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Abstract
We give exponential lower bounds on the Price of Stability (PoS) of weighted congestion

games with polynomial cost functions. In particular, for any positive integer d we construct
rather simple games with cost functions of degree at most d which have a PoS of at least
Ω(Φd)d+1, where Φd ∼ d/ ln d is the unique positive root of equation xd+1 = (x + 1)d.
This asymptotically closes the huge gap between Θ(d) and Φd+1

d and matches the Price of
Anarchy upper bound. We further show that the PoS remains exponential even for singleton
games. More generally, we also provide a lower bound of Ω((1 + 1/α)d/d) on the PoS of
α-approximate Nash equilibria. All our lower bounds extend to network congestion games,
and hold for mixed and correlated equilibria as well.

On the positive side, we give a general upper bound on the PoS of approximate Nash
equilibria, which is sensitive to the range W of the player weights. We do this by explicitly
constructing a novel approximate potential function, based on Faulhaber’s formula, that
generalizes Rosenthal’s potential in a continuous, analytic way. From the general theorem,
we deduce two interesting corollaries. First, we derive the existence of an approximate pure
Nash equilibrium with PoS at most (d + 3)/2; the equilibrium’s approximation parameter
ranges from Θ(1) to d+ 1 in a smooth way with respect to W . Secondly, we show that for
unweighted congestion games, the PoS of α-approximate Nash equilibria is at most (d+1)/α.

1 Introduction

In the last 20 years, a central strand of research within Algorithmic Game Theory has focused
on understanding and quantifying the inefficiency of equilibria compared to centralized, optimal
solutions. There are two standard concepts that measure this inefficiency. The Price of Anarchy
(PoA) [32] which takes the worst-case perspective, compares the worst-case equilibrium with
the system optimum. It is a very robust measure of performance. On the other hand, the Price
of Stability (PoS) [44, 5], which is also the focus of this work, takes an optimistic perspective,
and uses the best-case equilibrium for this comparison. The PoS is an appropriate concept to
analyse the ideal solution that we would like our protocols to produce.

The initial set of problems that arose from the Price of Anarchy theory have now been
resolved. The most rich and well-studied among these models are, arguably, the atomic and
non-atomic variants of congestion games (see [37, Ch. 18] for a detailed discussion). This class
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of games is very descriptive and captures a large variety of scenarios where users compete for
resources, most prominently routing games. The seminal work of Roughgarden and Tardos
[42, 43] gave the answer for the non-atomic variant, where each player controls a negligible
amount of traffic. Awerbuch et al. [6], Christodoulou and Koutsoupias [15] resolved the Price
of Anarchy for atomic congestion games with affine latencies, generalized by Aland et al. [3] to
polynomials; this led to the development of Roughgarden’s Smoothness Framework [41] which
extended the bounds to general cost functions, but also distilled and formulated previous ideas to
bound the Price of Anarchy in an elegant, unified framework. At the computational complexity
front, we know that even for simple congestion games, finding a (pure) Nash equilibrium is a
PLS-complete problem [20, 2].

Allowing the players to have different loads, gives rise to the class of weighted congestion
games [40]; this is a natural and very important generalization of congestion games, with nu-
merous applications in routing and scheduling. Unfortunately though, an immediate dichotomy
between weighted and unweighted congestion games occurs: the former may not even have pure
Nash equilibria [35, 23, 25, 28]; as a matter of fact, it is a strongly NP-hard problem to even
determine if that’s the case [19]. Moreover, in such games there does not, in general, exist
a potential function [36, 29], which is the main tool for proving equilibrium existence in the
unweighted case.

As a result, a sharp contrast with respect to our understanding of the two aforementioned in-
efficiency notions arises. The Price of Anarchy has been studied in depth and general techniques
for providing tight bounds are known. Moreover, the asymptotic behaviour of weighted and
unweighted congestion games with respect to the Price of Anarchy is identical; it is Θ(d/ log d)d
for both classes when latencies are polynomials of degree at most d [3].

The situation for the Price of Stability though, is completely different. For unweighted games
we have a good understanding1 and the values are much lower than the Price of Anarchy values,
and also tight; approximately 1.577 for affine functions [16, 11], and Θ(d) [14] for polynomials.
For weighted games though there is a huge gap; the current state of the art lower bound is
Θ(d) and the upper bound is Θ(d/ ln d)d. These previous results are summarized at the left of
Table 1.

The main focus of this work is precisely to deal with this lack of understanding, and to
determine the Price of Stability of weighted congestion games. What makes this problem
challenging is that the only general known technique for showing upper bounds for the Price of
Stability is the potential method, which is applicable only to potential games. In a nutshell, the
idea of this method is to use the global minimizer of Rosenthal’s potential [39] as an equilibrium
refinement. This equilibrium is also a pure Nash equilibrium and can serve as an upper bound
of the Price of Stability. Interestingly, it turns out that, for several classes of potential games,
this technique actually provides the tight answer (see for example [5, 16, 11, 14]). However, as
already mentioned above, unlike their unweighted counterparts, weighted congestion games are
not potential games;2 so, a completely fresh approach is required.

One way to override the aforementioned limitations of non-existence of pure Nash equilibria,
but also their computational hardness, is to consider approximate equilibria. In this direction,

1Much work has been done on the PoS for network design games, which is though not so closely related to our
work. This problem was first studied by Anshelevich et al. [5] who showed a tight bound of Hn, the harmonic
number of the number of players n, for directed networks. Finding tight bounds on undirected networks is still
a long-standing open problem (see, e.g., [22, 9, 33]). Recently, Bilò et al. [10] (asymptotically) resolved the
question for broadcast networks. For the weighted variant of this problem, Albers [4] showed a lower bound of
Ω(logW/ log logW ), where W is the sum of the players’ weights. See [10] and references therein for a thorough
discussion of those results.

2For the special case of weighted congestion games with linear latency functions, a potential does exist [23]
and this was used by [8] to provide a PoS upper bound of 2.
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PoA PoS

unweighted bΦdcd+1 [3] Θ(d) [14]

weighted Φd+1
d [3] [Θ(d),Φd+1

d ]

PoS lower bound

general Ω(Φd)d+1

singleton Ω(2d/d)
α-approximate

equilibria Ω((1 + 1/α)d/d)

Table 1: Previous results (left table) regarding the Price of Anarchy and Stability for unweighted
and weighted congestion games, with polynomial latency functions of maximum degree d. Φd

is the unique positive solution of (x + 1)d = xd+1 and Φd = Θ(d/ log d). Tight answers were
known for all settings, except for the Price of Stability of the weighted case were only trivial
bounds existed. In this paper (right table) we (asymptotically) close this gap by showing a
lower bound of Ω(Φd)d+1 (Theorem 1), even for network games, which is exponential even for
singleton games Theorem 2.

Hansknecht et al. [27] have shown that (d+1)–approximate pure Nash equilibria always exist in
weighted congestion games with polynomial latencies of maximum degree d, while, in the neg-
ative side, there exist games that do not have 1.153–approximate pure Nash equilibria. Notice
here, that these results do not take into account computational complexity considerations; if
we insist in polynomial-time algorithms for actually finding those equilibria, then the currently
best approximation parameter becomes dO(d) [12, 13, 21].

1.1 Our Results

We provide lower and upper bounds on the Price of Stability for the class of weighted congestion
games with polynomial latencies with nonnegative coefficients. We consider both exact and
approximate equilibria. Our lower bounds are summarized at the right of Table 1.

Lower Bound for Weighted Congestion Games. In our main result in Theorem 1, we
resolve a long-standing open problem by providing asymptotically tight bounds for the Price
of Stability of weighted congestion games with polynomial latency functions. We construct an
instance having a Price of Stability of Ω(Φd)d+1, where d is the maximum degree of the latencies
and Φd ∼ d

ln d is the unique positive solution of equation (x+ 1)d = xd+1.
This bound essentially closes the previously huge gap between Θ(d) and Φd+1

d for the PoS of
weighted congestion games. The previously best lower and upper bounds were rather trivial: the
lower bound corresponds to the PoS results of Christodoulou and Gairing [14] for the unweighted
case (and thus, it is also a valid lower bound for the general weighted case as well) and the
upper bound comes from the Price of Anarchy results of Aland et al. [3] (PoA, by definition,
upper-bounds PoS).

We stress that, although as mentioned before, weighted congestion games do not always
possess pure equilibria, our lower bound construction involves a unique equilibrium occurring
by iteratively eliminating strongly dominated strategies. As a result, this lower bound holds
not only for pure, but mixed and correlated equilibria as well.

Singleton Games. Next we switch to the class of singleton congestion games, where a pure
strategy for each player is a single facility. This class is very well-studied as, on one hand, it
abstracts scheduling environments, and on the other, it has very attractive equilibrium prop-
erties; unlike general weighted congestion games, there exists an (ordinal) lexicographic poten-
tial [24, 30], thus implying the existence of pure Nash equilibria. It is important to note that,
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the tight lower bounds for the Price of Anarchy of general weighted congestion games, hold also
for the class of singleton games [11, 7].

Nevertheless, even for this special class, we show in Theorem 2 an exponential lower bound
of Ω(2d/d). The previous best upper and lower bounds were the same as those of the general
case, namely Θ(d) and Φd+1

d , respectively. As a matter of fact, this new lower bound comes as a
corollary of a much more general result that we show in Theorem 2, that extends to approximate
equilibria and gives a lower bound of Ω((1+1/α)d/d) on the PoS of α-approximate equilibria, for
any (multiplicative) approximation parameter α ∈ [1, d). Setting α = 1 we recover the special
case of exact equilibria and the aforementioned exponential lower bound on the standard, exact
notion of the PoS. Notice here, that as we show in Theorem 4, the optimal solution (which,
in general, is not an equilibrium) itself constitutes a (d + 1)–approximate equilibrium with a
(trivially) optimal PoS of 1.

Positive Results for Approximate Equilibria. In light of the above results, in Section 4,
we turn our attention to identifying environments with more structure or flexibility with respect
to the underlying solution concept, for which we can hope for improved quality of equilibria.
Both our lower bound constructions discussed above use players’ weights that form a geometric
sequence. In particular the ratio W of the largest over the smallest weight is equal to wn, which
grows very large as the number of players n → ∞. On the other hand, for games where the
players have equal weights, i.e. W = 1, we know that the PoS is at most d+ 1. It is therefore
natural to ask how the performance of the good equilibria captured by the notion of PoS varies
with respect to W . In Theorem 3, we are able to give a general upper bound for approximate
equilibria which is sensitive to this parameter W . This general theorem has two immediate,
interesting corollaries.

