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Case Study and Back Analysis of a Residential Building Damaged by Expansive Soils 

J.  Li,  D. A. Cameron and G. Ren 

ABSTRACT 

This paper presents a case study of a residential house damaged by expansive soils. The field 

investigation revealed that the damage was most likely caused by excessive lawn watering 

and leaks of sewer pipe and/or stormwater pipe, which resulted in non-uniform soil moisture 

conditions. Three-dimensional back analysis of this distressed structure indicated that stresses 

were most critical at a re-entrant corner and that steel reinforcing bars in the beam in this area 

had yielded. The results of the back analysis also indicated that a stronger footing was 

required to limit differential deflection to an acceptable level and reduce stress in the footing. 

The case study has clearly shown that a leaking underground water pipe and/or excessive 

watering of a garden could cause more severe distortion to a single storey masonry veneer 

house than could be expected from seasonal moisture change and the deeper moisture re-

distribution caused by the imposition of the house on seasonally dry reactive soil. Moreover it 

has been demonstrated that it would be extremely costly to design a footing for extreme, or 

abnormal, moisture changes. 

Key Words 

Expansive soils, case study, back analysis, finite element, residential footing 
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Introduction 

Expansive or reactive soil is any soil composed predominantly of clay, which undergoes 

appreciable volume change in response to changes in soil moisture content. This volume 

change occurs as swelling upon wetting, and shrinkage upon drying. Buildings constructed on 

expansive soils are frequently subjected to severe movement arising from non-uniform soil 

moisture changes, with consequent cracking and damage related to the distortion. These 

moisture changes may be induced by rainfall and evaporation, garden watering, leaking water 

pipes, or tree root activity. 

Damage to lightly loaded structures founded on expansive soils has been widely reported in 

many countries such as Australia, China, India, Israel, South Africa, the United Kingdom and 

the United States of America. In the United States alone, total damage due to expansive soil is 

estimated to cost $US15 billion per year (Jones and Jefferson 2012), more than twice the 

damage from floods, hurricanes, tornadoes, and earthquakes combined. The American Society 

of Civil Engineers estimates that one in four homes have some damage caused by expansive 

soils (Jones and Jefferson 2012). The annual cost of expansive soil damage in China is 

estimated to be approximately $US15 billion (Miao et al 2012). The Association of British 

Insurers has estimated that the average cost associated with damage due to expansive soil is 

over £400 million a year, making it the most damaging geohazard in the UK today (Jones and 

Jefferson 2012). The problems are particularly significant in Australia as approximately 20% 

of Australia is covered with expansive soils (Cameron et al. 1987; Walsh and Cameron 1997) 

and six out of eight of Australia‟s largest cities are significantly affected by expansive soils 

(Fityus et al. 2004; Delaney et al. 2005). Before a national standard was introduced for site 

classification and design of footings, it was reported by Considine (1984) more than 50 000 
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houses cracked each year in Australia, which accounted for approximately 80% of all housing 

insurance claims. 

Over the last 40 years or so, much effort has been devoted to methods of analysing and 

designing structural footing systems on expansive soils. Since 1986, Australian footing design 

and construction practices have been guided by a national standard. The current Australian 

Standard for residential slabs and footings is the 2011 edition (AS2870, 2011). Common to 

the three versions of the Standard, sites are classified according to soil profile and regional 

climate influence on soil moisture state.  Once a characteristic site surface movement has been 

estimated for a site and the type of house construction is known, a raft footing can be 

designed, usually based on two-dimensional approximations of true slab behaviour. Flexural 

strength, structural stiffness and section ductility are appraised so that the slab will keep 

differential deflections across the floor within tolerable limits. Section ductility is an 

important consideration to ensure that if ground movements are greater than anticipated, the 

reinforcing steel will not yield readily, and there remains the possibility that action may be 

taken to correct the cause of movement without the need to re-construct the building. 

The Australian Residential Slabs and Footings Standard AS2870 provides simple and 

efficient design procedures, which assume that the moisture condition around the buildings 

will remain within reasonable limits. This means that owners should be aware of the need to 

make sure extreme soil moisture changes are avoided over the life of the house; maintenance 

of site drainage and prompt repair of leaking pipes are two actions which will help to achieve 

this aim. 
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There are a number of cases of residential structures which have experienced significant 

cracking, despite the design of the footing systems conforming to the Australia Standard for 

residential footing design (Walsh and Cameron 1997; Li and Cameron 2002). In December 

2011, the Housing Industry Association (HIA) estimated that more than 1000 new houses in 

the Western suburbs of Melbourne were damaged due to soil heave (The Age, 2011). These 

new houses have all been built according to Australian Standards and the Building Code. 

