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Abstract:

It is known that composite materials with improygdperties can be achieved through modifications
to the topology of their microstructures. Structdo@ology optimization approaches can be utiliasd

a systematic way for finding the best spatial dstion of constituent phases within the
microstructures of materials/composites. This stpohsents a new approach to designing material’s
microstructures based on the bi-directional evohaiy structural optimization (BESO) methodology.
It is assumed that the materials/composites areposad of repeating microstructures known as
periodic base cells (PBC). The goal is to find lest spatial distribution of constituent phaseiwit
the PBC, in such a way that materials with desimeinproved functional properties are achieved. To
this end, the Homogenization theory is applied $talgish a relationship between properties of

materials microstructure and their macroscopic attaristics.

As the first step of this study, the optimizatiorofdem is formulated to find microstructures for
materials with maximum stiffness, in the form oflkbwr shear modulus, or thermal conductivity.
Cellular materials, which are composed of one splidse and one void phase, are considered at this
stage. By conducting finite element analysis of BRC, and applying the Homogenization theory,
elemental sensitivity numbers are derived. By gahdemoving and adding elements in an iterative

process, the optimal topology of the solid phadaiwithe PBC is found.

In the next stage of this study, the aim is to comladditional performance constraint to the above
procedure. Maximization of bulk or shear modulusetected as the objective of the material design,
subject to the constraint on the isotropy of mateand volume constraint. The proposed BESO
procedure utilizes a gradient-based method to implos isotropy constraint. The developed approach
provides bases for the design of materials, witieotobjective functions and extra performance

constraint or multi-functional properties.

Compared with cellular materials, composites of wvamore different constituent phases are more

advantageous, since they can provide a wider rahgerformance characteristics. The methodology



is extended into topology optimization of microstures for composites of two or more non-zero
constituent phases. For design of material with imar stiffness or thermal conductivity, the
constituent phases are divided into groups anditsgtysanalysis is performed between different
groups. The addition and removal of elements iglaoted based on the relative ranking of elemental

sensitivities and imposing volume constraints.

The developed methodology is extended into thegdesf functionally graded material (FGM), in
which the mechanical property of material gradualignges. It is assumed that the microstructure of
the FGM is composed of a series of base cellsardttection of gradation and self-repeated in other
directions. The objective of optimization is to geste the lightest materials with prescribed vt

in bulk modulus, shear modulus or thermal conditgtivn particular the study proposes a new
computationally efficient approach for maintainitng connectivity between different base cells of an

FGM.

Finally, an approach is proposed for the topoldgissign of FGMs with two non-zero constituent
phases and multi graded properties, which utilezed encompasses the methodologies developed in
the previous stages. The objective of optimizatiendefined to find the stiffest materials with
prescribed gradation of thermal conductivity. Tpeposed approach applies a gradient-based
sensitivity analysis to impose the constraint omrral conductivity. This is similar to the
aforementioned approach for imposing performanaestcaint on isotropy. Similar to the approach
used for cellular FGMs, the connectivity of basksds maintained by considering three base cglls a

each stage.

The effectiveness and computational efficiencyref proposed approaches are numerically tested,
through designing a range of 2D and 3D microstmestior materials. A series of new and interesting

microstructures of materials are presented. Theltseeglearly indicate the advantages of BESO



utilization in terms of computational costs and wengence speed, quality of generated

microstructures, and ease of implementation asaocessing algorithm.
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Chapter 1

Introduction

Background

The main objective of structural engineering isdevelop load carrying systems that can
economically satisfy the design performance objestiand safety constraints. Economical
consideration is the main driver for developingigegrocesses that enables the minimization
of the resource consumption. Many engineering plis@s are involved in optimization and
apply mathematical language for this purpose. Far optimization of structures, this
objective can be achieved by finding the best togwl layout of members or material

distribution within the design domain of the sturel system.
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The history of the structural optimization can beced back to Michell's (1904) theoretical
studies in Melbourne, on optimality conditions dfustural systems. However, the early
studies were mainly restricted to the size and stoggimization of predetermined topologies.
Wider access to computational machines in 1990sfiggs the development of numerical

procedures for the topology optimization of struef) aimed at finding the best layout,
configuration and spatial distribution of materiafsthe design domain of the continuum
structure (Bendsge and Kikuchi, 1988, Rao, 19950812002, Schramm and Zhou, 2006). It
was not so long afterwards when the first topolagptimization commercial software

packages such as “Altair OptiStruct” emerged (Stimaand Zhou, 2006). Since then
refining the theories and developing new metho@samnong the active fields in structural

engineering.

In addition to topology optimization of structuras macro-scale, one common approach for
saving resources is the application of porous onpmsite materials that have extreme or
tailored properties. In fact, the responses ofcstinal systems are highly dependent on the
material they are built from. Although the applioatof composite materials in structures has
had a rapid development in the past few decadesd#a of combining materials in order to
achieve improved characteristics is not new. Fange, the strengthening and stiffening of
cheap materials with fibres can be traced back@®%ears ago (Barbero, 1999). Some of the
earliest records of strengthening mud bricks andteppo with straw are found in
archaeological carvings in Egypt. The processiooatl in ancient Babylon was made up of a

mixture of bitumen and straw, as the reinforcenfimngs.
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There are different reasons for the interests iteres with tailored or improved properties
and a variety of performance demands in terms oftfanal properties are being placed on
material systems. These include lightweight malemdth improved or tailored mechanical,
thermal, electromagnetic, optical, chemical, an@fproperties (Evans et al., 2001, Torquato,
2002). For instance, applications of lightweight ltifwnctional products in vehicles save
energy in terms of lower fuel costs and can sigaiitly reduce the environmental impact of
gas emissions. It is estimated that reducing ologiteém of the weight of an aircraft can save
US $80,000 over its lifetime; while decreasing é&ilegram on a satellite weight can reduce

the launching costs US$8 million (Cree and Pughi020

Traditionally, the objectives of material desige acchieved by the application of composites
in the form of fibre, particulate or laminar (Figul.1), in which the properties of materials
are controlled by modifying the location, orientaiti material constituents, or volume fraction
of fibre, particles or laminar inclusions (StaaB99). The traditional material design method
follows a trial-and-error process through whichigeshanges are made, and the material is
re-analysed until its performance meets the ohjest(Torquato, 2010). Although material
design has achieved its objectives in certain caéisesigh this approach, the desire for
development of systematic means, has made matsign an active field of research

(Gibson, 2010, Cadman et al., 2013).

In newer types of composite materials, namely the tianally graded materials (FGM)
which are characterized by gradual change in ptgserthe gradation of response is still a
result of variation in composition and/or microstiural layout of material. To achieve

materials with desired heat resistance properties, primary FGMs were developed as
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composition of ceramic and metallic constituentggsa Spherical or near spherical particles
of metallic or ceramic phase are randomly dispewsitdin the matrix of the other material
with varying proportion. As a result, inhomogeneityd gradual variation of thermo-physical
characteristics are developed into the materid¢lysdy varying the volume fractions of the

constituent phases (Koizumi, 1997, Birman and B2a0)7).

Figure 1.1: Composite classes: (a) Fibre Compogi;Particulate Composite; (c) Laminar Composiie)

Cellular Composite

Technological advancement in manufacturing methsdsh as Selective Laser Melting
(SLM) (Mutmta and Hopkinson, 2007, Yang et al., @)land Solid-Freeform Fabrication
(SFF) or Layered Manufacturing (LM) for 3D printinghao and Luc, 2000) in the last
decades, has enabled the economically viable metowiiag of materials with large
heterogeneity. The development of high precisidori¢ation technologies is paralleled by
research on an emerging class of composite madtial are made by representative unit
cells (RUC) or periodic base cells (PBC) (Zhou &nd2007). Materials with repeating or
periodic microstructures usually consist of onestibment phase and a void phase (known as
porous or cellular materials), or combinationsvad br more different constituent phases with
or without the void phase (also named as “periadimposites” (Huang et al., 2012). The

overall properties of these types of materialscmetrolled by the spatial distribution of the
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constituent phases within the PBC, as well as tr@pepties of constituent phases. In
comparison with traditional composites, periodioposites demonstrate greater flexibility in
terms of their capability to be tailored for présed physical properties, by controlling the
compositions and/or microstructural topology of tmastituent phases (Cadman et al., 2013).
They can also be easily tailored to have gradatidheir functional properties, in the form of

an FGM through gradual changes in the microstrattopologies.

1.1. Problem statement and methodology

The periodic base cell (PBC) can be viewed as erbgéneous continuum structure, which is
composed of different constituent materials (orstibment phases) (Bendsge and Sigmund,
2003). It has been shown that the properties oénads$ are influenced by the topology of the
PBC (Hassani and Hinton, 1998a, b, c). Hence, aom&allenge in the design of these
materials would be the determination of the optisgétial distribution of the constituent
materials within the PBC. In the simplest form, gexiodic composite materials consist of a
2D or 3D scaffold of matrix, in which the other gka are included. Therefore, it is
reasonable to apply the structural topology optatian methodologies for determination of

the spatial distribution of the phases.

Progress in the area of numerical methods is aitesad of mathematical approaches. The
reason is largely attributable to the fact that thathematical approaches usually require
exhaustive formulation and rigorous solutions father simple optimization problems; while
in numerical approaches complicated models coulddbealt with using rather simple

principles (Cherkaev, 2000). On the other hand, enical topology optimization usually
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involves with large numbers of design variablest thaake the use of conventional
mathematical optimization algorithms inappropriaibey may not be efficient enough to
solve the problems with large heterogeneity, maadythe result of high time consumption
(Cadman et al., 2013). In the past two decadesraewumerical topology optimization
algorithms have been examined, with the goal ofeltsming a systematic approach for the
design of periodic materials. One of the main comeen these attempts has been the

computational efficiency of the approach.

Basically, topology optimization techniques, sushh@mogenization method (Bendsge and
Kikuchi, 1988), solid isotropic material with peization (SIMP) (Bendsge, 1989, Zhou and
Rozvany, 1991, Rozvany et al., 1992), Level-Sethodt(Wang et al.,, 2003, 2004),
Evolutionary Structural Optimization (ESO) (Xie a8teven, 1993, 1997), and Bi-directional
Evolutionary Structural Optimization (BESO) (Queghal., 1998, Yang et al., 1999, Huang
and Xie, 2007b, Huang and Xie, 2010b) were develdpefind the stiffest structural layout
under given constraints. Prior to the commencenoérnhis research, the SIMP (Sigmund,
1994b, 1995), Level-set (Wilkins et al., 2007, dibadt al., 2008, Zhou et al., 2010) and ESO
(Patil et al., 2008) have been extended into tisggdeof periodic microstructures of materials

and composites.

Different topology optimization techniques have ahages and disadvantages in terms of
computational efficiency, quality of generated rogtructures, robustness, and the level of
effort for implementation as a computational pastegssing procedure, to name few. Among
various topology optimization algorithms, ESO (&ed Steven, 1993, 1997) was originally

developed based on the concept of gradually remowiafficient elements from the finite
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element model of the structure so that the regutiipology evolves towards an optimum. A
later version of the ESO method, namely the bidliomal evolutionary structural

optimization (BESO) (Querin et al., 1998, Yang let }099) allows removal of elements from
the least efficient regions, and the adding of elet® to the most efficient regions of the finite
element model of the structure. Further develogmef BESO have been made by
theoretically introducing the hard-kill BESO (Huaagd Xie, 2007b) and soft-kill BESO

(Huang and Xie 2009a, 2010a) under particular anstances. The new BESO (Huang and
Xie, 2009a) alleviated most of the imperfectiongmdvious versions (Rozvany, 2001a, 2009,
Huang and Xie, 2010a,c). It offers several advaegaig comparison with other topology

optimization algorithms in terms of quality of thenerated topology and convergence speed.

This study is the first attempt to extend the aggtion of the BESO to the design of
microstructures of materials. Since materials Whiijh stiffness are more desirable from the
structural application point of view, the first gtef this study is the development of the new
algorithms for designing lightweight cellular masés with extreme stiffness. Thereafter, the
methodology will be extended into other scenaridsnaterial design. While offering
innovative methodologies in material design, intigatar other steps are arranged in such a
way to provide keystones for the systematic desfgoomposite materials with gradation in
properties. For this purpose, new procedures wilinbroduced for design of composites with

multi-functional properties.

In particular the objectives of this study are:
. Development of a computational algorithm for togdal design of cellular materials

with extreme properties;
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. Development of a computational algorithm for togt@al design of microstructures
with additional constraint on material properties;

. Development of a computational algorithm for desigmmicrostructures of composites
with extreme properties;

. Development of a computational algorithm for designmicrostructures of functional

graded materials (FGM);

It should be mentioned that the properties of neltenvaries by their chemical and atomic
configurations as well as by their particular mgtractural topology (Mercier et al., 2002).
However, this study deals with materials with anmstructural length scale much larger than
the atomic dimensions, and also considerably sméfien the overall dimensions of the
structure. Therefore, it is assumed that the itden& forces are negligible. It is generally
known that at the molecular level, the propertiesnaterials are substantially different. For
example (Duan et al., 2006) showed that at the Nanel, materials can be much stiffer than

its constitutional phases. However, these typesaitrials are out of scope of this research.

1.2. Significance

As discussed earlier, the performance enhancemematerials will lead to significant saving

of energy and resources. For instance, lightweaigdierials can save energy in terms of lower
fuel costs and emissions, thus reducing their eafbotprint. The demand for new materials
with improved functional properties is constanthgreasing. As a consequence this growth
necessitates the development of more advancedndiesits. In the case of periodic materials,

as the problem involves continuum microstructuréth \Warge heterogeneity, this objective
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can be achieved by the application and developnoérdppropriate structural topology

optimization methods.

In spite of the fact that the new BESO procedure waly very recently developed, the
method has acquired great successes in solvingogpoptimization problems in different

areas of structural engineering. These include mimng structural volume with a

displacement or compliance constraint (Huang arel2009b; 2010a), stiffness optimization
of structures with multiple materials (Huang ande X2009a), design of periodic structures
(Huang and Xie, 2008a), structural frequency opation (Huang et al., 2010), topology
optimization for energy absorption structures (Hpast al., 2007) and geometrical and

material non-linearity problems (Huang and Xie 202008).

This study will extend the application of BESO he tdesign of microstructures for materials,
and introduces a new methodology for solving ergyimg problems related to the design of
materials. The outcomes signify the theoreticalantgnce of the research. On the practical
side, the advantages of BESO in simplicity, velisatand ease of implementation will

provide engineers with a new methodology and aramackd design tool for the exploration

and creation of novel materials that possess tngined functions.

More importantly, the previous studies on matedaisign through structural topology
optimization methodologies have indicated thatghaerated micro-structural topologies are
highly dependent on the applied optimization akloni and parameters (Sigmund, 1994a,
1994b, Neves et al., 2000). This relates to the tfaat a number of topologically different

microstructures could provide similar material prdp. In other words, there are many local



Chapter 1 14

optima in the design of microstructures for matsriiherefore, it is important to attempt new
and different optimization algorithms, such as BE8Corder to find a much wider range of

possible solutions to the material design.

1.3. Organization of the thesis

This study deals with the topology optimization wficrostructures for materials and
composites. In the next chapter a review on varistrsictural topology optimization

techniques will be presented. The process of natdasign involves the determination of
material properties, through the modelling of iepresentative volume element (RVE).
Chapter 2 also briefly introduces some of theseéhous. This is followed by a brief summary
of previous research on the applications of stmattiopology optimization methodologies in

the design of microstructures for materials.

Chapter 3, deals with the topology optimizationr@dterials with extreme properties using the
BESO technique. In this chapter, cellular materialsose microstructures consist of one
material phase and one void phase are considehedstétement of the optimization problem
will be presented and the details of design algorg will be explained. Numerical examples

will be presented and compared with literature.

Chapter 4 examines the possibility of combiningitidal constraint with the procedure
explained in Chapter 3. This is done by defining tlonstraint on the isotropy to the material
properties. The result of this study will provideses for the further development of

procedures for the design of materials, with camstron other functional properties.
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In Chapter 5 a method for designing compositeswaf obr more constituent phases with
extreme functional properties will be introducednipared with cellular materials whose
microstructures are made of a solid phase and @ pbase, composites of two or more
different material phases, are more advantageoee gshey can provide a wider range of
performance characteristics (Zhou and Li 2008a, Af)er presenting the details of the
proposed method, numerical examples will be presktd validate the effectiveness of the

procedure.

Chapter 6 proposes a BESO method for the designabérials with graded properties. It is
supposed that the FGMs consist of one materialephasl a void phase, with gradation in
stiffness or thermal conductivity. In particularettprocedure introduced in this chapter
addresses the connectivity issue for the desiga séries of base cells for these types of
materials. The high computational efficiency of ireposed algorithm will be demonstrated

by numerical examples.

In Chapter 7 a combinations of the methods usdchapters three, four, five and six will be
applied to the design of FGMs, with two constitugiitases and incorporating gradual
changes in multiple functional properties. The tiowal properties that are considered in this

chapter are the stiffness and the thermal condtyctf materials.

Chapter 8 summarizes the research outcomes aneénmescommendations for future

studies.
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Literature review

It is known that the physical properties of matsriaan be controlled by changing the
compositions or microstructural topology of constitt phases. The analytical model for the
prediction of optimal materials properties propobgdBendsge et al.(1993), has demonstrated
that the topology of microstructures of materiaa e designed in such a way that materials
with extreme properties are achieved. Inspiredhizywork, Sigmund (1994a, 1994b, 1995)
developed a computational algorithm based on atsiral topology optimization technique,
to solve the problem of finding the microstructufes materials with given homogenized
(averaged) properties. The methodology is knowrfimgerse homogenization” (Sigmund

1994; Steven 2006; Cadman et al. 2012).
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Since the introduction of the approach, differeantictural topology optimization techniques
have been applied for the design of microstructdoesmaterials. Topology optimization
techniques differ in terms of their computationasts and efficiency, the quality of generated
microstructures, their robustness, and the level effort for implementation as a
computational post-processing procedure, to name fe addition to the solid isotropic
material with penalization approach (SIMP) that te®n used in the original work by
Sigmund (1994a), some other structural topologyn@pations techniques such as thevel-
set Genetic Algorithmand Evolutionary Structural Optimizatio(ESQO, were also used for

topology optimizations of materials’ microstructsire

This dissertation is dedicated to the extensiomhef Bi-directional Evolutionary Structural
Optimization (BESO) approach, into topological desof materials’ microstructures with
specified functional properties. The first sectadrthis chapter, deals with a critical review of
the structural topology optimizations methodolodiest have so far been applied to material
design. The procedure of solving the inverse probdé finding microstructures of materials
with desired functional properties, also involveghwa modelling technique in which the
homogenized or averaged properties of material stimated. Among several proposed
approaches for the estimation of average matenapgsties, two of them, namely the
“bounding of material properties” and the “Homogetion theory” are utilized in this
dissertation for different purposes and to variexients. Section two of this chapter provides
a brief survey about the development of these agbres. Section three briefly introduces

some of the applications of structural topologyiropation techniques in material design.
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2.1. Structural Topology Optimization

The emergence of mathematical optimization canrbeetl back to the introduction of
calculus of variations by Bernoulli, Euler and Lagge between the $7and 18' centuries

(Kamat, 1993). Generally, the calculus of variasiateals with finding the minima and
maxima of functions that are represented by diffeaé equations. The solution of these
differential equations identifies the optimal paimtf the functions. Although the calculus of
variations provides a robust solving method for éixéremization problems, except in very
simple cases, obtaining a closed-form solutionrion-linear differential equations is very
difficult. On the other hands the numerical apphmscfor solving the variational equations
involves an approximation of derivatives, in whitdhe time consumption, accuracy and
convergence of applied approaches are seriousgmngbin structural optimization (Kamat,

1993).

The theory of structural optimization has beenodticed by Michell (1904) in Melbourne,
for developing minimum weight truss-like structur¢Eschenauer and Olhoff, 2001).
However it was not until 1950’'s when with the adven digital computers, the idea of
structural optimization started to gain momentunmedr programming methods were
proposed (Dantzig, 1963) and significant improvetmams made into its theory and
applications, by solving a range of structural mation problems (Prager 1969; 1974; Save

1975).

The topology optimization, which is sometimes iot@mgeably referred to as layout

optimization or generalized shape optimization @@rand Taylor, 1979, Rozvany et al.,
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1992, Haber et al., 1996, Eschenauer and Olhoffl g@ims to find the best topology, layout
or configuration in the domain of continuum struetyDesign Domain). The Greek word of

“Topo” can be translated to “place”, “landscape

domain”. Mathematically, all subsets of
the R® space (including lines, curves and so forth) ai&ed topological domains. Topology
in the structural engineering field basically déses the spatial distribution of materials or

location of members and joints in a structure.

In the 1960s, topology optimization was improvedipy introduction of the so-called ground
structure (Dorn et al., 1964), in which mathematmragramming (MP) algorithms are used.
Other remarkable early works on topology optimizatiwere the introduction of “optimal
layout theory” by Prager (1969) (Prager and Rozyd®y7) and stiffness maximization of
solid plates with volumetric constraints by Chengd ®lhoff (1981). Later, the finite element
based “homogenization method” was introduced asfitse numerical structural topology
optimization technique by Bendsge and Kikuchi ()98Bhe development in the field
followed another finite element based topology mjation method, namely the
“Evolutionary Structural Optimization” (Xie and $tn, 1993), which will be discussed later

in this chapter.

The structural topology optimization problems afeem involved with the minimization or

maximization of a defined performance function, jeabto a set of constraint conditions
(Kamat, 1993). The variables are generally definsedeither the quantities that define the
geometry of physical system and/or the sizes of gtractural elements. For example
supposing that each point in the domain of a contim structure (design domain) can be

either a material or void, the topology optimizatiof a continuum structure may consist the
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determination for every point in space, existencalisence of material, so that the objective

function is extremized and the constraints aresfiati simultaneously (Kamat, 1993).

In contrast to the classical mathematical optinnimatmethods, which make use of the
differential equations for solution, the structucgdtimization methods often use simplified
algebraic equations which are solved in an iteeathumerical procedure. In a simple
maximization problem, the structural topology optation techniques often involve the

following general steps:

1. Selection of the initial design variables (matetygle, thickness of plate...)

2. Evaluation of the objective function for the curtreatting of design variables

3. Comparison between the current properties withptlescribed values

4. A procedure to update the design variables, so that objective function is

improved and repetition of steps 2 to 4 until ndaHar improvement of the result is

achievable

Various strategies that are taken in order to wptted design variables include the methods
that select the new design variables randomly herrhethods that use the gradient of the
objective function to obtain the optimum. It shoble mentioned that the selection of initial
topology or the procedure of updating the desigmat#es may result in a solution which is a
local optimum. Even if the solution has one globptimum with no local optima, still the
selection of the initial design and updating schemikaffect the number of repeats of the

above mentioned procedure.
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In the following sub-sections, some of these omation techniques are briefly introduced
and compared with the BESO. Because the BESO, wikitche applied approach in this
thesis, is based on materials distribution, hereememphasis will be given to materials

distribution methods of SIMP, ESO and BESO.

2.1.1 Genetic Algorithm

Genetic Algorithm is a global search stochasticragph, which is developed based on the
rules of genetic evolution of biological systemsl aelies on the “survival of the fittest”
strategy. Genetic Algorithm was originally develdgsy John Holland (1975) and coworkers
in Michigan University, with applications in biolmgl and artificial intelligence systems. It
gained much of its success as an optimizationfawvahe works of Goldberg of the University
of lllinois (Goldberg., 1989, Jenkins, 1991). Ther@tic Algorithm was used for structural
optimization by many researchers (Goldberg and &aini986, Jenkins, 1991, Coello et al.,
1994, Pezeshk, 2000), including topology optimaatof structural frames (Grierson and
Pak, 1993), trusses (Ohsaki, 1995) and continunmctsires (Sandgren et al., 1990, Jakiela et
al., 2000). Zohdi (2002) applied this topology ap#ation technique for the design of

materials, with prescribed bulk and shear moduélasticity.

The Genetic Algorithm operates on coded stringsidliyg binary numbers) that contain the
discrete design variables information for a patéicsolution. The value (ditnesg of design
variables in fulfilment of the objective functios assessed by analyses that are made on the
system, which are saved by convertingraapping of the values to binary strings (bits). The

mathematical bit string is analogous to the chramues in natural biological systems. The
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initial generation (generation 0) is produced bg tandom selection of bits in each string.
Usually, a population of 2n to 4m (s the number of variables) of families of strings

created as the initial trial solutions.

After the first round of analysis, the pairs gfaftent strings are selected among the best
potential solutions. The next step is to breakslected parent stings into segments and then
exchange the segments with the corresponding paegmbent, which is called tlieossover
procedure. To enable the exploration of the es&ch space, usuallynautationprocedure

is devised whereby some bits are switched on ofCofd 1 or 1 to 0) based on a probabilistic
formulation. The mutation procedure is a measuralltw the development of new features
that do not pre-exist in parents’ strings. It isittolled by the user through the prescription of
mutation probability. The fitness of each familyagain assessed and the procedure continues
into the next generation until the convergencettsirzed, or the specified maximum number

of generations is reached.

One of the characteristics of Genetic Algorithmthat the procedure searches among a
population of points in design space, simultangousl comparison with the methods that
shift the solution from a single point in desigrasp to the next, parallelization of search
among optima increases the “probability” of findiagglobal optimum point (Goldberg.,
1989). This fact contributes to the robustnesshef Genetic Algorithm. Another favorable
feature of the method is that the solutions areeliged based on the payoff or quality of the
solution itself. Therefore calculation of auxiliangformation, such as the derivatives with

respect to the objective function (sensitivity gsaé) is not necessary.
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However, in contrast to gradient based approadess lfelow) that improve one solution at a
time, the Genetic Algorithm needs to operate oropufation of solutions simultaneously.
This means that a larger number of design variabéesl to be defined and every iteration
(generation) needs several finite element analySessequently the finite element model of
the structure should contain only a few elementsldi@erg and Samtani, 1986, Jenkins,
1991). Otherwise, the procedure can become profehitexpensive (with 1Dto 1 ground
elements) (Rajeev and Krishnamoorthy, 1992, Hageld Lee, 1995, Rozvany, 2009). For
instance, topology optimization of a cantilevertplavith 2800 elements roughly requires

about 150,000 finite element analyses of the streqiKane and Schoenauer, 1996)!

Another major drawback of the Genetic Algorithm fmpology optimization is that the
integrity and continuity of the structure is notaganteed. As the adding or removing of
elements is based on a random search algorithis, ntore likely that during the design
process the structure is divided into several uneoted regions (Fanjoy and Crossley,
2002b). As the load transfer does not happen betweeonnected regions, the structural
analysis may result in false information. Therefohe optimization procedure fails. Different
approaches have been introduced in the literataréatkle this problem, including the
introduction of a chromosome mask to modify theoamwsome information in unconnected
locations (Fanjoy and Crossley 2002a; 2002b), $uvitg the unconnected elements to void
(Jakiela et al., 2000) and penalizing the uncoreteetements (Wang et al., 2006). However
these approaches either fail to completely allevide discontinuity problem or result in a

poor fitness values with even more computationpkeses (Zuo et al., 2009).
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2.1.2 Level-set method

The mathematical concept of Level-set was introdubg Osher and Sethian (1988) for
computation of moving interfaces (Burger and OsI&05). It was recently used as a
numerical procedure for the structural topologyiropation, as an alternative approach to
material distribution methods (Sethian and Wiegma&®90, Osher and Santosa, 2001, Wang
et al., 2003). Its applications have also beenneldd into a variety of topology optimization
problems such as compliance minimization (de Goureiaal., 2008) and the design of
microstructures for materials (Mei and Wang, 20084kins et al., 2007, Challis et al., 2008),
including materials with negative Poisson’s ratWang and Wang, 2005b), with specific
electromagnetic characteristics (Zhou et al., 204®) negative permeability (Zhou et al.,

2011).

The Level-set approach derives its name from thetfan that describes the boundary of the
structure (Challis, 2010). The level-set of thelacéunction @ ‘R® - R s defined in

some domaif2 as:
S(t) ={x(t): e(x(t).t) = 7} 2.1)

where z is a constant value, which is known assbevalue and is usually taken as equal to
zero in structural problems. The standard definitaf the Level-set divides the design

domain into 3 regions (Wang et al. 2003):
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<0 if xOQ
p(x)=4=0 if x00Q
>0 if xOQ

(2.2)

where the area covered B s filled by material #mgl 0Q represents the structural
boundary. In finite element modeling of the struetuusually the discreet level-set definition
is used (Challis 2010). When the elements are reittaerial or void, the level-set function

can be defined based on the position of the ceftelements simply as (Challis 2010):

<0 if x,=1
>0 otherwise (2.3)

¢(Ci):{

In the process of structural optimization, the leset functionS(t) dynamically changes in

time so the structural boundagf2 also changes.eVbtution of the surface is determined
by specifying the “speed vector” of the level-satface at different points. By differentiating
the equation (2.1), with respect to time and apgjythe chain rule, the so called “Hamilton-
Jacobi” type equation is obtained:

0¢ dx
— =—|U¢|— =—-|Ug|V

o - 0Pl =D 2.4
which correlates the speed vector of the pointhensurface to the objective of optimization .
The optimal structural boundary is expressed agw@enical solution of this partial differential

equation on® (Wang et al., 2003).
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One of the advantages of the Level-set is thatajygroach can provide sharp interfaces
between different constituent phases of the stract@his makes the interpretation of
boundary and manufacturing easier, in comparisah ether topology optimization methods
that use continuous variables such as the SIMPg@uand Osher, 2005). However one of
the drawbacks of the above mentioned classical dtation is that it does not allow the
systematic formation of new holes in the topolodyswucture (Allaire et al., 2004). The
Level-set method is generally devised to desctieepropagation of interfaces with a defined
speed function; therefore, holes within existingmts and away from the boundaries cannot

be initiated (Burger et al., 2004).

