision. 

 

Learning phase: 

During the learning phase, bees were trained to either associate a reward of sucrose with 

the numerical concepts of ‘less than’ or ‘greater than’ using different shapes and patterns 

consisting of 1 – 4 elements. As stated above, bees were trained using appetitive-aversive 

conditioning until they reached a criterion of ≥ 80 % after a minimum of 20 choices (Figure 

1A). 

 

Learning test: 

After a bee had reached criterion (≥ 80 %) in the learning phase, we presented a learning 

test using novel shapes and patterns consisting of 1 – 4 elements to determine if bees had 

learnt the ‘less than’ and ‘greater than’ concepts. If bees were able to learn ‘greater than vs. 

less than’, then they would choose the correct stimulus during the learning test at a level 

significantly higher than what is expected by chance. The null hypothesis was that choices 

would not be significantly different to chance expectation. 

 

Conflict test: 

The conflict and transfer tests were conducted in pseudo-random order for each bee 

(Figure 1A). The conflict test was done to determine a bee’s concept of zero. The two stimuli 

(elements two or three) were presented as novel shapes and patterns against novel plain 

stimuli of white (zero numerosity). These stimuli had previously resulted in ambiguous 

outcomes during training as whether the numbers 2 or 3 were correct or incorrect was 

dependent on the number that they were compared with. In this conflict test we hypothesized 

that if bees trained to ‘less than’ chose the stimuli which were of a novel square stimulus of 

white, then they understood that zero numerosity was less than any stimuli with elements on 

it. The null hypothesis however was that bees have either no preference or even a preference 

for the numbered elements. However, the experiment was designed to test for potential 

concept of zero, and thus did not seek to resolve statistically if there might be a preference for 

stimuli containing elements. 

 

Transfer test: 

The transfer test to a higher number consisted of presenting bees with ambiguous stimuli 

(two or three elements) of novel shape and pattern against a novel higher number, consisting 

of five elements which bees had not previously seen. This test was done as a counter-balance 

for the concept of zero numerosity test to determine if bees could extrapolate the ‘greater 

than’ and ‘less than’ concepts in both directions. In this test, we hypothesised that bees 

trained to ‘less than’ would choose the lower number of elements if they understood the task, 
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while bees trained to ‘greater than’ would choose the stimuli consisting of five elements as it 

was a higher number. 

 

(b) Experiment 2: Can bees demonstrate an extended understanding of the concept of zero? 

In this experiment, we trained bees (n = 25) to a ‘less than’ concept using elements: [2, 

3, 4, 5]. Bees were then tested on 1 vs. 0 and 2 vs. 0. This would determine to what level bees 

understood the concept of zero. As in Experiment 1, the element shape and pattern changed 

between bouts. Two shapes were used in training and the novel shape was used in the testing 

phase (Figure 1B; Figure S2). 

 

Learning phase: 

During the learning phase, bees were trained to associate a reward of sucrose with the 

numerical concept of ‘less than’ using different shapes and patterns consisting of 2 – 5 

elements. As stated above, bees were trained using appetitive-aversive conditioning until they 

reached a criterion of ≥ 80 % after a minimum of 20 choices (Figure 1B). 

 

Learning test: 

After a bee had reached criterion (≥ 80 %) in the learning phase, we presented a learning 

test using novel shapes and patterns consisting of 2 – 5 elements to determine if bees had 

learnt the ‘less than’ concept (Figure 1B). If bees were able to learn this concept, then they 

would choose the correct lower numbered stimulus during the learning test at a level 

significantly higher than what is expected by chance.  

 

Conflict test: 

The conflict and transfer tests were conducted in pseudo-random order for each bee. 

This conflict test presented 2 vs. 0 to bees. This information was in conflict as both stimuli 

were potentially correct options based on the training received. Two elements had always 

been rewarding during training (lowest number), while the empty set stimulus was the correct 

lower number when compared with two elements. This experiment enabled determining 

whether bees were employing an associative mechanism if they preferred to choose two in 

this test. If bees preferred to choose zero numerosity, then we could determine that they were 

using the rule-based learning and additionally understood that zero numerosity was the lower 

number. Bees could also choose at chance level as potentially both stimuli are potentially 

correct. 

 

Transfer Test: 

Some animals confuse the numerical values of one and zero, understanding that they are 

at the lower end of the number scale, but often mistaking zero numerosity for one (4,5,13). 

In this transfer test, we presented bees with novel stimuli of zero and one element 

simultaneously on the rotating screen (Figure S2) to determine if, when trained to the concept 

of ‘less than’, they would understand that zero elements was less than one. We expected that 

if bees had an adequate understanding of the concept of zero and one, then they would choose 

zero numerosity stimuli in this test. If bees could not understand this concept and like other 

animals, could not differentiate between which was the lower number, they may choose at 

chance level. If bees were to mistake one for the lower number then bees would more 

frequently choose stimuli with one element displayed in this transfer test. 

 

(c) Experiment 3: Distance effects 

We tested whether bees would display numerical distance effects with zero numerosity, 

an empty set, and positive integers. We used a y-maze for this experiment (as described (12, 
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13)) to control for viewing distance and visual angle. Stimuli were set at a distance of 15 cm 

from the decision chamber. In this experiment we trained bees (n = 20) to a ‘less than’ 

concept using elements including: [0, 1, 2, 3, 4, 5, 6]. Bees would then be tested 0 vs. 1; 0 vs. 

2; 0 vs. 3; 0 vs. 4; 0 vs. 5; 0 vs. 6. This would determine if bees were more accurate at 

performing with a lower number than a higher number. As in Experiment 1, the element 

shape and pattern changed between bouts. Two of the stimuli shapes were used in training, 

and the novel alternative shape was used in the testing phase. 

 

Learning phase: 

During the learning phase, bees were trained to associate a reward of sucrose with the 

numerical concept of ‘less than’ using different shapes and patterns consisting of 0 – 6 

elements. As stated above, bees were trained using appetitive-aversive conditioning until they 

reached a criterion of ≥ 80 % after a minimum of 20 choices. 

 

Learning test: 

After a bee had reached criteria (≥ 80 %) in the learning phase, we presented 6 learning 

tests (10 choices each) using novel shapes and patterns consisting of 0 – 6 elements to 

determine if bees had learnt the ‘less than’ concept. If bees were able to learn this concept, 

then they would choose the correct lower number of zero numerosity during the learning test 

at a level significantly higher than what is expected by chance. If there were also numerical 

distance effects of zero numerosity, we would see a difference in accuracy between the 

number which is closest to zero elements, one, compared to numbers which are quantitatively 

further away from zero (e.g. 6). 

 

(d) Experiment 4: Will bees choose to opt-out of a difficult and potentially punishing 

numerical task by choosing a novel ‘zero’ stimulus? 

In this experiment we trained one group of bees (n = 10) to associate two elements with 

a reward of sucrose and three elements with the aversive substance of quinine. A second 

group of bees (n = 10) were trained to associate two elements with quinine and three elements 

with sucrose. The element shape and pattern changed between bouts as in Experiment 1 using 

the same protocol (Figure S2). Two shapes were used in training and the novel shape was 

used in the testing phase. The same apparatus and similar training procedure was used as in 

Experiment 1 (ESM 2). 

 

Training and testing phases: 

 

Learning phase: 

The learning phase target stimuli (2 vs. 3 elements) were displayed and choices of 

individuals were recorded until bees reached criterion of ≥ 80 % for any ten choices after 20 

initial choices has been made. Stimuli were randomly allocated for each bee and changed 

between bouts (ESM 2; Figure S2). 

 

Learning test: 

After a bee had reached criterion (≥ 80 %) in the learning phase, we presented a learning 

test using a novel shape and pattern of 2 vs. 3 elements to determine if bees had learnt the 

conditioned stimuli (ESM 1). If bees had learnt to solve the problem, then they should choose 

stimuli of either two or three elements depending on the group they were in at a level 

significantly higher than what is expected by chance. 
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Conflict test: 

The conflict and transfer tests were conducted in pseudo-random order for each bee. In 

this test, bees were presented with the stimulus which was punishing during training vs. a 

novel empty set stimulus. We aimed to determine if bees would choose the punishing 

stimulus as it was more visually similar to the rewarding one, or if they would ‘opt out’ of 

this potentially punishing option and choose the empty set stimulus as it was novel and had 

not previously been punishing. This test would determine if results in Experiment 1 of bees 

choosing zero numerosity in the ‘less than’ group during the conflict test may be due to an 

‘opt out’ mechanism rather than understanding the concept of zero. If bees chose stimuli 

containing elements, then we could conclude they did not use an ‘opt out’ mechanism. If bees 

were to choose the empty set stimulus, this would suggest that they prefer a novel stimulus to 

something that is punishing and may provide an alternative explanation for the results in the 

conflict test in Experiment 1.  

 

Transfer test:  

The transfer test was done to determine whether bees would prefer the empty set over 

the rewarding number they had been trained to (either two or three elements depending on 

their group). Bees should prefer the stimulus of a previously rewarding element number when 

compared to a novel empty set stimulus. If bees chose the novel empty set stimulus, it may 

indicate that they have a preference for a blank white stimulus. 

 

(e) Experiment 5: Do bees transfer learnt number rules to novel pairs of numbers? 

 

Training and testing phases: 

A counter-balanced design was used for this experiment, where one group of bees was 

trained to associate stimuli consisting of more elements with a reward (n = 6), while a second 

group of bees was trained to associate stimuli consisting of less elements with a reward (n = 

6). 

On the rotating screen, four stimuli (two identical correct stimuli; two identical incorrect 

stimuli) were presented simultaneously above landing platforms on the hangers which could 

be positioned in different random spatial positions which were randomly changed following a 

decision. 

 

Learning phase: 

During the learning phase, bees were trained to either associate a reward of sucrose with 

the numerical concepts of ‘less than’ or ‘greater than’ using different shapes and patterns 

consisting of 1 – 5 elements. As stated above, bees were trained using appetitive-aversive 

conditioning until they reached a criterion of ≥ 80 % after a minimum of 20 choices. During 

training, we did not present the bees with the pair of numbers 2 vs. 3. Thus we presented this 

novel pair of numbers to bees during the learning test. The ratio of three or two elements 

being correct during training was the same whether bees were trained to a ‘greater than’ or 

‘less than’ rule. 

 

Learning test: 

After a bee had reached criterion (≥ 80 %) in the learning phase, we presented a learning 

test using novel shapes and patterns consisting of 2 vs. 3 elements to determine if bees had 

learnt the ‘less than’ and ‘greater than’ concepts. If bees were able to learn ‘greater vs. less’, 

then they would choose the correct stimulus during the learning test at a level significantly 

higher than what is expected by chance.  
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Conflict test: 

The conflict test was done to determine a bee’s concept of zero. The two novel paired 

stimuli (elements two or three) were presented with novel shapes and patterns against an 

empty set stimulus (zero). These stimuli had previously resulted in either reward or 

punishment dependent upon which number the stimuli had been previously paired with. In 

this conflict test, we hypothesized that if bees trained to ‘less than’ chose the stimuli which 

were of a novel empty set, then they understood that zero numerosity was less than any 

stimuli with elements on it. The null hypothesis however was that bees have either no 

preference or even a preference for the numbered elements. However, the experiment was 

designed to test for potential concept of zero, and did not thus seek to resolve if there might 

be a preference for stimuli containing elements. 

 

(f) Statistical analysis: 

 

Did bees understand the numerical concepts? 

To determine how bees performed on the tests in all experiments, we estimated the mean 

of the “correct” choices, the intercept of a generalised linear mixed model with a binomial 

response, using individual bees as a random, categorical variable to account for the repeated 

measurements. Choice (correct or incorrect choice) was used as a binary response as a fixed 

effect. These statistical tests and models were performed on the R environment for statistical 

analysis. 

Experiment 1: In the concept of zero conflict test, we considered the empty set stimulus 

to be correct for bees trained to ‘less than’ and incorrect for bees trained to ‘greater than’ 

(thus stimuli containing two or three elements were correct). For the transfer test to the higher 

number of five, we considered the stimuli with five elements to be incorrect for bees trained 

to ‘less than’ and correct for bees trained to ‘greater than’.  

Experiment 2: The control test to determine the bee’s level of understanding of zero, we 

considered the empty set stimuli to be correct in both the transfer and conflict tests. 

Experiment 3: In all 6 tests, the empty set (zero), was the correct option if bees 

understood the concept of zero. 

Experiment 4: In the control experiment which involved testing the bee’s preference to 

opt-out of choices, we considered the stimuli consisting of numerical elements in both the 

conflict and transfer tests to be correct. 

Experiment 5: In the learning test we considered two elements to be correct if bees were 

trained to ‘less than’ and three elements to be correct if bees were trained to ‘greater than’. In 

the concept of zero conflict test, we considered zero numerosity to be correct for bees trained 

to ‘less than’ and incorrect for bees trained to ‘greater than’ (thus stimuli containing two or 

three elements were correct). 

 

Were results consistent across groups and numerical concept tests? 

Experiment 1 and 4: 

Separate analyses were performed to determine if there were any asymmetries within 

tests and between the two groups in Experiment 1 and (trained to ‘less than’ or ‘greater 

than’), and Experiment 4 (trained to two or three elements). For this analysis, a mixed 

between-within subjects ANOVA (Split-Plot) experimental design was implemented. The 

design consisted of two factors: test and experimental group with three and two levels, 

respectively. The three levels of the test factor were: learning; conflict; transfer. The two 

levels of the experimental group factor were the two groups in each separate experiment. For 

both experiments, a total of 20 bees were divided across the two levels of the experimental 

group factor (n = 10 in each group for Experiment 1 and 4), and each bee was then tested 
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under all levels of the test factor. For this analysis, we used proportion data converted into 

degrees by means of an arc-sine angular transformation (25). This test was conducted to 

determine whether the three tests differed in the number of correct choices across both 

groups. Normality across tests was determined using a Shapiro-Wilk test in SPSS. For this 

analysis, we used proportion data converted into degrees by means of an arc-sine angular 

transformation (25). 

 

Experiment 2: 

To determine if there were any asymmetries within the three tests in Experiment 2, a 

one-way repeated measures ANOVA was conducted. The design consisted of an independent 

categorical variable (test type) which had three levels (learning; conflict; transfer) and one 

dependent continuous variable (correct choices in tests). For this experiment, a total of 25 

bees were tested. Each bee participated in all three tests. For this analysis, we used proportion 

data converted into degrees by means of an arc-sine angular transformation (25). These 

statistical tests and models were performed in SPSS Statistics. 

 

Experiment 3: 

Normality across tests was determined using a Shapiro-Wilk test in SPSS. For this 

analysis, we used proportion data converted into degrees by means of an arc-sine angular 

transformation (25). 

To determine if the tests differed in terms of accuracy, we estimated the mean of the 

“correct” choices, the intercept of a generalised linear mixed model with a binomial response, 

with numerical distance as a predictor using individual bees as a random, categorical variable 

to account for the repeated measurements. Choice (correct or incorrect choice) was used as a 

binary response as a fixed effect. These statistical tests and models were performed on the R 

environment for statistical analysis.  

To determine if the tests were significantly different from each other, we ran a GLMM 

with a logit link with choice as a binary response and numerical distance as a categorical 

predictor with six levels: 0 vs. 1, 0 vs. 2, 0 vs. 3, 0 vs. 4, 0 vs. 5, and 0 vs. 6; selecting the first 

category as the baseline. 

 

Experiment 5: 

Normality across tests was determined using a Shapiro-Wilk test in SPSS. For this 

analysis, we used proportion data converted into degrees by means of an arc-sine angular 

transformation (25). 

 

(g) Spatial frequency of stimuli: 

For all 97 stimuli, we produced a spatial frequency image, a power spatial graph, and 

a transect graph using the program MATLAB to determine if spatial frequency could 

potentially explain results from all experiments (see Table S1). 
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Supplementary Results: 

ESM 1: Results 

 

(a) Experiment 1: Bees learn and can extrapolate the concepts of ‘greater than’ and ‘less than’ 

to a novel higher number and the concept of zero 

 

Learning Phase: 

Bees trained to ‘less than’ (n = 10) took an average of 42 ± 4 choices and bees trained to 

‘greater than’ (n = 10) took an average of 49 ± 7 choices. On average, all bees in Experiment 

1 took 45 ± 4 choices. 

 

Learning test: 

In the learning test, bees trained to ‘less elements’ chose the correct stimulus in 75.0 ± 

4.1 % (mean ± standard error of the mean (s.e.m)) of choices. The number of correct choices 

made during the non-reinforced learning test were significantly higher than the chance 

expectation equivalent to 50 % (Z = 5.08, P < 0.001). Bees trained to ‘more elements’ chose 

the correct stimulus in 75.5 ± 3.3 % of choices (Z = 6.556, P < 0.001; Figure 1c). 

 

Conflict test: 

In the conflict test of zero elements vs. two or three elements, bees trained to ‘less 

elements’ chose the stimulus representing zero in 64.0 ± 5.4 % of choices (Z = 2.795, P < 

0.005). Bees trained to ‘more elements’ chose against zero numerosity, thus choosing the 

stimulus with elements on it, in 74.5 ± 2.6 % of choices (Z = 6.609, P < 0.001; Figure 1c). 

 

Transfer test: 

In the transfer test where either two or three elements were shown against the higher, 

previously unseen, amount of five elements, bees trained to ‘less than’ chose the correct 

stimuli of two or three elements in 68.0 ± 5.0 % of choices (Z = 3.411, P < 0.001). Bees 

trained to ‘more elements’ extrapolated their learning to choose the stimuli with five elements 

in 75.0 ± 3.9 % of choices (Z = 5.333, P < 0.001; Figure 1c). 

 

Consistency and normality of tests: 

There was no significant main effect between the proportion of correct choices between 

bees trained to ‘less than’ and ‘greater than’ in the split-plot ANOVA analysis (F1 = 1.859, P 

= 0.190). Considering the within-subjects factor, we found no significant difference between 

the different tests (Wilks Lambda (Λ) = 0.871, F17, 2 = 1.254, P = 0.310. multivariate partial eta 

squared = 0.129), nor a significant interaction between tests and subjects (Λ = 0.914 F17, 2 = 

0.802, P = 0.465, multivariate partial eta squared = 0.086). 

However, data for the bees trained to ‘less than’ was not normally distributed (Shapiro 

Wilcoxon (W) = 0.815, df = 10, P = 0.022), while data for bees trained to ‘greater than’ was 

normally distributed (W = 0.918, df = 10, P = 0.341). We subsequently removed an outlier 

and found that the data for bees trained to ‘less than’ become normalized (W = 0.892, df = 9, 

P = 0.207). Graphical data summary by means of boxplot, revealed that one of the bees 

(individual 9) in the ‘less than’ group demonstrated high performance (100 % of correct 

choices) relative to the median performance of all the bees in the treatment group. 

Consequently, subsequent GLMM analyses where performed on data sets containing and 

excluding individual number 9. Results for the analyses evidenced a significant effect of 

treatment for the two data sets. The fit of the model, measured by overdispersion, including 

individual 9 was better (1.07) than the model excluding the outlier (1. 19); and in both cases, 
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 analysis indicated that bees chose the correct target more frequently than expected by chance 

alone (including outlier: z = 5.08, P < 0.001; excluding outlier: z  = 5.742,  P < 0.001). After 

the removal of the outlier, there was still no significant main effect between the proportion of 

correct choices between bees trained to ‘less than’ and ‘greater than’ (F1 = 2.674, P = 0.120, 

multivariate partial eta squared = 0.136), or between the different tests (Λ = 0.905 F16,2 = 

0.840, P = 0.450, multivariate partial eta squared = 0.095), nor a significant interaction 

between tests and subjects (Λ = 0.956 F16,2 = 0.372, P = 0.695, multivariate partial eta squared 

= 0.044). This shows bees reliably transferred the acquired concepts from the learning set of 

1 – 4 elements to the novel concepts of zero, and a higher number outside of their current 

numerosity range. This performance is consistent with the application of rule-based problem 

solving, but would not be expected if bees were using an associative mechanism to solve the 

different visual problems since to choose a zero numerosity stimulus involved not choosing 

stimuli elements to which a bee had actually been trained. 

 

(b) Experiment 2: Bees can extend their understanding of the concept of zero 

 

Learning Phase: 

Bees (n = 25) took an average of 34 ± 2 choices to learn a ‘less than’ rule. 

 

Learning test: 

In the learning test, bees were trained to the concept of ‘less than’ and tested on two 

random element numbers from the training set of 2 – 5 elements.  Bees chose the lower 

number in 73.8 ± 1.9 % of choices (Z = 10.180, P < 0.001; Figure 1d). 

 

Conflict test: 

In the conflict test where bees were shown 2 vs. 0, bees chose the lower number of zero 

elements in 56.2 ± 3.4 % of choices, which was not significantly different from chance 

expectation (Z = 1.639, P = 0.101; Figure 1d). This demonstrated that when both options 

were potentially correct, bees did not demonstrate a preference for either option. 

 

Transfer test: 

In the transfer test where bees were presented with 1 vs. 0, bees chose the lower number 

of zero elements in 63.0 ± 2.9 % of choices (Z =  4.233, P < 0.001; Figure 1d). This showed 

that bees understood that zero elements was less than one on the number scale. 

 

Consistency and normality of tests: 

There was a significant main effect across the proportion of correct choices between the 

three tests (Λ = 0.454 F2, 23 = 13.811, P < 0.001). This means there were differences between 

the number of correct choices across the learning, conflict, and transfer tests. The main effect 

was caused by a significant difference between the learning test and the transfer test when we 

look at the pairwise comparisons (P = 0.020) and a significant difference between the 

learning and conflict test (P < 0.001). There was no significant difference between the 

transfer and conflict tests (P = 0.200). 

However, data for the learning test was not normally distributed (W = 0.917, df = 25, P 

= 0.044) while data for bees in the other tests was normally distributed (P > 0.05). There were 

not outliers to remove in order to normalize the data. 
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(c) Experiment 3: Distance effects 

 

Learning Phase: 

Bees (n = 20) took an average of 39 ± 3 choices to learn a ‘less than’ rule. 

 

Learning tests: 

In all 6 tests bees performed significantly higher than chance expectation when choosing 

zero elements as the lowest number: 0 vs. 1 (58.0 ± 2.4 %; Z = 2.253, P = 0.024); 0 vs. 2 

(61.5 ± 2.8 %; Z = 3.497, P < 0.001); 0 vs. 3 (62.5 ± 3.4 %; Z = 3.634, P < 0.001); 0 vs. 4 

(64.5 ± 2.9 %; Z = 3.906, P < 0.001); 0 vs. 5 (71.5 ± 3.0 %; Z = 5.872, P < 0.001); 0 vs. 6 

(75.5 ± 2.8 %; Z = 6.728, P < 0.001; Figure 2b). 

Based on a GLMM using binary choice as a response and numerical distance as a 

categorical fixed effect, we found significant differences in response between the baseline 

category 0 vs. 1 and the category 0 vs. 5 (z = 2.812, P = 0.005). We also found a significant 

difference between the baseline and the 0 vs. 6 category (z = 3.571, P < 0.001). All other 

comparisons against the baseline were non-significant (P > 0.219). 

 

Consistency of tests: 

There was a significant effect of numerical distance on accuracy (Z = 4.004, P < 0.001; 

Figure 2b). Bees were more accurate when discriminating zero numerosity from higher 

numbers (e.g. 6) than lower numbers (e.g. 1). 

 

Normality of tests: 

The Shapiro-Wilk test showed that data from the tests of 0 vs. 2 (W = 0.916, df = 20, P 

= 0.083) and 0 vs. 5 (W = 0.909, df = 20, P = 0.062) were normally distributed while data 

from the tests of 0 vs. 1 (W = 0.892, df = 20, P = 0.029), 0 v. 3 (W = 0.851, df = 20, P = 

0.006), 0 vs. 4 (W = 0.899, df = 20, P = 0.040) and 0 vs. 6 (W = 0.664, df = 20, P < 0.001) 

were not normally distributed. 

 

(d) Experiment 4: Bees do not choose zero to opt-out of a difficult or potentially punishing 

problem-solving task 

 

Learning Phase: 

Bees trained to two elements reached the criterion in 36 ± 3 trials and bees trained to 

three elements reached the criterion in 32 ± 2 trials. 

 

Learning test: 

Bees trained to two elements chose the correct number in the learning test at a level of 

77.0 ± 4.7 % which was significantly higher than chance level (H0 = 50 %, Z = 4.240, P < 

0.001). Bees trained to three elements chose the correct element number during the learning 

test in 68.5 ± 5.8 % of choices (Z = 4.244, P < 0.001; Figure S3). 

 

Conflict test: 

In the conflict test, bees trained to two elements chose the stimuli with three elements 

when compared to the zero numerosity stimuli in 78.0 ± 4.7 % of choices (Z = 5.407, P < 

0.001). Similarly, bees trained to three elements chose stimuli with two elements in the 

conflict test when compared to zero numerosity in 79.0 ± 3.4 % of choices (Z = 4.353, P < 

0.001; Figure S3). 
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Transfer test: 

In the transfer test, bees trained to two elements chose the stimuli consisting of two 

elements in 84.0 ± 4.1 % of choices when presented against the empty set stimuli (Z = 4.938, 

P ˂ 0.001). Bees trained to three elements chose stimuli with three elements in the transfer 

test in 79.0 ± 3.4 % of choices when compared to the empty set stimuli (Z = 7.104, P ˂ 0.001; 

Figure S3). 

 

Consistency and normality of tests: 

There was no significant main effect between the proportion of correct choices between 

bees trained to two and three elements in the split-plot ANOVA analysis (F1 = 0.395, P = 

0.538). Considering the within-subjects factor, we found no significant difference between 

the different tests (Λ = 0.800 F17, 2 = 2.131, P = 0.149, multivariate partial eta squared = 0.200), 

nor a significant interaction between tests and groups (Λ = 0.922 F17, 2 = 0.720, P = 0.501, 

multivariate partial eta squared = 0.078). 

However, data for the bees trained to two elements in the learning test was not normally 

distributed (W = 0.816, df = 10, P = 0.023) while data for bees in all other tests was normally 

distributed (P ˃ 0.050). We subsequently removed two outliers and found that the data for 

bees trained to two elements in the learning test become normalized (W = 0.872, df = 8, P = 

0.157). After the removal of the outliers, there was still no significant main effect between the 

proportion of correct choices between bees trained to two or three elements (F1 = 0.287, P = 

0.599, multivariate partial eta squared = 0.018), or between the different tests (Λ = 0.754, F15,2 

= 2.444, P = 0.121, multivariate partial eta squared = 0.246), nor a significant interaction 

between test and group (Λ = 0.983, F15,2 = 0.132, P = 0.877, multivariate partial eta squared = 

0.017). This shows bees reliably transferred the acquired concepts from the learning phase to 

the learning set, and preferred the stimuli with elements on them rather than an empty set 

stimulus representing zero. 

 

(e) Experiment 5: Do bees transfer learnt number rules to novel pairs of numbers? 

 

Learning Phase: 

Bees trained to ‘less than’ reached the criterion in 45 ± 9 trials and bees trained to 

‘greater than’ reached the criterion in 42 ± 7 trials. 

 

Learning test: 

In the non-reinforced learning test of 2 vs. 3, bees in the group trained to ‘less than’ 

chose the correct number stimulus containing two elements in 75 ± 4.83 % of choices (z = 

4.776, P < 0.001, n = 6). Bees trained to the rule of ‘greater than’ chose the correct stimulus 

containing three elements in 72.5 ± 6.68 % of choices (z = 3.082, P =  0.002, n = 6).  

 

Conflict test: 

In a conflict test where bees were presented with novel stimuli containing two or three 

elements against an empty set stimulus (zero), bees trained to ‘less than’ chose the correct 

stimulus of zero numerosity in 65 ± 4.83 % of choices (z = 3.179, P =  0.001, n = 6). Bees 

trained to ‘greater than’ chose the correct stimulus of two or three elements in 70.83 ± 4.55 % 

of choices (z = 4.368, P < 0.001, n = 6). 

 

Normality of tests: 

The data for both non-reinforced tests was normally distributed: Learning test for bees trained 

to ‘less than’: (W = 0.950, df = 6, P = 0.739). Learning test for bees trained to ‘greater than’: 
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(W = 0.890, df = 6, P = 0.319). Transfer test for bees trained to ‘less than’: (W = 0.947, df = 

6, P = 0.719). Transfer test for bees trained to ‘greater than’: (W = 0.958, df = 6, P = 0.801). 

 

(f) Spatial frequency of stimuli: 

For all 97 stimuli, we produced a spatial frequency image, a power spatial graph, and a 

transect graph (see Table S1). When comparing these outputs between stimuli, it is clear that 

the use of spatial frequency could not allow bees to transfer a learnt spatial frequency rule 

(rather than a number rule) to an empty set stimulus. The spatial properties of the zero 

stimulus are too different to the properties of the other ‘numbered’ stimuli for bees to use 

these properties to solve the tasks and choose zero numerosity as the lowest number, thus 

bees must have been using a learnt number rule to order zero elements as less than the other 

numbers. In addition, there is little difference between stimuli containing different numbers 

of elements in terms of spatial frequency, thus is appears that bees are using number of 

elements rather than spatial frequency to solve the task and perform the tests. 

 

ESM 2: Experiment 4: Do bees prefer a novel ‘zero’ stimulus?  
 

We conducted a control experiment to test whether bees were choosing zero elements 

in Experiments 1 and 2 due to the stimulus being novel rather than accurately understanding 

that zero numerosity was the correct solution. Bees were trained to stimuli consisting of two 

and three elements of different shape and pattern (Supplementary Figure S2; Figure S3a). 

One group was trained to associate two elements with an appetitive reward and three 

elements with an aversive substance, while a second group was trained to associate three 

elements with a reward and two elements with aversion. In non-reinforced tests, bees trained 

to two elements chose the correct number in the learning test at a level of 77.0 ± 4.7 % (z = 

4.240, P < 0.001, n = 10) and bees trained to three elements chose the correct number in 68.5 

± 5.8 % of choices (z = 4.244, P < 0.001, n = 10, Figure S3b). In a transfer test, the group 

trained to two elements chose the number of elements that had been associated with sucrose 

(two) when compared to the empty set in 84.0 ± 4.1 % of choices (z = 4.938, P ˂ 0.001, n = 

10) and bees in the group trained to three elements correctly chose the novel stimuli 

consisting of three shapes in 79.0 ± 3.4 % of choices (z = 7.104, P ˂ 0.001, n = 10; Figure 

Sb). When bees were shown the stimuli associated with aversion, they chose against zero 

elements and for the stimuli containing elements in 78.0 ± 4.7 % of choices (z = 5.407, P < 

0.001, n = 10) for those trained to two elements, and in 79.0 ± 3.4 % of choices (z = 4.353, P 

< 0.001, n = 10; Figure S3b) for those trained to three elements. This showed that regardless 

of whether bees had the option of choosing a number which was always rewarding or always 

punishing, they did not, in this numeric task, prefer to choose the novel empty set stimulus, 

but instead chose the stimuli which they had previously been exposed to, even if that stimulus 

was associated with an aversive substance. Interestingly, this is consistent to observed 

behaviour in honeybees choosing between perceptually similar colours (26). 

 

ESM 3: Experiment 5: Do bees transfer learnt number rules to novel pairs of numbers? 
 

We conducted a control experiment to test whether bees were able to demonstrate 

performance significantly better than chance on the learning test in experiment 1 due to 

having seen all paired numbers (i.e. 1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 2 vs. 4, 3 vs. 4) during the 

training phase and thus may have remembered the outcomes of all the paired numbers. To 

control for this potential confound, we conducted an additional experiment where bees were 
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trained to stimuli containing elements 1 – 5, where the pairing of 2 vs. 3 elements was 

excluded from the training phase. One group of six bees was trained to the rule of ‘less than’ 

and a second group six of bees was trained to the rule of ‘greater than’. Bees were trained 

using differential appetitive-aversive conditioning until they reached a criterion of ≥ 80 % 

(Figure S4A). Bees trained to ‘less than’ reached the criterion in 45 ± 9 trials and bees trained 

to ‘greater than’ reached the criterion in 42 ± 7 trials. In the non-reinforced learning test of 2 

vs. 3, bees in the group trained to ‘less than’ chose the correct number stimulus containing 

two elements in 75.00 ± 4.83 % of choices (z = 4.776, P < 0.001, n = 6). Bees trained to the 

rule of ‘greater than’ chose the correct stimulus containing three elements in 72.50 ± 6.68 % 

of choices (z = 3.082, P =  0.002, n = 6). In a conflict test showing bees novel stimuli 

containing two or three elements again an empty set stimulus (zero), bees trained to ‘less 

than’ chose the correct stimulus of zero numerosity in 65.00 ± 4.83 % of choices (z = 3.179, 

P =  0.001, n = 6). Bees trained to ‘greater than’ chose the correct stimulus of two or three 

elements in 70.83 ± 4.55 % of choices (z = 4.368, P < 0.001, n = 6; Figure S4B). Bees 

demonstrated that even when they had not previously been presented with a specific pairing 

of numbers during training, they could still extrapolate their rule learning to a novel pair of 

stimuli. 
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Fig. S1: 

Apparatuses used for the experiments. A) An image of the rotating screen used for Experiment 1, 2, 4, and 5 with labels to show components 

of the apparatus and examples of stimuli for one of the test conditions. B) A diagram of the Y-maze used in Experiment 3 with labels showing 

the components of the apparatus, and examples of stimuli for one experimental condition. A bee enters through the small hole into the decision 

chamber where it is presented with two stimulus options and must make a decision on which pole to land to potentially collect a reward for a 

correct choice. 
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Fig. S2. 

The 97 different stimuli which could be presented to bees during learning and testing phases in all experiments. These stimuli are 

separated by number of elements and shape categories. Stimuli were controlled for colour balance, spatial frequency, surface area, pattern, 

shape, and element sizes. In addition, stimuli were randomly rotated to one of four possible positions (numbers 2 – 6) to further exclude low-

level cues resulting in 376 possibilities.  
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Fig. S3 
A graphic representation of the method and results in Experiment 4. A) Example of 

possible combinations during trials and tests. B) Performance during the three non-reinforced 

testing phases during Experiment 4: learning test, conflict test with a rewarding stimulus vs. 

0, and transfer test with a punishing stimulus vs. 0. In the conflict and transfer tests, data 

shown are the bee’s choices for stimuli containing elements. Broken black line at 50 % 
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indicates chance level performance. Significant from chance level performance is indicated 

by * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.0001. 
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Fig. S4 
A graphic representation of the method and results in Experiment 5. A) Example of 

possible combinations during trials and tests. B) Performance during the two non-reinforced 

testing phases during Experiment 5: learning test and conflict test. In the conflict test, data 

shown for the ‘less than’ group are bee’s choices for an empty set while data shown for the 

‘greater than’ group are the bee’s choices for stimuli containing elements. Results for bees 

trained to ‘less than’ are shown in dark blue, while results for bees trained to ‘greater than’ 
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are shown in turquoise.  Broken black line at 50 % indicates chance level performance. 

Significant from chance level performance is indicated by * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.0001. 

 

Table S1. 

For all 97 stimuli there is a spatial frequency image, a power spatial graph, and a 

transect graph produced. Column 1: element shape; column 2: stimulus ID; column 3: 

stimulus image; column 4: spatial frequency image; column 5: power spatial graph with 

frequency (Hz) on the x-axis and power on the y-axis; column 6: transect graph with position 

on the x-axis and spectrum on the y-axis (see below). 
 



Shape Stimulus 
ID 

Stimulus Image Stimulus Spectra Stimulus Power Spectrum Stimulus Transect Graph 

None 0  
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Abstract 

Many animals understand numbers at a basic level for use in essential tasks such as 

foraging, shoaling, and resource management. However, complex arithmetic operations, such 

as addition and subtraction, using symbols and/or labelling have only been demonstrated in a 

limited number of non-human vertebrates. We show that honeybees, with a miniature brain, 

can learn to use blue and yellow as symbolic representations for addition or subtraction. In a 

free-flying environment, individual bees used this information to solve unfamiliar problems 

involving adding or subtracting one element from a group of elements. This display of 

numerosity requires bees to acquire long term rules and use short term working memory. 
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Given that honeybees and humans are separated by over 400 million years of evolution, our 

findings suggest that advanced numerical cognition may be more accessible to non-human 

animals than previously suspected. 

Keywords: addition; Apis mellifera; arithmetic; numerical cognition; quantical 

cognition; subtraction 

One-sentence summary: Honeybees learn to add or subtract one item from a set 

using colour cues and can interpolate operations to a novel number. 

 

MAIN TEXT 

 

Introduction 

Currently, there is considerable debate surrounding the ability of animals to possess or 

learn complex number skills (1-5). A distinction is made between species which are able to 

use quantical (e.g. quantity discrimination) and numerical (exact, symbolic) cognition (2). 

While many species are able to use quantical cognition to forage, make decisions, and solve 

problems, it is debated whether any non-human or non-primate animals could reach the level 

of numerical cognition, such as exact number and arithmetic operations, for example solving 

addition and subtraction problems (1, 2). Such a capacity would require complex 

management of quantities in both working memory and longer term rule based memory (6). 

There are studies which demonstrate that vervet monkeys (6), chimpanzees (7-9), orang-utans 

(10), rhesus monkeys (11), one African grey parrot (12, 13), pigeons (14), spiders (15, 16), 

and human infants (17, 18) have the ability to add and/or subtract. Some studies show very 

sophisticated addition and subtraction abilities such as in the case of a chimpanzee and an 

African grey parrot that could both label the result of an addition sum using Arabic symbols 

or an English label respectively which would constitute exact numerical cognition (7, 12, 13). 
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Other studies show that some species are able to perform addition and subtraction problems 

spontaneously, without training, in a more naturalised task, such as spiders which can count 

prey items and notice when prey is added or subtracted (15), and rhesus monkeys which 

choose to approach obscured food in the wild when a subtraction sum should result in food 

being present (11). 

Honeybees are a model for insect cognition and vision (19, 20). Bees have 

demonstrated the ability to learn a number of rules and concepts to solve problems such as 

‘left/right’ (21), ‘above/below’ (22), ‘same/different’ (23), and ‘larger/smaller’ (24-26). 

Honeybees have also shown some capacity for counting and number discrimination when 

trained using an appetitive (reward-only) differential conditioning framework (27-30). Recent 

advancements in training protocols reveal that bees perform significantly better on 

perceptually difficult tasks when trained with an appetitive-aversive (reward-punishment) 

differential conditioning framework (31). This improved learning capacity is linked to 

attention in bees (31), and attention is a key aspect of advanced numerosity and spatial 

processing abilities in the human brain (32, 33). Using this conditioning protocol, honeybees 

were recently shown to acquire the numerical rules of ‘greater than’ and ‘less than’ and 

subsequently apply these rule to demonstrate an understanding that an empty set, zero, lies at 

the lower end of the numerical continuum (34). Thus to inform the current debate on number 

skills in animals, research on insects with miniature brains enables valuable comparisons of 

what brains of different sizes and architectures can achieve . 

