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____________________________________________________________________ 8 

This study used a geographic based water model to predict the environmental concentrations of 9 

three pharmaceuticals 17-ethinylestradiol (EE2), 17-estradiol (E2) and diclofenac throughout  10 

European rivers.  The work was prompted by the proposal of the European Community 11 

(COM(2011)876) to consider these chemicals as candidates for future control via environmental 12 

quality standards (EQS).  National drug consumption information, excretion, national water use, and 13 

sewage removal rates, were used to derive per capita sewage effluent values for the European 14 

countries .   For E2, excretion rates of the natural hormone and national demographics were also 15 

included.    Incorporating this information into the GWAVA model allowed water concentrations 16 

throughout Europe’s rivers to be predicted.  The mean concentration from the expected sewage 17 

discharge scenario indicated that 12% by length of Europe’s rivers would reach concentrations 18 

greater than the proposed 0.035 ng/L EQS for EE2.  For several countries, between a quarter and a 19 

third of their total river length would fail such an EE2 EQS.  For E2, just over 1% by length of rivers 20 

would reach concentrations greater than the 0.4 ng/L proposed EQS, whilst just over 2% by length of  21 

rivers would reach concentrations greater than the proposed EQS of 100 ng/L for diclofenac.   22 

Key words 23 

Ethinylestradiol, estradiol, diclofenac, river water, model, prediction, environmental quality 24 

standard, Europe 25 
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Introduction 26 

 The control of what are called hazardous substances in Europe falls under the Water Framework 27 

Directive (WFD).  When an environmental quality standard (EQS) is set for a chemical this can lead to 28 

it being phased out of production.   However, the very recent addition of the pharmaceuticals 17a-29 

ethinylestradiol (EE2), 17b-estradiol (E2) and diclofenac in the European Community document 30 

(COM(2011)876) appear to usher in a new era.  This document suggested annual average EQS of 31 

0.035 ng/L for EE2, 0.4 ng/L for E2 and 100 ng/L for diclofenac.  Now this document has been 32 

amended and these drugs put on a watch list until they are reviewed again in 2014.  Thus, there 33 

remains the possibility that they will become controlled with an EQS in due course. 34 

Given their societal health benefits, it is unlikely and perhaps undesirable for particular 35 

pharmaceuticals to be phased out on the basis of environmental concerns.  Thus, as source controls 36 

are inappropriate, so end of pipe solutions may have to be sought.  A number of studies have 37 

examined the efficacy of different sewage tertiary treatments and indeed one European State, 38 

Switzerland, is planning to invest in such technology [1].  Based on our current knowledge, most of 39 

the proposed techniques would appear to be very expensive to build and maintain [2, 3].  As an EQS 40 

would be set for the receiving waters and not the sewage effluent, so the extent of investment will 41 

depend on the available dilution.  Thus, the magnitude of the challenge for different nations will 42 

reflect their unique geographical and hydrological circumstances.  Examining the extent of these 43 

differences in national exposure would appear to be vital information in engaging not only 44 

regulators, water utilities, government and environmental scientists, but also the general public too.   45 

Geographic-based water quality models are a practical tool that can address the question of 46 

exposure to pharmaceuticals at a continental scale.  Measuring all of these chemicals throughout 47 

every European river would be exceedingly costly and time consuming, to say nothing of the 48 

problems of consistency.  Measuring EE2 throughout Europe’s rivers would be impractical, since very 49 

few, if any, chemists can confidently claim to quantify EE2 at concentrations of 0.035 ng/L with 50 
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current technology.   The strengths and weaknesses of water quality modelling vs measuring have 51 

been reviewed before, but it is important to note that models have no lower detection limit [4]!   52 

