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Abstract: 

It is known that composite materials with improved properties can be achieved through modifications 

to the topology of their microstructures. Structural topology optimization approaches can be utilized as 

a systematic way for finding the best spatial distribution of constituent phases within the 

microstructures of materials/composites. This study presents a new approach to designing material’s 

microstructures based on the bi-directional evolutionary structural optimization (BESO) methodology. 

It is assumed that the materials/composites are composed of repeating microstructures known as 

periodic base cells (PBC). The goal is to find the best spatial distribution of constituent phases within 

the PBC, in such a way that materials with desired or improved functional properties are achieved. To 

this end, the Homogenization theory is applied to establish a relationship between properties of 

materials microstructure and their macroscopic characteristics. 

As the first step of this study, the optimization problem is formulated to find microstructures for 

materials with maximum stiffness, in the form of bulk or shear modulus, or thermal conductivity. 

Cellular materials, which are composed of one solid phase and one void phase, are considered at this 

stage. By conducting finite element analysis of the PBC, and applying the Homogenization theory, 

elemental sensitivity numbers are derived.  By gradual removing and adding elements in an iterative 

process, the optimal topology of the solid phase within the PBC is found.  

In the next stage of this study, the aim is to combine additional performance constraint to the above 

procedure. Maximization of bulk or shear modulus is selected as the objective of the material design, 

subject to the constraint on the isotropy of material and volume constraint. The proposed BESO 

procedure utilizes a gradient-based method to impose the isotropy constraint. The developed approach 

provides bases for the design of materials, with other objective functions and extra performance 

constraint or multi-functional properties. 

Compared with cellular materials, composites of two or more different constituent phases are more 

advantageous, since they can provide a wider range of performance characteristics. The methodology 
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is extended into topology optimization of microstructures for composites of two or more non-zero 

constituent phases. For design of material with maximum stiffness or thermal conductivity, the 

constituent phases are divided into groups and sensitivity analysis is performed between different 

groups. The addition and removal of elements is conducted based on the relative ranking of elemental 

sensitivities and imposing volume constraints. 

The developed methodology is extended into the design of functionally graded material (FGM), in 

which the mechanical property of material gradually changes. It is assumed that the microstructure of 

the FGM is composed of a series of base cells in the direction of gradation and self-repeated in other 

directions. The objective of optimization is to generate the lightest materials with prescribed variation 

in bulk modulus, shear modulus or thermal conductivity. In particular the study proposes a new 

computationally efficient approach for maintaining the connectivity between different base cells of an 

FGM.  

Finally, an approach is proposed for the topological design of FGMs with two non-zero constituent 

phases and multi graded properties, which utilizes and encompasses the methodologies developed in 

the previous stages. The objective of optimization is defined to find the stiffest materials with 

prescribed gradation of thermal conductivity.  The proposed approach applies a gradient-based 

sensitivity analysis to impose the constraint on thermal conductivity. This is similar to the 

aforementioned approach for imposing performance constraint on isotropy. Similar to the approach 

used for cellular FGMs, the connectivity of base cells is maintained by considering three base cells at 

each stage. 

The effectiveness and computational efficiency of the proposed approaches are numerically tested, 

through designing a range of 2D and 3D microstructures for materials.  A series of new and interesting 

microstructures of materials are presented. The results clearly indicate the advantages of BESO 
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utilization in terms of computational costs and convergence speed, quality of generated 

microstructures, and ease of implementation as a post processing algorithm. 
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Chapter 1                     

Introduction 
 

 

 

 

 

 

Background  

The main objective of structural engineering is to develop load carrying systems that can 

economically satisfy the design performance objectives and safety constraints. Economical 

consideration is the main driver for developing design processes that enables the minimization 

of the resource consumption. Many engineering disciplines are involved in optimization and 

apply mathematical language for this purpose. For the optimization of structures, this 

objective can be achieved by finding the best topology, layout of members or material 

distribution within the design domain of the structural system. 
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The history of the structural optimization can be traced back to Michell’s (1904) theoretical 

studies in Melbourne, on optimality conditions of structural systems. However, the early 

studies were mainly restricted to the size and shape optimization of predetermined topologies. 

Wider access to computational machines in 1990s justified the development of numerical 

procedures for the topology optimization of structures, aimed at finding the best layout, 

configuration and spatial distribution of materials in the design domain of the continuum 

structure (Bendsøe and Kikuchi, 1988, Rao, 1995, Burns, 2002, Schramm and Zhou, 2006). It 

was not so long afterwards when the first topology optimization commercial software 

packages such as “Altair OptiStruct” emerged (Schramm and Zhou, 2006). Since then 

refining the theories and developing new methods are among the active fields in structural 

engineering. 

In addition to topology optimization of structures at macro-scale, one common approach for 

saving resources is the application of porous or composite materials that have extreme or 

tailored properties. In fact, the responses of structural systems are highly dependent on the 

material they are built from. Although the application of composite materials in structures has 

had a rapid development in the past few decades, the idea of combining materials in order to 

achieve improved characteristics is not new. For example, the strengthening and stiffening of 

cheap materials with fibres can be traced back to 5000 years ago (Barbero, 1999). Some of the 

earliest records of strengthening mud bricks and pottery with straw are found in 

archaeological carvings in Egypt. The processional road in ancient Babylon was made up of a 

mixture of bitumen and straw, as the reinforcement fibres.  
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There are different reasons for the interests in materials with tailored or improved properties 

and a variety of performance demands in terms of functional properties are being placed on 

material systems. These include lightweight materials with improved or tailored mechanical, 

thermal, electromagnetic, optical, chemical, and flow properties (Evans et al., 2001, Torquato, 

2002). For instance, applications of lightweight multifunctional products in vehicles save 

energy in terms of lower fuel costs and can significantly reduce the environmental impact of 

gas emissions. It is estimated that reducing one kilogram of the weight of an aircraft can save 

US $80,000 over its lifetime; while decreasing one kilogram on a satellite weight can reduce 

the launching costs US$8 million (Cree and Pugh, 2010).  

Traditionally, the objectives of material design are achieved by the application of composites 

in the form of fibre, particulate or laminar (Figure 1.1), in which the properties of materials 

are controlled by modifying the location, orientation, material constituents, or volume fraction 

of fibre, particles or laminar inclusions (Staab, 1999).  The traditional material design method 

follows a trial-and-error process through which design changes are made, and the material is 

re-analysed until its performance meets the objectives (Torquato, 2010). Although material 

design has achieved its objectives in certain cases through this approach, the desire for 

development of systematic means, has made material design an active field of research 

(Gibson, 2010, Cadman et al., 2013).  

In newer types of composite materials, namely the functionally graded materials (FGM) 

which are characterized by gradual change in properties, the gradation of response is still a 

result of variation in composition and/or microstructural layout of material. To achieve 

materials with desired heat resistance properties, the primary FGMs were developed as 
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composition of ceramic and metallic constituent phases. Spherical or near spherical particles 

of metallic or ceramic phase are randomly dispersed within the matrix of the other material 

with varying proportion. As a result, inhomogeneity and gradual variation of thermo-physical 

characteristics are developed into the material, solely by varying the volume fractions of the 

constituent phases (Koizumi, 1997, Birman and Byrd, 2007). 

 

Figure 1.1: Composite classes: (a) Fibre Composite; (b) Particulate Composite; (c) Laminar Composite; (d) 

Cellular Composite 

Technological advancement in manufacturing methods such as Selective Laser Melting 

(SLM) (Mutmta and Hopkinson, 2007, Yang et al., 2010), and Solid-Freeform Fabrication 

(SFF) or Layered Manufacturing (LM) for 3D printing (Zhao and Luc, 2000) in the last 

decades, has enabled the economically viable manufacturing of materials with large 

heterogeneity. The development of high precision fabrication technologies is paralleled by 

research on an emerging class of composite materials that are made by representative unit 

cells (RUC) or periodic base cells (PBC) (Zhou and Li, 2007). Materials with repeating or 

periodic microstructures usually consist of one constituent phase and a void phase (known as 

porous or cellular materials), or combinations of two or more different constituent phases with 

or without the void phase (also named as “periodic composites” (Huang et al., 2012). The 

overall properties of these types of materials are controlled by the spatial distribution of the 
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constituent phases within the PBC, as well as the properties of constituent phases. In 

comparison with traditional composites, periodic composites demonstrate greater flexibility in 

terms of their capability to be tailored for prescribed physical properties, by controlling the 

compositions and/or microstructural topology of the constituent phases (Cadman et al., 2013). 

They can also be easily tailored to have gradation in their functional properties, in the form of 

an FGM through gradual changes in the microstructural topologies.  

1.1. Problem statement and methodology 

The periodic base cell (PBC) can be viewed as a heterogeneous continuum structure, which is 

composed of different constituent materials (or constituent phases) (Bendsøe and Sigmund, 

2003). It has been shown that the properties of materials are influenced by the topology of the 

PBC (Hassani and Hinton, 1998a, b, c). Hence, a major challenge in the design of these 

materials would be the determination of the optimal spatial distribution of the constituent 

materials within the PBC. In the simplest form, the periodic composite materials consist of a 

2D or 3D scaffold of matrix, in which the other phases are included. Therefore, it is 

reasonable to apply the structural topology optimization methodologies for determination of 

the spatial distribution of the phases.  

Progress in the area of numerical methods is often ahead of mathematical approaches. The 

reason is largely attributable to the fact that the mathematical approaches usually require 

exhaustive formulation and rigorous solutions for rather simple optimization problems; while 

in numerical approaches complicated models could be dealt with using rather simple 

principles (Cherkaev, 2000). On the other hand, numerical topology optimization usually 
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involves with large numbers of design variables that make the use of conventional 

mathematical optimization algorithms inappropriate. They may not be efficient enough to 

solve the problems with large heterogeneity, mainly as the result of high time consumption 

(Cadman et al., 2013). In the past two decades, several numerical topology optimization 

algorithms have been examined, with the goal of developing a systematic approach for the 

design of periodic materials. One of the main concerns in these attempts has been the 

computational efficiency of the approach.  

Basically, topology optimization techniques, such as homogenization method (Bendsøe and 

Kikuchi, 1988), solid isotropic material with penalization (SIMP) (Bendsøe, 1989, Zhou and 

Rozvany, 1991, Rozvany et al., 1992), Level-Set method (Wang et al., 2003, 2004), 

Evolutionary Structural Optimization (ESO) (Xie and Steven, 1993, 1997), and Bi-directional 

Evolutionary Structural Optimization (BESO) (Querin et al., 1998, Yang et al., 1999, Huang 

and Xie, 2007b, Huang and Xie, 2010b) were developed to find the stiffest structural layout 

under given constraints. Prior to the commencement of this research, the SIMP (Sigmund, 

1994b, 1995), Level-set (Wilkins et al., 2007, Challis et al., 2008, Zhou et al., 2010) and ESO 

(Patil et al., 2008) have been extended into the design of periodic microstructures of materials 

and composites.  

Different topology optimization techniques have advantages and disadvantages in terms of 

computational efficiency, quality of generated microstructures, robustness, and the level of 

effort for implementation as a computational post-processing procedure, to name few. Among 

various topology optimization algorithms, ESO (Xie and Steven, 1993, 1997) was originally 

developed based on the concept of gradually removing inefficient elements from the finite 
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element model of the structure so that the resulting topology evolves towards an optimum. A 

later version of the ESO method, namely the bi-directional evolutionary structural 

optimization (BESO) (Querin et al., 1998, Yang et al., 1999) allows removal of elements from 

the least efficient regions, and the adding of elements to the most efficient regions of the finite 

element model of the structure.  Further developments of BESO have been made by 

theoretically introducing the hard-kill BESO (Huang and Xie, 2007b) and soft-kill BESO 

(Huang and Xie 2009a, 2010a) under particular circumstances. The new BESO (Huang and 

Xie, 2009a) alleviated most of the imperfections of previous versions (Rozvany, 2001a, 2009, 

Huang and Xie, 2010a,c). It offers several advantages in comparison with other topology 

optimization algorithms in terms of quality of the generated topology and convergence speed. 

This study is the first attempt to extend the application of the BESO to the design of 

microstructures of materials. Since materials with high stiffness are more desirable from the 

structural application point of view, the first step of this study is the development of the new 

algorithms for designing lightweight cellular materials with extreme stiffness. Thereafter, the 

methodology will be extended into other scenarios of material design. While offering 

innovative methodologies in material design, in particular other steps are arranged in such a 

way to provide keystones for the systematic design of composite materials with gradation in 

properties. For this purpose, new procedures will be introduced for design of composites with 

multi-functional properties.  

In particular the objectives of this study are: 

• Development of a computational algorithm for topological design of cellular materials 

with extreme properties; 
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• Development of a computational algorithm for topological design of microstructures 

with additional constraint on material properties;  

• Development of a computational algorithm for designing microstructures of composites 

with extreme properties; 

• Development of a computational algorithm for designing microstructures of functional 

graded materials (FGM); 

It should be mentioned that the properties of materials varies by their chemical and atomic 

configurations as well as by their particular microstructural topology (Mercier et al., 2002). 