The capacity of honeybees to learn complex rules and concepts (20) alongside 

evidence of their number-sense (29, 34) suggests they are a good model for testing numerical 

cognition. We trained bees to identify a salient colour (blue or yellow) as a symbolic 

representation of whether to follow a rule based on addition (blue) or subtraction (yellow), 

and thus choose the correct result of an arithmetic operation. 
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In this study, honeybees were trained to enter a Y-maze and view a visual sample 

stimulus presented vertically containing a set of elements in isolation (Fig. 1). Bees would 

then fly through an opening into a decision chamber and choose between two possible 

options (Fig. 1). The sample stimulus could contain 1, 2, 4, or 5 elements (1, 2, or 4 elements 

if blue/addition; 2, 4, or 5 elements if yellow/subtraction). If the elements were blue, bees 

would need to choose the stimulus option in the decision chamber which was one element 

greater than the sample, however, if the elements were yellow, bees would need to choose the 

stimulus which contained one less element than the sample number (Fig. 1). The colour of the 

elements, and thus the arithmetic problem to be solved, was randomly assigned per bee for 

each trial. Correct and incorrect options during experiments ranged from 1 to 5 elements and 

the incorrect option could be higher or lower than the correct option (which also included the 

sample number as a possible incorrect option). The sample number of three elements was 

never shown during training and was only used as a novel sample number during testing. See 

Materials and method section below for more information.  

 

Results  

Training phase 

Over the course of 100 appetitive-aversive (reward-punishment) reinforced choices 

(31), honeybees were trained to add or subtract one element based on the colour of a sample 

stimulus (Fig. S1). Bees were provided with a 10 μL drop of either a 50 % sucrose solution 

(CS+) or a 60 mM quinine solution (CS−) as rewarding or punishing outcomes for a correct 

or incorrect choice, respectively (See Materials and Method). In this learning phase, there 

was a significant increase in the number of correct choices made over the 100 conditioned 

choices (z = 8.14; P < 0.001) demonstrating that bees learnt to simultaneously add or subtract 

by one based on the colour of the sample stimulus (Fig. 2A). Each individual bee appears to 
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learn differently, possibly due to the random presentation of stimuli and/or individual 

differences in cognitive abilities (SI Material, Methods and Results; Fig. S2). 

Testing phase 

We subsequently tested bees during non-reinforced tests (no reward or punishment) 

on their ability to interpolate the learnt concepts of addition and subtraction to the novel 

sample stimulus of three elements (See Materials and method). We conducted four tests: two 

addition operations and two subtraction operations. Two of these four tests presented an 

incorrect option in the same numerical direction as the correct option, and the other two 

presented an incorrect option in the opposite numerical direction of the correct option: 

1. Addition: incorrect option in same numerical direction as correct option 

Sample = 3; Correct = 4; Incorrect = 5  

2. Addition: incorrect option in opposite numerical direction as correct option 

 Sample = 3; Correct = 4; Incorrect = 2  

3. Subtraction: incorrect option in same numerical direction as correct option 

Sample = 3; Correct = 2; Incorrect = 1  

4. Subtraction: incorrect option in opposite numerical direction as correct option 

Sample = 3; Correct = 2; Incorrect = 4  

In each of the four tests, bees performed at a level that was significant from chance. In 

the addition (same direction) test, bees chose the correct option of 4 in 72.1 ± 3.20 (mean ± 

standard error of the mean (S.E.M.)) % of choices (z = 5.05, P < 0.001; Fig. 2B). In the other 

addition (opposite direction) test, bees chose the correct option of 4 in 66.4 ± 2.69 % of 

choices (z = 3.81, P < 0.001; Fig. 2B). In the subtraction (same direction) test, bees chose the 

correct option of 2 in 63.6 ± 2.89 % of choices (z = 3.17, P = 0.002; Fig. 2B). In the other 
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subtraction (opposite direction) test, bees chose the correct option of 2 in 67.9 ± 3.66 % of 

choices (z = 4.13, P < 0.001; Fig. 2B). There was no significant difference between the 

performance of bees in any of the four tests (z = -0.887, P = 0.375), demonstrating that bees 

performed equally well on all tests. 

Discussion 

Honeybees were able to use colour as a symbolic representation of the addition and 

subtraction signs and learnt, during 100 appetitive-aversive trials, to thus add or subtract one 

element from different samples. Furthermore, bees could successfully interpolate the learnt 

operations of addition and subtraction to an unfamiliar sample number and shape during tests. 

Arithmetic operations such as addition and subtraction problems are known to involve 

complex cognitive processes as they require two levels of information processing. The first is 

the representation of numerical attributes, and the second is the mental manipulation of those 

representations in working memory (6). In the current study, bees not only succeeded in 

performing these processing tasks, but also had to perform the arithmetic operations in 

working memory as the number to be added or subtracted (one element) was not visually 

present, but rather an abstract concept which bees had to resolve over the course of  training. 

This important step into combining the arithmetic and symbolic learning abilities of an insect 

has identified numerous areas of research to expand into and also poses the question of 

whether such complex numeric understandings may be accessible to other species without 

large brains, such as the honeybee (35). While the posterior parietal cortex and the prefrontal 

cortex are key areas for numerical processing in primates (32), we are yet to determine where 

number representation and processing may occur in honeybee brains, however we do show 

that the comparatively large and complex brain areas required in primates are not necessary 

for an insect to process number problems. 
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While the specific task of addition/subtraction may not directly be apparent in the 

honeybee’s natural environment, the skills and cognitive plasticity required for performing 

the arithmetic task are likely to be ecologically advantageous. For example, the ability of bees 

to acquire and manipulate learnt information to make decisions using multiple memory 

phases (23) is useful in foraging to remember which flower traits (e.g. colour, shape, size) 

may provide essential resources, and which flower traits may not (35). Thus rule learning 

involving linking visual traits to reward quantification, such as in the arithmetic task, is likely 

to be beneficial to a honeybee’s foraging lifestyle. 

The debate regarding a non-human animal’s capacity to demonstrate numerical 

cognition suggests that either numerical skills are biologically evolved traits (1), or that 

animals only possess limited quantical abilities and human culture is necessary for more 

complex numerical abilities (2, 4). However, this debate also inspired a third important 

argument; Verguts and Chen (2017) suggest that at the very least we must consider the rapid 

evolution of individual learning of numerical cognition which occurs during an animal’s 

lifetime. In this regard the honeybee is a proficient learner of many tasks including sameness 

and differences judgements (23), mazes (21, 36), face stimuli (37), and spatial relationships  

(38), and the results of the current study demonstrate that honeybees are capable of learning 

and applying numerical cognition as individuals. Our results suggest the possibility that 

honeybees and other non-human animals may be biologically tuned for complex numerical 

tasks, but such possibilities are of high value to be further explored, particularly in insects. 

Interestingly, human infants with no language for number have demonstrated large 

number addition and subtraction (18), and native speakers of Mundurukú from Brazil, a 

language that has no words for large numbers, can add large approximate numbers far beyond 

their naming range (39). While speakers of the Mundurukú language demonstrated exact 

arithmetic with small numbers (< 4 and 5), they failed at exact arithmetic for large numbers 
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(> 4 or 5), but were able to use approximation to calculate solutions. These studies 

demonstrate that human language is not necessary for arithmetic operations such as addition 

and subtraction. Combined with the results from our current study, we propose that language 

and prior advanced numerical understandings are not a prerequisite necessary to calculate 

addition and subtraction solutions. In the current study, bees were tested on the number range 

of 1 – 5 for their ability to add and subtract, thus it would be valuable to examine bee 

performance on large number quantities to determine if they could use approximation or 

exact arithmetic to solve similar large number arithmetic problems.  

 

Materials and Methods 

Study design: 

We aimed to determine if free-flying honeybees could learn to add or subtract one 

element from an array of elements in a delayed-matching-to-sample task. To do this, we 

trained bees to use different colours (blue or yellow) as a prompt to perform either addition or 

subtraction. Bees were trained to use a Y-maze (described below; Fig. 1) to view a sample 

stimulus containing a certain number of coloured elements on a grey background. Once they 

had viewed this stimulus they could fly into a decision chamber to choose the correct option 

resulting from the arithmetic problem encountered (Fig. 1). 

Study species: 

We used 14 free-flying honeybees (Apis mellifera) foragers for this experiment. All 

bees were marked with a coloured dot on the thorax to identify individuals. An ad-lib von 

Frisch type gravity feeder providing ca. 10 – 30 % sucrose was set-up to maintain a regular 

number of bees. 
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Apparatus: 

Individual honeybees were trained to enter a Y-maze (as described in (22); Fig. 1). 

The bees had to fly through an initial entrance hole to enter a chamber where they would 

view the sample stimulus. This stimulus would contain either blue or yellow elements on a 

grey background. Each bee could then fly through another hole into the decision chamber 

where it would be presented with two different options in each arm of the chamber. If the 

sample stimulus had been blue, the bee would need to choose the stimulus with a number of 

elements which was one more than the sample number, however, if the sample stimulus had 

been yellow, the bee would need to choose the stimulus with a number of elements which 

was one less than the sample number (Fig. 1). This delayed matching-to-sample method 

using a Y-maze apparatus is the standard methodology for testing honeybee learning, and 

specifically quantity matching in honeybees (30), and has been validated through producing 

consistent learning outcomes to alternative apparatus (20). 

Stimuli were presented on grey backgrounds located 15 cm away from the decision 

lines. Two stimuli, one correct and one incorrect, were presented simultaneously in each arm 

of the Y-maze on the grey plastic background (Fig. 1). A 10 μL drop of either a 50 % sucrose 

solution (correct choice) or a 60 mM quinine solution (incorrect choice) were used as 

rewarding and punishing outcomes respectively during the training phase as this promotes 

enhanced visual discrimination performances in free-flying honeybees. Each stimulus had a 

grey landing pole located below it which held either the drop of sucrose under the correct 

option or quinine under the incorrect option so that bees would learn to associate stimuli with 

either a reward or punishment. Poles were replaced when touched by a bee and cleaned with 

20 % ethanol to exclude olfactory cues. The sides of the correct and incorrect stimuli were 

randomly changed between choices (38). If a bee made an incorrect choice and started to 

imbibe the quinine; it was allowed to fly to the pole in front of the correct stimulus to collect 



147 
 

sucrose to maintain motivation; but only the first choice was recorded for statistical analysis 

(38). Once the bee was finished imbibing the sucrose, it was allowed to fly back to the hive if 

satiated or make another decision by re-entering the maze. During the non-reinforced tests, a 

drop of water was placed on each of the poles placed in front of the stimuli. Ten choices 

(touches of the poles) were recorded for each of the four tests to enable statistical 

comparisons. 

Stimuli: 

Each stimulus was a 6 x 6 cm grey square with either blue (addition) or yellow 

(subtraction) elements presented on it (Fig. S1), and was covered with 80 µm Lowell 

laminate. The chosen colours were spectrally different and salient considering honeybee 

vision. Elements could be one of four shapes: square, diamond, circle, or triangle. Three of 

these shapes were used in training, and the other novel shape was used for testing to ensure 

patterns and shapes were unfamiliar to bees during tests. To control for surface area, each 

pattern (cumulated surface area of black elements) was 10 ± 0.3 cm
2
 regardless of shape, 

pattern, or number of elements; and each element was above the minimum resolution 

threshold for honeybee vision as based on previous psychophysics findings (SA range: 

Circle: 1 cm
2
 to 9.95 cm

2
; Square/Diamond: 1 cm

2
 to 6.32 cm

2
; Triangle: 1 cm

2
 to 10 cm

2
). 

There were 216 stimuli in total, 108 for addition and 108 for subtraction (Fig. S1). Element 

size, line length, and convex hull for all stimuli were not consistently correlated with 

increasing or decreasing numbers of elements. 

There were a total of 108 different patterns, comprising of 1 - 5 elements of the four 

different shapes (square; diamond; circle; triangle) which could be presented throughout the 

experiment, this was done to control for the potential use of an associative mechanism by 

bees to learn the outcomes of each stimulus. There were no low-level cues which could be 

used to solve the problem as the correct answer could be lower or higher than the original 
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number depending on sample element colour and the incorrect answer could be the same 

number as the sample or any (non-correct) number above or below the sample. Thus the 

correct answer was not predicted by visual similarity to the original sample number or 

numerical closeness to the sample number. 

Training procedure: 

Bees were incrementally trained to enter the Y-maze and both arms of the apparatus 

over 30 – 60 minute periods. Once each bee was able to fly into the entrance hole and the 

hole that led to the decision chamber and could find the poles in both Y-maze arms, the 

experiment began. 

After entering the Y-maze, bees would be in the initial chamber where they could 

view the sample number. To solve the task the bees were required to either add or subtract the 

value of one to this sample number depending on the colour of the elements (Fig. 1). Bees 

would then fly through the next hole in the Y-maze and into the decision chamber where they 

could simultaneously view two stimuli in a dual choice test. If the sample number was blue, 

the bee would need to choose the option which was one element greater than the sample 

stimulus to receive a reward, whilst if the sample number was yellow, the bee would need to 

choose the option which was one element less than the sample number to receive a reward. 

The incorrect option was randomly selected and could be any number from 1 – 5; including 

the sample number itself which controlled for bees choosing the correct option based on 

visual similarity, and incorrect choices were associated with a bitter tasting quinine solution. 

Each bee thus completed 100 appetitive-aversive (31) reinforced trials presenting 

either addition or subtraction arithmetic problems. Whether a trial would involve adding or 

subtracting one element from the sample number was randomised. 
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Throughout the training, the numbers which could be used for the sample in the 

addition trials were 1, 2, 4. Thus correct answers could be 2, 3, 5 and the incorrect answers 

could be 1, 2, 3, 4, 5. During the subtraction trials, the numbers which could be used for the 

sample number were 2, 4, 5. Thus correct answers could be 1, 3, 4 and the incorrect answers 

could be 1, 2, 3, 4, 5. The number 3 was never shown as a sample number during training for 

any bee and was thus used as the sample number for all unreinforced tests to ensure the 

sample number was novel during tests. 

Testing procedure: 

Once bees had completed the training, there were four tests of 10 unreinforced 

choices. Between each of the four tests there were 10 refresher reinforced choices to maintain 

bee motivation. The sequence of these tests was randomised. These tests were non-reinforced 

(no reward or punishment) and used a 10 μL drop of water instead of quinine or sucrose to 

motivate bees to land. We conducted four tests where two arithmetic operations were addition 

and two were subtraction. As the sample stimulus of three elements had never been presented 

during training, bees had not previous received reinforcement on the number four for 

addition, or two for subtraction trials. Two of these four tests presented an incorrect option in 

the same direction as the correct option, and the other two presented an incorrect option in the 

opposite direction of the correct option. Two of the tests required addition and two required 

subtraction using the novel sample number of three. 

Two of the tests involved the incorrect answer being the same direction as the correct 

answer (addition: sample = 3, correct = 4, incorrect = 5; subtraction: sample = 3, correct = 2, 

incorrect = 1). 
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Two of the tests involved the incorrect answer being in the opposite direction of the 

correct answer and thus also one element different from the sample (addition: sample = 3, 

correct = 4, incorrect = 2; subtraction: sample = 3, correct = 2, incorrect = 4). 

Statistical analysis: 

To test for the effect of training on bee performance (number of correct choices), data 

from the learning phase of 100 choices were analysed with a generalized linear mixed-effect 

model (GLMM) with a binomial distribution using the ‘glmer’ package within the R 

environment for statistical analysis. We fitted a full model with trial number as a continuous 

predictor, and subject as a random factor to account for repeated choices of individual bees.  

To determine whether bees were able to learn to follow additional and subtraction 

rules, we analysed the test data by employing a GLMM including only the intercept term as 

fixed factor and subject as a random term. The proportion of ‘correct’ choices (MPCC) 

recorded from the tests were used as response variable in the model. The Wald statistic (z) 

tested if the mean proportion of correct choices recorded from the learning test, represented 

by the coefficient of the intercept term, was significantly different from chance expectation, 

i.e. H0: MPCC = 0.5.

A separate analysis was performed to determine if there were any differences between 

the four tests regarding the performance of bees. We analysed the test data using a GLMM 

including only the intercept term as fixed factor and subject as a random term. The proportion 

of ‘correct’ choices during the tests and the test type (addition test 1; addition test 2; 

subtraction test 1; subtraction test 2) were used as response variable in the model. The z 

statistic tested if the mean proportion of correct choices recorded from the tests differed based 

on test type. 

All analyses were performed within the R environment for statistical analysis. 
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H2: Supplementary Materials 

Supplementary Materials, Methods and Results 

Fig. S1. The full set of stimuli used (n = 216) for the addition (blue; n = 108) and 

subtraction (yellow; n = 108) training and test phases. 

Fig. S2. The Bayesian determined bias for each of the bees, averaged over nt = 10 

trials (except for the first 10 experiments, which were evaluated with respect to all 

previous experiments). 
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Fig. 1. Apparatus set-up for A) subtraction and B) addition trials. Diagram shows parts 

of the y-maze and the stimuli positions. When bees view a yellow sample stimulus 

(A) they must subtract one element from it and when bees view a blue sample 

stimulus (B) they must add one element to it. (Not visible in this diagram is the 

entrance wall into the first chamber). 
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Fig. 2. Results of the learning and testing phases. A) Performance during the learning 

phase. Dashed line at 0.5 indicates chance level performance. Solid black line 

represents a function describing the learning phase of n = 14 bees as modelled by a 

generalised linear mixed model (glmm). Points (closed circles) along the curve 

indicate the observed mean ± 95 % CIs (purple) of correct choices for the bees. 

Increase in performance during the learning phase was significant. B) Performance 
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during the testing phases for addition and subtraction. Pink columns (left) show 

results when the incorrect answer was in the same direction as the correct answer and 

blue column (right) show results when the incorrect answer was in the opposite 

direction as the correct answer. Numbers under columns (1, 2, 3, and 4) correspond to 

the operations in main text. Dashed line at 0.5 indicates chance level performance. 

Significance from chance level performance is indicated by * ≥ 0.05, ** ≥ 0.01, *** ≥ 

0.001. Data shown are means ± 95 % CI boundaries for all tests. 
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Supplementary Materials 

Supplementary Materials, Methods and Results 

Although the results obtained in the main text show a clear learnt ability for 

the bees to correctly identify the operations “add one” and “subtract one”, over 100 

appetitive-aversive conditioning choices, the mechanism by which these rules are 

learnt is much harder but important (28) to ascertain.  In particular, the averaged 

population results presented earlier mask the fact that each individual bee must learn 

at a different rate conditioned either by the random presentation of stimuli and/or by 

individual differences in cognitive abilities. This effect is accounted for in the main 

manuscript by the use of random effect of individual in our statistical modelling for 

both the training phase and the testing phase, but the understanding of decision 

making at an individual level is also important for understanding processes which we 

additionally consider below. 

The complexity of the addition/subtraction task is difficult, and requires the 

bee to identify several steps before a correct determination of the result is obtained. 

These steps include at least the following: 

1) The output ports of the Y-maze correspond to a ‘solution’ 

2) One of the ‘solutions’ is correct, the other incorrect 

3) The input port is connected to the solution identified above 

4) The number of symbols at the input relates to the number in the 

solution 

5) Colour denotes the operation plus one or minus one 

Operations 4) and 5) can likely not be solved independently of each other. 
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As the bee attempts to negotiate this highly complex space, it is likely that she 

applies certain investigative behaviours in attempting to achieve a solution. 

Accordingly it is not surprising that we sometimes find bees achieving results worse 

than chance during the acquisition stage (see individual results below in Fig. S2). For 

example, a bee may first try to always choose one direction in the Y-maze, or try to 

choose the higher number presented before determining the correct strategy required 

for solving the addition and subtraction tasks. 

It is also likely that the bee’s learning is strongly influenced by the 

(presumably random) choices that the bee initially makes. 

Another important factor is that the appetitive-aversive conditioning applied in 

the current experiment likely provides more feedback than appetitive-only 

conditioning.  Appetitive-only conditioning provides a positive outcome for the 

correct result, but no outcome for an incorrect result. Conversely, appetitive-aversive 

conditioning provides an outcome for both correct and incorrect results, thereby 

providing more feedback to the bee, which may be significant in the ability of the bee 

to learn the task (31).  

In the present experiment, if the bee makes an incorrect choice, then it is 

allowed to subsequently visit the solution and thus experience the correct option 

associated with sucrose. This is important to retain motivation with appetitive-

aversive conditioning (31), but also permits more information to enable exploratory 

learning over multiple trials.  In such a case, the bee learns that the incorrect choice is 

aversive and costly while also learning the correct choice is rewarding. This provides 

the bee with more information to assist in their development of the 

addition/subtraction rules above what is expected for a correct choice. 
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To highlight the individuality of the learning curves of the bees, here we show 

the full results, bee by bee, of the addition/subtraction experiments. We assume that 

an unconditioned bee in the Y-maze is likely to make random choices. Hence we 

perform a Bayesian analysis of the experimental data, treating the bee choices as a 

biased coin, where the bias indicates the degree to which the task has been learnt. A 

random outcome is identified by a bias of 0.5, whereas a bee solving the task perfectly 

results in a bias of 1.0.  A consistently anti-correlated result would result in a bias less 

than 0.5. 

To determine each individual bee’s ability, we seek the effective bias Beff of 

the bee on the basis of a certain number of experiments, nt, which is less than the total 

number of experiments to take into account the change in the bee’s understanding of 

the arithmetic task through the experiment. There are two results, “Success” and 

“Failure”, to which we assign the numerical values 1 and 0 respectively. The 

Bayesian approach allows the determination of the probability of the bee succeeding 

in the arithmetic task, which is the posterior probability.   

Fig. S2A – n shows the Bayesian determined bias for each of the bees, 

averaged over nt = 10 trials (except for the first 10 experiments, which were evaluated 

with respect to all previous experiments). The Bayesian analysis allows for bias 

probability from 0 to 1 with 101 levels (i.e. Beff = 0.00, 0.01, 0.02, …, 1.00) and the 

colour bar shows the probability of that bias determined by the Bayesian update.  The 

red line superimposed on the colour plot shows the conventional running average of 

the last 10 trials, which accords with the maximum bias probability as expected. The 

lower plot in each of the figures shows the bees actual results for each trial. 

The individual traces show a considerable amount of noise, which highlights 

that although the addition/subtraction task is certainly learnt, it is not learnt to perfect 
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accuracy, nor is it immediately obvious when the bee has learnt the task (Figs. S2A – 

N). We had initially expected that the individual bee performance would indicate an 

‘aha!’ moment (40), which would manifest in a significant and sustained increase in 

performance at a given experiment. Again, although the population averaged result 

clearly shows progressive learning (Fig. 2), individual performance shows bees with 

initially successful results that can only be due to chance (see for example Fig. S2I), 

or drops in performance (see for example Fig. S2C).  Longer term statistics are 

necessary to determine the extent to which the bees are able to retain, although given 

the complexity of the learning task, it is difficult to conduct such an experiment 

without the confounding effects of studies on the same individual for more than one 

day. 
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Fig. S1. The full set of stimuli used (n = 216) for the addition (blue; n = 108) and subtraction (yellow; n = 108) training and test 

phases. The stimuli contained between one and five elements with four possible shapes and there were 108 patterns for each of 

the addition and subtraction groups of stimuli. 
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Fig. S2. The Bayesian determined bias for each of the bees, averaged over nt = 10 trials (except for the first 10 experiments, which 

were evaluated with respect to all previous experiments). The Bayesian analysis allows for bias probability from 0 to 1 with 

101 levels (i.e. Beff = 0.00, 0.01, 0.02, …, 1.00) and the colour bar shows the probability of that bias determined by the Bayesian 

update.  The red line superimposed on the colour plot shows the conventional running average of the last 10 trials, which accords 

with the maximum bias probability as expected. The lower plot in each of the figures shows the bees actual results for each trial. 
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Abstract 

The assignment of a symbolic representation to a specific numerosity is a fundamental 

requirement for humans solving complex mathematical calculations used in diverse 

applications such as algebra, accounting, finance, physics, and everyday commerce. 

However, there is no evidence for such symbolic representations of quantity arising 

spontaneously in non-human animals. Here we show that honeybees are able to learn to 

match a symbol to a number or a number to symbol and subsequently transfer this knowledge 

to novel numerosity stimuli changed in colour properties, shape, and configuration. While 

honeybees learnt and applied the associations between the quantities two and three and 

symbols (an ‘N’ and an inverted ‘T’ respectively), they failed at reversing their specific task 

of symbol-to-number-matching to number-to-symbol-matching and vice-versa (i.e. a 

honeybee that learnt to match a symbol to a number of elements was not able to invert this 

learning to match the number of elements to a symbol). This demonstrated that while bees 

could learn the association between a symbol and number, it was linked to the specific task 

and they could not spontaneously extrapolate the association to a novel, reversed task. Our 

study therefore reveals that the basic requirement for numerical symbolic representation can 

be fulfilled by an insect brain suggesting that the absence of its spontaneous emergence in 

animals is not due to cognitive limitation.  

Introduction 

Matching specific numbers with symbolic representations of that number, such as Roman or 

Arabic numerals, is valuable for representing and manipulating numbers
1
. True counting 

requires the presence of symbolic representations of number and ordinality
2,3

, where the 

former is the assignment of a symbol to a specific quantity and the latter is the ability to order 

numeric symbols
2
.  
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Some non-human animals have demonstrated symbolic number representation, ordinality, or 

even both. Pigeons have been able to demonstrate learned symbolic number representation 

through peck number on a symbol representing that number
4,5

. The combination of ordinality 

and symbolic number representation, thereby demonstrating true counting, has been 

demonstrated in an African grey parrot
6-8

, chimpanzees
9-17

 and rhesus monkeys
18

. Alex, a 

single African grey parrot, was able to learn the names of numerals and subsequently sum the 

quantities, thereby demonstrating both numerical skills required for true counting
7,19,20

.  In 

addition, chimpanzees have been able to learn Arabic numerals and order them 

quantitatively
9-17

, and Rhesus monkeys have learned to choose the larger of two Arabic 

numerals to receive a corresponding number of food pellets
18

 as well as match numbers of 

items to the correct Arabic numeral
21

. Nevertheless, there is no evidence that any species 

apart from Homo sapiens have ever spontaneously developed symbolic representations of 

numbers, which opens the question of which animals are capable of learning symbolic 

number representations, which are capable of generating such representations, and whether 

this implies a fundamental difference in the mental processing of Homo sapiens compared 

with other animals
22-25

. 

Honeybees are considered a model species for studying numerical cognition in insects
26-31

. 

Previously, honeybees have demonstrated the capacity to evaluate quantities by counting the 

number of landmarks to reach a feeder
28,29

, or matching the number of objects in pictures
31

. 

We recently demonstrated that bees can correctly value quantities up to six by correctly 

choosing a stimulus with fewer elements between two alternative quantities
32

. Interestingly 

bees spontaneously placed an empty set, zero numerosity, at the lower end of the numerical 

scale without specific training on the task. This discovery challenges the postulate of zero 

being an unnatural abstract concept only reachable by large brained animals
32,33

. Honeybees 

have also demonstrated an ability to learn and perform simple addition and subtraction 



168 
 

operations of ‘plus one’ or ‘minus one’ using symbolic prompting and arrays of one to five 

objects
30

.  This recent study was the first step in determining if insects could use symbolic 

representation in numerical problem solving. The current study aimed to extend on this areaof 

research by training honeybees to learn to associate numerosities with symbols. 

In the current study, honeybees were examined on their ability to match two numerical 

tags/icons (symbols) to arrays of two or three elements specifically. Bees were trained to 

perform either a symbol-to-number-matching task (Group 1) or a number-to-symbol-

matching task (Group 2), and were subsequently tested on their ability to reverse their learnt 

association.  

Results 

Using a delayed-matching-to-sample procedure
31

 in a Y-maze apparatus (Fig. 1ab), 

honeybees were trained during 50 appetitive-aversive trials to match a N-shape symbol to 

pictures containing two elements while an inverted T-shape symbol was matched to pictures 

presenting three elements. Bees were either trained with the symbols as samples and 

quantities as choices (Group 1, Fig. 1c) or quantities as samples and symbols as choices 

(Group 2, Fig. 1c). The stimuli containing two or three elements were made up of three sets: 

elements of equal surface area (set 1), elements of the same surface area (set 2), and 

randomised shapes (set 3; for use in the transfer test only; see 
34

; Fig. 2; see ‘Stimuli’ 

subsection in Methods section for more information; Extended Data Fig. 1). In each trial, a 

correct match was reinforced by a sucrose appetitive reward and incorrect choices were 

associated with an aversive quinine solution. Bees in both groups demonstrated significant 

learning over the course of the appetitive-aversive trials to match either symbols to numbers 

(Group 1: z = 4.460; P < 0.001; Fig. 2c) or numbers to symbols (Group 2: z = 4.387; P < 
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0.001; Fig. 2d), demonstrating that bees learnt the two symbols had corresponding matching 

quantities associated with them. 

Following the acquisition of the symbol and number matching task, we conducted four 

unreinforced tests (no reward or punishment for choices) to determine the level of 

performance bees had achieved following training and whether they could transfer that 

knowledge to a novel inversed matching situation. When bees were asked to transfer the 

matching task to completely novel stimuli, with chromatically coloured backgrounds and 

elements which were of novel shape and arrangement (set 3), displaying quantities of two or 

three (transfer test), bees in both groups performed this task at a level higher than expected by 

chance. Bees in Group 1 choose the correct number at a proportion of 0.650 (95 % 

confidence intervals (CIs) = 0.554, 0.739; z = 2.95, P = 0.003; Fig. 2e). Bees in Group 2 

choose the correct symbol at a proportion of 0.620 (CIs = 0.506, 0.741; z = 2.19, P = 0.029; 

Fig. 2f).  

Bees were also tested on transferring their learnt matching tasks to stimuli which were similar 

to the training set but of novel configuration. Bees in both groups were reliably able to 

choose the correct number or symbol in these tests. In the learning test, using novel stimuli 

from the set which had an equal surface area for quantities of both two and three, bees in 

Group 1 chose the correct option at a proportion of 0.620 (CIs = 0.523, 0.711; z = 2.38, P = 

0.018; Fig. 2e) and bees in Group 2 chose the correct option at a proportion of 0.660 (CIs = 

0.564, 0.748; z = 3.14, P = 0.002; Fig. 2e). In the learning test, using novel stimuli from the 

set in which all elements were of equal size for quantities of both two and three, bees in 

Group 1 chose the correct option at a proportion of 0.630 (CIs = 0.533, 0.722; z = 2.57, P = 

0.010; Fig. 2f), and bees in Group 2 chose the correct option at a proportion of 0.610 (CIs = 

0.513, 0.702; z = 2.18, P = 0.029; Fig. 2f). 
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Finally, bees were tested on their ability to transfer either the learnt symbol-to-number-

matching task to a number-to-symbol-matching task (Group 1), or their number-to-symbol-

matching task to a symbol-to-number-matching task (Group 2). Stimuli used in this test were 

randomly selected from Set 1 or Set 2 using the stimuli which were not presented to bees 

during the training. Bees in both groups were unable to perform this reversal test at a level 

significant from chance expectation with bees in Group 1 choosing the correct symbol at a 

proportion of 0.550 (CIs = 0.452, 0.645; z = 1.00, P = 0.318; Fig. 2e) and bees in Group 2 

choosing the correct number at a proportion of 0.520 (CIs = 0.390, 0.649; z = 0.24, P = 0.346; 

Fig. 2f). 

Discussion 

Our findings show that independent groups of honeybees can learn and apply either a 

symbol-to-number-matching task or a number-to-symbol-matching task and subsequently 

apply acquired skills to novel stimuli. Interestingly, despite bees demonstrating a direct 

number and symbol association, they were unable to transfer the acquired skill to solve a 

reverse matching task. While independent groups of bees are able to learn the association in 

either direction, it seems the association itself is not reversible.  

Piaget’s Theory on children’s actions providing the basis for their own cognitive 

development gives some insight into our results
35

. Piaget considered ‘operations’ or 

‘reversible actions’ as most conductive to a child’s mental development. Operations are 

where an action can be undone by other actions, such as being able to turn a light on using a 

switch, and reverse this action by flicking the switch the other way
35

. Children will develop 

‘operational schemes’ throughout their learning which allows them to think about the ability 

to reverse their actions
35

. If we consider a child knocking over a glass of milk, they will learn 

that this is an irreversible action and the milk cannot easily be put back into the glass. 
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However, as in the previous example, a child is able to acquire the ability to understand 

reversing the state of a light as on or off via experimentation with these relative states, and 

individual actions.  

If we consider Piaget’s theories in terms of the results of the current study, it seems that bees 

have not learnt ‘operations’ or ‘operational schemes’ in this instance. Our experiments show 

that bees can learn to perform the association of symbol and number in either direction but 

neither group can reverse the association. Thus, bees are not easily able to reverse a learnt 

task unless they have had experience with the association in a specific direction. Thus, for 

cognitively demanding tasks like symbol and number matching, spontaneous reversion of the 

association appears to be beyond the capacity of an insect brain.  

In a previous study by Gross et al. (2009), honeybees were able to match two identical 

quantities differing by shape, colour, and configuration in a delayed-matching-to-sample 

framework
31

, such as the method used in the current study. A study by Zhang et al. (1999)

showed that bees were able to navigate by visual stimuli and memory recall of different 

groups of stimuli. Thus, bees were able to use symbol-like stimuli to inform decision on 

which direction to choose in a maze
36

. Our current study takes the task of numerical matching

and problem solving to a higher cognitive problem by training bees to match symbols and 

quantities within a delayed-matching-to-sample framework. In addition, honeybees were 

recently shown to learn simple addition and subtraction operations using this same DMTS 

framework
30

. When bees saw a blue array of elements, they learnt to add one element to the

quantity, however when the array of elements was yellow, the bees learnt to subtract one 

element from the quantity. The study demonstrated the use of colour as a symbolic cue as 

well as showing that honeybees had the capacity to perform simple arithmetic by using the 

symbolic colour cues. 
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While it is currently unknown where and how numerical information may be processed in 

insect brains
33

, evidence from vertebrates can inform us of how different numerical formats

and abstract concepts may be formed, processed, and stored. Monkeys performing spatial or 

temporal enumeration tasks activated different populations of neurons in the intraparietal 

sulcus, however, after the task was completed, a different neural population stored the 

cardinality information, regardless of whether the original enumeration task was temporal or 

spatial
37

. As the processing and final storage of temporal and spatial numerical formats are

different in monkeys, the authors conclude on distinct processing stages for different 

numerical formats
37

. The lack of reversibility in the bees’ understanding of the symbol-

number matching tasks suggests that the symbolic and numerical information is processed 

and/or stored by different populations of neurons. Thus symbol and number matching tasks 

are not able to be reversed without training in both the forward and backward directions, i.e. 

with two different neuronal populations for the processing of the two directions of 

associations. Recent work on symbol and number associations in Rhesus monkeys shows that 

with training over several months, monkeys learn the association between Arabic numerals 

and their corresponding quantities. Eventually this training resulted in the symbols being 

responded to in a similar way to the quantities in the prefrontal cortex, and to a lesser extent 

in the parietal cortex
21

. Thus, perhaps with similar training on the quantitative value of

multiple symbols, honeybees would demonstrate a similar association and neuron populations 

could respond to the symbolic representation and quantities in the same way, which may 

facilitate the reversal task. However, currently such a complex conditioning paradigm has not 

been developed for training and testing bees as it would require a very complex experimental 

design within subject, using an animal that has a short lifespan. Bees would need to be trained 

on the valuation of different quantities (e.g. 
32

), then to match those quantities with symbolic

representations (as in the current study). The next phase of the experiment would then be to 



173 
 

design a way to train bees to associate the quantitative value of the numerosity with the 

symbol. Finally, bees would need to be tested on their ability to value the symbols 

numerically. Considering the lifespan of the bee and the complexity of such a design, it is 

currently not possible to test this hypothesis. 

The results of the current study, combined with previous studies on honeybee numerical 

ability
28-32

, suggest that bees may be capable of true counting
2,3

. Our above results have 

shown that bees are able to learn symbolic representations of number and extrapolate this 

knowledge to novel stimuli, which constitutes two aspects of true counting. It remains to be 

explored as to whether bees can learn specific number and symbol associations for more than 

two relations and use symbolic representations to order numbers by value, which would 

demonstrate both symbolic number representation and ordinality, evidence of true 

counting
2,3

. Thus, this task does not put honeybees on par with the use of symbolic 

representations of number in pigeons, chimpanzees, Rhesus monkeys, and Alex the parrot, as 

these other species were able to learn more than two symbol-number associations and even 

give the symbols (or labels) quantitative value. The current study is valuable for refining our 

understanding of numerical abilities in insects and shows that at least the learning of 

symbolic numerical representations is not restricted to vertebrates. Furthermore in previous 

studies, bees were able to quantitatively value numbers as ‘greater’ or ‘lesser’ than other 

numbers correctly; demonstrating ordinality of sets
32

. A final demonstration of the ability to 

order the symbolic tags associated with specific numbers would constitute true counting
2,3

 in 

bees. Understanding how such apparently complex numerical skills are acquired by miniature 

brains will help enable our understanding of how mathematical and cultural thinking evolved 

in humans, and possibly, other animals
1,24,25,38,39

. 
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Figure 1: Apparatus set-up and stimuli examples for the a) symbol-to-number-matching task 

and b) number-to-symbol-matching task. Diagram shows parts of the y-maze and the 

stimulus positions. a) In the symbol-to-number-matching task, when bees view a sample 
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symbol (N-shape or inverted T-shape), they must match it to the correct quantity of two or 

three elements. b) In the number-to-symbol-matching task, when bees view a sample quantity 

(two or three elements), they must match it to the correct symbol (N-shape or inverted T-

shape). (Not visible in this diagram is the entrance hole and wall into the first chamber and 

the plexiglass cover for the entire apparatus). c) An example of the symbols being matched to 

their corresponding correct quantity (N-shape to two elements; inverted T-shape to three 

elements).  
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Figure 2: Examples of possible stimulus combinations during trials and tests in experiments 

on a) symbol-to-number-matching tasks and b) number-to-symbol-matching tasks. The 

diagrams show the sample stimulus (Group 1: symbol; Group 2: number) and the matched 

correct or incorrect options which would be presented in the two arms of the Y-maze (Fig. 

1ab). The four tests were conducted after the 50 appetitive-aversive trials had been completed 

and were conducted in the order of: transfer test, learning tests (pseudo-randomised order), 

and then the reversal test. The green square on the right hand side of the arrow indicates 

which option is the correct answer for each of the example combinations. 
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 Figure 3: Results of the training and testing phases for the (a) group of bees trained to match 

a symbol with a quantity (Group 1) and for the (b) group of bees trained to match a quantity 

with a symbol (Group 2). a-b) Performance during the training phase for Group 1 (a) and 

Group 2 (b). Dashed line at 0.5 indicates chance level performance. Solid black line 

represents a function describing the learning phase of n = 10 bees as modelled by a 

generalised linear mixed model (GLMM). Points (closed circles) along the curve indicate the 
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observed mean ± 95 % CIs (purple) of correct choices for the bees. Increase in performance 

during the learning phase was significant. c-d) Performance during the testing phases for both 

Group 1 (c) and Group 2 (d). Dashed line at 0.5 indicates chance level performance. 

Significance from chance level performance is indicated by * ≥ 0.05, ** ≥ 0.01, *** ≥ 0.001, 

NS > 0.05. Data shown are means ± 95 % CI boundaries for all tests. 