Before considering how to approach this task, it is worth briefly reviewing what evidence 53 

brought these chemicals to the attention of the EU.  Following a series of surprising observations on 54 

the effects of fish being exposed to sewage effluent in the mid 1980s’ in the UK, a series of 55 

methodical studies were carried out which revealed that something in effluent could provoke 56 

endocrine disruption [5].  Field surveys then revealed that endocrine disruption of fish was 57 

widespread in wild fish caught in proximity to sewage treatment plants [6] and that the most potent 58 

component of that effluent was the fraction containing steroid estrogens [7].  Amongst those steroid 59 

estrogens, E2 and the synthetic estrogen EE2 were demonstrated to be the most potent [8].  These 60 

observations were repeated by scientists throughout the world.  Whilst the disrupting effects of E2 61 

and EE2 at low ng/L exposure concentrations on individual fish are undeniable, the assessment of 62 

the effect of that disruption on fish populations is less secure [9].  Diclofenac came to prominence 63 

when it was strongly implicated in the poisoning and decline of vulture populations in Asia [10].  A 64 

number of studies have suggested that low µg/L concentrations of diclofenac adversely affect fish 65 

[11, 12], and raised concern that diclofenac might pose a threat to wild fish.  However, a recent 66 

study failed to support the results of these earlier studies, and instead found that adverse effects on 67 

fish occurred only when the environmental concentration approached 1mg/L [13], which is very 68 

much higher than any river concentration is likely to be. 69 

If these pharmaceuticals stay on the watch list and even become priority substances needing 70 

control, so it is likely other pharmaceuticals will follow.  A stated objective of the European 71 

Parliament legislative resolution of 2 July 2013 amending Directives 2000/60/EC and 2008/105/EC as 72 

regarding putting chemicals on a watch list (COM(2011)0876 – C7-0026/2012 – 2011/0429(COD)) is 73 

that this will stimulate further studies both in terms of monitoring and on the risks they pose.  To 74 

respond the objectives of this study were: 75 

http://ec.europa.eu/prelex/liste_resultats.cfm?CL=en&ReqId=0&DocType=COM&DocYear=2011&DocNum=0876
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?lang=en&reference=2011/0429(COD)
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 To refine and adapt existing models for E2, EE2 and diclofenac using the most recent 76 

consumption information to predict European river water concentrations 77 

 To examine how close predicted river concentrations would exceed proposed EQS levels of 78 

0.4 ng/L for E2, 0.035 ng/L EE2 and 100 ng/L diclofenac across Europe 79 

 To identify the European countries most likely to be challenged if such EQS levels had to be 80 

achieved. 81 

Materials and methods 82 

Assessing per capita consumption rates.  The approach to estimating sewage effluent 83 

concentrations takes the drug consumption per capita for a specific nation, less that prevented from 84 

being excreted as the free parent compound, and less that removed in sewage treatment.  The 85 

effluent concentration is then calculated by dividing this figure by the per capita wastewater 86 

discharge for that nation: 87 

 88 

W 
       

 
 89 

 90 

Where C is consumption of the drug as ng/cap/d; E is the amount of the drug that is not excreted 91 

(ng/cap/d); S is the amount of the drug that is prevented from escaping into sewage effluent 92 

(ng/cap/d); D is the diluting volume of wastewater as L/cap/d; and W is the effluent concentration as 93 

ng/L. 94 

The river concentration at the point of the effluent discharge (Rm, ng/L) is calculated by mass 95 

balance, and loss of the compound due to aquatic processes such as sedimentation and 96 

transformation is accounted for with a first order dissipation process to give the downstream 97 

concentration (Rd, ng/L). 98 
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tk

md eRR   99 

Where, k is the decay rate (days-1) and t is the time of travel (days). The time of travel is the river 100 

reach volume divided by the flow rate [14]. 101 

The most critical part of any predictive model used to assess concentrations of human 102 

derived chemicals in water is obtaining information on usage.   National databases and academic 103 

studies can be interrogated to assess a per capita consumption value, given the human population of 104 

the country at that time (Table 1). 105 

TABLE 1. Range of national pharmaceutical per capita consumption values and their year of origin 106 

Country EE2 
consumption 

(g/cap/d) 

Ref source E2 (HRT) 
consumption 

(g/cap/d)* 

Ref Source Diclofenac 
consumption 

(g/cap/d) 