Different solution methods have been proposed teestie problems of nucleation of new
holes in the structure. One way is by introducia@é number of discrete holes in the initial
design (Allaire et al., 2004). The above mentioheuel-set setting is capable of merging or
cancelling these holes and creates a structurefewitbr holes in later iterations. However, the
nucleation of further necessary holes in lateresagill remain an unsolved problem. It is
known that the number and location of the initialds have an important effect on the final

solution (Allaire et al., 2004, Wang et al., 2003).

The other method that has been proposed for sothi@groblem of new holes nucleation is
by the modifications of the Hamilton-Jacobi equatithrough the introduction of a forcing
termQ (Burger et al., 2004). The modified Hamilt@edbi differential equation that needs to
be solved is:

0¢

——=-|0¢|v-wq

ot (2.5)



Chapter 2 27

in which w is a positive weighting factor which det@énes the influence of the te@n The
determination of the forcing terrand the speed vectorare involved with the sensitivity
analysis of the objective function. The selecleid dependent on the problem at hand and its

weighting factorw should be determined by the user as an initisdrpater (Challis, 2010).

Therefore its successful application is highly defent on the user’'s experience. Since
introducing additional constraint in the Level-sgpproach also involves with further
modification of the Hamilton-Jacobi differential wagion (2.5) by adding extra weighted
terms (Challis et al., 2008), the successful imgetation of the method in conjunction with

extra constraints is very cumbersome, especialBDrproblems.

In general the Level-set approach is mathematicaltyre complicated and harder to be
implemented as a computational procedure, in coisparto the materials distribution
approaches. Therefore, the approach has not redbbestage of regular application so far
(Rozvany, 2009). In the subsequent sections, timeéhods that are based on material
distributions, namely the SIMP, ESO and BESO are&flgr reviewed. Due to the

mathematical simplicity of these approaches, ththous also received more attention.

2.1.3 Homogenization method

Homogenization method is a mathematical approachfifaling optimal topologies of
structures. It was the first practical methodoldgy topology optimization of structures
which was developed by (Bendsge and Kikuchi, 1988)s sometimes referred to as
“generalized shape optimization”. So far, the applohas been used extensively for topology

optimization of structures for example in (Allaiemd Kohn, 1993, Suzuki and Kikuchi,



Chapter 2 28

1991). This methodology has also been used in ¢ggobptimization of materials in a
number of publications, for example in (Terada #ikuchi, 1996, Fujii et al., 2001). The
Homogenization method was the inspiration for depelent yet another important structural
topology optimization approach namely the SIMP rodtliBendsge, 1989), which will be

discussed in the next section.

In the Homogenization method, the boundary shapiengation problem is changed into the
material optimization problem in an extended desigmain (Fujii et al., 2001). In this
method the structure is seen as a combination ofostructures. The physical properties of
these microstructures are assigned to the elemehtshe discretized domain. The
microstructures are introduced with different mialemodels such as square unit cells with
rectangular void or rank layered materials (Figi2el)). The physical properties of the
microstructures are controlled by their geometrjgatameters. The parameterization of the
cells is made in such a way that they can yieldti limiting cases of completely solid
element or void elements. This means that by cimgntiie design variables such as void
dimensions, the void region, defined inside a nstrtcture, can cover the whole area of the
microstructure. It is also assumed that large remnlof these microstructures exist in the
structural domain. In topology optimization througbmogenization method, the geometrical
parameters are defined as design variables andbjeetive of optimization is to find their

optimal values (for example the sizes and oriemiadif the void regions in square unit cells).
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Figure 2.1: Examples of microstructural models useHomogenization method

In homogenization method, it is assumed that tleist many microstructures of similar
geometry next to each other which are referred dopariodic microstructures. The
assumption of periodicity for microstructural boamng conditions enables the
“Homogenization theory “ to be used for finding tbfective properties of the equivalent
homogenized structure made by the these microstest In the case of ranked layered
microstructures the homogenization problem candbeed analytically but for other voided
microstructures, numerical approaches such a< fielément methods need to be applied.

The “Homogenization theory” will be discussed inmndetails in section 2.25.
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In the homogenization method the number of desaables is proportional to the numbers
of elements in the design domain. Therefore, th@i@tion of mathematical programming
approaches for solving topology optimization proieis very costly due to existence of
large number of design variables in the model. Yercome this difficulty, the approach of
“optimality criteria” is usually applied. As it wilbe described in (see section 2.1.4), the
optimality criteria methods are indirect optimizatiapproaches that arrive at optimal solution

by satisfying a set of conditions related to thegrenance of the structure.

In the finite element based homogenization method topology optimization, the
Homogenization theory is applied and the effecix@perties of microstructures are assigned
to the elements of finite element model of thedtrre. Then the finite element analysis is
performed to evaluate the performance of the siracin satisfying the objective function.
The next step is to use the Homogenization theondyaptimality criteria principals to update
the design variable in such a way that the strattperformance get closer to the objective
function. The iterative procedure continues untl farther improvement in the objective

function can be achieved.

It is noted that the problem is solved in a fixemndin, so the finite element model used in
the analysis doesn’t need to be altered duringpfitenization procedure. The final topology
may contain three types of regions, namely, s@alans (filled with material), empty regions
(without material) and porous regions (regions vitfinitesimal cavity sizes). However, the
optimal solutions usually have high manufacturingts since there are many small cavities
in the structure (Rozvany et. al. 1992). For tlksigh of microstructures of materials this

problem may cause more difficulties since the nstriactures are generally of smaller sizes.
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2.1.4 The SIMP method

The idea of the finite element based material ithsion method can be traced back to the
studies of Rossow and Taylor (1973) which useddbmetinuous design variables without
penalization of intermediate densities in topolagtimization (Rozvany 2009). In another
pioneering study, inspired by the “homogenizaticgtimod” (Bendsge and Kikuchi, 1988), the
principals of the SIMP were first proposed by Beawl$1989) for the topology optimization
of structures. The method was named “the directragmh” by Bendsge (1989). "Solid
Isotropic Microstructures with Penalization' or SIMvas coined by Rozvany et al. (1992) ,
and later on, used by Bendsge and Sigmund (1999) W' standing for "Material'. The
method is widely used for the design of microstuues for materials (Sigmund 1994a, 1994b,

1995).

In the topology optimization of continuum structsinda material distribution, the aim is to
assign each point of space a solid or void prop@éendsge, 1989). Typically these topology
optimization problems are treated by discretizihg tontinuum structures into a finite
element model, which enables the alternation of th@ology, without the need for re-
meshing. In the simplest form where there is ongative functionf(x) (for example the
compliance)and no other performance constraint, a structodlbgy optimization problem

can be mathematically formulated as:

Minimize: f(x)

N
Subject toV" =Y Vx =0 (2.6)
i=1
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Xx=0 or 1

in which V" is the prescribed volume of structure avidis the volume of elemerit ; the
design variablex  indicates the presence (1) or ralesg0) of the element. Similar

formulation for the point-wise material/no materfalso known as black/white (Bendsge and
Sigmund, 1999)) optimization was suggested by Kah Strang(1986) and Strang and Kohn
(1986). However, as practically examined by Bendsge andidfik (1988), these classes of
problems are ill-posed and would be dependent ensétection of the elements’ sizes and
discretization mesh. For example it can be shovan bly using finer and finer mesh in the
finite element model of structure, the optimizatjgmcedure results in structures with more
and more members of smaller sizes and no conveegsnachievable by using even finer

mesh sizes (Bendsge and Sigmund, 1999, Huang &@XL0b).

To tackle these problems the SIMP method usesaxagbn method, in which the design
variables are freed to take any value between 0 Jn@endsge, 1989, Sigmund and
Petersson, 1998). Then some form of penalizatigmageh is used to steer the solution to a

discrete 0/1 values. The new definition of theroation problem has the following format:

Minimize: f(x)
. N
Subject toV" =Y Vx =0 (2.7)
i=1

0<X,, <% <1
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in which lower boundx, is defined in order to avoidgularity of the problem. Supposing
that f(x) defines some energy form of the structural properfe.g. compliance), it can be
seen that the new formulation of the problem makesenergy linearly dependent on the

design variable (Sigmund and Petersson, 1998).

The key issue in “SIMP” topology optimization methc defining a relationship between
materials properties and a continuous design MVierigks mentioned before, the continuous
design variable is often interpreted as the eleate@nsity. This relationship is known as the
“interpolation scheme”. In the original study of Risge (1989) the so-callggbwer-law

approach was used as material interpolation schEoreexample the local material elasticity

can be interpolated as:

Eiw (%) =X Ej (2.8)

in which Ej, is the elasticity tensor of the base materlf the penalization factor is selected

as p=1, the intermediate densities are allowed to ekisthe model. By increasing the
penalization factop >1 the intermediate values of the design variabyeay elements) are

suppressed and the stiffness tends to be very tdoegher 1 or 0. By using most filtering
techniques it is still not possible to have a pQfe solution and some grey elements will

always remain in the structure.

For the cases where the volume constraint is gativmerical experiences indicates that the
solution gets very close to 0/1 designs, if theesteldp is sufficiently large. The reason is

attributable to the fact that for such a choice, tbhlume still remains linearly proportional to
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X , but the intermediate densities are suppressatiffness calculations and stiffness will

become less than proportional (Bendsge and Signia@9).

On the other hand, the interpolation scheme of mug2.8) does not guarantee that the

summation
N
i=1

in fact corresponds to the specific volume. Howeaver possible to establish conditions pn
so that the power low scheme has a meaningful palysiterpretation. Bendsge and Sigmund
(1999) showed that the power-law model can achgveal physical meaning provided that

the following equations hold:

2 4 .
>Zmax———,—— in 2D cases 0
P >{1—|/ 1+V} (22
1-v 31-v) | .
>maxls——, 3D 2.10.b
p >{ Ty 2(1—2v)} in cases ( )

where V is the Poisson’s ratio. Instead of using plogver-law scheme with a penalty
exponent, some researchers applied the analytmahds on materials properties (such as
Hashin and Shtrikman (1963) bounds), as the intatipo scheme (Zhou and Li, 2008d).

Hence the necessity for determination of penalpoeent is circumvented.
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For finite elements’ based structural optimizatidhere are several solution algorithms
(Coville, 1968, Asaadi, 1973, Schittkowski et 41994, Chen et al., 2001). Two numerical
approaches that are frequently used in conjunciuith the SIMP method, namely the
“Method of Moving Asymptotes”, and “Optimality Ceitia methods” are briefly introduced

here.
2.1.4.1 Method of Moving Asymptotes (MMA)

The MMA was originally introduced by Svanberg (198%s a further advancement to
“Sequential Convex Programming” (Fleury, 1979). illastrate the method, suppose the

following optimization problem statement:

Minimize: f,(x)

Subjectto:  f;(x)< T, j=1..m (2.11)

0<x,,<x<1 i=1..n

in which f,(x) is the implicit objective function and;(x) j=(,2,..m are the implicit

behavioral constraints; the general sequentiatisolicwonsists of the following steps:

Step 1: Select the starting poixit”

Step 2: Calculatef,(xV) andf,(x") f@0,1,...m

Step 3: Calculate approximate explicit functionsfp(x“)) (4=0,1,2,..n) (see below)
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Step 4: Calculate better approximation of the desariables

Step 5: If the solution is not converged go to &pptherwise end

Several methods have been suggested for the apmtan of the original functions in the

neighboring points ok® in step 3 (Schmit and FarsB74, Fleury and Braibant, 1986).
For example, in the well-known “Sequential Lineaodtaming” or SLP the approximation

function has a rather simple form of (Haug and Q&€81):
f(t)(x) =f (X(t)) +Zi( t+) _ (t)) 212
i W= 0% X (2.12)

In the MMA, another linearization scheme is sugeésivhich uses variables of the type
1/(x —-L) and 1/(U, -x ) . The variables, and,  are experimentallystdfl through

iterations and are known as “moving asymptotesa(erg, 1987, Schittkowski et al., 1994).

The transformed sub-problem has the following form:

Minimize:

t () t t
f(t)(X)_f(X(t))+Z( p(()l) + 001' ) Z( p((m) q(m)

u® - - X )g—l_ft) U(t) )g(t) )Q(k) Lft)) (2.13)
Subject to:
_ Py, ap P q(.” . =
f009 = f,() + Z(UG)J X ! ]h(t)) Z(Um ] >¢t) ] Qt))< f J=dem
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;/it) <)§ <minqqﬂj(t)) i=1..n
where:
of. of.
U —xM2_L jf —L>0
po =Y =% x| ox (2.14)
otherwise
0 = —(L§”—>¢‘))Zﬂ it %i<o
Qi = ox 0X
0 otherwise

in which 14” andﬁj“) are the move limits that are coteglao the moving asymptotes . The

solution to the above mentioned sub-problem campérormed using a dual method as
described in (Svanberg, 1987). Numerical experigrst®w that the method allows a better
approximation, in comparison with other convex pahares (Schittkowski et al., 1994).
However the successful convergence of the procedudependent on the selection of the
initial x° and the moving asymptotes. It may happen thaptbeedure does not converge

(Schittkowski et al., 1994).
2.1.4.2. Optimality criteria method

The basic idea of Optimality Criteria (OC) for sttural optimization was proposed by
Michell (1904). Later on, the OC method has beeweldped as an alternative to
mathematical programming approach. A historical’eyron the method has been presented

in (Rozvany, 1989). As opposed to mathematical ganogning methods which directly
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maximize or minimize the objective functions, th€ @ackles the problem indirectly through
satisfying a series of intuitive or mathematicaltesra (Hassani and Hinton, 1998c). An
example of intuitive optimality criteria is the salled “fully stressed” design in which the
structure is deemed to be an optimum when its compis are fully stressed. Mathematical
criteria for OC methods are usually based on theugtaKuhn-Tucker (KKT) optimality

conditions (Karush, 1939, Kuhn and Tucker, 1951).

The KKT conditions present the necessary critesiatlie optimality of a solution in a non-

linear programming. Supposing an optimization steet in the form:

Minimize f,(X)

Subjectto:f,(x)<0 i=1..m (2.15a)
and f,(xX)=0 i=m+l..,n
Xpin S X% <1

It is assumed that the functiorfs(x) j=(..m) are differentiable ak  and also the gradients

of the active constraints are linearly independsnth a point is also known as the regular
point). In the case that* is a local minimum, the KKT conditions state thihére exist

constants of; andg; (known as dual variables) such that:

Oo(x)+ 3 (06,6 ) + D (0,0, (x)) = 0

i=m+1
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f(x)=0 i=m+1,..,n (2.15b)

f(x)<0 ;5 f(xX)=0,5=20 i=1,..,m

It should be pointed out that the irregular poithiat violate the conditions of KKT can also
be local minima and the criteria does not state gh#iciency conditions of an optimal

solution (Kamat, 1993).

2.1.5. Evolutionary Structural Optimization (ESO)

In 1993, Xie and Steven (1993) introduced an apgroaalled Evolutionary Structural
Optimization (ESO). It is based on the concept r@fdgally removing inefficient materials
from the finite element model of the structure kattthe topology of the structure develops
gradually toward an optimum. Due to the simplicity the approach, it gained great
popularity since its primary introduction and h&eb the subject of extensive studies (Burns,
2002). Solving stiffness and displacement problé@isu et al., 1996), dynamic analysis of
structures (Xie and G.P.Steven, 1996, Zhao efl887),buckling analysis (Manickarajah et
al., 1998) or multi-criteria optimization (Proos at, 2001) are examples of its continuous
development. The Bi-directional Evolutionary Stwet Optimization (BESO) is also
considered to be an important development, reguftiom the studies on ESO (Querin et al.,
1998). Recently use of the ESO method has beeméad into the design of microstructures

for materials, to attain the desired thermal coniglitg (Patil et al., 2008).

The failure of the structure happens when stresst@in on some elements exceed the

maximum values. Inversely, low-stress or strainmaets can be accounted as inefficient
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materials. These two arguments imply that in araliddructure, identical level of stress

should exist in every element (Burns 2002). Thiscept leads to rejection criteria based on
the stress level in elements. In the original stigased ESO method (Xie and Steven, 1993),
the criteria for removing elements was based onebel of Von Mises stress in the elements
of the structure, which is a measure of averagesstin the structure. In the plane stress

problems, the Von Mises stress is expressed as:

02:, :\/0f1+0-222_0110-22+30f2 (2.16)

The stress level in elements is determined by #efiBlement analysis. In the stress-based

ESO the Von Mises stress of each element is cordgarthe maximum Von Mises stress of
the structur@,,, . At the end of each finite elemeralysis, the elements which satisfy the

following condition are completely removed from fivdte element model of the structure:

% <RR (2.17)

in which RF is the rejection ratio at the iteratiagn . The item procedure continues until
there are no more elements to be removed fromttiietsre which is known as a “steady

state”. At the steady state, all elements in tinecsire will have a stress level that is higher

thanU,\;a)R< RR . ifitis necessary, at this stage the rigactatio is increased, by the

evolutionary rate ER ) that is defined as an inigatameter in the ESO:

RF™=RF +ER (2.18)
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After this increment, the same process is repeateti, the new steady state is reached. The
procedure comes to an end when the structure sitthan desired stress level; for instance
when there are no more elements with the stresd less that 20% of the maximum stress.
However, this may not be the absolute best solwiwth only in a few special cases can the

fully stressed structure be attained (Burns, 2002).

Other criteria for removing elements can be basethe sensitivity numbers. The sensitivity
number is a measure for the determination of tHectf of individual elements on the
variation of the objective function. For the conapice optimization, Chu et al. (1996)

changed the elements removal criteria in the oalglBSO by applying the sensitivity of

elementsy, :

a =uKu (2.19)

in which K, is the elemental stiffness matrix and, is the displacement vector of thi@
element resulting from the finite element analydithe structure. The optimization algorithm
used in the compliance-based procedure is basitt@lysame as the stress-based ESO. The

only necessary modifications is the replacemer,gf and @, withd,,., andg’ respectively.

It should be mentioned that there are no noticediderepancies between the topologies

obtained by stress-based ESO and the complianestzgproach (Li et al., 1999).

The first impression of the ESO is that the apphoadbased on the Optimality Criteria with
the aim of satisfying some intuitive conditions waHiextremize the objective function.

Tanskanen (2002) studied the theoretical basefefcompliance-based ESO and tried to
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mathematically explain the validity of the approathe study concludes that the ESO in fact
minimizes the product of mean compliance and voluthéhe design domain is modeled
using equally sized elements, the ESO was considerbe similar to the Sequential Linear

Programming (SLP) optimization method (Tanskaned220

The numerical instability such as checkerboardepatand mesh dependency (see section
(2.1.7)) in the ESO, can be circumvented by degisirsmoothing algorithm by averaging the
sensitivity or stress of elements, with weighteduga of surrounding elements (Li et al.,
2001). The main advantage of ESO is its simpliditth in theory and application as a
topology optimization approach. It can be easilplemented as a post processing algorithm
to most finite element packages. Moreover, by gallduemoving elements, the size of the
finite element model decreases which make the agprdess expensive. In addition, the
resulting topology consists of a clear distinctregion without any gray area, which makes
the interpretation of the results easier. Howewethe ESO approach, if some elements of the
structure have prematurely or mistakenly been readdrom the structure, the recovery is not
feasible (Zhou and Rozvany, 2001). To avoid thaeseatsons, with the ESO it is usually

necessary to use very small evolutionary rate winekes the optimization costly.

2.1.6 Bi-directional Evolutionary Structural Optimi zation (BESO)

With the goal of improving the search capability tok original ESO, the Bi-directional
Evolutionary Structural Optimization (BESO) aims sanultaneously adding or removing
elements from the finite element model of the dtieee In the ESO, because the inefficient

elements are completely removed from the structhege is no information about the effects
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of these elements on the objective function, iarlatages of optimization. The general idea of
the BESO is to devise a scheme to restore theedkelelements, if necessary. The BESO

approach can be seen as a significant developmaiias resulted from studies on the ESO.

All of the BESO schemes that have been introducefdisapply the idea of ground structure
(Dorn et al., 1964), in which its elements covéres whole design domain including solid and
void regions. The BESO turns these elements on afjdbut keeps the record of their

geometrical information through the whole optimiaatprocedure. The primary schemes on
the improved ESO algorithm were suggested by Quedral. (1998, 2000a, 2000b) and Yang
et al.(1999) and further improvement by introducihg enhanced hard-kill (Huang and Xie,

2007b) and soft-kill BESO methods (Huang and X@Q%a).

2.1.6.1. Hard-kill BESO

In contrast to the ESO which gradually removes itiedficient elements from the finite
element model of the structure, the “Additive Exaoary Structural Optimization” (AESO)
has been developed with the aim of generating aptinstructures by starting from a
minimum ground structure and gradually adding elas¢o it (Querin et al., 1998,2000a). In
this method, the elements are added around theefilges surrounding the most efficient
elements. The most efficient elements are selesmeahng the elements with highest stress or
sensitivity numbers (Querin et al.,, 2000a). ES® baen combined with AESO in order to
develop a BESO (Querin et al., 2000a). In eactatitem, the numbers of added or removed
elements are controlled by two given parametersnety the inclusion ratio (IR) and

rejection ratio (RR) respectively.
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In another BESO that has been introduced by Yara.€1999), the criteria for adding or
removing elements was based on their effects owdhiation of the objective functions. As
mentioned before such effects are expressed bytisgpsnumbers. For solid elements, the
sensitivity number is calculated based on the te®fl structural analysis. For void elements
the nodal displacement is calculated by extrapmjatihe nodal displacements of their
surrounding solid elements. The sensitivity numbérthe void elements can then be
calculated using these extrapolated nodal displaocésn The procedure follows by the
ranking of elements based on the magnitude of gesitivities and switching to solid for
elements with higher sensitivities and to void &ements with lower sensitivity humbers.
Similar to the previous method, the numbers of needoand added elements are treated with

different criteria, through introducing the rej@ctiratio and an inclusion ratio.

As it was discussed earlier, the optimization vétkolid-void material distribution is an ill-
posed problem. Such an optimization is dependentheselection of the elements’ sizes and
discretization mesh (Bendsge and Kikuchi, 1988 @rawback of these early approaches is
that the numerical instability is not addressedpprty and computational efficiency is low,
due to the convergence problem (Rozvany, 2009, #laad Xie, 2010b, 2010c). It has also
been noticed that the best solution needs to leeteel among several topologies that can be
generated by varyin®R and IR (enumeration method) (Huang and Xie, 2010b, Rogvan

2009).

In 2007, Huang and Xie (2007b) developed a newrdlgo for the hard-kill BESO, in which
many issues such as a proper statement of optiornizatoblem and numerical instability (see

section 2.1.7) of the procedure has been addrébkexhg and Xie, 2010b). Suppose that the



Chapter 2 45

aim of optimization is to find the stiffest structuwunder volumetric constraint. In the hard-kill

BESO setting the optimization problem statemeudeitned as:

Minimize: f(x)=K (2.20.a)
. N

Subject toV' = > Vx =0 (2.20.b)
i=1

Xx=0 or1l (2.20.c)

in which the design variablg indicates the abs¢ayer presence (1) of the element in the
model. In contrast to the SIMP approach here, taments itself is considered as the design
variable. Huang and Xie (2007b) have used a fiigescheme to extrapolate the sensitivity

number of voids. The filtering is performed by sthe following weighting equation

=
Q

’u‘

i 4

(2.21)

[SH
1

=
=

11,
-

in which N is the total number of finite elements ittustural model and @; is the

calculated sensitivity number. The weight factorwf is defined as:

_ | Tmin ~ T if i < T'min (2.22)
) 0  otherwise '
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in which r; denotes the distance between element ed@hentj centres. The filter

radius ofrmi,is to identify the neighbouring elements that dffhe sensitivity of elemerit
The sensitivity numbers of void elements are sebdozero initially, and then modified
through the filter scheme. The addition and rem@faklements is based on the ranking of
elements, followed by switching elements to voiddtements with lower sensitivity numbers

and solid for elements with higher sensitivity nuarg

The above mentioned filtering scheme, together witlorporating the historical information
of elemental sensitivities, has shown to be ablewwercome a great deal of the numerical
instabilities, which had been a controversial peoblof the original versions (Huang and Xie,
2010b, Zhou and Rozvany, 2001, Rozvany et al., 2B@&vany, 2009). On the other hand
the unified criterion for adding and removing elensg offers an explicit control over the
volumetric constraint. The new hard-kill BESO albave a very high computational
efficiency, as the results of the mentioned improgats, as well as the fact that the

eliminated elements are not involved in finite edgrhanalysis (Huang and Xie, 2010b).

2.1.6.2. Soft-kill BESO

In the hard-kill BESO, solid elements can only griowhe proximity of the existing elements,
which in some cases may failed in rectifying theommect elemental rejection (Rozvany,
2001b, Zhu et al., 2007, Zhou and Rozvany, 200he domplete removal of elements also
may cause some theoretical predicaments, espeamaltyulti-physics problems (Sigmund,
2001, Zhu et al., 2007, Huang and Xie, 2010b). Aeraative approach can be the assigning

of very small density for the void elements (Hintand Sienz, 1995). The strain values of
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these elements can then be directly calculatedcendhne solid elements can grow in the
desired regions of the structure away from existialid regions (Zhu et al., 2007, Rozvany,

2001b).

Hinton and Sienz (1995) devised a fully stressedliBictional approach based on ESO, in
which, instead of completely removing elementsythees replaced by elements with lower
elastic modulus of the order £0Zhu et al. (2007) developed a sensitivity basd&56

method, in which the void elements are replacedabmicrostructural system known as
Orthotropic Cellular Microstructure (OCM). The OOMs a low density and in this approach
for adding or removing elements, they are assigree@CM'’s or solid elements respectively.
The numerical stability is addressed through amseheo limit the number of connected solid
elements along each principal direction (Zhu et2007). However the convergence of both

approaches encounter difficulties (Huang and X04,ab).

In the soft-kill BESO proposed by Huang and XieQ@4), the design variabbe is limited to

a minimum valuex_. (e.g. 0.001). That means the viddthents are not completely removed

min

from the structure. Therefore the equation (2.28.c¢placed by:

X =X, orl (2.23)

The Optimality Criterion for stiffness optimizatios applied based on the sensitivity of
elements with respect to the objective function.improve the convergence of the procedure
the effective property (for example Young's moduilustiffness optimization) is determined

though a power-low material interpolation schemern@ge, 1989):
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E(x;) = E5x" (2.24)

in whichE, is the Young's modulus of the solid materlais shown that by selecting the

penalty exponentp large enough the convergenceeopthcedure considerably improves.

The results obtained from the soft-kill BESO shosusilarities to those of the hard-kill
BESO (Huang and Xie, 2007b) which can be considaeethe justification of the validity of

hard-kill methodology (Huang and Xie, 2010b).

Although the new soft-kill BESO has been introdusedy recently (Huang and Xie 2009a;
2010b), it has shown its capability for solving ddev range of shape and topology
optimization problems with high computational eifieccy. In the following chapters this

methodology will be extended into the design ofnmstructures for materials.

2.1.7 Numerical issues in material distribution metods

As discussed earlier, in general, the structurgolmgy optimization thorough material
distribution involves with discretizing a predefthdomain into finite elements and devising a
numerical procedure to find the element-wise deparameters. Such a procedure frequently
encounters numerical instabilities that are categdr into “mesh dependency”,
“checkerboard pattern” and “local minima” (Sigmuand Petersson, 1998). In the following

subsections, these problems will be briefly addrdss
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2.1.7.1 Checkerboard pattern

Checkerboard pattermefers to the situation where regions of altengasolid-void (strong-
weak) elements are formed in some areas of thetsteu(Diaz and Sigmund, 1995, Petersson
and Sigmund, 1998). Diaz and Sigmund (1995) andalagHaber (1996) have shown that
the main cause of the checkerboard patterns lig®dam numerical modeling of the structure
specifically when the low-order finite elements ased.In fact arranging 4-node elements in
a checkerboard fashion would maximize the calcdla®ain energy density in elasticity
problems (Diaz and Sigmund 1995); therefore, theckérboard areas have larger stiffness
due to numerical errors which prevents the algoritio converge to the optimum solution
(Sigmund and Petersson, 1998). The topology opé#titz approaches such as SIMP, ESO

and BESO, based on material distribution are ptorsich numerical instability.

It has been shown in 2D continuum structures’ aégtproblems that the checkerboard
pattern can be prevented by using 8 or 9-nodeefiléments (Jog and Haber, 1996, Diaz and
Sigmund, 1995). This is attributed to the fact tiwat higher order elements have many more
degrees of freedoms per design variable. This makesnumerical calculations more
accurate. However, increasing the degrees of freedwakes the topology optimization
procedure costlyln addition, when a large value of penalty exporientsed with the SIMP
method, applying elements of higher order oftensdoet yield a checkerboard-free result
(Sigmund and Petersson, 199B).addition, the technique may not be helpful wilte ESO

and BESO methods.
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Inspired by the filtering scheme from image progagss Sigmund (1994b) implied a
technique in combination with the SIMP topologyioptation to overcome the checkerboard
pattern. The filtering scheme modifies the designsgivity of each element based on the
weighted average of the element itself, as welltaseighboring elements (Sigmund and
Petersson, 1998). Although the filtering scheme isomputationally efficient method, it
usually weakens the effects of the SIMP methodlitaieate the intermediate densities and
results in blur boundaries (Zhou and Li, 2008b)\e3al other techniques have been purposed
for solving this issue in the SIMP topology optiaimn. Heaviside projections algorithm
(see next section) (Guest et al., 2004), nonlim&Efnsion techniques (Wang et al., 2004a)
and the phase field approach based on Cahn-Hiltravdel (Zhou and Wang, 2007) are some

of the these methods.