There are many different factors to consider in assessing damage to residential building 

constructed on expansive soils, which include the adequacy of the site investigation, the scope 

of the design and inherent underlying assumptions, construction practices and post 

construction site maintenance. In order to obtain a better understanding of the problem and to 

improve the current practice, more research is needed to quantify the impact of these factors 

on the performance of residential footings. 

 

It is the authors‟ belief that improvements of current design approach can be achieved by case 

studies of the performance of footings on expansive soils. In this study, the field investigation 

and back analysis of a residential building damaged by expansive soils were carried out. The 

purposes of this case study were: (a) to determine the causes of deformation and cracking, (b) 

to estimate the stress level in the deformed slab footing, (c) to estimate the soil mound shape 

underlying the footing, and (d) to find out what footing design could cope with the estimated 

ground movement. The last point is contrary to a basic philosophy of the existing Standard, 

but may serve to reinforce the potential waste of resources trying to design all houses for 

extreme moisture events.  This paper presents the results of the case study. 

 

Description of Case Study  
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The case study concerned a single storey, articulated masonry veneer dwelling, which was 

constructed in March 1992 (at the end of the dry season) in a northern suburb of Adelaide, 

Australia. The site was approximately 32 m long and 20 m wide and had a slight fall of 

approximately 2% towards the South (Figure 1). Before construction, three boreholes were 

drilled to a depth of approximately 3 m at the site to estimate the shrinkage indices of the 

underlying soil profile using a visual-tactile method (Jaksa et al. 1997). The classification of 

the site for potential ground movement following the Australian Standard, AS2870 was Class 

E (i.e., extremely reactive; refer Table 1). Site classification is based on ys, the predicted 

design site surface movement, over the life of the house, which is based on design soil suction 

change profiles for different climatic regions of Australia. The value of ys is determined by 

the following expression: 

0

1

100

H

s pty I udh  (1) 

where, Ipt is the instability index of the soil, which is defined as the percent vertical strain per 

unit change in suction considering possible lateral restraint, ∆u is the change in suction, in pF 

units in the soil layer under consideration, dh is the thickness of the soil layer and H is the 

design depth of suction change. 

The stiffened raft slab was designed using the AS2870 recommended method, which 

generates empirically-based ground distortions or mound shapes from the design site surface 

movement. Two basic mound shapes are designed for: the short-term edge wetting distortion 

or “edge heave” mound, and the longer term central swelling and seasonal edge drying and 

distortion, or “centre” heave. The design then proceeds to limit footing deflections to levels 

tolerable for the supported building, by adding stiffening beams of sufficient depth and with 

adequate reinforcement.  Interaction between the loaded footing and the soil is considered.  
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Routine design however is based on simplified 2D analysis.  In particular, the slab plan must 

be divided into fully overlapping rectangles, each rectangle being designed for centre heave 

and edge heave cylindrical mounds in both the short and long directions.  One rectangle will 

dictate beam sizes for the whole slab. 

For this case study, the footing layout is shown in Figure 1. The external beams were 300 mm 

wide by 950 mm deep, reinforced with 8/Y16 bars, four at the top and four at the bottom. The 

internal beams were 250 mm wide by 950 mm deep, reinforced with 6/Y16 bars, three at the 

top and three at the bottom. A Y16 bar refers to a 16 mm nominal diameter deformed bar of 

yield strength, 400 MPa. The slab was 100 mm thick and was reinforced with F62 mesh 

placed 25 mm from the top surface of the slab. F62 refers to plain hard drawn steel fabric, of 6 

mm nominal diameter and spaced at 200 mm centres in each direction, and having a yield 

strength of 450 MPa. 