179 
 

Method 

Study species: 

We used 20 free-flying honeybees (Apis mellifera) foragers for this experiment. All bees 

were marked with a coloured dot on the thorax to identify individuals. A gravity feeder 

providing ca. 10 – 30 % sucrose near the experimental set-up (distance: 20 m) maintained a 

regular number of bees for testing. 

Apparatus: 

Individual honeybees were trained to enter a Y-maze (as described in 
40,41

; Fig. 1ab) through 

a small entrance hole (approximately 5 cm diameter). The Y-maze arms were 40 x 20 x 20 

cm (L x W x H). The bees had to fly through an initial entrance hole to enter a chamber 

where they would view the sample stimulus. This sample stimulus would be either a symbol 

or quantity depending on the group being trained. Each bee could then fly through another 

hole into the decision chamber where it would be presented with two different options in each 

arm of the chamber. If the sample stimulus was a symbol then the two options would be 

quantities of two vs. three elements, if the sample stimulus was a quantity of two or three 

elements, then the two options would be the two symbol options (Fig. 1). 

Stimuli were presented on grey backgrounds located 5 cm away from the decision lines. Two 

stimuli, one correct and one incorrect, were presented simultaneously in each arm of the Y-

maze on the grey plastic background (Fig. 1ab). A 10 μL drop of either a 50 % sucrose 

solution (correct choice) or a 60 mM quinine solution (incorrect choice) were used as 

rewarding and punishing outcomes respectively during the training phase as this promotes 

enhanced visual discrimination performances in free-flying honeybees. Each stimulus had a 

grey landing pole located below it which held either the drop of sucrose under the correct 
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option or quinine under the incorrect option so that bees would learn to associate stimuli with 

either a reward or punishment. Poles were replaced when touched by a bee and cleaned with 

20 % ethanol then dried to exclude olfactory cues. The precise order by which stimuli were 

arranged in the Y-maze was randomly allocated between choices. If a bee made an incorrect 

choice and started to imbibe the quinine; it was allowed to fly to the pole in front of the 

correct stimulus to collect sucrose to maintain motivation; but only the first choice was used 

for statistical analysis. When the bee landed on the pole with sucrose, both the pole and bee 

were removed from the Y-maze; then the pole was replaced with a clean pole, and stimuli, 

positions of target and distractor were randomised. Once the bee was finished imbibing the 

sucrose, it was allowed to fly back to the hive if satiated, or make another decision by re-

entering the maze. During the non-reinforced tests, a drop of water was placed on each of the 

poles placed in front of the stimuli. Ten choices (touches of the poles) were recorded for each 

of the four tests to enable statistical comparisons. 

Stimuli: 

Each symbol stimulus consisted of a 6 x 6 cm white square with a black symbol (either an N-

shape or an inverted T-shape), and stimuli containing quantities were 9 x 9 cm white square 

cards with elements presented on them, all covered with 80 µm Lowell lamina (Fig. 1). 

Symbol stimuli had a surface area of 36 cm
2
 (visual angle of 149° from the decision line) 

while quantity stimuli had a surface area of 81 cm
2
 (visual angle of 165° from the decision 

line). Symbols were based on the Xia et al. (2000) paper on pigeons matching numbers to 

symbols
4
. The stimuli containing two or three numbers of elements were split into three 

different sets: 1) a set where surface area of all elements was equal (n = 32); 2) a set where 

each element was the same size (n = 32); 3) a set where random chromatic objects/shapes 

were used (for transfer test only; n = 8). Sets 1 and 2 consisted of squares, diamonds, circles, 

or triangles which was pseudo-randomised between trials (Extended Data Fig. 1). Training 
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sets used in each trial were randomised in terms of continuous predictors of numerosity as 

much as possible, however set 3 was used in testing as a control for variables correlating with 

numerosity, such as density, size of elements, convex hull, area of elements, line length). 

Stimulus sets 1 and 2 were achromatic (white background with black elements) and set 3 was 

chromatic (grey background with salient yellow elements
41

). Stimulus sets were based on sets 

from 
34

. 

Training: 

We trained two groups (n = 10 per group) of bees to fly into a Y-maze apparatus and used a 

delayed-matching-to-sample (DMTS) framework for conditioning
31

. Upon flying into the Y-

maze, one group of bees (Group 1) were presented with one of two possible symbols (Fig. 1). 

After the bees flew into the next chamber, the decision chamber, they were presented with 

two options, one correct (two or three elements) and the other incorrect (two or three 

elements). The second group of bees (Group 2) were trained using the opposite DMTS 

framework, where they were first showed a quantity of elements in the first chamber and then 

presented with two symbols in the arms of the Y-maze in the decision chamber. 

We used sets of stimuli with controlled surface area (set 1) and equal element size area (set 2) 

with achromatic properties (black elements on white background). The choice of stimuli for 

each trial was pseudo-randomised with regards to set (1 or 2), shape, and arrangement of 

elements. Bees were trained for 50 choices using appetitive-aversive differential 

conditioning.  

Testing: 

After the 50 training choices were completed, bees underwent four tests in the following 

order: 
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A transfer test was conducted for 10 unconditioned choices. In Group 1 this test consisted of 

showing a symbol as the sample and then a randomised set of abstract objects not previously 

seen by bees (Set 3: random set with chromatic properties). In Group 2 this test consisted of 

showing the random set of two or three elements and then both symbols as the options. 

Two learning tests were conducted afterwards for 10 unconditioned choices in a pseudo-

randomised order [two controlled sets: set 1) equal surface area of elements; set 2) equal 

element size; both with achromatic properties]. 

A reversal test was finally conducted for 10 unconditioned choices. The Group 1 test 

consisted of showing a quantity as the sample and having the bee choose a corresponding 

symbol. The Group 2 test consisted of showing a symbol as the sample and having the bee 

choose a corresponding quantity. This test aimed to determine whether bees could extrapolate 

the task to the reverse matching situation. Stimuli in this test were also achromatic and 

pseudo-randomly chosen from stimuli within set 1 or set 2 which had not previously been 

presented to bees during training. 

Statistical analysis: 

To test for the effect of training on bee performance (number of correct choices), data from 

the learning phase of 50 choices were analysed with a generalized linear mixed-effect model 

(GLMM) with a binomial distribution using the ‘glmer’ package within the R environment 

for statistical analysis. We fitted a full model with trial number as a continuous predictor, and 

subject as a random factor to account for repeated choices of individual bees.  

To determine whether bees were able to learn to match a symbol with the correct 

corresponding quantity, we analysed the test data by employing a GLMM including only the 

intercept term as fixed factor and subject as a random term to account for the repeated 
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measures. The proportion of ‘correct’ choices (MPCC) recorded from the tests were used as 

response variable in the model. The Wald statistic (z) tested if the mean proportion of correct 

choices recorded from the tests, represented by the coefficient of the intercept term, was 

significantly different from chance expectation, i.e. H0: MPCC = 0.5. 

All analyses were performed within the R environment for statistical analysis
43

. 

Data availability: 

The raw choice data from training and tests of individual bees that support the findings of this 

study will be made available on Dryad Data Repository. 
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Extended Data 

Extended Data Figure 1: The three sets of numerosity stimuli. Set 1 consisted of 6 x 6 cm 

white cards containing either two or three elements. Shapes consisted of circles, diamonds, 

squares, or triangles. All elements contained in each stimulus in Set 1 had a combined black 

surface area of 10.0 ± 0.3 cm
2
 regardless of how many elements they contained. Set 2 

consisted of 6 x 6 cm white cards containing either two or three elements. Shapes consisted 

of circles, diamonds, squares, or stars. Each element in Set 2 had a surface area of 1 cm
2
, 

resulting in stimuli containing two elements having an overall black surface area of 2 cm
2
 and 

stimuli containing three elements having an overall black surface area of 3 cm
2
. Set 3 

consisted of grey cards containing either two or three salient yellow elements. Shapes, 

configurations, and element sizes were pseudo-randomised in Set 3. Sets 1 and 2 were using 
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in training, the learning tests and the reverse test, while Set 3 was only shown during the 

transfer test and thus was completely novel to bees. 
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Chapter 6 
  

6. Discussion 

Honeybees have previously demonstrated the ability to count (Chittka and Geiger, 1995; 

Dacke and Srinivasan, 2008) and discriminate between (Gross et al., 2009) up to four objects. 

My research (Chapters 2 – 5) has shown an extended numerical capacity in honeybees 

including learning, application, and extrapolation of different numerical concepts and rules 

with the use of appetitive-aversive differential conditioning (Chapter 2; Avarguès-Weber et 

al., 2010; Chittka et al., 2003). 

Over the course of my research, honeybees have demonstrated improved quantity 

discrimination (Chapter 2), the ability to apply ‘less than’ and ‘greater than’ numerical rules 

to quantitatively value zero numerosity (Chapter 3; Howard et al., 2018), simple addition and 

subtraction (Chapter 4), and symbol and number associations (Chapter 5). My research has 

thus enabled a further understanding of what the honeybee brain can do when motivated, 

suggested a new training procedure for understanding numerical skills and cognition in other 

animals, and opened up the question of how numbers might be processed by an insect brain 

(Nieder, 2018). Furthermore, the demonstration of complex numerical capacities in an 

invertebrate, which is separated from humans by 600 million years, suggests that numerical 

capacity may be a result of convergent evolution (Nieder, 2016a) and has an important 

adaptive function for animals. 

The results reported above, in connection with other studies, give us an insight into questions 

such as: whether language is required for numerical skills, whether non-human animals can 

demonstrate quantical and numerical cognition, how an insect is able to learn, remember and 
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apply numerical concepts and skills, how conditioning can modulate numerical ability, and 

what sort of real-world applications, ecological and technological, this research may provide. 

There is a debate surrounding the potential capacity of non-human animals to possess or even 

learn complex number skills (Nieder, 2005; Nieder, 2016a; Nieder, 2017; Núñez, 2017a; 

Núñez, 2017b; Verguts and Chen, 2017). While Núñez (2017a; 2017b) argues that number 

skills are an artefact of human evolution and the development of culture and language, Nieder 

(2017) contends that studies which demonstrate complex number skills in non-human 

animals suggest numerical ability has also evolved in non-human animals. The arguments 

supporting the evolution of numerical capacity in non-human animals are further 

strengthened by the discovery of neurons selective to number detection in the brains of 

different species of animals (discussed below; Bongard and Nieder, 2010; Dehaene, 2003; 

Diester and Nieder, 2007; Ditz and Nieder, 2015; Ditz and Nieder, 2016b; Nieder, 2012; 

Nieder and Dehaene, 2009; Nieder et al., 2006; Nieder et al., 2002; Nieder and Merten, 2007; 

Nieder and Miller, 2003; Nieder and Miller, 2004; Ramirez-Cardenas et al., 2016; Sawamura 

et al., 2002; Thompson et al., 1970; Tudusciuc and Nieder, 2007; Viswanathan and Nieder, 

2013). My research informs the current debate by showing that advanced numerical concepts, 

such as the understanding and valuation of zero numerosity, performing simple arithmetic, 

and symbol-number matching, are accessible to honeybees, provided there are adequate 

conditioning procedures and experimental design. The research into numerical ability in 

honeybees provides evidence that number sense has evolved in non-human animal species as 

it can be observed across different taxa from primates to insects. My research also supports 

the position of Verguts and Chen (2017) that ‘evolution’ also occurs at an individual level 

throughout an animal’s lifetime. ‘Evolution’ at an individual level is classified as a “much 

faster evolutionary time scale, operating within an individual’s lifetime” in which 

“individuals learn to accommodate cognition (via instruction and trial-and-error learning) to 
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their culture, constrained by their biology” (Verguts and Chen, 2017). The capacity to 

cognitively learn by trial and error on an ‘individual evolutionary timescale’ is observed in 

honeybees, as bees rapidly learn to use numbers, symbols, and symbolic representations of 

numbers to solve complex numerical problems (Chapter 2 – 5). 

6.1 Honeybee numerical capacity 

In Chapter 1, I reviewed the literature on the numerical capacities of different species to 

summarise what is currently known about the level of complexity of numerical ability 

animals are able to display (Figure 1). In this section I will discuss the ability of honeybees to 

reach these levels using the same categories and tasks presented in the introduction. 

6.1.1.  Subitizing/ Object File System (OFS) 

Honeybees have previously demonstrated the ability to subitize (Figure 1), the quick and 

accurate enumeration of four and fewer items ‘at a glance’ (Agrillo et al., 2008; Kaufman et 

al., 1949; Piazza et al., 2002; Tomonaga and Matsuzawa, 2002; Trick and Pylyshyn, 1994). 

This quantification mechanism is also known as using the object file system or parallel 

individuation system (Hyde, 2011). Gross et al. (2009) demonstrates that bees can match 

quantities of abstract elements of two and three, and discriminate between quantities up to 

three vs. four. In my research, I did not seek to re-assess subitizing ability in honeybees, 

however in Chapter 2 and Chapter 3 bees used in my experiments demonstrated the ability to 

discriminate between numerosities above and below the subitizing range. In Chapter 2, bees 

demonstrated an ability to learn to discriminate numerosities one to ten from four elements 

during training, and were successfully able to discriminate between 4 vs. 5, 4 vs. 6, 4 vs. 7, 

and 4 vs. 8 in tests when trained with appetitive-aversive differential conditioning. In Chapter 

3, bees were trained and tested on their ability to discriminate between quantities of zero to 
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six and were successfully able to learn these discriminations and apply the learning to novel 

numerosities. 

6.1.1.  True counting 

While true counting is not considered accessible to non-human animals (Núñez 2017b), 

honeybees have demonstrated some aspects of the criteria necessary for true counting. 

6.1.1.1.  Extrapolation to novel representations of numerosity and novel numerosities: 

Previous research demonstrated that bees could perform a few aspects required for true 

counting. As shown in Figure 1 and Figure 2, true counting requires the ability to extrapolate 

numerical tasks to novel representations of numerosity (Dacke and Srinivasan, 2008; Davis 

and Pérusse, 1988). In Gross et al. (2009), bees demonstrated two attributes of true counting 

which are considered of mid-range complexity (Figure 1). Honeybees in this study were able 

to extrapolate quantity discrimination to novel abstract elements, known as the ‘abstraction 

principle’ (Dacke and Srinivasan, 2008; Davis and Pérusse, 1988).  

Gross et al. (2009) also demonstrated the extrapolation of quantity discrimination to novel 

numerosities, which is an ability required for the demonstration of true counting (Davis and 

Pérusse, 1988; Lazareva and Wasserman, 2017). Honeybees could learn to match the sample 

stimulus of two elements to the correct option in the comparison of two vs. three elements, 

bees could then perform the matching of three to the correct option of three vs. four elements 

without further training (Gross et al., 2009), showing extrapolation of the task using a novel 

numerosity. 
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Figure 1: A schematic describing the relative complexities of different numerical concepts 

(overall titles) and numerical tasks (smaller titles), how the numerical concepts relate, and 

which species have demonstrated each task and concept. The diagram shows which tasks 

belong at varied levels of complexity ranging from non-numerical through to basic, mid-

range, and high complexity tasks. The tasks are grouped into overall concepts which are 

defined across the literature. In some cases all tasks need to be demonstrated for a concept to 

be shown (e.g. true counting requires all criteria to be met), in other cases a single task needs 

to be shown to demonstrate the concept (e.g. any task in quantical cognition is evidence of 

using quantical cognition). The interaction between concepts is also shown by the dark areas 

of the diagram. Some concepts have overlapping tasks needed to demonstrate more than one 

concept. Beside or below each task I have shown the animal species which have successfully 

performed the task. The star in the key classifies the task as having been demonstrated by all 

species shown on the schematic. I have included this figure from Chapter 1 for easy reference 

in the current section. 
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Figure 2: A schematic describing the relative complexities of different numerical concepts 

(overall titles) and numerical tasks (smaller titles), how the numerical concepts relate, and 

which species have demonstrated each task and concept, as above in Figure 1. In this diagram 

the icons (white/black bee and yellow/black bee) indicate which tasks have been performed 

by honeybees. The white/black bee icon represents what previous studies have shown in 

terms of numerical abilities of bees, while the yellow/black bee icon indicates the numerical 

tasks honeybees have performed as described in my experimental chapters (Chapters 2 – 5). 

The question mark bee icon denotes where bees have met some criteria possibly constituting 

the demonstration of a task but may not have fully reached that level (discussed in section 

6.1.5.2). 
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I have demonstrated that honeybees are able to extrapolate number tasks to novel 

representations of numerosity and novel numerosities (Chapters 2 – 5). In each experimental 

chapter, the testing phases required bees to translate learnt number tasks to novel elements 

differing in colour, shape, pattern, and/or element size as well as transfer learning to novel 

numerosities. In Chapter 2, bees were able to learn to discriminate between numerosities of 4 

: 5 to 4 : 8 (0.80 to 0.50) using appetitive-aversive conditioning and extrapolate this 

discrimination ability to novel shapes and patterns. In Chapter 3, bees were able to learn the 

numerical rules of ‘less than’ and ‘greater than’ and subsequently apply these rules to the 

novel numerosities of five elements and an empty set, as well as extrapolating the rules to 

novel shapes and patterns in the testing phases. In Chapter 4, bees were first able to learn to 

either add or subtract one element based on the colour of the sample stimulus; subsequently 

bees were able to extrapolate both rules to a novel numerosity, novel patterns, and novel 

shapes. In Chapter 5, bees were able to learn to match two quantities with two symbols and 

were subsequently able to extrapolate these associations to stimuli of novel pattern and 

colour. Thus my research has shown the ability of bees to apply multiple learnt numerical 

tasks to both novel representations of stimuli and novel numerosities, thereby demonstrating 

two aspects of true counting. 

6.1.1.2.  Discrimination of numerosities above four: 

Another aspect of true counting requires the serial counting of five and more elements, 

identified as a complex level of numerical capacity (Figure 1; Figure 2; Agrillo et al., 2008; 

Davis and Pérusse, 1988; Kaufman et al., 1949; Lazareva and Wasserman, 2017; Piazza et 

al., 2002; Tomonaga and Matsuzawa, 2002; Trick and Pylyshyn, 1994). A building block for 

performing the serial counting task is the ability to discriminate between numerosities at and 

above the subitizing range (Figure 1; Figure 2). In Chapter 2, bees demonstrated the ability to 
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successfully discriminate between numerosities of 4 vs. 5, 4 vs. 6, 4 vs. 7, and 4 vs. 8, thus 

surpassing the previous threshold of numerosity discrimination reported in Gross et al. 

(2009). Additionally, Chapter 3 results demonstrate that bees were able to learn ‘less than’ 

and ‘greater than’ numeric rules when trained on the numerosities one to six. The results 

reported in Chapter 2 and Chapter 3 were achieved with appetitive-aversive differential 

conditioning, while the previous discrimination limit of 3 vs. 4, shown in Gross et al. (2009), 

was determined using appetitive-differential conditioning. While my experiments do not 

demonstrate the ability of bees to count serially, they show that bees are able to process and 

discriminate between quantities above four. 

6.1.1.3.  Cardinality: 

Cardinality is the quantitative assignment of value to differing amounts of items, such as the 

number of elements in a set (Nieder, 2005). Honeybees have demonstrated this capacity 

through their ability to correctly value novel numerosities with the learnt rules of ‘less than’ 

and ‘greater than’, which involved the relative valuation of two numerosities and the ordering 

an empty set by value along the number line (Chapter 3; Howard et al., 2018). To a lesser 

extent, cardinality is demonstrated in Chapter 2 as honeybees were able to discriminate 

between sets of numbers from one – ten. 

6.1.1.4.  Symbol and number matching: 

The ability to assign a numerical tag to a specific numerosity and subsequently value that 

symbol is another aspect of true counting (Lazareva and Wasserman, 2017). While my 

research has not demonstrated that honeybees can reach this level of symbolic representation, 

bees in Chapter 5 did demonstrate the precursor for this capacity, namely the ability to match 

numerosities with symbols (Figure 1; Figure 2). The results from Chapter 5 have provided a 

mechanism for bees to learn symbol and numerosity associations thus enabling further 
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research into their ability to give symbols quantitative values. The possibility of training bees 

to give quantitative value to symbols would be a very complex experiment. The first stage of 

such an experiment would require bees to learn the numeric valuation of different 

numerosities (e.g. as demonstrated in Chapter 2 and Chapter 3). Bees would then need to 

learn the associations between numerosity and symbol, as done in Chapter 5. The next phase 

of the experiment would then be to design a way to train bees to associate the quantitative 

value of the numerosity with the symbol. Finally, bees would need to be tested on their ability 

to value the symbols numerically. This is a very complex experiment to design and conduct 

within subject, using an animal that has a short lifespan. Despite the challenges involved in 

this experimental design, the learning and combination of these different stages of the 

experiments may be possible as honeybees have demonstrated an ability to learn dual 

concepts (Avarguès-Weber et al., 2012). Honeybees were able to simultaneously learn two 

rules (e.g. left/right and same/different) and then combine those rules to form a dual concept 

which could be applied to novel problems and stimuli. Thus, the study by Avarguès-Weber et 

al. (2012) provides an insight into how bees could learn symbolic valuation in stages. 

However, linking all of these stages, within subject, in an experimental study would currently 

be challenging to achieve. 

6.1.1.5.  True counting criteria: 

While true counting is not considered accessible to non-human animals, due to its’ 

quantification of numerosity using symbolic reference, the studies reported above 

demonstrate that bees can learn and perform some aspects of true counting, such as 

extrapolation to novel representations of number and novel numerosity, discrimination of 

numerosities above the subitizing range, cardinality, and symbol-number associations, but 

have not demonstrated all criteria (Figure 2). However, all criteria required for the 

demonstration of true counting has not been shown in a single non-human animal species 
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(Figure 1). It appears experimental access to this question is difficult within subject due to the 

substantial list of criteria needed to show true counting. 

6.1.2. Quantical cognition 

6.1.2.1.  Non-numerical cues: 

Some species are able to use non-numerical cues which correlate with numerical cues in 

order to judge quantity. In previous studies of honeybees, bees demonstrated that when 

trained to forage on a feeder at a certain number of landmarks, some individuals preferred to 

use sequential of counting landmarks to find the feeder while others preferred to use distance 

cues, or possibly other cues correlated with distance such as energy use or other landmarks 

(Chittka and Geiger, 1995). Another study also found a preference of bees to use information 

other than landmark counting to forage efficiently (Menzel et al., 2010). 

In my research I was careful to control for different elements of the stimuli to ensure bees 

could not use non-numerical cues in order to solve the numeric tasks presented (Chapter 2 – 

5). The supplementary material in Chapter 3 presents an extensive methodology of how this 

was achieved. Stimuli used in Chapter 3 were controlled for spatial frequency, surface area of 

colour, patterns, shapes, and element sizes. To ensure spatial frequency was not a predictor of 

the results in Chapter 3, we compared the spatial frequency of the images, power spectra, and 

the transect graphs produced for each of the 97 stimuli used and found that spatial frequency 

could not allow bees to transfer a learnt ‘spatial frequency rule’, rather than a numerical rule, 

to correctly select the empty set stimulus in the experiments, thus bees must have been using 

the learnt numerical rules of ‘greater than’ and ‘less than’ to solve the tasks. In addition to 

this, all experiments in my research (Chapters 2 – 5) involved learning and transfer tasks 

which tested the ability of bees to extrapolate the numerical tasks to novel stimuli of different 

shapes, patterns, element sizes, numerosities, and/or colours without reinforcement for 
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choices. The controls employed for the stimuli properties in all experiments demonstrate that 

bees were not able to utilize non-numerical cues in order to solve numeric tasks and thus 

must have been solving the tasks based on numeric information alone. 

6.1.2.2.  Quantity discrimination: 

Quantity discrimination of four or less elements has been demonstrated in a delayed-

matching-to-sample task by Gross et al. (2009). In Gross et al. (2009), honeybees 

demonstrated the ability to differentiate between quantities of 2 vs. 3 and 3 vs. 4 but not 4 vs. 

5 or 5 vs. 6. 

In Chapters 2 – 5, honeybees have demonstrated some level of quantity discrimination. In 

Chapter 2, honeybees were able to learn to successfully discriminate between numbers below 

and above the subitizing range. Honeybees also learnt to discriminate between the relative 

quantities of zero to six, demonstrating quantity discrimination below and beyond the 

subitizing range in Chapter 3. In Chapter 4, honeybees were able to discriminate between the 

correct and incorrect options of an arithmetic problem which ranged from one to five. 

Additionally, bees in Chapter 5 demonstrated the ability to differentiate between the 

quantities of two and three when represented as different abstract shapes, sizes, patterns, and 

colours. 

Therefore, honeybees have demonstrated both basic and mid-range learning of numerical 

tasks, which show they are able to perform quantical cognition. 
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6.1.3. Numerical cognition 

6.1.3.1.  Symbol and number matching 

As discussed in section 6.1.2.4, honeybees in Chapter 5 displayed the ability to match 

symbols and numbers. Thus, bees are displaying an aspect of exact number use and an aspect 

of numerical cognition (Figure 1; Figure 2; Núñez, 2017a). 

6.1.3.2.  Arithmetic 

Arithmetic, including abilities such as addition, subtraction, multiplication, and division, is a 

numerical task which demonstrates exact number use and numerical cognition (Núñez, 

2017a). In Chapter 4, honeybees demonstrate the ability to perform the addition and 

subtraction tasks of + 1 and – 1, thus demonstrating arithmetic, exact number use, and 

numerical cognition (Figure 2). Whilst Chapter 4 shows some capacity of bees to add and 

subtract by one element using symbolic representation of operators, future work could 

explore if arithmetic in bees extends to +2/-2, multiplication, and/or division. The framework 

created in Chapter 4 now allows for these experimental possibilities. 

6.1.4. Numerical competency 

6.1.4.1.  Cardinality 

Cardinality, the ability to order sets of different numerosities (Nieder, 2005), was 

demonstrated by honeybees in Chapter 3, and to a lesser extent Chapter 2, as discussed in 

section 6.1.2.3. In Chapter 3, bees were able to give relative value to two different sets of 

numerosities using ‘greater than’ and ‘less than’ rules. The bees could subsequently apply 

these numeric rules to novel numerosities, demonstrating cardinality. Similarly, in Chapter 2 

bees were able to discriminate four elements from stimuli containing one to ten elements, 

which demonstrates cardinality to an extent.  
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6.1.5. Arithmetic 

6.1.5.1.  Arithmetic problems using abstract objects 

As described in section 6.1.4.2 honeybees displayed some level of arithmetic in Chapter 4. 

Honeybees were able to add or subtract one element from the numerosities one to five. The 

ability of bees to perform this task was able to be transferred to novel numerosities and novel 

representations of the stimuli, thus demonstrating this level of arithmetic. 

6.1.5.2.  Symbolic representation of numerosity for use in arithmetic 

Bees are potentially able to demonstrate symbolic representation in arithmetic (Figure 1). 

Honeybees were able to learn that a colour represented whether the bee had to add or subtract 

an element from the sample stimulus in each trial. Bees used this symbolic representation of 

an operation to determine which numerical task to perform (Chapter 4). While bees were not 

using symbolic representation of numerosity in arithmetic, they were able to use some level 

of symbolic representation in a numeric task (Figure 2). Further research into the use of 

symbols in arithmetic by bees should address this outstanding question. 

6.1.6. Zero numerosity 

Honeybees in Chapter 3 demonstrated the third level of understanding zero numerosity as 

defined by Nieder (2016b). Honeybees learnt the relational numerical rules of ‘less than’ and 

‘greater than’ and were subsequently able to apply these rules to value zero at the low end of 

the numerical continuum. Furthermore, bees displayed numerical distance effects with zero 

numerosity (Nieder, 2016b), thereby demonstrating an understanding of zero as a quantitative 

numerosity. 
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6.1.7. Numerical concepts and tasks in honeybees 

Honeybees have displayed numerical ability ranging from the basic use of numerical 

information correlated with non-numerical cues (Chittka and Geiger, 1995; Menzel et al., 

2010) through to the complex task of arithmetic using symbolic representations of addition 

and subtraction rules (Chapter 4). Honeybees have also been able to demonstrate a variety of 

numerical categories (defined in Figure 1; Figure 2) including quantical cognition, subitizing 

aspects of true counting, use of the AMS/ANS, numerical competency, numerical cognition, 

zero numerosity tasks, and arithmetic. Quantification and discrimination of numerosities 

above four elements demonstrates that honeybees are able to use the approximate magnitude 

system (ANS), also known as the analog number system (AMS), which is the mechanism 

human and non-human animals use to process numbers past the subitizing/OFS range 

(Brannon and Merritt, 2011; DeWind et al., 2015; Feigenson et al., 2004; Núñez 2017b). The 

ANS is a non-symbolic quantification system used by species, as opposed to true counting 

which is symbolic and considered only accessible to humans. 

6.2. Explanation for the honeybee’s capacity to learn and perform numerical tasks 

There are various reasons why a honeybee may be able to learn and apply complex numerical 

concepts. We observe a spontaneous ecological need for quantical and numerical abilities in 

other animals. These tasks include addition and subtraction of food items in rhesus monkeys 

(Sulkowski and Hauser, 2001; Tsutsumi et al., 2011) and spiders (Nelson and Jackson, 2012; 

Rodríguez et al., 2015), allowing them to keep track of food resources. Another example is 

with quantity discrimination between shoals in angelfish (Gómez-Laplaza and Gerlai, 2011a; 

Gómez-Laplaza and Gerlai, 2011b) and mosquitofish (Agrillo et al., 2007; Agrillo et al., 

2008; Dadda et al., 2009) in order for them to choose to shoal with a higher number of fish 

for predation avoidance (Hamilton, 1971). Landmark counting in honeybees is used for 
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navigation to locations of food sources (Chittka and Geiger, 1995; Dacke and Srinivasan, 

2008). In my research bees have demonstrated an advanced capacity for an insect to learn and 

apply complex numerical concepts (Figure 2), and so we must ask, how and why are they 

able to perform these tasks? Has numerical capacity evolved in bees? 

Bees are exceptional learners when it comes to flower traits. They learn flower characteristics 

such as colour (de Ibarra and Giurfa, 2003; Dyer and Arikawa, 2014; Dyer and Neumeyer, 

2005; Dyer et al., 2008; Rusch et al., 2017), scent (Reinhard et al., 2004a; Reinhard et al., 

2004b), symmetry (Giurfa et al., 1996), and size (Avarguès-Weber et al., 2014; Howard et al., 

2017a; Howard et al., 2017b; Martin, 2004). Due to a lifestyle of needing to quickly learn 

which flowers provide rewards of nutrition like pollen and nectar, as bees have a relatively 

short lifespan, they may have evolved a capacity to learn tasks quickly and efficiently. When 

their ability to rapidly learn tasks is combined with appetitive-aversive conditioning, which is 

known to modulate accuracy (Chapter 2; Avarguès-Weber et al., 2010; Chittka et al., 2003), 

bees appear to learn both quickly and accurately. Thus, one explanation for the honeybee’s 

ability to learn and apply numerical rules to solve problems may be that they are evolved to 

learn and apply information in foraging. Perhaps their ability to learn many different tasks, 

information, and rules is a direct result of an evolved ability to learn flower traits (Dyer, 

2012). 

It is possible that bees may need certain numerical skills to survive and forage in the complex 

environments in which they live. For example, Chittka and Geiger (1995), and Dacke and 

Srinivasan (2008) have shown that bees can learn to count landmarks in order to find the 

correct position of a food source. With the amount of foraging and navigating that honeybees 

perform, counting and other numerical skills would be useful in different environments to 

remember and navigate to the locations of highly rewarding flower patches (Chittka and 
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Niven, 2009). Potentially numerical skills could also help bees to recognise flowers by the 

number of petals they contain, which is not a farfetched notion considering we know bees use 

colour, scent, symmetry and size to identify flowers, thus perhaps petal number differences 

between species of flowers could also be an additional cue (Gross et al., 2009; Leppik, 1953). 

It is important for any animal to understand the concept of zero at the basic levels (i.e. no 

water, no food, no nectar, no predators; Nieder, 2016b). Thus, perhaps another possibility for 

their ability to understand zero at some level is ecologically relevant to their need to keep 

track of honey storage for winter months, flower absences in different seasons, or even which 

flowers provide no nectar compared to which flowers do provide nectar. Additionally, 

completing tasks when foraging or maintaining the hive may need an element of arithmetic-

type reasoning as we observe in food tracking in vertebrates (Sulkowski and Hauser, 2001; 

Tsutsumi et al., 2011) and invertebrates (Nelson and Jackson, 2012; Rodríguez et al., 2015), 

such as with the collection and use of pollen and nectar in the hive. 

6.3. Evolutionary implications 

In Chapter 1, I reviewed the literature of numerical ability in humans and non-human animals 

(Figure 1), which suggested a paucity of experimental studies testing the numerical ability of 

invertebrates compared to vertebrates (Carazo et al., 2009; Dacke and Srinivasan, 2008). I 

noted the importance of further studies testing the ability of invertebrates to display complex 

numerical ability and reviewed the honeybee as a model species for this purpose. The 

importance of determining the numerical capacity of an invertebrate pertains to informing the 

evolutionary pathways by which numerical ability may have evolved. The honeybee is a 

model species for the study of cognition and rule-learning as demonstrated by previous 

studies (for reviews see: Avarguès-Weber and Giurfa, 2013; Dyer, 2012; Srinivasan, 2010; 

Zhang, 2006). In addition, the honeybee is a good comparative model as its full genome is 
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mapped (Consortium, 2006), and it is a species separated from humans for 600 million years 

(Consortium, 2006; Grimaldi et al., 2005). Thus, the ability of honeybees to quickly learn 

(within a few hours) and perform numerical tasks of varied complexity (Figure 2; Chapters 2 

– 5) suggests a convergent evolutionary pathway for numerical abilities. As humans and 

honeybees are very evolutionarily separated, it is most-likely that convergent evolution has 

occurred to provide different species (Figure 1) with numeric capacity relevant to their 

particular environments. My conclusions on a convergent evolutionary pathway for 

numerical abilities are also supported by studies demonstrating that number neurons appear to 

have evolved independently in vertebrates, despite the very different neuroanatomy of their 

brains (Nieder, 2016a). Non-human primates and birds are known for their advanced 

cognitive ability, including their numerical capacity (Scarf et al., 2011), however they have 

evolved very distinct brain structures through the parallel evolution of endbrains (Dugas-Ford 

and Ragsdale, 2015; Dugas-Ford et al., 2012). The last common ancestor for mammals and 

primates, a reptilian-like species without a neocortex, existed over 300 million years ago 

(Evans, 2000), thus the evidence that numerical tasks activate similar neural populations in 

such different brain structures (Ditz and Nieder, 2015) supports the theory of convergent 

evolution of numerical capacity. 

The next step in collecting evidence for the evolutionary pathway of numerical capacity is to 

determine the neuron populations and structures involved in numerical tasks performed by 

invertebrates. My research has demonstrated that the honeybee is capable of learning and 

performing complex numerical tasks, thus brain recordings of which areas of the bee brain 

are involved will provide important evolutionary and neurobiological data to answer further 

questions. 
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6.4. Neurobiological inferences 

Nieder (2018) identified an important topic of consideration arising from my work (Chapter 

3; Howard et al., 2018; Nieder, 2018). “Number neurons” (Dehaene, 2002; Nieder, 2016a) 

activate in response to a specific number of elements. There is some recent work in monkeys 

showing that understanding “nothing”, an empty set, as having a quantitative null value is 

actively represented by corticol neurons (Ramirez-Cardenas et al., 2016). Ramirez-Cardenas 

et al. (2016) showed that neurons are activated in a similar way to ‘nothing’ as they are to 

numbers, for example in non-human primates (Nieder et al., 2002; Nieder and Miller, 2003; 

Nieder and Miller, 2004; Sawamura et al., 2002), corvids (Ditz and Nieder, 2015; Ditz and 

Nieder, 2016a; Ditz and Nieder, 2016b), and cats (Thompson et al., 1970). Thus, when 

trained monkeys demonstrate a similar response in the brain for empty sets, we can determine 

that non-human primate brains are capable of understanding and representing numerosity 

zero as “something”. Nieder (2018) notes that no neurophysiological understanding of 

numerical competence in insects is known, thus not only does this raise the questions of how 

and where honeybees may process zero and which neurons may activate, but also the 

question of how a bee (or other insect) represents number in the brain currently remains 

unknown (Nieder, 2018). The above studies demonstrate that honeybees are able to perform a 

number of basic and complex numerical skills such as understanding the quantitative value of 

an empty set (Chapter 3; Howard et al., 2018), demonstrating learning of quantitative values 

of cardinal sets, symbol and number matching, and simple arithmetic (Figure 2). Where this 

may occur in the insect brain is still unknown but poses an interesting question for future 

work now that I have established numerical competency in insects along with an appropriate 

training paradigm. Insights into possible mechanisms of colour learning are starting to 

emerge using mapping of how bee brains process visual colour stimuli depending upon 
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conditioning (Sommerlandt et al., 2016), but methods have not yet been developed for 

examining complex cognitive-like tasks in bee brains. 

One of the outstanding questions identified in a recent review of the concept of zero in human 

adults, children, and non-human animals was: 

“How are zero-like concepts neurophysiologically encoded in animals that did not  

evolve a layered neocortex (cerebral cortex), such as birds?” (Nieder, 2016b). 

This question is still outstanding considering animals such as birds and insects. Indeed, I have 

answered the question: 

“Are animals in taxa only remotely related to humans, such as fish or even insects, able to 

represent empty sets as a quantitative category?” (Nieder, 2016b). 

6.5. Bees as a model for bio-inspired technology 

In addition to being a model species for the study of vision and cognition (Avarguès-Weber 

et al., 2011; Avarguès-Weber and Giurfa, 2013; Dyer, 2012; Srinivasan, 2010), honeybees 

are also a model species for the development of bio-inspired technologies. For example, 

honeybees have been useful for the development of artificial intelligence, aerial machine 

navigation, flight control, successful landing procedures, accurate distance estimation, and 

the regulation of flying height (Bukovac et al., 2013; Srinivasan, 2006; Srinivasan, 2011; 

Srinivasan et al., 1999). Through combining the numerical capacity of a miniature and 

seemingly simplistic honeybee brain with computational technology, research may be able to 

determine a new bio-inspired mechanism for processing numbers using a simulated honeybee 

brain. 

Honeybee processing has also been applied to neuromorphic systems which are 

computational models of biological systems. They are of use for computing, sensory 
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processing in robots, and concept learning in machines (Helgadóttir et al., 2013; Kleyko et 

al., 2015; Sandin et al., 2014). Neuromorphic systems are designed to cope with uncertainty 

and use brain-like computations for processing real-world problems. As honeybees live in 

complex environments and can learn concepts to solve problems, they are considered an ideal 

model for neuromorphic systems machines (Helgadóttir et al., 2013; Kleyko et al., 2015; 

Sandin et al., 2014). Overall, insects demonstrate many goal-directed and plastic behaviours 

that are currently beyond the capacity of today’s artificial systems (Helgadóttir et al., 2013). 

Schmicker and Schmicker (2018) recently built a simple neural network which could 

replicate the result of honeybees understanding the quantitative value of an empty set 

(Chapter 3; Howard et al., 2018). The simple neural network, consisting of three 

convolutional layers, could learn and apply ‘greater than’ and ‘less than’ rules when trained 

using the same stimuli and protocol, as in Chapter 3, and apply it to understand the value of 

zero items (Schmicker and Schmicker, 2018). However, this study also demonstrates that we 

still have a lot to learn from biologically evolved processing systems, such as the honeybee 

brain, as while bees in Chapter 3 took less than 100 trials to learn the task, the simple neural 

network took about 4 million trials to learn the same task (Chapter 3; Howard et al., 2018; 

Schmicker and Schmicker, 2018). The study by Schmicker and Schmicker (2018) illustrates 

how the findings of my thesis are already having an impact on computer design principles. 