However, this study deals with materials with a microstructural length scale much larger than 

the atomic dimensions, and also considerably smaller than the overall dimensions of the 

structure. Therefore, it is assumed that the interatomic forces are negligible. It is generally 

known that at the molecular level, the properties of materials are substantially different. For 

example (Duan et al., 2006) showed that at the Nano–level, materials can be much stiffer than 

its constitutional phases. However, these types of materials are out of scope of this research.  

1.2. Significance 

As discussed earlier, the performance enhancement of materials will lead to significant saving 

of energy and resources. For instance, lightweight materials can save energy in terms of lower 

fuel costs and emissions, thus reducing their carbon footprint. The demand for new materials 

with improved functional properties is constantly increasing. As a consequence this growth 

necessitates the development of more advanced design tools. In the case of periodic materials, 

as the problem involves continuum microstructures with large heterogeneity, this objective 
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can be achieved by the application and development of appropriate structural topology 

optimization methods.  

In spite of the fact that the new BESO procedure was only very recently developed, the 

method has acquired great successes in solving topology optimization problems in different 

areas of structural engineering. These include minimizing structural volume with a 

displacement or compliance constraint (Huang and Xie 2009b; 2010a), stiffness optimization 

of structures with multiple materials (Huang and Xie, 2009a), design of periodic structures 

(Huang and Xie, 2008a), structural frequency optimization (Huang et al., 2010), topology 

optimization for energy absorption structures (Huang et al., 2007) and geometrical and 

material non-linearity problems (Huang and Xie 2007; 2008). 

This study will extend the application of BESO to the design of microstructures for materials, 

and introduces a new methodology for solving engineering problems related to the design of 

materials. The outcomes signify the theoretical importance of the research. On the practical 

side, the advantages of BESO in simplicity, versatility and ease of implementation will 

provide engineers with a new methodology and an advanced design tool for the exploration 

and creation of novel materials that possess the required functions. 

More importantly, the previous studies on material design through structural topology 

optimization methodologies have indicated that the generated micro-structural topologies are 

highly dependent on the applied optimization algorithm and parameters (Sigmund, 1994a, 

1994b, Neves et al., 2000). This relates to the fact that a number of topologically different 

microstructures could provide similar material property. In other words, there are many local 
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optima in the design of microstructures for materials. Therefore, it is important to attempt new 

and different optimization algorithms, such as BESO, in order to find a much wider range of 

possible solutions to the material design. 

1.3. Organization of the thesis 

This study deals with the topology optimization of microstructures for materials and 

composites. In the next chapter a review on various structural topology optimization 

techniques will be presented. The process of material design involves the determination of 

material properties, through the modelling of its representative volume element (RVE). 

Chapter 2 also briefly introduces some of these methods. This is followed by a brief summary 

of previous research on the applications of structural topology optimization methodologies in 

the design of microstructures for materials. 

Chapter 3, deals with the topology optimization of materials with extreme properties using the 

BESO technique. In this chapter, cellular materials whose microstructures consist of one 

material phase and one void phase are considered. The statement of the optimization problem 

will be presented and the details of design algorithms will be explained. Numerical examples 

will be presented and compared with literature.  

Chapter 4 examines the possibility of combining additional constraint with the procedure 

explained in Chapter 3. This is done by defining the constraint on the isotropy to the material 

properties. The result of this study will provide bases for the further development of 

procedures for the design of materials, with constraint on other functional properties.  
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In Chapter 5 a method for designing composites of two or more constituent phases with 

extreme functional properties will be introduced. Compared with cellular materials whose 

microstructures are made of a solid phase and a void phase, composites of two or more 

different material phases, are more advantageous since they can provide a wider range of 

performance characteristics (Zhou and Li 2008a, d). After presenting the details of the 

proposed method, numerical examples will be presented to validate the effectiveness of the 

procedure. 

Chapter 6 proposes a BESO method for the design of materials with graded properties. It is 

supposed that the FGMs consist of one material phase and a void phase, with gradation in 

stiffness or thermal conductivity. In particular the procedure introduced in this chapter 

addresses the connectivity issue for the design of a series of base cells for these types of 

materials. The high computational efficiency of the proposed algorithm will be demonstrated 

by numerical examples. 

In Chapter 7 a combinations of the methods used in Chapters three, four, five and six will be 

applied to the design of FGMs, with two constituent phases and incorporating gradual 

changes in multiple functional properties. The functional properties that are considered in this 

chapter are the stiffness and the thermal conductivity of materials.  

Chapter 8 summarizes the research outcomes and presents recommendations for future 

studies. 
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It is known that the physical properties of materials can be controlled by changing the 

compositions or microstructural topology of constituent phases. The analytical model for the 

prediction of optimal materials properties proposed by Bendsøe et al.(1993), has demonstrated 

that the topology of microstructures of materials can be designed in such a way that materials 

with extreme properties are achieved.  Inspired by this work, Sigmund (1994a,  1994b, 1995) 

developed a computational algorithm based on a structural topology optimization technique, 

to solve the problem of finding the microstructures for materials with given homogenized 

(averaged) properties. The methodology is known as “inverse homogenization” (Sigmund 

1994; Steven 2006; Cadman et al. 2012). 
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Since the introduction of the approach, different structural topology optimization techniques 

have been applied for the design of microstructures for materials. Topology optimization 

techniques differ in terms of their computational costs and efficiency, the quality of generated 

microstructures, their robustness, and the level of effort for implementation as a 

computational post-processing procedure, to name few. In addition to the solid isotropic 

material with penalization approach (SIMP) that has been used in the original work by 

Sigmund (1994a), some other structural topology optimizations techniques such as the Level-

set, Genetic Algorithm and Evolutionary Structural Optimization (ESO), were also used for 

topology optimizations of materials’ microstructures. 

This dissertation is dedicated to the extension of the Bi-directional Evolutionary Structural 

Optimization (BESO) approach, into topological design of materials’ microstructures with 

specified functional properties. The first section of this chapter, deals with a critical review of 

the structural topology optimizations methodologies that have so far been applied to material 

design. The procedure of solving the inverse problem of finding microstructures of materials 

with desired functional properties, also involves with a modelling technique in which the 

homogenized or averaged properties of material is estimated. Among several proposed 

approaches for the estimation of average material properties, two of them, namely the 

“bounding of material properties” and the “Homogenization theory” are utilized in this 

dissertation for different purposes and to various extents. Section two of this chapter provides 

a brief survey about the development of these approaches. Section three briefly introduces 

some of the applications of structural topology optimization techniques in material design. 
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2.1. Structural Topology Optimization 

The emergence of mathematical optimization can be traced back to the introduction of 

calculus of variations by Bernoulli, Euler and Lagrange between the 17th and 18th centuries 

(Kamat, 1993). Generally, the calculus of variations deals with finding the minima and 

maxima of functions that are represented by differential equations. The solution of these 

differential equations identifies the optimal points of the functions. Although the calculus of 

variations provides a robust solving method for the extremization problems, except in very 

simple cases, obtaining a closed-form solution for non-linear differential equations is very 

difficult. On the other hands the numerical approaches for solving the variational equations 

involves an approximation of derivatives, in which the time consumption, accuracy and 

convergence of applied approaches are serious problems in structural optimization (Kamat, 

1993). 

The theory of structural optimization has been introduced by Michell (1904) in Melbourne, 

for developing minimum weight truss-like structures (Eschenauer and Olhoff, 2001). 

However it was not until 1950’s when with the advent of digital computers, the idea of 

structural optimization started to gain momentum, linear programming methods were 

proposed (Dantzig, 1963) and significant improvement was made into its theory and 

applications, by solving a range of structural optimization problems (Prager 1969; 1974; Save 

1975).  

The topology optimization, which is sometimes interchangeably referred to as layout 

optimization or generalized shape optimization (Olhoff and Taylor, 1979, Rozvany et al., 
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1992, Haber et al., 1996, Eschenauer and Olhoff, 2001), aims to find the best topology, layout 

or configuration in the domain of continuum structure (Design Domain). The Greek word of 

“Topo” can be translated to “place”, “landscape” or “domain”. Mathematically, all subsets of 

the R3 space (including lines, curves and so forth) are called topological domains. Topology 

in the structural engineering field basically describes the spatial distribution of materials or 

location of members and joints in a structure. 

In the 1960s, topology optimization was improved by the introduction of the so-called ground 

structure (Dorn et al., 1964), in which mathematical programming (MP) algorithms are used. 

Other remarkable early works on topology optimization were the introduction of “optimal 

layout theory” by Prager (1969) (Prager and Rozvany, 1977) and stiffness maximization of 

solid plates with volumetric constraints by Cheng and Olhoff (1981). Later, the finite element 

based “homogenization method” was introduced as the first numerical structural topology 

optimization technique by Bendsøe and Kikuchi (1988). The development in the field 

followed another finite element based topology optimization method, namely the 

“Evolutionary Structural Optimization” (Xie and Steven, 1993), which will be discussed later 

in this chapter. 

The structural topology optimization problems are often involved with the minimization or 

maximization of a defined performance function, subject to a set of constraint conditions 

(Kamat, 1993). The variables are generally defined as either the quantities that define the 

geometry of physical system and/or the sizes of the structural elements. For example 

supposing that each point in the domain of a continuum structure (design domain) can be 

either a material or void, the topology optimization of a continuum structure may consist the 
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determination for every point in space, existence or absence of material, so that the objective 

function is extremized and the constraints are satisfied simultaneously (Kamat, 1993).  

In contrast to the classical mathematical optimization methods, which make use of the 

differential equations for solution, the structural optimization methods often use simplified 

algebraic equations which are solved in an iterative numerical procedure. In a simple 

maximization problem, the structural topology optimization techniques often involve the 

following general steps: 

1. Selection of the initial design variables (material type, thickness of plate...) 

2. Evaluation of the objective function for the current setting of design variables 

3. Comparison between the current properties with the prescribed values 

4. A procedure to update the design variables, so that the objective function is 

improved and repetition of steps 2 to 4 until no further improvement of the result is 

achievable 

Various strategies that are taken in order to update the design variables include the methods 

that select the new design variables randomly, or the methods that use the gradient of the 

objective function to obtain the optimum. It should be mentioned that the selection of initial 

topology or the procedure of updating the design variables may result in a solution which is a 

local optimum. Even if the solution has one global optimum with no local optima, still the 

selection of the initial design and updating scheme will affect the number of repeats of the 

above mentioned procedure.  
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In the following sub-sections, some of these optimization techniques are briefly introduced 

and compared with the BESO. Because the BESO, which is the applied approach in this 

thesis, is based on materials distribution, here more emphasis will be given to materials 

distribution methods of SIMP, ESO and BESO. 

2.1.1 Genetic Algorithm 

Genetic Algorithm is a global search stochastic approach, which is developed based on the 

rules of genetic evolution of biological systems and relies on the “survival of the fittest” 

strategy. Genetic Algorithm was originally developed by John Holland (1975) and coworkers 

in Michigan University, with applications in biological and artificial intelligence systems. It 

gained much of its success as an optimization tool for the works of Goldberg of the University 

of Illinois (Goldberg., 1989, Jenkins, 1991). The Genetic Algorithm was used for structural 

optimization by many researchers (Goldberg and Samtani, 1986, Jenkins, 1991, Coello et al., 

1994, Pezeshk, 2000), including topology optimization of structural frames (Grierson and 

Pak, 1993), trusses (Ohsaki, 1995) and continuum structures (Sandgren et al., 1990, Jakiela et 

al., 2000). Zohdi (2002) applied this topology optimization technique for the design of 

materials, with prescribed bulk and shear moduli of elasticity.  

The Genetic Algorithm operates on coded strings (usually binary numbers) that contain the 

discrete design variables information for a particular solution. The value (or fitness) of design 

variables in fulfillment of the objective function is assessed by analyses that are made on the 

system, which are saved by converting or ‘mapping’ of the values to binary strings (bits). The 

mathematical bit string is analogous to the chromosome in natural biological systems. The 
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initial generation (generation 0) is produced by the random selection of bits in each string. 

Usually, a population of 2n to 4n (n is the number of variables) of families of strings is 

created as the initial trial solutions.  

After the first round of analysis, the pairs of “parent” strings are selected among the best 

potential solutions. The next step is to break the selected parent stings into segments and then 

exchange the segments with the corresponding parent segment, which is called the crossover 

procedure. To enable the exploration of the entire search space, usually a mutation procedure 

is devised whereby some bits are switched on or off (0 to 1 or 1 to 0) based on a probabilistic 

formulation. The mutation procedure is a measure to allow the development of new features 

that do not pre-exist in parents’ strings. It is controlled by the user through the prescription of 

mutation probability. The fitness of each family is again assessed and the procedure continues 

into the next generation until the convergence is attained, or the specified maximum number 

of generations is reached. 

One of the characteristics of Genetic Algorithm is that the procedure searches among a 

population of points in design space, simultaneously. In comparison with the methods that 

shift the solution from a single point in design space to the next, parallelization of search 

among optima increases the “probability” of finding a global optimum point (Goldberg., 

1989). This fact contributes to the robustness of the Genetic Algorithm. Another favorable 

feature of the method is that the solutions are developed based on the payoff or quality of the 

solution itself. Therefore calculation of auxiliary information, such as the derivatives with 

respect to the objective function (sensitivity analysis) is not necessary. 
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However, in contrast to gradient based approaches (see below) that improve one solution at a 

time, the Genetic Algorithm needs to operate on a population of solutions simultaneously. 