Post Construction Site Investigation 

After six years, the owner reported that the building was cracking. A site investigation was 

carried out by the authors in February (during the seasonally dry period in Adelaide, South 

Australia), to examine the cause of damage to the building. The investigation consisted of the 

following: 

1) A visual inspection of external walls and all internal areas of the building;

2) Recording magnitude and location of cracking in wall, floor and ceiling;

3) Examination of the beam depth, slab thickness and the properties of concrete;

4) A level survey of the floor surface;

5) Borehole used for evaluation of the physical properties and engineering

characteristics of the subsurface soils. 
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The site inspection indicated that sewer pipe leaking had occurred at the front of the house, as 

well as stormwater pipe leaking at the back of bedroom 4 (Figure 1). The inspection revealed 

there was a large well-watered lawn in the backyard, which sloped gently down towards the 

building. Water was observed ponding at the back of the building adjacent to the footing (see 

Figure 1).  Four small native shrubs were planted at the front of the property, approximately 5 

m away from the building and adjacent to the footpath. The lawn in the front yard was well 

maintained as well. Damage to the house superstructure consisted of severe ceiling cracking 

(4-20 mm) in the family area (Figures 2), and severe internal wall cracking (3-16 mm) in the 

dining room and lounge (Figures 3), moderate external wall cracking (2-3 mm) under the 

window of bedroom 2 (Figure 4), distortion of the cornice in the laundry (Figure 5), and a 

slope on the floors in most rooms. The floor of the house was distorted into a complex 

pattern, involving both bending and twisting. 

 

Three boreholes were drilled to approximately 4 m deep to evaluate the soil profile and the 

level of reactivity of soil types within the profile. The location of boreholes is shown in 

Figure 1. Groundwater was not found in the soil borings. The geotechnical profile for soil 

found in BH1 is shown in Figure 6. The soil profile across the site was relatively uniform and 

the soil profile can be described generally as 150 mm of sandy clay topsoil underlain by very 

high plasticity clay to about 1.25 m then high plasticity clay to a depth of approximately 4 m. 

Shrink-swell tests (Fityus, Cameron and Walsh, 2005) were conducted in accordance with 

AS1289.7.1.1 (1992) and the results are presented in Figure 6. It should be noted that a 

shrinkage index of 4%/pF would be regarded as a highly expansive soil, 6%/pF very highly 

expansive and 8%/pF, an extremely expansive soil. Site classification (Table 1) requires 

recognition of the soil profile and the distribution of soil reactivity with depth to enable an 
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estimate of the potential ground movement for the site (“site reactivity”) under normal 

moisture conditions. This estimate of ground movement is then used to classify the site. 

Figure 6 also shows Atterberg limits and the soil swelling pressures obtained from the 

oedometer swell-pressure tests. Swell pressure testing consisted of loading back a swollen soil 

to its original height. The swell pressures were modest as the soil from BH1 was relatively 

wet, as is discussed later. 

A level survey was performed by the authors around the perimeter and the interior of the 

house to determine the general pattern of the movement. Relative movement of the slab can 

be inferred from these contours assuming the slab was poured with a level surface. A total of 

85 measurements were taken. Contours showing relative vertical movement on an 

approximately 1.5 m grid are plotted in Figure 7. The contour plot indicated that a severe edge 

heave occurred in the long span. The maximum vertical differential movement of the raft slab 

footing was 100 mm, which was well above the expected ground movement for this site and 

difficult for the building to deal with. 

The measured level differences along the re-entrant corner are plotted in Figure 8. The second 

author found it necessary to extend distortion patterns around corners to better understand the 

causes of masonry wall cracking (Cameron and Walsh, 1981). The differential deflection to 

length ratio was 1/273, exceeding the recommended maximum limit of 1/400 for articulated 

masonry veneer construction (AS2870 2011). The deflection ratio was derived as shown in 

Figure 8, and it did not include tilting movements, but rather considered only distortional 

movement. The maximum differential deflection along segments AB and BC was 85 mm and 
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46 mm respectively, much higher than the maximum allowable limit of 30 mm for articulated 

masonry veneer (AS 2870, 2011). 

 

The site investigation revealed that the main cause of house distortion may be attributed to 

leaks of both sewer pipe and stormwater pipe, and excessive watering of the lawn and garden 

areas, which resulted in non-uniform soil moisture conditions. The locations of the leaks and 

water ponding due to excessive watering are shown in Figures 1 and 7. 

 

The initial suction state of the soil at this site was not determined as it is not a routine site 

investigation procedure for house construction. During the site investigation, three boreholes 

were drilled around the house for determination of soil current suction profiles. The soil 

samples were sealed and labelled on extraction from the borehole and then transported to the 

laboratory. Suction tests were carried out in accordance with AS1289.2.2.1 (1992). Prior to 

testing, samples were stored in a constant temperature room at 20

C and 50% relative 

humidity for at least 24 hours so that thermal equilibrium between the soil and the sample 

chamber could be achieved. Soil suctions were measured in this same room using a Wescor 

HR-33T dew-point microvoltmeter with C52 sample chambers. The equipment functions as a 

dewpoint hygrometer and has a working range of 3.2 pF (160 kPa) to 4.8 pF (6310 kPa). Wet 

soils are less reliably measured with this equipment.  