Firstly (Corollary 1), by fixing ξ and allowing the ratio W to range in [1,∞), we derive the
existence of an approximate pure Nash equilibrium with PoS at most (d+3)/2; the equilibrium’s
approximation parameter ranges from Θ(1) to d+1 in a smooth way with respect to W . This is
of particular importance in settings where player weights are not very far away from each other
(that is, W is small). Secondly (Corollary 2), by setting W = 1 and allowing α to range, we
get an upper bound of d+1

α for the α-approximate PoS of unweighted congestion games which,
to the best of our knowledge, was not known before, degrading gracefully from d+ 1 (which is
the actual PoS of exact equilibria in the unweighted case [14]) down to the optimal value of 1 if
we allow (d+ 1)-approximate equilibria (which in fact can be achieved by the optimum solution
itself; see Theorem 4).

Our Techniques. An advantage of our main lower bound (Theorem 1) is the simplicity of
the underlying construction, as well as its straightforward adaptation to network games (see
Section 3.1.1)). However, fine-tuning the parameters of the game (player weights and latency
functions), to ensure uniqueness of the equilibrium at the “bad” instance, was a technically
involved task. This was in part due to the fact that, in order to guarantee uniqueness (via
iteratively dominant strategies), each player interacts with a window of µ other players. This
µ depends on d in a delicate way (see Fig. 1 and Lemma 1); it has to be an integer but, at the
same time, needs also to balance nicely with the algebraic properties of Φd (see, e.g., (1), (3)
and (4)). Moreover we needed to provide deeper insights on the asymptotic, analytic behaviour
of Φd, and to explore some new algebraic characteristics of Φd (see, e.g., Lemma 7).

In order to derive our upper bounds, we need to define a novel approximate potential func-
tion [17, 27]. First, we identify (Lemma 2) clear algebraic sufficient conditions for the existence
of approximate equilibria with good social-cost guarantees, and then explicitly define (see the
(14) and (19) in the proof of Theorem 3) a function that satisfies them. This continuous
function, which is defined in the entire space of positive reals, essentially generalizes that of
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Rosenthal’s in a smooth way: by setting W = α = 1, we recover exactly the first significant
terms of the well known Rosenthal potential [39] polynomial, with which one can demonstrate
the usual PoS results for the unweighted case (see, e.g. [16]). The simple, analytic way in which
this function is defined, is the very reason why we can handle both the approximation parameter
α of the equilibrium and the ratio W of the weights in a smooth manner while at the same time
providing good PoS guarantees.

It is important to stress that, by the purely analytical way in which our approximate po-
tential function is defined, in principle it can also incorporate more general cost functions than
polynomials; so, we believe that this technique may be of independent interest. We point
towards that direction in Appendix C.

2 Model and Notation

Let R = (−∞,∞) denote the set of real numbers, and in the natural way define R≥0 = [0,∞)
and R>0 = (0,∞).

Weighted Congestion Games. A weighted congestion game consists of a finite, nonempty
set of players N and resources (or facilities) E. Each player i ∈ N has a weight wi ∈ R>0 and
a strategy set Si ⊆ 2E . Associated with each resource e ∈ E is a cost (or latency) function
ce : R>0 −→ R≥0. In this paper we mainly focus on polynomial cost functions with maximum
degree d ≥ 0 and nonnegative coefficients; that is, every cost function is of the form ce(x) =∑d
j=0 ae,j · xj , with ae,j ≥ 0 for all j. In the following, whenever we refer to polynomial cost

functions we mean cost functions of this particular form.
A pure strategy profile is a choice of strategies s = (s1, s2, ...sn) ∈ S = S1 × · · · × Sn

by the players. We use the standard game-theoretic notation s−i = (s1, . . . , si−1, si+1, . . . sn),
S−i = S1× · · · × Si−1× Si+1× · · · × Sn, such that s = (si, s−i). Given a pure strategy profile s,
we define the load xe(s) of resource e ∈ E as the total weight of players that use resource e on
s, i.e., xe(s) =

∑
i∈N :e∈si wi. The cost player i is defined by Ci(s) =

∑
e∈si ce(xe(s)).

A singleton weighted congestion game is a special form of congestion games where the
strategies of all players consist only of single resources; that is, for all players i ∈ N , |si| = 1 for
all si ∈ Si. In a weighted network congestion games the resources E are given as the edge set
of some directed graph G = (V,E), and each player i ∈ N has a source oi ∈ V and destination
ti ∈ V node; then, the strategy set Si of each player is implicitly given as the edge sets of all
directed oi → ti paths in G.

Nash Equilibria. A pure strategy profile s is a pure Nash equilibrium if and only if for every
player i ∈ N and for all s′i ∈ Si, we have Ci(s) ≤ Ci(s′i, s−i). Similarly a strategy profile is an
α-approximate pure Nash equilibrium, for α ≥ 1, if Ci(s) ≤ α · Ci(s′i, s−i) for all players i ∈ N
and s′i ∈ Si. As discussed in the introduction, weighted congestion games do not always admit
pure Nash equilibria. However, by Nash’s theorem they have mixed Nash equilibria. A tuple
σ = (σ1, · · · , σN ) of independent probability distributions over players’ strategy sets is a mixed
Nash equilibrium if

E
s∼σ

[Ci(s)] ≤ E
s−i∼σ−i

[Ci(s′i, s−i)]

holds for every i ∈ N and s′i ∈ Si. Here σ−i is a product distribution of all σj ’s with j 6= i, and
s−i denotes a strategy profile drawn from this distribution. We use NE(G) to denote the set of
all mixed Nash equilibria of a game G.

Social Cost and Price of Stability. Fix a weighted congestion game G. The social cost of
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a pure strategy profile s is the weighted sum of the players’ costs

C(s) =
∑
i∈N

wi · Ci(s) =
∑
e∈E

xe(s) · ce(xe(s)).

Denote by OPT(G) = mins∈S C(s) the optimum social cost over all strategy profiles s ∈ S.
Then, the Price of Stability (PoS) of G is the social cost of the best-case Nash equilibrium over
the optimum social cost:

PoS(G) = min
σ∈NE(G)

Es∼σ[C(s)]
OPT(G) .

The Price of Stability of α-approximate Nash equilibria is defined accordingly. The PoS for a
class G of games is the worst (i.e., largest) PoS among all games in the class, that is, PoS(G) =
supG∈G PoS(G). For example, our focus in this paper is determining the Price of Stability for
the class G of weighted congestion games with polynomial cost functions.

Finally, notice that, by using a straightforward scaling argument, it is without loss with
respect to the PoS metric to analyse games with player weights in [1,∞); if not, divide all wi’s
with miniwi and scale cost functions accordingly.

3 Lower Bounds

In this section, we present our lower bound constructions. In Section 3.1 we present the general
lower bound and then in Section 3.2 the lower bound for singleton games.

3.1 General Congestion Games

The next theorem presents our main negative result on the Price of Stability of weighted con-
gestion games with polynomial latencies of degree d, that asymptotically matches the Price of
Anarchy upper bound of Φd+1

d from Aland et al. [3]. Our result, shows a strong separation of
the Price of Stability of weighted and unweighted congestion games, where the Price of Stability
is at most d + 1 [14]. This is in sharp contrast to the Price of Anarchy of these two classes,
where the respective bounds are essentially the same.

We will need to introduce some notation. Let Φd = Θ
(

d
ln d

)
be the unique positive root of

equation (x+1)d = xd+1 and let βd be a parameter such that βd ≥ 0.38 for any d, limd→∞ βd = 1
2 .

A plot of its values can be seen in Fig. 1.

Theorem 1. The Price of Stability of weighted congestion games with polynomial latency func-
tions of degree at most d ≥ 9 is at least (βdΦd)d+1.

We will first need the following technical lemma. Its proof can be found in Appendix A.2.

Lemma 1. For any positive integer d define

cd = 1
d

⌊
d

ln(Φ1+2/d
d − Φd)− ln(Φ1+2/d

d − Φd − 1)
ln Φd

⌋
(1)

and
βd = 1− Φ−cdd , (2)

Then
Φd+2
d ≤

(
Φd + 1

βd

)d
, (3)
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Figure 1: The values of parameters βb and cd in Lemma 1 and Theorem 1, for d = 9, 10, . . . , 100

and for all d ≥ 9,

d · cd ≥ 3, 0.38 ≤ βd ≤
1
2 and lim

d→∞
βd = 1

2 . (4)

Plots of parameters cd and βd can be found in Fig. 1.

Proof of Theorem 1. We now move on to the description of our congestion game instance. Fix
some integer3 d ≥ 9. Our instance consists of n + µ players and n + µ + 1 facilities, where
µ ≡ c · d for some real c ≥ 3

d (to be specifically determined later on, see (1)) such that µ ≥ 3
is an integer. You can think of n as a very large integer, since at the end we will take n→∞.
Every player i = 1, 2, . . . , n+ µ has a weight of wi = wi, where w = 1 + 1

Φd .
It will be useful for subsequent computations to notice that

wd =
(

1 + 1
Φd

)d
= (Φd + 1)d

Φd
d

= Φd+1
d

Φd
d

= Φd,

wd+1 = wd · w = Φd

(
1 + 1

Φd

)
= Φd + 1.

Let also define

α = α(µ) ≡
µ∑
j=1

w−j = 1− w−µ

w − 1 = 1− (wd)−c

w − 1 = 1− Φ−cd
1 + 1

Φd − 1
= Φd

(
1− Φ−cd

)
= βdΦd,

where
βd ≡ 1− Φ−cd ∈ (0, 1).

Observe that
w−µ = 1− βdΦd(w − 1) = 1− βdΦd

(
1 + 1

Φd
− 1

)
= 1− βd

3For polynomial latencies of smaller degrees d ≤ 8 we can instead apply the simpler lower-bound instance for
singleton games given in Section 3.2.
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Figure 2: The social optimum s∗ and the unique Nash equilibrium s̃ in the lower bound con-
struction of Theorem 1 for general weighted congestion games.

and furthermore, for every i ≥ µ+ 1
i−1∑

j=i−µ
wj =

µ∑
j=1

wi−j = α · wi and
i∑

j=i−µ
wj = (α+ 1) · wi,

and ∞∑
`=1

w−` = 1
w − 1 = 1

1 + 1
Φd − 1

= Φd.

The facilities have latency functions

cj(t) = (α+ 1)d, if j = 1, . . . , µ,
cj(t) = w−j(d+1)td, if j = µ+ 1, . . . , µ+ n,

cn+µ+1(t) = 0,

where for simplicity we use j instead ej to refer to the j-th facility.
Every player i has two available strategies, s∗i and s̃i. Eventually we will show that the profile

s∗ corresponds to the optimal solution, while s̃ corresponds to the unique Nash equilibrium of
the game. Informally, at the former the player chooses to stay at her “own” i-th facility, while
at the latter she chooses to deviate and play the µ following facilities i+ 1, . . . , i+ µ. However,
special care shall be taken for the boundary cases of the first µ and last µ players, so for any
player i we formally define Si = {s∗i , s̃i} where s∗i = {i} and

s̃i =


{µ+ 1, . . . , µ+ i}, if i = 1, . . . , µ,
{i+ 1, . . . , i+ µ}, if i = µ+ 1, . . . , n,
{i+ 1, . . . , n+ µ+ 1}, if i = n+ 1, . . . , n+ µ.