This means that a larger number of design variables need to be defined and every iteration 

(generation) needs several finite element analyses. Consequently the finite element model of 

the structure should contain only a few elements (Goldberg and Samtani, 1986, Jenkins, 

1991). Otherwise, the procedure can become prohibitively expensive (with 104 to 106 ground 

elements) (Rajeev and Krishnamoorthy, 1992, Hajela and Lee, 1995, Rozvany, 2009). For 

instance, topology optimization of a cantilever plate with 2800 elements roughly requires 

about 150,000 finite element analyses of the structure (Kane and Schoenauer, 1996)! 

Another major drawback of the Genetic Algorithm for topology optimization is that the 

integrity and continuity of the structure is not guaranteed. As the adding or removing of 

elements is based on a random search algorithm, it is more likely that during the design 

process the structure is divided into several unconnected regions (Fanjoy and Crossley, 

2002b). As the load transfer does not happen between unconnected regions, the structural 

analysis may result in false information. Therefore, the optimization procedure fails. Different 

approaches have been introduced in the literature to tackle this problem, including the 

introduction of a chromosome mask to modify the chromosome information in unconnected 

locations (Fanjoy and Crossley 2002a; 2002b), switching the unconnected elements to void 

(Jakiela et al., 2000) and penalizing the unconnected elements (Wang et al., 2006). However 

these approaches either fail to completely alleviate the discontinuity problem or result in a 

poor fitness values with even more computational expenses (Zuo et al., 2009).  
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2.1.2 Level-set method 

The mathematical concept of Level-set was introduced by Osher and Sethian (1988) for 

computation of moving interfaces (Burger and Osher, 2005). It was recently used as a 

numerical procedure for the structural topology optimization, as an alternative approach to 

material distribution methods (Sethian and Wiegmann, 2000, Osher and Santosa, 2001, Wang 

et al., 2003). Its applications have also been extended into a variety of topology optimization 

problems such as compliance minimization (de Gournay et al., 2008) and the design of 

microstructures for materials (Mei and Wang, 2004, Wilkins et al., 2007, Challis et al., 2008), 

including materials with negative Poisson’s ratio (Wang and Wang, 2005b), with specific 

electromagnetic characteristics (Zhou et al., 2010) and negative permeability (Zhou et al., 

2011).   

The Level-set approach derives its name from the function that describes the boundary of the 

structure (Challis, 2010). The level-set of the scalar function  is defined in 

some domain as: 

                  (2.1) 

where  is a constant value, which is known as the iso-value and is usually taken as equal to 

zero in structural problems. The standard definition of the Level-set divides the design 

domain into 3 regions (Wang et al. 2003): 
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                   (2.2) 

where the area covered by is filled by material and the  represents the structural 

boundary. In finite element modeling of the structures usually the discreet level-set definition 

is used (Challis 2010). When the elements are either material or void, the level-set function 

can be defined based on the position of the center of elements simply as (Challis 2010): 

                  (2.3) 

In the process of structural optimization, the level-set function  dynamically changes in 

time so the structural boundary  also changes. The evolution of the surface is determined 

by specifying the “speed vector” of the level-set surface at different points. By differentiating 

the equation (2.1), with respect to time and applying the chain rule, the so called “Hamilton-

Jacobi” type equation is obtained: 

                  (2.4) 

which correlates the speed vector of the point on the surface to the objective of optimization . 

The optimal structural boundary is expressed as a numerical solution of this partial differential 

equation on  (Wang et al., 2003). 
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One of the advantages of the Level-set is that the approach can provide sharp interfaces 

between different constituent phases of the structure. This makes the interpretation of 

boundary and manufacturing easier, in comparison with other topology optimization methods 

that use continuous variables such as the SIMP (Burger and Osher, 2005).  However one of 

the drawbacks of the above mentioned classical formulation is that it does not allow the 

systematic formation of new holes in the topology of structure (Allaire et al., 2004). The 

Level-set method is generally devised to describe the propagation of interfaces with a defined 

speed function; therefore, holes within existing shapes and away from the boundaries cannot 

be initiated (Burger et al., 2004). 

Different solution methods have been proposed to solve the problems of nucleation of new 

holes in the structure. One way is by introducing large number of discrete holes in the initial 

design (Allaire et al., 2004). The above mentioned Level-set setting is capable of merging or 

cancelling these holes and creates a structure with fewer holes in later iterations. However, the 

nucleation of further necessary holes in later stages will remain an unsolved problem. It is 

known that the number and location of the initial holes have an important effect on the final 

solution (Allaire et al., 2004, Wang et al., 2003). 

The other method that has been proposed for solving the problem of new holes nucleation is 

by the modifications of the Hamilton-Jacobi equation, through the introduction of a forcing 

term  (Burger et al., 2004). The modified Hamilton-Jacobi differential equation that needs to 

be solved is: 

                   (2.5) 
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in which is a positive weighting factor which determines the influence of the termq . The 

determination of the forcing term qand the speed vector v are involved with the sensitivity 

analysis of the objective function. The selectedq  is dependent on the problem at hand and its 

weighting factor w  should be determined by the user as an initial parameter (Challis, 2010). 

Therefore its successful application is highly dependent on the user’s experience. Since 

introducing additional constraint in the Level-set approach also involves with further 

modification of the Hamilton-Jacobi differential equation (2.5) by adding extra weighted 

terms (Challis et al., 2008), the successful implementation of the method in conjunction with 

extra constraints is very cumbersome, especially in 2D problems.  

In general the Level-set approach is mathematically more complicated and harder to be 

implemented as a computational procedure, in comparison to the materials distribution 

approaches. Therefore, the approach has not reached the stage of regular application so far 

(Rozvany, 2009). In the subsequent sections, three methods that are based on material 

distributions, namely the SIMP, ESO and BESO are briefly reviewed. Due to the 

mathematical simplicity of these approaches, the methods also received more attention.  

2.1.3 Homogenization method  

Homogenization method is a mathematical approach for finding optimal topologies of 

structures. It was the first practical methodology for topology optimization of structures 

which was developed by (Bendsøe and Kikuchi, 1988). It is sometimes referred to as 

“generalized shape optimization”. So far, the approach has been used extensively for topology 

optimization of structures for example in (Allaire and Kohn, 1993, Suzuki and Kikuchi, 

w
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1991). This methodology has also been used in topology optimization of materials in a 

number of publications, for example in (Terada and Kikuchi, 1996, Fujii et al., 2001). The 

Homogenization method was the inspiration for development yet another important structural 

topology optimization approach namely the SIMP method (Bendsøe, 1989), which will be 

discussed in the next section. 

In the Homogenization method, the boundary shape optimization problem is changed into the 

material optimization problem in an extended design domain (Fujii et al., 2001). In this 

method the structure is seen as a combination of microstructures. The physical properties of 

these microstructures are assigned to the elements of the discretized domain. The 

microstructures are introduced with different material models such as square unit cells with 

rectangular void or rank layered materials (Figure (2.1)). The physical properties of the 

microstructures are controlled by their geometrical parameters. The parameterization of the 

cells is made in such a way that they can yield the two limiting cases of completely solid 

element or void elements. This means that by changing the design variables such as void 

dimensions, the void region, defined inside a microstructure, can cover the whole area of the 

microstructure.  It is also assumed that large numbers of these microstructures exist in the 

structural domain. In topology optimization through homogenization method, the geometrical 

parameters are defined as design variables and the objective of optimization is to find their 

optimal values (for example the sizes and orientation of the void regions in square unit cells). 

 



 
 
 
 
 
 

Chapter 2                                                                                                                               29 
 
 
 
 
 

 

Figure 2.1: Examples of microstructural models used in Homogenization method 

In homogenization method, it is assumed that there exist many microstructures of similar 

geometry next to each other which are referred to as periodic microstructures.  The 

assumption of periodicity for microstructural boundary conditions enables the 

“Homogenization theory “ to be used for finding the effective properties of the equivalent 

homogenized structure made by the these microstructures. In the case of ranked layered 

microstructures the homogenization problem can be solved analytically but for other voided 

microstructures, numerical approaches such as finite element methods need to be applied.  

The “Homogenization theory” will be discussed in more details in section 2.25.  
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In the homogenization method the number of design variables is proportional to the numbers 

of elements in the design domain. Therefore, the application of mathematical programming 

approaches for solving topology optimization problems is very costly due to existence of 

large number of design variables in the model. To overcome this difficulty, the approach of 

“optimality criteria” is usually applied. As it will be described in (see section 2.1.4), the 

optimality criteria methods are indirect optimization approaches that arrive at optimal solution 

by satisfying a set of conditions related to the performance of the structure. 

In the finite element based homogenization method for topology optimization, the 

Homogenization theory is applied and the effective properties of microstructures are assigned 

to the elements of finite element model of the structure. Then the finite element analysis is 

performed to evaluate the performance of the structure in satisfying the objective function. 

The next step is to use the Homogenization theory and optimality criteria principals to update 

the design variable in such a way that the structural performance get closer to the objective 

function. The iterative procedure continues until no further improvement in the objective 

function can be achieved.   

It is noted that the problem is solved in a fixed domain, so the finite element model used in 

the analysis doesn’t need to be altered during the optimization procedure. The final topology 

may contain three types of regions, namely, solid regions (filled with material), empty regions 

(without material) and porous regions (regions with infinitesimal cavity sizes). However, the 

optimal solutions usually have high manufacturing costs since there are many small cavities 

in the structure (Rozvany et. al. 1992).  For the design of microstructures of materials this 

problem may cause more difficulties since the microstructures are generally of smaller sizes. 
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2.1.4 The SIMP method 

The idea of the finite element based material distribution method can be traced back to the 

studies of Rossow and Taylor (1973) which used the continuous design variables without 

penalization of intermediate densities in topology optimization (Rozvany 2009). In another 

pioneering study, inspired by the “homogenization method” (Bendsøe and Kikuchi, 1988), the 

principals of the SIMP were first proposed by Bendsøe (1989) for the topology optimization 

of structures. The method was named “the direct approach” by Bendsøe (1989). `Solid 

Isotropic Microstructures with Penalization' or SIMP was coined by Rozvany et al. (1992) , 

and later on, used by Bendsøe and Sigmund (1999) with `M' standing for `Material'. The 

method is widely used for the design of microstructures for materials (Sigmund 1994a, 1994b, 

1995). 

In the topology optimization of continuum structures via material distribution, the aim is to 

assign each point of space a solid or void property (Bendsøe, 1989). Typically these topology 

optimization problems are treated by discretizing the continuum structures into a finite 

element model, which enables the alternation of the topology, without the need for re-

meshing. In the simplest form where there is one objective function f(x) (for example the 

compliance) and no other performance constraint, a structural topology optimization problem 

can be mathematically formulated as: 

Minimize: f(x) 

Subject to:                    (2.6) 0
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in which  is the prescribed volume of structure and  is the volume of element ; the 

design variable  indicates the presence (1) or absence (0) of the element. Similar 

formulation for the point-wise material/no material (also known as black/white (Bendsøe and 

Sigmund, 1999)) optimization was suggested by Kohn and Strang(1986) and Strang and Kohn 

(1986). However, as practically examined by Bendsøe and Kikuchi (1988), these classes of 

problems are ill-posed and would be dependent on the selection of the elements’ sizes and 

discretization mesh. For example it can be shown that by using finer and finer mesh in the 

finite element model of structure, the optimization procedure results in structures with more 

and more members of smaller sizes and no convergence is achievable by using even finer 

mesh sizes (Bendsøe and Sigmund, 1999, Huang and Xie, 2010b).  

To tackle these problems the SIMP method uses a relaxation method, in which the design 

variables are freed to take any value between 0 and 1 (Bendsøe, 1989, Sigmund and 

Petersson, 1998). Then some form of penalization approach is used to steer the solution to a 

discrete 0/1 values.  The new definition of the optimization problem has the following format: 

Minimize: f(x) 

Subject to:                               (2.7) 
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in which lower bound is defined in order to avoid singularity of the problem. Supposing 

that f(x) defines some energy form of the structural properties (e.g. compliance), it can be 

seen that the new formulation of the problem makes the energy linearly dependent on the 

design variable (Sigmund and Petersson, 1998).  

The key issue in “SIMP” topology optimization method is defining a relationship between 

materials properties and a continuous design variable. As mentioned before, the continuous 

design variable is often interpreted as the elemental density. This relationship is known as the 

“interpolation scheme”. In the original study of Bendsøe (1989) the so-called power-law 

approach was used as material interpolation scheme. For example the local material elasticity 

can be interpolated as:  

                     (2.8) 

in which is the elasticity tensor of the base material.  If the penalization factor is selected 

as p=1, the intermediate densities are allowed to exist in the model. By increasing the 

penalization factor p >1 the intermediate values of the design variables (gray elements) are 

suppressed and the stiffness tends to be very close to either 1 or 0. By using most filtering 

techniques it is still not possible to have a pure 0/1 solution and some grey elements will 

always remain in the structure. 

For the cases where the volume constraint is active, numerical experiences indicates that the 

solution gets very close to 0/1 designs, if the selected p is sufficiently large. The reason is 

attributable to the fact that for such a choice, the volume still remains linearly proportional to 
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 , but the intermediate densities are suppressed in stiffness calculations and stiffness will 

become less than proportional (Bendsøe and Sigmund, 1999).  

