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Abstract 

China’s commitment to significantly reducing carbon emissions faces the twin challenges of focusing 

costly reduction efforts, whilst preserving the rapid growth that has defined the country’s recent past. 

However, little work has been able to meaningfully reflect the collaborative way in which provinces 

are assigned targets on a sub-national regional basis. Suggesting a modified data envelopment 

analysis (DEA) approach which recognises the two objectives of income maximization and pollution 

abatement cost minimisation, this paper introduces the potential collaboration between industrial units 

to the modelling framework. Our theoretical work exposits the roles collectives of industrial decision 

making units may play in optimising against multiple target functions. Considering the period 2012-

2014, we illustrate clearly how China’s three regional collaborations interact with the stated aims of 

national policy. Developed eastern China may take on greater abatement tasks in the short-term, thus 

freeing central and western China to pursue the economic growth which will then support later 

abatement.  Policy-makers are thus given a tool through which an extra layer of implementation can 

be evaluated between the national allocation and setting targets for regional individual decision 

making units. China’s case perfectly exemplifies the conflicts which must be accounted for if the most 

economical and efficient outcomes are to be achieved. 

Keywords: Data envelopment analysis; Carbon allocation; Carbon abatement cost; Regional 

collaboration 

 

1. Introduction 

China’s emergence as the “global factory” sits firmly at odds with the governmental desire to be a 

world leader in tackling climate change (Hilton and Kerr, 2017). Since fossil fuel use has been 

identified as the main cause of carbon emission increases (Wu, Zhu, & Liang, 2016), industrial fossil 

fuel consumption grew by over 150% between 2000 and 2014, bringing serious ecological damage, 

and attracting increasing academic attention (Feng, Chu, Ding, Bi, & Liang, 2015; Wu, Zhu, Chu, An, 

& Liang, 2016). More than 70% of all Chinese energy consumption comes from industry (Wang and 

Wei, 2014) placing this sector at the centre of climate improvement efforts. At the Copenhagen 

climate change summit of 2009 the Chinese government committed to reduce carbon intensity, 

Carbon dioxide (CO2) emissions per unit gross domestic product, by 45% compared to its 2005 value. 

Carbon emission abatement is of major national importance (Wang, Wei, & Huang, 2016) and 

involves collaboration between the central government and the regional governments where polluting 

factories are located. China has implemented a top down program under which regional abatement 

tasks are allocated according to ability to produce and in recognition of development needs. Though 

adjustments have been made to the industrial structure and energy saving regulations have been 
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promulgated (Jiang, Sun, & Liu, 2010), it is in these regional allocations that China places its best 

hope of meeting the Copenhagen, and subsequent further, commitments. 

This paper studies the regional abatement task allocation process through the application of a 

modified data envelopment analysis (DEA) that is specially calibrated to identify environmental 

efficiency potential. Environmental efficiency is defined for this purpose as the ability to produce 

more goods and services whilst simultaneously reducing the negative environmental impact that 

production generates (Ramli and Munisamy, 2015). Environmental efficiency cannot be readily 

improved alone as it is a function of the total-factor productive performance of the region and the 

firms located therein. China’s regions have great productive diversity and “opening up” initiatives in 

regional production are also stretched further inland; an ability to recognise this diversity and 

dynamism makes the DEA a highly suitable framework upon which to build. By not specifying a 

particular functional form for production, DEA avoids misspecification (Choi, Zhang, & Zhou, 2012). 

Unsurprisingly DEA has been increasingly used for environmental tasks (Feng, Chu, Ding, Bi, & 

Liang, 2015; Wu, Zhu, Chu, An, & Liang, 2016; Wang, Bian, & Xu, 2015).  

We make two key contributions to the literature. Firstly our modified DEA offers an improved 

carbon abatement allocation estimation considering carbon abatement costs at the regional level, thus 

providing a more robust starting point for policy setting. Through the DEA, we are able to make 

stronger recommendations for the regional allocation of carbon abatement tasks based on 

environmental efficiencies. Secondly, we further extend the proposed DEA allocation method to focus 

on the potential for regional collaboration and the evaluation thereof, an area typically ignored by the 

literature on regional allocations.  

These issues are necessarily addressed within the context of China’s rapid development, for 

which there is a pressing need to increase environmental efficiency, but our approach and results will 

have resonance for other applications globally. What emerges is a set of recommendations for Chinese 

policy-makers and a means through which to assess them. We are able to recognise the potential for 

collaborations, and the approach adopted here can estimate the carbon abatement allocation 

considering the collaboration relationship among all regions. 

The remainder of the paper is organised as follows. First, we take a more detailed look at the 

literature on carbon abatement, regional allocation, and the DEA process. Second, we outline our 

DEA approach, introducing the modifications for carbon abatement allocations. Section 4 then 

presents the Chinese data and our results on potential allocations. Finally, we draw conclusions and 

provide signposts for future carbon abatement and broader environmental policies. 

2. Literature Review 

China’s central role in global carbon dioxide abatement is the focus of a plethora of academic 

and policy works approaching the issue from multiple disciplines. China’s approach thus far has been 

to identify targets for provinces (regions) and then to construct carbon trading markets to perfect the 
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allocation at the firm level (Wang, Wei, & Huang, 2016). Though carbon emission abatement is 

environmentally desirable potential costs must be considered and hence the discussion is extended to 

the treatment of the issue of income. Our novel model delivers on both objectives, incorporating 

regional collaboration for the first time. 

In the literature, regional carbon emissions cannot be reduced independently, but must be with 

the consideration of all related production factors (e.g., resource input, economic output, and energy 

consumption) (Wu, Zhu, & Liang, 2016; Wang, Wei, & Huang, 2016; Zhou, Fan, & Zhou, 2015). 

Thus, carbon abatement tasks can be allocated in a reasonable way based on a total-factor 

performance of regional industrial production. Environmental efficiency, as a widely accepted non-

parametric total-factor environmental performance evaluation, is adopted here for this purpose. To 

achieve this, DEA, an important non-parametric method for measuring total-factor performance, is 

applied to estimate the practical case of regional environmental efficiencies. DEA is widely accepted 

to present high quality environmental efficiency evaluations (Zhou, Ang, & Poh, 2008). With many 

related environmental issues having been examined by this method, for example, environmental 

efficiency estimations (Bian and Yang, 2010), pollutant abatement cost estimations (Wang, Bian, & 

Xu, 2015) and allocations of carbon emission abatement tasks (Feng, Chu, Ding, Bi, & Liang, 2015; 

Wu, Zhu, Chu, An, & Liang, 2016), it is a natural choice here.  

The identified challenge is to analyse the optimized allocated carbon abatement task for each 

regional industrial production system. Since the allocation estimation of resources is central to DEA 

techniques (Feng, Chu, Ding, Bi, & Liang, 2015), the DEA method is widely used in related 

allocation studies. DEA methods can be used to allocate the resources of input, output, or both 

(Beasley, 2003). Two primary types of allocations exist within DEA: fixed cost allocation and 

resource allocation and, representing fixed costs allocated to each decision unit or the process of 

allocating the resource. Each is based on the DEA efficiency results from the allocation (Du, Cook, 

Liang, & Zhu, 2014). In DEA, the fixed cost is regarded as a complement of inputs or outputs in 

allocation, and it forms a single input measure in efficiency evaluation. Meanwhile, resource 

allocation is assumed to optimize inputs and outputs simultaneously, subjecting the results to 

corresponding limitations of resources or production possibilities. DEA also offers another 

mechanism called centralized allocation, which aims to allocate resources by a centralized decision 

maker controlling over all units (Fang, 2013). There are three objectives of centralized allocation: 

maximizing desirable outputs, minimizing undesirable outputs, and minimizing inputs (Lozano, Villa, 

& Brännlund, 2009). An important feature of the centralized allocation is that the optimized target is 

to consider the overall benefits for all the decision makers (Fang, 2013; Lozano and Villa, 2004), but 

ignore the benefits of individuals (Feng, Chu, Ding, Bi, & Liang, 2015). A centralized allocation 

mechanism is proposed in this paper.  