These two outcomes, s∗ and s̃, are shown in Fig. 2.
Notice here that any facility j cannot get a load greater than the sum of the weights of the

previous µ players plus the weight of the j-th player. So, for and any strategy profile s:

xj(s) ≤
j∑

`=j−µ
w` = (α+ 1)wj for all j ≥ µ+ 1 (5)
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Next we will show that the strategy profile s̃ = (s̃1, . . . , s̃n+µ) is the unique Nash equilibrium
of our congestion game. We do that by proving that

1. It is a strongly dominant strategy for any player i = 1, . . . , µ to play s̃i.

2. For any i = µ+ 1, . . . , n+ µ, given that every player k < i has chosen to play s̃k, then it
is a strongly dominant strategy for player i to deviate to s̃i as well.

For the first condition, fix some player i ≤ µ and a strategy profile s−i for the other players
and observe that by choosing s̃i, player i incurs a cost of at most

Ci(s̃i, s−i) =
∑
j∈s̃i

cj(xj(s̃i)) ≤
µ+i∑

`=µ+1
c`
(
(α+ 1)w`

)

=
d+i∑

`=d+1
w−`(d+1)(α+ 1)dw`d = (α+ 1)d

d+i∑
`=d+1

w−`

< (α+ 1)dw−d
∞∑
`=1

w−` = (α+ 1)d 1
Φd

Φd = (α+ 1)d

= Ci(s∗i , s−i),

where in the first inequality we used the bound from (5).
For the second condition, we will consider the deviations of the remaining players.4 Fix now

some i = µ + 1, . . . , n and assume a strategy profile s−i = (s̃1, . . . , s̃i−1, si+1, . . . , sn+µ) for the
remaining players. If player i chooses strategy s∗i she will experience a cost of

Ci(s∗i , s−i) = ci

 i∑
`=i−µ

w`

 = ci
(
(α+ 1)wi

)
= w−i(d+1)(α+ 1)dwid = (α+ 1)dw−i.

It remains to show that

Ci(s̃i, s−i) < Ci(s∗i , s−i) = (α+ 1)dw−i. (6)

The cost Ci(s̃i, s−i) is complicated to bound immediately, for any profile s−i. Instead, we
will resort to the following claim which characterizes the profile s−i where this cost is maximized,
as shown in Fig. 3. Its proof can be found in Appendix A.3.

Claim 1. There exists a profile s′ with

1. s′j = sj for all j ≤ i and i > i+ µ

2. s′i+µ = s∗i+µ

3. there exists some k ∈ {i+ 1, . . . , i+ µ− 1} such that

s′j = s̃j for all j ∈ {i+ 1, . . . , i+ µ− 1} \ {k},

that dominates s, i.e.
Ci(s̃i, s−i) ≤ Ci(s̃i, s′−i). (7)

4For the remaining last µ players i = n+ 1, . . . , n+ µ the proof is similar to the text, and as a matter of fact
easier, since when these players deviate to s̃i they also use the final “dummy” facility n + µ + 1 that has zero
cost.
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i i+ 1 k − 1 k k + 1 i+ µ− 1 i+ µ

NASH OPT NASH or OPT

Figure 3: The format of profile s′ described in Claim 1 and returned as output from Procedure
Dominate(s, i) (see Appendix A.3). All players i + 1, . . . , i + µ (i.e., the those who lie within
the window of interest of player i, depicted in grey) play according to the Nash equilibrium s̃,
except the last player i + µ (that plays according to the optimal profile s∗) and at most one
other k (that may play either s̃k or s∗k).

By use of Claim 1, it remains to show

Ci(s̃i, s′−i) < (α+ 1)dw−i, (8)

just for the special case of profiles s′ that are described in Claim 1 and also shown in Fig. 3.
We do this in Appendix A.4.

Summarizing, we proved that indeed s̃ is the unique Nash equilibrium of our congestion
game. Finally, to conclude with lower-bounding the Price of Stability, let us compute the social
cost on profiles s̃ and s∗. On s∗, any facility j (except the last one) gets a load equal to the
weight of player j, so

C(s∗) =
n+µ∑
j=1

wjcj(wj)

=
µ∑
j=1

wj(α+ 1)d +
n+µ∑
j=µ+1

wjw−j(d+1)(wj)d

= (α+ 1)d
µ∑
j=1

wj +
µ+n∑
j=µ+1

1

= (α+ 1)dww
µ − 1
w − 1 + n

= n+ (βΦd + 1)d
(

1 + 1
Φd

) 1
1−β − 1

1 + 1
Φd − 1

= n+ (βΦd + 1)d(Φd + 1) β

1− β

≤ n+ β

1− β (Φd + 1)d+1.

On the other hand, at the unique Nash equilibrium s̃ each facility j ≥ µ + 1 receives a load
equal to the sum of the weights of the previous µ players, i.e.

xj(s̃) =
j−1∑
`=j−µ

w` = αwj

10



u1

u2

uµ

uµ+1 uµ+2 uµ+3 uµ+n+1 uµ+n+2
1
2

µ

µ+ 1 µ+ 2 n+ µ+ 1
· · ·

... a b ⇒ a b

Figure 4: Transformation of the lower bound instance of Theorem 1 for general weighted con-
gestion games to a network game, as described in Proposition 1.

so

C(s̃) ≥
n+µ∑
j=µ+1

xj(s̃)cj(xj(s̃)) =
n+µ∑
j=µ+1

w−j(d+1)
(
αwj

)d+1
= αd+1

µ+n∑
j=µ+1

1 = αd+1n.

By taking n arbitrarily large we get a lower bound on the Price of Stability of

lim
n→∞

C(s̃)
C(s∗) ≥ lim

n→∞
αd+1n

n+ β
1−β (Φd + 1)d+1

= αd+1 = (βΦd)d+1,

where from Lemma 1 we know that 1
3 ≤ β = 1

2 − o(1).

3.1.1 Network Games

Due to the rather simple structure of the players’ strategy sets in the lower bound construction
of Theorem 1, it can be readily extended to network games as well:

Proposition 1. Theorem 1 applies also to network weighted congestion games.

Proof. We arrange the resources from the proof of Theorem 1 as edges in a graph as depicted
in Fig. 4. All undirected edges should be replaced by the gadget shown on the bottom, where
the solid edge gets the cost function of the original edge and dashed edges are zero cost. Each
player i ∈ [1, n+ µ] has to route its traffic from oi to ti, where

oi =
{
uµ+1, if i = 1, . . . , µ,
ui+1, if i = µ+ 1, . . . , n+ µ,

and ti is not shown in the figure but connected with zero cost edges as follows:

• For each i ∈ [1, n+ µ] there is a directed zero cost edge from ui to ti.

• For each i ∈ [1, n] there is a directed zero cost edge from uµ+1+i to ti.

• For each i ∈ [n+ 1, n+ µ] there is a directed zero cost edge from uµ+n+2 to ti.

By construction, each player i has two available oi → ti paths, which correspond directly to
strategy sets s∗i and s̃i used in the proof of Theorem 1.

11



3.2 Singleton Games

In this section we give an exponential lower bound for singleton weighted congestion games
with polynomial latency functions. The following theorem handles also approximate equilibria
and provides a lower bound on the Price of Stability in a very strong sense; even if one allows
for the best approximate equilibrium, with approximation factor α = o

(
d

ln d

)
, then its cost

is lower-bounded by ω(d) times the optimal cost.5 In other words, in order to achieve linear
guarantees on the Price of Stability, one has to consider almost Ω(d)-approximate equilibria;
this shows, that our positive result in Corollary 1 of the following Section 4.3 is essentially
tight. This is complemented by Theorem 4, where we show that the socially optimum profile is
a (d+ 1)–approximate equilibrium, achieving an optimal Price of Stability of 1.

Theorem 2. For any positive integer d and any real α ∈ [1, d), the α-approximate (mixed)
Price of Stability of weighted (singleton) congestion games with polynomial latencies of degree
at most d is at least

1
e(d+ 1)

(
1 + 1

α

)d+1
. (9)

In particular, for the special case of α = 1, we derive that the Price of Stability of exact
equilibria is Ω(2d/d) = (2− o(1))d+1.

Proof. Fix a positive integer d and the desired approximation parameter α ∈ [1, d). Also, let
γ ∈ (α, d) be a parameter arbitrarily close to α. Our instance consists of n players with weights
wi = wi, i = 1, 2, . . . , n, where we set

w = γ
d+ 1
d− γ

> γ, (10)

the inequality holding due to the fact that d + 1 > d − γ > 0. At the end of our construction
we will take n → ∞, so you can think of n as a very large integer. There are n + 1 facilities
e1, e2, . . . , en+1, with latency functions

ce1(t) = γwd(w + 1)d,
cej (t) = (γwd)2−j · td, j = 2, . . . , n,

cen+1(t) = γ1−nwd(w + 1)d.

Any player i has exactly two strategies, s∗i = {ei} and s̃i = {ei+1} i.e., Si = {{ei}, {ei+1}}
for all i = 1, . . . , n. Let s∗, s̃ be the strategy profiles where every player i plays s∗i , s̃i respectively.
These two outcomes, s∗ and s̃ are depicted in Fig. 5. One should think of s∗ as the socially
optimal profile. We will show that s̃ is the unique α-approximate Nash equilibrium of our game.
To ensure this, it is enough to require the following, which corresponds to eliminating all other
possible strictly dominated α-approximate equilibria:

1. It is a strictly α-dominant strategy for player 1 to use facility e2, i.e., αC1(s̃1, s−i) < C1(s)
for any profile s.

2. For any i = 2, . . . , n, if every player k < i has chosen facility ek+1 then it is a strictly α-
dominant strategy for player i to chose facility ei+1, i.e., αCi(s̃1, . . . , s̃i−1, s̃i, si+1, . . . , sn) <
Ci(s̃1, . . . , s̃i−1, si, si+1, . . . , sn) for any strategies (si, si+1, . . . , sn) ∈ Si × · · · × Sn.

5To see this, just take any upper bound of d+1
c ln(d+1) on α, for a constant c > 2. Then, the lower bound in (9)

becomes Ω(dc−1).