6.6. Conclusions 

The honeybee has proven an excellent model for testing whether conditioning procedure can 

allow the extension of previous limits of numerical competency and to determine what level 

of numerical ability can be reached by an insect model. While the honeybee was not able to 

pass all tests presented, for example the reverse task test (Chapter 5) or differentiating a 

correct choice consistent with rule learning compared to an incorrect choice consistent with 
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associative mechanisms (Experiment 2 in Chapter 3), the success of bees to discriminate 

challenging ratios of number (Chapter 2), learn numerical rules and apply them to value zero 

numerosity (Chapter 3), perform simple arithmetic (Chapter 4), and learn to associate a 

symbol and a specific quantity (Chapter 5) has surpassed their previous known numerical 

competency threshold (Figure 2). However, there are still many questions remaining. 

Outstanding questions include: Whether bees can demonstrate all aspects of true counting; 

whether bees are able to extrapolate number ability cross-modally or cross-procedurally; and 

whether bees are able to learn to understand the quantitative value of different symbols 

matched with specific quantities and order those symbols correctly. Future research also 

needs to explore what part of the insect brain, specifically honeybees, numerical tasks 

activate, and whether bees, like primates, corvids, and cats, have number neurons. My 

research suggests that numerical competency is not a result of the evolution of human culture 

and language and may be due to convergent evolution of numerical capacity. Further work 

into this topic, enabled by the new findings within my thesis, will aid in understanding how 

and when different levels of numerical ability may have evolved.  
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EVOLUTIONARY COGNITION

Numerical ordering of zero in
honey bees
Scarlett R. Howard1, Aurore Avarguès-Weber2*, Jair E. Garcia1*,
Andrew D. Greentree3, Adrian G. Dyer1,4†

Some vertebrates demonstrate complex numerosity concepts—including
addition, sequential ordering of numbers, or even the concept of zero—but whether
an insect can develop an understanding for such concepts remains unknown.
We trained individual honey bees to the numerical concepts of “greater than” or
“less than” using stimuli containing one to six elemental features. Bees could
subsequently extrapolate the concept of less than to order zero numerosity at the
lower end of the numerical continuum. Bees demonstrated an understanding that
parallels animals such as the African grey parrot, nonhuman primates, and even
preschool children.

F
our stages are used to describe the acquisi-
tion of understanding zero in human his-
tory, psychology, animal cognition, and
neurophysiology (1). The first is the ability
to define zero as nothing—the absence of a

stimulus. The second is the categorical classifi-
cation of zero as “nothing” versus “something.”
The third stage is understanding zero as a quan-
tity at the low end of the positive integer nu-
merical continuum. The fourth, and currently
designated as the most advanced stage of under-
standing zero, is the symbolic representation of
zero, as with an Arabic number and as used in
modern mathematics and calculations (1).
Several ancient human civilizations lacked the

full understanding and importance of zero, lead-
ing to constraints in their numeric systems (1).
Interestingly, some vertebrate animals have re-
cently demonstrated a capacity to acquire and
understand this numerical concept. Rhesus mon-
keys learned that empty sets of objects occupy a
position on a numerical continuum (2, 3), vervet
monkeys used subtraction-like reasoning to de-
termine if food was present or absent (4), a
chimpanzee reached near-perfect performance
on zero-concept tasks with training (5), and an
African grey parrot spontaneously labeled absent
objects as “none” (6).
Honey bees have previously demonstrated the

capacity to count and discriminate up to four
objects (7–10) in experiments that use classic
conditioning techniques. Recent advancements
in conditioning protocols (11) reveal that bees can
acquire rule-based relational concepts (12, 13),
thus enabling remarkable plasticity to acquire

and apply seemingly advanced concepts such as
size ordering (14). In this study, we tested the
capacity of honey bees to extrapolate the acquired
concepts of “greater than” and “less than,” as
shown in primates (15, 16), and thus formally
demonstrate that an invertebrate can understand
the concept of zero numerosity.
We designed a set of experiments to test the

extent to which honey bees may understand the
concept of zero numerosity (17). In the first ex-
periment, we trained bees to understand the
concepts of less than and greater than using
appetitive-aversive differential conditioning (11).
Beeswere trained to the respective concepts using
white square stimuli containing one to four black
elements (Fig. 1A, fig. S1, and table S1). After
reaching a criterion of ≥80% accuracy, bees dem-
onstrated in nonreinforced tests that they had
learned the concept of “numerically less” [75.0 ±
4.1% (mean ± SEM); logistic regression with
individual as random term tested differences be-
tween observed proportion of bee choices and
chance level, y = 0.5, z score = 5.08, P < 0.001,
n = 10] and “numerically greater” (75.5 ± 3.3%;
z score = 6.556,P < 0.001,n= 10)when presented
with novel stimuli of one to four elements. Fur-
thermore, beeswere able to apply these concepts
to determine that five elementswere greater than
two or three elements (less-than group: 68.0 ±
5.0%, z score = 3.411, P < 0.001, n = 10; greater-
than group: 75.0 ± 3.9%, z score = 5.333, P <
0.001, n = 10). Interestingly, bees demonstrated
an understanding that zero numerosity lies at
the lower end of the numerical continuum by
choosing an “empty set” stimulus containing
no elements if trained to less than (64.0 ± 5.4%;
z score = 2.795, P = 0.005, n = 10; Fig. 1C) or by
choosing unfamiliar stimuli containing elements
if trained to greater than (74.5 ± 2.6%; z score =
6.609, P < 0.001, n = 10; Fig. 1C).
In the second experiment, we tested the extent

to which bees may understand the quantitative
concept of zero in comparison with other ani-
mals. As some animals find it challenging to
differentiate between the numbers zero and one

(5, 6, 18), we trained bees to less than using
stimuli containing two to five elements and then
tested their ability to differentiate between the
unfamiliar numerosities of one and zero (Fig. 1B).
After reaching a criterion of ≥80% accuracy,
bees demonstrated the learned concept of nu-
merically less when presented with the numbers
two to five (73.8 ± 1.9%; z score = 10.18,P< 0.001).
When presented with the unfamiliar numbers
of one versus zero, bees chose the lower num-
ber of zero (63.0 ± 2.9%; z score = 4.23, P < 0.001;
Fig. 1D), showing an understanding that an
empty set is lower than one, which is challenging
for some other animals (5, 6, 18).
When bees were presented with two conflict-

ing pieces of information, two versus zero, where
the two-element stimuli hadalways been rewarded
in training and zero was the correct lower num-
ber, bees chose the empty set at a frequency level
that was not significant from chance (56.2 ±
3.4%; z score = 1.64, P = 0.101; Fig. 1D); thus, bees
perceived both plausible alternatives as consist-
ent with their conditioning experience. These
results demonstrate that bees were using both
an associative mechanism for choosing two
elements and a concept-based mechanism for
choosing zero numerosity. This phenomenon
was also observed in a dolphin trained to choose
the numerically less option by using white dots
on a black background. This result is explained
in terms of an artifact of training-set condition-
ing causing a bias toward consistently rewarding
stimuli (19).
To test if bees understood an empty set quan-

titatively along the numerical continuum, we
evaluated numerical-distance effects, where ac-
curacy of performance potentially improves
as the difference in magnitude between two
respective numbers increases (1). In the third ex-
periment, we trained and tested bees on the less-
than concept using the numbers zero to six. If
bees considered zero numerosity as a number
along the numerical continuum, we would ex-
pect accuracy of decisions to be the greatest with
zero versus six and poorer for lower numbers
versus zero numerosity (Fig. 2). After reaching a
criterion of ≥80% accuracy during training, bees
demonstrated in tests that they could discrimi-
nate an empty set from numbers one to six ac-
curately (supplementary text S1 and Fig. 2B).
Although bees could accurately discriminate all
numbers from zero numerosity, there was a sig-
nificant effect of numerical distance on accuracy
(Fig. 2B). Bees were more accurate when num-
bers were numerically more distant (zero versus
five and zero versus six) than when numerically
closer (zero versus one), showing that bees are
affected by number magnitude and thus exhibit
numerical-distance effects.
An alternative explanation for our results

could be that bees have a preference for the un-
familiar presentation of an empty-set stimulus.
However, control experiments showed that the
bees’ understanding that zero belongs at the
lower end of the numerical continuum was rule
based and not driven by an unfamiliar preference
(supplementary text S2 and fig. S2). The spatial
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frequencies of stimuli are also ruled out as a
potential explanation for results (supplementary
text S1 and table S1). We additionally conducted
further control experiments to exclude the pos-
sibility that bees learn to match pairs of num-

bers during training (supplementary text S3 and
fig. S2).
Our findings show that honey bees can learn

and apply the concepts of greater than and less
than to interpret a blank stimulus as represent-

ing the conceptual number of zero and place zero
in relation to other numerical values. Bees thus
perform at a level consistent with that of non-
human primates by understanding that zero is
lower than one (5).

Howard et al., Science 360, 1124–1126 (2018) 8 June 2018 2 of 3

Fig. 1. Graphic representation of the method and results
of experiments 1 and 2. (A and B) Examples of possible
stimuli combinations during trials and tests in experiments
1 and 2. (C and D) Performance during the unreinforced
testing phases during experiments 1 and 2. Data shown are
means ± SEM for both treatment groups. Bees trained to less
than are shown in dark blue; bees trained to greater than
are shown in turquoise. Stimuli above the columns represent
the choices for those stimuli in the data. In experiment 1, in
the conflict test evaluating the bees’ concept of zero, data
shown for the less-than group (n = 10) are choices for zero,
and data shown for the greater-than group (n = 10) are
choices for stimuli containing elements. In the transfer test to
a higher number, data shown for bees trained to less than
are choices for a lower number, and data shown for bees
trained to greater than are choices for the higher number of
five. In experiment 2 (n = 25), the conflict and transfer tests
show the bees’ choices for zero. Dashed black line at 0.5
indicates chance-level performance. Significance from
chance-level performance is indicated by ** P ≥ 0.01 and
*** P ≥ 0.001. NS, not significant.

Fig. 2. Photographic representation of stimuli and results from experiment 3.
(A) Representation of honey bee spatial vision when viewing stimuli of either zero or
one (22). (B) Honey bee performance during experiment 3, testing the behavioral
effects of numerical distance of numerosity zero. Data shown are means ± SEM for the
choice of the zero stimuli. Dashed black line at 0.5 indicates chance-level
performance. Significance from chance-level performance and from other tests is
indicated by *P ≥ 0.05 and ***P ≥ 0.001. NS, not significant.
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An open question remains as to whether such
advanced numerical understandingsmay bewide-
spread across many animals that deal with com-
plexity in their environments or if our findings are
the result of independent evolution in honey bees.
Recent comparative studies of primate and crow
brains found that similar levels of numeric pro-
cessing are facilitated by very different brain struc-
tures, suggesting independent evolution of numeric
processing (20, 21). Because it can be demonstra-
ted that an insect, with a different brain structure
from primates and birds, can understand the
concept of zero, it would be of high value to
consider such capacities in other animals.
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Through the Eyes of a Bee: Seeing the World as a Whole 
 

Adrian G. Dyer, Scarlett R. Howard, Jair E. Garcia 

Bio-inspired Digital Sensing (BIDS) Lab,  
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RMIT University 

 

Abstract:  Honeybees are an important model species for understanding animal vision as free-

flying individuals can be easily trained by researchers to collect nutrition from novel visual 

stimuli and thus learn visual tasks. A leading question in animal vision is whether it is possible to 

perceive all information within a scene, or if only elemental cues are perceived driven by the 

visual system and supporting neural mechanisms. In human vision we often process the global 

content of a scene, and prefer such information to local elemental features. Here we discuss 

recent evidence from studies on honeybees which demonstrate a preference for global 

information. We explore insights from imaging studies suggesting why a global preference may 

be important for foraging in natural environments where a holistic representation of elemental 

factors is advantageous. Thus we aim to provide a brief new insight into how animal vision may 

perceive the complex world in which we must all operate and suggest further ways to test this.  

 

Keywords: Vision; local-global; Gestalt; Holistic; Flower; Wurmbea; Photography  
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We often view and understand the environment around us in context (Torralba et al.), and 

humans are adept at visually perceiving a global construct or Gestalt of a complex scene (Sayim, 

Westheimer and Herzog). Although a review of these two concepts is beyond the scope of this 

work, here we employ the two terms interchangeably adhering to the terminology used by the 

authors of the cited papers.  The Gestalt phenomenon is nicely illustrated in the famous finding 

of Navon (1977), aptly named ‘Forest before trees: the precedence of global features in visual 

perception’, which showed humans prefer the global construct compared to local elemental 

information within a scene. This work has been well replicated in several studies on human 

subjects, but surprisingly, most animals tested to date show a preference for local information  

(Navon ‘The Forest Revisited: More on Global Precedence’; Deruelle and Fagot; Fagot and 

Tomonaga; Spinozzi, De Lillo and Truppa; Kelly and Cook). 

Insect visual processing is somewhat complicated by the design of their eyes which consist of an 

array of many, thousands in some species, individual light sensing units (omatidia) packed in a 

small, compound eye (Land and Chittka). As a consequence of this design, insect vision has 

relatively poor resolution, ‘image sharpness’ compared to the larger human eye consisting on a 

single lens (Land and Nilsson).  

In a well-studied insect species like the honeybee, it has typically been assumed that visual 

processing was relatively simple and mediated by elemental evaluation of cues (Horridge). 

However, for an animal with limited optical resolution, this may not be a very efficient solution 

as local elemental information available in a complex environment could easily be confounded 

with many other cues of similar appearance. This makes orientation and discrimination decisions 

difficult in complex environments (Adrian G. Dyer). For example, Figure 1 shows a photograph 

of a bunch of flowers imaged in the human visible spectrum and imaged through a mechano-

optical device made of thousands of thin, black tube ‘drinking straws’ simulating the omatidia 

present in a honeybee’s compound eye. This device allows us to obtain a visual representation 

closely simulating the resolution attainable by a honeybee’s eye (Dyer and Williams) as 

measured through behavioural experiments (Srinivasan and Lehrer).  

The upper panel in Figure 1 shows a magnified section of the image representing what an 

elemental processing type system might perceive in isolation, and how localised elemental 

information could be easily confused with different components within the entire image  
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(Figure 1, lower panel). This observation thus raises the question of whether honeybees indeed 

perceive a visually complex world by local elemental processing or if their visual system is 

capable of representing information more globally.  

 

 

 

Figure 1. A human visible spectrum image of a bunch of flowers that have been captured 

through a mechano-optical device that closely matches the resolution of honeybee spatial vision 

(Dyer and Williams). The upper panel shows a segment of the image that would be easily 

confused with several parts of a scene, whilst the lower panel shows how a holistic view reveals 

the true shape and structure of the flowers. Whilst humans easily process the Gestalt of a scene, 

it was assumed insects like bees might only use elemental information. New work now shows 

that bees actually prefer global type processing, but can also pay attention to local elements 

within a complex scene (Aurore Avarguès-Weber, Adrian G Dyer, et al.). 
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The question of whether bees can perceive holistic information started to emerge as a strong 

possibility following a seminal publication by Stach et al. which showed that free-flying 

honeybees could indeed assemble local information to solve novel problems about the overall 

pattern of a more complex scene. Around this time, several studies also started testing the 

capacity of free-flying honeybees to learn very complex visual problems like different flower 

patterns (Stejskal et al.; Zhang et al.), landscapes (Dyer, Rosa and Reser; Zhang et al.), human 

artwork (Wu et al.) and even human faces (Dyer, Neumeyer and Chittka; Dyer and Vuong); 

whilst studies on other insect species like wasps also reported a strong capacity to recognise 

complex patterns like conspecific faces (Sheehan and Tibbetts; Tibbetts).  

These studies on invertebrate vision were largely possible because of improved training and/or 

conditioning techniques employed by the researchers to train free-flying wild bees to visual 

tasks. Stimuli were presented vertically to control for orientation angle, and were learnt in 

relation to perceptually similar stimuli; termed differential conditioning (Giurfa et al.). 

Somewhat surprisingly, using these training techniques revealed a capacity in free-flying 

honeybees to process complex patterns including face-like stimuli, where bees showed evidence 

of configural type processing (A. Avarguès-Weber et al.). Indeed, prior to these studies 

configural processing was thought to be a mechanism requiring a large mammalian brain (Parr et 

al.; Tanaka and Sengco), and so it became high value to understand what else bees could learn to 

see if appropriate training regimes were employed. Despite having a miniature brain with less 

than one million neurons (compared to 100 billion in the human brain) (Srinivasan; Aurore 

Avarguès-Weber, Adrian G. Dyer, et al.), it has recently been shown that bees can learn rules 

such as the relative position of an object; above or below a given reference (Avarguès-Weber, 

Dyer and Giurfa), how relative size can allow for accurate recognition (Aurore Avarguès-

Weber, Daniele d’Amaro, et al.), or even how multiple rules like above-below/left-right and 

same/different can be combined to solve novel visual problems (Aurore Avarguès-Weber, 

Adrian G. Dyer, et al.). The capacity to process information by applying rules such as 

above/below would enable faster and more reliable visual processing by bees when operating in 

complex environments (Chittka and Jensen), and strongly suggests that bees could 

simultaneously process more complex images than would be allowed by elemental processing 

(Adrian G. Dyer). 
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To test if bees could process complex scene information, it was possible to use hierarchical 

visual stimuli (Figure 2) as proposed by Navon (1977), which were presented to honeybees in a 

Y-maze to enable training and then testing with novel stimuli in which local and/or global 

information content was manipulated (Aurore Avarguès-Weber, Adrian G Dyer, et al.). In their 

experiment, free-flying honeybees were individually trained (using a sugar reward) to enter a Y-

maze, which consists of an entrance hole, a long tunnel, and then a decision-making chamber 

which forks into two tunnels presenting two different options. The choice of a bee is counted 

once they choose which fork to fly down in order to hopefully receive a reward of sucrose  

(sugar water).   

Somewhat surprisingly in the context of what is currently known about animal vision, bees 

learnt both local, the upright and inverted triangles in Figure 2, and global cues, the overall 

square or diamond shapes in Figure 2, from complex patterns during the training phase. 

Subsequently in the transfer tests where bees were presented with novel stimuli, bees preferred 

to rely on the global information to make decisions; but could also use local information if pre-

trained to use the local elements to solve visual tasks. (Aurore Avarguès-Weber, Adrian G. 

Dyer, et al.). 

This shows that a miniature brain can holistically process complex information and the reason 

why different animals may or may not share this capacity may be to do with environmental 

factors rather than brain size and complexity (Aurore Avarguès-Weber, Adrian G. Dyer et al.; 

Truppa et al.).  
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Figure 2.  Visual stimuli used to test whether an animal will prefer to use global elements, the 

overall shape of each stimulus, or local information, the individual elements making up the 

overall shape, by (Aurore Avarguès-Weber, Adrian G. Dyer et al.) in their 2015 study.  

 

This new evidence that bees can holistically process visual information leads to fascinating new 

questions about whether insect-pollinated flowers evolved certain shapes or morphologies to 

attract bee pollinators in a similar process to flower pigment colour, which has evolved to suit 

specific pollinator vision (Chittka and Menzel; Dyer et al.).   

Honeybees demonstrate a preference for specific geometric traits such as radiating elements and 

symmetrical patterns (Lehrer et al.). In flowers, honeybees also prefer symmetry to asymmetry 

and radial symmetry over bilateral symmetry (Wignall et al.). To date, it has been questioned as 

to whether insects have the required optical resolution to perceive fine-scale differences across 

various levels of symmetry (Wignall et al.). With the aid of the mechano-optical device, we can 

now obtain insight into the level of symmetry fluctuations that a honeybee may be able to 

detect. The degree to which honeybees may perceive other morphological differences in flowers 

could also be examined using a mechano-optical device. 

Interestingly, many insect-pollinated flowers have nectar guides or other striking patterns that 

would probably require the processing of multiple elements to perceive the overall pattern 

(Adrian G. Dyer; Guldberg and Atsatt). For example, Figure 3 shows a mechano-optical image 

of an Australian native flower, Wurmbea dioica, which has complex patterns that likely evolved 

for promoting visits by important pollinators such as native bees. W. dioica is a dioecious 
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species, meaning plants are either male or female (Vaughton and Ramsey), presenting flower 

size dimorphism whereby male plants have larger and ‘more showy’ flowers than females 

(Barrett ‘The Evolution of Mating Strategies in Flowering Plants’; Barrett ‘Understanding Plant 

Reproductive Diversity’). Another sexual dimorphic trait of W. dioica is that male plants will 

have more flowers than females; both of these sexually dimorphic male characteristics result in 

attracting a higher number of bees (Vaughton and Ramsey). Using the mechano-optical device, 

we are now able to gain insight into how well a pollinator can differentiate between plants with 

more flowers and flowers of a larger size. We can examine this more closely by simulating 

different distances bees are at when making foraging choices, such as between sexual dimorphic 

individuals of W. dioica.  

By developing new image processing techniques based on recent advances in digital imaging, it is 

now possible to dissect real floral patterns into their different spectral components, i.e. the 

colour channels in a digital image, in relation to their particular spatial configurations (Garcia, 

Girard, et al.; Garcia, Greentree, et al.). Indeed, the relationship between the different 

elements defining the spatial configuration of an object such as a flower, its variability within a 

species, and the visual background against which it is observed are the ultimate causes of visual 

perception by an animal (Troscianko et al.). However, data allowing for the understanding of 

these relationships from the point of view of an animal such as an insect pollinator are scarce. 

For example, a recent survey of Australian flowers using digital cameras calibrated for 

quantitatively assessing colour (Garcia, Greentree et al.), revealed a significant amount of within 

subject colour variability, which is very likely to be perceived by a pollinator. How then can an 

insect with relatively poor resolution cope with this variability and still recognise their target 

species in spite of slight changes in chromatic appearance? Or, can it be that the low resolution 

of the compound eye helps the insect by filtering out small variations thus facilitating object 

detection?  The use of devices such as the mechano-optical device gives an insight into what a 

bee may see from a flower and helps us to answer these and other questions regarding the 

evolution of flower patterns in flowers.   

By understanding how insect pollinators such as the honeybee see the world, it is also possible to 

improve current farming practices. For example, in agroecosystems using traditional farming 

techniques in developing countries, different plant species are planted along with economically 

important crops to reduce risk, manage pests and improve production (Altieri). In these 
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contexts, knowledge of the visual appearance of insect pollinated plants from the point of view 

of a bee may assist on species selection in order to increase the saliency of target plant species, 

thus potentially improving pollination rate and therefore increasing harvest yield.  

The design of optical devices simulating invertebrate vision such as the mechano-optical device 

described here creates new and exciting possibilities to better understand how animals see and 

interact with the world. In the case of bees, this information is of high value due to the 

contribution of these important pollinators to agriculture and food production. 

 

 

 

 

Figure 3. A bee’s eye view of an Australian native Wurmbea dioica flower photographed 

through a mechano-optical device (Dyer and Williams 2005), showing the optics of an insect’s 

compound eye can easily resolve details within a flower that may serve to improve recognition 

or orientation.  
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Abstract Learning and applying relational concepts to

solve novel tasks is considered an indicator of cognitive-

like ability. It requires the abstraction of relational concepts

to different objects independent to the physical nature of

the individual objects. Recent research has revealed the

honeybee’s ability to rapidly learn and manipulate relations

between visual stimuli such as ‘same/different’,

‘above/below’, or ‘larger/smaller’ despite having a minia-

ture-sized brain. While honeybees can solve problems

using rule-based relative size comparison, it remains

unresolved as to whether bees can apply size rules when

stimuli are encountered successively, which requires reli-

ance on working memory for stimuli comparison. Addi-

tionally, the potential ability of bees to extrapolate acquired

information to novel sizes beyond training sets remains to

be investigated. We tested whether individual free-flying

honeybees could learn ‘larger/smaller’ size rules when

visual stimuli were presented successively, and whether

such rules could then be extrapolated to novel stimulus

sizes. Honeybees were individually trained to a set of four

sizes such that individual elements might be correct, or

incorrect, depending upon the alternative stimulus. In a

learning test, bees preferred the correct size relation for

their respective learning group. Bees were also able to

successfully extrapolate the learnt relation during transfer

tests by maintaining the correct size relationships when

considering either two smaller, or two larger, novel stim-

ulus sizes. This performance demonstrates that an insect

operating in a complex environment has sufficient cogni-

tive capacity to learn rules that can be abstracted to novel

problems. We discuss the possible learning mechanisms

which allow their success.

Keywords Extrapolation � Concept learning � Working

memory � Foraging � Cognition � Apis mellifera

Introduction

Relational knowledge and conceptualization ability play an

important role in human cognition (Doumas et al. 2008;

Halford et al. 2010). The application of learnt relational

rules allows for ‘flexibility and adaptability that are central

to intelligent behaviour’ (Wallis et al. 2001, p. 953) and is

controlled by the prefrontal cortex in the primate brain

among other executive functions (Miller et al. 2003; Wallis

et al. 2001). Evidence of relational rule learning in non-

human primates (Wallis et al. 2001), cetaceans (Kilian

et al. 2003; Mercado et al. 2000), and birds (Blaisdell and

Cook 2005; Pepperberg 1987) has revealed the capacity of

vertebrates to learn concepts such as ‘same’ and ‘different’,

and apply the respective rule to similar tasks within the

boundary limits of a familiar learning set, or to interpolate.
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Moreover, some animals [e.g. lemurs (Merritt et al. 2011),

dolphins (Mercado et al. 2000), pigeons (Edwards et al.

1983; Spetch and Friedman 2003), and corvids (Wilson

et al. 1985)] demonstrate a capacity to also apply rules to

previously unseen stimuli beyond the limits of the original

task, a process known as extrapolation. The capacity to

extrapolate information is typically considered a harder

task than interpolation as in both humans and monkeys, and

interpolation tasks yield a higher frequency of correct

choices than extrapolation tasks (Bülthoff and Edelman

1992; Logothetis et al. 1994; Srinivas and Schwoebel

1998).

Honeybees can learn a number of cognitive tasks with

extended visual experience that were previously assumed to

require a large mammalian brain (Chittka and Niven 2009;

Dyer 2012). Bees are able to apply a number of relational rules

and abstract concepts to forage efficiently (Avarguès-Weber

and Giurfa 2013; Zhang 2006). For example, they can solve

problems using rules such as ‘left/right’ (Zhang et al. 2000),

‘above/below’ (Avarguès-Weber et al. 2011, 2012), ‘same/

different’ (Giurfa et al. 2001; Zhang et al. 2005), and

numerical processing (Chittka and Geiger 1995; Gross et al.

2009) and can also choose to opt-out of difficult decisions

(Perry and Barron 2013). The capacity of bees to learn and

apply relational rules creates many new questions, not only in

the field of cognitive neuroscience but also in a more eco-

logical framework. Indeed, how such abilities might apply and

be adaptive in natural contexts for an insect pollinator remains

unknown (Avarguès-Weber and Giurfa 2013).

In some plant–pollinator systems, flower size plays a role

in communicating the value of rewards to potential polli-

nators. There is evidence that some plant species are under

selection pressure to use flower size as an indication of

reward quality (Benitez-Vieyra et al. 2010, 2014), which

may have resulted in larger flowers of some species

rewarding pollinators with a higher quantity of food than

smaller flowers (Ashman and Stanton 1991; Campbell et al.

1991; Cohen and Shmida 1993). For example, honeybees

have previously been observed to have a preference for lar-

ger flowers of Mimulus guttatus (Martin 2004). While this

phenomenon may be due to the higher visibility of larger

target colours (Spaethe et al. 2001), it is clear that for bees,

flower size has a significant role to play in plant–pollinator

interactions. Other studies have demonstrated that bumble-

bees are able to learn to associate one large artificial flower

with a reward and one smaller flower with an aversive sub-

stance (Blarer et al. 2002; Essenberg et al. 2015). These

studies suggest that bees can discriminate between two sizes

and learn to use specific size as an informative cue.

Avarguès-Weber et al. (2014) previously established

that honeybees could learn the size rules of ‘larger than’

and ‘smaller than’. Through a series of conditioned choices

to variable-sized stimuli presented on a vertically

orientated rotating screen, either a ‘larger than’ or ‘smaller

than’ relationship could be learnt as the correct rule in

independent groups of test bees. Honeybees could apply an

acquired size rule to novel stimuli of different shape and

colour, providing that such stimuli modulated contrast to

the bee long wavelength ‘green’ receptor, thus driving an

achromatic channel implicated in spatial learning tasks

(Avarguès-Weber et al. 2014). However, experiments such

as this, testing honeybee cognition and rule learning, often

use rotating screens and Y-maze apparatuses, which

potentially allow stimuli to be compared simultaneously

(Srinivasan et al. 1993; Avarguès-Weber et al. 2011, 2014),

and thus do not stress working memory.

Successive viewing is an important ecological factor to

consider when designing experiments as honeybees forage in

environments where flowers are often spatially separated. Due

to the poor visual acuity of insect compound eyes (Land 1997;

Srinivasan and Lehrer 1988; Srinivasan 2010; Williams et al.

2008), flowers often cannot be viewed and compared at

exactly the same point in time. For this reason, it is likely that

bees most often view flowers successively before making a

decision about where to land (Dyer and Chittka 2004; Dyer

and Neumeyer 2005). Successive comparison is considered

more difficult than simultaneous comparison as it requires the

loading of visual information about a given stimulus into

working memory, then the subsequent recall of stimulus

properties and comparison of this information to an alternative

stimulus when encountered. In addition, within a complex

environment it is potentially challenging for a bee to know the

exact distance at which it is viewing a particular stimulus

(Dyer and Griffiths 2012). Thus, visually choosing targets in

complex environments using rule-based criteria may require

the interaction between longer-term rule-based memory and

shorter-term working memory (Brown and Demas 1994;

Brown et al. 1997; Greggers and Menzel 1993; Giurfa et al.

2001; Zhang et al. 2005).

Considering the potential importance of size information

for foraging bees in natural environments, we investigated

whether free-flying honeybees could use a size rule in a for-

aging context by testing the potential capacity of bees to

(i) extrapolate a size rule to stimuli outside of an initial training

set and (ii) learn to use a relational size rule to solve a problem

when stimulus options must be viewed successively. This will

reveal how bees might use rule-based information for solving

novel visual problems in natural contexts.

Materials and method

Study species and recruitment

Experiments were conducted with free-flying honeybee

(Apis mellifera) foragers (n = 20). An ad-lib von Frisch-
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type gravity feeder provided 5–30% sucrose to maintain a

regular number of bees for use in the experiments (Whitney

et al. 2008).

Apparatus and experimental method

An individual bee was recruited from the gravity feeder

and trained to visit the experimental apparatus. Each bee

was marked on the thorax for identification and could

freely return to the hive when satiated (Dyer 2012). The

apparatus consisted of a cube-shaped, multifaceted surface

(35 cm width 9 25 cm height; Fig. 1). It was constructed

such that four stimuli (two identically sized correct targets

and two identically sized distractor stimuli) could be pre-

sented on pseudo-random sides of the four vertical faces

during each bout (one return visit from apparatus to hive by

a bee), but could not be viewed simultaneously by free-

flying bees. For example, a bout could consist of 3 versus 4

and then 5 versus 6 in the next bout. Two sets of baffles on

each face of the apparatus obscured the view of stimuli

except when viewed front on; thus, bees were unable to

view more than one stimulus at a time (Fig. 1). The cube

was covered with laminated grey card that acted as a

neutral adaptation background for colour modelling (On-

line resource 1; Fig S1; Table S1). Individual stimuli were

placed on each vertical side of the cube, 3 cm above a

landing platform which was used to place either a 10 ll

drop of sucrose or quinine during training (Fig. 1). This

kept the distance between the platform and stimulus edge

constant independent of stimulus size. The apparatus could

be freely rotated on a ball-bearing pivot base to exclude

potential position orientation cues.

We used 50% sucrose solution to reward a bee for a

correct choice, while aqueous 60 mM quinine HCl was

used as an aversive substance for an incorrect choice to

promote attentional learning in bees (Avarguès-Weber

et al. 2010). Each bee was initially pre-trained to land on

platforms without visual stimuli present on the apparatus,

so as to associate each of the four sides of the apparatus

with a potential sucrose reward. This process took bees

between 30 and 60 min to learn. Once each bee was able to

land on all sides of the apparatus, the visual training stimuli

were introduced.

Stimuli

Training and test stimuli (artificial flowers) consisted of

square card, covered with 80-lm Lowell laminate,

appearing ‘yellow’ to a human observer (Online resource

1; Fig S1; Table S1). The stimuli were of a biologically

relevant size range considering the flower sizes a foraging

bee may typically encounter (Guldberg and Atsatt 1975;

Dyer 1996; Avarguès-Weber et al. 2014). In the learning

phase and learning test, side edges ranged from 3 to 6 cm,

yielding four different possible sizes (Fig. 2). Side edges 1

and 2 cm, or 7 and 8 cm were only used for the respective

transfer tests (Fig. 2). To ensure the task was potentially

consistent with rule-based learning, stimuli were pseudo-

randomly changed by both size and orientation (orientation

was kept constant for all stimuli in each bout). Stimuli were

thus presented as squares or diamonds by orientating them

by 45� between bouts in a pseudo-random fashion to fur-

ther promote potential rule learning (Avarguès-Weber et al.

2014). Bees were exposed to squares or diamonds

approximately 50% of the time each, and there was no

difference in the correct choices made when stimuli were

either diamond or square shaped.

Training and testing phases

A counterbalanced design was used for this experiment,

where one group of bees was trained to associate relatively

larger-sized stimuli with a reward (n = 10), while a second

group of bees was trained to associate relatively smaller-

sized stimuli with a reward (n = 10). Testing order was

pseudo-randomized between groups. To exclude olfactory

scent-marking cues, stimuli and apparatus were cleaned

with 30% ethanol solution and then water between each

bout and test (Avarguès-Weber et al. 2010). In addition,

stimuli were replaced if touched by a bee.

The experiment consisted of four phases (Fig. 2):

(i) during the initial learning phase, bees were presented

with the training set of stimuli (side edges: 3, 4, 5, 6 cm;

Fig. 2) and each correct or incorrect response was recorded

for 80 choices (tasting substance on platforms), which is a

Fig. 1 The rotating successive stimulus presentation apparatus used

during the experiments. The cube had four vertical faces, which each

displayed one stimulus and had a landing platform. Each vertical face

also had two sets of baffles (position of vertical black lines on cube)

such that a bee could only view one stimulus at a time. The schematic

diagram shows two of the vertical faces, while the other two faces are

on the far side of the cube. The arrows on top of the diagram illustrate

that the cube could be freely rotated and that bees could also fly

around the cube to successively view each of the four faces, each

presenting a visual stimulus
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training length previously established for size learning in

honeybees (Avarguès-Weber et al. 2014). In the learning

phase, the nature of a given stimulus was ambiguous as

correct or incorrect since it depended on the size of the

other stimulus presented within a given trial (Fig. 2). Each

time a bee made a correct choice and landed to drink the

sucrose it was collected from the platform with a Plexiglas

spoon and held above the apparatus (completely obscuring

any view of the stimuli), while the area was cleaned and the

apparatus was rotated. Bees generally made between 3 and

Learning Phase

Testing Phases

Training Set
80 conditioned choices

3 x 3
9 cm2

4 x 4
16 cm2

5 x 5
25 cm2

6 x 6
36 cm2

pseudo-radomly between bouts and testsOR

Two sizes randomly chosen from the following set:

Learning Test
20 unreinforced choices

3 x 3
9 cm2

4 x 4
16 cm2

5 x 5
25 cm2

6 x 6
36 cm2

Transfer Test 1
20 unreinforced choices

1 x 1
1 cm2

2 x 2
4 cm2

Transfer Test 2
20 unreinforced choices

7 x 7
49 cm2

8 x 8
64 cm2

Ps
eu

do
-r

an
do

m
 o

rd
er

vs.

vs.

vs.

vs.

vs. vs.

Transfer Test 2
20 unreinforced choices

Transfer Test 1
20 unreinforced choices

Learning Test
20 unreinforced choices

Training Set
80 conditioned choices

Two sizes randomly chosen from the following set:

Trial 1

Trial n

Trial 80

Two novel smaller sizes not inlcuded in the training set:

Two novel larger sizes not inlcuded in the training set:

Fig. 2 The learning phase conducted over 80 conditioned choices

with stimuli presented from the training set of four sizes (size edges:

3, 4, 5, 6 cm). The testing phase consisted of three tests: the learning

test conducted over 20 unreinforced choices (side edges: 3, 4, 5,

6 cm), transfer test 1 conducted over 20 unreinforced choices with

stimuli smaller than the training set (side edges: 1, 2 cm), and transfer

test 2 conducted over 20 unreinforced choices with stimuli larger than

the training set (side edges: 7, 8 cm). Dimensions and surface area of

all stimuli are shown. On the right size of the figure, a representation

of how the learning and testing phases would appear in sequence with

rotating stimuli is provided
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6 correct choices during each bout before they became

satiated and returned to the hive. When a bee made an

incorrect choice, it was allowed to continue flying around

the apparatus without rotation of the sides until a correct

choice was made. Bees returned from the hive within

5–10 min during which time the apparatus was cleaned,

new stimulus sizes were placed on the sides, and drops of

sucrose and quinine were replenished. After bees had made

80 choices, they were collected onto a Plexiglas spoon with

sucrose and drank until satiated and returned to the hive so

the testing stimuli could be introduced. Bees could then

return the experiment. Two bees which took more than one

day to complete the training and testing were given 20

additional rewarded refresher choices during the learning

phase on the second day.

(ii) Following the learning phase, we conducted a

learning test to determine whether honeybees had learnt the

size rule. The learning test was an unreinforced phase used

to evaluate bee performance without further reinforcement.

Water was used in place of sucrose or quinine in all

unreinforced tests. We recorded 20 unreinforced choices

(any touch of the platform) for each bee which was scored

as the dependant variable for analysis. In this test, bees

were presented with two identical small and two identical

large stimuli randomly chosen from the initial training set

(side edges: 3, 4, 5, 6 cm; Fig. 2). (iii, iv) Finally, two

unreinforced transfer tests were conducted to determine

whether knowledge acquired during the learning phase

could be transferred to novel stimulus sizes. The order of

these transfer tests was pseudo-randomized.

Transfer tests included stimuli that were smaller (side

edges: 1 and 2 cm) or larger (side edges: 7 and 8 cm;

Fig. 2) than the stimuli presented during training. The

training and test stimuli were chosen in the context of the

physiological limits of bee visual resolution (Srinivasan

and Lehrer 1988), what sizes could feasibly be presented in

the experiment, and what was a good representation of an

ecologically relevant size range of flowers in a natural

environment (Guldberg and Atsatt 1975; Dyer 1996). Non-

rewarded transfer tests were conducted without rewarding

or punishing outcomes for correct or incorrect choices.

Each test lasted for 20 choices during a single bout (less

than 5 min), and refresher training was also presented for

one bout between all tests to maintain bee motivation as is

typical for honeybee experiments (Avarguès-Weber et al.