DEA allocation approaches have been the basis of many studies of carbon emission allocations. 

Gomes and Lins (2008) proposed a zero sum gains DEA model to allocate CO2 emission permits 
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among countries. Lozano, Villa, & Brännlund (2009) provided three levels of centralized models to 

consider the allocation of emission permits. The application of centralized DEA allocation models to 

carbon allocations is proposed by Feng, Chu, Ding, Bi, & Liang (2015) and Wu, Zhu, & Liang (2016). 

Sun, Wu, Liang, Zhong, & Huang (2014) analysed variations of the mechanisms to allocate permits 

amongst a group of manufacturing companies. Zhou, Sun, & Zhou (2014) introduced spatial, temporal 

and a joint spatial-temporal allocation strategies for controlling CO2 emissions at the provincial level 

in China. Crucially however, the carbon abatement costs of those allocations were omitted, offering us 

the opportunity to improve thereupon. Unlike the aforementioned studies, this paper uses an improved 

DEA approach to allocate regional carbon abatement tasks based on carbon abatement costs.  

Carbon emission abatement in regional industrial productions generates corresponding costs. 

China’s regions have significant disparities of resources, economic well-being and technological 

capabilities for carbon abatement. In this circumstance, carbon abatement costs, such as the costs of 

industrial structure modification, costs of energy consumption structure modification, or technological 

updating costs, may vary wildly among different regions (Wang, Wei, & Huang, 2016; Cui, Fan, Zhu, 

& Bi, 2014).  Failure to account for this within the allocation process is liable to bring unreasonable 

and inequitable outcomes. Wang, Wei, & Huang (2016) identified that larger carbon abatement tasks 

would be allocated to regions with the lowest cost; either the financial or opportunity cost of 

production reduction. There is then a circle to this, with those allocated most tasks becoming more 

incentivised to further reduce their costs of pollution.  

Acquiring the actual abatement costs for pollutants is hard, and hence the shadow prices of 

pollutants are commonly accepted as proxies. Estimation of these shadow prices can be done in a 

number of ways, but with the DEA approach nesting their evaluation, this efficiency analysis can be 

treated as an accepted approach (Zhou, Zhou, & Fan, 2014). Wang and Wei (2014) and Wang and He 

(2017) are amongst the recent examples of works seeking to estimate the prices of carbon abatement 

tasks for China’s different industrial sectors. However, to the best of our knowledge, studies of carbon 

allocations based on abatement costs are still scarce. This paper speaks to that gap, first estimating the 

allocation of carbon abatement tasks with the presence of corresponding carbon abatement costs by 

employing a modified DEA method. 

Existing DEA carbon allocation estimations primarily aim to either maximize the potential gross 

domestic product (GDP) gains or minimize the carbon emissions solely; costs generated from the 

abatement processes are always ignored. A notable exception is Wu, Zhu, Chu, An, & Liang (2016), 

which estimated carbon allocations considering corresponding costs. However, Wu, Zhu, Chu, An, & 

Liang (2016) incorporated the simplifying assumption that the price of the carbon emission allowance 

is equal to the cost of allocation. For whole China this would mean a single value, which is 

unrepresentative.  

Another major contribution of this paper lays in its investigation of potential regional 

collaborations on carbon abatement allocations. Asked to consider such possibilities the centralized 
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allocation scheme would suffer implementation difficulties arising from the inconsistency between the 

interests of individuals and the overall economy (Feng, Chu, Ding, Bi, & Liang, 2015). Inherent 

conflicts exist between coalitions and the national interest. China’s 13th five-year-plan puts such 

regional co-operations as a keystone of carbon abatement and hence “regional collaborations” have 

national resonance. In the extant literature regional collaborations have been applied focusing on the 

issues of political challenges on energy transfer, climate change mitigation, resources sharing and 

energy security (Uddin and Taplin, 2015; Huda and Mcdonald, 2016; Srivastava and Misra, 2007).  

We propose that regional collaborations may derive from geographical proximity, similarities in 

economic and industrial make up, and pre-existing arrangements on permit trading. Geographical 

arguments are clear: pollution from a neighbouring province can easily drift into the air and create 

negative externalities that the province would want to prevent that neighbour from imposing upon it. 

An evident spatial diffusion (Burnett, Bergstrom, & Dorfman, 2013) emerges. To deal with the cross-

regional CO2 diffusion, regional collaboration activities for carbon abatement have huge potential. 

Neighbouring regions are liable to have more closely associated economic development modes and 

industrial structures (Hao, Liu, Weng, & Gao, 2016). In turn these similarities form the basis of 

working together on joint interests and are a platform for agreed abatement task allocations. Provinces 

are more likely to accept costs if they see that their neighbours are also taking their perceived fair 

share as well. An existing case is the joint air pollution control among Beijing–Tianjin–Hebei and 

surrounding regions decided by China's National Development and Reform Commission and their 

relative ministries (Zhang, Wang, & Da, 2014).  

Furthermore, China has launched pilot markets for carbon emissions trading in seven provinces 

or municipalities in 2003, that is, in Shenzhen, Beijing, Tianjin, Shanghai, Guangdong, Hubei and 

Chongqing (Wang, Wei, & Huang, 2016). China’s government enacted a policy to create a carbon 

emission trading market for the whole country in 2017. The establishment of local carbon trading 

markets could be helpful in forming potential regional carbon abatement allocations (Jiang, Yang, 

Chen, & Nie, 2016) and collaborations. Ultimately, however, the carbon intensity reduction target is 

decided by the central government and allocated for each local government to implement in China. 

For example, the provincial carbon intensity abatement ratio is set in the range of [0.100, 0.195] for 

each province during the 12th five-year plan by China State Council1. In this circumstance, the cities 

included in one province could be regarded as a regional collaboration by achieving the same carbon 

reduction target. The potential regional collaboration is thus viewed as an important consideration to 

decide the local carbon reduction target for the central government in the future. Meanwhile, the local 

carbon reduction target from the central government could also help to form the regional collaboration. 

Consequently, regional collaborations still represent a valuable alternative to the allocation both in the 

1 The website of  “work plan of controlling greenhouse emissions during 12th five-year plan period for China State Council”: 

http://www.gov.cn/zwgk/2012-01/13/content_2043645.htm. 
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study of China and also in the wider application of DEA, which is valuable in the policy context and 

for theoretical development. 

Consequently, in ignoring regional disparities of carbon abatement costs, past works have thus 

missed important geographical elements that have been demonstrated to be relevant elsewhere in the 

literature. Removing this over-simplification our paper first proposes a nonlinear DEA approach to 

allocate the regional industrial carbon abatement tasks considering corresponding carbon abatement 

costs. The carbon abatement costs are calculated by estimating shadow prices in DEA model 

recognizing regional variation. Furthermore, we adjust the aforementioned allocation model into an 

improved meta-frontier one to analyse impacts of different regional collaborations on the optimized 

regional carbon allocations.  