Recently an adaptive refinement approach was apphéich uses an “analysis-mesh
separated density field” for tackling the numerigatabilities and achieving an improved
boundary description with SIMP (Wang et. al. 2018)this method, the design variables are
defined on some points in the finite element moaich are known as density points. By
defining an interpolation scheme the density ob¢hpoints are evaluated and restricted to be
either 0 or 1. The approach uses an additionaleefent procedure to identify and rectify the
densities on the boundary regions. It is shown th@ method enables the reduction in the
number of design variables in the model, hence aesluthe computational time of

optimization.

As mentioned before, in relation to the sensitibgsed ESO, Li et al. (2001) introduced a

checkerboard suppression algorithm, based on theothing the sensitivities through a
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filtering scheme. In the modified soft-kill BESOsamilar filtering scheme has been applied
which has been shown that efficiently suppressesntimerical instability of checkerboard
pattern and mesh dependency. The details of thiense will be discussed in the next

chapters.

2.1.7.2 Mesh dependency

By using finer mesh sizes in topology optimizatidns expected that the same structure with
better description of boundaries is attained. Havethe “mesh dependency” using finer
mesh results in qualitatively different topologigsth more members of smaller sizes
(Bendsge and Sigmund, 1999, Huang and Xie, 201Mg. of the reasons for such numerical
problems is the so callegon-uniquenessf the solution which means that there might be
several optimum solutions with the same performaand structural weight or volume
(Sigmund and Petersson 1998). Another source sfitisitability is thenon-existencef the
solution. In a solid-void topology optimization,igt known that the introduction of more void
spaces into the structure provides higher stiffrmss no closeness in the possible sets of

solution could be foun@igmund and Petersson 1998; Jog and Haber, 1996).

The non-uniquenes®f the solution can be controlled, to some extéytintroducing the
manufacturing performance constraint (Ambrosio Bnttazzo, 1993). On the other hand one
way for solving the problem of theon-existencef solution is byrelaxationas used in the
Homogenization and the SIMP topology optimizatigpm@aches. However, because of the
existence of composite regions (grey areas) infit@ solution, the result of a relaxed

formulation cannot be interpreted easily for maotifeing purposes (Sigmund and Petersson
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1998). In many studies, the imposing of restricdi@m the variation of design variables has

been demonstrated as an efficient method for alteng the mesh-dependency problem.

Restriction on variation of design variables canif@osed through different techniques.
Many of these restriction techniques can also additee problem of checkerboard patterns as
were discussed previously. As other examples oféB#iction methods, Haber et al. (1996)
proposed a method based on imposing constrainteeonircumferences of the void regions
and outer boundaries of the structure. In the Sédproach, Bourdin (2001) used a technique
in which the densities are filtered and regulatsth@ a convolution operator. Wang and
Wang (2005a) applied the bilateral filtering teciue to solve the numerical instabilities in
topology optimization. The bilateral filtering istgpe of non-linear filtering scheme and has
already been used in the image processing. Alsmémdéinear diffusion technique has been
developed by Wang et al. (2004a) based on a simighod for the image processing (Aubert

and Kornprobst, 2006).

Recently, Heaviside filtering method has widely lggab for suppressing the intermediate
densities together with the SIMP approach. It basn developed by Guest et al (2004) in
order to obtain 0/1 solutions. The original forntida of the method modifies the densities by

a filtering scheme in the form of:

.MZ
=
X

,ﬂ

(2.25a)

x>
1

w
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in which x; is the density of element anay, is a weighting function. The next step is to

apply a smoothing function for instance in the fain

X =1-e™ + %e”’ (2.25b)

When r =0 the formulations act as an isotropic filtering whidiffuses the mass linearly
among surrounding elements. When approaches infinity the element’s density becomes
x =1 if x >0 and will be equal to O otherwise. Therefore ifedement is surrounded by
other elements with a density higher than zerodéssity will switches to 1 too. It can be
seen that the method suppresses the checkerbdsethpend mesh dependency concurrently.
For practical application howeveryr needs to be properly determined by the user

experimentally; otherwise a stable convergence muye attainable (Sigmund 2007).

2.1.7.3 Local optima

The occurrence of local optima in structural togglmptimization refers to the situation
where different solutions are obtained by changfiregdesign parameters, such as move limits
or evolutionary rate, geometry of the initial desigiaumber of finite elements or filtering
parameters and so forth. Mathematically, the fumcti(x) has a local minimum (maximum)
at the pointx” if f(x')< f(x) (orf(x )= f(x) ) foralix in a small neighbbbood of x’

and has a global minimum (or maximum) if the staetrholds for all feasible points f
Structural topology optimization problems usualgwvd many local optima and essentially are

not convex. The flatness of the objective functiormost topology optimization problems

causes the algorithms to be unable to avoid a pesarntion and trap in local optima.
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To solve this problem in procedures that use ingeliate densities, the idea of the
continuation methodvas introduced. Different procedures for ttemtinuation methodbave
been proposed. For instance Allaire and Kohn (19®8jposed an approach in which in the
first step of the optimization procedure, the imediate densities are allowed in the structure
by applying a low penalization factor and after wengence of the procedure they are
penalized to earn a 0-1 solution. In a differgopraach Sigmund (1997) and Sigmund and
Torquato (1997) used a filtering scheme with adafigiering size at the initial steps and
gradually reducing filtering size. It should be riened that the concept of the continuation
method is not mathematically coherent. Although #wperimental application of the
procedure may lead to better solutions, it stileslanot guarantee the earning of a global

optimum (Sigmund and Petersson 1998).

2.2. Material modelling

The responses of a composite material are differem its individual constituents. In the

design of materials, the prediction of the macrpscdehaviour of materials with a large
heterogeneous nature is a challenging issue (Matkvet al., 1995), and has a long history
that even attracted the attention of luminariehsagMaxwell (1873) and Einstein (1906). In
general, experimental tests and numerical methads passible ways to evaluate the
characteristics of composite materials (Beran 19BBristensen 1979; Willis 1981;1992).

However, the experimental tests are often prolibifrom the standpoints of time and cost,
and are not appropriate in the design stage. Thkcagion of numerical methods to a media
with large heterogeneities is also very hard angeasgive, even by applying today’s high-

speed computers. As an example, suppose that jbetiob is the modelling of a 3D material
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that consists of 1000 repeating units along eatftipal direction. Suppose that the topology

of each unit is modelled by 25 elements along padcdirections. The finite element model

of such a structure will contain more thdn5x10™  elememktsch makes the analysis

impossible with most computers at this time.

The process of calculating effective properties wofaterials is also termed as
"homogenization" (Suquet, 1987, Hollister and Kikijc1992). Although the analytical
solutions of the overall properties of materiaks available for some cases where the material
is composed of simple periodic microstructure (8alet al., 2001, Adams and Crane, 1984,
Torquato and Donev, 2004, Zhou and Li, 2007), dgwelent of such analytical solutions
would be very cumbersome for a microstructure withmplicated arbitrary topologies.
Therefore, attempts have been made by many resgarzhestabliskempirical or numerical
relationships between the properties of constitpbases and overall material characteristics.
The developed methods are often based on the @atggle on the “representative volume

element” (RVE)or a “repeating unit cell” (RUC).

The primary definition of the phrase RVE was mageHiil (1963) for referring to a sample
volume that has two characteristics: (a) it is cttreally typical of the whole domain on
average and (b) it contains a sufficient numbeinofusions so that the overall response of
material is effectively independent of the imposedds and displacements. On the other
hand, the RUC characterizes periodic heterogenecaierials without being necessarily
homogenous on a microstructural scale (Drago anddgPa, 2007). RVE and RUC concepts
have been interchangeably used in literature (D& Pindera, 2007) and in this text are

referred to simply as RVE, unless otherwise is easped.
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Simplified RVE approaches such as “rules of mixslrdnasically neglect the spatial
distribution of the constituent phases within th&nwstructures. More advanced methods
such as “Homogenization theory” or the “mechaniésnaterial” usually decouple the
analysis into two scales. Local scale analysis esfopmed to determine the physical
properties of the microstructure. These local lemedlysis results are further used for the
calculation of homogeneous material properties oglobal scale (Hollister and Kikuchi,
1992). The accuracy of these approaches is lardependent on the applied boundary
conditions in modeling, as well as the ratio of R¥Ees to the global dimensions of the

material domain (Hollister and Kikuchi 1992).

In the following sub-sections, some of the methibdd are used for estimation of mechanical
properties of materials are briefly revieweld. should be mentioned that the topic of
determination of the physical characteristics oferials has received significant attention and
is a rapidly developing area of literature (Birmaard Byrd, 2007). The list of references made
here is by no means complete. The goal hereitetdify and describe a simplified outline of

some frequently used methods.

2.2.1 Rules of mixtures

The term “rule of mixture” refers to the expressidhat enable the estimation of the material
properties based on the mechanical properties aludne fractions of constituent phases. The
earliest method for the prediction of mechanicalpgrties of composite materials dates back

to the end of 19 century and beginning of $0century by well-known “mixture rules” by
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Voigt (1889) and Reuss (1929). The Voigt's rulemakture is an arithmetic mean, which is

expressed as (Fan et al., 1994):
P=Pf, +P,f, (2.26a)

whereP is the mechanical property of material dgd f;,, P, andf, are the properties and
volume fractions of materials 1 and 2 respectiveReuss’ (1929) estimate is a harmonic
mean in the form of:

f

1
—= (2.26b)

1:1
—=—+4
PR B

It can be shown that these simple rules defineelagsper and lower bounds on material
properties (Peiponen and Gornov 2006he modified rule of mixtureof Tamuraet al.
(1973), Wakashimat. al( 1990) and later Teraket al. (1993), and the “generalized law of
mixtures” of Fan.et al. (1994) are recent developments in these kindsppfaximations.

However these simplified approaches have limitdatlig (Fan et al., 1994).
2.2.2 Bounds on materials properties

In contrast to the rule of mixtures, bounds proadineoretical range of the possible material
properties. In the simplest forms, the boutidsarly or non-linearly combine the individual
properties of the constituent phases, in termsheir tvolume fractions, to provide a proper
estimation over the admissible range of compodfectve properties (Zhou and Li, 2008a,

2008d). These limits were derived mainly based len tariational method and have been
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developed for various scenarios (Gibiansky, 1993)¢ bounds have been an important
theoretical tool for the development of new comfessiover the last decades. They are
frequently used for the verifications of the optiityaof materials microstructures (Challis et

al., 2008, Zhou and Li, 2008a, 2008d).

The earliest known bounds on composites effectiamfitivity was proposed by Weiner
(Peiponen and Gornov, 2006) , which had the sirfgie of Voigt's (1889) approximation
for upper limit and Reuss’ (1929) approximation five lower limit of the composite
properties (equations (2.26)). Later, with the halphe variational principals, tighter bounds
on effective magnetic permeability of macroscopjcedotropic and homogenous multiphase
materials were proposed by Hashin and Shtrikmar6QL9Figure 2.2). Due to the
mathematical analogy, these bounds are also apfdicéo the estimation of other

characteristics of materials, such as electricdlthermal conductivity.