2012, 2014). The orientation of the stimuli as square of

diamond was randomly determined for all unreinforced

tests.

Viewing distance of bees

Since the main experiment required a bee to fly freely

around a cubed apparatus, it was only possible to make

observational estimates of distance of bees when decisions

were made without potentially interfering with bee beha-

viour. Our observations suggested bees made their deci-

sions at the same point, independent of stimulus size. To

confirm this, we tested an additional bee where a camera

was used to record the bee’s distance relative to a known

scale. We used the methods described above, while an

Olympus EP3 digital camera with an Olympus 18 mm f2.8

lens recorded bee decisions. The camera was mounted on a

tripod and recorded one face of the apparatus, where a

calibrated background grid provided a size scale. It has

previously been shown with this method that honeybees fly

towards a distractor stimulus and make aborts at a set angle

(Dyer et al. 2008). We used segmented stills from the video

to quantify when the bee was stationary in flight while

inspecting a stimulus, before aborting (Dyer et al. 2008)

using the program ImageJ. For the training phase sizes, the

bee inspected and turned away from stimuli at

4.9 ± 0.6 cm. During the transfer test to smaller stimulus

sizes, the distance aborts occurred was 4.6 ± 0.4 cm, and

during the transfer test to larger sizes the inspection dis-

tance was 4.8 ± 0.6 cm. Figure 3 and the supplementary

video show the position of a bee just before aborting the

choice of stimuli in the transfer test to smaller sizes

(Fig. 3a), the training set (Fig. 3b), and the transfer test to

larger sizes (Fig. 3c; Video S1). The use of aborts in

analysing a bee’s distance from the stimulus was only

implemented in video analysis and not used for counting

choices in the learning phase or tests.

Statistics

Learning phase

To test for the effect of training on bee performance

(number of correct choices), data from the learning phase

of 80 choices were grouped into eight blocks of ten choices

and analysed with a generalized linear model (GLM) with a

logit link function. To evaluate bee performance during the

learning phase, we initially fitted a full model with trial

block (ten choices) as a continuous predictor, and group as

categorical predictor with two levels: larger and smaller,

plus an interaction term between predictors with subject as

a random factor to account for repeated measures. We then

applied standard model selection by simplification, i.e.

backward selection, (Zuur et al. 2009). The process began

with the most complex model which included trial, group,

and an interaction term. Model simplification was then

performed by formulating simpler models after excluding

the non-significant terms. The process continued until all

remaining factors were significant. Furthermore, we vali-

dated the adequacy of the model using the Akaike infor-

mation criteria (AIC) value.
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Testing phases

To determine whether bees were able to learn the size rules

of ‘smaller than’ and ‘larger than’ for the learning test data,

we estimated the mean of ‘correct’ choices, represented by

the intercept of a generalized linear mixed model using bee

response (correct or incorrect) as a (binary) predictor. To

account for the repeated measurements, we included sub-

jects as a random factor in the model.

To evaluate whether bees could extrapolate the rules to

novel sizes which were smaller or larger than the training

set, the two unreinforced transfer tests [transfer test 1

(smaller sizes); transfer test 2 (larger sizes)] were analysed

with the same statistic. These statistical tests and models

were performed on the R environment for statistical anal-

ysis (R Core Team 2016).

Consistency of tests

Separate analyses were performed to determine whether

there were any asymmetries in the behavioural data that

might be expected if an associative mechanism were used

by bees to solve the different visual problems presented in

respective tests. For this analysis, a mixed between–within-

subjects ANOVA (split-plot) design was conducted with

target size as a fixed factor with two levels (smaller; lar-

ger), and the tests as a within-subjects factor with three

levels (learning; transfer 1; transfer 2). For this analysis,

proportion data were converted into angles by means of an

arcsine angular transformation. This test was conducted to

determine whether the three tests (learning; transfer 1;

transfer 2) differed in the number of correct choices across

both groups (trained to larger/smaller). Tests were carried

out in SPSS Statistics (SPSS 2011).

Results

Learning phase

We initially tested for the effect of trial block, group, and

an interaction between trial and group using a generalized

linear model (GLM). There was no effect of the interaction

predictor between trial and group (deviance (G) = 0.163,

df = 1, P = 0.687); therefore, this term was excluded from

the subsequent model. We then tested for the main effects

of trial and group. Both variables significantly predicted the

number of correct choices (trial: G = 31.493, df = 1,

P\ 0.001; group: G = 6.025, df = 1, P = 0.014) so no

further model simplification was possible.

Since groups trained to larger and smaller stimuli learnt

at significantly different rates, we analysed these data

separately. Subsequent analyses suggested a significant

increase in the proportion of correct choices over the eight

blocks of ten choices during the learning phase in bees

trained to both smaller and larger sizes (smaller than:

(G = 17.558, df = 1. P\ 0.001); larger than:

(G = 14.100, df = 1, P\ 0.001); Fig. 4a). However, bees

trained to smaller sizes learnt at a quicker rate as shown by

the significance of the group factor. The apparent differ-

ence in learning rate appears to be in the earlier stages of

acquisition, and after 80 learning events the respective

groups appeared to reach a similar level of performance as

evidenced by the asymptotic behaviour of the acquisition

curves in Fig. 4a.

Testing phases

Figure 4b shows the results of the respective bee groups in

the three tests conducted. In the learning test, bees trained

Fig. 3 Panels a–c show a honeybee just before aborting a stimulus

choice. a The position of a bee viewing a 1 9 1 cm stimulus in the

transfer test to smaller stimuli at 4.6 ± 0.4 cm [mean ± standard

error of the mean (s.e.m)]. b The position of a bee viewing a

3 9 3 cm stimulus in the training set at 4.9 ± 0.6 cm. c The position

of a bee viewing a 7 9 7 cm stimulus in the transfer test to larger

sizes at 4.8 ± 0.6 cm. These stills are taken from the provided video

footage (Supplementary video). The yellow squares overlayed on the

still images show the size of the stimulus the bee is viewing relative to

the image (colour figure online)
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to smaller sizes chose the correct stimulus in 66.5 ± 5.1%

[mean ± standard error of the mean (s.e.m)] of choices

which was significantly different from chance level

(H0 = 50%, Z = 3.095, P\ 0.010; mean proportion of

correct choices = 0.677, confidence intervals (CIs) 0.560,

0.787), while bees trained to larger sizes chose the correct

stimulus in 70.0 ± 5.1% of choices (Z = 3.766,

P\ 0.001; mean proportion of correct choices = 0.712,

CIs 0.601, 0.812). In the transfer test where bees were

presented with stimuli smaller than the training set, bees

trained to smaller sizes chose the correct stimulus in

63.0 ± 4.0% of choices (Z = 3.254, P\ 0.01; mean pro-

portion of correct choices = 0.632, CIs 0.548, 0.714),

while bees trained to larger sizes chose the correct stimulus

in 70.0 ± 2.8% of choices (Z = 5.491, P\ 0.001; mean

proportion of correct choices = 0.700, CIs 0.634, 0.762).

In the transfer test where bees were presented with stimuli

larger than the training set, bees trained to smaller sizes

chose the correct stimulus in 66.0 ± 3.9% of choices

(Z = 3.962, P\ 0.001; mean proportion of correct choi-

ces = 0.662, CIs 0.579, 0.745), while bees trained to larger

sizes chose the correct stimulus in 67.5 ± 5.7% of choices

(Z = 2.916, P\ 0.010; mean proportion of correct choi-

ces = 0.693, CIs 0.557, 0.816).

Consistency of tests

There was no significant main effect between the propor-

tion of correct choices between bees trained to large and

small sizes in the split-plot ANOVA analysis

(F18,1 = 0.727, P = 0.425). Considering the within-sub-

jects factor, we found no significant difference between the

different tests (F18,2 = 0.200, P = 0.820), nor a significant

interaction between tests and subjects (F18,2 = 0.119,

P = 0.888). This shows bees reliably transferred the

acquired rule from the learning set to both smaller and

larger novel stimuli. This performance is consistent with

the application of rule-based problem solving, but would

not be expected if bees were using an associative mecha-

nism to solve the different visual problems.

Discussion

In our experiment, honeybees demonstrated that they could

learn the size rules of ‘larger/smaller’ when encountering

stimuli in successive viewing conditions, as might be

typical in natural settings where bees forage. Bees trained

to smaller stimuli initially learnt at a quicker rate to those

trained to larger stimuli, but following 80 trials of appeti-

tive–aversive conditioning (Avarguès-Weber et al. 2010;

Stach and Giurfa 2005), the final test outcomes were

independent of training size (Fig. 4). Bees were able to

extrapolate a learnt rule to previously unseen sizes from

outside of the training set, and this capability was observed

in both directions when including stimuli larger than and

stimuli smaller than the training set sizes. Such a capacity

was independent of whether bees were trained to small or

large stimuli in respective learning groups. Additionally,

there was no difference in performance between interpo-

lation of size rules during the learning test and extrapola-

tion of the rules during the transfer tests. This result, with

our current method, is consistent with studies of pigeon

interpolation and extrapolation, but is in contrast to what is

0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8

%
 C

or
re

ct
 C

ho
ic

es

Training Block (10 choices)

0

 20

 40

 60

 80

 100

Learning
Test

Transfer
Test 1

Transfer
Test 2

(a) (b)

Fig. 4 Performance of bees during the learning (a) and test phases

(b). Black dashed line at 50% indicates the chance level performance.

a Performance during learning phase. Data points shown are

mean ± s.e.m. for each group (smaller trained is closed circle and

larger trained is open circle) throughout appetitive and aversive

learning. Ten bees were in each group. b Performance during the

three testing phases: learning test, transfer test 1, and transfer test 2.

Bees trained to ‘smaller than’ are shown in black and bees trained to

‘larger than’ shown in white. Data shown are mean ± s.e.m. for both

treatment groups. Ten bees were used in each group for each test;

thus, 20 bees were used in each test. All tests were significantly

different from chance level (P\ 0.010)
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observed in humans (Spetch and Friedman 2003). Pigeons

perform the tasks of interpolation and extrapolation at a

similar level of success (accuracy and speed), while

humans find extrapolation a more difficult task than inter-

polation but seem to generally perform better than pigeons

(Spetch and Friedman 2003). The difference in success for

humans performing interpolation and extrapolation of

rotated views of objects could be due to the potential

benefit of view-combination mechanisms. For example,

when training subjects on two rotated images of an object,

a novel interpolated image of a rotated object is more

similar to the trained images than a novel extrapolated

rotation (Friedman et al. 2005). In the current experiment,

bees successfully extrapolated and interpolated the size

tasks at the same level demonstrating that similar to

pigeons, honeybees find the tasks of interpolation and

extrapolation equally challenging.

While our study suggests that the learning and appli-

cation of a size-based rule in bees is achieved by concep-

tual learning, there were other possible mechanisms that

needed to be considered. These include the possible effects

of an associative mechanism, peak shift, or retinotopic

matching. The experimental design of our study rules out

the effect of associative learning as a possible mechanism

for bees to learn and extrapolate a size rule. Indeed, with an

associative mechanism, bees could potentially learn to

associate probabilities of reward with the frequencies of

encountering stimuli of certain sizes. In this study, if the

correct choice is ‘smaller than’, then stimuli from the

smaller-sized half of the training set present rewards more

often; even if occasionally such stimuli might be incorrect

when presented against the very smallest size (Avarguès-

Weber et al. 2014). Our study has been able to account for

this potential confound through the use of the dual transfer

tests. An associative mechanism predicts that when pre-

sented with stimuli from outside of the training set, bees

should, if anything, choose the stimulus that is closest to

the learning parameters encountered during the learning

phase, while a conceptual rule-based solution to size per-

ception predicts the opposite for one of the tests in order to

maintain and apply the relative size rule encountered dur-

ing training (Avarguès-Weber et al. 2014). Bees showed a

significant preference for maintaining the correct size

relationship acquired during the learning phase in both

transfer tests, thus ruling out the possibility of an associa-

tive mechanism explaining results.

Another potential perceptual phenomenon that might

explain how honeybees extrapolated learnt size relation-

ships to stimuli outside of the size parameters encountered

in the learning phase could be peak shift, an observed

behavioural response bias arising from discrimination

learning in which animals display a directional, but limited,

preference for or avoidance of novel stimuli after

differential conditioning (Andrew et al. 2014; Chittka and

Raine 2006; Hanson 1959; Leonard et al. 2011; Lynn et al.

2005; Martı́nez-Harms et al. 2014). The peak of the

response gradient is sometimes moved slightly in a direc-

tion away from the less desired stimulus, such that a

stimulus in a perceptual dimension further away from the

desired stimulus is actually preferred by an animal (Leo-

nard et al. 2011; Lynn et al. 2005; Martı́nez-Harms et al.

2014). We regard it as unlikely that peak shift could be a

major explanation mediating bee decisions in our two

respective transfer tests since peak shift is typically evi-

denced by a limited shift away from an actual target

stimulus, so peak shift would probably not explain a

capacity to extrapolate acquired learning to both ends of a

learning spectrum. However, the testing of animals with

such complex stimuli sets as used in the current study and

the observed capacity to extrapolate information would

benefit from further investigations to establish whether

peak shift could operate at both ends of a continuum.

It was also important to consider whether bees may

change their individual viewing angle to avoid the poten-

tially challenging task of extrapolation and/or reduce the

difficulty of the initial learning tasks, as may be predicted

by retinotopic matching. Also known as the ‘template

hypothesis’, retinotopic matching predicts that the visual

template of a stimulus is stored in visual memory, pre-

serving the retinotopic coordinates. Subsequently, when

tested on novel stimuli bees should prefer options which

overlap the greatest with the stimuli previously learnt in

training (Dittmar et al. 2010; Efler and Ronacher 2000).

The results of this study are not consistent with retinotopic

matching as bees trained to ‘smaller than’, with 3 9 3 cm

stimuli always being rewarding, chose 1 9 1 cm stimuli at

a level significant from chance when shown against

2 9 2 cm stimuli in the extrapolation task. Retinotopic

matching predicts that bees should choose the 2 9 2 cm

stimuli during extrapolation as this overlaps more greatly

with the rewarding size of 3 9 3 cm. Similarly, for bees

trained to larger stimuli, with size 6 9 6 cm always

rewarding, in an extrapolation test to larger stimulus sizes

of 7 9 7 and 8 9 8 cm, bees should prefer 7 9 7 cm

stimuli as they visually overlap more greatly with the

rewarding size of 6 9 6 cm. However, this is not the case

and bees demonstrated an understanding of the ‘larger

than’ rule by choosing 8 9 8 cm stimuli at a level signif-

icantly higher than chance. Additionally, we can also rule

out a retinotopic matching mechanism explaining results as

bees were observed to make decisions at the same distance

regardless of the size of stimuli, while a retinotopic type

mechanism would predict that bees should change their

viewing distance for different sizes in order to maintain a

constant image size on the retina (Efler and Ronacher

2000). For example, quantification of the viewing distance
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for a bee when viewing stimuli shows that individuals did

not change their position when making a decision, despite

even large changes in stimulus size (Fig. 3; Video S1).

While we can quantitatively and qualitatively demon-

strate that bees were not using a simple associative

mechanism or retinotopic matching to successfully learn

and generalize a size rule, we cannot pinpoint the exact

mechanism bees use to solve the problem. For example,

bees may be using the colour ratio of each side (grey ratio

coverage vs. yellow ratio coverage), or even the distance

from the edge of the side to the stimulus; however, these

would both still be an example of size rules, as comparing

small yellow coverage to large yellow coverage, and large

distance to the edge compared to a small distance to the

edge are both still relational rules which requiring judging

size of a colour or a distance. We think these two scenarios

are unlikely compared to the varied sizes of the stimuli we

used which were of the necessary green contrast essential

for size rule learning (Avarguès-Weber et al. 2014). We

suggest concept learning, defined as the learning of rela-

tions between objects rather than the absolute physical

features (Perry et al. 2013), as a likely explanation for our

results. The ability of bees to learn and generalize a rule to

novel stimulus sizes may be due to an integration of mul-

tiple learning mechanisms too complex to pull apart into a

single explanation to describe their success in this

experiment.

During the learning phase, bees trained to the ‘smaller

than’ rule learnt at a significantly quicker rate than those

trained to the ‘larger than’ rule. After 80 conditioned trials

during the learning phase, a split-plot ANOVA revealed

that there was no significant effect of group (trained to

smaller/larger) on test results. However, the asymmetry

observed in the learning phase data is unexpected consid-

ering previous studies show that honeybees have a pref-

erence for larger flower sizes (Martin 2004). One

explanation for this asymmetry could be due to individual

differences among bees (Chittka et al. 2003). However, we

minimized the impact of individual differences by using a

long training regime to promote the bee’s ability to learn

the task before testing. In addition, we had a consistent

number of choices during the learning phase to make

analysis robust. Therefore, by the first test there was no

significant difference in performance between bees trained

to larger or smaller sizes demonstrating that the asymmetry

in the learning phase data did not impact the test results.

Our results parallel rule learning and extrapolative

abilities in vertebrate species such as primates (Merritt

et al. 2011; Spetch and Friedman 2003; Wallis et al. 2001),

cetaceans (Kilian et al. 2003; Mercado et al. 2000), and

birds (Blaisdell and Cook 2005; Edwards et al. 1983;

Spetch and Friedman 2003). Classically, it has been

thought that rule learning and extrapolative ability required

a prefrontal cortex, or an analogous structure in birds

(Miller et al. 2003; Wallis et al. 2001). While the impor-

tance of the prefrontal cortex for rule learning and

extrapolation has been demonstrated in other studies

(Miller et al. 2003), our current work shows that the

capacity to abstract can also occur in alternative brain

structures for species lacking a prefrontal cortex, such as

the honeybee. Learning and memory are believed to be

linked to the mushroom bodies in arthropod brains (Ca-

paldi et al. 1999; Devaud et al. 2015; Hammer and Menzel

1995; Hourcade et al. 2010; Strausfeld et al. 1995, 1998), a

structure sharing analogies with the higher cortical centres

of vertebrate brains (Farris 2008). There is also some evi-

dence that ‘cortical-like’ processing needed for extrapola-

tion may occur in the mushroom body of the arthropod

brain (Chittka and Niven 2009; Srinivasan et al. 1993).

Thus, as bees can perform a cognitive task like extrapo-

lation, this would suggest that a task’s ecological relevance

to an animal may be more important (Chittka and Niven

2009; Dyer 2012) than absolute brain size for mediating

what functionality a brain can achieve.

Nevertheless, it has to be noted that, by comparison with

other insects such as Drosophila, a classical insect model,

honeybees (among other Hymenoptera), do possess par-

ticularly large and elaborate mushroom bodies. In honey-

bees, the calyces are doubled and expanded in relation to

the lobes while receiving novel afferences from the visual

part of the brain (Avarguès-Weber and Giurfa 2013). Such

relative development started back with ancestral parasitoid

wasps that shared spatial, visual, or olfactory learning

facilities with honeybees (Farris and Schulmeister 2011).

The social brain hypothesis (Dunbar 1998) is therefore

questioned by insect studies and replaced by an adaptive

role of mushroom bodies to allow for an increase in

learning flexibility. However, elaborate mushroom bodies

might not be sufficient to trigger conceptual learning

abilities as to date there is no evidence of such capacity in

close species (Brown and Sayde 2013; Moreno et al. 2012;

Thompson and Plowright 2014), although more experi-

mental effort is still required to understand the potential

specificity of honeybees for conceptual learning among

hymenoptera. For example, some evidence suggests that

the capacity of the wasp, Polistes fuscatus, to recognize

other wasp faces may rely on the processing of spatial

relations between facial features (spatial configuration;

Chittka and Dyer 2012; Sheehan and Tibbetts 2011) which

would be a first step towards relational concept use

(Avarguès-Weber and Giurfa 2013). Other animals like the

archerfish, Toxotes chatareus, have been shown to recog-

nize large numbers of human faces, despite lacking cortical

processing (Newport et al. 2016), and recent work in the

Neotropical ant, Gigantiops destructor, shows that

acquired size relationships can be interpolated to solve a
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novel visual task, even when stimuli are encountered

sequentially (Beugnon and Macquart 2016). Further work

on concept-type processing in insects of different brain

sizes will add a lot to our understanding of what brain size

and structures may be required for solving problems in

complex environments.

It is important to note that our training and testing

methodology allowed honeybees to move freely in their

environment before making a landing decision. By using

free-flying honeybees and not restricting viewing distance,

we were able to make inferences about the use of relational

rules in a natural foraging setting. Often problems occur in

experiments when viewing distance is controlled and ani-

mals are unable to move freely, or choose the most

appropriate distance to make decisions from (Salva et al.

2014). For example, in humans, limiting the field of vision

can cause a significant reduction in perception and per-

formance (Alfano and Michel 1990; Biersdorf et al. 1963).

In our experiment with free-flying honeybees, viewing

angles and distances were not mediated by our apparatus;

thus, bees were able to choose the best distance for deci-

sion-making. Our approach further pushed the limits of

what level of cognitive performance is accessible to a

miniature insect brain.
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How different visual systems process images and make perceptual errors

can inform us about cognitive and visual processes. One of the strongest

geometric errors in perception is a misperception of size depending on the

size of surrounding objects, known as the Ebbinghaus or Titchener illusion.

The ability to perceive the Ebbinghaus illusion appears to vary dramatically

among vertebrate species, and even populations, but this may depend on

whether the viewing distance is restricted. We tested whether honeybees

perceive contextual size illusions, and whether errors in perception of size

differed under restricted and unrestricted viewing conditions. When the

viewing distance was unrestricted, there was an effect of context on size per-

ception and thus, similar to humans, honeybees perceived contrast size

illusions. However, when the viewing distance was restricted, bees were

able to judge absolute size accurately and did not succumb to visual illu-

sions, despite differing contextual information. Our results show that

accurate size perception depends on viewing conditions, and thus may

explain the wide variation in previously reported findings across species.

These results provide insight into the evolution of visual mechanisms

across vertebrate and invertebrate taxa, and suggest convergent evolution

of a visual processing solution.
1. Introduction
Our visual system allows us to process and assess our environment by provid-

ing information such as object size, shape, texture, colour and movement [1].

Visual illusions, classified as errors of perception, are informative for under-

standing variation in visual processing in both human and non-human

animals [1]. One illusion which has been studied extensively in humans is

the Ebbinghaus illusion (e.g. [2,3]). It is considered one of the strongest

geometric illusions that humans perceive [1,4–6] and occurs where environ-

mental context causes an object to appear relatively larger when surrounded

by smaller objects, or relatively smaller when surrounded by larger objects

[1,4,7] (figure 1). Humans generally perceive the world using global processing,

which is the tendency to process the overall image of a scene rather than separ-

ately processing the individual elements which form it, which is known as local

processing [8]. Global processing has been proposed to promote the perception

of illusions, while local processing does not [1].

The ability to perceive contextual size illusions varies across vertebrates.

Among those species currently known to be able to perceive the Ebbinghaus

illusion are bottlenose dolphins [9], redtail splitfins [10], bower birds [11,12]

and domestic chicks [13]. Baboons, however, do not perceive this illusion,
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(b)

(a) (i) (ii)

Figure 1. (a) A well-known example of the Ebbinghaus or Titchener circle
illusion: two identical central targets are made to look smaller (i) when sur-
rounded by large, distant circles (inducers) than when surrounded by small
and close inducers (ii). (b) A representation of the Delboeuf Illusion: a larger
circle (annulus) surrounds a central target, resulting in it appearing smaller
than when surrounded by a smaller annulus [7].
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thereby allowing them to accurately judge size regardless of

context [6]. Interestingly, some species such as pigeons, ban-

tams and domestic dogs perceive the opposite illusion, an

assimilation illusion, where the central target size is perceived

as being closer in size to the inducers which surround it [14–16].

Remarkably, not only does the Ebbinghaus illusion vary

between species, but also within a single species. The Himba,

an isolated remote human culture from northern Namibia,

experience a strongly reduced effect of the size illusion

compared with Western and urbanized populations [17–19].

Similar in nature to the Ebbinghaus illusion is the Del-

boeuf illusion [7] (figure 1b). The Delboeuf illusion relies on

the misperception of size due to context [7]. A well-known

example of this illusion is the tendency for identical meal

portions to look smaller on a large plate and larger on a

small plate [20,21]. Humans, chimpanzees [20,22], capuchin

monkeys and rhesus monkeys [23] are vulnerable to this

illusion, while domestic dogs are not [16,24]. In humans, this

size illusion is thought to involve region V1 cortical represen-

tations of target size and context [25]. The differences

regarding susceptibility to size illusions observed between

species is potentially due the ability of species to process

visual images locally or globally [8], as baboons and Himba

people do not perceive the illusion [6,17] and demonstrate a

local precedence [17,18,26]. Interestingly, pigeons can flexibly

shift between local and global processing [27], and, as

mentioned, perceive the illusion as an assimilation illusion [15].

Another potential explanation for the differences in per-

ceiving these size illusions is the variance in testing

methods for respective studies, specifically the restriction of

the viewing distance (as discussed in [10]). For example,

studies on pigeons, bantams and domestic dogs required

the participants to touch the correct stimulus with their

nose or beak (dogs [16,24]; birds [14,15]), forcing subjects to

view illusions at a close range [10]; and for baboons, the
viewing distance was restricted to 49 cm away from the

screen displaying illusions [6]. Indeed, in humans, the Ebbin-

ghaus illusion is reduced or reversed to an assimilation

illusion when participants are forced to view the illusions at

close range [28,29]. Thus, it appears that promoting a

restricted distance on animals and humans may have a sig-

nificant impact on whether size illusions are able to be

perceived, although this has not been formally evaluated

using a within-species study.

The honeybee is an important model species for testing

visual and cognitive tasks due to the readily accessible way

in which individuals can be trained [30–34], which permits

high-value comparative analyses to vertebrate systems [35].

Honeybees can accurately discriminate stimulus sizes when

presented on homogeneous backgrounds, and have the

capacity to learn and apply ‘larger/smaller’ size rules

[36,37]. While this demonstrates sophisticated visual cogni-

tion in a miniature brain with regard to size perception,

stimuli in both previous size discrimination experiments

were presented on a background of consistent colour, shape

and size [36,37]. Thus, the bee’s ability to judge size in vari-

able contexts remains unresolved; yet bees forage in

complex, dynamic environments where the context in

which flowers are encountered often changes. Honeybees

express a global preference [38] when processing complex

stimuli made up of multiple elements, and may therefore be

sensitive to size illusions based on variation of the contextual

surrounding cues.

In this study, we use contextual size illusions based on the

Delboeuf illusion to determine how context and self-regulation

of the viewing distance may impact a bee’s ability to accu-

rately judge size. We consequently trained bees to choose

larger- or smaller-sized stimuli, and tested contextual size jud-

gement considering either restricted or unrestricted viewing

conditions by employing stimuli potentially promoting size

illusions.
2. Material and method
(a) Study site and species
Experiments were conducted at the University of Melbourne

between April 2015 and May 2017. Free-flying Apis mellifera for-

agers (experiment 1: n ¼ 10; experiment 2: n ¼ 10) were marked

with a coloured mark on the thorax to identify individuals used

in respective experiments [38].

(b) Experimental procedure
Training and test stimuli were composed of a central black square

target presented on a white square acting as the surrounding

annulus/inducer (figure 2). All stimuli were covered with 80 mm

Lowell laminate. One bee was tested at a time during the training

and testing phases. A counterbalanced design was used for both

the unrestricted and restricted viewing distance experiments (see

below), where in each experiment one group of bees was trained

to associate larger stimulus sizes with a reward (n ¼ 5), while a

second group was trained to associate smaller stimulus sizes with

a reward (n ¼ 5), on a background of constant size. Previous

work established that bees learn either size relation to a similar

performance level [36,37]. Thus, the pseudorandomized counterba-

lance was done to exclude any potential preference effects on the

test results. We used a rotating screen apparatus to promote an

unrestricted viewing condition and a Y-maze apparatus to create

the restricted viewing condition. Previous work has demonstrated

http://rspb.royalsocietypublishing.org/
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Figure 2. The stimuli used for the training and testing phases of both experiments showing the dimensions and surface area of target and background stimuli. In
the learning phase, 80 appetitive and aversive choices were conducted with four stimulus sizes (side edges: 1, 2, 3, 4 cm) presented on a consistent background
(side edge: 6 cm). Two different sizes of target stimuli were simultaneously presented to bees during the learning and test phases. The unreinforced learning test
presented bees with novel sizes (side edges: 1.5, 3.5 cm). In transfer test 1, two central targets of the same size (side edges: 1.5 cm) were presented to bees on a
background of different sizes (side edges: 2.5, 5.5 cm) to create the effect of a visual illusion where the central target on the larger background appeared smaller in
context, and the central target on the smaller background appeared larger in context. In transfer test 2, a larger central target (side edge: 3.5 cm) was displayed on
a larger background (side edge: 6 cm), while a smaller central target (side edge: 3 cm) was displayed on a background which was small (side edge: 3.5 cm) in order
to create the effect of the smaller central target appearing larger and the larger central target appearing smaller due to the surrounding context.
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that there is no significant difference in results for processing

of complex visual patterns (non-illusionary stimuli) between a

rotating screen and Y-maze [39].
(i) Experiment 1: unrestricted viewing distance
Apparatus
Honeybees were trained to visit a vertical rotating screen made

of grey Plexiglas, 50 cm in diameter (figure 3a). By using this
screen, the spatial arrangement of stimulus choices could be ran-

domly changed, thus excluding positional cues. Stimuli were

presented vertically on 6 � 8 cm grey Plexiglas hangers with a

landing platform attached below the presentation area. Hangers

and surrounding screen areas were washed with 30% ethanol

between foraging bouts and before each test to prevent the use

of olfactory cues. Consistent with protocol for the rotating

screen [39], four stimuli (two identical correct stimuli; two iden-

tical incorrect stimuli) were presented simultaneously above

http://rspb.royalsocietypublishing.org/
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Figure 3. (a) An image of the rotating screen used for Experiment 1 with labels to show basic parts of the apparatus. (b) A diagram of the Y-maze used in
Experiment 2 with labels showing the basic parts of the apparatus. A bee enters through the small hole into the decision chamber where it is presented
with two stimuli behind Plexiglas windows and must make a decision on which pole to land on for a reward. (Online version in colour.)
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landing platforms on the hangers, which could be positioned in

different random spatial positions and were randomly changed

between choices [36].
Procedure
Bees were first trained to land on platforms without stimuli present.

Once individual bees were able to land on the platforms, the train-

ing stimuli were introduced. By using the rotating screen, bees were

able to make choices at any distance from the stimuli, flying as

far away or as close as they elected prior to making a decision

on where to land. By using this design, we intentionally did not

control the viewing distance for bees, but allowed individuals to

self-regulate their distance prior to making a decision (figure 3a).

The experiment consisted of four parts (figure 2). During the

learning phase, the target stimuli varied in size (side edges: 1, 2,

3, 4 cm; figure 2) but were displayed on a background of consist-

ent size (side edge: 6 cm). Bees were presented with two different

target sizes during each bout (return from hive to apparatus) and

we recorded each correct or incorrect response for a total of 80

appetitive and aversive choices. Stimulus sizes and positions

were pseudorandomized and changed between bouts. The
sizes of the target stimuli were determined by rolling a die and

stimulus positions on the rotating screen were determined by

rotating the screen. Stimulus sizes always maintained the

size rule for respective groups. A 10 ml drop of either a 50%

sucrose solution (correct choice) or a 60 mM quinine solution

(incorrect choice) were used as rewarding and punishing

outcomes, respectively, during the training phase (figure 2), as

this promotes enhanced visual discrimination performances in

free-flying honeybees [40]. The procedure followed the logic of

size-rule learning [36] where target stimulus sizes were pseudor-

andomly allocated such that the exact nature of a given stimulus

(e.g. side edges: 2 or 3 cm) was ambiguous as correct or incorrect

depending on whether it was larger or smaller in size compared

with the alternative stimulus presented in a given phase of the

conditioning. This training protocol is a form of differential con-

ditioning which promotes processing of the entire image

[38,41,42]. Once a bee made a correct choice, it was collected

onto a Plexiglas spoon providing 50% sucrose solution and

placed behind an opaque barrier 1 m away from the screen

while stimulus sizes and positions were pseudorandomly chan-

ged, and platforms and surrounding areas were cleaned. If a

bee made an incorrect choice, it would taste the bitter quinine

http://rspb.royalsocietypublishing.org/
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solution and then was allowed to continue making choices until

a correct choice was made, at which point the same procedure for

a correct choice would be followed.

Following the learning phase, we conducted an unreinforced

learning test for 20 choices to determine if honeybees had learnt

the relational size rule (figure 2). Stimulus target sizes were

chosen to be novel and interpolated from the training set (side

edges: target, 1.5, 3.5 cm; background, 6 cm). Novel sizes were

used to determine if rule learning, rather than a simple associat-

ive mechanism [36], was responsible for observed performance.

Following the learning test, two transfer tests were conducted

in pseudorandom order. The role of the two sets of stimuli in

each of the transfer tests was to induce the potential perception

of an illusionary image as demonstrated in other animal

models described above (figures 1 and 2). In transfer test 1,

bees were presented with central targets of the same size (side

edges: 1.5 cm), displayed on backgrounds of different sizes

(side edges: 2.5, 5.5 cm). We hypothesized that if bees could

accurately judge size regardless of context, there would be no

significant difference in the number of choices between the two

stimuli. However, if bees perceived an illusion and were trained

to associate smaller-sized stimuli with a reward, they should

choose the central target on the larger background, as it looks

smaller in context. Similarly, if the bees trained to associate

larger stimuli with a reward perceived an illusion, they should

choose the central target on the smaller background as it looks

larger in context. In transfer test 2, bees were presented with a

small central target on a small background (side edges: target:

3 cm; background 3.5 cm) against a larger central target on a

larger background (side edges: target: 3.5 cm; background

6 cm). This test was designed to determine the potential strength

of the illusion in bees. Indeed, in the first transfer test, the target

size was identical and therefore ambiguous for the bees, which

could potentially facilitate the perception of the illusion. In the

second transfer test, a difference in sizes between targets is main-

tained but might be compensated by the illusion triggered by the

difference in the background sizes. In this test, if bees trained to

both smaller and larger rules did not perceive an illusion, they

should choose the respective stimulus in which the central

target maintains the correct size relationship, regardless of the

size of the background. However, if bees perceived a size illu-

sion, those trained to a ‘smaller than’ rule should choose the

stimulus on the larger background, as it looks smaller in context,

and bees trained to a ‘larger than’ rule should choose the stimu-

lus on the smaller background as it appears larger in context

[43–45]. If bees perceived an assimilation illusion, central targets

would appear more similar in size to the surroundings (inducer).

Thus bees in the respective transfer tests trained to larger sizes

would choose the stimulus with a larger surrounding as the

target size also appeared larger, and vice versa for bees trained

to smaller sizes.

During all three tests (learning test, transfer test 1 and transfer

test 2) stimuli were presented without rewarding or punishing out-

comes for respective choices, as we used water drops as a neutral

substance for tests. We recorded 20 choices (touches of a platform)

for each of the three tests. The sequence of the transfer tests was

randomized and refresher choices were given between tests for

the duration of one bout to maintain bee motivation [36,46].

(ii) Experiment 2: restricted viewing distance
The procedure for experiment 2, testing potential illusionary

perception with restricted viewing distance, was largely the same

as experiment 1 except for the apparatus mediating viewing con-

ditions. Honeybees were trained to enter a Y-maze (figure 3b;

as described in [47,48]). Stimuli were presented on grey back-

grounds located 6 cm away from the decision lines. At the

position of the decision lines, a transparent Plexiglas barrier

was placed such that individual bees could view stimuli at the
set distance of 6 cm but were unable to fly any closer, thus

restricting their viewing distance to 6 cm (potential maximum

distance from the entrance hole is 12 cm). Sucrose or quinine

was placed on respective poles directly in front of the Plexiglas

barrier so that bees would learn to associate stimuli with either

a reward or punishment. Poles were replaced when touched by

a bee and cleaned with ethanol to exclude olfactory cues. Two

stimuli, one correct and one incorrect, were presented simul-

taneously in each arm of the Y-maze on the grey plastic

background. The size and side of correct and incorrect stimuli

were randomly changed between choices. If a bee made an incor-

rect choice and started to imbibe the quinine, it was allowed to

fly to the pole in front of the correct stimulus to collect sucrose

to maintain motivation; but only the first choice was recorded.

Once the bee had finished drinking the sucrose, it was free to

fly back to the hive or make another decision by re-entering

the maze. During the unreinforced tests, a drop of water was

placed on each of the poles placed in front of the stimuli.

Twenty choices (touches of the poles) were recorded.
(c) Statistical analysis
(i) Learning phase:
To test for the effect of training on bee performance (number of

correct choices), data from the learning phase of 80 choices

were analysed with a generalized linear mixed-effects model

(GLMM) with a binomial distribution using the ‘glmer’ package

within the R environment for statistical analysis [49]. We initially

fitted a full model with trial number as a continuous predictor,

and group as a categorical predictor with two levels (trained to

larger or smaller), plus an interaction term between predictors

with subject as a random factor to account for repeated choices

of individual bees. As the interaction term was not statistically

significant in experiment 2, it was excluded from the final model.
(ii) Testing phase:
To determine whether bees were able to learn the size rules of ‘smal-

ler than’ and ‘larger than’ from the learning test data, we employed

a GLMM including the intercept term as a fixed factor and subject

as a random term. The proportion of ‘correct’ choices (MPCC)

recorded from the learning tests were used as a response variable

in the model. The Wald statistic (z) tested if the mean proportion

of correct choices recorded from the learning test, represented by

the coefficient of the intercept term, was significantly different

from chance expectation (i.e. 50% of correct choices).

The two unreinforced transfer tests (transfer test 1: targets of

the same size on different background sizes; transfer test 2: large

target on large background and small target on small back-

ground) were analysed using the same analyses employed for

the learning test. For this analysis a ‘correct choice’ was defined

as the choice for a stimulus suggesting the perception of a

contrast illusion.
(iii) Comparison between experiments:
To determine if there was a significant difference between the

learning curve functions of the learning phases in experiments 1

and 2, we used a GLMM with bee response (correct or incorrect)

as a binary predictor, and trial number, viewing condition and

the interaction term as fixed factors. Subject (bee) was included

as a random factor. We also tested for differences between the

pairs of unreinforced tests (learning test, transfer test 1 and trans-

fer test 2) using the same model structure with bee response as a

predictor and experiment (unrestricted or restricted viewing dis-

tance) as a factor. All statistical analyses were performed in the

R environment using the ‘nlme’ and ‘mass’ packages [49].
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3. Results
(a) Experiment 1: unrestricted viewing distance
There was a significant increase in the number of correct

choices made over the 80 conditioned choices during the

learning phase (trial number: z ¼ 3.823, p , 0.001;

figure 4a), with a significant interaction between group and

trial (z ¼ 22.087, p ¼ 0.037) and no significant effect of

group (z ¼ 1.184, p ¼ 0.236). For individual bee performance

see electronic supplementary material, figure S1.

In the learning test, bees consistently chose the correct

stimulus in 66.5+3.0% (mean+ s.e. of the mean) of choices,

significantly higher than chance expectation (z ¼ 4.577, p ,

0.001; mean proportion of correct choices (MPCC) ¼ 0.665,

95% confidence intervals (CIs): 0.595, 0.731; figure 4b).