12



OPT

Players Facilities

1

2

...

n

1

2

...

n

n+ 1

α-NASH

Players Facilities

1

2

...

n

1

2

3

...

n+ 1

Figure 5: The social optimum s∗ and the unique α-approximate equilibrium s̃ in the lower
bound construction of Theorem 2 for singleton weighted congestion games.

For the first condition, since facility e2 can be used by at most players 1 and 2, and γ > α,
it is enough to show that γce2(w1 + w2) ≤ ce1(w1). Indeed

γce2(w1 + w2) = γ(γwd)2−2(w + w2)d = γwd(1 + w)d = ce1(w1).

Similarly, for the second condition, it is enough to show that γcei+1(wi +wi+1) ≤ cei(wi−1 +
wi) for i = 2, . . . , n − 1, and γcen+1(wn) ≤ cen(wn−1 + wn) for the special case of i = n. This
is because, facility ei+1 can be used by at most players i and i + 1, while facility ei is already
being used by player i− 1. Indeed, for any i = 2, . . . , n− 1 we see that:

γcei+1(wi + wi+1) = γ(γwd)2−(i+1)(wi + wi+1)d = (γwd)2−i(wi−1 + wi)d = cei(wi−1 + wi),

while for i = n,

cen(wn−1 + wn) = (γwd)2−n(wn−1 + wn)d

= γ2−nwd(2−n)+d(n−1)(w + 1)d

= γ · γ1−nwd(w + 1)d
= γcen+1(wn).

The social cost at equilibrium s̃ is at least the cost of player n at s̃, that is,

C(s̃) ≥ wncen+1(wn) = wn · γ1−nwd(1 + w)d =
(
w

γ

)n
γ · wd(1 + w)d

13



On the other hand, consider the strategy profile s∗ where every player i chooses facility ei:

C(s∗) = w1ce1(w1) +
n∑
i=2

wicei(wi)

= γwd+1(1 + w)d +
n∑
i=2

wi(γwd)2−iwid

= γwd+1(1 + w)d + γ2w2d
n∑
i=2

(
w

γ

)i

= γwd+1(1 + w)d + γ2w2d ·
(
w

γ

)2
(
w
γ

)n−1
− 1

w
γ − 1

≤ γwd+1(1 + w)d + γ2w2d ·
(
w

γ

)2
(
w
γ

)n−1

w
γ − 1

=
(
w

γ

)n
γ ·
[(

w

γ

)−n
· wd+1(w + 1)d + w2d+1

w
γ − 1

]

Recall now that, from (10), w
γ > 1, and thus limn→∞

(
w
γ

)−n
= 0. So, as the number of

players n grows large we get the following lower bound on the Price of Stability:

lim
n→∞

C(s̃)
C(s∗) ≥ lim

n→∞
wd(1 + w)d(

w
γ

)−n
· wd+1(w + 1)d + w2d+1

w
γ
−1

=
(
w

γ
− 1

) (1 + w)d

wd+1 .

Since γ is chosen arbitrarily close to α, deploying (10) to substitute w, the above lower bound
can be written as

lim
n→∞

C(s̃)
C(s∗) ≥

(
d+ 1
d− α

− 1
)[

1 + α(d+ 1)
d− α

]d [α(d+ 1)
d− α

]d+1

= 1
d+ 1

(
1− 1

d+ 1

)d (
1 + 1

α

)d+1

≥ 1
e

1
d+ 1

(
1 + 1

α

)d+1
.

4 Upper Bounds

The negative results of the previous sections, involve constructions where the ratio W of the
largest to smallest weight can be exponential in d. In the main theorem (Theorem 3) of this
section we present an analysis which is sensitive to this parameter W , and identify conditions
under which the performance of approximate equilibria can be significantly improved.

Our upper bound approach is based on the design of a suitable approximate potential
function and has three main steps. First, in Section 4.1, we setup a framework for the definition
of this function by identifying conditions that, on the one hand, certify the existence of an
approximate equilibrium and, on the other, provide guarantees about its efficiency. Then, in
Section 4.2, by use of the Euler-Maclaurin summation formula we present a general form of an
approximate potential function, which extends Rosenthal’s potential for weighted congestion
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games (see also Appendix C). Finally, in Section 4.3, we deploy this potential for polynomial
latencies. Due to its analytic description, our potential differs from other extensions of the
Rosenthal’s potential that have appeared in previous work, and we believe that this contribution
might be of independent interest, and applied to other classes of latency functions.

4.1 The Potential Method

In the next lemma we lay the ground for the design and analysis of approximate potential
functions, by supplying conditions that not only provide guarantees for the existence of ap-
proximate equilibria, but also for their performance with respect to the social optimum. In the
premises of the lemma, we give conditions on the resource functions φe, having in mind that
Φ(s) =

∑
e∈E φe(xe(s)) will eventually serve as the “approximate” potential function.

Lemma 2. Consider a weighted congestion game with latency functions ce, for each facility
e ∈ E, and player weights wi, for each player i ∈ N . If there exist functions φe : R≥0 −→ R and
parameters α1, α2, β1, β2 > 0 such that for any facility e and player weight w ∈ {w1, . . . , wn}

α1 ≤
φe(x+ w)− φe(x)
w · ce(x+ w) ≤ α2, for all x ≥ 0, (11)

and
β1 ≤

φe(x)
x · ce(x) ≤ β2, for all x ≥ min

n
wn, (12)

then our game has an α2
α1

-approximate pure Nash equilibrium which, furthermore, has Price of
Stability at most β2

β1
.

Proof. Denote α = α2
α1

, β = β2
β1

. First we will show that the function Φ(s) =
∑
e∈E φe(xe(s))

(defined over all feasible outcomes s) is an α-approximate potential, i.e. for any profile s, any
player i and strategy s′i ∈ Si,

Ci(s′i, s−i) <
1
α
Ci(s) =⇒ Φ(s′i, s−i) < Φ(s).

This would be enough to establish the existence of a pure α-approximate equilibrium, since any
(local) minimizer of Φ will do. So, it is enough to prove that

Φ(s′i, s−i)− Φ(s) ≤ wiα1
[
α · Ci(s′i, s−i)− Ci(s)

]
.

Indeed, if for simplicity we denote xe = xe(s) and x′e = (s′i, s−i) for all facilities e, we can
compute

Φ(s′i, s−i)− Φ(s) =
∑
e∈E

[
φe(x′e)− φe(xe)

]
=

∑
e∈s′i\si

[φe(xe + wi)− φe(xe)] +
∑

e∈si\s′i

[φe(xe − wi)− φe(xe)]

≤ α2
∑

e∈s′i\si

wice(xe + wi)− α1
∑

e∈si\s′i

wice(xe),

≤ wiα2

 ∑
e∈s′i\si

ce(xe + wi) +
∑

e∈s′i∩si

ce(xe)

− wiα1

 ∑
e∈si\s′i

ce(xe) +
∑

e∈s′i∩si

ce(xe)

 ,
= wiα1

α
 ∑
e∈s′i\si

ce(xe + wi) +
∑

e∈s′i∩si

ce(xe)

−
 ∑
e∈si\s′i

ce(xe) +
∑

e∈s′i∩si

ce(xe)


= wiα1

[
αCi(s′i, s−i)− Ci(s)

]
.
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where the first inequality holds due to (11) and the second one because α2 ≥ α1.
Next, for the upper bound of β on the Price of Stability, it is enough to show that for any

profiles s, s′,
Φ(s) ≤ Φ(s′) =⇒ C(s) ≤ β · C(s′),

because then, if s∗ ∈ argminsC(s) is an optimal-cost profile and s̃ ∈ argmins Φ(s) is a global
minimizer of Φ, then C(s̃) ≤ βC(s∗) (and furthermore, as a minimizer of Φ, s̃ is clearly an
α-approximate equilibrium as well; see the first part of the current proof). Indeed, denoting
xe = xe(s), x′e = xe(s′) for simplicity, we have:

Φ(s′)− Φ(s) =
∑
e∈E

φe(xe)−
∑
e∈E

φe(x′e)

≤ β2
∑
e∈E

x′ece(x′e)− β1
∑
e∈E

xece(xe)

= β2C(s′)− β1C(s)
= β1

(
βC(s′)− C(s)

)
.

4.2 Faulhaber’s Potential

In this section we propose an approximate potential function, which is based on the follow-
ing classic number-theoretic result, known as Faulhaber’s formula6, which states that for any
positive integers n,m,

n∑
k=1

km = 1
m+ 1

m∑
j=0

(−1)j
(
m+ 1
j

)
Bjn

m+1−j

= 1
m+ 1n

m+1 + 1
2n

m + 1
m+ 1

m∑
j=2

(
m+ 1
j

)
Bjn

m+1−j , (13)

where the coefficients Bj are the usual Bernoulli numbers.7 In particular, this shows that the
sum of the first n powers of m can be expressed as a polynomial of n with degree m + 1.
Furthermore, this sum corresponds to the well-known potential of Rosenthal [39] for unweighted
congestion games when the latency function is the monomial x 7→ xm.

Based on the above observation, we go beyond just integer values of n, and generalize this
idea to all positive reals; in that way, we design a “potential” function that can handle different
player weights and, furthermore, incorporate in a more powerful, analytically smooth way,
approximation factors with respect to both the Price of Stability, as well as the approximation
parameter of the equilibrium (in the spirit of Lemma 2). A natural way to do that is to directly
generalize (13) and simply define, for any real x ≥ 0 and positive integer m,

Sm(x) ≡ 1
m+ 1x

m+1 + 1
2x

m, (14)

keeping just the first two significant terms.8 For the special case of m = 0 we set S0(y) = y.
6See, e.g., [31, p. 287] or [18, p. 106]).
7See, e.g., [26, Chapter 6.5] or [1, Chapter 23]. The first Bernoulli numbers are: B0 = 1, B1 = −1/2, B2 =

1/6, B3 = 0, B4 = −1/30, . . . . Also, we know that Bj = 0 for all odd integers j ≥ 3.
8See Section 4.4 for further discussion on this choice.
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Figure 6: Plots of functions Ad for d = 0, 1, 2 (left) and d = 40 (right). For d ≥ 1 they are
strictly increasing, starting at Ad(1) = 2(d+1)

d+3 ∈ [1, 2) and going up to d+ 1 at the limit. Here,
A0(1) = 1, A1(1) = 1, A2(1) = 6/5 = 1.2 and A40(1) = 82/43 ≈ 1.907.