Ref Source 

Belgium 2.11 (2007) [15] NA NA NA NA 

France 1.54 (2007) [15] NA NA 449 (2004) [16] 

Germany 1.69 (2007) [15] NA NA 2613 (2003) [17] 

Italy 0.94 (2007) [15] NA NA NA NA 

Netherlands 2.59 (2012) [18] 1.7 (2011) GIPdatabank 
(www.gipdatab
ank.nl) 

1205 (2012) [18] 

UK  1.21 (2007) [15] 5.7 (2010) NHS dataset 
(www.ic.nhs.uk
) 

957 (2010) NHS dataset 
(www.ic.nhs.uk) 

Spain  1.0 (2003) [19] NA NA 2124 (2003) [19] 

Sweden  0.84 (2010) Apotekensservice 
(www.apotekenss
ervice.se) 

15.7 (2010) Apotekensservi
ce 
(www.apoteke
nsservice.se) 

1351 (2010) Apotekensservice 
(www.apotekensservic
e.se) 

Poland  1.0 (2000) [20] NA NA 1482 (2000) [20] 

Switzerland  2.0 (2000) [19] NA NA 1459 (2000) [19] 

Denmark  NA† NA NA NA 520 (2009) Danish medicine 
statistics (www.ssi.dk) 

Czech 
Republic 

1.18 (2012) SUKL database 
(www.sukl.cz) 

4.1 (2012) SUKL database 
(www.sukl.cz) 

1075 (2012) SUKL database 
(www.sukl.cz) 

Norway 1.51 (2011) Norwegian 
Prescription 
Database 
(www.norpd.no) 

7.9 (2011) Norwegian 
Prescription 
Database 
(www.norpd.n
o) 

1059 (2011) Norwegian 
Prescription Database 
(www.norpd.no) 

Mean 1.47  7.0  1299  

†NA = Not Available   *HRT = Hormone Replacement Therapy 107 

Ethinylestradiol consumption, excretion, and environmental fate.  Recent values for EE2 108 

consumption in different European countries that are available show only a small variation in 109 

individual EE2 consumption values (Table 1 & 2).  The probable excretion rate of EE2 by humans has 110 
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been extensively reviewed  [21] and this also shows only modest variation (Table 2).  Information on 111 

removal in sewage treatment is available [21-27] and a wide variation in performance is apparent 112 

(Table 2).     EE2 is still considered the most persistent of the steroid estrogens ,with a modest half 113 

life in water of 17 d and also a slow photodegradation rate [28, 29]. The model used here for 114 

predicting EE2 concentrations in sewage effluent and receiving waters [21] has been compared 115 

previously against measured concentrations [30-32].  An agreement value can be given by dividing 116 

the observed by the modelled concentration, such that one is a perfect match, less than one an 117 

overestimate and greater than one an underestimate.  For EE2 the result is 0.2-2.0 (n=20) for these 118 

studies which is within an order of magnitude difference [30, 31]. 119 

Estradiol consumption, excretion, and environmental fate.  Estradiol is one of the natural estrogen 120 

hormones circulating in the human body and is indeed common to all vertebrates [33].  It is also 121 

provided as an active ingredient of many hormone replacement therapies (HRT) and as an ester pro 122 

drug (estradiol valerate) in some new contraceptive formulations.  The most important contributors 123 

of natural E2 are pregnant women, providing an estimated 63% of the natural E2 load in the UK [21], 124 

followed by menstrual women (18%).   For this study the demographics of each European nation was 125 

assessed and the number of males, menstrual, menopausal and pregnant females recorded [34].  To 126 

calculate a per capita E2 discharge for each nation, the assumed E2 excretion rate (g/cap/d) for 127 

each population sub-group [21] was multiplied by the number of people in each category.  It should 128 

be noted that obtaining a value for the number of pregnant women is particularly complex as 129 

abortions, foetal deaths, live births and multiple births for each country have to be disentangled 130 

from a range of sources.  This value was normalised by dividing by the total population to give a per 131 

capita natural E2 value.  To this natinal natural E2 value was added the per capita HRT E2 value 132 

where known, or otherwise a European average value, to calculate a national total E2 discharge 133 

value (Table 2).  Recently, the topic of human E2 excretion was reviewed [35] for the US and a value 134 

of 7.87 g/cap/d was reported, which is very similar to that previously calculated for E2 [21] in the 135 