On the other hand, the interpolation scheme of equation (2.8) does not guarantee that the 

summation 

                      (2.9) 

in fact corresponds to the specific volume. However it is possible to establish conditions on p, 

so that the power low scheme has a meaningful physical interpretation. Bendsøe and Sigmund 

(1999) showed that the power-law model can achieve a real physical meaning provided that 

the following equations hold: 

           in 2D cases                        (2.10.a) 

 in 3D cases                       (2.10.b) 

where  is the Poisson’s ratio. Instead of using the power-law scheme with a penalty 

exponent, some researchers applied the analytical bounds on materials properties (such as 

Hashin and Shtrikman (1963) bounds), as the interpolation scheme (Zhou and Li, 2008d). 

Hence the necessity for determination of penalty exponent is circumvented. 
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For finite elements’ based structural optimization, there are several solution algorithms 

(Coville, 1968, Asaadi, 1973, Schittkowski et al., 1994, Chen et al., 2001).  Two numerical 

approaches that are frequently used in conjunction with the SIMP method, namely the 

“Method of Moving Asymptotes”, and “Optimality Criteria methods” are briefly introduced 

here.  

2.1.4.1 Method of Moving Asymptotes (MMA) 

The MMA was originally introduced by Svanberg (1987) as a further advancement to 

“Sequential Convex Programming” (Fleury, 1979). To illustrate the method, suppose the 

following optimization problem statement: 

Minimize:  

Subject to:                 (2.11) 

   

in which is the implicit objective function and   (j=1,2,..m) are the implicit 

behavioral constraints; the general sequential solution consists of the following steps: 

Step 1: Select the starting point  

Step 2: Calculate  and for j=0,1,…m 

Step 3: Calculate approximate explicit functions of  (j=0,1,2,..m) (see below) 
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Step 4: Calculate better approximation of the design variables  

Step 5: If the solution is not converged go to Step 2; otherwise end  

Several methods have been suggested for the approximation of the original functions in the 

neighboring points of   in step 3 (Schmit and Farshi, 1974, Fleury and Braibant, 1986). 

For example, in the well-known “Sequential Linear Programing” or SLP the approximation 

function has a rather simple form of (Haug and Céa, 1981): 

                                      (2.12) 

In the MMA, another linearization scheme is suggested which uses variables of the type 

 and   . The variables  and  are experimentally adjusted through 

iterations and are known as “moving asymptotes” (Svanberg, 1987, Schittkowski et al., 1994). 

The transformed sub-problem has the following form: 

Minimize: 

           (2.13) 
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where: 

               (2.14) 

 

in which  and  are the move limits that are correlated to the moving asymptotes . The 

solution to the above mentioned sub-problem can be performed using a dual method as 

described in (Svanberg, 1987). Numerical experiences show that the method allows a better 

approximation, in comparison with other convex procedures (Schittkowski et al., 1994). 

However the successful convergence of the procedure is dependent on the selection of the 

initial x0 and the moving asymptotes. It may happen that the procedure does not converge 

(Schittkowski et al., 1994).  

2.1.4.2. Optimality criteria method 

The basic idea of Optimality Criteria (OC) for structural optimization was proposed by 

Michell (1904). Later on, the OC method has been developed as an alternative to 

mathematical programming approach. A historical survey on the method has been presented 

in (Rozvany, 1989). As opposed to mathematical programming methods which directly 
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maximize or minimize the objective functions, the OC tackles the problem indirectly through 

satisfying a series of intuitive or mathematical criteria (Hassani and Hinton, 1998c). An 

example of intuitive optimality criteria is the so-called “fully stressed” design in which the 

structure is deemed to be an optimum when its components are fully stressed. Mathematical 

criteria for OC methods are usually based on the Karush-Kuhn-Tucker (KKT) optimality 

conditions (Karush, 1939, Kuhn and Tucker, 1951).  

The KKT conditions present the necessary criteria for the optimality of a solution in a non-

linear programming. Supposing an optimization statement in the form: 

)(fMinimize x0    
 

Subject to: ,...,m if i 1      0)( =≤x               (2.15a) 

and           ,...,nm if i 1      0)( +==x
 

1min ≤≤ ixx  

It is assumed that the functions  (j=0,..m) are differentiable at  and also the gradients 

of the active constraints are linearly independent (such a point is also known as the regular 

point). In the case that x*  is a local minimum, the KKT conditions state that there exist 

constants of ηi and θj (known as dual variables) such that: 
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,..,n     m   if i 1          0)( * +==x                            (2.15b) 

,..,m              i  , η)(xf ηf i
*

iii 100 ;    0)( * =≥=≤x  

It should be pointed out that the irregular points that violate the conditions of KKT can also 

be local minima and the criteria does not state the sufficiency conditions of an optimal 

solution (Kamat, 1993). 

2.1.5. Evolutionary Structural Optimization (ESO) 

In 1993, Xie and Steven (1993) introduced an approach called Evolutionary Structural 

Optimization (ESO). It is based on the concept of gradually removing inefficient materials 

from the finite element model of the structure so that the topology of the structure develops 

gradually toward an optimum. Due to the simplicity of the approach, it gained great 

popularity since its primary introduction and has been the subject of extensive studies (Burns, 

2002). Solving stiffness and displacement problems (Chu et al., 1996), dynamic analysis of 

structures (Xie and G.P.Steven, 1996, Zhao et al., 1997), buckling analysis (Manickarajah et 

al., 1998) or multi-criteria optimization (Proos et al., 2001) are examples of its continuous 

development. The Bi-directional Evolutionary Structural Optimization (BESO) is also 

considered to be an important development, resulting from the studies on ESO (Querin et al., 

1998).  Recently use of the ESO method has been extended into the design of microstructures 

for materials, to attain the desired thermal conductivity (Patil et al., 2008). 

The failure of the structure happens when stress or strain on some elements exceed the 

maximum values. Inversely, low-stress or strain elements can be accounted as inefficient 
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materials. These two arguments imply that in an ideal structure, identical level of stress 

should exist in every element (Burns 2002). This concept leads to rejection criteria based on 

the stress level in elements. In the original stress-based ESO method (Xie and Steven, 1993), 

the criteria for removing elements was based on the level of Von Mises stress in the elements 

of the structure, which is a measure of average stress in the structure. In the plane stress 

problems, the Von Mises stress is expressed as: 

  
              (2.16) 

The stress level in elements is determined by a finite element analysis. In the stress-based 

ESO the Von Mises stress of each element is compared to the maximum Von Mises stress of 

the structure . At the end of each finite element analysis, the elements which satisfy the 

following condition are completely removed from the finite element model of the structure: 

    
               (2.17) 

in which  is the rejection ratio at the iteration . The iterative procedure continues until 

there are no more elements to be removed from the structure which is known as a “steady 

state”. At the steady state, all elements in the structure will have a stress level that is higher 

than  . If it is necessary, at this stage the rejection ratio is increased, by the 

evolutionary rate ( ) that is defined as an initial parameter in the ESO: 

                  (2.18) 
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After this increment, the same process is repeated, until the new steady state is reached. The 

procedure comes to an end when the structure attains the desired stress level; for instance 

when there are no more elements with the stress level less that 20% of the maximum stress. 

However, this may not be the absolute best solution and only in a few special cases can the 

fully stressed structure be attained (Burns, 2002). 

Other criteria for removing elements can be based on the sensitivity numbers. The sensitivity 

number is a measure for the determination of the effects of individual elements on the 

variation of the objective function. For the compliance optimization, Chu et al. (1996) 

changed the elements removal criteria in the original ESO by applying the sensitivity of 

elements : 

                   (2.19) 

in which 
 
is the elemental stiffness matrix and   is the displacement vector of the i th 

element resulting from the finite element analysis of the structure. The optimization algorithm 

used in the compliance-based procedure is basically the same as the stress-based ESO. The 

only necessary modifications is the replacement of  and  with  and respectively. 

It should be mentioned that there are no noticeable discrepancies between the topologies 

obtained by stress-based ESO and the compliance-based approach (Li et al., 1999). 

The first impression of the ESO is that the approach is based on the Optimality Criteria with 

the aim of satisfying some intuitive conditions which extremize the objective function. 

Tanskanen (2002) studied the theoretical bases of the compliance-based ESO and tried to 
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mathematically explain the validity of the approach. The study concludes that the ESO in fact 

minimizes the product of mean compliance and volume. If the design domain is modeled 

using equally sized elements, the ESO was considered to be similar to the Sequential Linear 

Programming (SLP) optimization method (Tanskanen 2002). 

The numerical instability such as checkerboard pattern and mesh dependency (see section 

(2.1.7)) in the ESO, can be circumvented by devising a smoothing algorithm by averaging the 

sensitivity or stress of elements, with weighted values of surrounding elements (Li et al., 

2001). The main advantage of ESO is its simplicity both in theory and application as a 

topology optimization approach. It can be easily implemented as a post processing algorithm 

to most finite element packages. Moreover, by gradually removing elements, the size of the 

finite element model decreases which make the approach less expensive. In addition, the 

resulting topology consists of a clear distinctive region without any gray area, which makes 

the interpretation of the results easier. However, in the ESO approach, if some elements of the 

structure have prematurely or mistakenly been removed from the structure, the recovery is not 

feasible (Zhou and Rozvany, 2001). To avoid these situations, with the ESO it is usually 

necessary to use very small evolutionary rate which makes the optimization costly.  

2.1.6 Bi-directional Evolutionary Structural Optimi zation (BESO) 

With the goal of improving the search capability of the original ESO, the Bi-directional 

Evolutionary Structural Optimization (BESO) aims at simultaneously adding or removing 

elements from the finite element model of the structure. In the ESO, because the inefficient 

elements are completely removed from the structure, there is no information about the effects 
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of these elements on the objective function, in later stages of optimization. The general idea of 

the BESO is to devise a scheme to restore the deleted elements, if necessary. The BESO 

approach can be seen as a significant development that has resulted from studies on the ESO.  

All of the BESO schemes that have been introduced so far apply the idea of ground structure 

(Dorn et al., 1964), in which its elements covers the whole design domain including solid and 

void regions. The BESO turns these elements on and off, but keeps the record of their 

geometrical information through the whole optimization procedure. The primary schemes on 

the improved ESO algorithm were suggested by Querin et al. (1998, 2000a, 2000b) and Yang 

et al.(1999) and further improvement by introducing the enhanced hard-kill (Huang and Xie, 

2007b) and soft-kill BESO methods (Huang and Xie, 2009a). 

2.1.6.1. Hard-kill BESO 

In contrast to the ESO which gradually removes the inefficient elements from the finite 

element model of the structure, the “Additive Evolutionary Structural Optimization” (AESO) 

has been developed with the aim of generating optimum structures by starting from a 

minimum ground structure and gradually adding elements to it (Querin et al., 1998,2000a). In 

this method, the elements are added around the free edges surrounding the most efficient 

elements. The most efficient elements are selected among the elements with highest stress or 

sensitivity numbers (Querin et al., 2000a).  ESO has been combined with AESO in order to 

develop a BESO (Querin et al., 2000a). In each iteration, the numbers of added or removed 

elements are controlled by two given parameters, namely, the inclusion ratio (IR) and 

rejection ratio (RR) respectively. 
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In another BESO that has been introduced by Yang et al. (1999), the criteria for adding or 

removing elements was based on their effects on the variation of the objective functions. As 

mentioned before such effects are expressed by sensitivity numbers. For solid elements, the 

sensitivity number is calculated based on the results of structural analysis. For void elements 

the nodal displacement is calculated by extrapolating the nodal displacements of their 

surrounding solid elements. The sensitivity number of the void elements can then be 

calculated using these extrapolated nodal displacements. The procedure follows by the 

ranking of elements based on the magnitude of their sensitivities and switching to solid for 

elements with higher sensitivities and to void for elements with lower sensitivity numbers. 

Similar to the previous method, the numbers of removed and added elements are treated with 

different criteria, through introducing the rejection ratio and an inclusion ratio.  

As it was discussed earlier, the optimization with a solid-void material distribution is an ill-

posed problem. Such an optimization is dependent on the selection of the elements’ sizes and 

discretization mesh (Bendsøe and Kikuchi, 1988). One drawback of these early approaches is 

that the numerical instability is not addressed properly and computational efficiency is low, 

due to the convergence problem (Rozvany, 2009, Huang and Xie, 2010b, 2010c). It has also 

been noticed that the best solution needs to be selected among several topologies that can be 

generated by varying RR and IR (enumeration method) (Huang and Xie, 2010b, Rozvany, 

2009).  

In 2007, Huang and Xie (2007b) developed a new algorithm for the hard-kill BESO, in which 

many issues such as a proper statement of optimization problem and numerical instability (see 

section 2.1.7) of the procedure has been addressed (Huang and Xie, 2010b). Suppose that the 
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aim of optimization is to find the stiffest structure under volumetric constraint. In the hard-kill 

BESO setting the optimization problem statement is defined as:  

Minimize: f(x)=K                                                                  (2.20.a) 

Subject to:               (2.20.b)

                 (2.20.c) 

in which the design variable indicates the absence (0) or presence (1) of the element in the 

model. In contrast to the SIMP approach here, the elements itself is considered as the design 

variable. Huang and Xie (2007b) have used a filtering scheme to extrapolate the sensitivity 

number of voids. The filtering is performed by using the following weighting equation 
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in which is the total number of finite elements in structural model and  is the 

calculated sensitivity number. The weight factor of is defined as: 
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 in which denotes the distance between element and element centres. The filter 

radius of rmin is to identify the neighbouring elements that affect the sensitivity of element i. 