For any nonnegative integer m we define the function Am : [1,∞) −→ R>0 with

Am(x) ≡
[
Sm(x)
xm+1

]−1
=
( 1
m+ 1 + 1

2x

)−1
= 2(m+ 1)x

2x+m+ 1 . (15)

Observe that Am is strictly increasing (in x) for all m ≥ 1,

Am(1) = 2(m+ 1)
m+ 3 ∈ [1, 2), and lim

x→∞
Am(x) = m+ 1. (16)

For the special case of m = 0 we simply have A0(x) = 1 for all x ≥ 0. Figure 6 shows
a graph of these functions. Since Am is strictly increasing for m ≥ 1, its inverse function,
A−1
m : [2m+1

m+3 ,m+ 1] −→ [1,∞), is well-defined and also strictly increasing for all m ≥ 1.
The following two lemmas (whose proofs can be found in Appendices B.2 and B.3) describe

some useful properties regarding the algebraic behaviour, and the relation among, functions Am
and Sm:

Lemma 3. Fix any reals y ≥ x ≥ 1. Then the sequences Am(x)
m+1 and Am(x)

Am(y) are decreasing, and
sequence Am(x) is increasing (with respect to m).

Lemma 4. Fix any integer m ≥ 0 and reals γ,w ≥ 1. Then

γm+1

Am(γw) ≤
Sm(γ(x+ w))− Sm(γx)

w(x+ w)m ≤ γm+1, for all x ≥ 0, (17)

and
γm+1

m+ 1 ≤
Sm(γx)
xm+1 ≤ γm+1

Am(γ) , for all x ≥ 1. (18)

4.3 The Upper Bound

Now we are ready to state our main positive result:
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Theorem 3. At any congestion game with polynomial latency functions of degree at most
d ≥ 1 and player-weights belonging in the range [1,W ], for any 2d+1

d+3 ≤ ξ ≤ d+1 there exists an
Ad(ξ̄W )-approximate pure Nash equilibrium, which furthermore has Price of Stability at most
d+1
ξ , where Ad is a strictly increasing function9 taking values within [2d+1

d+3 , d + 1] defined in
(15), and ξ̄ is the inverse image ξ̄ = A−1

d (ξ).

In particular, Theorem 3 has two interesting corollaries, one for ξ = Ad(1) = 2(d+1)
d+3 and one

for W = 1 (unweighted games):

Corollary 1. At any congestion game with polynomial latencies of degree at most d ≥ 1 where
player-weights lie within the range [1,W ], there is a Ad(W )-approximate pure Nash equilibrium
with Price of Stability at most d+3

2 .

Notice how, in light of Theorem 2, the above result of Corollary 1 is asymptotically tight as
far as the Price of Stability is concerned.

Corollary 2. At any unweighted congestion game with polynomial latencies of degree at most
d ≥ 1, the Price of Stability of α-approximate equilibria is at most d+1

α , for any 2d+1
d+3 ≤ α ≤ d+1.

Proof of Theorem 3. From now on assume that our latency functions are polynomials of de-
gree at most d with nonnegative coefficients, i.e. for each facility e ∈ E there exist constants
ae,0, ae,1, . . . , ae,d ≥ 0 such that

ce(x) =
d∑
j=0

ae,jx
j .

Then, in order to utilize Lemma 4, we choose functions

φe(x) =
d∑
j=0

ae,j
Sj(γx)
Sj(γ) =

d∑
j=0

ae,j
Aj(γ)
γj+1 Sj(γx), (19)

with parameter γ ≥ 1 selected such that Ad(γ) = ξ, where ξ ∈ [2d+1
d+3 , d + 1] has any value

we desire according to the statement of our Theorem 3; notice that γ is well-defined, due to
the analytic properties of function Ad (see (16)). Now, (17) gives us that for any x ≥ 0 and
w ∈ [1,W ],

φe(x+ w)− φe(x) =
d∑
j=0

ae,jAj(γ)
γj+1 (Sj(γ(x+ w))− Sj(γx))

≤
d∑
j=0

ae,jAj(γ)
γj+1 · γj+1w(x+ w)j

= max
j=0,...,d

Aj(γ) · w
d∑
j=0

ae,j(x+ w)j

= Ad(γ) · wce(x+ w), from Lemma 3,
9See Fig. 6.
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and similarly, bounding in the other direction,

φe(x+ w)− φe(x) ≥
d∑
j=0

ae,jAj(γ)
γj+1 · γj+1

Aj(γw)w(x+ w)j

= w
d∑
j=0

Aj(γ)
Aj(γw) · ae,j(x+ w)j

≥ min
j=0,...,d

Aj(γ)
Aj(γw) · wce(x+ w)

= Ad(γ)
Ad(γw) · wce(x+ w), from Lemma 3 and γw ≥ γ ≥ 1,

≥ Ad(γ)
Ad(γW ) · wce(x+ w), since Ad is monotonically increasing.

Furthermore, (18) of Lemma 4 would give us that

φe(x) =
d∑
j=0

ae,jAj(γ)
γj+1 Sj(γx) ≤

d∑
j=0

ae,jAj(γ)
γj+1 · γ

j+1

Aj(γ)x
j+1 = xce(x)

and

φe(x) ≥
d∑
j=0

ae,jAj(γ)
γj+1 · γ

j+1

j + 1x
j+1 = x ·

d∑
j=0

Aj(γ)
j + 1 · ae,jx

j ≥ Ad(γ)
d+ 1 · xce(x),

where the last inequality holds due to Lemma 3.
The above analysis shows us that the functions φe we defined in (19) satisfy the requirements

of Lemma 2 with

α1 = Ad(γ)
Ad(γW ) , α2 = Ad(γ) and β1 = Ad(γ)

d+ 1 , β2 = 1.

Thus, we deduce that there exists Ad(γW )–approximate pure Nash equilibrium with price
of Stability at most d+1

Ad(γ) , which concludes the proof since γ has been chosen so that γ =
A−1
d (ξ).

4.4 Small vs Large Degree Polynomials

One can argue that our choice to keep only the first two terms in Faulhaber’s formula (13),
when defining our approximate potential in (14), is suboptimal. To some extent, this is correct;
it is exactly the reason why this seemingly “unnatural” lower bound of 2d+1

d+3 for parameter ξ
appears in our main result of this section, Theorem 3. It would be nicer if ξ could simply start
from 1 instead. Indeed, this can be achieved for small values of d, as described below.

Considering the entire right-hand side expression in (13), one can take the full, exact version
of Faulhaber’s formula, that can be written10 in a very elegant way as

n∑
k=1

km = 1
m+ 1 [Bm+1(n+ 1)−Bm+1] , (20)

where
Bm(y) =

m∑
k=0

(
m

k

)
Bky

m−k, y ≥ 0,

10See, e.g., [31, p. 288] or [1, Eq. 23.1.4].
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are the Bernoulli polynomials, and coefficients Bk = Bk(0) are the standard Bernoulli numbers
we used before. Now we can use (20) to define a more fine-tuned version for Sm, that is, for
m ≥ 1 set Ŝm(x) = 1

m+1 [Bm+1(x+ 1)−Bm+1] instead of (14). For example, for degrees up to
m ≤ 4 these new polynomials are:

Ŝ0(x) = x, Ŝ1(x) = 1
2x(x+ 1), Ŝ2(x) = 1

6x(2x2 + 3x+ 1)

Ŝ3(x) = 1
4x

2(x+ 1)2, Ŝ4(x) = 1
30x(6x4 + 15x3 + 10x2 − 1)

Using these value, one can verify that for up to m ≤ 4, all our critical technical requirements
for the proof of Theorem 3 are satisfied: most notably Lemmas 3 and 4, and the monotonicity
of Âm(x) = xm+1

Ŝm(x) (with respect to x ≥ 1). In particular, now we have that Âm(1) = 1m+1

Ŝm(1) = 1,
which is exactly what we wanted. Thus,

Theorem 3 can be rewritten for d ≤ 4, with parameter ξ taking values in the
entire range of ξ ∈ [1, d+ 1].

However, there is a catch, that does not allow us to do that in general; as m grows large, the
Bernoulli polynomials, that now play a critical role in our definition of functions Ŝm (see (20)),
start to behave in a rather erratic, non-smooth way within the interior of the real intervals
between consecutive integer values. For example, one can check that, for d = 14 function Â14
is not monotonically increasing within [1, 2]. Even more disastrously, for d = 20, 21 functions
Ŝd take negative values in [1, 2] !
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[29] T. Harks, M. Klimm, and R. H. Möhring. Characterizing the existence of potential
functions in weighted congestion games. Theory Comput Syst, 49:46–70, 2011. doi:
10.1007/s00224-011-9315-x.

[30] T. Harks, M. Klimm, and R. H. Möhring. Strong equilibria in games with the lexicograph-
ical improvement property. International Journal of Game Theory, 42(2):461–482, 2012.
doi: 10.1007/s00182-012-0322-1.

[31] D. E. Knuth. Johann Faulhaber and sums of powers. Mathematics of Computation, 61
(203):277–277, sep 1993. doi: 10.1090/s0025-5718-1993-1197512-7.

[32] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In 16th Annual Symposium
on Theoretical Aspects of Computer Science, STACS ’99, pages 404–413, 1999.

[33] E. Lee and K. Ligett. Improved bounds on the price of stability in network cost sharing
games. In Proceedings of the 14th ACM Conference on Electronic Commerce, EC ’13, pages
607–620. ACM, 2013. doi: 10.1145/2482540.2482562.

[34] D. H. Lehmer. On the maxima and minima of Bernoulli polynomials. The American
Mathematical Monthly, 47(8):533, oct 1940. doi: 10.2307/2303833.

[35] L. Libman and A. Orda. Atomic resource sharing in noncooperative networks. Telecom-
munication Systems, 17(4):385–409, Aug 2001. doi: 10.1023/A:1016770831869.

22



[36] D. Monderer and L. S. Shapley. Potential games. Games and economic behavior, 14(1):
124–143, 1996.
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[43] T. Roughgarden and É. Tardos. Bounding the inefficiency of equilibria in nonatomic
congestion games. Games and Economic Behavior, 47(2):389–403, may 2004. doi:
10.1016/j.geb.2003.06.004.

[44] A. S. Schulz and N. S. Moses. On the performance of user equilibria in traffic networks.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’03, pages 86–87, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

A Lower Bound Proofs

A.1 Technical Lemmas

Lemma 5. For any integer d ≥ 1 define the function g : (1,∞) −→ (0,∞) with

g(x) = x1+2/d − x.

Then g is a monotonically increasing function and for any real constant γ > 0

lim
d→∞

g

(
γd

ln d

)
= 2γ and lim

d→∞
d

√
γd

ln d = 1.

Proof. A straightforward application of L’Hospital’s rule suffices.