 

Each reported suction value was taken as the average value of at least three sub-samples. 

Figure 9 shows the soil suction profiles and the locations of boreholes. The effect of the water 

leaking from the stormwater and sewer pipes is clearly evident in the suction profiles of 

Figure 9. Suction profiles near the leaking pipes indicated unusually low suctions, or wet soil, 
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over the full depth of sampling. At the re-entrant corner of the house (borehole 2), the soil was 

much drier. 

The Back Analysis Method 

It was recognised that a suitable method of back analysis had to utilise the information 

available from a cracked house investigation. In routine practice in Australia, three boreholes 

are usually drilled for each site prior to the construction of the house. These boreholes are 

used to estimate the characteristic surface movement, ys, at the site, and the highest value of ys 

is adopted for design. Generally the soil is not tested for either suction or reactivity. Therefore 

the suction-flow-soil-footing interaction model cannot be applied here since the soil suction 

changes under the footing are unknown. This model was used to investigate the effects of a 

leaking underground water pipe on a stiffened concrete slab on expansive soils (Li 2006). 

The proposed back analysis procedure is based on the footing details and the field data, which 

can be obtained from the site investigation of a distorted house. The footing details include 

footing layout and footing cross-section properties (including the width and height of 

stiffening beams, the slab thickness, the number, size and location of steel reinforcing bars in 

all beams, and the details of the reinforcement mesh in the slab). The field data required 

includes: 

 the contour plot of the measured slab deformation, preferably on a 1 to 2 m grid;

 a record of locations and widths of cracking in the wall, floor and ceiling;

 loadings on the soil (from building and footing construction);

 an indication of the soil profile and variation of soil reactivity with depth across the site.
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The back analysis requires a number of assumptions, the primary ones being that the concrete 

slab was constructed to the design and was perfectly flat to begin with. 

 

The back analysis was carried out using a commercial finite element analysis (FEA) package 

namely, MSC/NASTRAN. The reinforced concrete beam was modelled with one-dimensional 

beam elements by defining a number of lumped bars with either concrete or steel material 

properties at specified distance to the neutral axis in the x and y directions, as illustrated in 

Figure 10. The reinforced concrete slab was modelled by several layers of two-dimensional 

plate elements, one layer being the uniaxial, distributed reinforcement layer which functions 

with perfect bond to the surrounding concrete, while the other layers modelled the concrete. A 

smeared crack model was adopted for the reinforced concrete slab. In this model, cracked 

concrete was treated as a continuum, that is, cracking was taken into account by modifying 

the material's constitutive relationship, which allowed the original discretization to be 

retained. The finite element model for the stiffened raft slab is shown in Figure 10.  

 

The behaviour of concrete under multiaxial stress conditions is very complex and has not 

been identified completely. In this study, the concrete is assumed to be non-linear elastic and 

an equivalent uniaxial stress-strain relation is used. The equivalent stress * 
and strain * 

 are 

defined based on the theory of energy equivalence, i.e., 

 

* 
 d* 

 =  {} {d}      (2) 
 

where {} and {} are the stress and strain vectors respectively.  

 

For a given state of strain {} =[x, y, z, xy, xz, yz], the equivalent strain, * is computed 

by 
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E

1
De     

where [De] is the linear elasticity matrix, and E the Young's modulus. 

The equivalent stress, * 
for any *

 is found from the stress-strain curve as shown in Figure

11. The new stress state is then determined by

new
De  (4) 

The compressive and tensile strength of concrete were taken as 20 MPa and 2.7 MPa 

respectively (Figure 11), based on the property of concrete used in the constructed slab. The 

long-term elastic modulus of concrete was 15,500 MPa in accordance with the Australian 

Standard for Concrete Structures (AS3600 1994). This value of the modulus accounts for the 

influence of creep, shrinkage, age and loading on the modulus. The concrete density was 

taken as 2,400 kg/m
3
 and a Poisson's ratio of 0.2 was adopted for the concrete.

After concrete cracks, the tensile load in the reinforced concrete footing would then be 

transferred to the steel reinforcement. The steel reinforcement in the beam and slab was 

treated as an elasto-plastic material, obeying the von Mises yield criterion and the kinematic 

hardening rule. Properties adopted for the reinforcing steel were a yield strength of 400 MPa, 

a Young's Modulus of 200 GPa and a Poisson's ratio of 0.3. 