The sensitivity numbers of void elements are set to be zero initially, and then modified 

through the filter scheme. The addition and removal of elements is based on the ranking of 

elements, followed by switching elements to void for elements with lower sensitivity numbers 

and solid for elements with higher sensitivity numbers. 

The above mentioned filtering scheme, together with incorporating the historical information 

of elemental sensitivities, has shown to be able to overcome a great deal of the numerical 

instabilities, which had been a controversial problem of the original versions (Huang and Xie, 

2010b, Zhou and Rozvany, 2001, Rozvany et al., 2006, Rozvany, 2009). On the other hand 

the unified criterion for adding and removing elements, offers an explicit control over the 

volumetric constraint. The new hard-kill BESO also have a very high computational 

efficiency, as the results of the mentioned improvements, as well as the fact that the 

eliminated elements are not involved in finite element analysis (Huang and Xie, 2010b). 

2.1.6.2. Soft-kill BESO 

In the hard-kill BESO, solid elements can only grow in the proximity of the existing elements, 

which in some cases may failed in rectifying the incorrect elemental rejection (Rozvany, 

2001b, Zhu et al., 2007, Zhou and Rozvany, 2001). The complete removal of elements also 

may cause some theoretical predicaments, especially in multi-physics problems (Sigmund, 

2001, Zhu et al., 2007, Huang and Xie, 2010b). An alternative approach can be the assigning 

of very small density for the void elements (Hinton and Sienz, 1995). The strain values of 

 r ij   i   j 
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these elements can then be directly calculated; hence the solid elements can grow in the 

desired regions of the structure away from existing solid regions (Zhu et al., 2007, Rozvany, 

2001b).  

Hinton and Sienz (1995) devised a fully stressed Bi-directional approach based on ESO, in 

which, instead of completely removing elements, they are replaced by elements with lower 

elastic modulus of the order 10-6. Zhu et al. (2007) developed a sensitivity based BESO 

method, in which the void elements are replaced by a microstructural system known as 

Orthotropic Cellular Microstructure (OCM). The OCM has a low density and in this approach 

for adding or removing elements, they are assigned as OCM’s or solid elements respectively. 

The numerical stability is addressed through a scheme, to limit the number of connected solid 

elements along each principal direction (Zhu et al., 2007). However the convergence of both 

approaches encounter difficulties (Huang and Xie, 2010b). 

In the soft-kill BESO proposed by Huang and Xie (2009a), the design variable  is limited to 

a minimum value (e.g. 0.001). That means the void elements are not completely removed 

from the structure. Therefore the equation (2.20.c) is replaced by: 

                  (2.23) 

The Optimality Criterion for stiffness optimization is applied based on the sensitivity of 

elements with respect to the objective function. To improve the convergence of the procedure 

the effective property (for example Young’s modulus in stiffness optimization) is determined 

though a power-low material interpolation scheme (Bendsøe, 1989):  
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                  (2.24) 

in which is the Young’s modulus of the solid material. It is shown that by selecting the 

penalty exponent large enough the convergence of the procedure considerably improves. 

The results obtained from the soft-kill BESO shows similarities to those of the hard-kill 

BESO (Huang and Xie, 2007b) which can be considered as the justification of the validity of 

hard-kill methodology (Huang and Xie, 2010b). 

Although the new soft-kill BESO has been introduced very recently (Huang and Xie 2009a; 

2010b), it has shown its capability for solving a wide range of shape and topology 

optimization problems with high computational efficiency.  In the following chapters this 

methodology will be extended into the design of microstructures for materials. 

2.1.7 Numerical issues in material distribution methods 

As discussed earlier, in general, the structural topology optimization thorough material 

distribution involves with discretizing a predefined domain into finite elements and devising a 

numerical procedure to find the element-wise design parameters. Such a procedure frequently 

encounters numerical instabilities that are categorized into “mesh dependency”, 

“checkerboard pattern” and “local minima” (Sigmund and Petersson, 1998). In the following 

subsections, these problems will be briefly addressed. 

p
is xEE )(i )(x  =

)(sE

p



 
 
 
 
 
 

Chapter 2                                                                                                                               49 
 
 
 
 
 

2.1.7.1 Checkerboard pattern 

Checkerboard pattern refers to the situation where regions of alternating solid-void (strong-

weak) elements are formed in some areas of the structure (Díaz and Sigmund, 1995, Petersson 

and Sigmund, 1998). Diaz and Sigmund (1995) and Jog and Haber (1996) have shown that 

the main cause of the checkerboard patterns lies in poor numerical modeling of the structure 

specifically when the low-order finite elements are used. In fact arranging 4-node elements in 

a checkerboard fashion would maximize the calculated strain energy density in elasticity 

problems (Díaz and Sigmund 1995); therefore, the checkerboard areas have larger stiffness 

due to numerical errors which prevents the algorithm to converge to the optimum solution 

(Sigmund and Petersson, 1998). The topology optimization approaches such as SIMP, ESO 

and BESO, based on material distribution are prone to such numerical instability.  

It has been shown in 2D continuum structures’ elasticity problems that the checkerboard 

pattern can be prevented by using 8 or 9-node finite elements (Jog and Haber, 1996, Díaz and 

Sigmund, 1995). This is attributed to the fact that the higher order elements have many more 

degrees of freedoms per design variable. This makes the numerical calculations more 

accurate. However, increasing the degrees of freedom makes the topology optimization 

procedure costly. In addition, when a large value of penalty exponent is used with the SIMP 

method, applying elements of higher order often does not yield a checkerboard-free result 

(Sigmund and Petersson, 1998). In addition, the technique may not be helpful with the ESO 

and BESO methods. 
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Inspired by the filtering scheme from image processing, Sigmund (1994b) implied a 

technique in combination with the SIMP topology optimization to overcome the checkerboard 

pattern. The filtering scheme modifies the design sensitivity of each element based on the 

weighted average of the element itself, as well as its neighboring elements (Sigmund and 

Petersson, 1998). Although the filtering scheme is a computationally efficient method, it 

usually weakens the effects of the SIMP method to eliminate the intermediate densities and 

results in blur boundaries (Zhou and Li, 2008b). Several other techniques have been purposed 

for solving this issue in the SIMP topology optimization.  Heaviside projections algorithm 

(see next section) (Guest et al., 2004),  nonlinear diffusion techniques (Wang et al., 2004a) 

and the phase field approach based on Cahn-Hilliard model (Zhou and Wang, 2007) are some 

of the these methods.  

Recently an adaptive refinement approach was applied which uses an “analysis-mesh 

separated density field” for tackling the numerical instabilities and achieving an improved 

boundary description with SIMP (Wang et. al. 2013). In this method, the design variables are 

defined on some points in the finite element model which are known as density points.  By 

defining an interpolation scheme the density of these points are evaluated and restricted to be 

either 0 or 1. The approach uses an additional refinement procedure to identify and rectify the 

densities on the boundary regions.  It is shown that the method enables the reduction in the 

number of design variables in the model, hence reduces the computational time of 

optimization. 

As mentioned before, in relation to the sensitivity based ESO, Li et al. (2001) introduced a 

checkerboard suppression algorithm, based on the smoothing the sensitivities through a 
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filtering scheme. In the modified soft-kill BESO a similar filtering scheme has been applied 

which has been shown that efficiently suppresses the numerical instability of checkerboard 

pattern and mesh dependency. The details of this scheme will be discussed in the next 

chapters. 

 2.1.7.2 Mesh dependency 

By using finer mesh sizes in topology optimization, it is expected that the same structure with 

better description of boundaries is attained. However the “mesh dependency” using finer 

mesh results in qualitatively different topologies with more members of smaller sizes 

(Bendsøe and Sigmund, 1999, Huang and Xie, 2010b). One of the reasons for such numerical 

problems is the so called non-uniqueness of the solution which means that there might be 

several optimum solutions with the same performance and structural weight or volume 

(Sigmund and Petersson 1998). Another source of this instability is the non-existence of the 

solution. In a solid-void topology optimization, it is known that the introduction of more void 

spaces into the structure provides higher stiffness and no closeness in the possible sets of 

solution could be found (Sigmund and Petersson 1998; Jog and Haber, 1996).  

The non-uniqueness of the solution can be controlled, to some extent, by introducing the 

manufacturing performance constraint (Ambrosio and Buttazzo, 1993). On the other hand one 

way for solving the problem of the non-existence of solution is by relaxation as used in the 

Homogenization and the SIMP topology optimization approaches. However, because of the 

existence of composite regions (grey areas) in the final solution, the result of a relaxed 

formulation cannot be interpreted easily for manufacturing purposes (Sigmund and Petersson 
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1998). In many studies, the imposing of restrictions on the variation of design variables has 

been demonstrated as an efficient method for alleviating the mesh-dependency problem. 

Restriction on variation of design variables can be imposed through different techniques. 

Many of these restriction techniques can also address the problem of checkerboard patterns as 

were discussed previously. As other examples of the restriction methods, Haber et al. (1996) 

proposed a method based on imposing constraints on the circumferences of the void regions 

and outer boundaries of the structure. In the SIMP approach, Bourdin (2001) used a technique 

in which the densities are filtered and regulated using a convolution operator.  Wang and 

Wang (2005a) applied the bilateral filtering technique to solve the numerical instabilities in 

topology optimization. The bilateral filtering is a type of non-linear filtering scheme and has 

already been used in the image processing. Also the nonlinear diffusion technique has been 

developed by Wang et al. (2004a) based on a similar method for the image processing (Aubert 

and Kornprobst, 2006). 

Recently, Heaviside filtering method has widely applied for suppressing the intermediate 

densities together with the SIMP approach.  It has been developed by Guest et al (2004) in 

order to obtain 0/1 solutions. The original formulation of the method modifies the densities by 

a filtering scheme in the form of:  
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in which  jx  is the density of element and  ijw is a weighting function. The next step is to 

apply a smoothing function for instance in the form of: 

ττ −− +−= exex i
x

i
i ˆ1 ˆ                                                                      (2.25b) 

When τ =0 the formulations act as an isotropic filtering which diffuses the mass linearly 

among surrounding elements. When τ approaches infinity the element’s density becomes 

1=ix  if 0>ix
)

 and will be equal to 0 otherwise. Therefore if an element is surrounded by 

other elements with a density higher than zero, its density will switches to 1 too. It can be 

seen that the method suppresses the checkerboard pattern and mesh dependency concurrently. 

For practical application however, τ needs to be properly determined by the user 

experimentally; otherwise a stable convergence may not be attainable (Sigmund 2007).  

2.1.7.3 Local optima 

The occurrence of local optima in structural topology optimization refers to the situation 

where different solutions are obtained by changing the design parameters, such as move limits 

or evolutionary rate, geometry of the initial design, number of finite elements or filtering 

parameters and so forth. Mathematically, the function has a local minimum (maximum) 

at the point  if (or ) for all  in a small neighbourhood of  

and has a global minimum (or maximum) if the statement holds for all feasible points of . 

Structural topology optimization problems usually have many local optima and essentially are 

not convex. The flatness of the objective function in most topology optimization problems 

causes the algorithms to be unable to avoid a nearby solution and trap in local optima. 
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To solve this problem in procedures that use intermediate densities, the idea of the 

continuation method was introduced. Different procedures for the continuation methods have 

been proposed. For instance Allaire and Kohn (1993) proposed an approach in which in the 

first step of the optimization procedure, the intermediate densities are allowed in the structure 

by applying a low penalization factor and after convergence of the procedure they are 

penalized to earn a 0-1 solution.  In a different approach Sigmund (1997) and Sigmund and 

Torquato (1997) used a filtering scheme with a large filtering size at the initial steps and 

gradually reducing filtering size. It should be mentioned that the concept of the continuation 

method is not mathematically coherent. Although the experimental application of the 

procedure may lead to better solutions, it still does not guarantee the earning of a global 

optimum (Sigmund and Petersson 1998). 

2.2. Material modelling  

The responses of a composite material are different from its individual constituents. In the 

design of materials, the prediction of the macroscopic behaviour of materials with a large 

heterogeneous nature is a challenging issue (Markworth et al., 1995), and has a long history 

that even attracted the attention of luminaries such as Maxwell (1873) and Einstein (1906). In 

general, experimental tests and numerical methods are possible ways to evaluate the 

characteristics of composite materials (Beran 1965; Christensen 1979; Willis 1981;1992). 

However, the experimental tests are often prohibitive from the standpoints of time and cost, 

and are not appropriate in the design stage. The application of numerical methods to a media 

with large heterogeneities is also very hard and expensive, even by applying today’s high-

speed computers. As an example, suppose that the objective is the modelling of a 3D material 
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that consists of 1000 repeating units along each principal direction. Suppose that the topology 

of each unit is modelled by 25 elements along principal directions. The finite element model 

of such a structure will contain more than elements which makes the analysis 

impossible with most computers at this time.  