3. Methodology 

A modified DEA model is proposed to allocate carbon emission abatement tasks for regional 

industrial systems. To obtain effective allocation results, we treat the minimized total carbon 

abatement costs as a part of the allocation target; an estimation thereof is also derived. To analyse 

impacts of regional collaborations on carbon allocations, the aforementioned carbon allocation model 

is extended to incorporate regional collaborations and their impacts.  

3.1. The efficiency evaluation model  

There are n independent regions in China, denoted by decision making unit j (i.e., DMU j, j = 1, 

2,..., n). In common with past work in process of regional industrial production each region employs 

labour, capital and energy as inputs and produces both desirable and undesirable outputs. We consider 

labour (L), capital stock (K) and energy consumption (E) as the three inputs. Gross Domestic Product 

(Y) and CO2 emissions (C) play the role of desirable and undesirable outputs, respectively. 

Regional economic developments depend on energy consumption, and CO2 emission abatement 

is costly. Following Wang, Wei, & Zhang (2012), this paper considers that CO2 emissions are 

subjected by an equal constraint, which indicates a null-joint relationship between carbon emission 

and GDP (Sueyoshi and Goto, 2012). The relationship means the joint-production process between 

GDP and CO2 emissions. In an environmental vision, our initial model focuses on carbon emissions 

and the consumption of energy resources with an equal target weight setting (i.e., 0.5). The equal 

weights mean that the targets of energy saving and carbon abatement are treated as equally important. 

This equality follows the approach in Wang, Wei, & Zhang (2012) and Wu, Zhu, & Liang (2016); 

equation (1) provides the model.  

The intensity of production within DMUi is given a iλ .When evaluating 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 we are interested 

in the energy efficiency eiθ and the environmental efficiency ciθ . c is used in the environment 

efficiency subscript since our focus is on carbon abatement. Efficiency values are all in the range of [0, 

1]. Note that model (1) decreases the amounts of energy and undesirable outputs as much as possible 
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with given non-energy inputs and desirable outputs. When evaluating DMU i’s efficiency, the target 

function contains mixed effects of energy consumption and carbon emission. This model setting 

measures the environmental performance in relation to input and output simultaneously. 
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It is noteworthy that, model (1) is a CRS (constant returns to scale) model, which can capture the 

overall technical efficiency (pure technical efficiency and scale efficiency) of the evaluated DMU, 

and can satisfy all relevant production technologies (Zhou and Ang, 2008). Thus we proceed with 

CRS for rationality of exposition (1). 

3.2. Carbon abatement cost estimation  

Data on the abatement costs of pollutants is difficult to obtain so we use the shadow prices of 

carbon emissions to represent the real ones. This paper aims to use the DEA method to estimate the 

shadow price of carbon emission as Wang, Lv, Bian, & Cheng (2017) and Wang and Wei (2014). 

Then the shadow price estimation and carbon abatement allocation could be estimated with similar 

model settings; and forbidding any presenting of production functions to avoid the inherent 

misspecification risk present in the parametric method (Choi, Zhang, & Zhou, 2012).We firstly 

present the dual programming of model (1): 

max ( )

  s.t. 1 / 2,
1 / 2,

0, 1, 2..., ,

0, 0, 0, 0, .

i k i l i y

i e

i c

j y j e j k j l j c

e k l y c

K w L w Y w

E w
C w
Y w E w K w L w C w j n

w w w w w is free

− − +

=

=

− − − − ≤ =

≥ ≥ ≥ ≥

                                                           (2) 

In model (2), , , , ,e k l y cw w w w w are dual variables corresponding to the constraints of energy, capital, 

labour, GDP and carbon emissions respectively. The target function is the efficiency of DMUi. As 
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Wang, Bian, & Xu (2015) and Wang and He (2017) we assume that the absolute shadow price of our 

marketable desirable output (GDP) is equal to its market price. The shadow prices of carbon emission 

with respect to the desirable output can be transformed as: 

1CNY,c c
ci yi

y y

w wp p
w w

= = ∗                                                                                                   (3) 

Here pci and pyi are the relative shadow prices of carbon emission and GDP for region i, respectively. 

These shadow prices reflect the trade-off between desirable and undesirable outputs (Wang, Bian, & 

Xu, 2015). The shadow price of CO2 denotes the marginal rate of transformation between CO2 and 

GDP, which could be regarded as being a price proxy of carbon abatement cost for China’s regions. 

For instance, the shadow price can be derived from the technology expenditure and production 

reduction loss for carbon abatement in practice. Based on the target function in model (1), the 

proposed shadow price is exogenous for the following allocation, which aims to achieve maximized 

carbon abatement and energy savings. This setting is in agreement with the carbon abatement 

objective, which is from the environmental perspective.  

3.3. A modified DEA approach for carbon abatement allocations 

The allocation goal for China's central government is to achieve the given CO2 abatement task 

with minimized carbon abatement costs and maximized regional economic output from industrial 

production. DEA allocation analysis has three traits: (1) The efficiency is formed by all the DMUs 

and output targets may not be achievable in the short term; (2) after the certain amounts of permits or 

resources are allocated, there must be changes in DMU production (Wu, Zhu, & Liang, 2016); (3) the 

ex-ante planning is adopted in DEA allocation, and the allocation results are used to forecast the 

performance of resource utilization in the next period (Feng, Chu, Ding, Bi, & Liang, 2015). However 

such adopted practice does not preclude the analysis of alternatives. 

This paper departs from these three traits to consider that the allocation process includes two 

possible scenarios. The first is the allocation process affected by national collaboration, termed 

national allocation for short. This indicates that the industrial production system of each region has a 

higher level of involvement in the handling of its emission abatement target. Each region is treated as 

a co-operator in the national platform of carbon abatement allocation, the central government then 

setting levels. The national allocation also assumes that each region uses all efforts to reduce its 

allocated carbon abatement cost to minimize the total national abatement costs. This could be 

regarded as a centralized resource allocation problem (Lozano and Villa, 2004) and derives from 

Wang, Wei, & Huang (2016) and Wu, Zhu, Chu, An, & Liang (2016) amongst others.  

Current studies of centralized carbon allocation, to the best of our knowledge, always focus on 

the target of maximized economic output or minimized carbon emission solely (Feng, Chu, Ding, Bi, 

& Liang, 2015; Wu, Zhu, & Liang, 2016). This paper proposes a DEA allocation model, which aims 
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to obtain the maximized GDP outputs and minimized carbon abatement costs simultaneously after the 

carbon abatement tasks are allocated. In model (4), T is the target function ratio post allocation of 

each regions total carbon abatement task. The corresponding carbon abatement cost for region 𝑖𝑖 is 𝑝𝑝𝑐𝑐𝑖𝑖 

and iY
∧

indicates the maximized post allocation GDP output for region 𝑖𝑖. Notably, iY
∧

is affected by all 

the factors in the carbon allocation, including the expenditure of carbon abatement. iC∆ denotes the 

abatement task of CO2 for region 𝑖𝑖, and is decided by the central government. 𝐵𝐵𝑝𝑝 is the total future 

CO2 abatement task and thus the constraint 
1

n

i p
i

C B
=

∆ =∑ thus
 
means that the sum of CO2 abatement 

tasks of all the regions should be equal to the national total. An upper limit on the size of the task to 

be given to any region is set at u
iC . 

We assume that each region participates in the carbon abatement processes. Thus 0 i iC C≤ ∆ ≤   

implies that the most any region can be asked to do is eliminate its current output iC  and the lower 

limit of doing nothing. All the other variables and constraints have identical meanings to those in 

models (1) and (3). We aim to obtain the optimal solutions of *
ijλ , *

iC∆ , and *
iY
∧

 by solving model (4). 