UK and the range calculated for this study (4-8 g/cap/d) .   136 
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 Given the amount of E2 excreted by women on HRT and the proportion present as the 137 

parent or glucuronide then only 3-10% of the pharmaceutical E2 ingested would be excreted [21, 36, 138 

37].  This implies that for the countries for which we have data (Table 1), only 1-8% of the total E2 139 

arriving at a sewage treatment plant (STP) would have originated from pharmaceutical sources.      140 

It was assumed that 50% of E2 will convert to E1 in the sewers before arriving at a STP 141 

following the suggestion of earlier models [21] (Table 2).  Information on removal in sewage 142 

treatment is fairly consistent [22-25, 27, 38-40], with a mean removal of 89% being recorded (Table 143 

2).  No type of biological sewage treatment (such as between trickling filter and activated sludge) is 144 

significantly worse than any other in removing E2 [41]. The ready degradability of E2 in river water 145 

samples indicates half-lives of 0.2 to 8.7 d could be expected [28], and the dissipation observed in 146 

the field appears to correspond to such rates [42].  This approach to predicting E2 concentrations in 147 

sewage effluent and receiving waters has been compared previously against measured 148 

concentrations and found to give an observed over modelled agreement ratio of 1.3 (n=3) at one 149 

plant effluent [30] and 0.4 (n=19) for 19 STP effluents with an agreement ratio of 0.5-0.7 for a 34 km 150 

river stretch [31].   151 

There is a danger that modelling river E2 concentrations on the basis of human inputs alone 152 

may underestimate the situation in areas where livestock predominate.  Whilst some evidence for a 153 

link between the presence of livestock and river estrogens have been made [43] widespread 154 

endocrine disruption remains most closely associated with STPs [32] and E2 river predictions at least 155 

in the UK can be explained by sewage inputs [31, 44]. 156 

Diclofenac consumption, excretion, and environmental fate.  Diclofenac (2-[2,6-157 

dichlorophenyl)amino]benzeneacetic acid is a popular non-steroidal anti-inflammatory drug often 158 

used to treat rheumatic type pain.  The variation in national diclofenac consumption rates appears 159 

to be wider than for the other two drugs (Table 1 and 2).  The range in diclofenac excretion values 160 

has been reviewed previously [45] and appears to be more variable than the range for EE2.  Whilst 161 
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there again appears to be quite large variability [18, 46-56], the weighted mean sewage removal of 162 

diclofenac is poor at only 22% (Table 2).  Photodegradation has been put forward as an important 163 

removal mechanism in surface waters  [57-59].  In reality, leaving darkness aside, conditions in the 164 

field are often not ideal for photodegradation, so removal along a river, where residence times are 165 

typically much shorter than lakes, can be negligible for diclofenac [57, 60].  Given this uncertainty it 166 

was considered prudent to exclude attenuation in predictions for this molecule in river water.  The 167 

modelling approach for predicting diclofenac concentrations was similar to that carried out  168 

previously [45], but now with slightly changed parameters (consumption, excretion and sewage 169 

removal) informed by more recent literature.  As this diclofenac method has not been tested 170 

previously, this was examined using relatively recent sewage effluent measured values from 171 

composite samples where inhabitant and flow information permitted predictions to be made [18, 172 

54, 61, 62](Table S1).   173 

TABLE 2. Range of factors affecting the model and their potential impact on the outcome.  Note 174 
where sufficient data permits a weighted mean is given followed by the best and worst case value 175 
given in parenthesis. 176 

Factor EE2 E2 Diclofenac 

Consumption range across 

nations (g/cap/d) 
0.84-2.59 4.1-8.2

a
 449-2613 

Apparent consumption 
variation 

3-fold 2-fold 6-fold 

Weighted mean with lowest 
and highest patient 
excretion values (%) 

40 (21-54) NA 9.5 (2-23) 

Potential effect on influent 
concentration 

3-fold NA 11-fold 

Weighted mean with lowest 
and highest sewage 
treatment removal (%) 

68 (0-90) 89 (69-99) 22 (0-82) 

Potential effect on sewage 
effluent concentration 

10-fold 31-fold 5-fold 

Potential effect on drug 
concentations by combining 
effects of excretion and 
sewage treatment removal  
factors. 