The process of calculating effective properties of materials is also termed as 

"homogenization" (Suquet, 1987, Hollister and Kikuchi, 1992). Although the analytical 

solutions of the overall properties of materials are available for some cases where the material 

is composed of simple periodic microstructure (Sabina et al., 2001, Adams and Crane, 1984, 

Torquato and Donev, 2004, Zhou and Li, 2007), development of such analytical solutions 

would be very cumbersome for a microstructure with complicated arbitrary topologies. 

Therefore, attempts have been made by many researchers to establish empirical or numerical 

relationships between the properties of constituent phases and overall material characteristics. 

The developed methods are often based on the analysis made on the “representative volume 

element” (RVE) or a “repeating unit cell” (RUC). 

The primary definition of the phrase RVE was made by Hill (1963) for referring to a sample 

volume that has two characteristics: (a) it is structurally typical of the whole domain on 

average and (b) it contains a sufficient number of inclusions so that the overall response of 

material is effectively independent of the imposed loads and displacements. On the other 

hand, the RUC characterizes periodic heterogeneous materials without being necessarily 

homogenous on a microstructural scale (Drago and Pindera, 2007). RVE and RUC concepts 

have been interchangeably used in literature (Drago and Pindera, 2007) and in this text are 

referred to simply as RVE, unless otherwise is emphasized. 

131051 ×.
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Simplified RVE approaches such as “rules of mixtures” basically neglect the spatial 

distribution of the constituent phases within the microstructures. More advanced methods 

such as “Homogenization theory” or the “mechanics of material” usually decouple the 

analysis into two scales. Local scale analysis is performed to determine the physical 

properties of the microstructure. These local level analysis results are further used for the 

calculation of homogeneous material properties on a global scale (Hollister and Kikuchi, 

1992). The accuracy of these approaches is largely dependent on the applied boundary 

conditions in modeling, as well as the ratio of RVE sizes to the global dimensions of the 

material domain (Hollister and Kikuchi 1992).  

In the following sub-sections, some of the methods that are used for estimation of mechanical 

properties of materials are briefly reviewed. It should be mentioned that the topic of 

determination of the physical characteristics of materials has received significant attention and 

is a rapidly developing area of literature (Birman and Byrd, 2007). The list of references made 

here is by no means complete.  The goal here is to identify and describe a simplified outline of 

some frequently used methods. 

2.2.1 Rules of mixtures 

The term “rule of mixture” refers to the expressions that enable the estimation of the material 

properties based on the mechanical properties and volume fractions of constituent phases. The 

earliest method for the prediction of mechanical properties of composite materials dates back 

to the end of 19th century and beginning of 20th century by well-known “mixture rules” by 
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Voigt (1889) and Reuss (1929). The Voigt’s rule of mixture is an arithmetic mean, which is 

expressed as (Fan et al., 1994): 

                                                                                           (2.26a) 

where P is the mechanical property of material and P1, f1, P2 and f2 are the properties and 

volume fractions of materials 1 and 2 respectively.  Reuss’ (1929) estimate is a harmonic 

mean in the form of:  

                                                                                       (2.26b) 

It can be shown that these simple rules define loose upper and lower bounds on material 

properties (Peiponen and Gornov 2006). The modified rule of mixture of Tamura et al. 

(1973), Wakashima et. al.( 1990) and later Teraki, et al. (1993), and the “generalized law of 

mixtures” of Fan, et al. (1994) are recent developments in these kinds of approximations. 

However these simplified approaches have limited validity (Fan et al., 1994). 

2.2.2 Bounds on materials properties 

In contrast to the rule of mixtures, bounds provide a theoretical range of the possible material 

properties. In the simplest forms, the bounds linearly or non-linearly combine the individual 

properties of the constituent phases, in terms of their volume fractions, to provide a proper 

estimation over the admissible range of composite effective properties (Zhou and Li, 2008a, 

2008d). These limits were derived mainly based on the variational method and have been 
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developed for various scenarios (Gibiansky, 1993). The bounds have been an important 

theoretical tool for the development of new composites over the last decades. They are 

frequently used for the verifications of the optimality of materials microstructures (Challis et 

al., 2008, Zhou and Li, 2008a, 2008d).   

The earliest known bounds on composites effective permittivity was proposed by Weiner 

(Peiponen and Gornov, 2006) , which had the simple form of Voigt’s (1889) approximation 

for upper limit and Reuss’ (1929) approximation for the lower limit of the composite 

properties (equations (2.26)). Later, with the help of the variational principals, tighter bounds 

on effective magnetic permeability of macroscopically isotropic and homogenous multiphase 

materials were proposed by Hashin and Shtrikman (1962) (Figure 2.2). Due to the 

mathematical analogy, these bounds are also applicable to the estimation of other 

characteristics of materials, such as electrical and thermal conductivity.  

 

Figure 2.2: Comparison between Wiener’s and Hashin-Shtrikman bounds on thermal conductivity of 

materials  



 
 
 
 
 
 

Chapter 2                                                                                                                               59 
 
 
 
 
 

The Hashin-Shtrikman bounds are known as the best possible bounds of an isotropic two-

phase material, if no structural information apart from the volume fractions is available (Hale, 

1976). Later on, Hashin-Shtrikman extended the methodology for the estimation of the 

possible range of elastic moduli for macroscopically quasi-homogenous quasi-isotropic multi-

phase material with well-ordered constituent phases 0))(( )2()1()2()1( ≥−− GGKK , where K and 

G are the bulk and shear modulus respectively and subscripts indicate the materials number 

(Hashin and Shtrikman, 1963). Walpole (1966) developed a similar variational method and 

derived bounds that did not require any phase ordering. For the composites with well-ordered 

constituent phases, the Walpole bounds are equivalent to the Hashin-Shtrikman bounds. As 

indicated by Gibiansky and Sigmund (2000) the Hashin-Shtrikman and Walpole bounds on 

the bulk modulus are not only valid for isotropic materials but also applicable for materials 

with square symmetry (in 2D cases) and cubic symmetry (in 3D cases). Milton and Kohn 

(1988) used variational principals for deriving the bounds of the effective elasticity moduli 

and the effective conductivity for anisotropic materials. These theoretical bounds have 

demonstrated their validity in many cases (Cherkaev and Gibiansky, 1993, Gibiansky, 1993). 

Although further advancements made the bounds tighter, improved bounds are only provided 

with a G-closure rather than an exact value (Zhou and Li, 2008a, 2008d). The G-closure or 

GU-set is the set of the effective properties of all the composites that can be manufactured by 

combining the arbitrary amounts of the constituent phases (Gibiansky, 1993). On the other 

hand, the establishment of a relationship between different effective characteristics of 

composite materials is important, especially when one property of composite is known and 

the intension is to estimate the possible ranges for other characteristics (Gibiansky and 

Torquato, 1996a). Such cross-property bounds are also useful in the design of multi-
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functional materials (Cadman et al., 2013), and frequently used for verifications of the 

optimality of the materials’ microstructures (Challis et al., 2008).  

Cross-property relationships have been the subject of extensive investigation (Milton, 1984, 

1997,  Berryam and Milton, 1988, Milton and Kohn, 1988, Torquato, 1991, Cherkaev and 

Gibiansky, 1993, Gibiansky and Torquato, 1996a, 1996b, 1995, Dominguez and Sevostianov, 

2011) . For example, using the classical variational method, Milton (1984) derived cross-

property bounds for two-phase isotropic materials that link the conductivity and bulk 

modulus. Later on, Gibiansky and Torquato (1996a) used the translation method to develop 

similar cross-property bounds for 3D two-phase isotropic or cubic–symmetric composites.  

As mentioned before, in addition to the properties and volume fraction of the constituent 

phases, the effective properties of the composites depend strongly on their microstructural 

geometries (Gibiansky, 1993). However, except for especial cases, the bounding methods 

generally disregards the microstructural configurations and provides only a theoretical range 

for the physical properties of a composite which with given volumes could be achieved (Zhou 

and Li, 2008d). 

2.2.3. Self-consistent methods 

The self-consistent methods estimate the effective material properties by analyzing the 

representative volume element (RVE) of materials. Therefore the microstructural geometry 

has a greater role in the overall estimation of material properties. These methods, which are 

also known as “effective-medium” methods (Torquato, 2000), include a number of 

approaches that analyze RVE as an initially homogeneous matrix into which, inclusions of 
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other materials are incorporated. The basic assumption is the equilibrium of stress in inclusion 

( ) with the stress within matrix ( ) plus a deviation due to presence of inclusion, which 

is known as polarization stress () (Nemat-Nasser et al., 1982): 

                  (2.27) 

It is also assumed that the total strain in the composite material at any point, is a summation 

of the strain that exist in the homogenous matrix plus a deviation  that is induced due to 

the embedment of the inclusion in the matrix. By assuming  and as stiffness tensor of 

matrix and inclusion phases respectively, the equilibrium equation can be expressed as: 

              (2.28) 

The difference between various self-consistent methods is the relationship that is established 

between the transformation strain  and the deviation strain  to solve the above 

equilibrium equation. For instance, the simplest assumption is to neglect any interaction 

between nearby inclusions (particles), which is valid when the volume fraction of the particles 

approaches zero, while the volume fraction of matrix phase get close to unity. Such conditions 

are known as “dilute approximation” (Zuiker, 1995) and its formulation was proposed by 

Eshelby (1957). For the cases in which the particles have spherical shapes, the expressions for 

the estimation of bulk modulus and the shear modulus of elasticity are suggested as 

(Christensen, 1979):  
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(2.29) 

               
(2.30) 

In which , ,  and are the bulk modulus , shear modulus, Poison’s ratio and volume 

fraction respectively; subscripts 1 and 2 refer to the matrix and inclusion respectively.  

The self-consistent method has been the subject of a significant amount of research 

(Budiansky, 1965, Hill, 1965, Christensen and Lo, 1979, Nemat-Nasser et al., 1982, 

Benveniste, 1987, Walpole, 1969, Reiter et al., 1997), and has been developed for the 

estimation of composite properties under different scenarios. For example, Walpole (1969) 

studied the case where the matrix was embedded by aligned or randomly distributed 

inclusions of a/the needle shape (e.g. short fibres). As another example, the disc shape 

inclusions (e.g. flakes) have been studies by Reiter et al. (1997). Hashin and Shtrikman 

(1962) had also used the concept of polarization stress in combination with the variational 

principles, to derive bounds on composites properties where spherical inclusions exist 

(Hashin, 1983). The studies on the self-consistent method have also paved the way toward the 

development of another semi-analytical modelling approach namely the Mori-Tanaka method 

which is suitable for composites with moderate inclusion volume fraction (Mori and Tanaka, 

1973, Hollister and Kikuchi, 1992). 

The self-consistent method offers some advantages in terms of the simplicity of the solution 

expressions. However, as mentioned before, the self-consistent method can only be applied 
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where an inclusion phase with specific shape is inserted into the matrix. Thus the final 

expressions for the estimation of effective properties are dependent on the constituent 

materials properties, as well as the topology of the embedded inclusion.  It has been shown 

that when the constituent phases of the composite have large discrepancies in properties, the 

accuracy of the method decreases (Christensen, 1979, Torquato, 1998). On the other hand, 

different analytical solutions need to be developed for composites with different inclusion 

shapes. For a proper approximation of material characteristics through this method, it is 

necessary for the material’s microstructure to have a certain type of ‘topological symmetry’ 

(Torquato 1998; 2000). Analytical dependency of the approximation, on the properties and 

topology of the constituent phases, is a prohibitive factor for the implementation of the 

method into a numerical procedure.  

2.2.4. Mechanics of materials approaches 

In a number of studies either an analytical or finite element method has been used on RVE, to 

evaluate the material properties simply based on the mechanics of materials principals 

(Gibson and Ashby, 1982, Huber and Gibson, 1988, Gibson and Ashby, 1997, Beaupre and 

Hayes, 1985, Christensen, 1986, Steven, 2006). In these approaches, RVE is analyzed under 

the test loading fields and the overall properties of materials are estimated based on the 

response of the structure. For example, three independent traction fields in 2D elasticity 

problems and six independent traction fields in 3D problems are applied on the boundaries of 

RVE. Alternatively, RVE can be subjected to independent cases of boundary displacement 

fields. The tractions or displacements are usually imposed uniformly on the boundaries 

(Figure 2.3) (Hollister and Kikuchi, 1992): 
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Figure 2.3: Uniform boundary conditions applied to the 2D RVE (a),(b) normal and (c) shear stresses 

tractions  

The average stress (ijσ ) or average strain (ijε ) in RVE are defined by the average of the stress 

or strain tensors over the volume of RVE: 

                     (2.31) 

   
                  (2.32)

 

It can be easily shown that the above equations ensure the equivalence of strain energy 

between equivalent homogenous materials defined as: 

 
                  (2.33) 

and the original heterogeneous material represented by the RVE (Sun and Vaidya, 1996):  

                                    (2.34) 
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The average quantities of equations (2.31) and (2.32) can be calculated directly from the 

results of finite element analyses. However, a more computationally efficient way is to 

correlate the average stress or strain to the boundary tractions or displacements respectively. 