To this end, *( )i iC C− ∆  denotes the optimal allocated carbon emission quota for region i in next 

period at the current production level. As in Wang, Wei, & Huang (2016) and Wu, Zhu, & Liang 

(2016), *
iY
∧

here represents the maximized GDP.  Note that, the basic optimization targets between 

model (1) and model (4) are different. The carbon abatement cost 𝑝𝑝𝑐𝑐𝑖𝑖  from model (1) could be 

regarded as an exogenous variable for the following models. Moreover, the optimal GDP output and 

carbon emission in model (4) could be replaced by iY
∧

 and i iC C− ∆ , the maximised GDP output and 

remaining carbon emission, in the allocation process, but not by the same proposition as the weak 

disposability. This indicates that the potential technology improvement could be assumed in the 

regional carbon abatement to reduce the loss of GDP output. 
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Definition 1. The economical level of total national carbon abatement is defined as: 

           1

1

, 1,2,...,

n

i

i
n

ic i
i

Y

p C
EL i n

∧

=

=

=
∗ ∆

=
∑

∑
                                                                                               (5)

 

The economical level is the reciprocal of national target function, which is the ratio of 

maximized industrial GDP output to total carbon abatement costs for the country. The economic level 

can reflect the ratio of carbon abatement cost to the total economic output. Hence this ratio can 

measure if the national carbon abatement allocation cost is economical for its economic gain. The 

economical level is adopted to compare the national economic performance derived from different 

allocation plans.  

Model (4) is nonlinear but it can be transformed into the following linear model (6). In model (6), 

T’ denotes the adjusted linear target function, and
 

ij ijtη λ=  denotes the transformed intensity variable 

corresponding to ijλ . i iy tY
∧ ∧

=  and i ic t C∆ ∆= represent the transformed values for iY
∧

 and iC∆ , 

respectively. By solving model (6), we can obtain the optimal values of *,iy
∧

*
ic∆ , 

*η and *t . Based on 

these results, regional optimal outputs of industrial GDP and carbon abatement tasks can be acquired,

* * */ ,i iY y t
∧ ∧

= * * */i iC c t∆ = ∆ , respectively.  
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Proposition 1.  National collaboration produces an outcome which weakly dominates other  

independent regional allocations. 

Proof. It is readily apparent that the optimal solution of carbon abatement task allocation in model (6) 

is a feasible solution to that in model (4). Thus the target function value obtained from model (6) is 

less than or equal to that from model (4). 

In practice the national collaboration may be hard to achieve as it requires the maximum possible 

levels of trust and involvement for the collaborators. In scenario 2 a region can achieve limited 

collaborations with its neighbours to pursue the most economical carbon allocation for that grouping. 

In this circumstance, regions may jointly plan their allocated carbon reduction amounts and reassess 

their practical carbon emission abatement tasks. A regional collaboration is thus a coalition in the 

game theoretic sense. The corresponding DEA allocation model is as follows:  

12 
 



 
 

1

1

( )

( )

( )

( )

2Min

  s.t. , 1, 2,..., , 1, 2,..., , ( )

, 1, 2,..., , 1, 2,..., , ( )

, 1, 2,..., , 1, 2,..., , ( )

 , 1, 2,..

n

i
i

n

i

ij j i
j D p

ij j i
j D p

ij j i
j D p

ij j
j D p

ic

i

i

p C
T

Y

E E i n p P i D p

K K i n p P i D p

L L i n p P i D p

Y Y i

λ

λ

λ

λ

=

∧

=

∈

∈

∈

∧

∈

∗ ∆
=

≤ = = ∀ ∈

≤ = = ∀ ∈

≤ = = ∀ ∈

≥ =

∑

∑

∑

∑

∑

∑

( )

( )

., , 1, 2,..., , ( )

, 1, 2,..., , 1, 2,..., , ( )

1, 2,..., , ( ),

0 ,

, 0, 1, 2,..., .

,

ij j i i
j D p

j p
j D p

i

i j

u
i

n p P i D p

C C C i n p P i D p

C B p P j D p

C C

Y j n

λ

λ

∈

∈

∧

= ∀ ∈

= − ∆ = = ∀ ∈

∆ = = ∀ ∈

≤ ∆ ≤

≥ =

∑

∑

                                                 (7) 

Once again the model is non-linear and so model (7) is transformed into the linear model (8). T2 

indicates the adjusted target function. D(p) denotes the subset of observed DMU belonging to the 

regional coalition p. A coalition of size Q is made up of multiple DMUq (q = 1, 2,..., Q ). All the other 

variables and constraints in model (7) and (8) have the similar interpretations as those in models (4) 

and (6), respectively. The main difference between the models (6) and (8) is the participators of 

allocation. In scenario 1, model (6) aims to reach the national optimal carbon abatement cost by CO2 

abatement allocation at the national level. In scenario 2, model (8) aims to reach the national 

allocation target by allocating carbon abatement tasks across the local collaboration region. DMUs 

only aim to obtain the optimal allocation solution to their own D(p).  

In model (8), the regional collaboration coalition can be viewed as treating all participators as 

having the same observation set D(p). Participators of different coalitions are evaluated in different 

frontiers in DEA allocation model (8). Models (7) and (8) could be regarded as meta-frontier DEA 

models. We assume that all members of the coalition share the same best practice through the 

available inputs and outputs. This constraint helps avoid the impacts of geographic disparities of 

economic fundamentals and technological levels in national allocation. Furthermore, this allocation 

process may be labelled as a resource-pooling-only game of lower level collaboration, that is, one 

modification of the Linear Transformation of Products (LTP) games, proposed by Timmer, Borm, 

Suijs, (2000) and extended by Lozano (2013) in a DEA form. In this case, regions jointly plan and 

allocation of pooled available resources (CO2 abatement tasks) in their own coalition. 
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Property 1. The optimal value of model (8) is convex with respect to the carbon abatement amount 

ic∆ . The target function '
2( ) minif c T∆ =  is convex with respect to ic∆ . 

Proof. For any carbon allocation task ic∆  which satisfies the constraint 0 i
u
ic tC≤ ∆ ≤ , we can obtain the 

optimal values of *,iy
∧

*
ic∆ , *

jη  and *t  by solving model (8). Here we assume that, ( 1iy
∧

, 1jη , 1t ) and       

( 2 ,iy
∧

2jη , 2t ) are the corresponding optimal solutions for the optimal 1ic∆  and 2ic∆ ( 1ic∆ , 2ic∆

0, u
itC ∈  ). As in Feng, Chu, Ding, Bi, & Liang (2015), a feasible solution by a linear combination is 

constructed, that is, 1 2(1 ) ,i iy yω ω
∧ ∧

+ − 1 2(1 )i ic cω ω∆ + − ∆ , 1 2(1 )j jωη ω η+ − and 1 2(1 )t tω ω+ − , 

1 20 (1 ) u
i i itCc cω ω≤ ≤∆ + − ∆ , 0 1ω≤ ≤ , 1,2,..., .j n=  Model (8) can be solved with the constructed 

linear combination solution. The optimal result of the objective target should be less than or equal to 
' '

21 22(1 )T Tω ω+ − , that is, ' '
1 2 21 22( (1 ) ) (1 )i if c c T Tω ω ω ω∆ + − ∆ ≤ + − .Thus, the target function 

'
2( ) minif c T∆ = is convex with respect to ic∆ . 