During transfer test 1 presenting target stimuli of identical

sizes, bees chose the stimulus suggesting contrast illusionary

perception in 63.0+ 3.8% of choices, significantly higher than

chance (z ¼ 2.592, p , 0.010; MPCC ¼ 0.630, CIs: 0.524, 0.725;

figure 4b).

Likewise, in transfer test 2, bees presented with two cen-

tral targets of different sizes on backgrounds of different sizes

chose the contrast illusion stimulus in 64.7+4.1% of choices

(z ¼ 3.506, p , 0.001; MPCC ¼ 0.647, CIs: 0.565, 0.735;

figure 4b). For individual bee performance see electronic

supplementary material, figure S2.

Group was not a significant factor for any of the tests

(p . 0.05 in all cases).

(b) Experiment 2: restricted viewing distance
As in experiment 1, there was a significant increase in the

number of correct choices made over the 80 conditioned choices

during the learning phase (trial number: z ¼ 5.411, p , 0.001;

figure 4a) and no difference between groups (z ¼ 0.321,

p ¼ 0.748). For individual bee performance see electronic

supplementary material, figure S3.

In the learning test, bees selected the correct stimulus in

66.5+2.0% of trials. The mean number of correct choices

was significantly different from chance (z ¼ 4.310, p , 0.001;

MPCC ¼ 0.655, CIs: 0.587, 0.719; figure 4b).

During transfer test 1 presenting target stimuli of identical

size on backgrounds of different sizes, bees chose the contrast

illusion stimulus in 50.0+1.1% of choices, which did not differ

significantly from chance expectation (z ¼ 0.000, p ¼ 0.944;

MPCC¼ 0.500, CIs: 0.431, 0.569; figure 4b).

During transfer test 2 presenting two central targets of

different size on backgrounds of different size, bees chose the

contrast illusion option based on their training group in

35.0+2.2% of choices (z ¼ 24.176, p , 0.001; MPCC ¼ 0.350,

CIs: 0.286, 0.418; figure 4b), thus choosing the correct relative

target size in 65.0+2.2% of choices regardless of the annulus

size. For individual bee performance see electronic

supplementary material, figure S4.

Group was not a significant factor for any of the tests

(p . 0.05).

(c) Comparison of experiments
There was no significant difference between the slopes of the

learning phase in experiments 1 and 2 (viewing condition x

trial number: z ¼ 21.749, p ¼ 0.080; figure 4a), and in the per-

formance of bees (z ¼ 21.023, p ¼ 0.306; figure 4b) during the

training phase, but there was a significant effect of trial on
bee performance (z ¼ 3.520, p , 0.001). There was a signifi-

cant difference between experiments in the results of

transfer tests (transfer test 1: Z ¼ 22.406, p , 0.020; transfer

test 2: Z ¼ 25.824, p , 0.001; figure 4b) as bees trained

using the rotating screen perceived illusions in both tests,

whereas bees trained using the Y-maze did not.

4. Discussion
While the ability to perceive size illusions varies across ver-

tebrate species, it appears that the experimental method,

specifically the restriction of the viewing distance, may influ-

ence results in some experiments [6,14–16,24]. We formally

tested and compared the potential ability of honeybees to per-

ceive size illusions under restricted or unrestricted viewing

conditions. Bees in the unrestricted viewing conditions per-

ceived contrast illusions, while independent bees under

restricted viewing distance conditions did not exhibit choices

consistent with the perception of an illusion. These results

demonstrate that visual perception is influenced by the ability

of bees to choose their own viewing distance and show that

context is a relevant factor in accurate size discrimination.

Differences in perception can potentially be explained by

the capacity of a species or individual to process visual cues

locally or globally [6,8,26]. Local (or featural) processing

seems to allow species to accurately judge size by ignoring sur-

rounding information (inducers), while global processing

allows the perception of illusions whereby the surrounding

information is incorporated into the overall image [1,6]. Honey-

bees have demonstrated the ability to process both locally and

globally, but do show a preference for global processing [38,50].

The honeybee’s preference to process globally could explain

why bees were able to perceive illusions in an unrestricted

viewing context. Indeed, the current study shows that illusion

effects are influenced by viewing conditions, and thus suggests

that local–global processing effects observed in different

animal species may be strongly influenced by viewing context.

Illusionary size perception in the unrestricted viewing

condition may also be influenced by visual angle. Bees

could have been mediating their distance during the transfer

tests in the unrestricted viewing condition in order to place

the white square surroundings at an equivalent visual

angle, and thus choose the target with the larger or smaller

visual angle [51] (see electronic supplementary material,

S1). However, this is very unlikely due to the very large or

very small distances and visual angles (below the minimum

threshold for detection [52]) bees would need to view stimuli

from to match the visual angles of the white surroundings. In

addition, if bees were mediating visual angle to match back-

ground sizes, this would mean bees were ‘fooled’ into trying

to match visual angles to make decisions on relative size. We

could thus still conclude that context is a relevant factor for

free-flying bees to judge size. Additionally, the ratio of

white to black area could potentially have been a cue for

bees; however, we consider this unlikely for three reasons.

First, bees were trained to the difference in the local cues (tar-

gets) with a white background of consistent size, which

promoted size-rule learning of the target [36,37]. Second,

during the learning test bees would have needed to be able

to discriminate a very small difference of 5.7% between

black–white ratios for success in this experiment, which

is unlikely in a rule-learning context. Finally, bees in both

viewing conditions were trained using the same stimuli and

http://rspb.royalsocietypublishing.org/
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Figure 4. (a) Performance during the learning phase in experiments 1 and
2. Dashed line at 0.5 indicates the chance level performance. Solid black line
indicates the line of best fit for data points in the unrestricted viewing con-
dition and the dashed black line indicates the line of best fit for the restricted
viewing condition. The surrounding violet (unrestricted condition; solid line)
and blue (restricted condition; dashed line) areas indicate 95% CI boundaries.
Increase in performance during the learning phase was significant for both
experiments but learning regression lines were not significantly different
from each other. (b) Performance during the three testing phases: learning
test, transfer test 1, and transfer test 2 for bees in experiments 1 (violet,
left bars) and 2 (blue, right bars). For the learning test, performance is
measured by proportion of choices for the correct size option; for the transfer
tests, performance is measured by the proportion of choices for the illusionary
option. Dashed line at 0.5 indicates chance level performance and * indicates
performance significantly different from chance. Data shown are means +
95% CI boundaries for all three unreinforced tests. Ten bees were used for
each test in each experiment. (Online version in colour.)
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conditioning framework; however, the test results from the

two viewing conditions differed significantly. The bees in

the restricted viewing condition could not be using the

white–black ratio, and so it seems likely that the bees in

the unrestricted viewing condition were learning the same

cues as those in the restricted condition.

Studying comparative perception of visual illusions

allows us to make inferences about the evolution of the
visual sensory system. Parallels found across species for the

ability to perceive similar illusions suggests a conserved or

convergent visual processing solution [5,10]. In mammals

and primates, current research suggests that the ability to per-

ceive the Ebbinghaus illusion through specific perceptual

mechanisms is due to the recent evolution of this trait

[6,10,15]. Illusionary perception in primates is potentially

due to the neural substrate located in the neocortex, where

the dorsal and ventral streams, two independent neural path-

ways, are responsible for visual awareness and action control

[53]. In non-mammalian species, such as birds, these neural

circuits are organized differently, perhaps due to evolution-

ary differences [54]. This may also have resulted in

differences among species regarding the ability to perceive

a size illusion and, additionally, the type of illusion which

is perceived (contrast or assimilation) in the Ebbinghaus illu-

sion [10]. However, as discussed, this may simply be due to

differences in testing procedure [5,10]. Some research

suggests that the perception of visual illusions is indeed a

conserved ability in both ‘lower’ and ‘higher’ vertebrates.

[5,10]. With the addition of honeybees to species with

known perception of size illusions, we suggest that conver-

gent evolution of a visual processing solution is more likely

to be the explanation as to why we see this error of perception

in both vertebrates and now an invertebrate. However, this

hypothesis requires testing, particularly the ability of other

invertebrate species to perceive the Ebbinghaus illusion.

Coupled with studies of other illusions perceived by bees,

our research provides additional insight into the honeybee’s

visual system and cognitive processing. Honeybees perceive

illusionary contours [55–57], the Benham illusion [58] and

the Craik–O’Brien–Cornsweet illusion [59], which are

spatial, movement and colour illusions, respectively. Illusion-

ary perception is potentially important for honeybee

perception and assessment of the complex, dynamic environ-

ments in which they live. For example, perceiving the relative

size of an object is important for assessing distance, thus

manipulation of object size can impact distance estimation

[1]. However, illusions may also be perceived because it is

difficult to process all of the sensory information available

in a complex environment. Focusing on a small number of

reliable cues can be used to inform behaviour; thus, the infor-

mation immediately surrounding an object of interest can

result in the distortion of sensory cues, such as size [1]. Size

perception is a classic problem in animal perception

[6,36,37,60], and our new finding that viewing context pro-

motes very different outcomes within species provides for

new avenues for exploration in future studies.
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Abstract 

This article explores the use of mobile eye tracking to provide insights on 
the dynamics of haptic (touch/sense) and visual experience. We created a 
digital cultural walking trail (TRACES), designing an app to explore user 
experiences of their environment, and as a way to reveal the multilayered 
interactions between places and technology. Using mobile eye tracker 
technology to trace a person’s place-based engagements, we show how the 
design of tablet-friendly apps can enrich experience by guiding viewers 
through an immersive and interactive environment with valuable 
information. We also highlight how this activity may negatively impact on 
experience by demanding attention away from real world engagement. 

Seeing the Context 
We begin this article by framing our discussion within broader 

concerns about how knowledge is documented and circulates across 

complex digital environments, including developing new 

engagements with people and places at greater risk of 

marginalization and exclusion [1]. By drawing attention to 

interactions with the environment, we explore the sensory 

relationship between haptic and visual dimensions for improving 

understandings of historical context. We show how eye tracking 

recorded different ways in which a user viewed their environment 

through the haptic and visual features of our app. 

Walking as a Form of Relational Thinking 
We created a cultural walking trail (TRACES) using recent 

innovations in locative mobile media and mapping systems as part 

of a 2017 RMIT University-hosted symposium, 

Connect/Disconnect: Experiences of Body and Place in the 

Networked City. Performance artist Stelarc, in his keynote address 

noted how the body is “accelerated and augmented to perform 

beyond the boundaries of its skin and beyond the local space it 

inhabits” [2]. This suggests we are simultaneously elsewhere and 

here, our bodies already marked by excess through our everyday 

digital encounters.  

We examined how digital mechanisms might enrich our 

experience with cultural and heritage material by identifying four 

key locations for interactive exploration: William Barak Building, 

Old Melbourne Gaol, Ngarara Place Indigenous Garden and the Fig 

Tree with Visible Roots. Users of the app were able to sequentially 

explore each site that was chosen to engage the user in detailed and 

historically changing narratives about the custodians of the land on 

which the site was situated, and the cultural and historical 

significance of that place from the perspectives of traditional 

owners. As a person approached each location, the media on their 

mobile device would be “triggered” through identified GPS-

coordinates by their geographic location. Layers of information 

would appear as augmented features on their device, highlighting a 

mix of factual and political content.  

The app incorporated digital videos, Indigenous oral histories, 

images of material culture and user-generated content. The app also 

allowed us to capture a user’s movements and location-based 

experiences along the trail, which users could share in visual and/or 

textual form through their social media networks (Instagram, 

Facebook, Twitter). We engaged technologies including the mobile 

applications Aurasma and Mobile Learning Academy and a Tobii2 

eye tracker and documented the actions of one of our team members 

(SRH). We measured where her attention was focused, in what 

sequence, and for what period of time whilst using the app. We did 

not initially disclose the full purpose of our study to the participant, 

so as not to influence how she would use the app. She read the 

instructions provided on the app, responded to questions posed on 

the screen and followed the walking trail presented on the tablet’s 

map, while the eye tracker captured her eye movements as she was 

engaged with the contextual environment. Through follow-up 

interviews and collating feedback recorded by the app, we were 

able to collect sensory data on how important sound, image, touch 

and movement were to her visual and interactive experience. 

Following Tim Ingold, we define the “sensory” as information 

received by an individual’s senses through movement, hearing, 

sight, smell, touch, taste, intuition and equilibrium [3]. 

We found that touch, sound, seeing and reading text could be 

dynamically incorporated through the technology to increase 

concentration and immersion and to bring focus to an 

object/environment. The analyses provided insights on the 

connections between the haptic and visual experience of the user, 

suggesting pathways for future studies on such diverse factors as 

how to present content meaningfully, how to collect participant data 

to improve the design of educational software, what kind of data 

can be generated through an app to support environmental and 

historical literacy, how to understand the extent to which people 

retain, memorize and are affected by the information they are 

presented with in visual, textual, aural, oral and haptic forms. 

Eye trackers have been used to understand the sensory impact of 

music [4] and virtual reality environments [5] and have elaborated 

on the kinds of data that can be extracted through the exhibition 

interactions of museum visitors, including what people stop to look 

at (fixations) and what can spontaneously be overlooked (saccades 

or blind spots), helping to form a connection (scan pattern) to 

identify viewer intentions [6]. Other research highlights ways in 

which environment design for tracking studies can be established to 

generate knowledge on participant engagement with artwork [7]. 

In our research, an eye tracker enabled us to interpret both 

qualitative and quantitative data. We were able to document a gaze 

path, which indicated the configuration of movement followed by 

the subject’s eyes while experiencing signed and contextual 

information in one of TRACES’s environments. Numeric 

representation of this experience revealed more than 450 

information pathways over a 146 second period; we could capture 

how the subject was absorbing environmental information once the 

instructions to search for specific details on the app were read. 

Hence, the seeing pathways could be understood as the user’s 

interpretation of contextual content or her response to questions 

presented on the app. Once we were able to match this quantitative 

data with the qualitative findings, we could determine that when the 

participant was asked to answer a question posed on the app, eye 

actions around the environment (which she was asked to search for 

the answer) were more frequent, faster and erratic. There were also 

moments when the eyes would scan over different features of the 

environment with greater and lesser intensity (Fig. 1). Another 

outcome was that the user spent a substantial percentage of her time 
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looking at the tablet (43%) versus the surrounding environment 

(57%). This result was unexpected given that the aim of the app was 

to encourage participants to concentrate on exploring and absorbing 

the physical site in preference to scrutinizing the app screen. 

The findings allowed us to revise the information on the app 

based on user feedback and through software testing. This allowed 

us to create a politics of representation that sought to generate new 

agencies for places that could easily be erased, forgotten or 

overlooked. In this sense the haptic interactive and sensorial 

immersive dimensions of the walking trail were unashamedly 

political. The work aimed to intimate knowledge of what was once 

there and what is no longer, of things now present built over to 

erase a silenced history through the passage of time and made 

palpable through the omnipresence of virtual worlds. TRACES 

strived to evoke a sense of disquiet and displacement, while 

aspiring to stir moments of discovery and curiosity that would 

resonate long after leaving a location.  

This understanding provided new momentum to our research 

encompassing digital humanities, creative practice, visual ecology 

and ethnography. The study carries implications for future research 

by revealing the ways in which we can understand relationships 

between multimodal visual, auditory and haptic senses whilst 

engaged in important cultural experiences. The crossover of this 

interdisciplinary exposure allowed us to develop collaborative 

techniques applied to ethical dilemmas in the process of digital 

design, sensory data analytics and representations of people and 

place. Our intent was to invite thoughtful reflection and purposive 

considerations about each site and to provide insights on the 

potential of the eye tracker to chart new directions on how the 

presentation of digital material can be creatively re-thought by 

tracing the movements between the eye of an observer and 

observed. Understanding eye movements in relation to other 

movements of the hand (haptic touch) and legs (walking through 

place) was crucial to effective app design. 

Ways of Seeing/Knowing 

Archival evidence proves that the eye tracker resonated in artistic 

circles as early as the 1990s. Jochem Hendricks’s longtime 

fascination with using infrared sensors to draw with his eyes led to 

Newspaper, a series of artworks based on the path his eyes traveled 

while reading a newspaper. The normally invisible act of reading is 

reproduced as navigation lines on a printed newspaper to convey the 

absorption of information; here, complex patterns become a 

leitmotif of the mind. Convoluted traces where lines appear as 

messier, darker shapes express the returning to, re-reading and re-

seeing of content, while empty spaces are veiled markers for what 

was overlooked, omitted or perceived as unimportant. 

For Hendricks, the eye tracker was the “interface between myself 

and the world”, articulating the liminal space where the inner and 

outer experience are always in negotiation, where information is 

remediated, redefined, reabsorbed or left aside [8]. This response 

parallels John Berger’s theory that ways of seeing are socially 

conditioned, leading him to conclude that the “relation between 

what we see and what we know is never settled” [9], and as Alfred 

Yarbus shows, often context dependent [10]. When using TRACES, 

the eye tracker was an interface, allowing two systems to encounter 

one another and interact, changing the gestalt of receptivity and 

opposition (eye/environment, mind/body, self/other, present/past, 

digital/physical, seeing/believing); opening a gateway into the 

other, allowing a person viewing the tracking to embody the person 

wearing the tracker. 

Despite the intentions for playful exploration, what surprised us 

most was the user’s attachment to the screen over the surroundings. 

This tells us that mechanisms to engage people with real world 

events can sometimes be perversely counterintuitive. We learnt that 

seeing with the human eye is a complex interaction of collected 

light, modulated color and intensity within a changing landscape, 

and a window on what the mind is prepared to comprehend. We 

were also reminded of how difficult it can be to disconnect and shift 

away from our own perspective and to move toward another 

person’s point of view.  
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de Toulouse, CNRS, UPS, Toulouse 31400, France, eARC Centre of Excellence for Nanoscale BioPhotonics, School

of Science, RMIT University, Melbourne, Victoria 3000, Australia, and fDepartment of Physiology, Monash

University, Clayton, Victoria 3800, Australia

*Address correspondence to Scarlett R. Howard. E-mail: scarlett.howard@rmit.edu.au.

Handling editor: David Baracchi

Received on 11 September 2018; accepted on 4 December 2018

Abstract

Plant–pollinator interactions have a fundamental influence on flower evolution. Flower color sig-

nals are frequently tuned to the visual capabilities of important pollinators such as either bees or

birds, but far less is known about whether flower shape influences the choices of pollinators. We

tested European honeybee (Apis mellifera) preferences using novel achromatic (gray-scale) images

of 12 insect-pollinated and 12 bird-pollinated native Australian flowers in Germany; thus, avoiding

influences of color, odor, or prior experience. Independent bees were tested with a number of para-

meterized images specifically designed to assess preferences for size, shape, brightness, or the

number of flower-like shapes present in an image. We show that honeybees have a preference for

visiting images of insect-pollinated flowers and such a preference is most-likely mediated by holis-

tic information rather than by individual image parameters. Our results indicate angiosperms have

evolved flower shapes which influence the choice behavior of important pollinators, and thus sug-

gest spatial achromatic flower properties are an important part of visual signaling for plant–

pollinator interactions.

Key words: angiosperm, Apis mellifera (European honeybee), bird-pollinated, flower, insect-pollinated, pollinator

Studies on the co-evolution of pollinators and angiosperms have found

that floral phenotypes may have evolved due to their selection by dif-

ferent functional groups of pollinators (Fenster et al. 2004, 2006).

Flowers utilize a variety of signals, cues, and traits in order to attract

or deter specific pollinators (Lunau et al. 2011; van der Kooi et al.

2018) as animals exhibit different sensory capabilities. Plant communi-

cation has developed specific plant–pollinator relationships which

maximize signal quality and reception (Chittka and Menzel 1992).

The difference in evolutionary pathways of flower color for plants that

have evolved for insect or for bird pollination has been observed in dif-

ferent sites around the world (Chittka and Menzel 1992; Rausher

2008; Des Marais and Rausher 2010; Dyer et al. 2012; Shrestha et al.

2013). Bird-pollinated flowers generally reflect long wavelength radi-

ation (Raven 1972), which has been shown as evidence of spectral sig-

nals tuning to important pollinators, independent of phylogenetic

constraints (Shrestha et al. 2013). Analogous type changes also occur
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at the short wavelength (UV) region of the spectrum for insect pollina-

tors (Lunau et al. 2011).

Pollinators have preferences for shapes, sizes, and patterns of real

and artificial flowers (Lehrer et al. 1995; Johnson and Dafni 1998;

Dafni and Kevan 1997). For example, beetles prefer “bowl-shaped”

flowers, while small bees prefer flowers which consist of broken out-

lines (Dafni and Kevan 1997). Bee-flies prefer larger dissected flower

models (Johnson and Dafni 1998), and honeybees prefer larger flow-

ers to smaller ones (Martin, 2004). Studies demonstrate that the pre-

fernce of pollinators for spatial charateristics of flowers may be a

driver of flower evolution (Giurfa et al. 1999; Lázaro and Totland

2014; Gómez et al. 2016). Furthermore, the morphology of flowers

constrains access to morphologically complex flower species (Krishna

and Keasar 2018). Bees recognize a number of different flower charac-

teristics which they use to make decisions on which flowers to forage

from. These signals, cues or traits include scent (Raguso 2008), color

(Giurfa et al. 1995), shape (Lehrer et al. 1995), size (Martin 2004), or

symmetry (Giurfa et al. 1996). Given that honeybee foragers have

shown preferences for flower-like shapes (Lehrer et al. 1995), sym-

metry (Lehrer et al. 1995; Giurfa et al. 1996), larger sizes (Martin

2004), and/or different spatial frequencies (lower spatial frequencies

when viewing images from a distance and higher spatial frequencies

when viewing images at close range; Lehrer et al. 1995), which repre-

sent the resolution of bee vision, we tested whether such preferences

may indeed exist for real-flowers.

As a number of floral spectral signals have evolved to attract birds

or bees for pollination, we hypothesize that differences in flower

morphology between insect- and bird-pollinated flowers could be an

additional signal which may be used to attract pollinators. While

some insect- and bird-pollinated flowers may share similar morpholo-

gies, there are some flowers for respective pollinator groups that ap-

pear different in morphologies (Cronk and Ojeda 2008) and thus in

the current study we randomly selected flowers from our Australian

flower data base to test the potential preference question. By using

achromatic images of Australian native flowers (Shrestha et al. 2013),

which exclude confounding factors of flower color and scent, it is pos-

sible to get insights into whether honeybees have a preference for cer-

tain natural flower shapes. Research has demonstrated that

bumblebees view flowers and images of flowers as similar (Thompson

and Plowright 2014), which validate the use of 2D-printed pictures in

our study. European honeybees (Apis mellifera) were tested in

Germany as within this region there are no bird-pollinated flowers

and no occurrence of the Australian native flowers used in this study,

thus enabling insights into how innate preferences may influence the

pollinator decisions for choosing flowers.

Materials and Methods

Study site and species
Experiments were conducted in the bee training facilities at the

Johannes Gutenberg University in Germany with free-flying honeybee

foragers (A. mellifera). Individual bees were marked on the abdomen

or thorax with a colored mark for identification. One bee was tested

at a time and overall a total of 422 individual honeybees were tested.

A gravity feeder which provided 5–10% sucrose solution was used to

maintain a regular number of bees available for testing. Foragers from

different hives were recruited to the feeder to use as a food source and

individuals in our experiments were collected from this feeder. We

collected 1 individual at a time for participation in the experiments.

To collect a honeybee from the feeder, the bee was picked-up using a

plexi glass spoon containing a higher concentration of sucrose than

the feeder (50% sucrose solution). The bee was taken to the rotating

screen apparatus and placed on one of the platforms which contained

50% sucrose solution (Figure 1). Once bees were consistently coming

back to the apparatus instead of the feeder for a higher reward, the

experiments began.

Apparatus
Honeybees were trained to visit a vertical rotating screen, 50 cm in

diameter (Dyer et al. 2008; see Figure 1). By using this screen, the

spatial arrangement of stimulus choices could be randomly

arranged, thus excluding position cues. The apparatus was able to

be rotated between choices and bouts to randomize the position of

the stimuli, but was not constantly rotating. Stimuli were presented

vertically on 6 �8 cm hangers with a landing platform attached

below the presentation area (Figure 1). A standard gray plastic was

used for the screen, hangers, and landing platforms (Dyer et al.

2008). Hangers and surrounding screen areas were cleaned with

20% ethanol solution and then dried between landings and before

each test were conducted to exclude the use of olfactory cues.

Experiment 1: Preference for bird- versus Insect-

pollinated flowers
Stimuli

Stimuli used for the study consisted of 24 achromatic photographs

of Australian native flowers with known pollinators chosen from

our databases (Shrestha et al. 2013; Burd et al. 2014). Flowers were

chosen for the experiment based on the quality of the collected

images from previous field work to exclude photographer bias for

the current study (Shrestha et al. 2013; Burd et al. 2014). Twelve of

the flowers were identified as exclusively insect-pollinated

(Figure 2A) and 12 were exclusively bird-pollinated (Figure 3A). As

these flowers were novel to European honeybee pollinators in

Germany, we could determine that results were not caused by famil-

iarity with flowers from previous foraging experience. Images of

flowers were cropped to 6 �6 cm squares. The color images were

transformed into achromatic grayscale images using the program

ImageJ (version 1.50) by discarding the red and blue layers of the

original RGB images and keeping only the layer produced by the

green channel (Figures 2A and 3A and Supplementary Figure S1).

We selected the green channel as the wavelengths sensed by this

channel map closely between camera and bee green photoreceptor

sensitivities (Garcia et al. 2014) which are known to be important

for how free-flying bees perform spatial tasks (Giger and Srinivasan

1996; Hempel de Ibarra and Giurfa 2003; Stach et al. 2004;

Morawetz et al. 2013; Avarguès-Weber et al. 2014). The images

were printed on EPSON Archival Matte Paper, Super A3, 192 g/m2

and laminated with Avery DennisonVR DOL 1480 3D Matte (Matte

Clear Super Conformable Cast Overlaminate). A radiometer

(Instrument Systems SPECTRO 320 Optical Scanning Spectrometer)

was used to ensure stimuli were monochromatic images in the

green-receptor channel. Chromatic contrast (0.05 units for the white

paper) was also calculated in a Hexagon color space (Chittka 1992)

and was well below the threshold of 0.11 Hexagon units that bees

perceive as different from an achromatic background (Dyer et al.

2012). For information on flower size, see Supplementary Table S1.

Priming phase

We primed 138 individual honeybees over 24 rewarded choices to

land on platforms and become familiar with the apparatus using a

10mL drop of 50% sucrose solution placed on each of the 8 hanger
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platforms. This type of priming was found necessary during pilot

studies to enable a very high level of motivation from the bees for

the subsequent non-rewarded testing. We began counting these pri-

ming choices when bees could land on the hanger platforms without

assistance. During the priming phase, 6 � 6 cm squares of sand-

blasted aluminium were presented on hangers as a spectrally neutral

stimulus. The sand blasted aluminium reflects radiation equally

from 300 to 650 nm (Dyer et al. 2016) and are thus achromatic for

bee perception. After individual bees landed and imbibed the su-

crose, they were gently removed from the apparatus using a trans-

parent spoon with sucrose on it and placed behind an opaque screen

about 1 m from the rotating screen while the apparatus and hangers

were cleaned (Dyer et al. 2008). After this procedure, bees could ei-

ther choose to land on the apparatus hangers for a reward again or

return to the hive to deposit the sucrose.

Testing phase

After the priming phase, we conducted 1 test with 8 pseudo-ran-

domly chosen flower image stimuli from our image database of 24

flowers by using dice rolls (Figure 2A: 4 different insect-pollinated

flowers; Figure 3A: 4 different bird-pollinated flowers, Figure 1A).

The flower stimuli were placed on the hangers and 10mL drop of

water was used instead of sucrose in the associated platforms as the

test was unrewarded. We recorded the number of choices (touches

of platforms or images) for a total of 24 choices in this test thus each

image had an equal chance of being chosen. A touch was defined as

any contact to the platform or flower image during the test.

Statistical analysis
Bee preference analysis

To determine whether bees had any preference to insect- or bird-pol-

linated flower images, we estimated the mean of the insect-

pollinated choices from the intercept of a generalized linear mixed

model only including the intercept as predictor. Choices were

recorded as binary responses giving a value of 1 for choices made to

insect-pollinated flowers and zero otherwise. Subject (individual

bees) was included as a random variable to account for the repeated

measurements. The model was estimated using the routine “glmer”

available as part of the “lme4” package written for the R statistical

language (R Core Development Team 2016).

Image analysis

We also analyzed the flower images to determine if contrast or line

length of the flower images used were significantly different in terms

of insect-pollinated (Figure 2B) or bird-pollinated images (Figure 3B).

For all images, the brightness profiles were constructed from pixel val-

ues of a linear transect sampling going from the leftmost pixel location

to the rightmost location along the central axis of the image. Contrast

for each image was calculated as the root mean square of the pixel in-

tensity values (Bex and Makous 2002) for the entire image. Contrast

values for the 2 image groups (bird-pollinated or insect-pollinated)

were compared by means of an independent t-test. Contrast analyses

were performed in MATLAB release 2016b. The flowers line length

was analyzed using ImageJ by tracing the perimeter of the flowers and

measuring the line length. The line lengths of the bird-pollinated and

insect-pollinated flowers were then compared by means of a 2-tailed

t-test. The t-tests were carried out in SPSS version 24.

Experiment 2: Honeybee preferences to different

aspects of the flower images
Stimuli

There were 5 control tests that were conducted to check preferences

for (i) 4 different levels of brightness, (ii) 3 different elongations of a

typical flower-shape, (iii) 3 different flower sizes, (iv) a preference

for 1 versus 3 flower shapes, and (v) a preference for 1 versus 11

flower shapes in an image (Figures 1 and 4). The stimuli for this con-

trol experiment were developed using the previous tested images of

flowers in Experiment 1. We tested for a preference to brightness

using 4 stimuli of different levels of brightness 10%, 20%, 35%,

and 50% (Figure 4A) which mirror the biologically relevant range

of reflectance values for the most common flowers (Chittka et al.

1994; van der Kooi et al. 2016). We tested for a preference to shape

using a familiar flower-like star shape (Lehrer et al. 1995), which

was elongated, using 3 different stimuli: 1� elongation (none), 2�
elongation, and 3� elongation (Figure 4B). We tested for a flower

size preference in the image using 3 differently sized flower-like

A B

Figure 1. Schematic of the rotating screen apparatus where the (A) achromatic flower images were presented to bees (front view). Shown are examples of insect-

and bird-pollinated flower images presented on hangers with landing platforms located below images on the hangers. (B) The rotating screen with control stimuli

presented to bees (side view). Shown is the test for brightness preference.
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stimuli: small, medium, and large (Figure 4C). We also assessed in 2

tests the preference for images containing 1 flower-like stimulus ver-

sus 3 (few; Figure 4D) or 1 versus 11 (many; Figures 1 and 4E)

flower-like stimuli. We tested the bees’ preferences for number of

flower-like elements in an image as insect-pollinated flowers in our

stimuli set (Figure 2) typically consist of 1 large flower-shaped

element in an area of the plant, while bird-pollinated flowers in our

stimuli set (Figure 3) often have inflorescence (multiple flowers in a

single area).

Priming phase

The priming phase was identical to Experiment 1.

Figure 2. (A) The 12 insect-pollinated flowers used in the experiments which are native to Australia. The color images of the flowers (i–xii) were converted into

achromatic grayscale images by selecting the layer corresponding to the green channel of the original RGB images. (B) The corresponding brightness profiles for

the insect-pollinated flower images taken along a linear transect sampled across the middle of the image on the horizontal axis in (A). Species names:

(i) Thysanotus juncifolius, (ii) Tricoryne elatior, (iii) Chamaescilla corymbosa, (iv) Hibbertia scandens, (v) Gompholobium huegelii, (vi) Drosera whittakeri,

(vii) Dampiera stricta, (viii) Eutaxia microphylla, (ix) Goodenia lanata, (x) Wahlenbergia gloriosa, (xi) Caladenia carnea, and (xii) Philotheca myoporoides. See

Supplementary Figure S1A for full color images.
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Testing phase

After the priming phase, a total of 280 bees participated in one of

the control tests in which stimuli were either manipulated for (i)

brightness (n¼78), (ii) shape elongation (n¼61), (iii) size (n¼65),

or (iv–v) number of elements (1 versus 3: n¼34; 1 versus 11:

n¼42) and were placed on the hangers. Testing order was random.

Ten choices were recorded per bee. A choice was defined as any con-

tact to the platform or stimulus during the test.

Figure 3. (A) The 12 bird-pollinated flowers used in the experiments which are native to Australia. The color images of the flowers (i–xii) were converted into

achromatic grayscale images by selecting the layer corresponding to the green channel of the original RGB images. (B) The corresponding brightness profiles for

the bird-pollinated flower images taken along a linear transect sampled across the middle of the image on the horizontal axis in (A). Species names: (i) Hakea

francissiana, (ii) Swainsona formosa, (iii) Astroloma ciliatum, (iv) Corea pulchella, (v) Calothamnus rupestris, (vi) Gastrolobium celsianum, (vii) Epacris impressa,

(viii) Eucalyptus sp., (ix) Banksia ericifolia, (x) Templetonia retusa, (xi) Stenocarpus sinuatus, and (xii) Kennedia prostrata. See Supplementary Figure S1B for full

color images.
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Statistical analysis
In Experiment 2, we used a set of generalized linear mixed models

(glmm) initially including choice number (sequence) and stimuli par-

ameter as fixed terms to test for potential bee preferences for differ-

ent visual aspects of the flower images and a potential effect of

choice number (sequence of choices). We followed a classical model

reduction analytical framework to test for significant effects of the 2

fixed factors. Bees participating on tests for brightness, amount of

elongation, and size could select from more than 2 options; there-

fore, we assumed that the response variable, that is, the stimulus

chosen on each trial, followed a multinomial distribution (Faraway

2005). Models for the flower number experiments assumed a bino-

mial distribution for the response variable. Subject (individual bees)

was included as a random effect on all models to account for the

repeated measurements (Zuur et al. 2009).

The stimulus options with (i) a brightness level of 20%, (ii) 1�
elongation, and (iii) medium size were selected as baseline for the

multinomial models. The baselines were chosen as (i) 20% as this

was similar to the priming brightness level, (ii) 1� elongation as this

means there was no elongation in this stimulus, and (iii) medium

size as this was the average size of flowers in the images in

Experiment 1. Images depicting 1 flower were designed as the

“correct” answer for the (iv–v) binomial models. All choice compar-

isons were done relative to the baseline following standard protocols

(Faraway 2005).

Multinomial models were fitted using Bayesian interference with

Monte Carlo Markov Chain methods with the routine

MCMCglmm (Hadfield 2010), available for the R statistical lan-

guage. Multivariate normal distributions with mean vector zero and

large variance were used as diffuse priors for the fixed and random

terms (Hadfield 2010). Models were run with 210,000 iterations, a

thinning interval of 1,000 and discarding the first 10,000 iterations

as burnin phase. By the end of the simulation phase, chains in all

models had an autocorrelation value <0.1.

Binomial models were also fitted using Bayesian techniques.

Diffuse normal priors were assumed for the fixed terms while half-

Cauchy priors were assumed for the random terms (Zuur et al.

2015). Fitting of the binomial models was done in JAGS (Hornik

et al. 2003) for R using the same number of iterations, thinning, and

burnin parameters used for the multinomial model.

Posterior distributions of the regression model coefficients were

subsequently used to evaluate if the magnitudes of the model’s coef-

ficients were different from zero. For the multinomial models, coef-

ficient values including zero demonstrate that there is no difference

between the number of choices observed for the respective trait and

the chosen baseline (Supplementary Table S2).

Results

Experiment 1
Bee preference analysis

Honeybees (n¼138) significantly preferred insect-pollinated flower

images compared with bird-pollinated flower images at a level of

53.8 6 1.1% (mean 6standard error of the mean) which was

significantly different from chance level (H0 ¼50%, z¼3.556,

P < 0.0001). Thus, honeybees had a significant preference for novel

insect-pollinated flower images (Figure 5A).

Image analysis

The contrast values of the images (n¼12) were normally distributed

for both insect-pollinated images (W¼0.960, df¼12, P¼0.780;

Figure 2B and Supplementary Figure S2) and also for the 12 images

Figure 4. Samples of the control stimuli used in experiments. (A) Representation of brightness stimuli (10%, 20%, 35%, and 50%). (B) Shape stimuli with elong-

ation of a star-shaped flower-like image at 1� elongation, 2� elongation, and 3� elongation. (C) Size stimuli showing small, medium, and large surface areas of

flower-like images with the areas derived from the flower sizes used in part 1. (D) Stimuli used for the flower number experiment of 1 versus 3. (E) Stimuli used

for the flower number experiment of 1 versus 11.
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of bird-pollinated flowers (W¼0.958, df¼12, P¼0.753; Figure 3B

and Supplementary Figure S3). We conducted an independent-

sample t-test between the contrast values for the 2 groups and found

no significant differences (t¼1.692, df¼17.255, P¼0.109).

The line length of the bird-pollinated and insect-pollinated flow-

ers was not significantly different (independent samples t-test:

t ¼�0.728, df ¼22, P¼0.475). The area of flowers was also not sig-

nificantly different (independent samples t-test: t¼0.928, df¼22,

P¼0.364); thus, the contrast nor the line length nor the area could

be considered a driver of bee preference.

Experiment 2
Zero was included in all the 95% credible intervals for the trial coef-

ficient in all models. This suggests that bees were generally showing

similar choices at the beginning and end of the 10 choices in the

tests. Therefore, reduced models only including the intercept were

subsequently fitted to the data to test for differences in the total

number of choices for each trait modification relative to the baseline

chosen for each trait. Analyses revealed that bees did not choose any

of the modified traits for shape (n¼61), brightness (n¼78), or

number of petals (1 versus 3: n¼34; 1 versus 11: n¼42)

(Figure 5B). However, bees chose the small flowers less frequently

relative to the normal sized images (n¼65; Figure 5B and Table 1).

Discussion

Considering flowers presented to honeybees were novel (flowers

were native to Australia whereas our honeybee population was

located and tested in Germany), we propose that the preference for

insect-pollinated flowers was not a direct result of familiarity with

flowers through foraging. Based on our results, we thus suggest that

the choice for insect-pollinated flowers based on shape is an effect

due to an evolved preference rather than through familiarity with

specific flowers. This position would be consistent with theories of

innate shape preference present in bees proposed by Lehrer et al.

(1995). In addition, our control tests suggest that honeybees prefer

to choose flowers based on an overall, global view of the flower

images rather than on a single parameter. This interpretation fits

A

B

Figure 5. The results of the preferences tests for Experiments 1 and 2. (A) The mean proportion of choices made for insect-pollinated flower images (gray) during

the preference test. This column shows the mean695% confidence intervals (CIs). The solid black line shows chance expectation at 50%. Significance from

chance level performance is indicated by ***�0.001. Blue dots indicate the raw data, depicted as a bee-swarm plot, of each individual bee’s preference for insect-

pollinated flowers (n¼ 138). (B) The mean proportion of choices made for each of the 5 preference control experiments: brightness (white; n¼78); shape (gray;

n¼61), area (orange; n¼ 65), flower number test 1 versus 3 (green; n¼34), and 1 versus 11 (yellow; n¼42). The columns show the mean695% CIs. Blue dots in-

dicate the raw data, depicted as a bee-swarm plot, of each individual bee’s preference for each option in the tests.