Using the Gauss theory by converting the volume integrals to surface integrals one can write: 

   
                       (2.35)

 

    
                      (2.36) 

in which t or u
 
are the imposed boundary traction or displacement respectively; n denotes 

RVE local coordinates and V is the volume of RVE. Suppose that for producing the average 

stress , the RVE is under boundary traction fields  that produce the microstructural 

strains of . It can be shown that the following equilibrium equation needs to be solved 

(Hollister and Kikuchi 1992): 

    
                     (2.37) 

in which E is the stiffness tensor of RVE constituent material; ν  and )(νε ij are virtual 

displacement and virtual strain, respectively. The effective stiffness tensor 
 
is calculated as 

(Hollister and Kikuchi 1992): 

    
                      (2.38) 
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where the local tensor R defines the relationship between average and microstructural total 

strain: 

      
                        (2.39) 

As previously stated, in the mechanics of materials’ approaches, it is necessary to analyze the 

response of RVE under either the displacement or traction test fields. It is known that, if the 

actual in-situ boundary conditions are different from the assumed ones, each of these test 

fields will yield different bound on the predicted stiffness. If RVE is analyzed under applied 

uniform displacement, through the principles of minimum strain energy it can be shown that 

the predicted stiffness is higher than in-situ case. Similarly, when the boundary conditions are 

applied in the form of uniform traction a lower stiffness is predicted, as it can be proved 

through the principals of minimum complementary energy (Hollister and Kikuchi 1992).  

In the case of materials with periodic base cells it can be shown that increasing the modeled 

RVE size, in such a way that it encompasses larger numbers of periodic base cells, can 

increase the accuracy of predicted overall material properties. According to the St. Venant's 

principle (Fung, 1965), when the RVE size is increased the boundary layer effects diminish 

and hence it enables the approach to yield a better estimation. Nevertheless, for the periodic 

cellular material with the RVE size to the global size ratio of 0.2, Hollister and Kikuchi 

(1992) has shown that the predicted local strain energy by the mechanics of materials’ 

approaches may differ from direct analyses by more than 70%. Moreover, modeling a larger 

RVE increases the computational cost of the finite element analysis. 
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2.2.5. Homogenization theory 

If a heterogeneous composite possesses certain types of regularity, its properties can be 

estimated by an equivalent material model, with the help of the theory of Homogenization. 

Homogenization is a rigorous mathematical theory which emerged in the 70’s from the 

studies on partial differential equations with rapid varying coefficients. Since then, the theory 

has been the subject of large amount of research (Benssousan et al., 1978, Lions, 1981, 

Hassani and Hinton, 1998a, 1998b, 1998c).  

The theory assumes that the composite is made of the repetition of ‘microscopic’ cells known 

as the periodic base cell (PBC). It is also assumed that due to existence of periodic 

microstructures, the response fields vary on multi-scales. The physical properties of such a 

periodic medium should be able to be defined by the following type of functions, 

   
                       (2.40) 

where ),,( 321 zzz=z  is the position vector,  ),,( 321 YYY=Y   is the constant vector that 

represents the period of the medium, and m denotes the arbitrary integers; F can be scalar, 

vectorial or tensorial function. As per assumptions of the theory, the period  should be 

much smaller than the overall dimensions of the medium domain. In such circumstances it can 

be assumed that all quantities have two explicit dependencies on the macroscopic x and the 

microscopic level 

η/zy =                                                                 (2.41) 
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where  is a very small number.  Equation (2.41) suggests that quantities on a local level, 

like stress and strain vary η/1
 
times more rapidly than global level. The theory uses the 

asymptotic expansion to derive the composite response. By assuming )(φ xη as the exact value 

of the field function, its asymptotic expansion would have the following expression 

 ...),(φ),(φ),(φ)(φ 2210 +++= yxyxyxx ηηη                 (2.42) 

where  can be described as the average value of the function, while 1φ  and  2φ as 

perturbations (Hollister and Kikuchi, 1992) which take equal values on the opposite sides of 

the parallel-piped base cells (Hassani and Hinton, 1998a). It can be shown that in general 

elasticity problems, the first term on the expansion  is only dependent on the macroscopic 

scale x (Hassani and Hinton, 1998a). This imposes self-equilibrating restrictions on possible 

applied tractions on the boundaries of the periodic base cell. 

Using the double scale asymptotic expansion and by imposing the periodicity on the 

microstructure boundary conditions, it can be shown that the homogenized elasticity tensor of 

composite materials can be calculated as: 
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Figure 2.4: Boundary Conditions in 2D problems; (a) Under longitudinal strains fields (i.e. Є0
1
 = [1, 0, 0]T, Є0

2
 

= [0, 1, 0]T);(b) Under shear strain filed (Є0
3
 = [0, 0, 1]T) 
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in which ζ  is the solution of:  

∫∫ ∂
∂=

∂
∂

∂
∂

V i

i
ijkl

V i

i

q

kl
p

ijpq dV
y

EdV
yy

E
)()( yyζ νν

         
V∈∀ν

  
                                  (2.44) 

where 
 
denotes a rectangular parallel-piped in , with its solid part indicated as  . 

In contrast to the mechanics of material approaches, in Homogenization theory the difference 

between average field behavioral responses under admissible and actual boundary conditions 

is smaller when 
 
(Tyrus et al., 2007). Detailed error bounds are mathematically 

available for the Homogenization theory approach (Zhikov et al., 1979). It can be shown that 
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the average field behavioral response  converges to the corresponding macroscopic 

asymptotic expansion  as (Bakhvalov and Panasenko, 1989, Hollister and Kikuchi, 1992):  

     
                                   (2.45)

 

where and 
 
are the order of retained terms of asymptotic expansion and a constant value 

respectively and
 

is the function space of the norm. The above equation indicates that the 

accuracy of results from the Homogenization theory increases when the microstructural length 

scale with respect to the global sizes of material body decreases. 

In elasticity problems by applying periodical boundary conditions, the deformations in all 

PBCs are assumed to be identical. This is an accurate assumption for elements away from the 

external boundaries of the material body, but has less accuracy for elements near the 

boundaries. For cellular materials with periodic microstructure, Hollister and Kikuchi (1992) 

compared effective stiffness and local strain energy distributions obtained by applying the 

Homogenization theory and the mechanics of materials approaches. It was shown that with

, the Homogenization theory predicted local strain energy may differ from the direct 

analysis within 30%. The study indicates that for periodic materials, the Homogenization 

theory gives a more accurate estimation of effective properties than mechanics of materials’ 

approaches and also provides higher computational efficiency. 
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2.3. Application of structural topology optimization techniques in material design  

It is not more than two decades since the structural topology optimization has been primarily 

introduced for the systematic design of materials (Sigmund 1994a; 1994b). Since then, the 

methodology has been the subject of a considerable amount of research, in terms of either 

applying different topology optimization technique in the procedure or extending the 

methodology to various material design scenarios. In this part some of these advancements 

are introduced. 

2.3.1. Design of materials with extreme or prescribed properties 

Design of materials with extreme properties is considered as an important objective of 

material science (Sigmund, 2000). Materials with extreme stiffness, in the forms of bulk or 

shear modulus of elasticity, thermal conductivity, thermal expansion, permeability and 

permittivity, are examples of usual objectives of material design. On the other hand, the 

simplest form of structural topology optimization is to extremize some physical properties of 

structure. 

 As pointed out before, Sigmund applied the SIMP method for the design of materials with 

extreme or prescribed elasticity properties (Sigmund, 1994b, Sigmund and Torquato, 1997, 

Gibiansky and Sigmund, 2000). In this approach, it is assumed that the material is composed 

of repeating unit cells, also known as periodic base cells (PBC), with the dimensions that are 

much less than the characteristic length scales of the macroscopic structural body, but much 

larger than their atomic dimensions. In such circumstances the periodic microstructures of 

materials are modelled as 2D or 3D trusses or a continuum structure where the areas of the bar 
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elements in truss-like base cells or the thicknesses of elements in continuum-like materials, 

are defined as design variables (Torquato, 2000, Bendsøe and Sigmund, 2003). With the help 

of Homogenization theory, the physical characteristics of the base cells can be correlated to 

the overall properties of material. The topology optimization is used to determine the best 

material distribution in order to extremize the objective function. In the SIMP setting, the 

mathematical problem statement for the maximization of bulk modulus is defined as:  

Maximize: 
 

Subject to:                 (2.46) 

  

For instance, for designing 3D materials with maximum bulk modulus the objective function 

in terms of homogenized stiffness tensor 
 
is usually formulated as (Cadman et al., 2013): 

      
                         (2.47) 

For the designing of materials with prescribed properties, the common approach is to define 

the objective function as the square of difference between the homogenized stiffness tensor 

H
ijklE
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(Sigmund 1994a;1995; Cadman et al., 2013). 
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where is the weighting factor.  

Design of materials with extreme thermal expansion (Sigmund and Torquato, 1997), 

maximum bulk and shear modulus of elasticity (Gibiansky and Sigmund, 2000, Neves et al., 

2000, Sigmund, 2000), negative Poisson’s ratio (Sigmund 1994a; 1995) and extreme thermal 

conductivity (Zhou and Li, 2008a) are some other examples of the optimization of 

Microstructures for materials with the SIMP approach. 

As stated before, the SIMP suffers from the disadvantage of the existence of grey elements in 

the final topology. Therefore, the final topology cannot be readily used for manufacturing.  

Seeking more computationally efficient approaches, many researchers applied other topology 

optimization techniques for design of materials, with the similar procedure described above. 

For example, Zohdi (2002) applied the Genetic Algorithm for the design of the 

microstructures’ of materials with prescribed effective responses. In this approach the 

microstructural variables are defined in the form of genetic strings and the fittest 

microstructural design parameters are found. Wang et al. (2004b) used the Level-set topology 

optimization algorithm for the design of heterogeneous microstructures of materials to 

minimize the least squares differences between homogenized and prescribed elastic and/or 

thermo-elastic properties of materials. The Level-set represents the unit cells with interfacial 

boundaries, which is an advantage in comparison with the SIMP method. In another study, 

sensitivity-based ESO is applied for attaining microstructures of materials with prescribed 

thermal conductivity (Patil et al., 2008). The objective function is formulated for minimizing 

the least square of the difference between the prescribed and homogenized value of thermal 

conductivity subject to the volume constraint. 

ijklδ
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2.3.2. Design of multi-phase composites  

In comparison with periodic cellular materials, with microstructures composing of one 

material phase and a void phase, composites with two or more material phases are more 

favourable and attractive for practical application. One of the reasons for such advantageous 

properties is that, by combining different materials, a wider range of properties could be 

achieved which are not attainable by individual phases. In fact, it is mathematically shown 

that increasing the number of constituent phases of the composite will widen the G-closure 

(Zhou and Li, 2008a). On the other hand, multi-functional materials are inevitably composites 

of two or more constituent phases (Gibson, 2010). Therefore the development of multi-phase 

composites provides the basis for development of materials with combined functional 

properties. 

The SIMP method is used for the design of 2D periodic microstructures for composites with 

two material phases and a void phase (Gibiansky and Sigmund, 2000). The objective 

functions were the extremization of bulk modulus and thermal conductivity (Gibiansky and 

Sigmund 2000) or the thermal expansion (Sigmund and Torquato, 1997). The key point in 

these studies was the introduction of three design variables , and , for each element i 

that corresponds to three constituent phases. The design variables are defined in the interval of 

]0, 1], with the following condition (superscript in parentheses denotes the phase numbers): 

                           (2.49) 
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The above assumption makes it possible to define a simple artificial mixture function to 

correlate the local stiffness or thermal strain tensors of the element i with the design variables. 

For instance, in the case of designing microstructures with two material phases (phases 2 and 

3) and one void phase (phase 1), the relationships between design variables xi, and the 

elements of local stiffness tensor are defined as:  

              
(2.50)

  

where  ; the penalty exponents of  p and q are introduced to prevent 

intermediate densities. The mixing rule for two materials and void mixture proposed by 

(Sigmund and Torquato 1997) is a combination of the classical Voigt’s mixing rule for two 

solid materials and the power-law interpolation between the void phase and other (i.e. q=1 

and p>1). However, as it is mentioned in Swan and Kosaka (1997), by using the Voigt’s 

mixing rule, the phase separation does not happen appropriately in the final result. A 

formulation that uses hybrid combinations of the classical Reuss’ and Voigt’s mixing rules 

was proposed by Swan and Kosaka (1997), but it may not provide an accurate constitutive 

model of mixtures. Gibiansky and Torquato (1996b) used the power-law mixing rules for all 

phases in the multi-phase material design. The penalty exponents are taken equal to 3 

(p=q=3) (Gibiansky and Sigmund, 2000) at the beginning of the procedure to prevent the 

algorithm to trap in local optima. The penalty exponents are then gradually increased, to make 

intermediate densities uneconomical in a process known as “continuation method” (Bendsøe 

and Sigmund, 2003).  
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Nevertheless, as an inherent problem with the SIMP, such density-based method leads to 

intermediate (grey) densities in the final topology. In comparison with microstructures 

designed with one materials and a void phase, in multi-phase materials with closer physical 

properties, the SIMP usually causes more ambiguity in interpretation and identification of the 

boundaries and increasing the penalty values not only cannot solve the problem completely, 

but it may also result in numerical instability (Kohn and Strang, 1986, Swan and Kosaka, 

1997, Zhou and Wang, 2007).  