       Property 1 indicates that there exists an optimal carbon abatement task in the national abatement 

allocation process. The convexity means that the optimal allocated carbon abatement task is a 

balanced result, which is more economical than other allocated carbon allocation tasks. To achieve the 

most economical carbon abatement process, the central government would have the motivation to 
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adjust the carbon abatement allocation continuously. We believe that the optimal carbon abatement 

task is then accurately obtained by the proposed DEA approach in this paper. 

The implementation procedures of estimating allocated carbon abatement considering regional 

collaborations are summarized as follows. 

Step 1: Estimating the marginal abatement costs (called MACs for short) for each region by 

equation (3) based on models (1) and (2). 

Step 2: Evaluating the allocated carbon abatement amount ( , 1,2,...jC j n∆ = ) of each region by 

model (6) based on the obtained MACj from step 1. 

Step 3: Re-evaluate the carbon abatement allocation considering possible regional collaborations 

by using model (8). 

Step 4: Calculate the maximized industrial GDP ( jY
∧

) and economical levels considering regional 

collaborations by model (8). Compare the allocated results from different regional collaborations. 

 

4. Empirical Analysis 

4.1. Data 

       Our data contains 30 provinces, autonomous regions and municipalities in mainland of China. As 

with most empirical studies of China a lack of data availability for Tibet leads to its exclusion from 

the modelling process. These regions can be grouped into three major areas, that is, the eastern, 

central and western areas (Hu and Wang, 2006). Regional groupings can be seen in Table 2. The 

eastern area has the best level of economic development in China, its GDP output contributed 55.34% 

of Chinese total GDP in 2014 (National Bureau of statistics of China, 2015). The central area is 

regarded as the agricultural base for the country, whilst the western area has the lowest population 

density and the lowest level of economic development in China. It is thus highly reasonable to 

presume heterogeneity in regions. The three areas regarded as main regional classification and used to 

provide policy implications of carbon abatement are also observed in several studies, for example, 

Wang, Lv, Bian, & Cheng (2017) and Wang, Wei, & Zhang (2013). 

We focus on China’s regional carbon allocations during the period 2012-2014. Labour, capital 

stock and energy consumption are the three inputs, industrial added value is the desirable output, and 

CO2 denotes the undesirable output. Capital stock and industrial GDP are all expressed at 2012 prices 

for consistency. In the industrial production process, SO2 emission, soot emission, dust emission and 

NOx emission can also be regarded as undesirable outputs. While SO2, NOx and other emissions may 

have their own abatement processes, that is, reduced by technical investments by government such as 

installing scrubbers and dust collection (Wang, Wei, & Huang, 2016). Compared with other emissions, 

the CO2 emissions abatement is more directly affected by fossil energies consumption and therefore 
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the generated CO2 levels may be directly related to industrial production. Thus, this study only uses 

the CO2 emission as the undesirable output. 

DEA models require the number of evaluated DMUs to be more than three times the total 

number of inputs and outputs to maintain validity (Friedman and Sinuany-Stern, 1998). When 

permitting collaborations this may not be true of our modelling and hence we use multiple years of 

data to maintain sufficient quantity for robust inference. As three years is a short period, it is 

reasonable to assume that no significant technical changes occur in the period (Charnes, Cooper, 

Lewin, & Seifor, 1994; Halkos and Tzeremes, 2009). The three-year data sample for our DEA ensures 

the collaborating region has the least sample amount of DMUs (27), which is greater than three times 

of total number of inputs and outputs (total five inputs and outputs are used in the model).  

Data on labour and capital of industrial production systems are derived from the Industrial 

Statistical Yearbook of China issued in each of 2013, 2014 and 2015. The industrial added value is 

collected from the Statistical Yearbook of China over the same time frame. Data on energy 

consumption is obtained from Energy Statistical Yearbook of China during the same period. Regional 

CO2 emissions are not available in existing data sources but following Li, Mu, Zhang, & Gui (2012), 

they can be estimated by multiplying the amounts of combined energy consumptions with their 

corresponding carbon emission coefficients. The carbon emission coefficients are obtained from the 

Intergovernmental Panel on Climate Change (2007). Table 1 shows the descriptive statistics for the 

data of all the variables in China during 2012-2014. 

Table 1  

Descriptive statistics (2012-2014). 

 

 

 

 

a Note: the unit refers to standard coal equivalent.  

4.2. Efficiency and carbon abatement costs 

Based on the data for 2012 to 2014, we estimate the annual average environmental efficiencies 

and corresponding annual average shadow prices following models (1) and (2) respectively. The 

arithmetic average results for three years are shown in Table 2. There are five regions with 

efficiencies which are higher than 0.85: Beijing, Tianjin, Guangdong, Inner Mongolia and Chongqing. 

These regions have better performance in energy consumption and carbon emission than other regions 

in China. There also exist efficiencies in 14 regions which are less than the average efficiency (0.55). 

Indicators Unit Max Min Average Std. Dev 

Input 
Energy 104 tonsa 19392.8 839.0 6864.8 4469.0 
Labour 104 people 1470.5 11.7 324.7 337.9 

Capital stock 109 CNY 4087.3 71.9 1102.1 852.8 
Desirable output Industrial GDP 109 CNY 2859.6 45.9 845.6 703.9 

Undesirable output CO2 emission 104 tons 72313.2 1833.9 22767.6 16413.4 
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This indicates that these regions have not performed well in energy consumption and carbon emission 

abatement. Interestingly, it is observed that there exist no efficient regions in Table 2. This 

phenomenon arises because efficiencies for some regions for one specific year might be efficient (i.e., 

efficiency is equal to 1), but not for other years. For example, Beijing and Tianjin are efficient in 2014, 

but not efficient during 2012-2013. Employing annual average DEA efficiencies with three-year data 

reduces the gap of regional efficiencies, and helps avoid the time disturbance on efficiencies in a short 

period.  

Table 2 presents remarkable spatial disparities. The eastern area has the highest average 

efficiency result among the three areas, 0.64. The central area sits just below this at 0.60 and is higher 

than the western area, 0.37. Amongst the regions Ningxia province has the lowest, just 0.11. A strong 

correlation between economic development and energy efficiency is suggested. Higher GDP regions 

might have more possibilities to invest in eliminating heavy pollutant industries and to adopt 

advanced production technologies; both may increase regional environmental efficiencies.  

Similarly, remarkable geographic disparities are also seen in regional carbon’s MACs in Table 2. 

The MACs denote the opportunity costs for carbon abatement tasks converted into CNY values of 

GDP, and are measured in CNY per ton. The average MAC is 1861.56 CNY per ton, which tells us 

that 1861.56 CNY must be spent to reduce carbon emission by one ton. Average MAC values for the 

east, central and west areas are 1957.3, 1679.97, and 1946.31CNY. Interestingly, Pearson’s 

correlation coefficient of efficiencies and MACs is -0.9520 for only the central regions, and is 

significant at the 1% level. This indicates that regions with higher efficiencies would have lower 

MACs only for central cases. For example, Inner Mongolia has the highest efficiency of 0.9479, but 

the lowest MAC of 81.25 CNY per ton.  

By contrast Beijing and Guangdong, both economically developed regions, have much higher 

MACs than average, 3565.50 and 2100.61, respectively. This phenomenon might be partially 

explained by the gap between CO2 emissions and industrial GDP in the provinces. The industrial 

carbon intensities (i.e., the ratio of CO2 emission and industrial GDP) for Beijing and Guangdong are 

1.3223 and 1.2779, respectively, which are less than those of other regions. It is not economical for 

regions with the lowest industrial carbon intensities to reduce their corresponding MACs by 

technological improvements or industrial structure transformations. 