—— HS-upper bound

—— HS-lower bound
Wiener's upper bound

~~~~~~~ Wiener's lower bound

Thermal condictivity

Dendity p

Figure 2.2: Comparison between Wiener's and Hastitrikman bounds on thermal conductivity of

materials
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The Hashin-Shtrikman bounds are known as the bestilple bounds of an isotropic two-
phase material, if no structural information afertn the volume fractions is available (Hale,
1976). Later on, Hashin-Shtrikman extended the odlogy for the estimation of the
possible range of elastic moduli for macroscopycailasi-homogenous quasi-isotropic multi-

phase material with well-ordered constituent phasgs- K, )(G, —G,,) 20, whereK and

G are the bulk and shear modulus respectively abdcsipts indicate the materials number
(Hashin and Shtrikman, 1963). Walpole (1966) dgwetba similar variational method and
derived bounds that did not require any phase orgleFor the composites with well-ordered
constituent phases, the Walpole bounds are equivedethe Hashin-Shtrikman bounds. As
indicated by Gibiansky and Sigmund (2000) the HasShtrikman and Walpole bounds on
the bulk modulus are not only valid for isotropi@aterials but also applicable for materials
with square symmetry (in 2D cases) and cubic symym@ 3D cases). Milton and Kohn

(1988) used variational principals for deriving theunds of the effective elasticity moduli

and the effective conductivity for anisotropic m&ks. These theoretical bounds have

demonstrated their validity in many cases (Cherkael/Gibiansky, 1993, Gibiansky, 1993).

Although further advancements made the boundsetigithproved bounds are only provided
with a G-closure rather than an exact value (Zhod la, 2008a, 2008d)The G-closure or
GU-set is the set of the effective properties bfre composites that can be manufactured by
combining the arbitrary amounts of the constitugimases (Gibiansky, 1993). On the other
hand, the establishment of a relationship betwe#fereint effective characteristics of
composite materials is important, especially whae property of composite is known and
the intension is to estimate the possible rangesotber characteristics (Gibiansky and

Torquato, 1996a). Such cross-property bounds ase abkeful in the design of multi-
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functional materials (Cadman et al., 2013), andydently used for verifications of the

optimality of the materials’ microstructures (Clskt al., 2008).

Cross-property relationships have been the subjeektensive investigation (Milton, 1984,
1997, Berryam and Milton, 1988, Milton and Kohr§88, Torquato, 1991, Cherkaev and
Gibiansky, 1993, Gibiansky and Torquato, 1996a,6099995, Dominguez and Sevostianov,
2011) . For example, using the classical variationathod, Milton (1984) derived cross-
property bounds for two-phase isotropic materidiat tlink the conductivity and bulk
modulus. Later on, Gibiansky and Torquato (1996@duthe translation method to develop

similar cross-property bounds for 3D two-phaserggut or cubic—symmetric composites.

As mentioned before, in addition to the propertiesl volume fraction of the constituent
phases, the effective properties of the compositgsend strongly on their microstructural
geometries (Gibiansky, 1993). However, except fgpeeial cases, the bounding methods
generally disregards the microstructural configoret and provides only a theoretical range
for the physical properties of a composite whicthvgiven volumes could be achieved (Zhou

and Li, 2008d).

2.2.3. Self-consistent methods

The self-consistent methods estimate the effectagerial properties by analyzing the
representative volume element (RVE) of materialser&fore the microstructural geometry
has a greater role in the overall estimation ofemal properties. These methods, which are
also known as “effective-medium” methods (Torquaf00), include a number of

approaches that analyze RVE as an initially homeges matrix into which, inclusions of
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other materials are incorporated. The basic assamgstthe equilibrium of stress in inclusion
(6' ) with the stress within matrixo(VI ) plus a deviatidue to presence of inclusion, which

is known as polarization stressp() (Nemat-Nasser et al., 1982):

m T 90 = Tmn (2.27)

It is also assumed that the total strain in the mmsite material at any point, is a summation
of the strain that exist in the homogenous mattlix lus ;] deviatione® that is induced due to

the embedment of the inclusion in the matrix. ByumsingE" andE' as stiffness tensor of
matrix and inclusion phases respectively, the éauilm equation can be expressed as:

E" (g4 +&q +&q)=E

mnkl mnk

(&d *+&4) (2.28)

The difference between various self-consistent owshs the relationship that is established

between the transformation straii and the deviation stra#i to solve the above
equilibrium equation For instance, the simplest assumption is to negi®gt interaction
between nearby inclusions (particles), which isdvalhen the volume fraction of the particles
approaches zero, while the volume fraction of maihiase get close to unity. Such conditions
are known as “dilute approximation” (Zuiker, 199%md its formulation was proposed by
Eshelby (1957). For the cases in which the pagibkeve spherical shapes, the expressions for
the estimation of bulk modulus and the shear mawi elasticity are suggested as

(Christensen, 1979):
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K =K, +-2(Ke " KK + (473G) (2.29)
(4I3G, +K,
G=G -G enG-G) (2.30)

7G, -5/, + 8-101)G,

In whichK,G, v and f are the bulk modulus , shear modulus, Rasatio and volume

fraction respectively; subscripts 1 and 2 refethamatrix and inclusion respectively.

The self-consistent method has been the subjeca afignificant amount of research
(Budiansky, 1965, Hill, 1965, Christensen and L®&®79, Nemat-Nasser et al., 1982,
Benveniste, 1987, Walpole, 1969, Reiter et al.,7)9%nd has been developed for the
estimation of composite properties under differecgnarios. For example, Walpole (1969)
studied the case where the matrix was embeddedlipged or randomly distributed
inclusions of a/the needle shape (e.g. short flbrAs another example, the disc shape
inclusions (e.g. flakes) have been studies by Reteal. (1997). Hashin and Shtrikman
(1962) had also used the concept of polarizatioesstin combination with the variational
principles, to derive bounds on composites propertivhere spherical inclusions exist
(Hashin, 1983). The studies on the self-consistezthod have also paved the way toward the
development of another semi-analytical modellingrapch namely the Mori-Tanaka method
which issuitable for composites with moderate inclusiorune fraction (Mori and Tanaka,

1973, Hollister and Kikuchi, 1992).

The self-consistent method offers some advantagésrins of the simplicity of the solution

expressions. Howeveas mentioned before, the self-consistent methadocdy be applied



Chapter 2 63

where an inclusion phase with specific shape igried into the matrix. Thus the final
expressions for the estimation of effective prdpertare dependent on the constituent
materials properties, as well as the topology efembedded inclusionlt has been shown
that when the constituent phases of the compoaie harge discrepancies in properties, the
accuracy of the method decreases (Christensen, T®f§uato, 1998)On the other hand,
different analytical solutions need to be develof@dcomposites with different inclusion
shapes.For a proper approximation of material charactiessthrough this method, it is
necessary for the material’s microstructure to haweertain type oftbpological symmetry’
(Torquato 1998; 2000). Analytical dependency of dpproximation, on the properties and
topology of the constituent phases, is a prohibitfactor for the implementation of the

method into a numerical procedure.

2.2.4. Mechanics of materials approaches

In a number of studies either an analytical ortdéiilement method has been used on RVE, to
evaluate the material properties simply based an rttechanics of materials principals
(Gibson and Ashby, 1982, Huber and Gibson, 1988s@i and Ashby, 1997, Beaupre and
Hayes, 1985, Christensen, 1986, Steven, 2006dset approaches, RVE is analyzed under
the test loading fields and the overall propertiésmaterials are estimated based on the
response of the structure. For example, three mwdgnt traction fields in 2D elasticity
problems and six independent traction fields in@Bblems are applied on the boundaries of
RVE. Alternatively, RVE can be subjected to indegemt cases of boundary displacement
fields. The tractions or displacements are usualiposed uniformly on the boundaries

(Figure 2.3) (Hollister and Kikuchi, 1992):
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Figure 2.3: Uniform boundary conditions appliedtb® 2D RVE (a),(b) normal and (c) shear stresses

tractions

The average stresg() or average straingf) in RVE are defined by the average of the stress

or strain tensors over the volume of RVE:

__1
g, =\7ja".dv (2.31)

(2.32)

It can be easily shown that the above equationsirenthe equivalence of strain energy

between equivalent homogenous materials defined as:

(e
I
N
Q
|
<

(2.33)

and the original heterogeneous material represdmtede RVE (Sun and Vaidya, 1996):

,_1
U _qujqjdv (2.34)
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The average quantities of equations (2.31) and2j2can be calculated directly from the
results of finite element analyses. However, a moeputationally efficient way is to
correlate the average stress or strain to the ayyridactions or displacements respectively.

Using the Gauss theory by converting the volumegrsls to surface integrals one can write:

__1 1
g, :\_/jaij dv:5§(q n, +n)ds (2.35)
\% S

o1 1
g :\_/jgijdv:awnj +u,n)dS (2.36)
\ S

in which tor u are the imposed boundary traction or displacemespectively;n denotes

RVE local coordinates and is the volume of RVE. Suppose that for producimg average

stressg,,, the RVE is under boundary traction fieltfs thadduce the microstructural

strains of&£ (u) . It can be shown that the following iéljium equation needs to be solved

(Hollister and Kikuchi 1992):

l ki _ l ki
> l t vidS—E J Ejmn€; (V)ES(UAV (2.37)

in which E is the stiffness tensor of RVE constituent material and &; (v)are virtual

displacement and virtual strain, respectively. €ffective stiffness tensde" is calculated as

(Hollister and Kikuchi 1992):

1
EijT(I == J. EijmannkIdV (2.38)
Vi
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where the local tensdR defines the relationship between average and sircrctural total

strain:

i:'(l = jmngrlriln (239)

As previously stated, in the mechanics of matéregdproaches, it is necessary to analyze the
response of RVE under either the displacementaatitm test fields. It is known that, if the
actual in-situ boundary conditions are differeranir the assumed ones, each of these test
fields will yield different bound on the predictstiffness. If RVE is analyzed under applied
uniform displacement, through the principles of imiam strain energy it can be shown that
the predicted stiffness is higher than in-situ c&milarly, when the boundary conditions are
applied in the form of uniform traction a lowerftess is predicted, as it can be proved

through the principals ahinimum complementary energy (Hollister and KikutBb2).

In the case of materials with periodic base c¢ltsah be shown that increasing the modeled
RVE size, in such a way that it encompasses langenbers of periodic base cells, can
increase the accuracy of predicted overall matg@riaperties. According to th&t. Venant's
principle (Fung, 1965), when the RVE size is ineashthe boundary layer effects diminish
and hence it enables the approach to yield a bestenation. Nevertheless, for the periodic
cellular material with the RVE size to the globa@tesratio of 0.2, Hollister and Kikuchi
(1992) has shown that the predicted local straiarggnby the mechanics of materials’
approaches may differ from direct analybgsmore than 70%. Moreover, modeling a larger

RVE increases the computational cost of the fieleanent analysis.
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2.2.5. Homogenization theory

If a heterogeneous composite possesses certais tyfpeegularity, its properties can be
estimated by an equivalent material model, with & of the theory of Homogenization.
Homogenization is a rigorous mathematical theoryictvhemerged in the 70’s from the
studies on partial differential equations with thparying coefficients. Since then, the theory
has been the subject of large amount of researeimsd@usan et al., 1978, Lions, 1981,

Hassani and Hinton, 1998a, 1998b, 1998c).

The theory assumes that the composite is madesakthetition of ‘microscopic’ cells known
as the periodic base cell (PBC). It is also assurnied due to existence of periodic
microstructures, the response fields vary on nadéles. The physical properties of such a

periodic medium should be able to be defined byfaHewing type of functions,

F(z + mY,z, +mY,,z, +mY,) = F(z,,2,,2,) (2.40)

where z2=(z,z,,2,) is the position vector, Y =(Y,,Y,,Y,) is the constant vector that

represents the period of the medium, amdenotes the arbitrary integefs;can be scalar,
vectorial or tensorial function. As per assumptiafsthe theory, the perioY ~ should be
much smaller than the overall dimensions of theiomadlomain. In such circumstances it can
be assumed that all quantities have two expligitesielencies on the macroscopic x and the

microscopic level

y=zln (2.41)
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where 7 is a very small number. Equation (2.41)gests that quantities on a local level,

like stress and strain vary//7 times more rapidly than global level. The theorgsishe

asymptotic expansion to derive the composite respoBy assuming’(X) as the exact value

of the field function, its asymptotic expansion \wbhave the following expression

¢7(Q) =@’ (X Y) +7¢ (X Y) +77 9> (X Y) +... (2.42)

where ¢° can be described as the average value ofutieion, while ¢' and ¢’as

perturbations (Hollister and Kikuchi, 1992) whiaké equal values on the opposite sides of
the parallel-piped base cells (Hassani and Hinl®®8a). It can be shown that in general
elasticity problems, the first term on the expansjd is only dependent on the macroscopic

scalex (Hassani and Hinton, 1998a). This imposes selflibgating restrictions on possible

applied tractions on the boundaries of the peribdge cell.

Using the double scale asymptotic expansion andinipyosing the periodicity on the
microstructure boundary conditions, it can be shtvat the homogenized elasticity tensor of

composite materials can be calculated as:
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(a) (b)

Figure 2.4: Boundary Conditions in 2D problems; (#)der longitudinal strains fields (i.€,'=[1, 0, 0]", €,2

=[0, 1, 0]");(b) Under shear strain filedé(,*= [0, 0, 1]")

=y [ Eu B, (fy")dv (2.43)

in which ¢ is the solution of:

_[Einq ayp al;;y) dv= JEukI al;;y) dv Uv IV (2.44)

whereV denotes a rectangular parallel-piped’f, with its solid part indicated a¢

In contrast to the mechanics of material approadhedomogenization theory the difference
between average field behavioral responses undweisaithle and actual boundary conditions

is smaller whens7 - 0 (Tyrus et al., 2007). Detailed error bounds are heaatically

available for the Homogenization theory approadhik@v et al., 1979). It can be shown that
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the average field behavioral respongé convergesheo corresponding macroscopic

asymptotic expansiop” as (Bakhvalov and Panasdi89i89, Hollister and Kikuchi, 1992):

lo"=¢° . <cn’ (2.45)

where j andc are the order of retained terms of asymptotic egjggmnand a constant value

respectively and.?is the function space of the norm. The above egndtidicates that the
accuracy of results from the Homogenization theacyeases when the microstructural length

scale with respect to the global sizes of matéaaly decreases.

In elasticity problems by applying periodical boang conditions, the deformations in all
PBCs are assumed to be identical. This is an amcassumption for elements away from the
external boundaries of the material body, but hess laccuracy for elements near the
boundaries. For cellular materials with periodicrostructure, Hollister and Kikuchi (1992)
compared effective stiffness and local strain epatigtributions obtained by applying the
Homogenization theory and the mechanics of matedgproaches. It was shown that with

n =02, the Homogenization theory predicted local stexmergy may differ from the direct

analysis within 30%. The study indicates that feripdic materials, the Homogenization
theory gives a more accurate estimation of effecivoperties than mechanics of materials’

approaches and also provides higher computatidficieacy.
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2.3. Application of structural topology optimization techniques in material design

It is not more than two decades since the structapmlogy optimization has been primarily
introduced for the systematic design of materi@ligrhund 1994a; 1994b). Since then, the
methodology has been the subject of a considemblaunt of research, in terms of either
applying different topology optimization technigue the procedure or extending the
methodology to various material design scenaringhis part some of these advancements

are introduced.

2.3.1. Design of materials with extreme or prescrid properties

Design of materials with extreme properties is aer®d as an important objective of
material science (Sigmund, 2000). Materials wittresxe stiffness, in the forms of bulk or
shear modulus of elasticity, thermal conductivithermal expansion, permeability and
permittivity, are examples of usual objectives ohtemial design. On the other hand, the
simplest form of structural topology optimizatiantd extremize some physical properties of

structure.

As pointed out before, Sigmund applied the SIMRhoe for the design of materials with

extreme or prescribed elasticity properties (Sigthut®94b, Sigmund and Torquato, 1997,
Gibiansky and Sigmund, 2000). In this approacis @&ssumed that the material is composed
of repeating unit cells, also known as periodicebealls (PBC), with the dimensions that are
much less than the characteristic length scaldeeofmacroscopic structural body, but much
larger than their atomic dimensions. In such cirstamces the periodic microstructures of

materials are modelled as 2D or 3D trusses or amamm structure where the areas of the bar
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elements in truss-like base cells or the thickresdeslements in continuum-like materials,
are defined as design variables (Torquato, 2008d8&e and Sigmund, 2003). With the help
of Homogenization theory, the physical charactessof the base cells can be correlated to
the overall properties of material. The topologytimjzation is used to determine the best
material distribution in order to extremize the eatijve function. In the SIMP setting, the

mathematical problem statement for the maximizatibbulk modulus is defined as:

Maximize: f(X)
. N
Subject toV' = > Vx =0 (2.46)
i=1

0<X,,<%x<1

For instance, for designing 3D materials with maximbulk modulus the objective function

in terms of homogenized stiffness tenﬁ}fﬁ is usually formulated as (Cadman et al., 2013):

£(x) =$(ZEE) (2.47)

ij=1

For the designing of materials with prescribed prtips, the common approach is to define

the objective function as the square of differebetveen the homogenized stiffness tensor

E;. and the prescribed tensBj,, (Sigmund 1994a;1995; Cadman et al., 2013).

f(x)= Zd]kl (EF« - Ei;kl)z (2.48)

ijkl=1
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where 9, is the weighting factor.

Design of materials with extreme thermal expans{@gmund and Torquato, 1997),
maximum bulk and shear modulus of elasticity (Gislkey and Sigmund, 2000, Neves et al.,
2000, Sigmund, 2000), negative Poisson’s ratior(igd 1994a; 1995) and extreme thermal
conductivity (Zhou and Li, 2008a) are some otheameples of the optimization of

Microstructures for materials with the SIMP appitoac

As stated before, the SIMP suffers from the disath@e of the existence of grey elements in
the final topology. Therefore, the final topologgnnot be readily used for manufacturing.
Seeking more computationally efficient approacineany researchers applied other topology
optimization techniques for design of materialsthvthe similar procedure described above.
For example, Zohdi (2002) applied the Genetic Atpon for the design of the
microstructures’ of materials with prescribed efifez responses. In this approach the
microstructural variables are defined in the forrh genetic strings and the fittest
microstructural design parameters are found. Warad €2004b) used the Level-set topology
optimization algorithm for the design of heterogeu® microstructures of materials to
minimize the least squares differences between bemiped and prescribed elastic and/or
thermo-elastic properties of materials. The Lewtlfgepresents the unit cells with interfacial
boundaries, which is an advantage in comparisoh thié SIMP method. In another study,
sensitivity-based ESO is applied for attaining mstructures of materials with prescribed
thermal conductivity (Patil et al., 2008). The aftjee function is formulated for minimizing
the least square of the difference between thecpbesi and homogenized value of thermal

conductivity subject to the volume constraint.
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2.3.2. Design of multi-phase composites

In comparison with periodic cellular materials, hwitmicrostructures composing of one
material phase and a void phase, composites withdwmore material phases are more
favourable and attractive for practical applicati@me of the reasons for such advantageous
properties is that, by combining different matesjah wider range of properties could be
achieved which are not attainable by individualg@® In fact, it is mathematically shown
that increasing the number of constituent phasebefomposite will widen the G-closure
(Zhou and Li, 2008a). On the other hand, multi-tior@al materials are inevitably composites
of two or more constituent phases (Gibson, 20108grdfore the development of multi-phase
composites provides the basis for development ofernads with combined functional

properties.

The SIMP method is used for the design of 2D péeiogicrostructures for composites with
two material phases and a void phase (Gibiansky @iginund, 2000). The objective
functions were the extremization of bulk modulusl @nermal conductivity (Gibiansky and
Sigmund 2000) or the thermal expansion (Sigmund Bodjuato, 1997). The key point in
these studies was the introduction of three deggiables® x® andck® |, for each elemént
that corresponds to three constituent phases. @sigrdvariables are defined in the interval of

10, 1], with the following conditionsuperscript in parentheses denotes the phase nsimber

x® +x@ 4 x® =1 (2.49)
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The above assumption makes it possible to defirsgmgle artificial mixture function to
correlate the local stiffness or thermal strairstea of the elememtwith the design variables.
For instance, in the case of designing microstrestwith two material phases (phases 2 and
3) and one void phase (phase 1), the relationshgi&een design variables, and the

elements of local stiffness tensor are defined as:

By 00 = () P[(1- (¢ V)N E + (6 ' E] (2.50)

where x® =x® +x® . the penalty exponents op and q are introduced to prevent

intermediate densities. The mixing rule for two ematls and void mixture proposed by
(Sigmund and Torquato 1997) is a combination ofdlassical Voigt's mixing rule for two
solid materials and the power-law interpolationwssn the void phase and other (gel
and p>1). However, as it is mentioned in Swan and Kosak#07), by using the Voigt's
mixing rule, the phase separation does not hapggmopriately in the final result. A
formulation that uses hybrid combinations of thassical Reuss’ and Voigt's mixing rules
was proposed by Swan and Kosaka (1997), but it nmyprovide an accurate constitutive
model of mixtures. Gibiansky and Torquato (1996&3dithe power-law mixing rules for all
phases in the multi-phase material design. The ljyemxponents are taken equal to 3
(p=g=3) (Gibiansky and Sigmund, 2000) at the beginninghaf procedure to prevent the
algorithm to trap in local optima. The penalty empnts are then gradually increased, to make
intermediate densities uneconomical in a processvkras “continuation method” (Bendsge

and Sigmund, 2003).
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Nevertheless, as an inherent problem with the SIMRh density-based method leads to
intermediate (grey) densities in the final topolodg comparison with microstructures
designed with one materials and a void phase, iti4qpluase materials with closer physical
properties, the SIMP usually causes more ambiguityterpretation and identification of the
boundaries and increasing the penalty values nigt@amnot solve the problem completely,
but it may also result in numerical instability (o and Strang, 1986, Swan and Kosaka,

1997, Zhou and Wang, 2007).

On the other hand, the application of optimalitifezra (OC) causes numerical instability in
multiphase topology optimization scenarios (Yin afahg, 2001, Zhou and Li, 2008a). Zhou
and Li (2008a) applied the Sequential Linear Pnognang (SLP) for the design of
multiphase microstructures of materials. As memnbefore, the SLP solves the
minimization problem sequentially, by approximatitng objective and constraint functions
using the first-order Taylor series. Although tipplécation of SLP ensures a stable linearized
procedure, numerical experience has shown thatntbee-limit for the design variables
should be kept fairly small (Fujii et al., 2001)dathat there may be some difficulties in
convergence (Zhou and Li, 2008a). In the aboveissudhe procedure typically needed
around 8000 iterations for a 60x60 discretizatil@ments model, including some interactions
by the user (Sigmund and Torquato, 1997). Theretbee design process is not fully

automatic and cost efficient.

In another study, Zhou and Wang (2007) applied asehfield model for compliance
minimization of multi-phase structures based on rGdilard theory (Cahn and Hillard,

1958). The introduced phase field is a model tinabtes interpretation of interface between
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material constituent phases based on Cahn—Hilpartial differential equations which deal
with the dynamics of phase changes. By using aatianal method, the topology
optimization problem is transformed into a problemsolving a set of partial differential
equations. In addition to mathematical complexityy main disadvantage of the procedure is
its time consumption. For example the topology glesif a 2D cantilever beams may need

200,000 iterations (Zhou and Wang, 2007).

Zhou and Li (2008a) developed a method for the giesbf multi-phased periodic
microstructures of materials for extremal conduttivAlthough a similar density-approach
has been applied, several modifications have beadento improve the abovementioned
SIMP procedure. To make the design problem selgited, instead of using the SIMP
interpolation scheme, the HS bound has been usenhtirpolation. Thereby the need for
choosing the penalty factor is alleviated. In addit due to the above mentioned numerical
issues in applying the optimality criteria (OC) &idP, an approach based on the Methods of
Moving Asymptotes (MMA) has been applied. It haswh that it would result in faster
convergence and more numerical stability. To redheeblurring effects in the boundaries of
constituent phases, a method based on non-linffasidn (discussed in Chapter 6) has been
adopted. However, the method is still unable to gletely remove the grey areas that form

the boundaries of the constituent phases.

A generalized new BESO has been developed whitihastia material interpolation scheme,
with penalization and which is capable of optimiaatof continuum structures with multiple
material constituents (Huang and Xie, 2009b, Huamg) Xie, 2010b). One of the advantages

of the method is that the procedure is independgttie selection of the penalization factor.
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Better convergence of the procedure together wigh komputational efficiency and more
importantly the capability of the new BESO in sejtieng the constituent phases, have made
BESO a promising tool for topology optimization sfructures with multiple materials

(Cadman et al., 2013).

2.3.3. Design of materials with extra functionality

Multi-functional performance objectives play a sfgrant role in demand and development of
composite materials in industry. The traditionasiga method for developing such structural
systems is by combining components that provideddsered functional properties separately.
The load-carrying framework is connected with diéf& add-on components, to improve the
non-structural performance characteristics suchelastrical and thermal conductivities,
resulting in sub-optimal systems. Hence, the degrabmt of multi-functional composite

materials stems from the desire to develop integraystems.

In the design of materials via inverse homogeniratiSigmund (1994a, 1995) used the
concept of the Lagrangian multiplier to add thestmaint function to the objective function.

In these problems, the weight of the material ifinéel as the cost function to be minimized
and six prescribed constitutive parameters are idered as constraints. The procedure
enables a precise control over constraint valuesveier, the weight of material cannot be
considered as a functional property. There is atsoeport, at the time of publishing, of the
use of this concept in material optimization forotwsubstantially different functional

properties (i.e. optimization of elasticity propestwith constraint on thermal conductivity).
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In another instance, for the design of materiath wiaximum stiffness or thermal expansion,
together with orthotropy, square symmetry or ismyron functional property, (Sigmund and
Torquato, 1997, Sigmund, 2000) devised the SIMResehin which the constraints are
chosen to be implemented as a penalty functiorectia the objective function with constant
multipliers. The penalty functions are definedlas square of deviation from the fulfilment of
square symmetry or isotropy constraint. Similathte above mentioned study, the problem
does not address a different functional propertgrédver, the selection of the penalization
factors is highly dependent on the user's expeéentn addition, the approach cannot be
considered as a completely systematic procedurthexe are frequent needs for manual
modifications of the procedure by the user. Asag been indicated by Sigmund and Torquato
(1997) in the above optimization problem, the cogeecy is very hard to attain using an
SLP technique. The procedure needs several thousaatons to be converged, due to the

flatness of the modified objective function (Sigrduand Torquato, 1997).

Attempts have been made for the development ofiffurittional materials such as materials
with prescribed combinations of stiffness and th@raonductivity (Challis et al., 2008), heat
and electricity transport (Torquato et al., 20@3iffness and permeability (Guest and Prévost,
2006) and other multi-physical properties (Gibignsind Sigmund, 2000, Cadman et al.,
2013). The common approach in the design of mdsewah multi-functional characteristics
is to minimize (or maximize) a linear combinatiohfonctional properties (Cadman et al.,
2012). Assuming two functional properties Bf and P, for the composite, the optimization
objective function is usually defined by applyingre weighting factors to different terms of

the objective functions:
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Minimize: WP, +w,P, (2.51)

By changing the weighting factons; and w,, materials with varying properties can be
generated due to its effects on the two functiatgdctives (Torquato et al., 2003, Guest and
Prévost, 2006, de Kruijf et al., 2007, Cadman ¢t28113). However, the disadvantage of such
an approach is that the equidistant variationsergiting factors do not provide proportional
changes in the final properties of the resultingamals (de Kruijf et al., 2007). The reason is
partly due to the non-linear cross-property retmlups between the objective functions.
More importantly, it attributes to the existencemény local optima in material topology
optimization which may cause the procedure to fra@ nearby solution. Therefore, the
results of such an approach are usually expresgedavgenerated Pareto front (Torquato et
al., 2003, de Kruijf et al.,, 2007) which enablewisual representation of the attainable
functional properties, with respect to the changeseighting factors for a particular setting
of design parameters. Consequently, this optimimatproblem statement with fixed
weighting factors is not appropriate for a situatwhere more precise control over the

functional properties is necessary.

2.3.4. Design of functionally graded materials

Functionally graded materials (FGMs) are inhomogese composites which are
characterized by gradual changes in their proper8ence the first published study on stress
distribution in woody stem of trees (Metzger, 1898)is known that biological materials
demonstrate different properties through changedhkeir hierarchical structures occurring in

order to adapt to environmental stimuli. Howevéenvas not until 1972 when the industrial
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advantages of materials with graded functional erigs were first analytically addressed in
published studies (Shen and Bever (1972), BevelDandez (1972). The idea did not receive
much attention because of the lack of appropriaa@ufacturing equipments at the time. It
was notuntil the mid-1980s, when the emerging fabricatechnologies allowed the concept
to be applied for controlling the thermal respon§enaterials for the aerospace industry in
Japan (Yamanoushi et al., 1990, Hirai and Chen9198s it is shown in Figure 2.5, the
morphology of the invented FGM can be describedaaseramic phase, embedded in a
metallic phase, with varying volume fractions alotige thickness of material, thereby
enabling the gradation in properties in the dimttiThe ceramic phase acts as a thermal
barrier, protecting the metallic phase from oxidatand corrosion. The metallic phase, which
possess low corrosion resistance in high tempearstwstrengthens the composite; hence,
demonstrating multi-functional characteristics withthe thickness of the composite

(Watanabe and Kawasaki, 1990).

Transition region
Metal Particles
in Ceramic Matrix

Ceramic Particles
in Metal Matrix

Figure 2.5: Example of FGM composition and funcéioproperties
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Apart from material selection, one of the challemngissues in design of an FGM lies in
predicting its performance characteristics (Markivaat al., 1995). Depending on the rate of
gradation with respect to the dimensions of RVER®QIC), analytically there are two general
approaches for estimation of the FGM charactesstica steep gradient in material response
is expected, then by analysing the material in hb&hmicroscopic and macroscopic scales,
the heterogeneity nature of the RVE should be takBnaccount. However, in the case of
small variations being expected in the materiapprtes, adequate accuracy can be attained
by applying the RVE based approach to differentaregyof FGM (Birman and Byrd, 2007,

Zhou and Li, 2008b, 2008c).

For designing an FGM, another challenging issughis determination of the optimal
distribution of constituent phases within the cosim(Markworth et al., 1995). Based on the
“inverse homogenization” technique, some reseasctigd to apply the concept in design of
the microstructures of materials with variations properties. For example Lin et al.
(2004,2005) used integrated global layout and lagalostructure topology optimization, for
the design of artificial spinal bone tissues. Tipéimization objective in the microstructural
scale is the volume fraction and the desired eli@gtiensor that has been dictated by the
global scale analysis. As a result, an inhomogemdmsue scaffold was obtained which
demonstrated the gradation in physical propert¥gen and Feng (2004), Zhu et al. (2006)
and Seepersad et al. (2004) also designed cellukterials, by designing a series of
topologically different base cells for their indivial objective function or volume fractions.
However, these studies deal with designing sepdirase cells for graded cellular materials

and do not provide a systematic approach for theigdeof FGMSs. In particular, these
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methods do not guarantee the proper interconnedt@ween periodic base cells (PBCs)

along the gradient direction.

Another challenging issue that should be accoufdedn the design of an FGM is the
minimization of stress discontinuity, especiallyeen constituent materials with dissimilar
thermal expansion coefficients (Lannutti, 1994)stndying FGMs’ fracture mechanics, it has
been shown that the stress concentration and deddionm cracking is a significant problem
(Erdogan, 1995). This is caused by the thermaksé® during cooling from the sintering
temperature at the manufacturing stage and/or tresses produced under operational
conditions (Watanabe and Kawasaki, 1990). Zhou kin@008a, 2008c) made the first
attempt to systematically address the connectiiggues between different PBCs. Three
methods namely “connective constraint”, “pseudodtoand “unified formulation” were
presented (Zhou and Li, 2008b). In these methods ‘tiolid isotropic material with
penalization’ (SIMP) technique is used as the stmat optimization tool in an inverse
homogenization procedure. These methods will Iseusised in more details in chapter 6
while a computationally more efficient method viok presented for solving the connectivity

issue, between cells via the BESO method in tlasith

2.4 Concluding remarks

In this chapter topology optimization approaches trave already been used for the design of
microstructures for materials were reviewed. Eatlhese approaches has its benefits and
disadvantages. Recent studies on the new BESQange of engineering problems indicate

its capability in generating structures with higimputational efficiency. The approach is also