26-fold 31-fold 64-fold 

In stream half-life in days 
(20

o
C) 

17.3 2.3 (0.3-8.7) Not used 

Range of dilution factors 
across Europe (m

3
/cap/d) ** 

2.8 - 2.7∙10
3
 

Potential effect on water 
concentration 

1000-fold 
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a
 As E2 is largely an endogenous hormone we cannot discuss it in terms of consumption and excretion rate.  177 

The values given are the concentration excreted by a ‘normalised human’ [21] modified by national 178 
demographics and HRT use differences where known 179 

**10%ile to the 90%ile of dilution values calculated on a cell-by-cell basis using 1970-2000 average river 180 
discharge 181 
 182 

European river water modelling.  To examine potential concentrations of these chemicals 183 

throughout European surface waters, the geographic-based water resources model GWAVA run in a 184 

water quality mode was used [14]. This model uses geographic data on the location and size of the 185 

human European population and their association with STPs.  The version of GWAVA used here 186 

incorporates a newly available and extensive dataset (2009-2010 information) of locations and 187 

number of people connected to sewage discharge points in Europe [63].   The flows through these 188 

STPs are incorporated with the natural river discharge adjusted for abstractions (principally for 189 

potable supply and agriculture).  The hydrology is driven by monthly climate over the period 1970-190 

2000.    The ability of GWAVA to simulate river flows has been previously tested against gauged 191 

flows across Europe, and other continents. Also modelled water quality determinands have been 192 

compared with measured data [14].   The chemical inputs of per capita drug consumption, excretion, 193 

removal in sewage, and in-stream half- life were provided by this study (Table 2).  The model 194 

calculates the water concentrations of chemicals through water courses in a series of 177,470 grid 195 

squares (cells) of approximately 6 x 9 km (5 by 5 Arc minutes) dimensions. On a monthly basis, in the 196 

water courses in each cell receiving effluent, the concentration is calculated by diluting the mass of 197 

chemical discharged in the volume of water in the cell accounting for any loads from upstream cells. 198 

The chemicals are transported downstream with the discharge to the next cell. Chemical can be lost 199 

through abstraction or a first-order dissipation process.  The time of travel though the gridded 200 

network (which can comprise rivers, lakes and wetlands) is calculated from the river flow rate and 201 

the water volume of each cell. Surface water volumes are estimated using established empirical 202 

relationships with width and depth data [14]. Thus, the model was set up using either the national, 203 

or mean, per capita consumption for EE2 and diclofenac for each country as appropriate (Table 1).  204 
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For E2, a value for each nation was derived from its population demographics plus pharmaceutical 205 

E2 use where known (Table 1).  The mean value for each grid square was then used as the output.  206 

This was considered the most relevant output given that the proposed EQS in the EU 207 

(COM(2011)876) document would use an annual average (AA) value.  The model output and its 208 

statistical analysis can be for a continent, for separate nations or even for individual river basins 209 

based on selecting the appropriate cells.  Trans-boundary flows and their pollutant load are always 210 

accounted for. 211 

Scenario analysis.  There are uncertainties in the model parameters determining effluent 212 

concentrations, which are critical in estimating river concentrations.  In order to assess the impact of 213 

this uncertainty, a series of scenarios were run to establish the range of likely river concentrations 214 