Comparing MACs in this paper with ones in existing relative studies, we discover that our 

average MAC is larger than the ones in Wang and Wei (2014), whose average industrial MAC is 

45.81USD per ton for China’s major cities during 2006-2010. However, our result is as similar to the 

average MAC estimated in Zhou, Fan, & Zhou (2015). Differences in MACs might be caused by 

different technical efficiencies, including differential impacts from primitive technology, operational 

scale, industrial structure and the variation of the data on efficiency evaluation (Wang, Bian, & Xu, 

2015; Ha, Kant, & Maclaren, 2008). 
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Table 2  

Efficiency results and corresponding carbon abatement costs. 

 Region Efficiency MAC 

Eastern area Beijing 0.8635 3565.50 
Tianjin 0.8772 867.68 
Hebei 0.2648 1240.08 
Liaoning 0.3746 1489.38 
Shanghai 0.6968 2651.56 
Jiangsu 0.5897 2726.34 
Zhejiang 0.7267 1988.96 
Fujian 0.7487 1483.71 
Shandong 0.5159 2063.21 
Guangdong 0.9371 2100.61 
Hainan 0.4284 1353.22 

Central area Shanxi 0.1997 4444.68 
Inner Mongolia 0.9479 81.25 
Jilin 0.5594 1359.78 
Heilongjiang 0.6917 1360.91 
Anhui 0.4527 2222.34 
Jiangxi 0.5467 1558.63 
Henan 0.5746 2285.12 
Hubei 0.4809 2312.28 
Hunan 0.8378 566.41 
Guangxi 0.7504 608.30 

Western area Chongqing 0.8542 815.03 
Sichuan 0.4633 1670.93 
Guizhou 0.2210 4030.62 
Yunnan 0.3758 1373.27 
Shaanxi 0.6108 1363.01 
Gansu 0.2191 1279.99 
Qinghai 0.2377 1238.95 
Ningxia 0.1126 4378.38 
Xinjiang 0.1980 1366.59 

Note: Region in this paper is used to define the provinces and hence we refer to the three groupings of provinces 

as “areas”. 

Figure 1 further illustrates the dynamic changing trend of the MACs. During 2012-2014, China’s 

average MACs decreased from 2418.17 to 1572.73 CNY per ton. Only a slight decrease is shown 

during 2013-2014. Moreover, our three areas MACs also show decreasing trends from 2012 to 2013. 

During 2013-2014 MACs fall in the east, but rise in the less developed central and western areas. 

Over the three years the eastern area has decreased its MAC by 57.69%, while central and western 

areas have reduced their MACs by 26.87% and 3.89%, respectively. By 2014 the west had the highest 

MAC, having been the lowest in 2012. The rationality behind these changes is that national level 

emission abatement policies and regulations have been widely advocated by the regions, especially 
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eastern China. These policies provide incentives for regions to reduce their carbon abatement costs. 

The eastern area significantly reduced its MAC to enable it to perform more carbon abatement tasks 

effectively. China’s eastern region has the strongest economic and technological foundations among 

the three areas and therefore has the ability to do the most. However, for central and western areas 

there still exists scope to improve their MACs in the future, but the present focus is on wealth 

generation.  

 

Fig.1 Average MACs of three areas and the country during 2012–2014. 

4.3. Allocating CO2 emissions abatement  

       To effectively reduce China’s large carbon emissions, the total carbon abatement task should be 

reasonably allocated to each region, paying attention to their environmental performance. This paper 

uses the proposed approach of model (6) to allocate carbon abatement tasks among China’s regions. 

Regions may prefer to work collectively to allocate within their areas. In calibrating model (6), we 

draw upon policy announcements relevant to the period. 

The “13th - five - year working scheme of controlling greenhouse gases” sets the carbon intensity 

reduction target as 22% for China’s industrial sector. Assuming that China’s GDP growth rate keeps 

constant in next period for the allocation, we set the annual total CO2 abatement ratio at 4.4%. This 

value is taken from “China’s low carbon energy saving and emission abatement plan during 2014-

2015 issued by the State Council”. Although this may be a simplification in times of slowing 

economic growth in China, it is still reasonable given policy efforts to restore the growth path; it can 

avoid becoming distracted by non-carbon-abatement issues. The next three-year abatement task is 

obtained as 26.40% (i.e., the sum of 4.40%, 8.80%, and 13.20% of carbon abatement tasks) of the 

CO2 abatement amount in 2014. Then we set the three-year national total CO2 abatement amount B as 

186601 104 tons. To set the target CO2 abatement task Bp for each collaboration area, we divided the 

national total CO2 abatement amount B according the proportion of the total CO2 emission amount 

coming from that collaboration. To avoid the total carbon abatement task being allocated to a small 

group of regions, we assume that each region could not reduce more than 30% of its current carbon 

emissions due to the limitations of current production scale and technology ( 0.3u
i iC C= ). The 30% 
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abatement upper limit follows Wu, Zhu, & Liang (2016) and is explored in the appendix of this paper. 

Bp and u
iC  can be easily adjusted to represent different scenarios. 

       We propose three regions for collaboration, which is the treatment afforded by most Chinese 

policy. The eastern, central and western areas discussed above thus form our regions for the purpose 

of the analysis that follows. By solving models (6) and (8), detailed allocation results affected by 

national collaboration and intra-area collaborations (i.e., collaborations within eastern, central or 

western areas, respectively) during 2012 - 2014 are outlined. We illustrate these in Figure 2 and 3. For 

carbon abatement tasks, the comparison of the national allocation and intra-area allocations for each 

region is shown in Fig. 2 (unit: 104 tons), and the comparison of maximized industrial GDP output 

(i.e., iY
∧

in model (6)) of each region is shown in Fig. 3 (Unit: 109 CNY).  

Figure 2 shows that in the national allocation, 17 regions should decrease their carbon emissions, 

and 13 regions may keep their carbon emissions constant (i.e., each carbon abatement is equal to zero). 

The rationality of regions keeping their carbon emission constant can be attributed to two aspects: (1) 

the relative carbon abatement costs are too high to reduce their carbon emissions, for example, MACs 

of Beijing, Shanghai, Shanxi, Anhui, Henan, Hubei, Guizhou, and Ningxia are all higher than 2000 

CNY per ton, much higher than the average MAC for the country. (2) They have lower environmental 

efficiency performances. The average efficiency of regions without any more allocated CO2 

abatement (0.47) is lower than the total average efficiency of 0.55. To achieve the national target, it is 

more economical for these regions to increase economic outputs than to reduce carbon emissions. 

Carbon allocation tasks are affected by the mixed impacts of their carbon abatement costs and 

environmental efficiencies. 

Four regions, Hebei, Inner Mongolia, Gansu and Qinghai should, due to their low MACs 

undertake the upper-level carbon abatement task (i.e., reduce 30% of iC ). Interestingly Inner 

Mongolia also has the highest efficiency and the largest carbon abatement proportion. Even though 

Inner Mongolia has the highest efficiency of carbon emission abatement, its MAC is still the lowest 

(81.25 CNY per ton). Thus output in Inner Mongolia might be sacrificed to reduce more carbon 

emissions to achieve the highest economical level for the country. 

Total carbon abatements for eastern, central and western areas are 92963, 58750 and 34888 104 

tons, respectively. Ratios of carbon abatement tasks to carbon emissions (called carbon abatement 

ratio for short) for eastern, central and western areas are 10.6453%, 8.1265% and 6.6568%, 

respectively. Here, the eastern area has the highest abatement ratio and the western area has the lowest. 