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capable to generate structural topologies withritesolid or void elements without grey
areas which make the manufacturing of the genetagsalogies easier. Moreover, BESO can

be easily implemented and linked to most FEA paekag

The process of material design involves the detaation of material properties, through the
modelling of its representative volume element (R\ADbrief review of the methods that are
usually used for material modelling was presentdd.has been indicated that the
Homogenization theory has superiorities in terms&afuracy, simplicity of implementation

and capability to be used for materials with adsitrmicrostructural topologies.

Previous research on material design has indicdted the obtained micro-structural
topologies are highly dependent on the appliednapétion algorithm.Therefore, it is

important to attempt new and different optimizatadgorithms, in order to find a much wider
range of possible solutions to material design. Thapter briefly introduced some of the
applications of structural topology optimizatiorch@iques in design of microstructures for
materials. In later chapters the BESO methodolegly be extended in addressing these

design scenarios.



Chapter 3

Topology optimization of microstructures of cellula materials for
maximum stiffness or thermal conductivity

Light-weight cellular materials might possess adeah physical, mechanical and thermal
properties that extend far beyond those of solitenals. As discussed in previous chapters,
the physical characteristics of materials can \grghanging the materials distribution within
their microstructure. To make the best use of nes®, the spatial distribution of constituent
phases within the microstructures can be determinethking advantages of the topology
optimization techniques. In this chapter, the Bediional Evolutionary Structural
Optimization (BESO) will be applied for the desighperiodic microstructures for cellular
materials consisting of one solid phase and oné pbase. The objective function is defined
to maximize a single physical property such as bulkdulus, shear modulus or thermal

conductivity. Although the structural weight is rgeinerally a functional property, it is one of
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the important design considerations and is cons@léy imposing volume constraint in this

study.

It is assumed that the material is composed obdaribase cell (PBC), which is the smallest
repeating unit of material. The dimensions of thedcells are assumed to be much less than
the overall length scales of the material body, ahdhe same time much larger than the
atomic length scale. As discussed in Chapter 2ewurdch circumstances a relationship can
be established between the properties of mateniamicrostructural level and average
properties of material in the macro-scale using “tHemogenization theory”. The PBC is
discretized into a finite elements model under gmid boundary conditions. The finite
element analysis is performed to extract necesséoymation for calculation of the effects of
individual elements within the PBC, on the variatmf homogenized (average) properties of

material.

The effects of individual elements on the variat@ithe objective function are known as
sensitivity numbers. The procedure which resultsuch numbers is known as sensitivity
analysis (Haug et al., 1986, Huang and Xie, 2018b)discussed in the previous chapter, the
BESO uses an iterative process in which elememntgeties are changed from solid (with a

design variable ¥ =1)) to void (e.g.X.;,, = 0001) or from void to solid, based on the ranking

of their sensitivity numbers. As a result, the P8@pology is gradually modified until both

volume constraint and the convergent criterionnae¢ (Huang and Xie, 2010b).
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The details of the procedure will be unfolded iistbhapter, and will include numerical
examples. The results of the numerical procedueevarified with the known analytical

bounds on material properties.
3.1. Methodology
3.1.1 Optimization problem statement

The stiffness of an elastic material can be desdrlty the bulk modulu& or shear modulus
G. In the design setting one may aim for designiefjuar materials with the maximum
effective bulk modulus or shear modulus subjectat@rescribed weight. Therefore the
topology optimization problem is to find the appriape distribution of the solid phase within
the PBC, subject to a prescribed volume fractiothefsolid phase. Mathematically such an

optimization problem can be defined as:

Maximize: f(x) =K or G

N
Subject tov' =>"V/x, =0 (3.1)

i=1
)ﬁ = Xmin Orl

whereV, andV™are the volume of an individual element and thesqribed total structural
volume respectively. The total number of elemenithiw the PBC is denoted bM. The

binary design variable denotes the densifyth element.
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Similarly, the topology optimization problem statamh for finding a cellular material with
maximum thermal conductivitjk subject to volume constraint on the solid phase lan

defined as:

Maximize: f (x) =k,
N

Subject tovV' - > Vx =0 (3.2)
i=1

X = Xy OF'1

The bulk and shear moduli of materials can be esga@ in terms of the components of the
effective elasticity matrix Din).The bulk modulus, which is an indication of matky

stiffness to uniform pressure, is expressed in &iblems as:
K =1(pr+ D +D! + DY) 3.3
_4 hp + Dy + Dy + Dy (3.33)

and in 3D problems as

1
K =§(Dl”1 +D/{ + D}l + D} + D} + D}, + D} + D! + D}}) (3.3b)

Similarly the shear modulus defines the materiffingtss with respect to shear deformation,

and can be expressed in 2D problems as

G=Df (3.4a)
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and in 3D cases as

1
G= é(Dﬂ, +D/+ DY) (3.4b)
The effective thermal conductivity of material cée correlated with the elements of

conductivity tensor as:

k., = =(k{; +kjp) in 2D problems (3.5)

C

N |-

k, == (k] +ki +kit) in 3D problems

c

N |-

wherek" denotes the homogenized thermal conductivity matri

As only orthotropic cellular material with squargnsnetry in 2D problems or cubic

symmetry in 3D cases are considered in this chaghterfollowing relationships hold:
in 2D cases:

D11 = Dzz (3_6)

In 3D cases:
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D, =D,, = D33, (3.7)

D, =0 Ui# jandi, j0{456}
For isotropic and orthotropic materials the follagyirelationship exists:
ki =kj; (=k&  in 3D cases)(all other elements are zero) (3.8)

3.1.2 Topology optimization through the soft-kill EESO

As mentioned before, the general idea in compuased topology optimization through
material distribution is to assign the solid ord/g@iroperties to different points of the finite
element model of the structure, with the goal @& tbjective function to evolve toward an
optimum. In the soft-kill BESO, developed by Huaagd Xie (2010b) this is done by
evaluation of the effects of the individual elenseah the variation of the objective function,

which is known as sensitivity analysis. The resdilsuch analysis is expressed by assigning

each element a sensitivity number. The sensitimiynbers a;are the derivatives of the

objective function with respect to the design Valeax of theith element:

_ 9 (x)
0, = (3.9)
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The optimization process consists of defining optity criteria and ranking the elements

based on their sensitivity numbers (Huang and X@£)9a, 2010b). As the design variables

are restricted to be eithet,,, or 1, the optimality criterion can be formulatedsuch a way
that that sensitivity numbers of solid elements<1) are higher than those of void elements (
X =X.,) (Huang and Xie 2010b). Therefore a scheme caddwsed so that the design

variables §) of elements with higher sensitivity numbers ameréased. In contrast, the
design variable for elements with lower sensitivitymbers is decreased. The design variable
(%) can be interpreted as the density of elementasidering a lower boundx(,, = 0001)

for the design variable reduces the effect of el@me the analysis, while the sensitivity of
such elements could be calculated directly. Thisbés the solid elements to grow in the
desired regions of the structure, away from exgssolid regions and avoid the numerical

problems associated with the complete removalehehts (Huang and Xie 2009a; 2010b).

With the help of introducing design variables, theung’s modulus of an element can be
treated as isotropic and interpolated as the fanadf the element density with a power-law

scheme as:

E(x)=E*" (3.10)

where E° denotes the Young's modulus for solid elemenis the penalty exponent an

denotes the relative density of thielement. In the simplest form a linear interpolatio

scheme with the penalty exponent gf=1 may be used. However, there might be

convergence problems in these cases (Huang an@Xi®a). On the other hand, the filtering
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scheme reduces the difference between the setysitivmbers of solid and void elements.
Therefore when the penalty exponent is small, nogrizable solid or void regions may exist
in some parts of the structure. When the filtesegeme is used for alleviating the numerical

instabilities, experiences shows that selecting piel (usuallyp = 3) will result in a better

differentiation between solid and void regions ine tstructure, hence improves the

convergence of the procedure (Huang and Xie 200@H)b).

Before tailoring the BESO for the design of materimicrostructures, the key remaining
issue is the evaluation of material effective prtipe and the derivation of the sensitivity

numbers for the elements within the PBC.

3.1.3. Homogenization and Sensitivity Analysis

As discussed before, the spatial distribution of thonstituent phases within the
microstructure of the composite affects the ovestiictive properties of the material. For the
design of materials’ microstructures, there is edn®r the calculation of overall properties of
composite materials, based on the distributiononistituent phases within RVE or RUC. For
the cases in which the material is composed obdaribase cells, with dimensions that are
much smaller than materials’ macroscopic lengtlesiat larger than the atomic length scale,
the effective properties of the macro-material barfound with the help of “Homogenization

theory” (Bendsge and Kikuchi 1988; Hassani and ¢#irit998a; 1998b; 1998c). For instance,
in terms of the material distribution in the domainthe base celQ2, the elasticity tensor of

the composite can be calculated as:
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1 i~
B :MI Ejp (Bpy ~ £pe) Q2 (3.12)
Q

where |Y|denotes the area (or volume in 3D cases) of thiegierbase cell domai® ; Eg‘;
defines the linearly independent unit test stratd$ which in 2D and 3D problems consists
of 4 and 6 fields respectively. The strain field¥ induced by the test strains can be found

from the following equation

j Ejpof; (VESAQ = j Ejpq; (V)E5AQ (3.12)
Q Q

wherevOH_(Q) is the Y-periodic admissible displacement fieldjuRtion (3.12) is the

per
weak form of the standard elasticity equation aplio the PBC with periodic boundary

conditions. This equation is usually solved byténélement analysis of the PBC, subject to
the independent cases of pre-strain fiélrﬁs With the help of the material interpolation

scheme introduced in equation (3.10), the derieatifithe homogenized elasticity tensor with

respect to the design variabje can be calculated from the adjoint variable metas (Haug

et al., 1986):

oE!! oE ~ P

o= L0 e gy e1 - 200 (313)
ox  [¥]5 ox

The test strain fields are usually taken as umgirss along principal directions. For instance

in 2D problems they are usually selected as:
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gi=(1 00 0
£2=(0 1 0 0)f
g2=0 0 1 0f
g2=(0 0 0 1)

By applying the unit strain fields on the PBC, timmogenized elasticity matri®" of such

materials, is simplified as:

D" (x,u) :i| [DO0( -Bu)dY (3.14)

M

in which u denotes the displacement field, resulting from fthiée element analysis of the
base cell, under periodic boundary conditions amdwalent forces that causes uniform unit
strainsj is the unit matrix; and is the strain-displacement matrix. The derivatidénD"

with respect to the design variabiescan be expressed as:

OD

TaD
£ IYIj(l Bu)

(I Bu)dY (3.15)

Similarly, the matrix of homogenized thermal contility (k") can be calculated as:

k" (x,p) :ﬁ [k -pydy (3.16)
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in which pis the induced temperature field resulting fromtéirelement analysis of the base

cell under the periodical boundary conditions anifiarm heat flux (e.§ 0} and {0,2}" in

2D cases). The sensitivity of the homogenized tlabroonductivity, with respect to the

design variables can be expressed as (HassaniiatahH1998a, 1998b, 1998c, Zhou and Li,

2008a):
ok _ 1 ok
=] (=m)" = (I —p)dY (3.17)
0% Yl 0%

With the help of equations (3.15) and (3.17) in bomation with equations (3.3), (3.4) and

(3.5), the sensitivities with respect of differemjective functions can be calculated.

Example:

For future applications, a series of tests wereanadorder to verify the results obtained by
the finite element solution of the homogenizatitvedry (equation (3.15)) with existing
literature. In the following tables two examplesres presented. The square base cells of
materials have a rectangular void hole with différsizes in each example. The material of
the solid phase is assumed to be isotopic withvibbeng’s modulusE=0.91 and Poisson’s
ratio v=0.3. The models were meshed with different densitiesrder to compare the effects
of mesh size on the results. The examples were amdpwith the benchmark results
presented in (Hassani and Hinton, 1998d). It ticed that, when a course mesh is used the
predicted stiffness of material is slightly high@lso see (Zhou and Li, 2008d)). In most

numerical examples presented in literature, thehnuessity used for topology optimization
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of the materials’ microstructures doesn’t exceed30 elements (for example (Sigmund,

1994a, 1995)).

Base cell dimensions: 100x100
Void dimensions: 30 x30
Base material propertieE=0.91 andv=0.3

FE model of
microstructures

Mesh size 20x20 60x60 100x100
Material 0.7805 0.2111 0 0.7650 0.2043 0 0.7648 0.2040 0
stiffness 0.2111 0.7805 0 ] [0.2043 0.7650 0 ] [0.2040 0.7648 0 ]
matrix D= 0 0 0.2378 0 0 0.2320 0 0 0.2317
0.7644 0.2039 0
Benchmark solution in (Hassani and Hinton, 1998d) D= [0.2039 0.7644 0 ]

0 0 02313

Table 3.1: Comparison between finite element appbo of equation (3.15) with the benchmark regult
(Hassani and Hinton, 1998d). The 100x100 rectangbkese cells have 30x30 rectangular hole inside.

Base cell dimensions: 100x1
Void dimensions: 60 x60
Base material propertieE=0.91 andv=0.3

FE model of
microstructures

Mesh siz 20%2( 60x6( 100%10(
Material 0.3996 0.0629 0 0.3960 0.0609 0 0.3957 0.0607 0
stiffness 0.0629 0.3996 0 ] [0.0609 0.3960 0 ] [0.0607 0.3957 0 ]
matrix D= 0 0 0.0469 0 0 0.0446 0 0 0.0443
0.3955 0.0606 0
Benchmark solution in (Hassani and Hinton, 1998d) D= [0.0606 0.3955 0 ]
0 0 0.0441

Table 3.2: Comparison between finite element appbo of equation (3.15) with the benchmark regult
(Hassani and Hinton, 1998d). The 100x100 rectangbkese cells have 60x60 rectangular hole inside.
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3.1.4. Numerical instabilities

Topology optimization usually encounters numerioatability in the form of checkerboard
patterns and mesh-dependency. As discussed in &haptthe checkerboard problem is
referred to as the situation where patterns ofrradting solid and void elements appear in
some regions of the structure. The problem hasdts mainly in numerical errors that can
occur when the low-order finite elements are uswdhe structural modeling. On the other
hand, the mesh dependency is referred to as thepnoof obtaining a qualitatively different
structure by using different mesh sizes in the riodef the structure. It has been shown that
both problems can be avoided, to a large exteninpgsing restriction on variation of design

variables (Sigmund and Petersson, 1998).

In the soft-kill BESO it has been shown that by ideng a filtering scheme, both above

mentioned numerical problems can be avoided simedtasly (Huang and Xie, 2007b,

2010b). Inspired by a similar procedure that hasnbapplied in image processing; the
filtering scheme replaces the sensitivity numbeeath element with a weighted average of
the sensitivities of the element itself and itsghéoring elements (Huang and Xie 2007b,
2010b). The scheme works as a low-pass filterghatinates features below a certain length-
scale in the generated topologies. In the filtesolgeme the elemental sensitivity number will

be modified by the following equation:

.MZ
=
Q

ISP
1

(3.18)

M=
=
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where @, is the modified sensitivity number amd denotes the distance between the center of

the element and element w; is the weight factor that is defined as:

Fin — T for f <Trin
(3.19)

0 for [P .

wherer,;, is the filter radius that is specified as a gipamnameter.

To earn a convergent solution (Huang and Xie 20(fbposed the elemental sensitivity

number to be modified by averaging it with its \@fiom the previous iteration:

G if k=1

U

At A . 3.20
' %(af+ai"1) otherwise (3.20)

where superscript denotes current iteration number. The averageitsétysnumbera, , is

then replaced with th@ . The latter is used for adding and removing elmend is

recorded to be used in the next iteration. In fdws, procedure of averaging the sensitivities
with historical information moderates the irregutecillations of the design variable. A large
number of numerical examples indicate the capgbibt procedure, for stabilizing the

evolution process (Huang and Xie, 2010b).
3.1.5. Procedure

The whole BESO procedure for obtaining materialthvmaximum bulk or shear modulus

consists of the following steps:
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Step 1: Define the BESO parameters, such as poescriolume fractiorv™ ; evolutionary

ratio ER; penalty p (normallyp = 3) and filter radiug

min;
Step 2: Construct a solid-void finite element mddelthe PBC;

Step 3: Define the periodic boundaries on PBC;ndethe loads that are equivalent to unit
strain fields,fp'fg. In 2D problems 3 cases of loading and boundanditions and in

3D problems 6 cases are necessary to be defineriaehe finite element analysis

(FEA) and extract the induced displacement fialds

Step 4: Calculate the elemental sensitivity numlagrdor the objective function by applying

equation (3.15) with the help of equation (3.3]34);

Step 5: Filter sensitivity numbers in the PBC damasing equations (3.18) and (3.19); using

equation (3.20), average sensitivities with thestdrical information;

Step 6: Determine the target volume fraction ofdselements for the next iteration. If the
current volume of solid elementg'is larger than the prescribed volunwe, the
target volume for the next design is set ™ = max{/'(L- ER),V") : determine

the number of void elements for the next iteration;

Step 7: Rank all elemental sensitivity numbersedeine the threshold sensitivity, ; the
threshold sensitivity is determined in such a waat tthe number of elements with

sensitivities lower thaa,,, are to be equal to the number of void elements.
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Step 8: Reset the design variables of all elemdintise sensitivity of an element is less than

the thresholdr, < a,,, then X, is assigned to its density. Otherwise 1 is assigone

its X .

Step 9: Repeat 2-8 until both the prescribed volisrechieved and the convergent criterion

are satisfied.

The convergence criterion is defined in terms ef thange in the objective functioK (, G

ork, ) as

i ( f t=i+l _ f t—N—i+l)
i=1

i ft—i+1

i=1

<7 (3.21)

wheref is the effective value of the objective functiom;is the prescribed allowable

convergence error anél is the summation upper bound. and 8 are usually set equal to
0.1% and 5 respectively which means that the cgerere is deemed to be attained when the

variations in the effective properties over the [Eiterations is equal to or less than (0.1%).

The procedure for designing cellular materials witlaximum thermal conductivity and
prescribed volume fraction is very similar to theoae mentioned algorithm. The only

difference is the replacement of steps 3 and 4 thigifollowing statements:
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Step 3R: Define the periodic boundaries on PBCjyappiform heat fluxes (e.g{L 0}T and

{O,]}Tin 2D cases). In 2D problems 2 cases of boundadytharmal loading and in 3D

problems 3 cases are necessary. Perform the &lataent analysis for thermal conductivity

and extract the induced temperature figlds

Step 4R: Calculate the elemental sensitivity nuslagfor the objective function by applying

equation (3.17) with the help of equation (3.5);

3.2. Results and Discussion

3.2.1. 2D examples for maximizing the bulk modulus

In this example, the square design domain with dsmans of 100x100 is divided into

100x100, 4-node square elements. The Young's meduid Poisson’s ratio of solid material
are selected a&® =1 and v = 03respectively. The evolution rate is sER= 002 , filter

radius r,, =5 and penalty p=3 .The BESO procedure starts from an initial materia

min

distribution shown in Figure 3.1, which consistsfofir void elements at the centre of the

model while solid properties are assigned to ogihements.

When the prescribed volume (area) of the solid natis selected to be 50%, 40%, 30% and
20% of the total design domain volume (area), theesponding resulting microstructures
and their effective elasticity matrices are givenHigure 3.2. The total iterations for the
corresponding cases are 49, 56, 64 and 80. The rbobkuli of these microstructures are

0.179, 0.132, 0.091 and 0.056 respectively.
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Figure 3.1: Initial material distribution in 2D phglems (green area is solid)
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0096 0085 O
0085 0096 O ©)
0 0 0018
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0 0 0005
(d)

Figure 3.2: Microstructures and effective elastaibatrices of 2D cellular materials with maximunikou

modulus for various prescribed volume (area) fraes (a) 50%; (b) 40%; (c) 30% and (d) 20%.

Figure 3.3 demonstrates the evolution histories tieé bulk modulus, volume and
microstructural topology, when the prescribed vatugarea) of the solid phase is 30% of the
total area of the design domain. As it can be segdecrement of the area of the solid phase,
the bulk modulus also decreases. Once the volumstraint is satisfied, the bulk modulus
and micro-structural topology converge to the fisalutions with a good stability. The final

microstructure of cellular material can be intetpdeas four octagonal honeycomb cells, with
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the bulk modulus that is equals to one octagonaejicomb cell in Sigmund (1995) using a

truss modelled base cell.

For well-ordered, quasi-homogenous and quasi-ip@treomposites, the upper and lower
bounds for bulk modulus have been derived by HashthShtrikman (1963). As discussed in
Chapter 2, these bounds are used for predictingatihge of properties that a composite can
achieve with a given material composition and vaufractions. They are also extensively
used for verification of optimality of designed mustructures through topology optimization

(Challis et al., 2008, Cadman et al., 2013). Asaatid in (Gibiansky and Sigmund 2000) the
Hashin-Shtrikman bounds on the bulk modulus areombt valid for isotropic materials but

also applicable for materials with square symm@trn2D cases) and cubic symmetry (in 3D

cases). For cellular materials that are made witloid phase and a solid phase of volume

fractionV,, bulk modulus K *and shear modulus o6°,the Hashin-Shtrikman upper bound

on bulk modulus is given as:

w_ ViKG

= 3.22
" -V)K+G? 522

In figure 3.4 the bulk moduli of the materials madéh the above microstructures is
compared with the Hashin-Shtrikman upper bound.itAsan be seen, the bulk moduli of
results are very close to the Hashin-Shtrikman uppend in equation (3.22). This closeness

also verifies the effectiveness of the presente8@procedure.
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The cellular material can be constructed by repgatie presented microstructures. Figure
3.5 shows2x2 array of the generated base cells. These confignsof the cells can be
generated directly, as a single PBC, providing stagts the procedure with different initial
design or optimization parameters. In general,aih e seen that there are a number of
microstructures having the same bulk modulus, teanalytical upper bounds and that the
attained topologies are highly dependent on initakign, optimization parameters and

applied algorithm.

Figure 3.5: 2x 2 array of designed base cells with maximum bulkuhesdand various volume fractions of

solids (a) 50%; (b) 40%; (c) 30% and (d) 20%.

3.2.2. 2D examples for maximizing shear modulus

In the algorithm of the above example the objectiumction is changed to find
microstructures for materials, with maximum sheaodmus of elasticity for various
prescribed volumes of the solid phase. Similarh® above example, the design domain is

discretized into 109100, 4-node square elements. The Young's moduldsPaimsson’s ratio

of solid phase are selected & =1 and v= 0.3 respectively. The BESO parameters are
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ER= 002, r,, =5 andp =3. BESO starts from the same initial topology trsashown in

Figure 3.1.

0165 0145 O 0.116 0105 O 0076 0072 O
0145 0165 O 0.105 0116 O 0072 0076 O
0 0 0124 0 0 0.093 0 0 0065

(@) (b) (€)

Figure 3.6: Microstructures and effective elasgiaibatrices of 2D cellular materials, with maximuhear

modulus for various volume constraints (a) 45%;3b6%o0; and (c) 25%.

For the prescribed solid volume fractions of 45%f3and 25%, the convergence is attained
with 48, 59 and 73 iterations. The resulting mitmastures and their corresponding materially
effective elasticity matrices are shown in Figur6. 3-igure 3.7 demonstrates the evolution
history of shear modulus, volume fraction of thedsphase and the microstructural topology,

when the prescribed final volume fraction of thelisogphase is set ¥, = 025. It

demonstrates that shear modulus converges witloé gfability after the volume constraint is
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satisfied. The generated diamond shape microstestre the same as those microstructures
presented in (Neves et al., 2000). The materialbeaoonstructed by repeating the base cells.

Figure 3.8 shows 2x2 array of the generated miarostres.

o8 T ! T 7 L —T— 1.0
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Figure 3.7: History of evolutions of shear moduhaslume fraction and microstructural topology for

maximizing shear modulus.

Figure 3.8: 2x2 array of the base cells with maximahear modulus with various prescribed volumeotifl s

phase (a) 45%; (b) 35% and (c) 25%.
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3.2.3. 3D examples for maximizing bulk modulus

The cubic domain with30x30x30is discretized int80x30x30, 8-node cubic elements.
The mechanical properties of solids are selectetbasg’s E° =1and Poisson’s ratio= 0.3
. The BESO parameters are $&% =0.04, r.,, =3 andp = 3. Figure 3.9 shows the initial

topology, in which solid property is assigned tb elements except for 8 elements at the

centre of the model.

Figure 3.9: The initial design in 3D example

The objective is to optimize the topology of thetemals’ microstructures with various
prescribed volume fractions of solid so that thetemals’ bulk moduli K are maximized.

Figure 3.10 demonstrates the evolution historiebwdk modulus, volume fraction of solid
phase and micro-structural topology when the pilesdrvolume fraction of the solid phase is

set asV, = 025. When the prescribed volume fraction of solidgghes 45%, 35% and 25%,
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the resulting topologies for the PBC'’s, the 2x2x&ws of bases cells and the corresponding

elasticity matrices are shown in Figure 3.11.

The Hashin-Shtrikman analytical upper bound on butdulus of 3D cellular materials can

be expressed as (Hashin and Shtrikman, 1963):

w _ 4KGYV,

= 3.23
"S3KY1-V, ) +4G° (3:23)
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Figure 3.10: The evolution histories of bulk moduilwolume fraction and microstructures of 3D maksri with

maximum bulk modulus

When the volume fraction of the solid phase is 43%%6 and 25%, the Hashin-Shtrikman
upper bound is calculated as 0.19, 0.14, and @6Pectively from the equation (3.23). The

attained effective bulk moduli of materials candaéculated as 0.18, 0.12 and 0.08, from the
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elasticity matrices presented in Figure 3.11. it ba seen that the attained bulk moduli have

very good agreement with the analytical upper beund
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Figure 3.11: 3D base cells, 2x2x2 cells and effeetelasticity matrices of 3D cellular materials lvihaximum

bulk modulus (a) volume fraction is 45%; (b) volufreetion is 35%; and (c) volume fraction is 25%.
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Figure 3.12:3D microstructures with maximum bulkdulois generated by 3D printing.

3.2.4 3D examples for maximizing shear modulus

The cubic domain with dimensioB8x20x 20is discretized with20x20x 20, 8-node cubic
elements. The mechanical properties of the solaselare the Young’s modulug; =1 and
the Poisson’s ratio= 0.3 . The BESO parameters are selected as the evudnyioateER =
0.04, the filter radius,, =15. As before, the penalty exponent is selected 3.Here a
small filter radius is used in order to have soime members in the final micro-structural
topology. The BESO starts from the same initialotogy shown in Figure 3.9. The
prescribed volume fractions of solid phase arésbet 45%, 35%, 25% and 15% of the whole

design domain, respectively.

Figure 3.13 demonstrates the topology of the resuinicrostructures for the base cell, as
well as the 2x2x2 array of bases cells and effectlasticity matrices for the various

prescribed volumes of the solid phase. The togahitons for these examples are 38, 39, 49
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and 64, when the prescribed volume fraction ofdsphase are 45%, 35%, 25% and 15%

respectively.
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Figure 3.13: 3D base cells, 2x2x2 cells and effeetelasticity matrices of 3D cellular materials lvihaximum
shear modulus (a) volume fraction is 45%; (b) vaduinaction is 35%; ; (c) volume fraction is 25% aft)

volume fraction is 15%.

3.2.5 2D examples for maximizing thermal conductivy

The objective of this example is to generate micugsures of cellular materials with
maximum thermal conductivity. The square domairhvdimensions 100x100 is discretized
into 100x100, 4-node square elements. It is assuthatl the eigenvalue of thermal
conductivity of the solid phase ik®* =1.The evolutionary rateER =0.04, the filter radius

I, =12 and the penalty exponent equal to 3 are sele@teel topology at the iteration 0 is

shown in Figure 3.1, which consists of 4 void elataat the centre of the model while solid

property is assigned to the rest of elements.

Figure 3.14 demonstrates the topology of microsimes, as well as the 2x2 array of
generated base cells and the effective thermal wmdivity matrices when the prescribed
volume fraction of the solid phase is equal to 508d 30% of the total volume (area) of the

PBC. The total iterations for these examples ararzb36 respectively.
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Figure 3.14: 2D base cells, 2x2 cells and effectivermal conductivity matrices of cellular matesalvith

maximum thermal conductivity (a) volume fractiorsolid phase is 50%; (b) volume fraction is 30%

Hashin and Shtrikman (Hashin and Shtrikman, 196&)vdd analytical bounds on the
effective magnetic permeability of macroscopicallgmogeneous and isotropic materials
based on the variational principals. The matherabtioalogy enables the bounds to be also
used for predicting the dielectric, electric contikity, thermal conductivity, and diffusivity

of such materials. The HS upper bound for celligatropic materials is expressed as:

kHs = = (3.24)

When the volume fraction of the solid phase is €tqu&0% and 30% of the total volume of

the PBC, the Hashin-Shtrikman upper bound on theooaductivity can be calculated as
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0.333 and 0.176 respectively from the equation4(3.2s it can be seen from the thermal
conductivity matrices presented in Figure 3.14,dyoonsistency exists between the thermal
conductivity of generated materials and the Ha&hitrikman upper bounds. Figure 3.15
demonstrates the evolution history of the micragtrte when the prescribed volume (area)

fraction of the solid phase is 30% of the totalwoé (area) of the PBC.

1.20 - - 1.00
- 0.90
1.00 -
- 0.80
- 0.70
2 080 -
2 - 0.602
> 9
© ©
> ©
T 0.60 - - 0.50,1
(@)
S £
= L 0.403
£ S
3 040 -
= L 0.30
0.20 - —o—Bulk Modulus 020
=fl=\/olume Fraction L 0.10
0.00 T T T T T T T 0.00
0 5 10 15 20 25 30 35 40
[teration

Figure 3.15: The evolution histories of thermal daativity, volume fraction and microstructures &f 2

material’s microstructure with maximum thermal caotlvity
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3.2.6. 3D examples for maximizing thermal conductity

For the topology optimization of 3D microstructurs material with maximum thermal
conductivity, a cubic domain with dimensioB8x30x30is discretized int80x30x 30, 8-

node cubic elements. It is assumed that the eideswaf thermal conductivity of the solid
phase i&°=1. The BESO parameters are set as the evolutiorsdef R =0.04, the filter
radiusr,,, =3and the penalty exponent as beforp #s3. The starting topology consists of 8

void elements at the centre of the domain whileeotblements are assigned with solid

properties.
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Figure 3.16: 3D base cells 2x2x2 array of cells aefflective thermal conductivity matrices of celtutaaterials

with maximum thermal conductivity (a) volume frantdf solid phase is 30%; (b) volume fraction i&#40
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Figure 3.16 demonstrates the topology of microstmes, as well as the 2x2x2 array of
generated base cells and effective thermal condtycthatrices when the prescribed volume
fraction of the solid phase is equal to 30% and 40%be total volume of the PBC. The total

iterations for these examples are 38 and 31 reispbct

The Hashin and Shtrikman (1962) analytical bourdshe effective thermal conductivity of

3D cellular materials can be expressed as:

a

kS =k*+ (3.25)
1_
3k*®
in which
3V, -Dk*
a :% (3.26)

The Hashin-Shtrikman upper bound is calculated D&2d 0.307 when the volume fraction
of solid phase is 30% and 40% respectively whicbtmshgood agreement with the values

shown in Figure 3.16.

Figure 3.17 demonstrates the evolution history h& microstructure when the prescribed

volume (area) fraction of the solid phase is 30%heftotal volume (area) of the PBC.
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Figure 3.17: The evolution histories of thermal daativity, volume fraction and microstructures &f 3

material’s microstructure with maximum thermal caotivity

3.3. Concluding remarks

In this chapter the BESO has been developed fodéisegning of microstructures for cellular
materials with maximum bulk modulus, shear modutus thermal conductivity. The
developed BESO algorithm seeks optimal materidtidigion within the PBC by performing
topology optimization subject to volume constraidg applying the Homogenization theory
the overall properties of material were calculabeded on the analysis performed on the
PBC. The Homogenization theory was also appliedcédculation of elemental sensitivity
numbers, which are a measure of estimation of la@ges in homogenized material effective

properties, as a result of alternation of elemedtsity within the PBC. Based on the
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ranking of elemental sensitivity numbers, the BES@nges the density of elements from 1

to X, or from X ,to 1 by imposing volume constraint iteratively, ilrthe solution

min

converges. Several 2D and 3D examples were prestmtéemonstrate the effectiveness of
the proposed BESO method. The known analytical dsumere used for verification of the
results. Some interesting topological patterns Hae®en found for guiding cellular material

design.

As it has been shown, the BESO can be easily imphtead as a “post-processor” to
commercial FEA software packages. In this study ARFS was used as the FEA analysis
tool. The proposed method has other advantagesrinst of the convergence speed and
quality of the generated microstructures. The tedutopologies are represented by either
solid or void elements without intermediate demsitiwhich make the interpretation of results
and manufacturing easier. The methodology develap#us chapter will be further extended

to various other material design scenarios in th ohapters.
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Topology optimization of microstructures for isotropic cellular
materials

Background

The objective of this chapter is to introduce a patational procedure to equip the
methodology proposed in previous chapter with amia#l performance constraint. To this
end, the design of materials with maximum stiffniesthe form of bulk or shear modulus of
elasticity with additional constraint on the isqgiyoof material is sought. In an isotropic
material, the physical properties such as bulkhmas moduli are independent of material
orientation an are identical in all directions. Télements of material constituent tensor of
these types of materials remain unchanged undertrangformation, from one coordinate
system to another. Isotropic materials are the mwmstmon materials used in industry and are

attractive for engineering applications (Barber@99).
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For the purpose of designing the microstructuremaferials with symmetrical properties, a
number of methods have been proposed in the lileraFor instance a method based on the