Table 1. Percentage of bee choices for each option in each of the 5

tests

Brightness

10% 20% 35% 50%

30.77% 29.49% 17.95% 21.79%

Shape

x1 x2 x3

30.65% 33.87% 35.48%

Size

Small Medium Large

30.30% 36.36% 33.33%

1 versus 3 shapes

1 shape 3 shapes

56.10% 43.90%

1 versus 11 shapes

1 shape 11 shapes

59.09% 40.91%

Howard et al. � Honeybees preference towards flower shapes 7

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/advance-article-abstract/doi/10.1093/cz/zoy095/5244969 by guest on 16 January 2019

https://academic.oup.com/cz/article-lookup/doi/10.1093/cz/zoy095#supplementary-data


with how honeybees are known to prefer to process visual input

using global holistic information rather than local elemental features

(Zhang et al. 1992; Avarguès-Weber et al. 2015, 2018; Howard

et al. 2017b). However, we acknowledge that it is also possible

that the observed preference for insect-pollinated flowers could

alternatively be a result of familiarity of foraging on “similar” insect-

pollinated flowers throughout an individual bee’s lifetime. For ex-

ample, Verguts and Chen (2017) suggested that an individual animal

undergoes “evolution” at an individual level throughout its lifetime

as it learns and experiences its own environment, thus bees in our ex-

periment may demonstrate a preference for insect-pollinated flowers

due to their previous individual experience. Future work with fully

naı̈ve bees could help inform the mechanisms underpinning the

observed effect of a preference for certain flower morphologies.

Consistent with the current study, honeybees have previously

demonstrated a preference for larger flowers of the species, Mimulus

guttatus (Martin 2004). In both studies, the selection by honeybees

against smaller sizes is possibly due to the lower visibility of the

smaller flower-like shape. Other previous works have demonstrated

that flower size plays a significant role in plant–pollinator interac-

tions. For example, larger flower sizes may be caused by selection

pressures to advertise a higher reward quality or quantity (Ashman

and Stanton 1991; Campbell et al. 1991; Cohen and Shmida 1993;

Benitez-Vieyra et al. 2010, 2014), thus resulting in a preference

against smaller flowers. This is evident in flowers of Turnera ulmifo-

lia L., where nectar production and petal length (an indication of

flower size) were positively correlated in an environment where sig-

nal accuracy was selected for by pollinators (Benitez-Vieyra et al.

2010). Bees can reliably learn and process size (Howard et al.

2017a) but the size factor alone could not explain the observed pref-

erence for insect-pollinated flowers as there were no significant size

differences between the images of the flower types. Our investiga-

tion of potential elemental factors that might influence bee preferen-

ces did not find any significant effect of flower elongation, nor

brightness on bee choices. This result is consistent with recent find-

ings that image brightness is not processed by honeybees when using

color vision to detect flowers, and indeed brightness appears an un-

reliable visual cue in complex environments (Ng et al. 2018; van der

Kooi et al. 2018).

The results in our current study suggest 2 potential evolutionary

mechanisms. The first involves the evolution of flowers to suit pol-

lination by insects such as honeybees due to the bees preference for

certain morphologies. This possibility is supported by previous re-

search demonstrating that evolution of flower color occurred

through flowers tuning to the relative sensitivity of the plant’s most

important pollinators (Chittka and Menzel 1992; Rausher 2008;

Des Marais and Rausher 2010; Dyer et al. 2012; Shrestha et al.

2013). The second possible mechanism would be the evolution of

bees to prefer morphologies of insect-pollinated flowers as those are

the flowers from which it would be easiest to receive nutrition com-

pared with bird-pollinated flowers. As a result, over time bees may

have developed evolutionary relevant recognition of insect-

pollinated flowers and be able to generalize that familiarity to novel

flower comparisons, as discussed above. The preference for insect-

pollinated flower shapes could also be a result of a combination of

these 2 mechanisms, where insect-pollinated plants and insects, spe-

cifically bees, co-evolved.

Our results suggest that the recognition and preference for

insect-pollinated flowers by honeybees is innate as bees in Germany

had not previously encountered the species of flowers which we pre-

sented. In addition, if flowering plants have evolved to suit

morphological preferences of bees, Europe and Australia have been

separated for many millions of years (with honeybees arriving in

Australia within the last 200 years; Paton 1993, 1996), meaning the

coevolution of this plant–pollinator system is a deep rooted evolu-

tionary occurrence. Such a phylogenetically conserved effect of the

visual system of bee pollinators is plausible as flower colors in

Australia have evolved to suit color discrimination of native bee pol-

linators; and the distribution of colors is the same as regions of the

world where honeybees were the dominant influence on flower col-

oration evolution (Chittka and Menzel 1992; Dyer et al. 2012).

Thus, our new evidence suggests that native Australian pollinators

may also have a similar preference for flower-shape.
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Abstract

Angle dependent colors, such as iridescence, are produced by structures present on flower petals

changing their visual appearance. These colors have been proposed to act as signals for plant–

insect communication. However, there is a paucity of behavioral data to allow for interpretations of

how to classify these colors either as a signal or a cue when considering the natural conditions

under which pollination occurs. We sampled flowers from 6 plant species across various view-

points looking for changes in the visual appearance of the petals. Spectral characteristics were

measured with different instruments to simulate both the spectral and spatial characteristics of

honeybee’s vision. We show the presence of color patches produced by angle dependent effects

on the petals and the calyx of various species; however, the appearance of the angle dependent

color patches significantly varies with viewpoint and would only be resolved by the insect eye at

close distances. Behavior experiments with honeybees revealed that pollinators did not use angle

dependent colors to drive behavior when presented with novel flower presentations. Results show

that angle dependent colors do not comply with the requirements of a signal for plant–pollinator

communication since the information transmitted by these colors would be unreliable for potential,

free-flying pollination vectors. We thus classify angle dependent colors produced by micro- and

ultra-structures as being a cue (a feature which has not evolved for communication), and observe

no evidence supporting claims of these angle dependent colors having evolved as visual signal.

Key words: approach angle, color, flower, iridescence, photography, pollination, vision

Flowering plants around the world have evolved a wide range of

flower types displaying a striking gamut of colors using a variety of

different pigments (Faegri and Pijil 1966; Scogin 1983; Rausher 2008;

Tanaka et al. 2008; Dyer et al. 2012; Ng et al. 2018). Petal colors at-

tract flower visitors, like bees or birds (Varassin et al. 2001; Shrestha

et al. 2013), which facilitate the efficient transfer of pollen between

conspecific plants (Chittka and Menzel 1992; Chittka et al. 1999). In

recent times, there has been an increasing number of reports of differ-

ent optical phenomena producing angle dependent coloration through

the interaction of optical radiation with microstructures on flowers

belonging to distantly related clades to produce visual effects

including iridescence (Whitney et al. 2009b; Vignolini et al. 2015),

mirror-like reflectance (gloss) (Vignolini et al. 2012; van der Kooi

et al. 2017), and “halos” (Moyroud et al. 2017). The optical princi-

ples leading to the production of angle dependent colorations such as

iridescence and mirror-like reflection (gloss) are produced by interfer-

ence of incident light caused by the presence of nano, and ultra-

structures of different refractive order regularly or quasi-regularly

ordered on the petal surface (van der Kooi et al. 2018, 2017); for this

reason, such colors are commonly referred to as structural colors to

differentiate them from colors produced by the selective absorption of

light as those produced by pigments (Srinivasarao 1999; Nassau
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2001). In the present manuscript, we will thus refer interchangeably

to both angle dependent and structural colors, as our primary ques-

tion is how such colors may be used by bee pollinators in a way that

would fit the formal definition for signal.

Accordingly to various authors, angle dependent colors have

evolved to produce visual signals to potential pollinators (Whitney et al.

2009b; Moyroud et al. 2017). However, it currently remains unresolved

as to whether such optical effects are indeed biologically significant

when considering the sensory capabilities of important pollinators like

bees (Morehouse and Rutowski 2009; van der Kooi et al. 2015). To

understand if angle dependent color in flower can be classified as a sig-

nal when considering plant–pollinator interactions, it is essential to rec-

ognize in what circumstances visual information can be effectively

transferred to a potential pollinator. Thus, to understand flower evolu-

tion, it is necessary to understand bee–pollinator perception.

The use of the term signal when referring to angle dependent col-

ors in plants implies that these colors allow for an effective visual

communication between plant (sender) and insect (receiver). More

precisely, these type of colors should comply with 3 conditions to be

considered as a signal: (a) effectively transmit information from the

signaler to the receiver, (b) have evolved for this particular purpose,

and (c) both parties should benefit from producing and monitoring

these colors (Smith and Harper 2003; Bradbury and Vehrencamp

2011). Visual traits producing stimuli that do not meet the fore men-

tioned 3 criteria may be defined as a cue (Bradbury and Vehrencamp

2011). Unlike signals, cues have not specifically evolved for communi-

cation purposes and may be produced as a secondary effect or by-

product of inherent anatomical characteristics to the emitter

(Bradbury and Vehrencamp 2011).

In contrast to structural colors produced by flower petals, angle

dependent colors produced by animals, as for example bird feathers

(Finger et al. 1992), are known to be effectively used as signals for

visual communication. For example, female peacocks use the color

produced by the iridescent plumage of males to detect and visit

mates (Loyau et al. 2007), the quality of the structural color in

house sparrows is correlated with the nutritional condition of the

bird (McGraw et al. 2002), plumage structural coloration of eastern

bluebirds acts as honest signal of male quality and females matting

with the most colorful males receive benefits from their mates

(Siefferman and Hill 2003); and female starlings use structural col-

oration to rank male attractiveness (Bennett et al. 1997).

Flower colors produced by pigments can be classified as a visual

signal (van der Kooi et al. 2018) as this type of color complies with

the 3 requirements for effective communication between plant and

insect. Flowers relying on hymenopterans to reproduce typically

offer small nutritional rewards to their visitors (Goulson 1999) and

have often evolved colors that maximizes their discriminability con-

sidering the visual system of important pollinators (Chittka and

Menzel 1992; Dyer et al. 2012; Shrestha et al. 2013; Bukovac et al.

2016). Furthermore, insect pollinators like bees constantly visit con-

specific rewarding flowers that are easily recognized to maximize

their nutritional intake, and this flower constancy promotes the evo-

lution of flower color signals that best correspond to the visual capa-

bilities of important pollinators (Chittka et al. 1999; Burns and

Dyer 2008; Shrestha et al. 2013). However evidence supporting the

role of angle dependent colors in flowers as visual signals remain

tenuous when considering natural environments (Morehouse and

Rutowski 2009; van der Kooi et al. 2015, 2018).

A fundamental requirement for petal color to serve as a signal

for visual communication is that this trait should unambiguously

transmit information from the flower to the insect (Smith and

Harper 2003). Most pigment-based colors present in flower petals

retain their chromatic appearance independently from viewing angle

as they produce diffuse reflection (Lee 2005). This means that a pol-

linator approaching a flower from any direction will perceive the

color independent of the angle of illumination. However, this may

not be the case with angle dependent colors since by definition there

can be significant changes in appearance depending on the direction

of illumination and approach of a prospective pollinator (van der

Kooi et al. 2015, 2018).

Let us consider the case of a hypothetical flower displaying a

color pattern consisting of angle dependent color patches produced

by 2 different phenomena, plus a diffuse, angle independent color

produced by pigment (Figure 1). In our example, as in naturally

occurring flowers, a pollinator may approach from any inclination

angle (u) along the vertical axis (red arrow in Figure 1), and from

any orientation angle (h) along the horizontal plane (green arrow in

Figure 1). Furthermore, one of the angle dependent colors may result

from Fraunhofer Diffraction produced by a grating as reported for

Hibiscus trionum (Whitney et al. 2009b), where the intensity of the

reflected radiation varies with viewing angle (Hecht 2002). The se-

cond angle dependent color may be the result of mirror-like reflect-

ance as the type of angle dependent coloration observed in several

species of the genus Ranunculus (family Ranunculaceae) (Galsterer

et al. 1999; van der Kooi et al. 2017). In both cases, as in many

examples of angle dependent colors, a pollinator would only see the

angle dependent colors when approaching the flower at those specif-

ic angles where the petal microstructure allows for constructive

interference of the radiation reflected by the petals (Hecht 2002; van

der Kooi et al. 2016). For this reason it is of value to assess potential

changes in the visual appearance of a flower by collecting informa-

tion from different angles as those used by a free flying pollinator

(van der Kooi et al. 2015), using calibrated digital images that allow

to recover measurements of total reflectance from digital values

(Garcia et al. 2014).

To communicate information that can drive an insect pollinator

behavior as expected from a signal (Smith and Harper 2003;

Bradbury and Vehrencamp 2011), the petal appearance resulting

from the joint effect of the structural and pigment coloration should

remain constant across all directions used by an insect to approach a

flower. Alternatively, the insect has to be able to detect and identify

a flower independently from changes in its appearance resulting

from approaching the target from different directions (Figure 1).

The latter condition implies that the pollinator has to use the overall

change in appearance induced by the angle dependent colors as in-

formation for identifying the flower sending the signal (de Premorel

et al. 2017). Laboratory measurements of the optical properties of

various petals showing angle dependent colorations suggest that the

former hypothesis does not hold true for several species. Some color

effects produced by nano and ultra-structures such as iridescence

(Whitney et al. 2009b) and specular reflection (Vignolini et al.

2012) are only visible at specific angles. However, studies consider-

ing changes in petal appearance due to angle dependent coloration

under natural-like illuminations (van der Kooi et al. 2015; Vignolini

et al. 2015) have not formally tested for the potential correlation be-

tween angle and changes in the visual appearance of the petals as

perceived by potential pollinators.

Whether hymenopteran insect pollinators use visual information

produced by the structural coloration to drive decisions remains a

topic for debate (van der Kooi et al. 2018). Some authors have

addressed this question through the use of a discrimination para-

digm where bumblebees (Bombus terrestris) were trained to
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discriminate between angle dependent and diffuse colorations on

artificial targets mimicking petal structural colors (Whitney et al.

2009b; de Premorel et al. 2017). In these experiments, bumblebees

learned to discriminate between the angle dependent and angle inde-

pendent colorations following an appetitive aversive differential

conditioning which significantly improve learning in bees

(Avarguès-Weber et al. 2010). Using this conditioning procedure

each bee received a sucrose reward when choosing the iridescent tar-

gets, and was punished with a quinine solution when choosing the

non-iridescent distractor. Although results from these experiments

show that bumblebees can readily learn to discriminate angle de-

pendent colorations from their angle independent counterparts after

extensive conditioning, these experiments do not prove that under

natural circumstances structural color are used as signals by insect

pollinators.

In recent years it has become clear that understanding how a

bee pollinator uses their color vision in a natural setting requires

careful consideration of what motivates and modulates the atten-

tion of individuals (Dyer 2012). Testing on color vison in both hon-

eybees (Giurfa 2004; Reser et al. 2012; Garcia et al. 2018) and

bumblebees (Dyer and Chittka 2004; Garcia et al. 2018) shows

that bees trained with absolute conditioning (i.e. target stimuli in

isolation) only enables a relatively coarse level of discrimination. In

contrast, bees trained with differential conditioning (i.e. rewarded

target stimuli vs. non-rewarded and perceptually similar distractor

stimuli) acquire fine color discrimination. Differential conditioning

results in the formation of a long-term memory (Dyer and Chittka

2004; Dyer and Garcia 2014), which has also been recently

reported in other hymenopterans such as ants (Yilmaz et al. 2017).

The use of appetitive-aversive conditioning, where choices for the

correct distractor are punished with a bitter tasting quinine solution

further improve color discrimination (Chittka et al. 2003), prob-

ably via modulation of attention (Avarguès-Weber et al. 2010). The

question then becomes which type of condition is most appropri-

ated for evaluating hypotheses about flower signal evolution. By

comparing either absolute or differential conditioning functions for

either honey or bumblebees to pigment-based flower color signals

(Dyer et al. 2012; Garcia et al. 2018) or the flower constancy be-

havior of bees (Dyer 2006), it has been shown that for natural con-

ditions absolute conditioning is the correct behavioral paradigm to

use for understanding how bee pollinators use visual information in

a way that might drive flower evolution. For example, color dis-

crimination under absolute conditioning explains how insect polli-

nators may cope with the color variability observed in natural

flowers to maintain flower constancy, and allow for “imperfect”

camouflage in spiders preying on visiting honeybees (Garcia et al.

2018).

Here we address the important question of the reliability of

structural color under simulated natural lighting conditions

when considering both viewpoint and the spectral and spatial

characteristics of the visual system of the honey bee (Apis melli-

fera). We used linearized digital images, which express total re-

flectance at each pixel location (Stevens et al. 2007; Garcia et al.

2013a), and a mechano-optical device which produces images

with an spatial resolution close to that measured for honeybees

(Knowles and Dartnall 1977; Williams and Dyer 2007). To fully

understand the extent to which angle dependent colors are bio-

logically relevant, we test free-flying honeybees, trained under

absolute condition, on their capacity to use visual information

from the different patterns produced by angle dependent patterns

to drive decisions.

We specifically test the role of angle dependent coloration on a

biologically relevant discrimination task as it is already known that

honeybees (Giurfa et al. 1996; Dyer et al. 2008) and bumblebees

(Spaethe et al. 2001; Dyer et al. 2008; predominantly use achromat-

ic vision mediated by the long wavelength sensitive photoreceptor

for flower detection. Therefore, color information is not used for

flower detection in bees.

If a flower’s structural color does constitute a visual signal

which provides information to the pollinator such that it may mod-

ify its behavior, one can hypothesize that: (i) color patches pro-

duced by angle dependent colors are perceivable when considering

the visual acuity of a bee. (ii) it is robust enough as to enable flower

identification independently from viewing angle and (iii) it is read-

ily discriminable from pigment color. For the first hypothesis to be

true, small color patches responsible for angle dependent colors in

flowers should be easily discerned when observed through an op-

tical device with the same resolution as that of the compound eye

of a pollinator such as a honeybee. For the second hypothesis to

hold true, the visual appearance of the color pattern of a flower

should be independent from view point. Finally, for the third hy-

pothesis, pollinators should be able to learn and recognize the pat-

tern produced by a given angle dependent coloration when asked

to choose between this option and a solid color whose appearance

is independent from viewing angle. Altogether the null hypothesis

framework is that angle dependent colors are only incidental

effects.

Figure 1. Diagram depicting a hypothetical flower whose color is the result of

angle dependent and independent colors. The perceived appearance of the

angle dependent colors depends on the optical phenomena producing them

and view angle which is a combination of the inclination angle along the y-axis

(u, red arrow) and the orientation angle along the x-axis (h, blue arrow). In this

particular example, one of the angle dependent colors is a mirror-like reflect-

ance only visible at a particular inclination angle (top right quadrant). The se-

cond angle dependent color is produced by a simple diffraction effect where the

intensity of a given reflected color changes with angle (bottom left quadrant)

here represented by the graded color. The third color is produced by radiation

reflected by the pigment which produces a solid, diffuse color angle independ-

ent from view point (solid blue color). Depending on the particular approach

angle, an insect pollinator will perceive different aspects of the angle dependent

component of the color pattern (question marks). However, the appearance of

the diffuse pigment color will remain the same independent from view point.
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Materials and Methods

Plant material
Flowers from 6 insect pollinated plant species: (a) Alyogyne huegelii,

(b) Solanum laciniatum, (c) Lycianthes rantonnetii (previously

Solanum rantonnetii), (d) Tropaeolum majus, (e) Hibiscus hetero-

phyllus, and (f) Pelargonium rodneyanum (Figure 2) were collected

from a botanical garden at Monash University, Clayton campus,

Victoria, Australia during late Austral spring 2014 (September–

November). Four native species to Australia: (a) A. huegelii, (b) S.

laciniatum, (e) H. heterophyllus, and (f) P. rodneyanum were grown

in the native plant section of the garden as an indigenous food plant;

while the 2 naturalized species (L. rantonnetti and T. majus) were

cultivated in a separate section of the garden. Flowers were placed

inside a cooler at about 15�C and immediately brought to the lab

for spectrophotometric measurement and photographic recording to

ensure that petal microstructures potentially producing angle de-

pendent coloration were preserved (Vignolini et al. 2015).

Our samples include 4 species from the closely related orders:

Brassicales (T. majus), Geraniales (P. rodneyanum), and Malvales

(A. huegelii and H. heterophyllus) (Wikström et al. 2001), whereas

S. laeciniatum and L. rantonnetii belong to the order Solanales. The

2 species of order Malvales were chosen to compare with Hibiscus

trionum, the plant species for which angle dependent, iridescent col-

orations were first reported (Whitney et al. 2009b). The orders

Brassicales and Geraniales are the closest to Malvales that serve as

comparison between 2 groups whereas the remaining species of our

sample, while S. laciniatum and L. rantonnetii, serve as a potential

outgroup for comparison. These species were selected to compare

within and outside the order to which H. trionium belongs to test if

iridescence (Whitney et al. 2009) is a property observed in other

plant groups. Moreover, these plants were also selected to under-

stand plant–pollinator interactions in a broader phylogenetic scale.

Spectrophotometry
Spectra were measured from 300 to 700 nm using an Ocean Optics

USB2000þ Spectrometer (Ocean Optics Inc., USA) equipped with

quartz optics and connected to a PX-2 pulsed xenon light source

(Ocean Optics Inc., USA, 2011). The spectrophotometer was con-

trolled using the software package Spectra Suite (Ocean Optics,

USA), and calibrated before each measurement to avoid drift from

electrical noise. Reflectance profiles were measured relative to a

Lambertian, PTF WS-1 reflectance standard (Ocean Optics, USA).

Mean reflectance spectrum for each species corresponds to multiple

spectral measurements of 3 different flowers as described in Dyer

et al. (2012) and Shrestha et al. (2013).

Scanning electron microscopy (SEM) imaging

We prepared replicas of the petal surfaces following methods

described by van der Kooi et al. (2014). Briefly, sepals and petal

were pressed into a dental impression material that solidifies within

minutes. Positive surface replicates were subsequently generated by

filling the mould with transparent nail polish, creating a cast. Casts

were sputtered gold coated and images were acquired using a

Scanning Electron Microscope (Philips XL30) at the RMIT

Microscopy and Microanalysis Facility (RMMF), at RMIT

University, Melbourne, Australia. We used 30 KV current with spot

size 5 and magnification ranges 6,000�–1,800� with a 10 mm

working distance from the sample to the current beam.

Photographic recording and image processing
Flower samples were located on a platform 55 cm high and inserted

in a black cardboard shield to minimize potential reflection from

background. To account for variations in the size and location of

structural color patches arising from changes in viewing point, we

recorded a total of 37 images for each flower within a hemisphere

(dome) sampling grid centered at the flower sample. Sampling view-

points were defined in terms of spherical coordinates using 3 param-

eters: (i) the angle on the x–y plane (azimuth, �) created from the

x-axis to the camera’s position, (ii) the angle between the x–y plane

and the camera position (inclination, u), and (iii) the distance (ra-

dius, r) between the center of the flower and the camera at each �,

u combination. These viewpoints represented typical approach

angles observed for several bee species (Apis sp., Bombus sp.,

Trigona sp.) foraging in natural environments (Garcia et al. 2018;

Dyer AG, Shrestha M, personal observation); refer to van der Kooi

et al. (2015) for discussion.

Sampled azimuth angles ranged from 0� to 315� at 45� intervals.

Five different inclination angles (u¼15�, 30�, 45�, 60�, and 75�)

plus the zenith (u¼90�) position were sampled for each orientation

position excepting for �¼45�. At this azimuth angle, only the in-

clination u¼45� was sampled to prevent shadowing the

Figure 2. RGB representation of flowers from the 6 plant species used for our experiments: (A) Alyogyne huegelii, (B) Solanum laciniatum, (C) Lycianthes ranton-

netii, (D) Tropaeolum majus, (E) Hibiscus heterophyllum, and (F) Pelargonium rodneyanum.
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illumination produced by the main light source. The light source

consisted of a bare bulb (uncoated) Broncolor Pulso F2 flash lamp

(Bron Elektronik, Switzerland) connected to a Broncolor Graffit A2

power pack (Bron Elektronik, Switzerland) raised 2.00 m from the

floor and aimed perpendicular to a white ceiling of 4.10 m height.

This arrangement simulated a lighting condition typical of open

environments where the light reaching the target is made up by the

mixture of the direct light emitted by a point source (the Sun) and

the indirect light reflected or refracted by the sky, and resulted in a

realistic environmental illumination difference ratio of about 8:1 (3

photographic stops) (Salvaggio 2009). For each flower, an addition-

al image was recoded at the zenith of the sample.

Images were recorded with a calibrated Canon EOS 40D digital

camera (Canon Inc., Japan) equipped with a 100-mm electro

focused macro lens (Canon Inc., Japan). Images were stored as na-

tive RAW files and encoded into 8-bit, Adobe 1998 color space

(Adobe Systems Incorporated 2005) TIFF files using the Adobe

Camera Raw v.7.3 plug-in available as part of the Adobe Design

and Web Premium Suite CS6 (Adobe Corp., USA). TIFF files were

linearized to recover values equivalent to the total number of pho-

tons captured by each of the color channels, analogous to P-values

sensu (Wyszecki and Stiles 1982; Chittka 1992) making up the RGB

image at each pixel location. Linearization was carried out using

look up tables (LUTs) specifically constructed for our imaging

device (Garcia et al. 2013a, 2014). Recovered P-values were

subsequently transformed into physiological receptor excitations, or

E-values (Chittka 1992), by applying the Naka and Rushton trans-

formation to accurately model pollinator color perception (Naka

and Rushton 1966; Chittka 1992; Spaethe et al. 2001; Dyer et al.

2007; Whitney et al. 2009b).

Spectral threshold
Since ultraviolet (UV) reflecting patches are present in several flower

species (Chittka et al. 1994; Kevan et al. 2001), we assessed our

sample of flower species to evaluate if any flower reflected sufficient

UV radiation to be perceivable when considering the spectral sensi-

tivity of typical hymenopteran pollinators (Peitsch et al. 1992). In

the current study, we considered flowers with apparent structural

colors, but no modulation of the UV-sensitive photoreceptors of a

bee (Figure 3 and Supporting Information S-1).

We employed the hexagon color space (Chittka 1992; Whitney

et al. 2009b; Dyer et al. 2012; Garcia et al. 2017) to (a) model the

chromatic appearance of the pigment coloration of each species and

(b) to identify the color difference required by an angle dependent

color patch to be distinguishable from its pigment background. We

set a color distance of 0.04 hexagon units (hu) as the color discrim-

ination threshold required by a honeybee to discriminate between

angle dependent (structural) and angle independent (diffuse) colors.

“Blue” color stimuli differing by 0.04 hu can be discriminated by a

honeybee trained under an appetitive aversive conditioning about

96% of the time as predicted by the color discrimination function

for this species modeled from behavioral data (Dyer and Neumeyer

2005; Garcia et al. 2017). Therefore, for each of the flower species

used for our experiment, we represented the color discrimination

threshold as a circle with a radius of 0.04 hexagon units centered at

the x–y coordinates corresponding to the color produced by the pig-

ment reflectance spectrum for each species (Figure 4).

We then established spectral discrimination threshold values for

the 405–505 nm and 450–600 nm spectral intervals corresponding

to the regions sensed by the respective “blue” and “green” channels

of our camera system (Garcia et al. 2014) for each one of the flower

sample species. Spectral threshold values were obtained from a pair

of E-vectors (i.e. modulation of color space excitation values), which

systematically increased in the number of photon catches for the

blue and green photoreceptors from those corresponding to the

measured spectral reflectance for each flower and represented as the

origin of the discrimination circle (blue and green arrows in

Figure 4). The intersection point between each of the respective vec-

tors and their corresponding color discrimination circle was then

established as a threshold value for identifying petal regions where

the structural color was perceptually different from the pigment-

based hue in the linearized images. The result of the threshold oper-

ation consisted on a set of binary masks incorporating white for

selected pixels, but black otherwise, representing petal regions with

angle dependent color patches perceivable as being different from

the pigment background for either the “blue” or the “green” chan-

nels of the linearized images.

Spatial threshold
The size of the lens and diameter of the rhabdoms making up most

insect’s compound eyes limit their spatial resolution (resolving

power) to less than about 1 cycle per degree of visual angle (cpd)

(Land 1997). Large, simple lenses such as those present in vertebrate

eyes and photographic optics typically have a minimum resolving

power well above this limit (Kirschfeld 1976; Land 1997; Williams

and Dyer 2007). This means that structural coloration patches, al-

though potentially perceivable as being of different color on a

photographic image, may not necessarily be resolved by an insect

eye (van der Kooi et al. 2015). To account for this potential limita-

tion, we recorded images corresponding to the threshold, binary

masks using a mechano-optical device constructed on the optical

principle of ray selectors (Knowles and Dartnall 1977; Williams and

Dyer 2007). The device consisted on an array of about 4,500 black

Figure 3. Reflectance spectra from the 6 plant species sampled for the study:

(a) A. heugelii, (b) S. laciniatum, (c) L. rantonnetii, (d) T. majus, (e) H. hetero-

phyllum, and (f) P. rodneyanum. Excepting from L. rantonnetti, selected spe-

cies did not modulate the UV photoreceptor of the honeybee. As our imaging

system had no sensitivity to this spectral interval, this species was excluded

from subsequent analyses.

Garcia et al. � Structural colors in flower pollination 5

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/advance-article-abstract/doi/10.1093/cz/zoy096/5244970 by guest on 16 January 2019



tubes, 31 cm long with a diameter of 3 mm stacked in a 36 �38 cm

wooden frame which projected a single image on a piece of architec-

ture tracing paper of the same dimensions. This arrangement pro-

duced images with a spatial resolution of about 0.24 cpd (Williams

and Dyer 2007), very close to the 0.23 cpd corner resolution limit

behaviorally determined for free flying honeybees (Srinivasan and

Lehrer 1988). This visual acuity principle also approximately fits

with how other bees like bumblebees use visual information to find

flowers in complex-type environments (Spaethe et al. 2001; Dyer

et al. 2008, 2016).

Binary mask images and their corresponding non-linear RGB

representations were displayed on an LED 2700 Thunderbolt Display

(Apple Corp., USA) with a resolution of 2,560 �1,440 pixels.

Images were resized such that when projected through the mechano-

optical device at a distance of 0.3 cm produced an image of sufficient

size to cover a piece of architectural drafting paper attached to the

device’s wooden frame. This set-up replicated how a bee’s com-

pound eye may resolve the flower at close range (Williams and Dyer

2007). Images projected on the tracing paper corresponding to the

different azimuth and inclination angles for each species were

photographed using the same Canon 40D camera used for recording

the flower samples.

TIFF images containing the mechano-optical representation of

the spectral threshold masks and their corresponding non-linear

RGB images were then segmented following protocols for measuring

and analyzing color patterns (Garcia et al. 2013b) to identify and

measure: (a) the petal’s area corresponding to the angle dependent

coloration and (b) the total visible area. These 2 variables were sub-

sequently used for calculating the ratio of petal area occupied by

angle dependent color patches (RAD) on each image by applying

Equation (1).

RAD ¼ petal area covered by angle dependent colors ðmm2Þ
total petal area ðmm2Þ

 !
� 100: (1)

Statistical analysis of images
To test the reliability of the color signal produced by the structural

color component of the color pattern, we measured the correlation

between RAD and azimuth and inclination angles using a measure

of linear–circular association (Pewsey et al. 2013). We calculated

the Mardia’s Rank correlation coefficient for linear–circular associ-

ation between the linear variable RAD, and the circular variables

azimuth and inclination independently. In both cases, we tested for

the null hypothesis of independence (Mardia 1976). Statistical anal-

yses were performed using code by Pewsey et al. (2013) written for

the statistical package R v.3.2.1 (Core Team R 2015).

Behavioral testing and statistical analysis
To test if honeybees could use angle dependent colorations as a sig-

nal we conducted behavioral experiments using the images of S. laci-

niatum as stimuli (Figure 5, third column, panels I–L) as this flower

presents the highest proportion of angle dependent color patches

relative to the entire petal surface (RAD) when considering free-

flying bee vision (see the “Results” section).

Eight images representing the different azimuth angles (�) meas-

ured at u¼45� were used for the behavioral experiment. Stimuli

were created from the RGB images recorded for measuring the RAD

of S. laciniatum and divided into different sets (Figure 6). Set A con-

sisted of 8 images of this species viewed at different � angles but

without any indication of the presence of angle dependent color-

ation (Figure 6 panels A–H). Set B contained the same images, but

additionally included the pattern created by the patches produced by

the angle dependent color at each viewpoint (Figure 6 panels I–P).

Patches in this image set corresponded to colors which are potential-

ly perceivable by a honeybee as predicted by our color modeling (see

spectral and spatial threshold subsections above). The pattern pro-

duced by patches of angle dependent colors at the different inclin-

ation and orientation angles considered were indicated with a strong

“yellow” color as this promotes the most rapid learning of spatial

stimuli by honeybees (Morawetz et al. 2013). Set C (Figure 6 panels

Q–X) displayed such patterns in insolation on a sample of the petal

pigment color to control for potential innate color preference effects

(Morawetz et al. 2013).

The use of the multiple stimuli sets allowed behavioral testing to

determine if the patterns produced by angle dependent coloration

could influence bee choices in a way that would be consistent with

the definition of a signal. For the signal hypothesis to be true, a bee

would need to reliably identify a stimulus by the pattern produced by

the angle dependent patches, independent from the azimuth position.

Figure 4. Representation of the petal colors corresponding to the reflectance

spectra in Figure 3 in the hexagon color space (Chittka 1992): (a) A. huegelii

(open circle), (b) S. laciniatum (solid circle), (c) L. rantonnetii (open square),

(d) T. majus (closed square), (e) H. heterophyllum (open triangle), and (f)

P. rodneyanum (closed triangle). Circles surrounding the markers indicating

each flower species represent the discrimination threshold for a typical hy-

menopteran pollinator trained with differential conditioning when discrimin-

ation color differences of 0.04 hu (solid circle) and 0.11 hu (dashed circle).

Arrows represent the shift in color space expected from increasing the photo-

receptor excitation values (E-vectors) by either the medium (E(B), solid blue

arrow) or long (E(G), solid green arrow) photoreceptors here modeled by the

transformed linear response of the green and blue color channels of a charac-

terized digital camera (Garcia et al. 2013a, 2014). Photoreceptor excitation val-

ues corresponding to the point of intersection between the vector and the

discrimination threshold are considered as being perceptually different from

the pigment-produced color, and thus used as threshold values for differenti-

ating structural from pigment colouration (refer to text for details).
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The alternative hypothesis would suggest that angle dependent colors

are a cue that bees may only use in limited circumstances.

We individually trained marked honeybees (n¼13) using abso-

lute conditioning to 4 of the 8 stimuli presenting patches produced

by the angle dependent coloration (Supporting Information S-3

panel a). The 4 stimuli were randomly selected for each bee from the

8 different azimuth positions. For any testing run, all 4 training stim-

uli were simultaneously presented on a rotating screen which

Figure 5. Composite images indicating regions of perceivable structural color in T. majus (first column, panels A–D) A. huegelii (second column, panels E–H), and

S. laciniatum (third column, panels I–L). Areas of structural coloration potentially perceivable to a honeybee are indicated with cyan color if not present on the

petal area or red color otherwise. Panels E, G, I, and K depict RGB representations of A. huegelii (panels E and G) and S. laciniatum (panels I and K) at 1:5 and 1:3

magnification ratios. Panels F, H, J, and I correspond to the same RGB images after being projected by a mechano-optical device: A. huegelii (panels F and H) and

S. laciniatum (panels J and L). In panels F, H, I, and J, the red color indicates potentially perceivable structural color regions when considering both spectral and

spatial threshold values set by the properties of the honeybee’s visual system. Scale bars on panels A–E, G, I, and K represent the flower’s size; on panels F, H, J,

and L, scale represent the size of the projected image. T. majus images represent viewing angles: �¼ 0�, u¼ 75� (panel A); �¼90�, u¼30� (panel B); �¼135�,

u¼ 60� (panel C); and �¼315�, u¼60� (panel D). Images corresponding to: A. huegelii (second column) and S. laciniatum (third column) represent viewing

points at which the percentage of structural to visible color area (RAD) were maximal for each species: (E, F) �¼90�, u¼ 30�; (G, H) �¼ 225�, u¼ 15�; (I, G)

�¼ 180�, u¼15�; and (K, L) �¼270�, u¼30�.
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enabled realistic testing of honeybees using ecologically relevant

stimuli (Stejskal et al. 2015). The absolute conditioning phase length

was 30 choices (landing and drinking of sucrose) which is twice as

long as bees typically take to learn color signals considering absolute

conditioning (Giurfa 2004; Dyer 2012). This training regime mimics

a potential signal that a bee would likely encounter to identify a

flower in natural settings. Bees were rewarded with 15mL drops of

50% sucrose and allowed to return to the hive if satiated.

A learning test of 20 unconditioned choices was conducted after

the absolute conditioning phase. Each bee was given a non-

rewarded learning test where 2 of the 4 angle dependent color

patches used as training stimuli were presented against 2 gray stim-

uli (Supporting Information S-3 panel b). Following the learning

test, a transfer test and conflict test were conducted in pseudo-

random order using the same protocol as the learning test with 4–8

refresher choices conducted between each test to maintain bee mo-

tivation. The transfer test presented bees with 2 of the 4 stimuli not

used during training (Set A vs. matched Set B in Figure 6,

Supporting Information S-3 panel c) to determine whether bees

would prefer flowers presenting the angle-dependant coloration in-

formation. The conflict test presented bees with the remaining stim-

uli not used during the transfer test (Set A vs. Set C in Figure 6,

Supporting Information S-3 panel d). The conflict test would deter-

mine whether bees prefer to visit flowers with no angle-dependant

coloration information or a colored stimulus with angle-dependant

color information presented.

To determine whether bees had learned to associate flowers of S.

laciniatum presenting angle dependent colorations with a reward of

sucrose, the “proportion of correct choices” data from all 3 tests

were estimated by means of 3 independent generalized linear mixed

models (GLMMs) assuming a binomial distribution for the binary

response, and bee ID number as random effect to account for the

repeated measurements (Zuur et al. 2009). The models only

included the intercept term as fixed factor allowing for testing if the

observed proportion of choices was different from chance expect-

ation (Ho: proportion of choices for choices for target ¼0.5).

Models were fitted using the routine glmer available as part of the

package lme4 (Bates et al. 2015) for the R statistical language and

programming environment. Overdispersion and residual plots were

constructed for each model to validate the GLMM assumptions.

Results

Scanning electron microscope imaging
Scanning electron microscopy images reveal 3 different cell types on

the petals of our flower sample (Figure 7): (i) tabular rugose-striated

cells in A. huegelii, (ii) conically shaped cells in H. heterophillum

and T. majus, (iii) flat, hexagonal cells in P. rodneyanum, and (iv)

papillate cells in L. rantonnetii and S. laciniatum. Alyogyne huegelii

presents quasi-parallel striations with separations smaller than 1 lm

(Figure 7 panel A), while epidermal cells of T. majus and P. rodneya-

num show distinctive radially striated crests with separations

smaller than 1 lm (Figure 7 panels D and F).