As such, it is reasonable to allocate a greater proportion of the abatement to the east.  

The explanation behind the areal diversity is that, the eastern area has the strongest economic 

foundation and highest technology level in China. It is easier for more economically developed 

regions to adjust their industrial structure or energy structure or adopt advanced technologies to 

reduce their carbon emissions. While underdeveloped areas, such as the western area, face greater 
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policy pressure to enact economic growth. Thus the carbon emission task would be reduced to enable 

the pursuit of economic growth. A similar rank among areas is also achieved by Wu, Zhu, & Liang 

(2016). Our approach has stronger motivation provided by our consideration of MACs. 

 

Fig. 2 Result comparison of allocated carbon abatement tasks. 

 

Fig. 3 Result comparison of allocated maximized industrial GDP. 

Comparing allocated results affected by national collaboration with those affected by intra-area 

collaborations, the carbon allocation tasks of 10 regions have been adjusted. In the eastern intra-area 
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collaboration, Tianjin, Hebei, Jiangsu and Zhejiang should be allocated a lower carbon abatement task, 

while Shandong should increase its efforts. In the central intra-area collaboration, Shanxi, Jilin and 

Heilongjiang should increase their carbon abatement tasks. In the western intra-area collaboration, 

Shaanxi could slightly reduce its corresponding carbon abatement task, and Xinjiang should increase 

its contribution. Based on the comparison of allocation results, we conclude that regional 

collaborations would result in increased carbon abatement tasks for central regions, but mixed effects 

would exist in eastern and western regions. In both collaborations, the eastern area has the greatest 

total GDP output, followed by the central area and then the western area. This matches the ranking 

currently observed. 

To confirm the effectiveness of the proposed allocation model, we further calculate the allocation 

results estimated by the conventional DEA allocation model. The conventional DEA allocation model 

for carbon allocation treats the maximized national total GDP as the target function, but other settings 

are identical to those in model (7). Necessarily, only the comparison of national allocation results 

between the conventional and proposed models are illustrated in Fig.4.  

 

Fig. 4 Comparisons of allocation results between the conventional model and proposed model. 

The results indicate that: (1) with the consideration of MACs, the eastern area could reduce its 

carbon abatement task (i.e., 16915 104 tons) and central and western areas would have more carbon 

abatement tasks (i.e., 7879 and 9036 tons, respectively). (2) Considering the existence of MACs, the 

potential maximized GDPs for all the areas of China would be significantly decreased, for example, 

the GDP reduction is 3149 109 CNY for the whole country. The above results indicate that the 
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proposed DEA allocation could effectively estimate the carbon allocations affected by corresponding 

MACs. The ignorance of MACs would result in overestimation of maximized GDP and changes of 

allocation results.    

4.4. Regional collaboration and carbon allocations 

To further illustrate the effects of regional collaborations, we present the carbon abatement task 

allocations for the three areas under a series of different groupings in Table 3. We compare the grand 

coalition of the three separate areas, and the three combinations that see two areas paired together. E, 

C and W denote eastern, central and western areas specifically, respectively, and braces, {}, denote 

collaboration. From Table 3, according to the proportions of carbon emission to national carbon 

emissions of the three areas during the period 2012-2014, the allocated carbon dioxide abatement 

tasks of eastern, central and western areas are 92963, 56888, and 36750 104 tonnes, respectively. 

Considering the eastern area, we can see it receives its highest allocation of tasks when in the grand 

coalition (108761 104 tons) and its lowest when it acts alone (92963 104 tons). By contrast the other 

two regions receive their smallest allocation when they are acting in collaboration with the eastern 

area. Comparing with the Shapley (1953) allocations confirms that these are equal to the values for 

each region when acting alone. This certifies the robustness of the DEA method. 

Table 3  

Results of allocated carbon abatement amounts affected by regional collaborations. 

Area 
Allocated carbon abatement tasks  

{E,C,W} {E},{C},{W} {E,C},{W} {E,W},{C} {E },{C,W} Shapley V 

E 108671 92963 99379 104839 92963 92963 
C 52427 58750 52334 58750 56888 58750 
W 25503 34888 34888 23012 36750 34888 
China 186601 186601 186601 186601 186601 186601 

 

Table 4  

Results of maximized industrial GDP affected by regional collaborations.  

Area 
Maximized industrial GDP 

{E,C,W} {E},{C},{W} {E,C},{W} {E,W},{C} {E},{C,W} 

E 48241 47213 48090 47663 47213 
C 26714 24204 26500 24204 25036 
W 13631 11600 11600 12546 13059 
China 88586 83017 86190 84413 85308 
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We also consider the impact of coalitions on GDP in Table 4. A national coalition maximizes 

GDP for each region whilst acting alone delivers the lowest. Finally, Table 5 considers the 

economical level for each regional collaboration combination. For the whole nation and central area, 

the full national coalition is the most economical. Meanwhile, the eastern area would do well to act 

alone, and the western area achieves its highest economical level when collaborating with the east. 

From these results, we conclude that the national level coalition achieves the nationally most 

economical results and maximized GDP output. This is consistent with Proposition 1. In 

collaborations, developing regions have a more economical carbon abatement process than the already 

developed east; the task may thus be transferred across to the more economically developed east. The 

western area would lobby for this, as it performs best in collaboration with the east. 

Table 5  

Economical levels affected by regional collaborations. 

Area 
Allocated economical levels 

{E,C,W} {E},{C},{W} {E,C},{W} {E,W},{C} {E },{C,W} 

E 30.67 35.97 33.90 31.15 35.97 
C 136.99 86.21 136.99 86.21 98.04 
W 45.66 27.25 27.25 47.62 28.90 
China 42.92 40.98 42.37 40.65 42.19 

 

4.5. Further discussion 

Based on the aforementioned analysis, some conclusions and implications are derived for the 

benefit of carbon abatement policy and the practical implementation thereof. Our conclusions 

demonstrate the key tension between regional objectives and the nationally efficient allocation. For 

example the east may seek to limit is allocation of carbon abatement tasks by avoiding collaboration, 

but this would be to the detriment of the other areas and the whole country; as these areas would 

prefer the national collaboration. A practical explanation is that, as mentioned above, intuitively, the 

economically developed area has more potential to reduce carbon emissions. Thus, the eastern area 

should accept more of the carbon allocation burden in the national allocation vision. However, such 

compliance from the east is against its economic increment target; a collaboration struggle appears in 

east China. 

That the eastern economically developed regions have limited carbon emission quotas compared 

with other areas is also indirectly proved by Zhang, Wang, & Da (2014) with a collaboration 

estimation by the Shapley value method. Different from the existing literature, one merit of our 

collaborative DEA allocation is to provide exact allocated results with all possible regional 
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collaborations. Consequently, a novel vision of carbon allocation, considering the collaborative 

relationship between allocated objects in the DEA method, may be achieved.  

Policy should encourage collaboration at the national level (e.g., joint carbon abatement or the 

integrated carbon trading market among regions) to allow the central and western areas to concentrate 

on upping their industrial output whilst the east shoulders the burden of abatement. Such a move 

could facilitate the transfer of technology and energy-intensive industries westward and hence create a 

greater future economical carbon abatement process in central and western provinces. Considering the 

struggle against collaboration implied for the eastern area, the appropriate compensation for carbon 

reduction (e.g., low-carbon subsidies for industrial sectors or firms) should be enacted by the central 

government to facilitate the potential regional collaborations on carbon reduction. Given the better 

economic development recognised in the eastern area, energy-saving and carbon-free technological 

updating could be advocated to reduce the extra carbon abatement task (Jia, Li, & Shao, 2018).  