SIMP topology optimization has been introduced bgnfind and Torquato (1997) and

Sigmund (2000) in which the constraint on squararegtry of materials (in 2D problems in
the form of D,, - D,, =0) and isotropy ( in 2D problem®,,+D,,—(D,,+D,,)-4D,;,=0 )
are chosen to be implemented as a penalty funatidied to the objective functionf {(x) ).

The penalty functions are defined as the squarthefdeviation from fulfilment of square

symmetry or isotropy constraint as:

D = ( Dy-Dyp

] PuPn (4.1.2)
‘ Dll + D12

D. :(D11+D12_2(D12+2D33)

)? (4.1.b)
D 11 + D 12

the modified objective function is then stated as:

fx) = fo(x) + w,D, +w,D (4.1.c)

iso

wherefy(x), is the optimization objective function. Howevere thelection of the penalization
factors ofw; andw, are highly dependent on the user’'s experienceadtttion, the need for
some interactions by the user during the optimiragirocedure makes the approach not fully
systematic. Moreover, by using the Sequential Lineagramming (SLP) technique, this
procedure needs several thousand iterations toobgeoged, due to the flatness of the

modified objective function (Sigmund and Torquéit®97).
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(a) (b)

Figure 4.1: Examples of isotropic and anisotropqare symmetric) microstructures of materials; (a)

microstructures of an isotropic material; (b) mistouctures of a square symmetric material

Imposing symmetrical constraints on microstructigabmetry is another approach for the
design of isotropic materials through inverse hoemsgation (Neves et al., 2000, Torquato,
2002). Based on the Neumann principle (Love, 1%jd, 2005), it is known that certain
type of geometrical symmetry of the material mitnostures leads to the symmetry in the
response of the material. Figure 4.1 demonstratesicaostructure of isotropic and an
anisotropic material. In the Figure 4.1a the mittogure possesses 60° symmetry and the
resulting material is isotropic (Bendsge and Sigd)#903, Neves et al., 2000, Sadd, 2005).
In the microstructure shown in Figure 4.1b suclbagymmetry does not exist and dissimilar
elasticity properties are expected, for examplexgldirections 1 and 2. However, the 45°
symmetry of the microstructure produces square sgtmncharacteristics on the material
response. This feature could be used in the mhtdesign by imposing a geometrical
constraint on the periodic base cell. Howeveshibuld be noted that the symmetry of the

microstructure is sufficient but not a necessarydiiion for the symmetry of material
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properties (Sigmund and Torquato, 1997) and imgpgeometrical constraint may inhibit the

realization of many potential solutions in an irsehomogenization based optimization.

Recently, a Level-set method was applied for thaigieof two-phase isotropic composites
with maximum stiffness and thermal conductivity (kifiis et al., 2007, Challis et al., 2008).
In this proposed approach, a “nearest” feasibleapac thermal conductivity and elasticity
tensors are formulated at each iteration. The dlbgdunction is defined to minimize the
difference between the thermal conductivity andstiddy tensors of material and their
corresponding feasible and nearest isotropic ten§be extra constraint is imposed by
modifying the evolution rate in the Hamilton-Jacamuation. The proposed method is
capable of generating microstructures for 3D igmtromaterials (Challis et al., 2008).
However as mentioned in Chapter 2, the Level-sptémentation is usually difficult and, so

far, has not reached to the level of regular apfibe (Rozvany, 2009).

In this chapter an alternative approach for topglaptimization of cellular isotropic

materials will be presented.

4.1. Methodology

4.1.1. Problem statement of isotropic material topogy optimization

In this study, for the purpose of designing isottomaterials, the necessary and sufficient
conditions of isotropy are defined as an additiac@istraint in the optimization procedure.

As mentioned before, in an isotropic material tbestituent tensor remains unchanged under
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any transformation from one coordinate system ftattaer. Considering the elasticity matrix

of an orthotropic material in 3D form as:

D, D, Db 0 0 O
Dy D, Dy O 0 O

5-|Pn Dy Dy O 0 0 @2)
o 0o 0 D, 0 O
0O 0 0 0 Dy O
0 0 0 0 0 Dy

it can be shown that that relations (4.3) to (& necessary and sufficient conditions for

isotropy of material.

D,=D,, =D,, =D, , (4.3)

D,=D,, =D,, =D, =D,, =D,, =D,., (4.4)
D,=D,, =D, =D, , (4.5)
D,-D, =2D, (4.6)

In the cases where the equations (4.3), (4.4) 4r%) pold, the material is known as cubic
symmetric, in which, each of the three principatskas fourfold symmetry. By engaging all
elements of the cubic symmetric elasticity matthxe condition (4.6) can be rewritten as

equation (4.7a) for 3D cases:

Cio =ADyy + Dy, + Dy ) =(Dy, + Dy + Dy + Dy + D5+ Dy, ) =4(D,, + Dy + Dy ) =0
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(4.7a)

Similar relationships exist in 2D plane stress penis. By treating elements of square

symmetric elasticity tensor equally, the condit{dr6) can be rewritten as:

Ce, =Dy +D,, =(D, +D,;)—4D;; =0 (4.7b)

As it was seen from numerical results of Chapterth® cubic symmetry conditions of
relations (4.3) to (4.5) are always satisfied witlesn BESO procedure starts from an initial
square or cubic symmetric topology and treats aiftesponding elements in perpendicular
directions equally. Therefore, in order to obtamisotropic material, condition of equation

(4.7) needs to be introduced, as an additionaltcains in the BESO method.

In the BESO setting, the topology optimization peob of cellular material with a maximum
stiffness and with constraints on the isotropy armume fraction can be expressed

mathematically as:

Maximizef,(x) =K or G (4.8.a)
Subject toC,,,=0 (4.8.b
A1 (4.8.0)

X =Xy Orl (4.8.d)
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in which material’'s stiffness is expressed by b(K) or shear G) moduli defined in

equation (3.3) or (3.4); the equatiop,=0 defines the constraint on materials isotropy with

the expansion shown in equation (4.V);is the volume of thé" element an¥ " denotes the
prescribed volume of the solid phase. As beforedinsign variable represents the density

of the i™ element, which is restricted to a binary valueeither 1 for a solid element or a

small value,x . (e.g. 0.001) for a void element.

4.1.2. Solution Method

For solving the problem (4.2), the optimality cribem can be described as that sensitivity
numbers of solid elementsx( = 1) to be higher than void elements; (= x.,,,). Therefore,
an update scheme is devised to change the desigbleax, from 1 tox , for elements
with lower sensitivity numbers and fronx , to 1 for elements with higher sensitivity
numbers (Huang and Xie, 2010b). As discussed inp@ha3, in the BESO method, the

volume constraint can be easily satisfied by griguamoving and adding elements through

the introduction of evolutionary rate.

One of the explored features of the new soft-kiEED method is its capability to be
integrated with an extra performance constrainaddition to the volume constraint. In the
stiffness optimization of structures in macro-sc#ie new soft-kill BESO procedure has been
successfully combined with an additional constraintallowable displacement (Huang and
Xie, 2009b, Huang and Xie, 2010a). In the appro#whvariation of the displacement for the

next iteration is approximated through a gradieasda estimation. The topology of the
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structure is evolved toward the desired functigraperty, through introducing a Lagrangian
multiplier. This methodology can be extended toaswthe isotropy constraint by modifying

the original objective function of equation (4.3} a
f(X) = fl(x) + /1 X Ciso (49&)

in which the Lagrangian multipli@r]] — o, + o[ . This equation is equivalent to:

f(x)= 1,09+ (4)90b

L X Ciso
-
where the new variablé1[-1,1] corresponds to the changes of the Lagrangian pfialtin

the range of\ [J] — », + oo . It can be seen that the modified objective fuorcis equivalent to

the original one, when the isotropy constraintatisiied. With the help of Homogenization
theory the derivatives which reflect the variatioh objective function with respect to the
density change within the element can be expressed

df(x): dfl(x)+ l » dC

—50 4.10
dx  dx  (1-|¢) dx (4.102)

Since in BESO only the ranking of elements basedeansitivity numbers is important, by
multiplying the above equation in the positive \alaf 1—|€| the sensitivity number of

elements can be expressed as:

_ df(x), ,. dG
= 1_ g 1 +€ SO
a =(1-]()x o o (4.10b)
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The derivatives of the first term in equation (4.t@n be calculated numerically using the

equation (3.15). Likewise, the terfd  can be readily expanded through equation (4.7) and
the derivatives with respect to the design vari&fatan be calculated using the same equation

(3.15). But before the calculationgfthe Lagrangian multiplier needs to be calculated.

4.1.3. Determination of the Lagrangian multiplier

In an iterative process, the Lagrangian multipliegs determined in such a way that, the value

of constrain€C.

IS0’

to be zero in the subsequent iteration. For fhigpose, the following

gradient-based expression is used to estimateetkiataration value of the constraint:

t+1 t dCt
Ciso = Ciso +ZiAXi (411)
— dx
where the superscript and t+1 denotes the current and the next iteration numbers
respectively. The above equation yields a linedriestimation of the constraint function
around the design point by using the expansion of the first term of Tayeries. Equation
(4.11) is very similar to the expressions used eguential linear programing (SLP) (see

Chapter 3). The derivatives in equation (4.11)darmined numerically.

At the beginning of each iteration, initial elem@nsensitivity numbers are calculated by

assuming/ =0. Then, by ranking elements and imposing volumestraimt, a set of possible

t+1 ¢
o IS

updated design variables are evaluated. The camstralue for the next iterati

estimated by using the equation (4.11). If thestint value€C'! is negative, therf has to

Iso
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be gradually increased from 0 to 1. Thus the medifibjective function maximizes the bulk

or shear modulus and increases@fje simultaneously. Contrarily, if the calculated \alof

C'! is positive, the summation term in equation (4.ha3 to be decreased. This could be

IS0

done by gradually decreasingfrom 0 to -1; thereby, the modified objective ftinns

+1

maximize the bulk or shear modulus and minimizespisitiveC,. simultaneously.

The precise value of could be determined using the bisection algorithman internal loop,

by exploiting two auxiliary variable$

low

and/,, . For instance at the beginning of each

internal loop with/ =0, if the calculated valug." is positive, then the boundary values of

1so

the auxiliary variables are selectég,=-1, ¢, =0 and the new value of/ is calculated

by setting/ = (¢, +1,,)/2 . Then the sensitivity numbers are updated accgrtirequation

low

(4.9) and new set of design variables as wellCi§ are calculated by the ranking of
elemental new sensitivity numbers. If the upd&gt> 0 , then the upper auxiliary variable (
¢, ) should be replaced by the currerit and the new coefficient is calculated as

)/2 . If C¥*"<0 then the lower auxiliary variable 4, ) is replaced with

low

0=(ly,+t

current/ and the updated value is calculated by settird/,, +/,)/2 . The procedure of

low

the internal loop comes to an end when the diso@paetween boundary variableg,(, ,

¢, ) is sufficiently small (e.g.10°).

4.1.4. Procedure

The whole BESO procedure can be described by tleniog steps:
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Step 1: Define the BESO parameters such as prescviblume fraction\("); evolutionary

ratio (ER); penalty exponenp (normallyp = 3) and filter radius

Step 2: Construct a solid-void finite element mddelthe PBC;

Step 3: Define the periodic boundaries on PBC;ndethe loads that are equivalent to unit
strain fields,Egg. In 2D problems, 3 cases of loading and boundanditions and in

3D problems 6 cases are necessary. Perform the ®tement analysis (FEA) and

extract the induced displacement fialds

df df
Step 4: Calculate% and% numerically, filter the term—é)ix) ;

Step 5: Let/ =0;

Step 6: Calculatea; using equation (4.10b). Rank all elemental sensjtimumbers and
obtain new set of design variablgsby applying volumetric constraint as

V™ = max/'1-ER),V");

t+1

Step 7: Calculat€, " using equation (4.11);

IS0

Step 8: If C&' >0 then decreaséwithin the range[-1, O] using the above mentioned

IS0

bisection algorithm; otherwise, increageavithin the rangel0, 1] ;
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Step 9: Repeat steps 6 to 8 until the differencsvéen auxiliary variableg

low

and/,

becomes sufficiently small (e.d0°);

Step 10: Average the sensitivity numbers with theilues of previous iteration and then

update design variables ;

Step 11: Repeat steps 2 through to 8, until bothrmre constraint and convergence criterion
are met. The convergence criterion is regardecetsatisfied when the changes in the

objective function are less than a specific toleearior example

5
Z(fl—iﬂ _ fl—i—9)
error =42 < 0001 (4.12)

25 t=i+l
f =+
i=1

in which f is the objective function and superscript is tieeation number.

4.2. Results and discussion

This section presents some examples of the micsies that are designed by the proposed
method. Because the loadings and boundary conditioa square base cell are symmetrical
with respect to main perpendicular axes, in all @3es, only one-fourth of square PBC is
modelled; this assumption reduces the computaticostls. Similarly, only one-eighth of the

PBC is modelled in all 3D problems.
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The presented results are verified with known arelybounds of bulk and shear moduli. As
mentioned in previous chapters, in quasi-homogeaadsguasi-isotropic composite materials
the analytical upper bounds on materials attainbdbl& and shear moduli were derived by

Hashin and Shtrikman (Hashin and Shtrikman, 1968y. cellular materials that are made

with a void phase and a solid phase of volume ifsac¥, , bulk modulusK®and shear

modulus ofG*®, the Hashin and Shtrikman (HS) upper bounds arengas:

V,KG®

w o TP 2D plane stress bulk modulus upper doun (4.13a)
" (1-V K +G®
v = AKGV, 3D bulk modulus upper bound (4.13b)
3K(1-V, ) +4G®
GK¥V
up — f 2D plane stress shear modulus upper bound (4.13c)

"5 2(KP+G%) -V, (K® +2G°)

o V,G5(9K® + 8G®)

v = 3D shear modulus upper bound (4.13d)
K(15-6V,) +G%(20-12V,)

For cubic symmetric materials, Zener (1948) happsed an index for measurement of the
anisotropy of materials. This index is frequentbed in literature (Ledbetter and Migliori,
2006, Wang et al., 2011) and is known as the Zan&otropy ratio. In terms of the three
main coefficients of the cubic symmetric materisticity matrix defined in equations (4.3)
to (4.5), the Zener anisotropy ratio is expressed a

2D,

A=——— 4.14
D,-D, (4.14)
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The above ratio defines a measure for resistanadaiiic deformation along the direction
[010], under a shear stress acting across plan8) (Mth respect to the resistance to
deformation along the direction [110] under a stst@ass acting across the (110) plane (Zener
1948). A comparison with equation (4.6) indicatest this ratio should be equal to 1.0 for an

isotropic material. The Zener anisotropy ratiolgapplicable for square symmetric material

with D, standing forD,,in equation (4.14).

4.2.1. 2D cellular materials with maximum bulk modudus

To obtain microstructures for materials with maximulk modulus, the square design
domain of PBC with dimensions of 120x120 is disesst into120x120, 4-node square
elements. The Young’'s modulus and Poisson’s rdttbesolid phase are selectededs= 1
and v=03 respectively. The BESO parameters are set atvbleteonary rate ER=0.006 the
filter radius r =6 and the penalty exponent ps 3.The prescribed volume (area) fraction

of the solid phase is selected to be equal to 20%h e total area of the base cell. At the
beginning of the procedure, solid properties asgagd to all elements of the PBC, except

for four elements at the centre of the base ceitlwhre defined as void (Figure 3.1).

In order to compare the microstructures generatitd and without imposing the isotropy
constraint, two microstructures are presented igufé 4.2. Figure 4.2a shows the
microstructure of the isotropic cellular materiakhile Figure 4.2b demonstrates the
microstructural topology of the cellular materiahigh is generated without imposing the
constraint on isotropy. Figure 4.2c and 4.2d iflas the corresponding 3x3 array of base

cells. The effective elasticity matrices of thesutar materials are also given in the figure.
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0.0535 0.0574 0

0.0574 0.0535 0
0 0 0.0019

(a) (c) (e)

0.0542  0.0551 0 0.0412  0.0680 0

0.0551 0.0542 0 0.0680 0.0412 0 ]
4] 0 0.0134 0 0 0.0005

®) (d) ) 3]

Figure 4.2: Microstructures of 2D cellular matergalith maximum bulk modulus; (a) PBC generated by
imposing the isotropy constraint; (b) PBC generatgthout imposing the isotropy constraint; (38X 3 base

cells of (a) ; (d)3% 3base cells of (b) ; () elasticity matrix of isugic material; (f) elasticity matrix of square

symmetric material; (g) elasticity matrix of squanygmmetric material with 45° transformation.

The bulk modulus of the isotropic cellular materigl0.0555, which demonstrates a good
agreement with HS upper bound, calculated 0.05F® fequation (4.13.a). It can be shown
that the elasticity matrix of the isotropic solutios invariant under any transformation
(rotation) from one coordinates system to anotlwever, as it can be examined, for
instance by 45° transformation of the elasticitytnmathe microstructure that is generated
without isotropy constraint demonstrates diffeqgmperties along different directions (Figure

4.29).

To demonstrate the effects of imposing isotropy st@int, the variations of the Zener

anisotropy ratio for the two generated cellularenats are compared in Figure 4.3. It can be
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seen that the proposed algorithm effectively sastéine Zener anisotropy ratio close to 1,
through the entire process for designing the mioncture of the cellular material with the
isotropy constraint. When the isotropic constramot imposed, the Zener anisotropy ratio is

about 27.5 at the final design stage of generatiu@mre symmetric material.

60.00

50.00 —With Isotropy Constraint

—— Without Isotropy Constraint
40.00
30.00

20.00 -

10.00 A

Anisotropy Ratio A

0.00 v

-10.00 - /

-20.00

-30.00
0 50 100 150 200 250

fteration

Figure 4.3: Evolution histories of the Zener anisply ratio for designing isotropic cellular matetiand square

symmetric cellular material with maximum bulk madul

4.2.2 2D cellular materials with maximum shear modlus

In this example, the objective is to design miawodures for cellular materials with
maximum shear modulus and the solid phase volumea)draction of 25%. The PBCs with
dimensions 120x120 are divided into120x120 foureneduare elements. The evolutionary

rateER =0.005and filter radiusr,;,, =5 are set as BESO parameters. As before, the

Young’s modulusE® =1 and Poisson’s ratio= 0.3 are selected as the mechanical properties
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of the solid constituent phase. The initial topgl@gnsists of a domain in which all elements

are assigned solid properties except for four edénents at the centre (Figure 3.1).

0.7054  0.0352 0
AN 0.0352  0.1054 0
! 0 0 0.0351 |

00718 00755 0

00755 00718 0 ]
0 0 0.0651 |

(0) (d ®

Figure 4.4: Microstructures of cellular materialsttymaximum shear modulus; (a) the PBC with tloéragpy
constraint; (b) the PBC without the isotropy coastt; (c) base cells of (a) ; (d) base cells(@f ; (e)

elasticity matrix of isotropic material; (f) elastty matrix of square symmetric material.

The two microstructures that are generated withwaitisdbut imposing the isotropy constraint
are shown in Figure 4.4. The correspon@r@ array of unit cells and material elasticity
matrix are also presented. As is shown in Figuke the attained shear modulus for the
resulting isotropic material is 0.0351, which igwelose to the HS upper bound on shear
modulus calculated at 0.0376 from equation 4.18is. dlso noted that although the objective

of this example is to maximize the shear modulumaferial, the attained bulk modulus of
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the isotropic design is 0.0703, which is very clasethe HS bulk modulus upper bound

0.0746 (calculated from equation (4.13.a)).
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Figure 4.5: Evolution histories of Zener anisotragyio for designing isotropic and square symmetediular

materials with maximum shear modulus

Figure 4.5 demonstrates the evolution history ef Zener anisotropy ratio throughout the

whole optimization process. As can be seen fronfithee, when the constraint on isotropy

is imposed, the Zener anisotropy ratio is kept vdoge to 1 throughout the whole process.

However, when such a constraint is not imposedjuare symmetrical material with a Zener

anisotropy ratio oA = 353 is generated (Figure 4.5).

4.2.3. 3D cellular materials with maximum bulk modudus

The proposed algorithm can be readily extendedojpology optimization of microstructures

in 3D cases, without any theoretical differencee Thbic PBC with dimensions 46x46x46 is
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discretized into 46x46x46 eight-node cubic elememd the prescribed volume fraction of
solid constituent phase is selected equal to 20%hetotal volume of the PBC. The BESO

parameters are chosen as the evolutionary rateFof 0.006and the filter radius,,,, = 25

The Young’'s modulus and Poisson’s ratio of the dsghase areE°=1 and v=03
respectively. As it is shown in Figure 4.6, theialitopology of the PBC entirely consists of
solid elements except for eight void elements atdéntre and one void element at the eight

corners.

Figure 4.6: Initial material distribution in 2D piglems (solid elements are shown in green)

With the abovementioned design parameters andilirtitpologies, Figures 4.7a and 4.7b
show the two microstructures that are designedttiermaximum bulk modulus, with and
without isotropy constraints. The interior views dhese microstructures and the
correspondin@x 2 arrays of unit cells and elasticity matrices ¢ thaterials are also shown
in the Figure 4.7. The bulk modulus of cellular er&tl with the isotropy constraint is 0.0599.

Figure 4.8 demonstrates the evolution history & Zrener anisotropy ratio throughout the
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design procedure for both base cells. As indicatesl Zener anisotropy ratio is very close to

1 for the design with the isotropy constraint.

(b)

(@

(© (D
01010 0.0393  0.0393 0 0 o 7 To097s 00534 00534 0 0 0
0010 0.0393 0 0 0 l 00975 0.0534 0 0 0
0.1010 0 0 0 | 00975 0 0 0
0.0308 0 0 ‘ 0.0386 0 0
sym 0.0308 0 spm 0.0386 0
0‘303J 0.038

(g) (k)

Figure 4.7: 3D microstructures of materials with xraum bulk modulus; (a) PBC with isotropy constta(b)
PBC without isotropy constraint; (c) half of th&e shown in (a); (d) half of the PBC shown in (@) 2% 2

base cells of (a); (2% 2 base cells of (b); (g) isotropic material elasty matrix; (h) cubic symmetric

material elasticity matrix
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Figure 4.8: Evolution histories of Zener anisotrajayio for designing isotropic cellular material drcubic

symmetric cellular material with maximum bulk macul

Figure 4.9 shows another example of isotropic arziccsymmetric microstructures in which
the BESO parameters are seEf& 0007 andr,, =3. The PBC and elements dimensions
are similar to the previous example. For both @utr and cubic symmetric microstructures
of this example, similar to the Figure 3.9, thei@titopologies include eight void elements at
the centre of the PBC while solid properties arsigmed to other elements. The generated
topologies are shown in Figure 4.9. The bulk modtithe resulting isotropic and anisotropic
cellular materials are 0.0585 and 0.0619 respdygtives it is shown in Figure 4.10, the Zener

anisotropy ratio for the isotropic and anisotramiaterials aré = 1.0 and 2.52 respectively.
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(e) ®
00956 00400 00400 0 0 0 ] To0sa 00514 00514 0 0 0
00056  0.0400 0 0 0 00831 00514 0 0 0
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Figure 4.9: 3D microstructures of materials with xiraum bulk modulus; (a) the PBC with the isotropy
constraint; (b) PBC without the isotropy constrigifc) half of the PBC shown in (a); (d) halftok PBC
shown in (b); (e) 2x2x2 base cells of (a); (f) 2x2%ase cells of (b); (g) isotropic material elagy matrix;

(h) cubic symmetric material elasticity matrix
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Figure 4.10: Evolution histories of Zener anisotyajatio for designing isotropic cellular materiahd cubic

symmetric cellular material with maximum bulk macul

4.2.4. 3D cellular materials with maximum shear modlus

The objective of this example is to design 3D nstmactures of cellular materials with
maximum shear modulus. The finite element modeltt® base cell with dimensions
60x60x60 is discretized intd0x60x60 , eight-node cubic elements. The mechanical
properties of the solid phase are selected as thmgy’'s modulus ofE® =1 and the Poisson’s
ratio of v=03 . The evolution rateR =0.007, filter radiusr_,, =3 and the penalty
exponentp =3 are selected as the BESO parameters. The procstiute from the initial
topology, which consists of elements with solidgedies except for eight void elements at
the centre and four void elements at the centeaoh 6 sides of the finite element model of
the PBC. The prescribed volume fraction of thedsplhase is selected as 40% of the total

volume of the PBC.



Chapter 4 144

(b)
(d)
®

(e)
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Figure 4.11: 3D microstructures of materials witlxmum shear modulus; (a) the PBC with the isotropy
constraint; (b) the PBC without the isotropy coastt; (c) half of the PBC shown in (a); (d) halftbe PBC
shown in (b); (e) base cells of (a); () bas#ixof (b); (g) isotropic material elasticity matr (h) cubic

symmetric material elasticity matrix
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Figure 4.11 demonstrates the generated microstesctand elasticity matrices of isotropic
and cubic symmetric cellular materials. As indicaie the figure, the shear modulus of the
isotropic cellular material is equal to 0.0984, e¥his very close to HS shear modulus upper
bound that is calculated equal to 0.0995 from the quadon
(4.13d). The Zener anisotropy ratio for the isoicagellular material i\ =1.0. However, the
topology optimization without the isotropy constraresults in the microstructure with the
Zener anisotropy ratio of 1.25. It is noticed tliae bulk modulus of isotropic material
(0.1405) is also very close to the HS upper bouhd688), although the objective of this

example is to maximize the shear modulus.

4.2.5. 2D isotropic cellular materials with negatie Poisson'’s ratio

To demonstrate the capability of the proposed mhoein imposing the isotropy constraint
in combination with other objective function, iretfollowing example 2D microstructures for
isotropic cellular materials with negative Poissordtio are sought. Negative Poisson’s ratios
in foams were observed by Lakes (1993). It washturgualitatively demonstrated by (Phan-
Thien and Karihaloo, 1994), that composite materiatith randomly distributed
microstructures can have isotropic behaviour webative Poisson’s ratio. The key feature of
their microstructures is the existence of re-erti@rners, which was already noticed by

Lakes (1993).

Through inverse homogenization, Sigmund (1994a,4hP%ound that by modelling the
materials microstructure as a continuum environmiensg very difficult to attain topologies

with negative Poisson’s. The Poisson’s ratio cdairathe negative value of -1, if the shear
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modulus of material is much larger than its bulkdwmlos. On the other hand, the numerical
experiences in 2D problems demonstrates that ttenable values db,and D,, are

correlated (Sigmund, 1994a, 1994b). In this study following statement has been used as

the objective function to find a material with nége Poisson’s ratio,

Minimize: f,(x) = D,, + D, —2D,, (4.15)
00560 -0.0307 0
-0.0307  0.0560 0
0 0 0.0437
(a) (b) ©)

Figure 4.12: Microstructure of isotropic materiaitiv negative Poisson’s ratio(,;,, = 4); (a) periodic base

cell; (b) unit cells; (c) isotropic material elastty matrix

The PBC with dimensions 160x160 is discretised #0x160 four-node square elements.

The prescribed volume (area) fraction of the sphdse is selected equal to 35% of the total
volume (area) of the base cell, with Young’'s moduiti =1and Poisson’s ratio= 0.2. The
BESO parameters are the evolution rate [BlR =0.004 and the filter radius,,, =4, the

penalty exponent is selected equal to 3. Simdahe topology that is shown in Figure 3.1,
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the BESO procedure starts from a domain of sokanents, except for four void elements at

the centre.

-0.0203  0.0493 0

0.0493  -0.0203 0
0 0 0.0348

Figure 4.13: Microstructure of isotropic materialtiv negative Poisson’s ratiof(;, = 1.5); (a) periodic base

cell; (b) 3x3 unit cells; (c) isotropic material elasticity matr

Figure 4.12 illustrates the generated microstrectirthe isotropic cellular material which its
Poisson’s ratio is calculated equal to -0.5482. ewla smaller filter radiug,, =15 is

defined as the BESO parameter and the prescribedheofraction is set to 30% of the total
volume of the PBC, the microstructure of Figure34id obtained. From the elasticity matrix
of the Figure 4.13, the Poisson’s ratio is cal@da¢qual to -0.4118. The Zener anisotropy
ratios of both materials are also very close t@de can easily perceive the lateral expansion
of the microstructures in Figures 4.12 and 4.18hasesult of imposing tensile force, due to
existence of the re-entrant corners. It is intémgsto note that these microstructures are
qualitatively similar to models of Phan-Thien andrikaloo (1994). As it is stated before,

changing the design parameters such as filter sadin cause obtaining qualitatively different
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solutions in an optimization procedure. This is mhaibecause of existence of many local
optima in topology optimization of material’'s mistauctures. In the two examples presented
in this section, it can be seen that reducing thierfradius produces a material’s
microstructure that has more regions of smallethvith a continuum structure, these regions
may act as hinges during the deformation. The ftionaof these hinge-typed regions is
essential especially in materials with negativesBam’s ratio (Phan-Thien and Karihaloo,

1994, Lakes, 1993).

4.3. Concluding remarks

Using the BESO method, a new approach for desigmimgostructures for isotropic cellular
materials with maximum bulk or shear moduli waspmsed in this chapter. The isotropy of
the materials was defined as an additional comdtren the optimization problem. The
modified objective function was constructed by adincing a Lagrange multiplier to
implement the isotropy constrairthe proposed procedure utilizes a gradient-baseatiade
to impose the isotropy constraint and gradually we® the microstructures of cellular
materials to the optimum. Effectiveness of the psgul method has been demonstrated by the
topology optimization of microstructures of isotiogellular materials, with maximum bulk
modulus or maximum shear modulus. Numerical examplearly indicate the difference
between the generated square (cubic) symmetricrimlatewithout imposing the isotropy
constraint and isotropic cellular materials in whithe isotropy constraint is imposed. The
histories of Zener anisotropy ratios through theleon of microstructures indicate that the
isotropy constraint has been properly incorporatet the optimization algorithm for

designing all isotropic material cases. The preskekamples also indicate that the proposed
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method can be extended to the designing of isatropilular materials, with other desired

functional properties such as materials with thgatige Poisson’s ratio.



Chapter 5

Topology optimization of multi-phase periodic compsites with
extreme properties

Background

In comparison to cellular material that is composé@dne material phase and a void phase,
composites of two or more materials are more adgmdus and attractive for practical

applications. As discussed in Chapter 2, one ofaitiantages of such materials is that by
combining different constituent phases, a widelgeanf properties can be achieved, which
are not attainable by the individual constituenagds (Zhou and Li, 2008a). On the other
hand, multi-functional materials are inevitably quusites of two or more constituent phases
(Gibson, 2010). Such materials play a significasé rin the development of composites in

industry.
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As mentioned in Chapter 2, the SIMP method has tmmpilied in the form of inverse
homogenization for the design of periodic microstwes for composites with two material

phases and a void phase (Sigmund and Torquato, BdBiansky and Sigmund, 2000). The
key point in these studies is the introductiontoke design variable® , x?and x*, for

each element that corresponds to the three constituent phasgsdeiining an artificial

mixing function, the local material properties aterrelated with the design variables.
However an inherent problem with the SIMP methodhiat such an approach leads to
intermediate densities in the final topology. Imgarison with microstructures designed with
one material phase and one void phase, in mulsgmaterials design, the SIMP method
usually causes more ambiguity in the interpretatton identification of the boundaries
between constituent phases. Increasing of the fyeraponent not only cannot solve the
problem completely, but may also result in numerioatability (Kohn and Strang, 1986,
Swan and Kosaka, 1997, Yin and Yang, 2001, Zhou \&aghg, 2007). For instance, the
application of Optimality Criteria (OC) or SequehtiLinear Programming (SLP) causes

difficulties in the convergence of the solutionif¥and Yang, 2001, Zhou and Li, 2008a).

The BESO approach has been developed for stiffopssiization of macro-structures with

multiple materials (Huang and Xie, 2009a, 2010blthdugh the generated structures are
topologically similar to the results of the SIMP papach, it has been shown that the
procedure is independent of the selection of peatdin factor. Better convergence of the
procedure, together with high computational efficig and more importantly, the capability
of the BESO in separating the constituent phases,niade it a promising tool for topology

optimization of multi-material structures.
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In this chapter, the methodology for obtaining mats with extreme physical properties will

be extended to multi-phase composite materials. olijective functions are maximum bulk

modulus, shear modulus or thermal conductivityis Bssumed that the composite consists of
N constituent phases. After ranking the constitydreses based on their contribution in the
objective function, they are divided ind-1 groups and the sensitivity analysis is performed
between groups. Elements’ material properties &@nged based on the ranking of these
sensitivity numbers and imposing volume constramthe constituent phases. To tackle the
numerical issues of the checkerboard pattern arshrdependency, the filtering is conducted

separately within the elements of each group.

5.1. Methodology

5.1.1. Optimization problem statement and sensitity numbers

It is assumed that the composite material consitdN constituent phases with equal
Poisson’s ratios and the Young’s moduli or thertarconductivities that have been ordered
descending (that i€ >E*>..>E" ork'>k?>...>k"). The optimization problem
statement for attaining periodic materials with maxm bulk modulus, shear modulus or the
thermal conductivity with constraints on the volufrection of each constituent phase can be

expressed as:

Maximize f(x)=K,G ork,



Chapter 5 153

B I S
Subjectto:  VI"=> VK =" xv, (5.1)
k=1 i=1

Xij = Xmin Or 1 (J :].,2,"',”_1)

in which v, denotes the volume of elemeint V" is the prescribed volume of" material
phase anK , G or k_are the bulk modulus, shear modulus or the themoatluctivity of
materials ;x; is the design variable which indicates the densitthe i" element for thej™

material. Thex; can take a binary value of either 1 when the elénsefilled with material

phasej or constituent phases with larger stiffness/théenaductivity, or a very small value

(i.e. 0.001) otherwise.

1 if E=E' or (k>k')
X, = (5.2)

X otherwise

The local material of an element within the PBC t@nassumed to be isotropic, with the
physical property that varies between the propedfehe two phases. The material properties
are interpolated between two neighbouring phasesy us power-low scheme. For instance,

the elements of elasticity matiixare interpolated as (Huang and Xie, 2009a):
D(x) =x/D’ + (1-x/)D'™ (5.32)

j =12---,n-1
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in which the subscript ofj andj +lindicates the phase numbeiSimilarly the material

thermal conductivity can be interpolated between heighbouring phases as:

k =xPk’ +(@L-x)k!™ (5.4)

j:lz’...,n—l

in which k denotes the thermal conductivity matrix. Since design variables are either

x., Or 1, the optimality criterion can be describediad the constituent phageand those

phases that have larger Young's modulus thgnx, = 1) always have higher sensitivity than
the rest of constituent phaseg; (= x;,). With this assumption a scheme could be devise to
update the design variable, by changing from 1 tox, for elements with the lower

sensitivity numbers and frony_,, to 1 for elements with the higher sensitivity nuar

Similar to the relationships introduced in Chaferthe sensitivity of the elements of the