Although the soil foundation could be represented by a three-dimensional solid element, it 

was decided to use a series of one-dimensional, non-linear spring/gap elements to represent 

the expansive soil foundation in this case study since the initial soil suction distribution under 
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the footing was unknown. This simplification removes the need to apply a constitutive model 

for swelling soils. 

The non-linear spring/gap elements allowed for separation and relative lateral displacement 

between the slab and foundation soil. The behaviour of a non-linear spring/gap element with 

friction is path-dependent in a manner similar to plasticity. When the gap is closed, it can 

carry any transverse shear loads, which are less than the given coefficient of friction times the 

normal load. When the gap is open, there is no lateral stiffness and no frictional forces. The 

gap element output includes the element forces, displacements, and the gap status (i.e., open, 

slide, stick or slip). The shear stiffness of gap elements was determined from a modified shear 

box test on composite soil/concrete specimens. 

When wetting up of the foundation soil occurs over part of the site, the slab will be supported 

mainly on the soil which has swelled, in which case the soil-footing interaction will depend 

on the swelling stiffness of the soil. 

The swelling stiffness, ks (kPa/m), is defined as 

ks =
p

y 
        

where p is the applied vertical pressure;  is the „free‟ soil swell and y is the soil swell under 

the vertical pressure, p. 

The suppression of soil heave ( - y) by external loads can be expressed by the spring stiffness 

of non-linear spring/gap elements. It represents the effective stiffness of the affected soil 

profile. There will be less soil-structure interaction if the stiffness is high. The swelling 

stiffness may be determined from the laboratory oedometer swelling tests. Figure 12 shows 
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the swell-pressure relationship obtained from swell pressure tests. In such a series of tests, 

each specimen is allowed to swell in an oedometer under a different vertical pressure. From 

Figure 12, it can be seen that the swell stiffness, ks, depends on the vertical pressure, i.e. ks is 

not a constant.  

 

The swell – pressure curve shown in Figure 12 can be represented by the following equation: 

 
1 t

ini

y p ap
k

   



    (3)  

where  is the magnitude of soil swell under no confining pressure. The curve fitting 

parameter a and exponent t can be taken as 0.0591 and 1.4098 respectively. The initial swell 

stiffness, kini, is the slope of the tangent to the swell – pressure curve at y =  (Figure 12). 

 

Substituting Eq. (3) into Eq. (1) yields: 

 s ini t

p
k k

p ap


 

    (4)  

Based on the swell – pressure curve shown in Figure 12, the above equation can be used to 

determine the swell stiffness at a particular applied pressure, p. It should be noted that ks 

determined by Eq. (4) is specifically related to the height of the samples under test. The actual 

swell stiffness, keff, of the affected soil profile in field conditions was approximated for 

practical purposes by 

 

o
eff s

f

H
k k

H




       (5) 

where He and He are the height of oedometer ring and the depth of affected soil profile in the 

field respectively.  
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It should be understood that the proposed method is a practical simplification of a very 

complex swell-pressure relationship. The swell stiffness depends on not only the vertical 

stresses but also the initial total suction down the profile, the extent of suction change and 

lateral support. Due to a lack of experimental data, a more precise definition of swelling 

stiffness than the approximation given by Eq. (4) was not considered in this case study. 

 

Analyses of cracked footings resting on expansive soil profiles reported by Lytton (1970) 

indicated that once the tensile cracking moment has been exceeded in the slab, the footing 

bends easily so that it conforms very closely to the shape of the pressure-free soil surface. 

Therefore it is reasonable to assume that the free soil mound shape occurring under the 

cracked footing is similar to, but slightly larger in magnitude than the distorted shape of the 

footing, owing to the suppression of swelling by loading. 

 

The first step in the back analysis procedure was to determine the measured deflection at each 

node of the finite element mesh. This could be done by overlaying the finite element mesh on 

the contour plot of the measured slab displacement. The measured vertical displacements of 

the slab were multiplied by a displacement factor of 1.3 and were then enforced at the 

underside of the spring/gap elements to represent the soil movement. The initial gap of each 

spring/gap was set to zero. The enforced displacement was applied in 10 equal stages in each 

analysis run to increase the accuracy and minimise numerical instability. It was found that the 

initial selected value of the displacement factor had little influence on the final results. 