Necessarily, the DEA approach is linked to historic data, but it is an effective means for 

identifying the carbon abatement task allocations based on corresponding costs. Our results have 

permitted the consideration of regional collaborations in China, highlighting tensions and delivering 

the case for collaboration. For China, the national-level solution is optimal. 

5. Conclusions 

By modifying the DEA allocation approach, this paper has presented an analysis of the division 

of carbon abatement tasks considering corresponding regional level carbon abatement costs. 

Introducing a modified DEA allocation approach permitted the study of the dual optimisation of 

carbon reduction and output maximization. A meta-frontier DEA allocation model for any DMUs is 

further proposed, which can reflect the potential collaboration of decision making units. 

For industrialised and industrialising nations alike, the challenge of controlling carbon 

emissions is a pressing one, and the lessons from China should resonate. Our work is, like existing 

studies, a closed system which focuses entirely on the industrial sector. We have demonstrated there 

exist remarkable geographic disparities in environmental efficiencies and carbon abatement costs 

which previous DEA works have struggled to internalise. Regional collaborations can help influence 

members’ abatement tasks, and our framework gives, for the first time, clear insight into how.  

Our most important findings, however, concern the roles regional collaborations might play at 

the national level. A clear case is made for greater allocations for eastern China, where high economic 

development and lower abatement costs mean that greater efforts can be accommodated. Allocating 

more to a block like this gives the two less developed areas, especially western China, the chance to 

develop economically such that they two might take on greater tasks in the future. Consequently 

greater discrepancies between regions emerge on abatement task allocated, but wealth differentials 

narrow in the long run; both processes embed regional identity and facilitate the continuance of such 

coalitions. 
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Some policy suggestions are that, the consideration of regional collaborations against the grand 

coalition of all provinces demonstrates that the latter delivers the most efficient outcome, but it is 

inherently unstable due to the optimality of other contributions for individual regions. Chinas most 

developed eastern area has the most to gain from allocating independently, whilst the less developed 

central and western areas wish to join with the east. Lessons in promoting collaboration are clear and 

policy should seek to ensure that this is done. Policy-makers should consider our findings carefully 

and ensure that the conflicts of carbon abatement task allocation are resolved. 

However, some limitations in discussion also exist. We limited our collaborations to the most 

common Chinese relationships. There is, however, no reason why longer term coalitions between 

geographically disparate provinces should not engage. For example, the third highest MAC region, 

Shanghai may work with the third lowest, Guangxi. Whilst the economic motivations for such a 

relationship are clear, the lack of geographical connectivity is likely to raise questions about the costs 

of working together. Here we argue that maintaining a sector focus is pertinent to the current 

economic make-up of the constituent provinces and positing coalitions with existing infrastructure 

remains most realistic now and into the future.  

For China, the national allocation should be adopted, a result that extends globally from the 

theoretical work. China’s need to achieve over the three study years is very clear for its international 

position and domestic environment, but other nations face similar dilemmas and the DEA modelling 

process constructed above should resonate in their decision making. We have simplifications 

informed by policy but these may be readily adjusted to other settings and signposts for wider 

adoption.  

Furthermore, considering that the areal collaboration in China is still currently difficult to realize, 

the collaborative DEA model could be more meaningful if adopted in a small-scale regional analysis, 

for example, the collaboration among provinces or cities. The novel vision of this study could also 

help the central government to reasonably decompose the national carbon abatement target for local 

governments and facilitate regional collaboration in the future. The proposed method can also be 

adopted in other applications with related collaborations, such as, the resource allocation for 

companies or institutions. Notably, carbon abatement costs in this study are estimated based on the 

carbon reduction and energy saving target, which can be modified with the consideration of other 

factors in future applications.  

DEA has an important role to play in addressing pressing environmental issues in an efficient 

and transparent way and the modifications we make in this paper will aid that process. For all 

concerned, the options, and consequences, of costly improvement allocations are clear and must be 

heeded by all collaboration efforts.  
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Appendix 

Table A.1  
Sensitivity analysis. 

 30% 40% 50% 60% 70% 
Beijing 0.0000 0.0000 0.0000 0.0000 0.0000 
Tianjin 0.2000 0.1413 0.1667 0.2000 0.2333 
Hebei 0.3000 0.3491 0.2340 0.1125 0.0048 

Liaoning 0.0000 0.0000 0.0000 0.0000 0.0000 
Shanghai 0.0000 0.0000 0.0000 0.0000 0.0000 
Jiangsu 0.0156 0.0000 0.0000 0.0000 0.0000 

Zhejiang 0.1213 0.0000 0.0000 0.0000 0.0000 
Fujian 0.2000 0.2667 0.3333 0.4000 0.4667 

Shandong 0.0170 0.0000 0.0000 0.0000 0.0000 
Guangdong 0.1000 0.1333 0.1667 0.2000 0.2333 

Hainan 0.1000 0.1333 0.1667 0.2000 0.2333 
Shanxi 0.0000 0.0000 0.0000 0.0000 0.0000 

Inner Mongolia 0.3000 0.4000 0.5000 0.6000 0.7000 
Jilin 0.0902 0.0000 0.0000 0.0000 0.0000 

Heilongjiang 0.0000 0.0000 0.0000 0.0000 0.0000 
Anhui 0.0000 0.0000 0.0000 0.0000 0.0000 
Jiangxi 0.0000 0.0000 0.0000 0.0000 0.0000 
Henan 0.0000 0.0000 0.0000 0.0000 0.0000 
Hubei 0.0000 0.0000 0.0000 0.0000 0.0000 
Hunan 0.2000 0.2667 0.3333 0.4000 0.4667 

Guangxi 0.2000 0.2667 0.3333 0.4000 0.4667 
Chongqing 0.2000 0.2667 0.3333 0.4000 0.4667 

Sichuan 0.0000 0.0000 0.0000 0.0000 0.0000 
Guizhou 0.0000 0.0000 0.0000 0.0000 0.0000 
Yunnan 0.0000 0.0000 0.0000 0.0000 0.0000 
Shaanxi 0.0001 0.0000 0.0000 0.0000 0.0000 
Gansu 0.3000 0.0000 0.0000 0.0000 0.0000 

Qinghai 0.3000 0.3145 0.1654 0.1535 0.0000 
Ningxia 0.0000 0.0000 0.0000 0.0000 0.0000 
Xinjiang 0.0394 0.0037 0.0000 0.0000 0.0000 

Std. 0.1122 0.1320 0.1451 0.1705 0.2007 
Repeat 17 20 21 21 22 

 

Table A.1 illustrates the sensitivity analysis by setting different upper level of carbon abatement 

(i.e., u
iC ). The first row shows various settings of u

iC . From row 2 to row 31, there are ratios of 

allocated carbon abatement tasks to corresponding regional carbon emission amounts by different 

settings of u
iC . In row 32, there are standard deviations for all the regions subjected to the specific u

iC . 

In row 33, there are numbers of the repeated ratio attaining the corresponding u
iC  or 0. We believe 

that, the result of a specific u
iC  has the least standard deviation and repeated number could have the 

best explanation for carbon allocations. This indicates that the carbon abatement ratios have the least 

disparities among regions and least regions are constricted by the corresponding u
iC . Comparing all 

the u
iC , we discovered that the model incorporating u

iC  of 30% has a better result than others. Thus, 

30% is set as the upper level of u
iC in this study. 
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