Lemma 6. For any integer d ≥ 2, the function f : (0,∞)2 −→ (0,∞) defined by

f(x, y) = (y + x+ 1)d − (y + x)d

(y + 1)d − yd

is monotonically decreasing with respect to y. Furthermore, for d ≥ 9,

ζd+1 ≤ f ((βdΦd + 1)(ζ − 1), βdΦd − (1− βd)ζ) for all ζ ∈ [1, 2], (21)

where βd is defined in Lemma 1.
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Proof. First let’s define function h : (0,∞) −→ (0,∞) with

h(t) = (t+ 1)d − td

(t+ 1)d−1 − td−1 . (22)

We will show that h is increasing, which will suffice to prove the desired monotonicity of f since
its derivative is

∂f(x, y)
∂y

=
d
[
(x+ y + 1)d−1 − (x+ y)d−1

]
(y + 1)d − yd −

d
[
(y + 1)d−1 − yd−1

] [
(x+ y + 1)d − (x+ y)d

]
[(y + 1)d − yd]2

=
d
[
(y + 1)d−1 − yd−1

] [
(x+ y + 1)d−1 − (x+ y)d−1

]
[(y + 1)d − yd]2

[h(y)− h(x+ y)] ,

which is negative due to the monotonicity of h. To prove that h is indeed increasing, we will
instead show something stronger that we’ll need also in the proof of Lemma 1 below, namely
that function h̄ : (1,∞) −→ (0,∞) with

h̄(t) = td − (t− 1)d

td − t(t− 1)d−1 (23)

is increasing. This will be enough to demonstrate that h is increasing as well, since h(t) =
(t+ 1) · h̄(t+ 1). Taking its derivative we see that

∂h̄(t)
∂t

=

[
(t− 1)d − td + dtd−1

]
(t− 1)d

[td+1 − td − t(t− 1)d]2
> 0

since from the convexity of function t 7→ td we know that td − (t− 1)d < dtd−1.
Now let’s prove the remaining part of our lemma, that is (21). Observe that if we set ζ ← 1

to (21) it is satisfied, since f(0, y) = 1 for any y > 0. So, it is enough if we prove that

ζ−(d+1)f ((βdΦd + 1)(ζ − 1), βdΦd − (1− βd)ζ) = ζ−(d+1) [(α+ β)ζ]d − [(α+ β)ζ − 1]d

[α+ 1− (1− β)ζ]d − [α− (1− β)ζ]d

is increasing with respect to ζ ∈ [1, 2], where here we are using α = βΦd. So, if we define

f1(ζ) = [(α+ β)ζ]d − [(α+ β)ζ − 1]d

f2(ζ) = [α+ 1− (1− β)ζ]d − [α− (1− β)ζ]d

and we compute the derivative ∂
∂ζ

(
ζ−(d+1) f1(ζ)

f2(ζ)

)
of the above expression, we need to show that

ζ

[
f ′1(ζ)
f1(ζ) −

f ′2(ζ)
f2(ζ)

]
≥ d+ 1. (24)

Now notice that

ζ
f ′1(ζ)
f1(ζ) = d(α+ β)ζ [(α+ β)ζ]d−1 − [(α+ β)ζ − 1]d−1

[(α+ β)ζ]d − [(α+ β)ζ − 1]d
= d

h̄ ((α+ β)ζ)
,

where h̄ is the increasing function defined in (23) at the proof of Lemma 6, so taking into
consideration that

(α+ β)ζ = β(Φd + 1)ζ ≤ 1
2(Φd + 1)2 ≤ Φd + 1,
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we can get that

ζ
f ′1(ζ)
f1(ζ) ≥

d

h̄(Φd + 1)
= d(Φd + 1)(Φd + 1)d−1 − Φd−1

d

(Φd + 1)d − Φd
d

= d
Φd+1
d − Φd

d − Φd−1
d

Φd+1
d − Φd

d

= d− d

Φ2
d − Φd

.

Similarly, we can see that

−ζ f
′
2(ζ)
f2(ζ) = d(1− β)ζ

h(α− (1− β)ζ) ,

where h is the increasing function defined in (22) in the proof of Lemma 6, so taking into
consideration that

α− (1− β)ζ ≤ βΦd − (1− β) ≤ Φd − 1
2 and (1− β)ζ ≥ 1

2 ,

we get that

−ζ f
′
2(ζ)
f2(ζ) ≥

d/2
h ((Φd − 1)/2) = d

(Φd + 1)d−1 − (Φd − 1)d−1

(Φd + 1)d − (Φd − 1)d .

Putting everything together, in order to prove the desired (24), it is now enough to show that

d
(Φd + 1)d−1 − (Φd − 1)d−1

(Φd + 1)d − (Φd − 1)d − d

Φ2
d − Φd

≥ 1,

which we know holds from (27) of Lemma 7.

Lemma 7. For any positive integer d,

(Φd + 2)d ≤ Φd+2
d (25)

and
Φd ≤ γd

d

ln d with γd ≡
ln d
W(d) ≤ 1.368 and lim

d→∞
γd = 1, (26)

where W(·) denotes the (principal branch of the) Lambert–W function11. Furthermore, for any
d ≥ 9,

(Φd + 1)d−1 − (Φd − 1)d−1

(Φd + 1)d − (Φd − 1)d − 1
Φ2
d − Φd

≥ 1
d
. (27)

Proof. Using the identity (Φd + 1)d = Φd+1
d , we have

(Φd + 2)d = (Φd + 1)d
(Φd + 2

Φd + 1

)d
≤ (Φd + 1)d

(Φd + 1
Φd

)d
= Φd+1

d

Φd+1
d

Φd
d

= Φd+2
d ,

proving (25).
Now we move on to upper-bound the values of Φd and prove (26). Here we will make use

of the following property, which can be readily deduced from the proof of Lemma 5.4 of Aland
et al. [3], and in particular where they are upper-bounding Φd:

d1/γ ≤ γ · d
ln d =⇒ Φd < γ

d

ln d, (28)

for any positive real γ. Using γd = ln d
W(d) as defined in the statement of our lemma, we compute:

d1/γd = d
W(d)
ln d = eW(d)

11That is, for any positive real x, W(x) = z gives the unique positive real solution z to the equation x = z · ez.
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and
γd

d

ln d = ln d
W(d)

d

ln d = d

W(d) .

Thus, since from the definition of function W we know that

W(d)eW(d) = d, (29)

we deduce that γ ← γd indeed satisfies the left hand side of (28), giving us the desired upper
bound for Φd.

For the asymptotic behaviour of γd when d grows large, observe that by taking logarithms
in (29) we get

W(d) + lnW(d) = ln d

and so
lim
d→∞

γd = lim
d→∞

ln d
W(d) = lim

γ→∞

[ lnW(d)
W(d) + 1

]
= 1 + lim

z→∞
ln z
z

= 1,

since it is easy to see that limd→∞W(d) =∞.
Finally, let’s now prove (27). First, one can simply numerically verify that it indeed holds

for all integers d = 9, 10, . . . , 14, so let’s just focus on the case when d ≥ 15. For simplicity, in
the remainder of the proof we denote y = Φd. It is easy to see12 then that

y ≥ Φ15 ≈ 7.141 > 7.

Performing some elementary algebraic manipulations in (27), we can equivalently write it as

(y + 1)d−1
[
−y3 + dy2 − (2d− 1)y − d

]
≥ (y − 1)d+1(d− y).

Using the fact that (y + 1)d−1 = yd+1

y+1 , and then that yd+1 ≥ (y − 1)d+1, we can see that it is
enough to show that

−y3 + dy2 − (2d− 1)y − d ≥ (d− y)(y + 1).

Since y > 1
2(
√

17 + 3) ≈ 3.562, we know that y2− 3y− 2 > 0, and so the above can be rewritten
as

y(y + 1)(y − 2)
y2 − 3y − 2 ≤ d.

It is a matter of simple calculus to verify that the left-hand side of the above expression is an
increasing function of y for y ≥ 7. Thus, using an upper bound of y ≤ 2d

ln d on y = Φd (see [3,
Lemma 5.4] or our Lemma 7), it is enough to prove that

−4d2 + (2d2 + 2d− 1) ln d+ (2− 3d) ln2 d ≥ 0,

which holds since the function on the left hand side of the inequality is increasing for d ≥ 10
and for d = 15 we can compute its value

−43 ln2(15) + 479 ln(15)− 900 ≈ 81.814 > 0.

12Here we are silently using the fact that Φn is an increasing function of the integer n. One can formally prove
this by, e.g., combining Lemmas 5.1 and 5.2 of Aland et al. [3].
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A.2 Proof of Lemma 1

To decongest notation a bit in the proof, we will drop the d subscripts from cd and βd whenever
this is causing no confusion. Starting with (3), if we solve with respect to β we get

Φd + 1
β
≥ Φ1+ 2

d
d ⇐⇒ β ≤ 1

Φ1+2/d
d − Φd

, (30)

and substituting (2),

1− Φ−cd ≤
1

Φ1+2/d
d − Φd

⇐⇒ Φ−cd ≥
Φ1+2/d
d − Φd − 1
Φ1+2/d
d − Φd

⇐⇒ c ≤
ln(Φ1+2/d

d − Φd)− ln(Φ1+2/d
d − Φd − 1)

ln Φd
,

which holds by the very definition of c in (1) if we relax the floor operator.
Let’s now move to (4), and in particular lower-bound the values of parameter β, as d grows

large. Due to the floor operator in (1), parameter c can be lower bounded by

c ≥
ln(Φ1+2/d

d − Φd)− ln(Φ1+2/d
d − Φd − 1)

ln Φd
− 1
d

= logΦd
Φ1+2/d
d − Φd

Φ1+2/d
d − Φd − 1

− 1
d

and since β is increasing with respect to c,

β = 1− Φ−cd ≥ 1− Φ1+2/d
d − Φd − 1
Φ1+2/d
d − Φd

Φ1/d
d = 1−

[
1− 1

g(Φd)

]
Φ1/d
d , (31)

where g is the function defined in Lemma 5. Using the upper bound for Φd from (26) in
Lemma 7, and deploying the monotonicity of function g we can deduce that

β ≥ 1− d

√
γd

ln d

1− 1
g
(
γd

d
ln d

)
 .

From Lemma 7 we also know that limd→∞ γd = 1, so for any arbitrarily small ε > 0 we can
make sure that γd ≤ 1 + ε if we consider sufficiently large d’s. Thus, taking limits in the above
inequality and using Lemma 5, we finally get the desired

lim
d→∞

β ≥ 1− 1 ·
(

1− 1
2(1 + ε)

)
= 1

2(1 + ε) .