(and hence likely EQS  exceedence) , based on the reported literature values. These scenarios were a 215 

best case - low excretion, high sewage removal and high in stream dissipation; a worst case - high 216 

excretion, low removal and slow in stream dissipation and an expected case, which used weighted 217 

average values for these parameters (Table S2). The envelope of possible effluent concentrations 218 

from the best and worse case scenarios was large differing by factors of approximately 26 for EE2, 31 219 

for E1 and 64 for diclofenac  (Table 2). The expected scenario based on the mean literature values   220 

gives reasonable agreement with the few available measured data (see above and results section), 221 

with the other cases giving the extreme values.  222 

   223 

Results and Discussion 224 

Ability to predict diclofenac concentrations in effluent.  The predicted and measured effluent 225 

diclofenac concentrations were compared by dividing the measured by the predicted value to give 226 

an agreement ratio (Table S1).   Based on this small comparison, with agreement ratios between 0.5 227 
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and 8.7, it appears the diclofenac predictions were broadly acceptable (Table S1) but with a 228 

tendency to underestimate. 229 

 Predicted exceedences of proposed European EQS values.   Before starting the 230 

water quality modelling, based on the European mean consumption values, excretion values and 231 

sewage removal factors (Tables 1 and 2) then 1 ng/L EE2, 3 ng/L E2 and 570 ng/L diclofenac  would 232 

be expected in European sewage effluents.  It should be noted that where data were lacking, such as 233 

in some Eastern European countries, European average drug consumption values were used.    Apart 234 

from predicting the consumption value correctly, it can be seen that variations in the hydrological 235 

dilution component will have the biggest impact on the outcome (Table 2).  Rivers where an annual 236 

average concentration of EE2 would exceed 0.035 ng/L would be fairly widespread with the 237 

expected scenario (Fig. 1).  Of perhaps greater biological significance is where EE2 concentrations 238 

might exceed 0.35 ng/L [8, 64]and this is far less widespread but not negligible (Fig. 1).  When all the 239 

results are plotted as cumulative frequency distributions, both as the expected (Fig. 2) together with 240 

the best and worst case (Fig. S1 and S2) scenarios and compared with the proposed EQS values it can 241 

be seen that EE2 would pose the greatest challenge.  It can be observed that 74% of Europe’s rivers 242 

by length receive some sewage input whilst the remaining lengths have negligible human input (Fig. 243 

2).  Between 2 and 25% by length of Europe’s rivers were predicted to have EE2 concentrations in 244 

excess of 0.035 ng/L (best and worst case) with the expected outcome being 12% (Fig. 2).  For E2 245 

between 0-6% of river lengths were predicted to exceed 0.4 ng/L (1.5% expected exceedance) and 246 

for diclofenac this is predicted to range from 0.1-8.3% of river lengths exceeding 100 ng/L (2.4% 247 

expected exceedance) in the three scenarios (Fig. 2, Fig. S1 and S2).  248 
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 249 

FIGURE 1.  Location of European surface waters where EE2 concentrations are predicted to exceed 250 
0.035 ng/L (yellow) and 0.35 ng/L (red) based on expected chemical discharge (mean excretion 251 
and mean sewage removal)  252 

 253 

 254 

FIGURE 2. Predicted average river water concentrations throughout the European river network 255 
based on expected chemical discharge (mean excretion and mean sewage removal) and their 256 
proximity to the proposed EQS values in COM(2011)876 257 
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 259 

TABLE 3. Predicted proportion of national river length that would exceed the suggested annual 260 
average EQS based on expected chemical discharge 261 

EE2 (0.035 ng/L AA EQS) E2 (0.4 ng/L AA EQS) Diclofenac (100 ng/L AA 

EQS) 

>30% Netherlands, 
Germany, 
Macedonia, 
Romania, 
Poland, 
Slovakia, 
Belgium, 
Bosnia, Serbia 