homogenized elasticity matrix can easily be catedawith the introduced interpolation

scheme (Haug et al., 1986) as:

oD" 1
= ¢
o, !

)

| - Bu)" %u ~Bu)dY (5.5)

where u denotes the displacement fields of the unit calsea by these uniform strain fields;
and Bis the strain-displacement matrix. It should beasat that the sensitivity of each group

is calculated for all elements of the base cethaalgh it is only used for assigning the design
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variables between the two neighbouring phases$aridj +1 (Huang and Xie, 2010b). The

appropriate equations for calculations of the gesitsés are similar to the equation (3.17).

5.1.2. Numerical procedure

To solve the above mentioned optimization probleimgithe BESO, the phases are divided
into N-1 ordered groups and the sensitivity calculationtrbescarried out between thedel

groups of phases (Huang and Xie, 2009a). Herertheedure is explained for the case where
the material’s microstructure is composed of 3 titwent phases. The procedure for the cases

that the material is composed of more constitubasps follows the same procedure.

The BESO can start from a finite element model widarly all elements from material 1
except for some limited number of elements fromemat 2. Through successive iterations,
some more elements are turned into material 2, thighspecified evolution rat&R) so that

the volume of material 2 is restricted as:

Viy =maxi/, (L+ ER), V) (5.6)

where subscript in the parenthesis indicated thé&emah number. The transition between
materials 1 and 2 is performed based on the sehsitiumbera;;. a;; is calculated assuming
that elements from material 1 have higher sengitivix, = 1) and the rest of elements have
lower sensitivity (x,=x,,). The gradual addition of material 2 through itenasio
continuous until its volume reaches to the presdribalue. In later iterations, the volume of

material 2 is kept constant although its distribatis allowed to change. At this stage the
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volume of material 3 is allowed to gradually ingeaThe transition between combination of
materials 1 and 2 with material 3 is performed afys$ying the volume constraint of material
3 and ranking the;, sensitivitiesa;z is calculated assuming that elements from matéraid

2 have higher sensitivity X, = 1) and the rest of elements have lower sengiti{ik, = x,...

). The procedure of increasing the number of eldme#ith material 3 properties continuous
until the volume of material 3 reaches to its priésd value. If there are more than 3
constituent phases, the other materials can beudadl with a similar procedure. The
numerical procedure comes to an end when the vawhall materials satisfy the prescribed

values and the variation of the objective functiominishes.

The design algorithm for 3-phase materials contailhewing steps:

Step 1: Define the BESO parameters with objectleme,V,, , V,, and\V/;,, evolutionary

rate ER , filter radiusr,,, and penalty factop (normally p = 3);

Step 2: Build a finite element model for the PBCwhich all elements are assigned with
material 1 properties, except for some limited namif elements from material 2 as

the initial topology;

Step 3: Apply periodic boundary conditions to tr®CP Impose nodal test load fields. The
nodal loads are calculated to produce a uniforairsin that particular element. Carry
out the finite element analysis (FEA) to obtain alodisplacements. In case of
maximization of thermal conductivity the uniformaiefluxes are imposed and the

induced temperatures are extracted;
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Step 4: Calculate the elemental sensitivity numbgr<alculateq;, if volumetric constraint

on material 2 has already been satisfied;

Step 5: Filter sensitivity numberg, ; averagea;, with its corresponding value from previous

iteration;

Step 6: If the prescribed volume of material 2 &lasady been satisfied, filter the sensitivities

a,, and perform similar averaging with historical infation;

Step 7: Determine the target volume for the nexation. When the current volumbé) is

larger than the prescribed vawg, the target volume for the next iteration can be

calculated by

VEL=min(,, Vs, +V5, *ER) (5.7)

*

Step 8: 1fV,,, =V,, then the volume of material 3 is set as:

Vizy =min(Viz) V) +Vs) *ER) (5.8)

Step 9: Rank elements basediprReset elemental densitiggoy changing from 1 (material

1) tox.,, (material 2) for elements with lower sensitivitiead form x;,to 1 for

min

materials with higher sensitivities, while satisfyithe volume constraint of material

2.
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Step 10: IV, :V(*Z) then rank elements based mn Reset elemental densities, by

changing from 1 (material 2 or stiffer) tg,, (material 3) for elements with lower
sensitivities and formx_, to 1 (material 2) for materials with higher seivgies

while satisfying the volumetric constraint of maaéR.

Step 11: Repeat Steps 3 to 10, until both the velaonstraints and convergent criterion are

satisfied. The convergence criterion is definedqoation (3.21).

5.2. Results and discussion

5.2.1. 2D two- phase materials with maximum bulk mdulus

For designing microstructures for composites with tonstituent phases and maximum bulk
modulus, the square design domain with dimensi®@x 80 is discretized int80x80, 4-
node square elements. The Young's modulus of nadgeti and 2 are selectdd' = 3.0and

E? = 1.0respectively; the Poisson’s ratio of both materials = 0.3. The BESO parameters
are the evolution rateR= 004, filter radius,,, =60 and penalty exponept=3. The
initial finite element model of the PBC consistsalf elements with material 1 properties,
except for four elements of material 2 at the eewofr the design domain (similar to Figure

3.1). The prescribed volume (area) fraction of malke is 30% of the total volume (area) of

the PBC.

The designed microstructures and corresponding riablsteelasticity matrix are shown in

Figure 5.1.
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The HS upper bound for composites of two mater@e be expressed as (Hashin and

Shtrikman, 1963):

Kr::x = fl f 2 _Gmax (5'9)

+
K1+Gmax K2 +Gmax

10 033 O
D=1.4900.330 1.0 0
0 0 0.367

(c)
(@) (b)

Figure 5.1: Microstructures and effective elastaibatrixes of a 2D composite material with 2 cdostit

phases and maximum bulk modulus (a) single baséyedx3cells (c) elasticity matrix

in which f'and f? are the volume fractions of materials 1 and 2eetpely; K'andK ? are
the bulk moduli of the constituent phases &8¢, is the shear modulus of the stronger

material defined as:

G, =E'/2(1+V) (5.10)
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The HS upper bound for the above material commosite calculated 0.9934 from the
equation (5.9). As shown in Figure 5.1c, the bulkdoius of the designed material is

0.99108, which demonstrates a good consistencyth&hS upper bound.

Figure 5.2 demonstrates the evolution historiebuk modulus, volume fraction and the
topology of the resulting microstructure. The tatatations for this design are 35. As can be
seen from Figure 5.2, once the volume constraigsaisfied, the bulk modulus and the micro-

structural topology converge to their final solasowith a good stability.

2.50 0.80
- 0.70
2.00 -

- 0.60
v i 3
»n 1.50 - 0.50 k=)
3 B
3 S
'8 - 0.40 w
= 0}
= 1.00 g
> . T —
- 030 ©
@ >

- 0.20

0.50 -
—@— Materials effective bulk modulus - 0.10
== Material 2 volume fraction
0.00 T T T 0.00
0 10 20 30 40
Iteration

Figure 5.2: Evolution history of bulk modulus, voie fraction and microstructures for maximizing bulk

modulus.
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5.2.2.2D three-phase materials with maximum bulk mdulus

The square design domain with dimensions8Dis discretized into 8@0, 4-node square

elements. The Young's modulus of materials, 1, @ Zmare selecte®' = 40, E?> = 20and

E® =1.0respectively The Poisson’s ratio of all materiaslassumed to be assumed 0.3.
The evolution rate dER= 002, filter radius,;,, =8 and the penalty exponemt3 are

selected as the BESO design parameters. The im#agdrial distribution of the finite element
model consists of all elements from material 1egtdor four elements of materials 2 located
at the centre of the model. The prescribed voluraetibns of material 1, 2 and 3 are 30%,

40% and 30% respectively.

1.0 0275 O
D= 2214/0.275 1.0 0
0 0 0.316

(c)
(@) (b)

Figure 5.3: 3-phase material’s microstructure wigximum bulk modulus; Material 1 is shown in dahlkeb
(E'=4); material 2 in light blueB’=2); and material 3 in yellowEt=1); (a) single base cell; (b) 3x3 cells; (c)

elasticity matrix

The final microstructures and the material’s effectelasticity matrix are shown in Figure

5.3. As calculated from the elasticity matrix, telk modulus of the material is 1.411. For
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2D materials which consist of three constituentsaisathe HS upper bound is given with the

following expression (Hashin and Shtrikman, 1963):

1

KSEX: f]_ f2 f3 _Gmax (5'11)

K'+G * K2+G ¥ K3+G
max max max

in which f3and K® are the volume fraction and the bulk modulus ofemal 3 . The rest of

variables have defined before. For the settinchisf €xample, The Hashin-Shtrikman upper

bound is calculated 1.435, which shows a good ageeewith the attained result.

37 =@=\aterial Bulk Modulus r 05
)8 - ==&==aterial 2 Volume Fraction L 045
’ === Material 3 Volume Fraction ’
2.6 - 0.4
X

2.4 - - 0.35 &
: :
'822 - EESSESSEEE 03 ©
=) ©
= i
x 2 - - 025
3 IS
m >
1.8 - - 02 3
>

1.6 \ - 0.15

1.4 - - 0.1

1.2 - - 0.05

1 -------------------------- =) T T T 0
0 10 20 40 50 60

30
Iteratior

Figure 5.4: Evolution history of bulk modulus, voie fraction and microstructures for maximizing bulk

modulus.
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The whole procedure takes 51 iterations for thsance. Figure 5.4 shows the evolution

histories of bulk modulus, volume fraction and ra&tructural topology of this example.

5.2.3. 3D three-phase material with maximum bulk mdulus

(@ (b)
[ 1 0421 0421 O 0 0
0421 1 0421 O 0 0
0.421 0421 1 0 0 0 (c)
D =2.902
0 0 0 0296 0 0
0 0 0 0 0296 0
| o 0 0 0 0 0.296

Figure 5.5: 3-phase material’s microstructure witiiximum bulk modulus. Material 1 is shown in dahkeb
(E'=4); material 2 in light blueB?=2); and material 3 in yellowE¢=1); (a) single base cell; (b) middle-cut of

the cell; (c) elasticity matrix of correspondingteréal

The cubic finite element model with dimensio#8x 40x 40 is discretized intd0x 40x 40,
8-node cubic elements. As before, mechanical ptigseof constituent phases are selected as
the Young’s modulusE® = 40, E* = 20andE® =10 for materials 1, 2 and 3 respectively,

and the Poisson’s ratio of all materiaks 0.3. The evolution rate &ER= 002, filter radius
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I, =2 and penalty exponept=3 are selected as the BESO design parameters. Tl in

material distribution in the finite element modealnsists of all elements from material 1,
except for eight elements at the centre and eigments at the eight corners from material 2.

The prescribed volume fraction of material 1, 2 8rate 30%, 50% and 20% respectively.

3.5 4 =@—Material Bulk Modulus - 0.6
==@==\aterial 2 Volume Fraction
3.3 1 === Material 3 Volume Fraction
- 0.5
3.1 4
2.9 A
ﬁ - 04 «
3 2
E 2.7 il
= g
~ 2.5 - - 0.3 :I;
@ £
2.3 - =]
)
- 02~
2.1 A
1.9 -
- 0.1
1.7
1.5 2 T T 0
0 10 20 30 40 50 60

Iteration

Figure 5.6: Evolution history of bulk modulus, voie fraction and microstructures.

The final microstructures and the material’s effecelasticity matrix are presented in Figure
5.5. The HS upper bound for 3D materials which @mmposed of three constituent phases

can be expressed as (Hashin and Shtrikman, 1963):
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nS = L -4/3G, . (5.12)

max fl f2 f3

+ +
K'+4/3G,, K?+4/3G,,, K>+4/3G_,

K

The equation parameters were previously defined.H8 upper bound for the setting of this
example is calculated 1.801. As it can be calcdl&tem the elasticity matrix (Figure 5.5c),

the bulk modulus of the designed material is 1.782.

The whole procedure converges in 53 iterationsur€igs.6 demonstrates the evolution

histories of bulk modulus, volume fraction and r&tructural topology of this example.

5.2.4. 2D three-phase material with maximum shear adulus

The objective of this example is the topology ommtion of three-phase microstructures
with maximum shear modulus, under prescribed voldraetions of the phases. The 2D
square design domain with dimensions 80x80 is elizad into 80x80, 4-node square

elements. The Young’s modulus of constituent phaseselected &' = 4.0, E* = 20and

E®=10. The Poisson’s ratio of all materials is assumgubétov = 0.3. The evolution rate

of ER= 002, filter radiusr,,,, =8 and penalty exponept=3 are selected as the BESO initial
parameters. In the initial finite element modetlod PBC, material 1 physical properties are
assigned to all elements, except for four elemehtmaterials 2 at the centre of the design
domain. The prescribed volume fraction of materihls2 and 3 are 30%, 40% and 30%

respectively.
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1.0 0342 O
D =2.1050.342 1.0 0
0 0 0.385

(€)

@ (b)

Figure 5.7:2D 3-phase microstructure with maximurear modulus. Material 1 is shown in dark blué=#;
material 2 in light blue (E=2); and material 3 in yellow (f£1); (a) single base cell; (b) 3x3 cells; (c) elasticity

matrix
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Figure 5.8:Evolution history of shear modulus, volume fractom microstructures for the design of a 2D

material’s microstructure with maximum shear modulu
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The generated microstructures, as well as the mbh&dfective elasticity matrix are shown in
Figure 5.7. As it can be seen, there are simiéaribetween the generated microstructure of
this example with the microstructure of cellulartevaal shown in Figure 3.8. Figure 5.8
demonstrates the evolution history of shear modals volume fraction of the generated
microstructure throughout the process. The pro@danverges to the final topology after 51

iterations.

5.2.5. 3D three-phase material with maximum shear odulus

For the design of three-phase microstructures denah with maximum shear modulus, a

cubic design domain with dimensions 24x24x24 igrdiszed into 24x24x24, 8-node cubic
elements. As before, the Young’s moduli of constituphases are selectedEas 4.0,

E? = 20andE® =10 : the Poisson’s ratio is assumed 0.3. The BESO parameters are the
evolution rateR= 002, filter radius,,, =2 and penalty exponept=3. The prescribed

volume fraction of materials 1, 2 and 3 are 25%%4and 30% respectively. The initial
material distribution of the finite element modeainsists of all elements from material 1,

except for four elements of materials 2 at the reeot the design domain.

The resulted microstructural topology is shown iguiFe 5.9; the figure also demonstrates the
spatial distribution of each of the constituent gg¢® as well as the homogenized effective
elasticity matrix of material. Figure 5.10 demoas#s the evolution history of shear modulus
and volume fraction of the designed microstructin@ughout the iterative process. As can

be seen from the figure, the procedure convergdsetéinal topology after 56 iterations.
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Figure 5.9: 3D 3-phase material’'s microstructuretlwmaximum shear modulug) single base cell; (b)
distribution of constituent phase 2€#); (c) distribution of constituent phase 2&2); (d) distribution of

constituent phase 3 {E1);(e) elasticity matrix of material
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Figure 5.10:Evolution history of shear modulus, volume fract@om microstructures



Chapter 5 169

5.2.6. 2D three-phase material with maximum thermatonductivity

To verify the procedure for the topology optimipatiof materials with maximum thermal

conductivity, the square design domain of the PBtB dimensions 8080 is discretized into

80x80, 4-node quadrilateral elements. The thermal gatindties of materials 1, 2 and 3 are

selected ak' = 4.0, k? = 20and k® = 1.0 respectively. The BESO parameters are set as the
evolution rateeR= 002, filter radiusr,,, =8 and penalty exponept=3. The initial finite
element model of the PBC consists of elements widtierial 1 properties, except for four
elements of materials 2 at the centre of the dedagnain. The prescribed volume fraction of

materials 1, 2 and 3 are 25%, 25% and 50% respdgtiv

o [1764476 0
B 0 1.764476

(c)
@ (b)

Figure 5.11: 3-phase material’s microstructure wittaximum thermal conductivity. Material 1 is shawlark
blue (R=4): material 2 in light blue (k=2); and material 3 in yellow fic1); (a) single base cell; (b) 3x3 cells;

(c) thermal conductivity matrix

The final microstructure and the material homogeaithermal conductivity matrix are given
in Figure 5.11. As mentioned in Chapter 2, Haslmd Shtrikman (1962) used the variational

theorem to derive the bounds on the effective miagrmermeability of macroscopically
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homogeneous and isotropic multiphase materials. iaghematical analogy enables the
results to be also used for dielectric, electriodiativity, heat conductivity, and diffusivity of
composite materials. The Hashin-Shtrikman uppentdar three-phase isotropic materials is
expressed as:

HS 1

=k

ax max+ fl f2 f3

+ +

(5.13)

in whichk,_,, is the largest eigenvalue of the thermal conditgtonf constituent phases. With

the help of the above equation, the upper bokifitl is calculated equal to 1.783, which is

very close to the thermal conductivity of generatedterials (1.764476 from the material

matrix in Figure 5.11c).

The whole procedure completes in 29 iteration$is instance. Figure 5.12 demonstrates the
evolution histories of thermal conductivity, volurfraction and microstructural topology of

this example.

5.2.7. 3D three-phase material with maximum thermatonductivity

The objective of this example is to design 3D nstmactures for materials with maximum
thermal conductivity. The PBC with dimensions 42x42 is discretized into 42x42x42,
eight-node cubic finite elements. As before theeeriglues of thermal conductivity of
materials 1, 2 and 3 are selected as 4, 2 and dectgely. The BESO parameters are

evolution rateER =0.02 and the filter radius,,, =3 and penalty exponept=3. The
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procedure starts from the initial design, in whalhelements are assigned with material 1
property, except for 4 elements of material 2 at ¢kentre of the finite element model. The

prescribed volume fraction of the materials 1, @ @rare 25%, 25% and 50% respectively.

4.50 0.60
/ - —@— Materials effective thermal conductivity
== Material 2 volume fraction
4.00 -
.T:::::::: r 0.50
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c
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1.00 -EescsassceaaaadE . 0.00
0 10 20 30 40 50 60

Iteration

Figure 5.12: Evolution history of thermal condudtify volume fraction and microstructures.

Figure 5.13 shows the resulting microstructures #rel thermal conductivity matrix of
material. The HS upper bound on thermal condugticf 3-phase materials with the

eigenvalues sorted as'(> k* > k*) can be expressed as (Hashin and Shtrikman, 1962):



Chapter 5 172

‘

@) (b)

1.84911 O 0
k = 0 1.84911 O (d)
0 0 1.8491
Figure 5.13: 3-phase material’s microstructure wittaximum thermal conductivity. Material 1 is shawmlark
blue (K=4); material 2 in light blue (k=2); and material 3 in yellow f1); (a) single base cell; (b) middle-cut

of the cell; (c) spatial distribution of materiaj (d) thermal conductivity matrix

kHS =K'+ (5.14)
1- 9
3!
in which:
= 2, f2 5.15
T 1 1 1 (5.15)

2y Tal e oy ot
(K2-K) 3Kk (KP-KY) 3k

The HS upper bound from the above mentioned fornautzalculated 1.863, which is 0.7%

higher than the designed microstructure (1.849h fthe Figure 5.13d).
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Figure 5.14: Evolution history of thermal condudtfy volume fraction and microstructures.

5.3. Concluding remarks

In this chapter, the BESO method was extended itiie design of multi-phase

microstructures for materials, with maximum bulk dotus, shear modulus or thermal
conductivity. Following the ranking of the consént phases based on their contribution to
the objective function, they were divided into goswand the sensitivity analysis is performed

between these groups. Changing the properties eshezits was conducted based on the
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ranking of these sensitivity numbers and imposir@uwie constraint. The numerical
examples demonstrate that the proposed approa@p#ble of finding microstructures, with
properties very close to the known analytical bauriche procedure demonstrates very good
convergence with high computational efficiency, efhis independent of the selection of the
penalization factor. Moreover, as an inherent priypef the BESO, there are distinctive
interfaces between the constituent phases in thergtged microstructures. This makes the

manufacturing of the generated materials easy.

The methodology of this chapter provides the bisishe development of a technique for the
design of multi-phase multi-objective functionatfyaded materials which is the subject of

Chapter 7.
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Topology optimization of functionally graded materials

Background

As discussed in Chapter 2, the functionally gradederials (FGMs) are characterized by a
gradual variation in properties as a result of th#homogeneity in materials’

microstructural/compositional characteristics. Oafe the challenges in designing such
materials is the prediction of the material chagastics. Depending on the rate of gradation
with respect to the dimensions of the represeatdume element (RVE) or representative
unit cell (RUC), theoretically two general methade applied. If a steep gradient in material
property is expected, then the heterogeneity naifithe RVE should be taken into account
by analysing the material at both the microscopid enacroscopic levels. However, in the

case of a small gradient in the material propertsequate accuracy can be achieved by
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applying the homogenization theory with periodiaubdary conditions (Birman and Byrd,

2007, Zhou and Li, 2008D).

Another challenging issue in the design of an FGNhe determination of the optimal spatial
distribution of constituent phases (Markworth et, al995). Based on the ‘“inverse
homogenization” (Sigmund, 1994a, 1994b, 1995), sorasearchers have proposed
techniques for designing microstructures for materivith graded properties. For instance
Chen and Feng (2004) and Lin et al (2004) usedairtechniques for the design of cellular
microstructures, in which the gradient of propertigas realized by gradually varying the
volume fractions of solid phase. These studies keweare mostly focused on the topology
optimization of a series of separate base cellgfaded properties. They do not ensure proper

connection between adjacent cells along the gradiegction.

As pointed out in Chapter 2, Zhou and Li (2008b0&€f) have proposed systematic
approaches for the designing of two-phase (solidjv6GMs, with gradual change in the
prescribed elasticity properties in one direction. these approaches the gradation in
properties is achieved by designing a series o bals for different regions of the FGM. To
preserve the connectivity between adjacent celseet methods, namelgonnective
constraint pseudo loacandunified formulation with non-linear diffusipnvere proposed by

the authors.

In the connective constrainnethod, some non-designable solid elements areedkbn the
boundaries of each base cell. Through the filtefiglensities, these fixed solid regions

guarantee the existence of materials in their iticiThey hence serve as connectors between
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adjacent periodic base cells. Localizing thesedsgliéments is a critical step and may lead to
different final solutions. In thpseudo loadechnique, the idea is to produce a load pathgalon
the gradient direction by defining a pseudo load knematic boundary conditions along the
gradient direction. This treatment allows the giowt material around the pseudo boundaries
and loading areas, and produces pseudo stiffnesg all base cells. However, the weighting
factor of the pseudo load should be selected direfuthe procedure. If not its effects can
play an excessively dominant role and may lead tw-optimal solution (Zhou and Li,

2008h).

In the unified formulation,the non-linear diffusion technique has been usedbtaining an
edge preserving solution. The non-linear diffusisna mathematical technique that was
originally developed as an image processing teclenignd has been applied to tackle
numerical instabilities in topology optimization ANg et al., 2004a, Zhou and Li, 2007,
2008d, Aubert and Kornprobst, 2006). In topologyiraation through the SIMP method,
which uses continuous design variables, the nasfiniffusion can circumvent the existence
of intermediate densities on the boundaries ofstihecture. The technique achieves this by
diffusing the densities along the tangential dieton the boundaries of the structure, while
in other regions the non-linear diffusion equatamis as an isotropic filtering equation and
diffuses the density uniformly (Wang et al., 2004a)the unified formulation the topology
of a series of connected microstructures (knownthees graded base cell or GBC) are
simultaneously optimized for different functionaroperties and their connectivity is

preserved by non-linear diffusion of densities (dfamd Li, 2008b).
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Apart from the connectivity of the base cells, hrehibitive issue in designing a series of
base cells for an FGM is the computational costpeeially in 3D cases. In this chapter an
alternative and computationally more efficient $idlm method is introduced, for designing a
series of base cells for FGMs with gradation iffretiss or thermal conductivity. It is assumed
that the base cells are composed of one solid plradene void phase and that the gradual
variation in the FGM properties is controlled byaoRing the material distributions within

these base cells. The elasticity and conductivitgracteristics within each base cell are
estimated using the Homogenization theory. Inipadr, the connectivity issue between

adjacent base cells are addressed in the optimzatgorithm.

6.1. Methodology

6.1.1. Topology optimization problem and connectity between base cells

The FGM can be tailored to make material more igfic under non-uniform distribution of
stresses or thermal gradiefior the design of cellular materials, the volumewaight is
another important factor which should be considerdébr designing an FGM with the
gradient in stiffness, in the form of bulk or sheaodulus, or thermal conductivity, it is
divided into a series of base cells along the gradalirection. As shown in Figure 6.1, it is
assumed that there are totdllybase cells along the gradation direction ande¢hah base cell
has a different prescribed bulk modulus, shear nusdar thermal conductivity. To achieve
the optimal spatial distribution of materials withihe base cells, the topology optimization

problem can be mathematically defined for jtifnebase cell as:
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Minimize V' =Y xV! (6.1a)
i=1
Subjectto:  K! =K' (,G' =G ork! =k (6.1b)
x'=x. orl; (=12-,M)and(j=12---,N) (6.1c)

where V denotes the volume (or weight{",G" or kC are the prescribed bulk modulus,
shear modulus or the thermal conductivity respettivwhich are determined by the
prescribed gradation of FGM for th¢" base cell;M denotes the total number of finite
elements within each base cell. As described betbe design variablg’ is the density of
the i"™ element within thej™ base cell, which can take a binary value of eithéor a solid

element or a small value;, (e.9. 0.001) for a void element.

Base Cell Number : 1 2 3 4 R -2 =1 j o N

Design stage: —1—

2_1

z
[~

Figure 6.1: FGM base cells numbering along gradatéirection and design stages.

The optimization problem (6.1) can be solved byiglesg base cells, one by one, for the
prescribed elasticity modulus or thermal conduttivit can be expected that both the

topologies and volume fractions of base cells viiom one to another. However, this
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procedure does not ensure a proper connection eetweighbouring cells (Zhou and Li,
2008b). As mentioned before, Zhou and Li (2008)82) proposed three methods namely
connective constraintpseudo loadand unified formulation with non-linear diffusiomo

overcome this problem.

In the proposed method of this study, it is assuthedtl the prescribed bulk modulus, shear
modulus or the thermal conductivity of the FGM grallly decreases from the first cell to the
last one. Therefore, the solid volume fraction $ti@lso be decreased from the first base cell
to the last cell. Starting from a base cell tlsaalimost entirely occupied by solid elements,
the BESO procedure gradually reduces the numbeyoldd elements. After obtaining the
optimal topology for each base cell, the initighatogy of the next base cell is constructed
based on the resulting topology of the previous. dé¢le optimization procedure continues
until the optimized topologies of all base cellge abtained. Comparing with designing a
series of independent base cells, the proposedeguoe significantly reduces the

computational cost.

The connectivity of the adjacent base cells cambetained by considering 3 base cells at
each stage of design. Referring to the Figuredufing the topology optimization of thg"
base cell, the connectivity between celjsandj-1, and betweenj-1 and j-—2are

maintained by applying the filtering technique (iHgaand Xie, 2007b) on the design domain

of these three base cells together. However, tise loallsj, j—1 and j—2 are treated
differently during the optimization process; whexebase cellsj and j—1 are optimized

based on the optimization statement (6.1) for timeiividual prescribed functional properties,
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the topology of base celj —2 is kept unchanged. Due to the effect of the filigr the
material within base celj —1 is gradually redistributed to provide proper cactitns with

base cellsj —2and] .

The remaining key issue is how to optimize the togy of a base cell according to equation

(6.1). Therefore, the superscrjps dropped in the next section.
6.1.2. Solution method

In order to solve the topology optimization problemequation (6.1) for each base cell using
the BESO method, similar to the procedure used hap&r 4, the objective function is
modified by introducing a Lagrangian multiplier For instance, when the constraint function

is the bulk modulus, the objective function is ratign as:
M

Minimize f(x)=> %V, + A(K" =K) (6.2)
i=1

It is seen when the constraint on bulk modulusatssBed, the modified objective function is
equivalent to the original one and the Lagrangianltiplier can take any value. The
derivative of the modified objective function ispegssed as:

df oK

—=V. - A1— 6.3
S=v-ag (6.3)
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In the BESO only the ranking of sensitivity numbe&smportant. By discretising the base
cells into uniform mesh size (in which all elemenéve equal volume or area), the sensitivity

of each element can be re-written as:

a :_1(1_@:% (6.4)
A dx [0

where 0K/0x; can be calculated using the homogenization themny fequations (3.15) and

(3.3):

aD
ax

TGD

\Y\ J.(I bu) (| bu)dY (3.15) repeat

(3.3) repeat

K=L%p
_dz

_ |2 2D problems
3 3D problems

Similarly, when the constraint function is defined the shear modulus or the thermal
conductivity, the sensitivity numbers are obtairfien the equations (3.15), (3.4) or (3.17)

and (3.5) respectively.

As was discussed in Chapter 3, to circumvent thearical instabilities of mesh-dependency
and checkerboard patterns, the filtering schemepplied by averaging the elemental
sensitivity numbers, with their neighbouring eletsefHuang and Xie, 2007b, 2010b). Here
the filtering scheme is applied across all elemeaitshe 3 base cells, at each stage of

procedure. As it will be shown by numerical exarsplthis technique can provide a good
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interconnection between different base cells off@. The following weighting equation is

used for filtering the sensitivity numbers:

p
Z Winn@m

PR S (6.5)

Z Winn

[}
m=1

in which P = 3M denotes the total number of elements in the dedagnain of 3 adjacent
base cells (see Figure 6.1). The weighting fa®¥qris defined as:
W = rmin - rmn If rmn < rmin 6.6
" 0 otherwise 66
in which r,is the distance between elemenand element centres. The filter radiug,, is

defined to specify the neighbouring elements th&gca the sensitivity of elemenn. To
improve the convergence of the procedure, as destin Chapter 3, the elemental sensitivity

numbers can be further modified by averaging witkirtvalues from the previous iteration.

The gradual change in the volume of the solid plesasured by imposing the constraint in

the form of:
t _ *
V'(@1-min(ER K —K ) if K'2K’
t+1 Kk
Vi = e (6.7)
V'@+min(ER )) otherwise

Kk
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where superscripts ot and t+1denote the current and the next iteration numbers
respectively.ER is the evolution rate that is positive and defiresl the BESO initial

parameter.

6.1.3. Numerical implementation

The whole optimization procedure can be summanivigii the following steps:

Step 1: Define the prescribe modulus of elasti¢ithen the objective function is bulk or
shear modulus) or thermal conductiviky for the different base cells of the FGM;

define the BESO parameters such as evolution @R, (filter radius (min) and

penalty exponent;

Step 2: Initiate a finite element model for the dagllsj andj -1(if j>1) ; apply periodic

boundary conditions and loads which are equivaleninit strain fields in elasticity
analyses. Alternatively, apply uniform heat fluxasthermal analyses; Carry out the
finite element analyses to obtain output displagerfields u in elasticity analyses or

induced temperature fielgsin thermal analyses;

Step 3: Calculate the elemental sensitivity numbersdescribed above. Use the saved

sensitivity numbers of base cgl (if j>2);

Step 4: Filter sensitivity numbers of base cgllg—1(if j>1) and j— 2 (if j>2) together
using equation (6.5). Average sensitivity numbédrbase cellsj — and j with their

corresponding values from the previous iteration;
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Step 5: Rank all elemental sensitivity numbers wnitihe base cell§ and j —1separately.
Reassign design variables to 1 or x_;,, S0 as to satisfying the volume constraint for

the next iteration defined in equation (6.7) fosdaells) andj —1;

Step 6: Repeat steps 2 through to 5, until theabilvge function converges;

Step 7: Use the topology of base cglls the starting topology for the next base dekpeat

steps 2 to 6 for other base cells until optimizedotogies of all base cells are

achieved.

6.2. Results and discussion

6.2.1. 2D FGM with the variation in bulk modulus

The objective of the first example is to desigeast weight cellular FGM, with a variation in
bulk modulus from 40% to 15% of that of the solwhstituent phase. It is assumed that the
design domain of the FGM is simply divided into b8se cells. Each base cell has the

dimensions of 80x80 and is discretized into 80x8®ode square elements. The Young'’s
modulus and Poisson’s ratio of the solid constitygrase are selectedis=1, and/ = 0.3.

The BESO parameters are the evolution r&R,= 003and filter radius,,, =6. The initial

topology of the first base cell consists of fouereents at the centre with void properties,

while solid properties are assigned to other elémen

The designed microstructures are shown in Figu2eirbwhich the bulk modulus decreases

linearly from the left to the right. The total nuerlof iterations for this example is 176. As it
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is demonstrated in the figure, the established BESOcedure provides appropriate
connections between the adjacent cells. Comparninghé designing of all base cells
simultaneously, the proposed procedure needs uobrinite element analyses for only two
base cells in each iteration. Consequently a sggmf saving in computational time and
memory is achievable. Using an ordinary computehai2.7GHz, core i7 CPU and 8GB of

RAM, the total computational time for this exam@eabout 96min.

Figure 6.2: Optimized FGM with linear gradation loulk modulus of elasticity.

Figure 6.3 demonstrates the variation of the buldduius of the generated FGM; the
resulting bulk modulus conforms well to the prelsed values, with a deviation of less than

0.2%.

In order to compare the elapsed time with the cotiweal approach of simultaneous
designing of all base cells (Zhou and Li 2008b; &f)0an example with the same parameters
of the above example is considered. The total nundfeiterations required for the
convergence of simultaneous design of base cell$ ibut the elapsed time is 409 minutes
which is more than 4 times greater than the apprgaoposed in this paper. The generated

microstructures are shown in Figure 6.4.

In some cases FGMs with non-linear variation inctional properties are desirable. As
another example, the above mentioned method iseabfar the topology optimization of an

FGM, with the same initial parameters but with gnescribed bulk modulus that varies non-
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linearly along the gradation direction. Here theseribed bulk modulus in th¢™ base is

defined as:
50% 80%
= Prescribed Variation
Py ® Effective FGM Madulus

* < + = Volume Fraction G0%
-
o
o
40% B
£
it}
b
=
- 20% g

Base Cell Number

Figure 6.3: Linear variation of bulk modulus andwme fractions for the optimized FGM whergi&bulk

modulus of the solid.

® 0 0 0.0 0.9 0.9 0.5 _ 0.9 0.0 0,
o....0.'0,o.Q.O.Q.O.Q.O.Q.0.0‘O.ﬁ.-

. 2
* * * * _n
K =K, +(K; -K J—j (6.8)

wheren=10 is the total number of base cells in the desigmaia of the FGM.K, and K

are the prescribed bulk moduli of the first and lbase cells, which in conformity to the
above example, are selected equal to 40% and 15%ulkf modulus of the solid phase,