 

All calculated nodal displacements in the first finite element analysis run were compared with 

the measured footing displacements. The difference in the displacement was used to modify 

the enforced displacement values for the second analysis; the calculated spring compression 
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from the previous analysis was added to the measured slab displacement to provide the 

estimate of the enforced displacement for the subsequent analysis. This procedure was 

repeated until the differences between the calculated values and the measured values were less 

than 2 mm. The maximum difference could be expected to occur in an area of slab lift-off, 

where there is no interaction with the soil. Five iterations were required for this case study. 

The final enforced displacements provided an estimate of the free swell mound shape under 

the slab, prior to any interaction with the building and its footing. 

 

Typical results of an iteration procedure used in this study are provided in Table 2. For 

simplicity, only two nodes (11 and 274, see Figure 14) are considered. A displacement factor 

of 1.3 was used initially.  The enforced displacements were adjusted during each analysis run 

as previously stated by adding together the measured slab displacement and the calculated 

spring compression from the previous run. Using this approach the movements of the two 

nodes represented in Table 2, came within 1% of the measured values (see Figure 13). By the 

fifth analysis , the enforced displacements resulted in essentially a free swell mound shape for 

which further footing designs (e.g. a larger beam size, an increase in beam reinforcement or a 

different beam footing layout) could be analysed and tested to determine their performance 

when interacting with this “failure” mound shape.  

 

The procedure adopted for the back analysis may be summarised as follows: 

1) Create a finite element model consisting of steel and concrete elements; 

2) Calculate the swell stiffness of the soil foundation at all nodes of finite element mesh 

by using Eqs. (4) and (5). 

3) Determine the measured displacements at each node of the finite element mesh by 

overlaying the contour plot of the measured slab displacement on the mesh; 
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4) Impose the measured displacements at each node from the bottom of slab, multiplied

by a factor of 1.3.

5) Perform the loaded footing-soil interaction analysis. The calculated displacements

correspond to the profile of the mound having swelled under load. The calculated 

spring compression plus to the measured displacement gives the enforced 

displacement for the second finite element analysis run; 

6) Step (5) is repeated until the difference between the measured displacements and the

calculated displacements are acceptably small. The enforced displacements in the final 

run correspond to the free swell mound (i.e. free swell without suppression from the 

loaded footing). In other words, when this free swell mound is imposed on the slab, it 

would cause the measured field displacement. 

7) The calculated stresses in steel and concrete from the final finite element analysis run

represent the actual stress level in the deformed slab footing. 

The finite element mesh for this case study is shown in Figure 14. It consisted of 608 plate 

elements, 196 beam elements and 348 gap elements. A line load of 6.5 kN/m was imposed 

along all the edges to simulate the masonry veneer walls and roof loads of the constructed 

building, while an internal distributed load of 2.2 kPa was applied to model loading from 

internal plasterboard partitions, the floor and live loads. 

Results of the Back Analysis 

After five iterative analyses, the free soil mound shape (i.e. the enforced displacements in the 

5
th

 analysis run) was determined and is shown in a three dimensional view in Figure 15. The

maximum differential mound heave was found to be 120 mm. From Figure 15, it can be seen 

that the foundation soils under the front and back of the house had heaved substantially more 



 19 

than the rest of the building. It should be noted that there was a ground movement monitoring 

station located in a flat, grassed area, approximately 800 m away from this cracked building. 

The seasonal ground movement measured by Cameron (the second author of this paper) was 

28 mm (Cameron 1989; Fityus et al. 2005). The predicted soil mound shape clearly shows 

that a leaking underground water pipe and excessive garden watering can cause more severe 

distortion to the footing than the seasonal climate influence and the normal environmental 

changes to the site caused by the imposition of the building on a greenfield site.  

 

It needs to be pointed out that the site classification (Class E) prior to construction was based 

on the visual-tactile method, while 28 mm was the seasonal ground movement measured over 

a one-year period at a ground movement monitoring station located in the same suburb. Site 

classification takes into account the expected normal environmental changes brought about by 

development of a building block and in Adelaide a depth of 4 metres is considered 

appropriate, over twice the depth of seasonal effects. 

 

The back-analysis provided an estimate of the level of stress in the distressed slab footing. It 

was predicted that the footing was over-stressed at the re-entrant corner, B (see Figure 13). 

The calculated maximum torque and bending moment in the external beams in this region 

were 80 kNm and 399 kNm, respectively. The maximum shear force was 142 kN. The 

maximum compressive stress in the concrete was found to be 13 MPa, which was acceptable. 