Imaging experiments
We evaluated the reliability of a signal produced by angle dependent

colors within the 405–505 nm (“blue”) and 450–600 nm (“green”)

spectral intervals for 5 plant species: A. huegelii, S. laciniatum, T.

majus, H. heterophyllus, and P. rodneyanum; when considering

viewing angle, the spectral characteristics of the visual system of the

honeybee and a color discrimination threshold value of 0.04 hexa-

gon units (Table 1). Two of the species, H. heterophyllus and P. rod-

neyanum, did not present angle dependent color patches which

could be discriminated from the pigment background about 95% of

the time as being different from the pigment background in either

the “green” or “blue” spectral intervals (Table 1). Most of the angle

dependent color patches in T. majus corresponded to the “blue”

Figure 6. Images of the 8 stimuli triplets used for the behavioral experiments. Each column represents an image of S. laciniatum at an inclination angle (u)¼15�

and various orientation (�) angles: (A, I, Q) 0�; (B, J, R) 45�; (C, K, S) 90�; (D, L, T) 135�; (E, M, U) 180�; (F, N, V) 225�; (G, O, W) 270�; and (H, P, X) 315�. Images on

Set A (first row) represent flowers of Solanum at different � angles but without indication of angle dependent color effects. Set B represents the same � angles

as in Set A, but the pattern produced by the perceived angle dependent color patches at each viewpoint is indicated with a “yellow” color which is easily discrimi-

nated from the pigment color by a bee. Set C represents the same angle dependent color patterns as in Set B, but excludes visual information about flower

morphology. The violet color making the background of images in Set C correspond to a printer ink interpretation of the petal color of images in Sets A and B

(see details in Supporting Information S-2).
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spectral region and were found the calyx region which is not

involved in plant sexual reproduction (first column Figure 5A–D,);

for this reason, data corresponding to this species were excluded

from subsequent analyses. Alyogyne huegelii (second column

Figure 4e–h) and S. laciniatum (third column Figure 4i–l) only pre-

sented angle dependent coloration perceivable as being different

from the pigment background in the “green” spectral region.

Threshold binary masks corresponding to A. huegelii and S. laci-

niatum were subsequently imaged with the mechano-optical device

to obtain spatial measurements of optically resolvable angle depend-

ent color patches by a honeybee. Examples of some of the resulting

images are presented in Figure 5F, H, J, L.

We found a significant negative correlation between the area of

the petal occupied by angle dependent color patches and the total

area petal for the 2 species [Kendall’s tau (s)A. huegelii ¼�0.312,

P¼0.011; sS. laciniatum ¼�0.335, P¼0.004]. For this reason, RAD

values were used for the remaining analyses.

The RAD values significantly varied across the measured orien-

tation and inclination angles, and in different ways for either the A.

huegelii and S. laciniatum flowers (Figure 8, Supplementary

Information videos V1 and V2, respectively). Alyogyne huegelii pre-

sented a larger RAD area than S. laciniatum, but the latter was char-

acterized by having a greater number of RAD areas than its

counterpart (Figure 8). Linear–circular correlation analysis and tests

for independence evidenced different relationships between the size

of the petal area displaying a perceptually different structural color,

and the viewing angle in either A. huegelii or S. laciniatum. While

structural coloration in A. huegelii was independent from azimuth

angle [Mardia’s rank correlation coefficient (U)�A. huegelii ¼777.0,

P¼0.825] it was dependent on inclination (UuA. huegelii ¼
1.96 �104, P¼0.008). Structural coloration in S. laciniatum was

dependent on azimuth (U�S. laciniatum ¼1.43� 104, P¼0.026) but

independent from inclination (UuS. laciniatum ¼9.81 �103,

P¼0.098).

Figure 7. Scanning electronic microscope images showing details of petal features present on the adaxial surfaces of the 6 species used for our study at various

magnifications to accommodate for differences in feature size: (A) A. huegelii (6,000�), (B) S. laciniatum (3,383�), (C) L. rantonnetii (3,294�), (D) T. majus

(3,406�), (E) Hibiscus heterophyllum (3,159�), and (F) P. rodneyanum (3,228�). Insets on each panel depict a less augmented version of each image. In all insets

the scale bar represents 20 lm. All SEM images were acquired using a Philips XL30 SEM microscope.

Table 1. Threshold E-values for the “blue” and “green” spectral regions for the 5 plant species showing no modulation in the UV region

when considering green adaptation background and a color discrimination threshold value of 0.04 hexagon units (second column)

Species\spectral parameters Threshold E-value Mean maximum E-value Is iridescence perceivable?

“Green” “Blue” “Green” “Blue” “Green” “Blue”

Alyogyne huegelii 0.417 0.764 0.41260.09 0.47260.05 Yes No

Solanum laciniatum 0.406 0.786 0.47760.04 0.49760.02 Yes No

Lycianthes rantonnetiia NI NI NI NI NI NI

Tropaeolum majus 0.328 0.050 0.01860.002 0.19660.05 No Yesb

Hibiscus heterophyllum 0.804 0.709 0.49360.01 0.37860.08 No No

Pelargonium rodneyanum 0.572 0.847 0.35060.11 0.47460.05 No No

Mean E-values and standard deviations corresponding to the maximum E-value obtained on each of the n¼ 37 linearized images representing various viewing

points recorded for each species, a Solanum rantonnetii potentially modulates the UV-sensitive photoreceptor in the honeybee; however, as this spectral region is

beyond our current system capability, this species was not included in the reported results. NI, not included., b Perceivable iridescence mainly corresponds to

flower regions not involved in sexual reproduction (Figure 5).
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Behavioral experiments
Figure 9 summarized the results of the 3 behavioral tests carried out.

In the learning test, honeybees chose the target displaying the angle

dependent coloration significantly more times than the gray stimulus

(mean proportion of correct choices for angle dependent coloration

[ladc ¼0.737 (0.679, 0.792 95% CI), z¼7.04, P<0.001], thus

demonstrating they had associated the images of S. laciniatum with

a reward of sucrose.

Two further tests were conducted following the learning test: a

transfer test (Set A vs. matched Set B in Figure 6, Supporting

Information S-3 panel c) and a conflict test (Set A vs. matched Set C

in Figure 6, Supporting Information S-3 panel d). For the transfer

test, bees were presented with 2 of the 4 stimuli not used during

initial training against the matched versions of these stimuli that

lacked angle dependent colors. If the signal hypothesis holds true,

then bees must be able to perform this task above chance expect-

ation (50%). Between each of the 3 tests, 4–8 refresher landings

were presented to ensure motivation.

In the transfer test, where images representing novel azimuth

angles plus angle dependent color marks were presented against the

images recorded at the same angles but without presenting the pat-

tern produced by the angle dependent coloration, bees did not show

a preference for images displaying flowers with angle dependent col-

oration [ladc ¼0.559 (0.480, 0.639 95% CI), z¼1.58, P¼0.114],

thus suggesting that honeybees did not use these patches to inform

their choices.

Figure 8. Color map representing the ratio of angle dependent color areas [indicated as red dots on panels (B) and (D)] to total visible area (RAD) as a function of

orientation (x-axis) and inclination (y-axis) for A. huegelli [panel (A)] and S. laciniatum [panel (C)]. Panels (B) and (D) show and RGB representation of A. huegelli

and S. laciniatum, respectively, as produced by the mechano-optical device used to simulate the image produced by the honeybee compound eye (Knowles and

Dartnall 1977; Williams and Dyer 2007), at the orientation and inclination position showing the largest area of angle dependent coloration for each species. On

panels (B) and (D) image regions where angle dependent coloration is discriminable from the pigment background 95 % of the time are indicated by a red color

to aid visual interpretation by human observers.
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Finally, we performed a conflict test—bees were presented with

the remaining stimuli not used for the transfer test against the pat-

tern produced by the angle dependent coloration for the selected

viewpoint on a square displaying the same color as S. laciniatum.

Three outcomes were possible from the conflict test: (i) bees prefer

the original flower even without angle dependent colors, OR (ii)

there is a conflict caused by the angle dependent patches and flower

information being presented; if we see chance performance in this

test. Alternatively (iii), if bees have learnt to use the angle dependent

color pattern as a signal, they would significantly prefer to choose

the patterns produced by angle dependent colors on the purple

squares. If bees could do the learning test, but not the transfer test,

and in the conflict test they preferred the flower, then there is no evi-

dence supporting the hypothesis of bees using angle dependent color

signals in the presence of a strong pigment color signal. However,

we can only consider angle dependent colors as being a signal if bees

perform significantly above chance expectation in the learning and

transfer tests, and do not prefer the flower in the conflict test. Bees

did not show a significant preference for the colored squares con-

taining the respective angle dependent color patches [ladc ¼0.349

(0.263, 0.439 95% CI)], but instead preferred the flower images

which did not present angle dependent colors (z ¼�3.40, P<0.001)

thus suggesting that the signal hypothesis does not hold true in the

context of our experiments.

Discussion

Insect pollination is essential for a large number of plant species,

and for many flowering plants there is evidence that specific floral

traits enhance successful repeat visits from flower constant pollina-

tors (Waser 1986; Fenster et al. 2004; Sargent and Ackerly 2008;

Schiestl and Johnson 2013; Ohashi et al. 2015). Recent reports that

bumblebees can be trained in lab conditions with appetitive-aversive

differential conditioning to learn iridescent colors (Whitney et al.

2009b, 2016; Moyroud et al. 2017; de Premorel et al. 2017) have

raised the interesting possibility that structural coloration may have

evolved in evolutionary distantly related flower species to serve as a

signal to enhance plant–pollinator visual communication. However,

several studies have questioned this interpretation because flowers

are typically viewed by potential insect pollinators in complex envi-

ronments where structural color is unlikely to be a robust source of

information for a free-flying insect (Morehouse and Rutowski 2009;

van der Kooi et al. 2014, 2015). Furthermore, the possibility that

such stimuli may often be beyond the resolution of an insect com-

pound eye has also been raised (van der Kooi et al. 2015). In the cur-

rent study, we were able to employ recent advances in our

understanding of how to model bee pollinator color (Garcia et al.

2017, 2018) and spatial vision (Dyer and Williams 2005; Howard

et al. 2018) to formally test the potential role of angle dependent

colors as potential signals for bees. Furthermore, we tested the hy-

pothesis derived from image analysis regarding the potential use of

angle dependent colors as visual signals by pollinating insects using

free-flying honeybees.

The precise role of structural colors for plant–pollinator visual

communication has largely remained unresolved, probably due to

the synonymous use of the words cue and signal in the literature.

However, these 2 words have different meanings in the context of

biological communication (Smith and Harper 2003; Bradbury and

Vehrencamp 2011) and would imply different evolutionary and be-

havioral relationships between flowers and their pollinators. For

angle dependent colors to be considered salient visual signals for

communicating with pollinators, as previously proposed for target

flower discrimination (Whitney et al. 2009; Moyroud et al. 2017), it

is necessary that these colors transfer meaningful information to a

bee such that it can reliably identify a flower irrespective of viewing

angle, and that it has evolved specifically for this purpose. Our

results, however, indicate that this is not the case. Interestingly, bird

predators in natural conditions cannot use angle dependent, irides-

cent colors reflected by the ventral wing of Battus philenor butter-

flies for prey identification (Pegram et al. 2015), also suggesting

structural colors may be of limited value for visual signaling when

viewing angle is variable. In one of the species (T. majus), angle de-

pendent colors potentially discriminable from the pigment back-

ground color were found on the calyx, a flower part different from

the petals (Figure 5a–c) and thus would likely serve no value in com-

municating with a potential pollinator. Similar optical effects have

also been reported for other plant parts not involved with pollin-

ation such as fruits (Lee 1991), and on the leaves of non-flowering

plants such as the red algae Chondrus crispus (Chandler et al. 2015)

and the fern Selaginella (Hébant and Lee 1984).

Finally, angle dependent color patches in A. huegelii. and S. laci-

niatum fail to unambiguously transfer information to a bee pollin-

ator due to: (a) the significant correlation between size of the petal

area displaying such colors with viewing angle (Spectral limitations)

and (b) the difficulty of resolving these patches by the insect com-

pound eye (Spatial limitations).

Our behavioral experiments formally tested the hypotheses aris-

ing from the imaging results (Figure 9). When required to learn

angle dependent color information from a variety of biologically

plausible azimuth positions, bees subsequently showed no

Figure 9. Mean proportion of honeybee choices for angle dependent stimuli

when presented against different alternative stimuli: an achromatic, gray tar-

get without angle dependent or independent color (learning test), flowers

with patterns produced by angle dependent colors at different orientation

and inclination positions against the same flowers without the angle depend-

ent patterns (transfer test); and, flowers at different orientation and inclination

angles without the corresponding angle dependent color patterns against

stimuli showing the respective angle dependent patterns on an uniform back-

ground with the same color displayed by the petals.

***P<0.001, **P<0.01, NS non-significant at a¼0.05.
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preference for flowers images containing angle dependent color pat-

terns when presented against flower images without such informa-

tion in a transfer test. This was despite the fact that bees had learnt

the flower image as rewarding in the learning tests. To be classified

as signal particular visual information must allow for the unique

identification of individual flowers, but this was not the case for

angle dependent colors perceived by bee pollinator for our biologic-

ally plausible scenario. Specifically, in the transfer test bees were un-

able to use angle dependent patterns to identify a target flower and

in the conflict test bees actually chose to prefer solid, flower colors

rather than angle dependent color patterns (Figure 9). This means

that angle dependent colors as those produced by ultra-structures

are very unlikely to be a robust signal in complex natural

conditions.

Spectral limitations
The correlation of viewing angle with the size of the area presenting

perceivable structural coloration means that a bee could only

uniquely identify a flower when approaching at a specific set of

angles. If the angle dependent coloration serves as a signal for com-

munication, the information transmitted by these colors would be

unreliable for a free flying bee in a natural environment unless indi-

vidual bees always approached different flowers from exactly the

same viewpoint (Figure 1); and unlikely scenario in complex and

competitive environments (Garcia et al. 2018). In contrast, pigment

coloration transmits color information independently from angle

due to its diffuse nature (Lee 2005), thus effectively reducing the am-

biguity introduced by chromatic variation produced by changes in

view point typical of structural colors (Doucet and Meadows 2009;

de Premorel et al. 2017).

The correlation between view point and the size of the petal area

displaying angle dependent colorations perceptually discriminable

from the pigment background also limits the usefulness of structural

colors as a mechanism to boost pigment color in flowers as it has

also been proposed (Glover and Whitney 2010). Although optical

and physiological properties of plants such as ultrastructure and

heliotropism have been shown to significantly increase the tempera-

ture of internal flower parts, potentially increasing pollen growth

and accelerate ovule fertilization in some species (van der Kooi et al.

2017; Wilts et al. 2018), its effect on pollinator attraction remains

inconclusive (Totland 1996). Even though it is possible that under

specific illumination conditions heliotropism and or ultrastructures

may increase the effect of angle dependent coloration in certain spe-

cies (Figures 5, 7), the production of such a coloration seems to be

incidental rather than evolved as expected from a signal. For ex-

ample, Totland (1996) showed that insect visitation was not affected

by the alignment of Ranunculus acris, an heliotropic genus known

to present angle dependent coloration (van der Kooi et al. 2017),

relative to the sun.

Spatial limitations
Another important aspect to consider is the small size of the patches

produced by structural colors (van der Kooi et al. 2015) observed in

the 2 sampled species presenting potentially perceivable structural

colors. Most of the angle dependent patches in A. huegelii and S.

laciniatum occupy an area of less than 1% of the petal visible area

(Figure 8), which can only be resolved by an hymenopteran at close

range due to the optical properties of the compound eye (Kirschfeld

1976; Srinivasan and Lehrer 1988; Land 1997). Although it remains

to be specifically tested if small patches of angle dependent

colorations might improve the efficiency of, or act as, “nectar

guides,” such a possibility would not necessarily imply that angle de-

pendent colors act as a signal for visual communication.

Firstly, petal marks are very likely to be resolved well after an in-

sect pollinator has made the decision to land onto a petal; therefore,

nectar guides are unlikely to serve for unambiguously identifying a

flower from afar by an approaching insect as expected from a salient

signal evolved for visual communication between plant (emitter)

and insect pollinator (receiver). Both optical modeling an experi-

mental behavioral data suggest that bee-sized insect pollinators can-

not perceive such markings over long distances, in particular if they

reflect short wavelength radiation as the L (long wavelength) photo-

receptor is responsible for detecting small objects in honeybees and

bumblebees through achromatic vision (Giurfa 1996; Hempel de

Ibarra et al. 2009, 2015), while the hypothesis of a signaling role of

structural colors is formulated in the context of color discrimination

(Whitney et al. 2009, 2016). Secondly, the presence of petal marks

does not seem to increase the number of pollinator visits as evi-

denced both by bumblebees (Manning 1956) or specialized pollinat-

ing flies (Hansen et al. 2012). Therefore, angle dependent colors

present in nectar guides, if any, are more likely to act as an orienta-

tion cue rather than as a salient signal for visual communication be-

tween plant and insect, or as a signal for plant identification as

previously hypothesized (Whitney et al. 2009; Moyroud et al.

2017). However, this does not exclude the possibility of structural

colors present in nectar guides, if any, could serve as short distance

visual signals for improving flower handling after landing.

It is possible that large bees like bumblebees that have chromatic

processing channels with equivalent resolution to achromatic spatial

channels (Dyer et al. 2008) may in some cases be able to resolve

angle dependent color patches from our flower samples as suggested

by experiments using artificial targets (Whitney et al. 2009b, 2016;

Moyroud et al. 2017; de Premorel et al. 2017). However, behavioral

testing of bumblebees detecting either wild-type or mixta-mutant

flowers suggests that changes in petal structure have no significant

effect on the efficiency of bees detecting flowers (Dyer et al. 2007).

For honeybees, chromatic processing is coarser than the achromatic

channel (Giurfa et al. 1996; Dyer et al. 2008) and so it is unlikely

that honeybees, or smaller bees, could ever see patches of angle de-

pendent coloration as a chromatic source of information unless the

bee has practically already landed on the flower. The relatively small

size of the patches observed in flowers reported as presenting angle

dependent colorations (Whitney et al. 2009b; Vignolini et al. 2015;

Moyroud et al. 2017, Figure 5 this study) may explain how bumble-

bees could slowly learn angle dependent colorations such as irides-

cence using ideal iridescent targets in controlled lab conditions.

Indeed, when trained with appetitive-aversive differential condition-

ing, bumblebees took about 80 choices to achieve an accuracy of

about 75% when discriminating artificial, iridescent stimuli

(Whitney et al. 2009b), compared with a discrimination task be-

tween 2 disimilar pigment colors where bumblebees took 20 choices

to achieve a sucess rate of more than 90% (Dyer and Chittka 2004).

Honeybees are known to be able to use salient small local cues to

make decisions if specifically trained to do so (Avargues-Weber

et al. 2015), but the results of our behavioral experiments using free-

flying individuals show that in the presence of an angle independent

color as that produced by the pigment background, bees did not use

angle dependent color to make reliable repeat decisions in natural

environments. The results obtained from our behavioral experi-

ments are very likely to apply to a wide range of angle dependent

colorations independently from the specific optical phenomena.
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Structural colors act as cues in flowers
How can we then classify the role of patches produced by structural

coloration in pollination? We agree that angle dependent colors could

be treated as a cue in the context that the structural color can be cor-

related with a particular physical trait of the plant (Bradbury and

Vehrencamp 2011), for example the particular texture of a flower’s

epidermal cells (Whitney et al. 2009b; Vignolini et al. 2012; van der

Kooi et al. 2017; Moyroud et al. 2017). However from the classic def-

inition of signals for communication, this does not imply that struc-

tural coloration has indeed evolved to transmit useful information to

the observer as expected from a signal (Smith and Harper 2003), a

proposed explanation for the presence of micro and ultrastructures

on the petals of plants distantly related (Moyroud et al. 2017; Wilts

et al. 2018). The fact that a pollinator can positively identify angle de-

pendent colors displayed by artificial targets from that produced by a

pigment in laboratory conditions under carefully specified lighting

conditions is thus insufficient evidence for regarding iridescence and

other structural colors as a being visual signals as evidenced by the

results of our behavioral experiments. Furthermore, the increasing

number of plants species reported to display structural coloration by

organs not related with pollination such as leaves and fruits (Hébant

and Lee 1984; Lee 1991; Chandler et al. 2015) and the calyx

(Figure 5a–c) strongly suggests that the structures producing angle de-

pendent colors may likely serve the plant for functions other than vis-

ual communication such as an aid to increase photosynthetic activity

(Hébant and Lee 1984) or increasing the temperature of specific areas

of a flower (Wilts et al. 2018).

Before we can classify structural coloration in plants as an ex-

ample of a visual signaling comparable to that observed in some ani-

mal species, attention must be given to answer the 3 important

questions that differentiate a signal from a cue in this specific con-

text: (i) what is the possible information potentially transmitted

from the plant to the pollinator by angle dependent coloration? (ii)

Is there a mutual gain by the production and monitoring of these

colors? and (iii) How feasible is the perception of angle dependent

color patches when considering the physiological characteristics of

the pollinators and ecological setting where pollination takes place?

One possible avenue for further exploration is whether iridescence

or other forms of angle dependent colors may provide useful informa-

tion in low light or forest environments which have very different

lighting conditions (Endler 1993) to what was tested in the current

study; or if the micro and nano structures responsible for angle de-

pendent colorations have evolved for a different purpose such as

water repellence (Koch et al. 2009; Whitney et al. 2011), facilitate

pollinator manipulation (Whitney et al. 2009a), temperature modula-

tion (Koch et al. 2009; Wilts et al. 2018), or to facilitate detection in

specific illumination and viewing conditions. However, we encourage

future work to engage the formal framework of signaling for possible

plant–pollinator iterations as here presented, and ideally mapping the

complexity of the UVþ B þ G photoreceptor modulation.
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Abstract: To monitor and quantify the changes in pollinator communities over time, it is important 
to have robust survey techniques of insect populations. Pan traps allow for the assessment of the 
relative insect abundance in an environment and have been promoted by the Food and Agricultural 
Organization (FAO) as an efficient data collection methodology. It has been proposed that 
fluorescent pan traps are particularly useful, as it has been suggested that they capture high 
numbers of insects in an unbiased fashion. We use a simultaneous presentation of fluorescent and 
non-fluorescent pan trap colours to assess how flower-visiting insects of different orders respond to 
visual stimuli and reveal a significant interaction between trap fluorescence and captured insect 
type. In particular, Coleoptera (beetles) and Lepidoptera (butterflies and moths) were captured 
significantly more frequently by fluorescent traps, whilst Dipterans (flies) were captured 
significantly less frequently by this type of pan trap. Hymenopterans (bees and wasps) showed no 
significant difference in their preference for fluorescent or non-fluorescent traps. Our results reveal 
that the use of fluorescent pan traps may differently bias insect capture rates when compared to the 
typical experience of colour flower-visiting insects in natural environments. Correction factors may, 
therefore, be required for interpreting insect pan trap data collected with different methodologies. 

Keywords: urban environment; pan traps; native insects; habitat fragmentation 
 

1. Introduction 

Several studies have reported that global declines in insect pollinator populations are linked to 
phenomena including habitat fragmentation, pathogens, invasive species, climate change, and/or the 
widespread use of agricultural insecticides [1–9]. Understanding the different contributing factors to 
these potential mechanisms is valuable since about 35% of food production for human consumption 
relies on insect pollination [1,10–12], with an estimated value in the range of 235–577 billion US$/year 
[12]. It is, thus, important to reliably quantify the relative abundance of potential flower-visiting 
insects in different environments to assist our understanding of changes in plant pollinator 
interactions, especially when considering habitat fragmentation caused by urbanization and 
agricultural intensification [1,5,7]. 
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Studies and surveys of potential pollinating insects have employed pan traps (also called bowl 
traps) to estimate flower visitor numbers in a variety of different habitats. Pan traps have been 
proposed as an efficient method to collect insects from within a habitat with minimum sampling 
biases [13–24]. Different insect species, however, may present preferences in their perception of 
different colours [25–30]. For example, bees have trichromatic colour perception with ultraviolet-, 
blue-, and green-sensitive photoreceptors [31]. Some ants appear to perceive input from two different 
photoreceptor classes for colour perception [32]. Flies have four colour receptors that are further 
spectrally tuned with screening pigments [33,34]. Butterflies may have four or five photoreceptors 
that can also be spectrally tuned [33,35–37]. The dimensions of colour vision can dramatically 
influence how colour choices are made by these different animals [27,38]. To attempt to control for 
potential colour preference biases, previous studies have used differently coloured pan traps such as 
white, yellow, and blue, as perceived by human colour vision, to quantify the broad insect diversity 
potentially encountered in ecological settings [14,16,21,23]. These studies have typically used UV-
fluorescent pan traps based on anecdotal evidence [39,40] that such stimuli collect more insects, 
although this factor of UV-fluorescence on insect capture rate has, only recently, been subject to 
formal testing [41]. 

Fluorescence is the phenomenon by which short wavelength radiation is absorbed by a material 
and re-emitted as longer wavelength radiation [42]. Materials with fluorescent properties may be of 
either biological [42] or non-biological origin (e.g., plastics or paints) [43]. For example, the effect is 
observed when we use UV-black-lights in nightclubs to produce UV-fluorescence from clothing, 
fluorescent highlighting pens, or Post-It notes (or sticky notes) [42]. Whilst fluorescence may enhance 
the intensity of a signal from a particular region of the spectrum, its effect typically results in an 
overall reduction of the total number of photons coming from a surface due to the conversion 
efficiency of the fluorescent material. Thus, to perceive and potentially benefit from fluorescence, the 
visual system of the receiver needs to be spectrally tuned to the wavelengths at which the 
fluorescence is produced [29,42]. Hence, it is reasonable to assume that insects with different visual 
systems may perceive fluorescent stimuli differently. This could induce sampling bias when using 
differently coloured pan traps, including the use of fluorescence, to attract insects. 

Here, we address the question of whether pan traps displaying fluorescent properties may 
capture higher numbers of flower-visiting insects than non-fluorescent pan traps. Since Araneae 
(spiders) were also collected using our method and there is some evidence that spiders can visit 
flowers to prey on insect pollinators [44,45] or collect nectar [46], and that they are therefore 
potentially part of an extended pollination network, we also report the capture rate of these 
arthropods. Further, Orthopterans (crickets) are also included in our current analysis as these insects 
are pollinators of some flowering plants [47]. In our approach, we used typical colours employed 
previously for surveying insect populations for ecological studies [14,16,18,21]. We aim to test 
whether fluorescent pan traps catch more or less individuals of different orders of insects in 
comparison to non-fluorescent traps to inform us about the most effective way to survey potential 
insect flower visitors while minimising sampling bias. 

2. Materials and Methods 

2.1. Study Area 

This study was conducted within the grounds of Monash University’s Clayton campus in 
Melbourne, Australia. The university grounds include large areas of remnant native bushland, as 
well as extensive gardens providing abundant resources to flower-visiting insects. The grounds are 
located in the temperate zone (37°53' S–37°55' S, 145°06' E–145°08' E) (Figure 1). In this study, we 
established five study sites and sampled insects during the Australian summer (January to May 2016) 
with a temperature range from 17–42 °C. Detailed temperatures for specific dates are available in 
Table S1. 
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Figure 1. A map of the study area: (a) Map of Australia showing the geographical location of the study 
sites (blue solid circle) and (b) the numbers on the map show the sampling locations at Monash 
University, Clayton Campus and its surroundings of Melbourne, Australia. The map was prepared 
in R version 3.5.1 using packages “maps”, “dismo”, and “raster” [48] (R core Team 2018). 

2.2. Data Collection 

We installed eight differently coloured pan traps at each site to sample the different groups of 
potential flower-visiting insects. Pan traps were separated by approximately 25 cm (Figure 2A) which 
ensured that successive traps were viewed using colour processing by free flying bees [31]. We used 
pan trap colours perceived as white, blue, yellow, and green to human vision (Figure 2A). As it is 
well established that insect colour vision is different to human colour vision, we provide details for 
each colour stimulus in Table 1 including their spectral reflectance (Figure 2B). Each pan trap cluster 
(n = 7 clusters of pan trap bowls at 5 sites) contained eight plastic soup bowls (ca. 500 mL max. vol., 
diameter 14 cm, depth 4.8 cm) coloured with the different paints (Figure 2A). The standard 500 mL 
polypropylene soup bowls (Pro-Pac, Vechta, Germany) used as pan traps were painted with 
fluorescent or non-fluorescent blue, white, and yellow spray paints (Sparvar Leuchtfarbe, Spray-
Color GmbH, Merzenich, Germany) following the protocol of by Reference [21] and dried over 
several weeks to remove any residual paint smell. Each pan trap was subsequently filled with about 
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400 mL of water. A few drops of odourless, liquid dishwashing detergent were added to break the 
surface tension of the water to increase insect capture [21]. 

Both fluorescent and non-fluorescent pan traps were simultaneously arranged in a circle, and 
the location of each individual pan trap within the circle was randomly allocated per set-up and site.. 
The pan traps were placed on the ground for 48 h (Figure 2C,D) following standard procedures 
[14,16,21,23]. Sampling was repeated every two weeks at each site for four repetitions. We stored the 
collected insects temporarily in 70% ethanol and/or freezers before they were pinned for taxonomic 
identification. 

 
Figure 2. The pan trap experiment: (A) The pan trap bowls with eight different human perceived 
“colours”, (B) the percentage of reflected radiation plotted against wavelength for each pan trap 
“colour” type (See Table 1 for details and the different treatments involved for each pan trap type). 
The red dotted line shows the 90% threshold for categorisation as fluorescent or non-fluorescent 
stimuli, (C and D) the pan traps in the sample field settings. 

2.3. Pan Trap Spectral Characterisation 

We measured the reflectance spectrum of each pan trap colour with a spectrophotometer fitted 
with quartz optics and a PX-2 pulsed xenon UV-visible radiation source (USB 2000+, Ocean Optics, 
Dunedin, Fl, USA) that closely matches the spectral profile of typical daylight illumination [49]. The 
spectrophotometer was attached to a computer running SPECTRA SUITE software 2011 (see 
References [50,51] for additional details of spectral recording methods and procedures). The 
reflectance spectra of the eight different pan trap types are shown in Figure 2B. Pan traps reflecting 
more than 90% of incident radiation at any point across the spectrum were categorized as fluorescent 
since very few artificial [43] or natural flower surfaces typically reflect radiation above this level 
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[29,52]. Whilst fluorescence may work in a variety of ways and produce weak changes in colour 
signalling [42], we use this definition in the current study to understand what pan trap features might 
influence the choices of insects. 

2.4. Insect Identification 

We identified all the collected insect specimens to the order level and some specimens to the 
genus level, using established protocols [53–58]. 

Table 1. List of the pan trap colours used in our data collection. The pan trap group (last column) in 
the table is categorized based on the spectral reflectance properties of each pan trap (Figure 2B). 

Pan Trap Description 

Stimuli  Treatments Involved Paint Colour 
(Human Perception) Pan Trap Group 

B1 Blue paint Blue Blue Non-Fluorescent 
B2 Blue UV reflectance reduced Blue “UV” fluorescent Blue Non-Fluorescent 
W3 White UV reflectance reduced White “UV” fluorescent White Fluorescent 
W4 White paint White White Fluorescent 
W5 White  White bowl without paint White Non-Fluorescent 
Y6 Yellow UV reflectance reduced Yellow “UV” fluorescent Yellow Fluorescent 
Y7 Yellow paint Yellow Yellow Non-Fluorescent 
g8 Green paint Green Green Non-Fluorescent  

2.5. Data Analyses 

The data were recorded during the Australian summer to autumn 2016. The sampling periods 
spanned 48 h. 

We arranged the data in a 2 × 2 contingency table to test for a potential interaction between pan 
trap type, i.e., fluorescent or non-fluorescent, and the order of the insects captured using a Pearson 
chi-square test for independence. As part of the analyses we also calculated the standardised 
residuals for each entry of the contingency table [59]. All analyses were performed using the package 
“gmodels” [60] in the R programming language version 3.4.1 [61]. 

3. Results 

When we considered the main research question, we found a significant interaction between the 
type of trap, either fluorescent or non-fluorescent, and the order of insect captured (χ2 = 27.374, d.f. = 
5, p < 0.001) (Figure 3). The main analysis was then followed by a residual analysis to identify those 
insect orders presenting significantly more or less captures than what is expected by chance (Table 
2). This analysis revealed that Coleopterans (beetles) and Lepidopterans (butterflies or moths) were 
captured more frequently on fluorescent pan traps, whilst Dipterans (flies) were captured 
significantly less frequently in this type of pan trap (Figure 3, Table 2). Results are graphically 
summarised in Figure 3. 
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Figure 3. The mosaic plot shows the frequency of captures of the different insect types/order (coded 
with the following alphabetic letters for each group. H: Hymenoptera, D: Diptera, L: Lepidoptera, C: 
Coleoptera, O: Orthoptera, and A: Araneae. See Table 3 for details) for pan trap types classified as 
either fluorescent or non-fluorescent. The box width represents the proportion of captures for each 
insect order, whilst the box height is an indicator of the proportions of capture by the fluorescent pan 
traps (upper row dashed pattern) and the non-fluorescent traps (lower row solid pattern). The colour 
indicates the z-values for the respective standardized residuals (Table 2): blue indicates a significant 
preference for stimuli, red indicates that the stimuli collected significantly less individuals, and grey 
indicates the capture rate was not significantly different to the chance expectation (null condition). F 
= Fluorescent, NF = Non-Fluorescent. 

Table 2. Summary of the z-scores and p-values for each insect order provided in Figure 3 for 
fluorescent and non-fluorescent pan traps. * indicates significant p-values at α = 0.05. z-scores < 0 
indicate a lower frequency of choices than those expected by chance. z-scores ≥ 0 indicate a frequency 
of choices higher than expected by chance. 

Insect Order 

Pan Trap Type  

Fluorescent Pan Traps  Non-Fluorescent Pan Traps 

z (p-value) z (p-value) 

Hymenoptera 0.981 (0.327) −0.900 (0.368) 

Diptera −2.285 (0.022) * 2.097 (0.036) * 

Lepidoptera 2.007 (0.045) * −1.842 (0.065) 

Coleoptera 2.151 (0.031) * −1.973 (0.048) * 

Orthoptera 0.107 (0.915) −0.098 (0.922) 

Araneae −0.112 (0.911) 0.103 (0.918) 

4. Discussion 

Pan traps are a conventional way of assessing insect–flower visitor distributions [14–24]. Several 
studies advocate the use of fluorescent stimuli due to the assumed higher rates of insect captures 
[14,17,21,62]. Although pan trapping with non-fluorescent traps has been used in several studies 
[16,41], it has rarely been considered whether the type of pan trap may bias the data collection of 
different insect orders due to the differences in colour processing among groups. We employed a 
combination of fluorescent and non-fluorescent pan trap stimuli and found that Hymenopteran 
insects have no significant preference for either the fluorescent or non-florescent pan traps. Other 
insect orders such as Coleoptera and Lepidoptera do show a preference for fluorescent pan traps 
(Figure 3, Table 2). In contrast, Dipterans (flies) demonstrated a preference for non-fluorescent 
stimuli. Our pan traps also collected some spiders (Araneae) and Orthopterans, although in relatively 
low numbers (Figure 3). Whilst these orders may have been an incidental by-catch, especially 
Orthoptera that may jump into the pan traps, these data were included in analyses as there is some 
evidence that Araneae and Orthoptera might participate in, or affect, pollination networks [46,47]. 
Neither of these orders showed any significant preference for pan traps. The evidence that 
Hymenopteran insects did not show a preference fits with the established literature that honeybees 
do not process stimulus intensity differences as a dimension of colour perception when making 
colour choices [63–67]. 

Currently, relatively little is known about the colour processing mechanisms of beetles, 
butterflies, and flies, but the spectral tuning of vision in insects of these orders is known [33–37] and 
might facilitate a capacity to process fluorescent signals [42]. Our data do suggest that such a 
possibility is worth exploring in detail with individual species from these insect orders. Such testing 
would also be of value with model bee species to validate whether indeed their visual system is 
insensitive to fluorescent signals as suggested by the current results. 
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To enable efficient censuses of insect pollinators in different environments, it is important to 
have a robust data collection method, and the use of fluorescent pan traps has been proposed to result 
in higher insect capture rate [14,17,21,62]. Our observations of nearby insects visiting flowering plants 
confirmed that many insects captured by our pan traps were also visiting flowers in the nearby plant 
communities and so may be potential pollinators (Figures 4 and 5) (personal observations by M.S., 
A.D., and A.G.D.). 

 
Figure 4. Sample insects captured by the pan traps: (A) Array of pinned insect samples, (B) European 
wasp (Vespula germanica), (C) cuckoo wasp (Stibum cyanurum), (D) male winged ant (Myrmecia urens), 
(E) long-legged fly (Sciapus sp.), (F) honey bee (Apis mellifera), (G) blue-banded bee (Amegilla sp.), and 
(H) hoverfly (Melagyna sp.). Images© Copyright M.S. and J.H.C.H. 

 

Figure 5. Colour photographs of flower visiting insects taken nearby the pan trap locations: (A) honey 
bee (Apis mellifera), (B) blue-banded bee (Amegilla sp.), (C) hoverfly (Melagyna sp.). Images Copyright 
M.S. 

The insects we captured included trichromatic native bees and introduced honeybees [68,69], 
hoverflies that are thought to have a four-colour visual system [34,70,71], native wasps that could 
potentially be trichromatic or tetrachromatic [68,69], and beetles that currently have a poorly 
understood colour visual system [72–74]. Our data on insect capture rates with either fluorescent or 
non-fluorescent stimuli shows that the choice of respective stimuli may result in a biased distribution 
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(Figure 3) of the relative abundances of different pollinator groups [29], although true bias is difficult 
to assess in outdoor experiments with free-flying insects where overall densities are typically 
unknown. Future work should dissect how the spectral profiles of coloured pan trap stimuli (Figure 
2B) may be perceived by different insects and how the observed preferences might influence which 
flower colours are pollinated [28–30,75–77]. Corrections could then be estimated from the relative 
ratio of fluorescent and non-fluorescent capture rates as those shown in Figure 3, although preference 
effects may potentially vary between species within the insect orders (Table S1,S2) and so corrections 
would benefit longer term through validation testing with individual species. We acknowledge this 
is very difficult: so far, colour preference testing has been successfully performed with very few 
species [26–32,75–77]. 

5. Conclusions 

We tested if fluorescent or non-fluorescent pan trap colours captured potential flower-visiting 
insects in a way that might be biased due to differences in how particular insect orders may process 
spectral information. Whilst for Hymenopteran species there was no significant difference in the 
frequency of individuals caught, flower-visiting flies were preferentially captured in non-fluorescent 
pan traps. In contrast, fluorescent pan traps captured significantly higher rates of beetles and 
Lepidopterans than non-fluorescent traps, suggesting that a fundamental difference in spectral 
processing may have influenced the insect capture by a particular pan trap. We, thus, suggest that to 
survey insect populations, care in interpretation is required in the selection of pan traps colours and 
that corrections should be considered when conducting meta-analyses on studies with different pan 
trap colours. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Insect capture 
using pan traps, Table S2: A complete list of insect species sampled in this study, with numbers of individuals 
collected with pan traps (PT).  
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