respectively. The generated microstructures argvshio Figure 6.5. It demonstrates that the
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proposed optimization procedure can successfulliaioba proper connected, optimized
cellular FGM. Figure 6.6 shows the variation of wok fraction through the cells. The
variation of the bulk modulus of the generated F@&Malso compared with the prescribed

values in the same figure. The total number oéttens in this instance was 166.

Figure 6.5: Optimized FGM with non-linear gradation in bulk nubgs of elasticity.

50% 80%

= Prescribed variation
®  FEffective FGM Modulus
\ 4 + = Volume Fraction B0%

Vaolume Fraction

Base Cell Number

Figure 6.6: Non-linear variation of bulk moduluscamolume fractions for the optimized FGM.

As discussed before, in Homogenization theory, thiference between average field
behavioural responses under assumed and actuatiéfc@yuconditions are smaller when the
number of base cells is increased in the designadtonfrigure 6.7 demonstrate another 2D
example in which the FGM domain is divided intolt#se cells and the bulk modulus varies

linearly from 40% to 15% of that of the solid canstnt phase. Each base cell is divided into



Chapter 6 189

a coarse mesh of 40x40 elements and the filteusagj, = 4. Other parameters are similar to

above examples.

L . o
T Figure 6.7: 2D FGM divided into 60
o L
R R O R A DR, | cells along the gradation direction with
T S e Y linear variation of bulk modulus. The
S designed microstructure has been
SisEisdniRasRemIR AR R R R R R T sRe ReRY repeated 20 times perpendicular to the
1
2 gradation direction
Il
1
o TR It
S
= =
H THIHY H I
oo e : B

6.2.2. 2D FGM with variation in shear modulus

The objective of this example is to design a 2helatress FGM, in which the shear modulus

varies linearly between 50% and 20% of that of sbéd material. The design domain is
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divided into 12 base cells, and each base cell dithensions 80x80, is further discretized
into 80x80, 4-node square elements. As beforembdel of the first base cell is entirely
composed of elements with solid properties, exéapfour void elements at the centre. The
BESO parameters are the evolution r&i®&= 004 and the filtering radius,, =5. The

mechanical properties of the solid phase are saleg$ the Young’s modulus and Poisson’s

ratio of E®° =1andv = 0.3 respectively.

OXOOOAOOOOOOO

Figure 6.8: Optimized FGM with linear gradation stiear modulus of elasticity.
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Figure 6.9: Variation of shear modulus and volumaefions for the optimized FGM where GO is the shea

modulus of the solid.

The optimized microstructure of the FGM is shownFigure 6.8, which demonstrates the

proper connections between base cells. Figure r@$epts the effective shear modulus of the
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generated FGM in comparison with the prescribeduasl It clearly indicates that the

resulting FGM has the prescribed variation in smeadulus with high accuracy.

6.2.3 3D FGM with variation in bulk modulus

To test the algorithm in 3D problems, this exangles to generate a series of base cells for
an FGM, with the gradation in bulk modulus from 508%% of the solid constituent phase.
The design domain is divided into 10 base cellshesd which discretized into 31x31x31, 8-

node cubic elements; the dimensions of each elearetk1x1. As before the dimensionless
Young’s modulusE® =1and the Poisson’s ratip = 0.3 are selected for the solid constituent

phase. The evolution rateR= 003and filter radiusr,,,, =3 and the penalty exponeit= 3
are the BESO design parameters. The initial fieltement model of the first base cell is

entirely occupied by solid elements, except for voiel element at the centre.

Figure 6.10: 3D FGM with gradation in bulk moduloEelasticity (a) optimized microstructure (b) sso

section of FGM showing internal structure

The generated microstructures are shown in Figui® @vhich demonstrates appropriate

connections between the base cells. The totatib@raumber for this example is 205. Figure
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6.11 represents the resulting bulk modulus of tlEVFn comparison with the prescribed
values and corresponding volume fractions. Theal®mn of FGM effective bulk modulus

from the prescribed values is less than 0.15%.

B0% | 30%
t & Prescribed Variation

+* ® Effective FGM Modulus -
» + = Volume Fraction 0% &
40% a
=
Z @
- £
= =
o
20% =

Base Cell Mumber

Figure 6.11: Variation of bulk modulus and volumefions for the 3D FGM.

6.2.4. 3D FGM'’s with variation in shear modulus

An FGM is designed with 8 base cells, with variatio the average shear modulus from 40%
to 5% of that of the solid constituent phase. Haabe cell with dimensions @0x30x30is
discretized int@0x30x30, 8-node cubic elements. The initial finite elememdel of the
first base cell is entirely occupied by solid elense except for 8 void elements at the centre
of the model. As before, the Young’s modulus anis$tm’s ratio of the solid phase are
selected asE® =1and v = 03respectively; the design parameters are selectBdRas003,

ri, =3 andp= 3
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The resulting topology, with appropriate connectimtween the base cells is shown in Figure
6.12. The total number of iterations is 169. Treuheng shear modulus and volume fractions
are also presented in the Figure 6.13, which detrairs a very good agreement with the

prescribed shear modulus (the deviation from piiesdrvalues is less than 0.2%).

Figure 6.12: 3D FGM with variation in shear moduloelasticity (a) optimized microstructure (b) sso

section of FGM showing internal structure.
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Figure 6.13: Variation of shear modulus and voluimgetions for the 3D FGM
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6.2.5 2D FGM with variation in thermal conductivity

The objective of this example is to generate aeseasf base cells for an FGM, with prescribed
variation in the thermal conductivity. Each basdl ¢& discretized into 80x80square
elements with the dimensiobrsl. The BESO design parameters are select&Ras002,

I, =8andp =3. It is assumed that the FGM is divided into 10sceind the prescribed

average thermal conductivity of FGM varies betw&6fo and 20% of the nonporous solid

phase. The thermal conductivity of the solid males assumed to bie® = .1

Figure 6.14: 2D FGM with variation in thermal conctivity
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Figure 6.15: Variation of thermal conductivity amdlume fractions for the 2D FGM whek@o is the thermal

conductivity of the solid phase
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The generated topology with appropriate connedtietween base cells is shown in Figure
6.14. The total number of iterations is 166. Theuléng average thermal conductivity and
volume fractions are also presented in Figure 6MbBich demonstrates a very good

conformity with the prescribed values; the deviatimom prescribed values is less than 0.1%.

6.2.6 3D FGM with variation in thermal conductivity

This example demonstrates the effectiveness ofnthéhod for topology optimization of
microstructures for a 3D FGM, with prescribed vaola in thermal conductivity. It is
assumed that the FGM consists of 8 base cells ditension®25%x25x25 which are
discretized into25x% 25x 25cubic elements. The BESO design parameters aretsglas the
evolutionary rat&ER= 002, the filter radius,, =3 and the penalty exponept=3. The
prescribed thermal conductivity of the FGM is setvary between 55% and 25% of the
nonporous solid phase. As before, It is assumed the eigenvalue of the thermal

conductivity of the solid material is° = .1

The generated base cells are shown in Figure BHétotal number of iterations is 146. The
resulting thermal conductivity and volume fractiom® also presented in the Figure 6.17,
which demonstrates a very good conformity with phnescribed values. The deviation from

prescribed values is less than 0.2%.
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Figure 6.16: 3D FGM with variation in thermal conctivity (a) optimized microstructure (b) cross sectof

FGM showing internal structure.
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Figure 6.17: Variation of thermal conductivity andlume fractions for the 3D FGM whelg,, is the thermal

conductivity of the solid phase
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6.3. Concluding remarks

This study proposed a new and computationally ieffitc technique for the topology
optimization of functionally graded cellular matds. The method addresses the connectivity
issue between the adjacent base cells, by consigtre topology optimization of three cells,
at each stage of design and filtering their serntés together. The process only requires that
the finite element analyses to be conducted foy tmb base cells in each iteration. This also
considerably reduces the computational cost. Nuwwmakexamples have been presented to
demonstrate the efficiency of the proposed algoritfor the topology optimization of
microstructures for cellular FGMs, with gradual ebes in bulk modulus, shear modulus or
thermal conductivity with the minimum volume (or igiet) of the solid material. Due to the
existence of local optima in material design, défg topologies can be achieved by selecting
different design parameters. The proposed procezhnde applied to the designing of FGMs
with gradation in other functional properties, such magnetic permeability or electrical
permittivity. In the next chapter the method wi# bised for topology optimization of multi-

phase FGM with two functional properties.
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Topology optimization of multi-objective graded conposites

Background

In the previous chapter a systematic method utdisopology optimization techniques, has
been proposed for the design of FGMs. The cellBlaM was represented with a series of
base cells and the structural topology optimizai®rapplied to find the optimal material
distribution within the base cells, so that the F&Mevelop a gradual varition in the
prescribed property. As discussed in Chapter 2. ti+furictional materials are inevitably
composites of two or more constituent phases (®ib2010). In comparison with cellular
materials, composites of two or more materials arere advantageous, for practical

application. This is attributed to the fact that ciymbining different constituent phases, a
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wider range of possible properties can be achiew#ith are not attainable using individual

phases.

The common approach for the topology optimizatidn neaterials for multi-functional

properties is to extremize a combination of funuaio properties (Cadman et al., 2013).
Assuming two functional properties & and P, for the composite, the optimization objective

function is usually defined by applying some weightfactors to different parts of the

objective functions:

W+ WP, (7.1)

By varying the weighting factowg,w,, materials with different properties can be acadv

due to varying effects oB and P, on the objective function (de Kruijf et al., 200igrquato

et al., 2003, Guest and Prévost, 2006, Cadman, &l3). However, a drawback of such an
approach is that by applying differemt / w, rates, a proportional variation in the objective
functions cannot be anticipated (de Kruijf et 2007). One reason for such a phenomenon is
the possible non-linear cross-properties of theedbje functions, especially when these
functional properties are selected from differemggical characteristics. More importantly, it
is largely attributed to the existence of localimgt in material desigrni?vhen pairs of fixed
weighting factors are used during the whole optatian procedure, the existence of the local
optima may cause the topology optimization algonghto trap in a nearby solution and
hence, by varyingy, / w, irregular fluctuations appears in the final matepierformance. As a
consequence, the results of such an optimizatiobl@m statement are usually expressed

with a generated Pareto front (Chen et al., 200202de Kruijf et al., 2007). This provides a
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visual representation of attainable functional grties with respect to a particular set of
design parameters. However in the case of desigaingGM where a prescribed gradual
variation in functional properties is desirableistloptimization method with given fixed

weighting factors, is not appropriate because ef timcontrolled fluctuations in resulted

properties.

In this chapter, a computational technique for togizal design of microstructures for FGMs
with multiple graded properties, e.g. bulk modwnsi thermal conductivity, is presented. It is
assumed that the FGM is composed of two non-zengtitoent phases. As before, the FGM
is divided into of a series of base cellsd the topology optimization is utilized to destpe
base cells for desire functional properties. Indtefaapplying pairs of fixed weighting factors
to different terms of the objective function, artinpzation problem statement is defined to
maximize one functional property, with the consttaieing the gradual change of another
functional property. Similar to the method proposethe previous chapter for cellular FGM,
to improve the connectivity of adjacent base cedltgy are optimized progressively by
considering three base cells at each stage aedrfit their sensitivities together. Numerical
examples will be presented to demonstrate the tefeeess of the proposed method in

controlling the functional properties.

7.1. Methodology

7.1.1. Problem statement and sensitivity numbers

By assuming that the FGM totally consistshbobase cells along the gradation direction (see

Figure6.1), the topology optimization statementdesigning the™ base cell with maximum
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bulk modulus and prescribes variation of thermaldutivity and volume fraction can be

expressed as:

Maximize K (7.1a)
Subjectto:  k/ =k (7.1b)
Vi= Z )gl\/il
i=1
X =X, orl (7.1c)

(i=212..M)and (j =12..N)

where M denotes the number of total elements within theleh®f each base cell. It is

assumed that the material is composed of two nom-@enstituent phases with the Young’s
modulus and thermal conductivity & andk® for material 1 an&* and k? for material 2;
Virepresents the volume (or weight) of material lttie j" base cell;K' is the bulk

modulus of thej™ base cell which is defined in equation (3.R}; is the effective thermal

conductivity of the | base cell defined with equation (3.5) akdis its prescribed value of

the materials thermal conductivity which is detered by the desired gradation of thermal

conductivity of FGM.

Thex/ is the design variable of th& element within thej" base cell; it can be defined in

such a way to take a binary value of either 1 small value (i.e. 0.001) for elements with
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material 1 or 2 respectively. The local materiahnfelement within the base cells is assumed

to be isotropic, with the physical property thatiea between the properties of the two
constituent phases. For the cases in which thertaterials are well-ordered (i.&" > E*and

k' > k?), the following power-law interpolation schemeaisplicable (Rozvany et al., 1992,

Bendsge and Sigmund, 2003):

D, = X"D} + (1- x")D? (7.2a)

k, = XPki + (1= xP)k? (7.2b)

in which D, and k; are the elements of stiffness and thermal condtictimatrices

respectively; the superscripts denotes the coestitpphase numbersp is the penalty

exponent @ = 3 is used). When the two constituent phases haxedired properties, (i.e.

E' > E?andk! < k? ) the interpolation schemes are defined as:

D, = XD} + (L- X) D? (7.32)
1%, d-x) (7.30)
K KK |

As before, for the calculation of the overall pras of composite materials the
Homogenization theory is used (Bendsge and Kikut®88, Hassani and Hinton, 1998a,
1998b). For calculation of the elements of stiffivesmd thermal conductivity matrices, the

appropriate expressions are given by equations4)3and (3.16) respectively. Using
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equations (7.2) or (7.3), the derivation of stifsematrix D" with respect to the design
variablest , is found by using the adjoint method as giverefyation (3.15). Similarly, the

sensitivity numbers of the conductivity matrix” with respect to the design variable, can be

calculated via equation (3.17).

7.1.2. Solution method and Lagrangian multipliers

For solving the optimization problem (7.1), it isaessary to modify the original objective
function by adding the constraint function througtroducing a Lagrangian multiplidr .
Similar to the method introduced in Chapter 4 foposing isotropy, the objective function is
modified as:

f(x)=K!+A(k! —k!") (7.42)

it can be rewritten as:

. 1
or by settingA =
(1-1¢)

Lt

OO

(k) -kI") ;-1seu<1 (7.4b)

where the Lagrangian multiplidr can takes any value, if the prescribed thermatigotivity
is attained. Otherwise, it is determined in suahiag that the thermal conductivity tends
towards its prescribed valuk" in the subsequent iterations. T element sensitivity

number is defined by the sensitivity of the modif@bjective function in (7.4) as:
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9 f(x) /

a, = ox =a, +mazi (7.5a)

Since just the ranking of elements matters it canelwritten as:

a, = (1-||)ay +lay, (7.5b)

wherea,, anda, are expressed by

a, = Hizéla;f (7.6.a)

a, =Ly %k (7.6.b)
n T o0x

which can be readily calculated numerically by &g (3.15) and (3.17). To determifgit

iS necessary to estimate the variation of the théeonductivity due to the changes of the
design variables. The thermal conductivity of tlestrteration can be estimated based on the
material’s thermal conductivity at the currentatiéon by exploiting the following equation:

( )t+1 — (k )t+1 +Z d(k )t (77)

in which superscripts dfand t+1 denote the current and next iteration numbersedsely.

Similar to the method described in Chapter 4, tagrangian multiplierd is determined in

such a way that the constraint on the thermal cctindty is satisfied in the subsequent
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iterations. For instance, in the challenging casere the two constituent phases have ill
ordered properties, the initial elemental sensjtimumbers are calculated by assumitrg0.
Then, by ranking the sensitivity of elements angasing the volume constraint, a possible

new set of design variables are evaluated. Thenteconductivity in subsequent iteration

(kcj)“lis estimated using equation (7.7). If the thernmiductivity (kcj)t+l is less than the

prescribed valukzcj*, then ¢ has to be gradually increased, which means tleatrtbdified

objective of optimization gradually turns to the»imaization of thermal conductivity. On the
other hand, in the case where the two constitubasgs have ill ordered properties, gradual
decreasing the Lagrangian multiplier to O will certvthe optimization to the maximization of
bulk modulus, in which the thermal conductivity dually reduces due to the opposite effects

of ill ordered constituent phases.

The precise value off could be determined using the bisection algorithran internal loop,

by exploiting two auxiliary variables/

low

and/, . When the constituent phases are ill-
ordered at the beginning of each iteration theysateequal to 0 and 1 respectively. If the
calculated value(kcj)‘+l—kcj* is negative, then the lower bound of auxiliaryiables is

updated ag,,,=¢ and/=(/, +/,)/2. The sensitivity numbers are updated according to

low low

t+1

equation (7.5) and new set of design variablesyalkas (kcj) , are calculated. Every time

that the predicted thermal conductivity is lessntipgescribed value (i.él(c")t+l < kcj*), the

above updating schemel(,, =/ and ¢=(¢,, +/,)/2) is applied; otherwise the upper

low

bound is updated ag,, =¢ and /=(/,, +/,)/2. The internal loop is halted when the

low
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difference between axillary variableg(, , ¢, ) is acceptably small (e.gl0). To stabilize

the procedure, the coefficierft can be averaged with previous iteration value lgeforal

adding and removing of elements.
7.1.3. Numerical implementation

As discussed in the previous chapter, in the desfgm series of base cells for an FGM, the

transition between adjacent unit cells is an imgarissue that should be considered. In the
optimization procedure implemented in this chaptiee, proposed method from Chapter 6 is

utilized, to provide a smooth transition betweesebaells. This means, at each stage of the
design, three base cells are considered and #msitwities are filtered togetherhe filtering

is made by averaging the sensitivity number of egleiment with its neighbouring elements

(Huang and Xie, 2007b, 2010b). As pointed out leefdhe same filtering scheme can

effectively circumvent the numerical instabilitied the checkerboard pattern and mesh-

dependency in the BESO procedure. The filteringeidormed using equation (6.5).

The whole optimization procedure can be summatrizede following steps:
Step 1: Define constituent materials propertiesspribed thermal conductivity and volume
fraction (V') for the different regions of the FGM. Define tESO design

parameters of evolutionary rater), filter radius (r,,) and penalty exponent;
Step 2: Initiate finite element models for the basdls j and j-1 (if j >1) for structural
analysis; apply periodic boundary conditions anidoum strain fields. As described in

Chapter 3, in 2D problems 3 independent load casdsin 3D cases 6 independent
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load cases are required. Carry out the finite efgénamalysis to obtain the output
displacement fields;

Step 3: Initiate separate finite element modelthefbase cellsj and j -1 with appropriate
periodic boundary conditions and uniform heat feiXer thermal analysis. In 2D
problems 2 independent fields of heat fluxes an8Dncases 3 independent fields are
required. Carry out the finite element analysishtain the induced temperature fields;

Step 4: Calculate the sensitivitiag anda,, using equations (7.6) for base celjsand j -1.
Use the saved sensitivity numbers of the base gell2 (if j>2) and filter the
sensitivities of the elements within these thresebeells using equation (6.5); Let
(=0;

Step 5: Calculater, = - ¢)a,, +(a, for the elements of the base celjsand j-1; rank
elemental sensitivity numbers ; obtain new set @digh variablesx by applying
volume constraint on material 1 for base célmd j-1separately as:
V* =max{/'1-ER),V");

Step 6: Calculate the effective thermal conduc'ua'szit(kc")t and(kcj'l)‘; calculate their next
iteration approximationikcj)t+l and (kcj‘l)‘+1using equation (7.7) for base cellg
and j —1respectively;

Step 7: Use the above explained method to calctietenodified ¢ for base cellsj and

-1

Step 8: Repeat steps 5 through 7 urtitonverges to a constant value;
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Step 9: Average the sensitivity numbers of theelmdls j and j -1 with their values from
the previous iteration if applicable; update thsige variableg, by changing from 1

to X, for elements with lower sensitivity numbers anoiirx_,, to 1 for elements
with higher sensitivity numbers;
Step 10: Repeat steps 2 to 9 until both the voloorestraints and the thermal conductivities
of base cellsj and j—1are converged to their corresponding prescribedegl
Step 11: Use the final topology of base c¢lto construct the starting model for the base cell
j+1.

Step 12: Repeat steps 2 to 11 until optimized twgiek of all base cells are achieved.

7.2. Results and discussion

7.2.1. 2D Examples

The objective of the first example is to designF@M with maximum bulk modulus, while
the thermal conductivity varies linearly from theagtin-Shtrikman (HS) lower bound
corresponding to 60% volume fraction of materiatd the upper bound corresponding to
40% of material 1 (Hashin and Shtrikman, 1962). @lheign domain of the FGM has been
divided into 16 base cells and it is assumed ti@btise cells are composed of two ill-ordered
constituent phases. The non-dimensional Young's utbedand thermal conductivity of
material 1 are selected a&' =3 and k' =1 respectively ; the Yong’s modulus and thermal
conductivity of material 2 are assumegf =1 and k? =3. Each base cell with dimensions
of B80x60is discretized intod0%60, 4-node square elements. The initial topologyheffirst

base cell consists of four elements with materigbr@perties, while other elements are
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assigned with material 1 properties. The BESO depigrameters are the evolution rate of

ER =0.04, filter radiusr_,, =3 and the penalty exponemt= 3.0.

The generated microstructures for the FGM are detnated in Figure 7.1. The total iteration
numbers for the procedure is178. Figure 7.2 shdwsvariations of the bulk modulus and
thermal conductivity along the FGM gradation direct It can be seen that the bulk modulus
gradually decreases from the left to the right ehihe thermal conductivity gradually
increasesilt is noted that the resulting thermal conductiitynforms well to the prescribed

values, with a deviation of less than 1.5%.

200006000 0 0 _(
20000 .:.:.:.:.:1
.............0.1
20000000 .0 0. _(

Figure 7.1: Four rows of 2D base cells designadiie FGM with prescribed thermal conductivity ammlume
fraction; the volume fraction of material 1 (showrdark blue) varies between 60% and 40% of thal toalume

of the cell

When the prescribed volume fraction of material sl 50% for all base cells, the
microstructures that are shown in Figure 7.3 areegded. The variation of thermal
conductivity and bulk modulus of this case are shawFigure 7.3. The figure demonstrates

a good conformity between the attained thermal aotidty and prescribed values. The bulk
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modulus also demonstrates a smooth variation, @dindhe constraint is only imposed on the

thermal conductivity of material.

240 1.60
Prescribed Thermal Conductivity
e Effective FGM Thermal Conductivity
« ~+- - Effective Bulk Modulus
2.00 1.40
o
< X
1.60 1.20
1.20 1.00

Base Cell Number

Figure 7.2: Variation of thermal conductivity andlk modulus along the gradation direction, (kc: rinal

conductivity; K: bulk modulus)

Figure 7.3: Four rows of 2D base cells designedtfa FGM with variation in thermal conductivity;eh

prescribed volume fraction of material 1 (showrdark blue) is 50% in all base cells
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2.00 1.30

Prescribed Thermal Conductivity
o Effective FGM Thermal Conductivity
+- - Effective Bulk Modulus

1.60 T T T T T T T T T T T T T T + 1.10

Base Cell Number

Figure 7.4: Variation of thermal conductivity andlk modulus along the gradation directiong:(khermal

conductivity; K: bulk modulus)

When the prescribed volume fraction of material sl 50% for all base cells, the
microstructures that are shown in Figure 7.3 areegded. The variation of thermal
conductivity and bulk modulus of this case are smawFigure 7.3. The figure demonstrates
a good conformity between the attained thermal gotidty and prescribed values. The bulk
modulus also demonstrates a smooth variation, @dindhe constraint is only imposed on the

thermal conductivity of material.

7.2.2. 3D Examples

To verify the proposed procedure in 3D cases, all i<smodelled with variation of thermal
conductivity from the HS lower bound to the upp@&ubd, while the prescribed volume
fraction of material 1 varies between 80% and 50%e total volume of FGM. The domain
of FGM is divided into 12 base cells and eachiealliscretized into 23x23x%23, 8-node cubic

elements. As before, the non-dimensional Young'sduhgs and thermal conductivity of
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material 1 are selected a&' =3 and k' =1 . For material 2 the corresponding values are

E2=1 andk?=3. The initial design of the first base cell is cousted by assigning
material 1 to all elements, except for eight eletmext the corners of the base cell which are

assigned with material 2 properties.

FWOli-oiio;la

Figure 7.5: (a) 3D cells for the FGM with variatian thermal conductivity and volume fraction of evals; (b)

longitudinal sections of (a); (c) topology of ma&trl (dark blue)

The final topology of the optimized FGM is shown kigure 7.5. This shows a smooth
transition between the generated base cells. FiguBepresents the variation of the bulk
modulus and thermal conductivity along the graduatiirection of the FGM. The thermal

conductivity agrees to the prescribed values, \eiéis than 1.3% deviation. The bulk modulus

also varies smoothly.
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Chapter 7
Prescribed Thermal Conductivity
2.00 & ® Effective FGM Thermal Conductivity L 2.00
L + = Effective Bulk Modulus
*.
*
L
< . v
1.60 > 1.60
*
*
*
. 4
120 ¢t T T T T T T T T T T 1.20
1 2 3 4 5 6 7 8 9 10 1 12

Base Cell Number

Figure7.6: Variation of thermal conductivity andlkumodulus along the gradation direction of 3D FG{i:

thermal conductivity; K: bulk modulus)

Figure 7.7: (a) 3D cells for the FGM with variatian thermal conductivity and volume fraction ofteréls;

(b) longitudinal sections of (a); (c) topology oatarial 2 (light blue)

Figure 7.7 demonstrate another optimization exampte the above parameters, but with
different initial design. A series of microstruatsrhave been generated, in which the initial
topology of the first base cells contains one el@noé material 2 at the centre of the first base

cell, while other elements are assigned with maleti By repeating the base cells
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perpendicular to the direction of gradation, it dae shown that Figures 7.5 and 7.7 are
essentially refereeing to identical microstructui@s FGM. The corresponding variation of

the thermal conductivity and bulk modulus of thecrostructure of Figure 7.7 are presented

in Figure 7.8.
Prescribed Thermal Conductivity
200 & ® Effective FGM Thermal Conductivity L 200
4 + = Effective Bulk Modulus
*
+
L
o + . x
1.60 1.60
*
*
»
&
120 T T T T T T T T T T 1.20
1 2 3 4 5 6 7 8 9 10 11 12

Base Cell Number

Figure 7.8: Variation of thermal conductivity and bulk moduhleng the gradation direction of 3D FGM,(k

thermal conductivity; K: bulk modulus)

The generated microstructures are comparable \wghnon-functionally graded base cells

found by Challis et al. (2008).

7.3. Conclusions

This chapter presented a computational methodhiotdpology optimization of functionally
graded composites with multi-functional properiesl two non-zero constituent phases. The
gradation of functional properties of the compositeng one direction was attained by

gradually changing the topological distribution armdume fraction of constituent phases. To
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save the computational time and obtain a smoottsitian between adjacent base cells, a
progressive design approach based on the topolptmiaation of three adjacent base cells
was applied at each stage. The numerical examptes presented, which demonstrate the
effectiveness of the proposed approach in provigirecise control over the variations of
functional properties. The procedure could alsaied for topology optimization of FGMs

with other multi-functional properties.
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Conclusion

Previous studies on topology optimization at themstructural level have clearly indicated
the advantages of Bi-directional Evolutionary Stawal Optimization (BESO) in terms of
lower computational costs, quality of generatedrostructures, and the simplicity of the
methodology in implementation with commercial s@&fter packagesMoreover, in the design
of materials through topology optimization, it hbsen shown that the selection of the
structural optimization methodology highly affett® results. The primary objective of this
study was to open a pathway toward applying the ®@HES8r the topological design of
materials microstructures. Upon the successful mptishment of the primary objective, the

methodology was extended into various materialgihescenarios.
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The literatures on several structural topology mjation algorithms that have already been
used for the design of materials microstructureshzeen critically reviewed here. Moreover,
as the process of material design usually involtres application of material modelling
techniques, some of these techniques are brieflyegad. Applications of topology

optimization techniques in the design of microdinues for materials have been addressed.

In the first stage, the topology optimization ofipdic microstructures using BESO has been
sought for cellular materials with, maximum bulk datus, shear modulus and thermal
conductivity. By assuming the base cell as a conmtim structure, the optimal spatial
distribution of the solid phase within the microsture has been determined. The effective
elasticity matrix evaluation and the sensitivityabsis have been performed by applying the
Homogenization theory. By ranking elements basedth@ir sensitivity numbers and by
imposing a volume constraint, the density of eletsieéteratively changes until the solution
converges. The numerical examples clearly demdastine high computational efficiency of
BESO in topology optimization of materials microsttures. Some interesting topological

patterns for the cellular materials have been ptese

Next, an algorithm has been developed for the desigisotropic cellular materials by
introducing an additional constraint to the optiatian problem. The modified objective
function has been constructed by introducing a &age multiplier to implement the isotropy
constraint. The numerical examples indicate thatetktra constraint is very well incorporated
in the optimization algorithm. With the establishelémental sensitivity numbers, isotropic
materials with maximum bulk or shear modulus hagerbdesigned. It has been shown that

the developed methodology is applicable to otheigtescenarios.
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Thereafter, the design of a multi-phase microstmgctfor materials with maximum bulk

modulus, shear modulus or thermal conductivity beesn investigated. Following the ranking
of constituent phases based on their contributiothé objective function, they have been
divided into some groups and the sensitivity analyss been performed between groups.
The addition and removal of elements has been eeid based on the ranking of these
sensitivity numbers, and by imposing volume comstrdbetween different groups. The

generated microstructures demonstrate very goagkagnt with known analytical bounds on
material properties. The procedure has demonsteteety stable convergence without any
numerical difficulty, as opposed to other propogedcedures in the literature. The other
major advantage of the BESO in the design of cointgmds that there are distinctive

interfaces between constituent phases in the geensicrostructures.

Furthermore, the methodology has been extendedhetaesigning of a series of base cells
for cellular FGMs. In particular, the approach aes the connectivity issue between
adjacent base cells by considering the topologymopation of three adjacent base cells at
each stage of the design. The proposed approaébriperfinite element analyses for only
two base cells at each stage of the design andaasrthe connectivity of cells by devising a
filtering scheme, thereby greatly reducing the cotaponal cost. Numerical examples for
designing FGMs with, bulk modulus, shear modulushermal conductivity demonstrate the

effectiveness of the approach.

Finally, a computational procedure for the topolaggtimization of functionally graded
composites with multi-functional properties hasrb@eoposed. It is assumed that the FGM

consists of two non-zero material phases and th&guleobjective is defined as the



Chapter 8 219

maximization of one functional property, while arfeemance constraint is imposed on the
variation of another functional property. To s&lve computational cost and obtain a smooth
transition between adjacent base cells, a progeesisign approach is used by performing
topology optimization on three adjacent base cafleach stage. The numerical examples
demonstrate the effectiveness of the approach sigaieg FGMs with smooth variation in

maximum stiffness and prescribed variation in theroonductivity.

The topology optimization problems solved in tliegis are rather simplified cases. However
the design scenarios considered in this thesis dstrate that the BESO method can be
successfully applied in the design of microstruesurfor materials. For engineering

applications, a variety of demands in terms of fiomality or performance constraints may be

placed on material systems; these issues couldenatidressed in this thesis.

In Terms of the functional properties only stiffaeand thermal conductivity optimization
problems were considered in this thesis. Variousemotdesign objectives functions for
materials can be considered in future studies. é&@mple, materials with prescribed or
tailored plasticity, viscosity or frequency chamgddtics can be the objective of optimization.

Such materials have wider demands in advanced ialateystems.

In this thesis, the topology optimization of maaési with volume constraint and one
performance constraint has been investigated. Ththadologies in the presented form
cannot be used for material optimization, when é¢hare two or more performance
constraints. When there are such kinds of demamdgre advanced mathematical

methodologies are needed to be developed.
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Through the optimization process for the designF&GM'’s in the current study, periodic
boundary conditions were applied on microstructaned the Homogenization theory is used
for calculation of effective properties of matesial' his assumption yields accurate effective
properties for material only if the number of basdls in the design domain is large enough.
The accuracy in the prediction of FGM charactersstian be increased by analysing FGMs in
the two micro and macro scales. Inspired by théhoteintroduced in this thesis, in which the
FGM has been designed by dividing it into differstéges, methodologies can be developed
for topology optimization of the connected micrastures for FGMs via multi-scale

analyses.
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