For the upper bound of β ≤ 1
2 , due to (30) it is enough to show that

1
Φ1+2/d
d − Φd

≤ 1
2 ⇐⇒ Φd + 2 ≤ Φ1+2/d

d ⇐⇒ (Φd + 2)d ≤ Φd+2
d ,

which holds due to (25) of Lemma 7.
For small values of d, and in particular in order to prove that β ≥ 0.38, one can numerically

compute the values for β directly from (1). For example, for d = 9, . . . , 100, these values are
shown in Fig. 1. The lower and upper red lines in Fig. 1 correspond to the relaxation of the
floor operator we used in the lower and upper bounds for β in (31) and (30), respectively. The
actual values of β lie between these two lines. Using these values and the resulting monotonicity
for β, one can also prove the lower bound of 3 for dc, by observing that by setting d = 9 in (1)
we have that for any d ≥ 9

d · c ≥
⌊

9ln(Φ11/9
9 − Φ9)− ln(Φ11/9

9 − Φ9 − 1)
ln Φ9

⌋
≈ b3.368c = 3.
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A.3 Proof of Claim 1

Since we have fixed that sj = s̃j for all players j ≤ i and also the strategies of players j > i+ µ
have no effect on the cost of player i (and in particular in (3)), it is safe if we briefly abuse
notation and for now assume that s−i = (si+1, . . . , si+µ).

We generate the above dominating profile s′ inductively, by running Procedure Dominate(s, i)
described formally below, scanning and modifying profile s from right to left.

Procedure Dominate(s, i)
Input: Profile s−i = (si+1, . . . , si+µ); Player i ∈ {µ+ 1, . . . , n}
Output: Profile s′−i = (s′i+1, . . . , s

′
i+µ) of the form described in Items 1 to 3 of page 9,

that satisfies Eq. (7)
1 s′−i ← s−i;
2 s′i+µ ← s∗i+µ;
3 k ← i+ µ− 1;
4 while exists j ∈ {i+ 1, . . . , k − 1} such that s′j = s∗j do
5 s′k ← s̃k;
6 k ← k − 1;

end

First, it is not difficult to see that the output profile s′ of Dominate(s, i) indeed has the
desired format described in Items 1 to 3 of page 9. In particular, after any execution of the
while-loop in lines 4–6 of Procedure Dominate, s′j = s̃j for any j = k + 1, . . . , i + µ − 1.
Furthermore, it is also easy to see that switching player’s i+µ strategy to s′i+µ = s∗i+µ can only
increase player’s i cost, i.e. (7) is satisfied after line 2 of Dominate: if player i+µ chooses s̃i+µ
instead, she contributes nothing to the cost of player i, since she does not put her weight in any
of the facilities i+ 1, . . . , i+ µ played by player i.

So, it remains to be shown that after every iteration of the while-loop, condition (7) is
maintained. Since in any such loop only the strategy of player k is possibly switched from s∗k
to s̃k, it is enough if we show that C̄i(s̃k, s′−k) ≥ C̄i(s∗k, s′−k) or, since for any facility j < k it is
xj(s̃k, s′−k) = xj(s∗k, s′−k), equivalently

i+µ∑
j=k

cj(xj(s̃k, s′−k)) ≥
i+µ∑
j=k

cj(xj(s∗k, s′−k)).

If we let zj , for any j ≥ k, denote the load on facility j induced by every player except from
player k, that is formally

zj =
∑
{w` | ` ∈ {j − d, . . . , j} \ {k} ∧ j ∈ s` } ,

the above can be written as
i+µ∑

j=k+1
cj(zj + wk)− cj(zj) ≥ ck(zk + wk)− ck(zk).

Thus, it is enough if we only take j = i+ µ in the above sum and just prove that

ci+µ(zi+µ + wk)− ci+µ(zi+µ) ≥ ck(zk + wk)− ck(zk),

which is equivalent to

w−(i+µ−k)(d+1) (zi+µ + wk)d − zdi+µ
(zk + wk)d − zdk

≥ 1. (32)
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If we define
A =

{
j ∈ {i+ 1, . . . , k − 1}

∣∣∣ sj = s∗j

}
,

that is, A is the set of players below k (and above i) that do not contribute their weight to the
cost of players k and i+ µ, we have that

zk =
k−1∑

j=k−µ
j /∈A

wj = αwk −
∑
j∈A

wj

and

zi+µ =
i+µ∑
j=i

j /∈A∪{k}

wj = (α+ 1)wi+µ − wk −
∑
j∈A

wj ,

since by our inductive process we know that s′j = s̃j for all j = k + 1, . . . , i+ µ− 1. Thus

zi+µ = zk + (α+ 1)(wi+µ − wk).

Now we can rewrite the left hand side of (32) as

w−(i+µ−k)(d+1) [zk + (α+ 1)wi+µ − αwk)]d − [zk + (α+ 1)wi+µ − (α+ 1)wk]d

(zk + wk)d − zdk
,

and, if we additionally define for simplicity

ζ ≡ wλ, where λ ≡ µ− k + i ∈ {1, . . . , µ− 2}

and
yk ≡

zk
wk
,

(32) can be written as

ζ−(d+1) [yk + (α+ 1)ζ − α)]d − [yk + (α+ 1)ζ − α− 1)]d

(yk + 1)d − ydk
≥ 1,

or more simply,
ζ−(d+1)f(x, y) ≥ 1

if we use function f from Lemma 6 with values

x = (α+ 1)wλ − α− 1 = (α+ 1)(ζ − 1) > 0 and y = yk > 0.

Deploying the monotonicity of f from Lemma 6 and using that

y = zk
wk

= α− 1
wk

∑
j∈A

wj ≤ α−
1
wk
wi+1 = α− wi+1−k = α− wλ−µ+1 ≤ α− (1− β)ζ,

where the first inequality holds due to the fact that from the while-loop test in line 4 of Proce-
dure Dominate we know that A 6= ∅, we finally get that it is enough if we show that

ζd+1 ≤ f ((α+ 1)(ζ − 1), a− (1− β)ζ) for all ζ ∈
[
1, 1
β − 1

]
,

since ζ ≥ w1 ≥ 1 and ζ ≤ wµ−2 ≤ wµ = (1 − β)−1. Thus we can make sure that the above is
satisfied if we pick our constant c as in Lemma 1, due to (21) of Lemma 6.

29



A.4 Proof of Eq. (8)

In any such profile, player i+ µ plays s∗i+µ and

• Either all other players j = i+ 1, . . . , i+ µ− 1 play s̃j , in which case

C̄i(s̃i, s′−i) = ci+µ

i+µ∑
`=i

w`

+
i+µ−1∑
j=i+1

cj

 j−1∑
`=j−µ

w`


= ci+µ

(
(α+ 1)wi+µ

)
+
i+µ−1∑
j=i+1

cj
(
αwj

)

= w−(i+µ)(d+1)(α+ 1)dwd(i+µ) +
i+µ−1∑
j=i+1

w−j(d+1)αdwdj

= w−(i+µ)(α+ 1)d +
i+µ−1∑
j=i+1

w−jαd

= w−i

(α+ 1)dw−µ + αd
µ−1∑
j=1

w−j


= w−i

[
(α+ 1)dw−µ + αd(α− w−µ)

]
• Or there might exist a single player k ∈ {i+ 1, . . . , i+ µ− 1} that plays s∗k (instead of s̃k

which corresponds exactly to the previous case), in which case

C̄i(s̃i, s′−i) ≤ ck

 k∑
`=k−µ

w`

+ ci+µ

i+µ∑
`=i

w` − wk

+
i+µ∑
j=i+1
j 6=k,i+µ

cj

 j−1∑
`=j−µ

w`



= ck
(
(α+ 1)wk

)
+ ci+µ

(
(α+ 1)wi+µ − wk

)
+
i+µ−1∑
j=i+1
j 6=k

cj
(
αwj

)

= w−i
[
(α+ 1)dw−(k−i) + (α+ 1− wk−i−µ)dw−µ + αd(α− w−µ − w−(k−i))

]
,

which is decreasing with respect to k, so taking the smallest possible value k = i + 1 we
have that

C̄i(s̃i, s′−i) ≤ w−i
[
(α+ 1)dw−1 + (α+ 1− w1−µ)dw−µ + αd(α− w−µ − w−1)

]
.

Considering both the above possible scenarios, in order to prove (8) it is thus enough to make
sure that

αd(α− w−µ) < (α+ 1)d(1− w−µ) (33)
and

(α+ 1− w1−µ)dw−µ + αd(α− w−µ − w−1) < (α+ 1)d(1− w−1). (34)
For (33), its left-hand side can be written as

(βΦd)d (βΦd − (1− β)) < (βΦd)d (βΦd) = βd+1Φd+1
d = βd+1(Φd + 1)d,

the first inequality holding because β < 1, while the right-hand side is

(βΦd + 1)d(1− (1− β)) = βd+1
(

Φd + 1
β

)d
.
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Thus it is enough to prove that

(Φd + 1)d ≤
(

Φd + 1
β

)d
,

which holds since β ∈ (0, 1).
For (34), the left-hand side is written as(

βΦd + 1−
(

1 + 1
Φd

)
(1− β)

)d
(1− β) + (βΦd)d

(
βΦd − (1− β)−

(
1 + 1

Φd

)−1
)

=
(
βΦd + β − 1− β

Φd

)d
(1− β) + βdΦd

d

(
βΦd − (1− β)− Φd

Φd + 1

)
< (βΦd + β)d (1− β) + βdΦd

d

(
βΦd −

Φd

Φd + 1

)
=βd (Φd + 1)d (1− β) + βdΦd

d

(
βΦd −

Φd

Φd + 1

)
=βd(Φd)d+1(1− β) + βdΦd

d

(
βΦd −

Φd

Φd + 1

)
=βdΦd

d

(
Φd − βΦd + βΦd −

Φd

Φd + 1

)
=βd Φd+2

d

Φd + 1

and the right-hand side

(βΦd + 1)d
(

1−
(

1 + 1
Φd

)−1
)

= βd
(

Φd + 1
β

)d 1
Φd + 1 .

Thus it is enough to prove that

Φd+2
d ≤

(
Φd + 1

β

)d
,

which holds due to (3) since we have already selected parameter c as in (1).

B Upper Bound Proofs

B.1 Technical Lemmas

Lemma 8. For any positive integer m and real x > 0,(
1 + 1

x

)m
≥ 1 + m+ 1

2x

Proof. Expanding the power in the left hand side we get(
1 + 1

x

)m
=

m∑
j=0

(
m

j

)
1
xj
≥

1∑
j=0

(
m

j

)
1
xj

= 1 + m

x
≥ 1 + m+ 1

2x ,

since
m

x
≥ m+ 1

2x ⇐⇒ m ≥ m+ 1
2 ⇐⇒ m ≥ 1.
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Lemma 9. For any integer m ≥ 0 and real x ≥ 0,

(x+ 1)m+1 − xm+1 ≤ m+ 1
2 [(x+ 1)m + xm] .