The results of the back analysis indicated that the maximum tensile stress of 2.7 MPa in the 

concrete beams had been exceeded and that the steel bars at the bottom of the beam along 

section I-I should have yielded (see Figure 13). So this section of the slab had failed in a 

structural sense. The back analysis predicted concrete cracking in both edge and internal 
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beams at the locations indicated on Figure 13, close to the location of the observed 

superstructure cracks (refer Figures 2-5). 

Having the free swell mound derived from the „as-constructed‟ analysis, footing designers 

may ask what kind of footing would be required for the given field conditions and beam 

layout shown in Figure 1. In other words, when this new slab footing with a larger beam size 

is superimposed on to the free swell mound as shown in Figure 15, the calculated slab 

differential deflections would be less than the maximum allowable limit specified in AS2870. 

Revised beam depths were analysed for the „as-constructed‟ beam layout. The depth of all 

stiffening beams was increased from 950 mm (the „as-constructed‟ depth) to 1200 mm, 1500 

mm and 1800 mm respectively. The numerical results indicated that a 1500 mm deep beam 

was satisfactory for the imposed free swell mound (Figure 15) by AS2870. The contour plot 

of the calculated slab deflections is shown in Figure 16. The maximum values as presented 

below were obtained. 

• deflection ratio = 1/1060 

• compressive stress in concrete = 7.5 MPa 

• bending moment in beam = 910 kN m 

• torque in beam = 78 kN m 

• shear force in beam = 220 kN 

The maximum differential deflection and the maximum compressive stress in the concrete 

were all reduced significantly, when compared to the „as constructed‟ footing. As would be 

expected, the moments and shear forces were both increased with the increased beam depth. 

However the maximum torque was almost unchanged. Although this stronger footing could 
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not eliminate cracking of concrete beams, the number of overstressed beam elements was 

greatly reduced when compared with the as-constructed footing. Cracking of beams is not a 

major concern as conventional footing design accepts partially cracked concrete sections. 

 

The back-analysis results indicated that a 1500 mm deep stiffening beam was required for the 

slab to be able to withstand the differential soil movement induced by abnormal soil wetting 

from leaking pipes and excessive watering. As such deep beams are outside the scope of the 

shallow footing designs intended in AS2870 and are not a practical solution, the case study 

has demonstrated the importance of site management for buildings on expansive soil sites, 

with the aim of maintaining a reasonably uniform state of subsoil moisture around the 

buildings. 

 

CONCLUSIONS 

 

In this study, the field investigation and back analysis of a cracked residential house were 

carried out. Field investigations revealed that the major cause of house distortion could be 

attributed to service pipe leaks across the site and excessive garden watering, which resulted 

in non-uniform soil moisture conditions. In terms of AS2870, the site could not be considered 

a “normal site” as it has been subjected to abnormal moisture conditions. 

 

The method of back analysis proposed in this study allowed a detailed three-dimensional 

investigation to be made of a distressed slab. The results of the back analysis indicated that 

stresses at the re-entrant corner were most critical and steel reinforcing bars in the beams had 

yielded along the re-entrant corner line. A much stronger footing would have been required 

for interaction with the free swell soil mound shape derived from the back analysis. This 
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analysis demonstrated the potential additional costs to homeowners if designers were to try 

and design for extreme events and therefore the need for homeowners to continue to maintain 

site conditions to a reasonable level.  

 

The revised beam depth obtained from the AS2870 recommended design approach (two-

dimensional) was much larger than that suggested by the three-dimensional analysis method 

adopted in this research. It appears that the current design approach was over conservative 

when applied to this particular case. 

 

The case study has clearly shown that a leaking underground water pipe or/and excessive 

lawn watering could cause more severe distortion to the footing than the expected moisture 

changes due to seasonal influences and re-distribution of soil moisture arising from 

construction on the site. It is believed that case studies such as the one presented in this paper 

can lead to a higher level of understanding of the performance of footings on expansive soils 

and subsequently reduce the risk in routine footing design. 
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Table 1: Site Classification Classes to AS2870 (2011) 

ys (mm) Class Description 

0 < ys  20 S  slightly reactive 

20 < ys  40 M  moderately reactive 

40 < ys  60 H1  highly reactive 

60 < ys  75 H2  highly reactive 

ys > 75 E  extremely reactive 
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Table 2: Typical Results of an Iteration Procedure (all values in mm) 