>5% Romania*, Czech 
R., Netherlands 

>10% Germany 

25-30% Czech R., 
Hungary, 
England 

4-5% Slovakia, 
Hungary, 
Germany, Italy, 
England 

8-10% Spain, Romania, 
Netherlands 

20-25% Portugal, 
Albania, 
Denmark, 
Bulgaria, 
Greece 

3-4% Spain, Portugal, 
Poland, 
Denmark, 
Albania, 
Belgium, 
Macedonia 

5-8% Poland, Czech 
R., Hungary, 
Italy 

15-20% Italy, 
Switzerland, 
Austria,  

2-3% Bulgaria, 
Luxembourg, 
Serbia,  

3-5% Slovakia, 
Portugal, 
Belgium, Serbia, 
Macedonia, 
England 

10-15% Spain, 
Luxembourg, 
Croatia 

1-2% Greece, Austria, 
France,  

1-3% Albania, 
Bulgaria, 
Luxembourg, 
Austria, Greece, 
Denmark, 
Switzerland 

<10% France, Ireland, 
Slovenia, 
Lithuania, 
Estonia, 
Wales/Scotland, 
Finland, Latvia, 
Sweden, 
Norway 

<1% Croatia, 
Switzerland, 
Ireland, Slovenia, 
Lithuania, 
Estonia, 
Wales/Scotland, 
Finland, Latvia, 
Sweden, 
Norway, Bosnia 

<1% Croatia, Ireland, 
Slovenia, 
France, 
Lithuania, 
Estonia, 
Wales/Scotland, 
Finland, Latvia, 
Sweden, 
Norway, Bosnia 

*Values provided for 32 European nations.  The UK was separated into England and 262 
Wales/Scotland/Northern Ireland.  Cyprus and Iceland were not included due to uncertainties in the 263 
ability to simulate their chemical concentrations. 264 
 265 
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It is possible to examine the proportion of river length that would exceed the suggested EQS on a 266 

national basis in the expected scenario (Table 3).  Some countries, such as the Netherlands, Czech 267 

Republic, Romania and Germany appear to have the most exposed rivers, whilst the rivers in the 268 

Scandinavian countries and Baltic Republics are typically least exposed.  The high, or low, exposure 269 

of some countries does not always seem intuitive and it is worth reviewing the principal controlling 270 

factors captured in the model predictions: 271 

 High populations discharging into small rivers. 272 

 Above, or below average national consumption of the specific drug. 273 

 Low sewer connection (eg in Belgium only considered to be 60%) as septic tanks are 274 

assumed to not be directly connected to rivers. 275 

 Receiving waste from upstream neighbouring countries, such as the Netherlands (important 276 

where in-stream attenuation is low). 277 

 It is the nature of averages that they can be highly influenced by transient very low flows, 278 

which can occur more frequently in some countries than others (eg Spain, Romania and UK). 279 

 Where the GWAVA model does not have specific information on the sewage effluent 280 

discharge points (eg Poland, Bosnia Herzegovina, Serbia), it estimates a discharge point 281 

relative to the population centre and the nearest water course.  This could lead to too high 282 

modelled concentrations as discharge may be incorrectly ascribed to small tributaries. 283 

 The range of predicted concentrations can be rather narrow in some country’s rivers.  The 284 

choice of the EQS value can then dramatically change the percentage of river length 285 

exceeding that EQS. 286 

The national exposure to these chemicals can only be considered a preliminary guide, but 287 

nevertheless it will hopefully stimulate further study and debate. 288 

Implications.  Given the enormous difficulties in measuring picogram concentrations of E2 289 

and EE2 in rivers, currently our best hope in assessing exposures throughout Europe is through 290 
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modelling. With its global scope, models like GWAVA can be applied to continents, such as Europe, 291 

to assess possible river concentrations of pollutants originating from the human population.  292 

However, with a 6 x 9 km grid cell, its precision is limited and in some countries the sewage effluent 293 

discharge locations are also only estimated.  Similarly, in this modelling exercise where the precise 294 

national consumption of a drug was not known, a European mean had to be applied.  Despite these 295 

limitations, the clear message from this modelling exercise was that using the expected scenario 296 

over 10% of continental Europe’s rivers (25% assuming a worst case scenario) would exceed a 0.035 297 

ng/L EE2 AA EQS.  For many European countries, a quarter to a third of their rivers would fail such a 298 

standard.   If a 0.035 ng/L EE2 AA EQS were to be applied across Europe, it would represent an 299 

enormous technical and financial challenge to meet, given the extent of likely failure predicted here. 300 
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