Proof. Expanding the powers, our inequality can be rewritten equivalently as:

m+1∑
j=0

(
m+ 1
j

)
xj − xm+1 ≤ m+ 1

2

 m∑
j=0

(
m

j

)
xj + xm


m−1∑
j=0

(
m+ 1
j

)
xj + (m+ 1)xm ≤ m+ 1

2

m−1∑
j=0

(
m

j

)
xj + 2xm

 .
m−1∑
j=0

(
m+ 1
j

)
xj ≤ m+ 1

2

m−1∑
j=0

(
m

j

)
xj .

Now, we can see that the above holds by bounding each term; for any j = 0, 1, . . . ,m− 1:(
m+ 1
j

)
= (m+ 1)!

(m+ 1− j)!j! = m+ 1
m+ 1− j

m!
(m− j)!j! = m+ 1

m+ 1− j

(
m

j

)
≤ m+ 1

2

(
m

j

)
.

B.2 Proof of Lemma 3

Observe that from the definition of Am in (15),

(Am(x))−1 = 1
m+ 1 + 1

2x

which is decreasing with respect to m, and(
Am(x)
m+ 1

)−1
= 1 + m+ 1

2x ,

which is increasing with respect to m. For the remaining sequence, observe that for any integer
m ≥ 0 and reals y ≥ x ≥ 1,

Am(x)
Am(y) ≥

Am+1(x)
Am+1(y) ⇐⇒

Am+1(y)
Am(y) ≥

Am+1(x)
Am(x) ,

so it is enough to show that function Am+1(x)
Am(x) is monotonically increasing with respect to x ≥ 0.

Indeed,

Am+1(x)
Am(x) =

1
m+1 + 1

2x
1

m+2 + 1
2x

= 2x(m+ 2) + (m+ 1)(m+ 2)
2x(m+ 1) + (m+ 1)(m+ 2) = 1 + 1

m+ 1

(
1 + m+ 2

2x

)−1
.

B.3 Proof of Lemma 4

First for (18), notice that it can be rewritten equivalently as

1
m+ 1 ≤

Sm(γx)
(γx)m+1 = 1

Am(γx) ≤
1

Am(γ) ,
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which holds, as an immediate consequence of the monotonicity of function Am (see (16)), given
that γx ≥ x ≥ 1. For (17), it is enough to prove just the special case when w = 1, i.e.,

γm+1

Am(γ) = Sm(γ) ≤ Sm(γx+ γ)− Sm(γx)
(x+ 1)m ≤ γm+1, (35)

since then it is not difficult to check that we can recover the more general case in (17) by simply
substituting γ ← γw and x← x

w in (35).
It is not difficult to check that (35) holds for m = 0, recalling that S0(x) = x for all x ≥ 0.

Next, assume for the remainder of the proof that m ≥ 1.
For the left-hand inequality of (35) first, it can be equivalently rewritten as:

(x+ 1)m
( 1
m+ 1γ

m+1 + 1
2γ

m
)
≤ 1
m+ 1γ

m+1
[
(x+ 1)m+1 − xm+1

]
+ 1

2γ
m [(x+ 1)m − xm]

1
2x

m ≤ γ

m+ 1
[
(x+ 1)m+1 − (x+ 1)m − xm+1

]
,

and since γ ≥ 1, it is enough to show that

(m+ 1)xm ≤ 2
[
(x+ 1)m+1 − (x+ 1)m − xm+1

]
(m+ 1)xm ≤ 2x [(x+ 1)m − xm] .

Now observe that the above trivially holds if x = 0, while for x > 0 it can be equivalently
written as

m+ 1
2x ≤

(
1 + 1

x

)m
− 1,

which holds due to Lemma 8.
For the right-hand inequality of (35), it can be equivalently written as:

1
m+ 1γ

[
(x+ 1)m+1 − xm+1

]
+ 1

2 [(x+ 1)m − xm] ≤ γ(x+ 1)m

2γ
[
(x+ 1)m+1 − xm+1

]
≤ (m+ 1) [(2γ − 1)(x+ 1)m + xm]

(x+ 1)m+1 − xm+1 ≤ (m+ 1)
[(

1− 1
2γ

)
(x+ 1)m + 1

2γ x
m
]
.

Since γ ≥ 1, we know that 1
2γ ∈ [0, 1

2 ]. Thus, taking into consideration that (x+ 1)m > xm ≥ 0,
the linear combination on the right-hand side of the above inequality is minimized for 1

2γ = 1
2 .

So, it is enough to show that

(x+ 1)m+1 − xm+1 ≤ m+ 1
2 [(x+ 1)m + xm] ,

which holds due to Lemma 9.

C Beyond Polynomial Latencies: Euler-Maclaurin

Our definition of the approximate potential function in Sections 4.2 and 4.4 was based in
Faulhaber’s formula (13) for the sum of powers of positive integers. This approach can be
generalized further, by considering the Euler-Macluarin summation formula13 :

n∑
j=0

f(j) =
∫ n

0
f(t) dt+ 1

2[f(n) + f(0)] +
m∑
j=2

Bj
j! [f (j−1)(n)− f (j−1)(0)] +Rm, (36)

13See, e.g., [26, Section 9.5] and [34].
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for any infinitely differentiable function f : [0,∞) −→ (0,∞) (with f (j) denoting the j-th order
derivative of f) and integers n,m ≥ 1, where Bj denotes the Bernoulli numbers we have already
used in Section 4.2 and the error-term Rm can by bounded by

|Rm| ≤
2ζ(m)
(2π)m

∫ n

0

∣∣∣f (m)(t)
∣∣∣ dt, (37)

where ζ(m) =
∑∞
j=1

1
nj

is Riemann’s zeta function. Thus, if function f is such that the quantity
in the right-hand side of (37) eventually vanishes, i.e. for any real x ≥ 0,

lim
m→∞

ζ(m)
(2π)m

∫ x

0

∣∣∣f (m)(t)
∣∣∣ dt = 0, (38)

then we can define our approximate-potential candidate function on any real x ≥ 0 by general-
izing (36):

S(x) = Sf (x) =
∫ x

0
f(t) dt+ 1

2[f(x) + f(0)] +
∞∑
j=2

Bj
j! [f (j−1)(x)− f (j−1)(0)]. (39)

For example, it is not difficult to see that, for any monomial f(x) = xd of degree d ≥ 1, condition
(38) is indeed satisfied (since f (m) = 0 for all m ≥ d + 1) and, because also f (m)(0) = 0 and
f (m)(x) = d!

(d−m)!x
d−m, one recovers exactly (13) from (39) above.

Let’s now demonstrate this general approach for latency functions f that are not polynomi-
als. For the remaining of this section let f(x) = ex be an exponential delay function. Then, for
any y ≥ 0,

lim
m→∞

ζ(m)
(2π)m

∫ y

0

∣∣∣f (m)(t)
∣∣∣ dt = (ey − 1) lim

m→∞
ζ(m)
(2π)m = 0,

since limm→∞ ζ(m) = 1 and limm→∞(2π)m =∞. Thus, condition (38) is satisfied, and we can
define from (39)

S(x) =
∫ x

0
et dt+ 1

2[ex + e0] +
∞∑
j=2

Bj
j! [ex − e0]

= (ex − 1)− 1
2(ex − 1) +

∞∑
j=2

Bj
j! (ex − 1) + ex

= (ex − 1)
∞∑
j=0

Bj
j! + ex.

But since for the integer value x = 1 we know that S(1) =
∑1
j=0 f(j) = 1 + e, it must be that

e+ 1 = (ex − 1)
∞∑
j=0

Bj
j! + e ⇐⇒

∞∑
j=0

Bj
j! = 1

e− 1 .

So, we finally have that

S(x) = (ex − 1) 1
e− 1 + ex = ex+1 − 1

e− 1 .

From this, for all reals x ≥ 0, w > 0 we compute:

S(x+ w)− S(x)
wf(x+ w) = 1

e− 1
ex+w+1 − ex+1

wex+w = e

e− 1
1− e−w

w
, (40)
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which does not depend on x. Thus, from (11) in Lemma 2 we deduce that exact pure Nash
equilibria always exist for weighted congestion games with exponential latencies. The function
S we defined in (40) essentially serves as a weighted potential [36]; its global minimum is a pure
Nash equilibrium. Notice here that these results regarding exponential latency functions were
already known by the work of Panagopoulou and Spirakis [38].

D Social Optimum is a (d + 1)–Approximate Equilibrium

Theorem 4. Consider any weighted congestion game with polynomial latency functions of
maximum degree d and let s∗ be a strategy profile that minimizes social cost. Then s∗ is a
(d+1)–approximate pure Nash equilibrium. As an immediate consequence, the Price of Stability
of (d+ 1)–approximate Nash equilibria is 1.

Proof. Let c be an arbitrary cost function of maximum degree d with non-negative coefficients,
i.e., c(x) =

∑d
j=0 ajx

j , with aj ≥ 0 for all j. We will first show that for all w > 0 and x ≥ 0:

w · c(x+ w) ≤ (x+ w) · c(x+ w)− x · c(x) ≤ (d+ 1) · w · c(x+ w). (41)

To this end, with z = x
w , we get

(x+ w) · c(x+ w)− x · c(x) =
d∑
j=0

aj ·
[
(x+ w)j+1 − xj+1

]

=
d∑
j=0

aj · wj+1
[
(1 + z)j+1 − zj+1

]

=
d∑
j=0

aj · wj+1

 j∑
k=0

(
j + 1
k

)
zk

 ,
and

w · c(x+ w) =
d∑
j=0

aj · w(x+ w)j+1

=
d∑
j=0

aj · wj+1

 j∑
k=0

(
j

k

)
zk

 .
Clearly,

(j+1
k

)
≥
(j
k

)
for all integer j ∈ [0, d], k ∈ [0, j], which immediately implies the first

inequality in (41). To see the second inequality, observe that(j+1
k

)(j
k

) = j + 1
j + 1− k ≤ j + 1 ≤ d+ 1.

Since s∗ minimizes social cost, for all players i ∈ [n] and strategies si ∈ Si,

C(s∗) ≤ C(si, s∗−i).
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Denoting ye =
∑
j∈[n]\{i}:s∈s∗j

wj , from (41), we get

0 ≤ C(si, s∗−i)− C(s∗)
=

∑
e∈si\s∗i

[(ye + wi)ce(ye + wi)− yece(ye)]−
∑

e∈s∗i \si

[(ye + wi)ce(ye + wi)− yece(ye)]

=
∑
e∈si

[(ye + wi)ce(ye + wi)− yece(ye)]−
∑
e∈s∗i

[(ye + wi)ce(ye + wi)− yece(ye)]

≤ (d+ 1)
∑
e∈si

wi · ce(ye + wi)−
∑
e∈s∗i

wi · ce(ye + wi)

= (d+ 1)Ci(si, s∗−i)− Ci(s∗),

or equivalently Ci(s∗) ≤ (d+1)Ci(si, s∗−i). So s∗ is a (d+1)-approximate Nash equilibrium.
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