 
Node Number 11 274  

Measured Displacement 55 63  

Enforced Displacement 71.5 (= 1.3 x 55) 81.9 (= 1.3 x 63)  

Displacement Factor 1.30 1.30 First 

Calculated Displacement 46.5 66.9 Analysis 

Error 8.5 (= 55 - 46.5) -3.9 (= 63 - 66.9)  

Spring Compression 25 (= 71.5 - 46.5) 15 (= 81.9 - 66.9)  

Enforced Displacement 80 (= 55 + 25) 78 (= 63 + 15)  

Displacement Factor 1.45 1.24 Second 

Calculated Displacement 52.4 61.1 Analysis 

Error 2.6 (= 55 - 52.4) 1.9 (= 63 - 61.1)  

Spring Compression 27.6 (= 80 - 52.4) 16.9 (= 78 - 61.1)  

Enforced Displacement 82.6 (= 27.6 + 55) 79.9 (= 63 + 16.9)  

Displacement Factor 1.50 1.27 Third 

Calculated Displacement 54.3 61.2 Analysis 

Error 0.7 (= 55 - 54.3) 1.8 (= 63 - 61.2)  

Spring Compression 28.3 (= 82.6 - 54.3) 18.7 (= 79.9 - 61.2)  

Enforced Displacement 83.3 (= 55 + 28.3) 81.7  

Displacement Factor 1.51 1.30 Fourth 

Calculated Displacement 54.5 63.3 Analysis 

Error 0.5 (= 55 - 54.5) -0.3 (= 63 - 63.3)  

Spring Compression 28.8 (= 83.3 - 54.5) 18.4 (= 81.7 - 63.3)  

Enforced Displacement 83.8 (= 55 + 28.8) 81.5  

Displacement Factor 1.52 1.29 Fifth 

Calculated Displacement 54.8 62.8 Analysis 

Error 0.2 (= 55 - 54.8) 0.2 (= 63 - 62.8)  

Spring Compression 29 (= 83.8 - 54.8) 18.7 (= 81.5 - 62.8)  
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Figure Captions 

Figure 1  Footing Layout and Locations of Underground Pipe Leak (not to scale) 

Figure 2  Crack on Ceiling in Family Area 

Figure 3  Crack on the Interior Wall between Dining Room and Lounge 

Figure 4  Crack in Brick Wall under Window of Bedroom 2 

Figure 5  Distortion of Cornice in Laundry Area 

Figure 6  Geotecnical Profile at BH1 

Figure 7  Measured Relative Slab Deflection (mm) 

Figure 8  Measured Level Differences along the Re-entrant Corner 

Figure 9  Soil Suction Profiles  

Figure 10  Finite Element Model for Stiffened Raft Slab 

Figure 11  Pressure – swell Curve obtained from Oedometer Swelling Tests 

Figure 12  The Stress-Strain Curve of Concrete 

Figure 13  Difference between measured slab displacement and displacement of slab from the 

back analysis 

Figure 14  Finite Element Mesh and Locations of Concrete Beam Cracking 

Figure 15  Free Swelling Mound Shape - 3D View (mm) 

Figure 16  Contour Plot of the Calculated Slab Deflections for Beam Depth = 1500 mm (mm) 
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(a) Plan Layout 

(b) Section X-X 

Figure 1  Footing Layout and Locations of Underground Pipe Leak (not to scale) 
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Figure 2  Crack on Ceiling in Family Area 
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Figure 3  Crack on the Interior Wall between Dining Room and Lounge 
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Figure 4  Crack in Brick Wall under Window of Bedroom 2 
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Figure 5  Distortion of Cornice in Laundry Area 
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Figure 6  Geotechnical Profile at BH1 
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Figure 7  Measured Relative Slab Deflection (mm) 
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Figure 8  Measured Level Differences along the Re-entrant Corner 
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Figure 9  Soil Suction Profiles  
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Figure 11  The Stress-Strain Curve of Concrete 
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Figure 12  Pressure – swell Curve obtained from Oedometer Swelling Tests (initial total 

suction = 4.2 pF) 
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Figure 13  Difference between measured slab displacement and displacement of slab 

from the back analysis (the locations of nodes 11 and 274 are indicated in Figure 13) 
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Figure 14  Finite Element Mesh and Locations of Concrete Beam Cracking 
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Figure 15  Free Swelling Mound Shape - 3D View (mm) 
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Figure 16  Contour Plot of the Calculated Slab Deflections for Beam Depth = 1500 mm 

(mm) 
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