On the other hand, the application of optimality criteria (OC) causes numerical instability in 

multiphase topology optimization scenarios (Yin and Yang, 2001, Zhou and Li, 2008a). Zhou 

and Li (2008a) applied the Sequential Linear Programming (SLP) for the design of 

multiphase microstructures of materials. As mentioned before, the SLP solves the 

minimization problem sequentially, by approximating the objective and constraint functions 

using the first-order Taylor series. Although the application of SLP ensures a stable linearized 

procedure, numerical experience has shown that the move-limit for the design variables 

should be kept fairly small (Fujii et al., 2001) and that there may be some difficulties in 

convergence (Zhou and Li, 2008a). In the above studies, the procedure typically needed 

around 8000 iterations for a 60×60 discretization elements model, including some interactions 

by the user (Sigmund and Torquato, 1997). Therefore the design process is not fully 

automatic and cost efficient.  

In another study, Zhou and Wang (2007) applied a phase field model for compliance 

minimization of multi-phase structures based on Cahn-Hillard theory (Cahn and Hillard, 

1958). The introduced phase field is a model that enables interpretation of interface between 
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material constituent phases based on Cahn–Hilliard partial differential equations which deal 

with the dynamics of phase changes. By using a variational method, the topology 

optimization problem is transformed into a problem of solving a set of partial differential 

equations. In addition to mathematical complexity, the main disadvantage of the procedure is 

its time consumption. For example the topology design of a 2D cantilever beams may need 

200,000 iterations (Zhou and Wang, 2007). 

Zhou and Li (2008a) developed a method for the design of multi-phased periodic 

microstructures of materials for extremal conductivity. Although a similar density-approach 

has been applied, several modifications have been made to improve the abovementioned 

SIMP procedure. To make the design problem self-weighted, instead of using the SIMP 

interpolation scheme, the HS bound has been used for interpolation. Thereby the need for 

choosing the penalty factor is alleviated. In addition, due to the above mentioned numerical 

issues in applying the optimality criteria (OC) and SLP, an approach based on the Methods of 

Moving Asymptotes (MMA) has been applied. It has shown that it would result in faster 

convergence and more numerical stability. To reduce the blurring effects in the boundaries of 

constituent phases, a method based on non-linear diffusion (discussed in Chapter 6) has been 

adopted. However, the method is still unable to completely remove the grey areas that form 

the boundaries of the constituent phases. 

A generalized new BESO has been developed which utilizes a material interpolation scheme, 

with penalization and which is capable of optimization of continuum structures with multiple 

material constituents (Huang and Xie, 2009b, Huang and Xie, 2010b). One of the advantages 

of the method is that the procedure is independent of the selection of the penalization factor. 
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Better convergence of the procedure together with high computational efficiency and more 

importantly the capability of the new BESO in separating the constituent phases, have made 

BESO a promising tool for topology optimization of structures with multiple materials 

(Cadman et al., 2013). 

2.3.3. Design of materials with extra functionality  

Multi-functional performance objectives play a significant role in demand and development of 

composite materials in industry. The traditional design method for developing such structural 

systems is by combining components that provide the desired functional properties separately. 

The load-carrying framework is connected with different add-on components, to improve the 

non-structural performance characteristics such as electrical and thermal conductivities, 

resulting in sub-optimal systems. Hence, the development of multi-functional composite 

materials stems from the desire to develop integrated systems. 

In the design of materials via inverse homogenization, Sigmund (1994a, 1995) used the 

concept of the Lagrangian multiplier to add the constraint function to the objective function. 

In these problems, the weight of the material is defined as the cost function to be minimized 

and six prescribed constitutive parameters are considered as constraints. The procedure 

enables a precise control over constraint values. However, the weight of material cannot be 

considered as a functional property. There is also no report, at the time of publishing, of the 

use of this concept in material optimization for two substantially different functional 

properties (i.e. optimization of elasticity properties with constraint on thermal conductivity).  
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In another instance, for the design of materials with maximum stiffness or thermal expansion, 

together with orthotropy, square symmetry or isotropy on functional property, (Sigmund and 

Torquato, 1997, Sigmund, 2000) devised the SIMP scheme in which the constraints are 

chosen to be implemented as a penalty function, added to the objective function with constant 

multipliers. The penalty functions are defined as the square of deviation from the fulfilment of 

square symmetry or isotropy constraint. Similar to the above mentioned study, the problem 

does not address a different functional property. Moreover, the selection of the penalization 

factors is highly dependent on the user’s experience.  In addition, the approach cannot be 

considered as a completely systematic procedure as there are frequent needs for manual 

modifications of the procedure by the user. As it has been indicated by Sigmund and Torquato 

(1997) in the above optimization problem, the convergency is very hard to  attain using an 

SLP technique. The procedure needs several thousand iterations to be converged, due to the 

flatness of the modified objective function (Sigmund and Torquato, 1997).  

Attempts have been made for the development of multi-functional materials such as materials 

with prescribed combinations of stiffness and thermal conductivity (Challis et al., 2008), heat 

and electricity transport (Torquato et al., 2003), stiffness and permeability (Guest and Prévost, 

2006) and other multi-physical properties (Gibiansky and Sigmund, 2000, Cadman et al., 

2013). The common approach in the design of materials with multi-functional characteristics 

is to minimize (or maximize) a linear combination of functional properties (Cadman et al., 

2012). Assuming two functional properties of 1P  and 2P  for the composite, the optimization 

objective function is usually defined by applying some weighting factors to different terms of 

the objective functions: 
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Minimize:                                                                          (2.51) 

By changing the weighting factors w1 and w2, materials with varying properties can be 

generated due to its effects on the two functional objectives (Torquato et al., 2003, Guest and 

Prévost, 2006, de Kruijf et al., 2007, Cadman et al., 2013). However, the disadvantage of such 

an approach is that the equidistant variations in weighting factors do not provide proportional 

changes in the final properties of the resulting materials (de Kruijf et al., 2007). The reason is 

partly due to the non-linear cross-property relationships between the objective functions. 

More importantly, it attributes to the existence of many local optima in material topology 

optimization which may cause the procedure to trap in a nearby solution. Therefore, the 

results of such an approach are usually expressed with a generated Pareto front (Torquato et 

al., 2003, de Kruijf et al., 2007) which enables a visual representation of the attainable 

functional properties, with respect to the changes in weighting factors for a particular setting 

of design parameters. Consequently, this optimization problem statement with fixed 

weighting factors is not appropriate for a situation where more precise control over the 

functional properties is necessary.  

2.3.4. Design of functionally graded materials  

Functionally graded materials (FGMs) are inhomogeneous composites which are 

characterized by gradual changes in their properties. Since the first published study on stress 

distribution in woody stem of trees (Metzger, 1893), it is known that biological materials 

demonstrate different properties through changes in their hierarchical structures occurring in 

order to adapt to environmental stimuli. However, it was not until 1972 when the industrial 

2211 PwPw +
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advantages of materials with graded functional properties were first analytically addressed in 

published studies (Shen and Bever (1972), Bever and Duwez (1972). The idea did not receive 

much attention because of the lack of appropriate manufacturing equipments at the time. It 

was not until the mid-1980s, when the emerging fabrication technologies allowed the concept 

to be applied for controlling the thermal response of materials for the aerospace industry in 

Japan (Yamanoushi et al., 1990, Hirai and Chen, 1999). As it is shown in Figure 2.5, the 

morphology of the invented FGM can be described as a ceramic phase, embedded in a 

metallic phase, with varying volume fractions along the thickness of material, thereby 

enabling the gradation in properties in the direction. The ceramic phase acts as a thermal 

barrier, protecting the metallic phase from oxidation and corrosion. The metallic phase, which 

possess low corrosion resistance in high temperatures, strengthens the composite; hence, 

demonstrating multi-functional characteristics within the thickness of the composite 

(Watanabe and Kawasaki, 1990). 

 

Figure 2.5: Example of FGM composition and functional properties 
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Apart from material selection, one of the challenging issues in design of an FGM lies in 

predicting its performance characteristics (Markworth et al., 1995). Depending on the rate of 

gradation with respect to the dimensions of RVE (or RUC), analytically there are two general 

approaches for estimation of the FGM characteristics. If a steep gradient in material response 

is expected, then by analysing the material in both the microscopic and macroscopic scales, 

the heterogeneity nature of the RVE should be taken into account. However, in the case of 

small variations being expected in the material properties, adequate accuracy can be attained 

by applying the RVE based approach to different regions of FGM (Birman and Byrd, 2007, 

Zhou and Li, 2008b, 2008c).  

For designing an FGM, another challenging issue is the determination of the optimal 

distribution of constituent phases within the composite (Markworth et al., 1995). Based on the 

“inverse homogenization” technique, some researchers tried to apply the concept in design of 

the microstructures of materials with variations in properties. For example Lin et al. 

(2004,2005) used integrated global layout and local microstructure topology optimization, for 

the design of artificial spinal bone tissues. The optimization objective in the microstructural 

scale is the volume fraction and the desired elasticity tensor that has been dictated by the 

global scale analysis. As a result, an inhomogeneous tissue scaffold was obtained which 

demonstrated the gradation in physical properties. Chen and Feng (2004), Zhu et al. (2006) 

and Seepersad et al. (2004) also designed cellular materials, by designing a series of 

topologically different base cells for their individual objective function or volume fractions. 

However, these studies deal with designing separate base cells for graded cellular materials 

and do not provide a systematic approach for the design of FGMs. In particular, these 
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methods do not guarantee the proper interconnection between periodic base cells (PBCs) 

along the gradient direction. 

Another challenging issue that should be accounted for in the design of an FGM is the 

minimization of stress discontinuity, especially between constituent materials with dissimilar 

thermal expansion coefficients (Lannutti, 1994). In studying FGMs’ fracture mechanics, it has 

been shown that the stress concentration and delamination cracking is a significant problem 

(Erdogan, 1995). This is caused by the thermal stresses during cooling from the sintering 

temperature at the manufacturing stage and/or the stresses produced under operational 

conditions (Watanabe and Kawasaki, 1990). Zhou and Li (2008a, 2008c) made the first 

attempt to systematically address the connectivity issues between different PBCs. Three 

methods namely “connective constraint”, “pseudo load” and “unified formulation” were 

presented (Zhou and Li, 2008b). In these methods the ‘solid isotropic material with 

penalization’ (SIMP) technique is used as the structural optimization tool in an inverse 

homogenization procedure.  These methods will be discussed in more details in chapter 6 

while a computationally more efficient method will be presented for solving the connectivity 

issue, between cells via the BESO method in this thesis. 

2.4 Concluding remarks 

In this chapter topology optimization approaches that have already been used for the design of 

microstructures for materials were reviewed. Each of these approaches has its benefits and 

disadvantages.  Recent studies on the new BESO in a range of engineering problems indicate 

its capability in generating structures with high computational efficiency. The approach is also 



 
 
 
 
 
 

Chapter 2                                                                                                                               84 
 
 
 
 
 

capable to generate structural topologies with clearly solid or void elements without grey 

areas which make the manufacturing of the generated topologies easier. Moreover, BESO can 

be easily implemented and linked to most FEA packages.  

The process of material design involves the determination of material properties, through the 

modelling of its representative volume element (RVE). A brief review of the methods that are 

usually used for material modelling was presented. It has been indicated that the 

Homogenization theory has superiorities in terms of accuracy, simplicity of implementation 

and capability to be used for materials with arbitrary microstructural topologies.  

Previous research on material design has indicated that the obtained micro-structural 

topologies are highly dependent on the applied optimization algorithm. Therefore, it is 

important to attempt new and different optimization algorithms, in order to find a much wider 

range of possible solutions to material design. The chapter briefly introduced some of the 

applications of structural topology optimization techniques in design of microstructures for 

materials.  In later chapters the BESO methodology will be extended in addressing these 

design scenarios. 

 

 

 

 

 

 

 



 

 

 

 

 

 
 
 

Chapter 3 

Topology optimization of microstructures of cellular materials for 
maximum stiffness or thermal conductivity 
 

 

 

 

 

Light-weight cellular materials might possess advanced physical, mechanical and thermal 

properties that extend far beyond those of solid materials. As discussed in previous chapters, 

the physical characteristics of materials can vary by changing the materials distribution within 

their microstructure. To make the best use of resources, the spatial distribution of constituent 

phases within the microstructures can be determined by taking advantages of the topology 

optimization techniques. In this chapter, the Bi-directional Evolutionary Structural 

Optimization (BESO) will be applied for the design of periodic microstructures for cellular 

materials consisting of one solid phase and one void phase. The objective function is defined 

to maximize a single physical property such as bulk modulus, shear modulus or thermal 

conductivity. Although the structural weight is not generally a functional property, it is one of 
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the important design considerations and is considered by imposing volume constraint in this 

study.  

It is assumed that the material is composed of periodic base cell (PBC), which is the smallest 

repeating unit of material. The dimensions of the base cells are assumed to be much less than 

the overall length scales of the material body, and at the same time much larger than the 

atomic length scale. As discussed in Chapter 2, under such circumstances a relationship can 

be established between the properties of material in microstructural level and average 

properties of material in the macro-scale using the “Homogenization theory”. The PBC is 

discretized into a finite elements model under periodic boundary conditions. The finite 

element analysis is performed to extract necessary information for calculation of the effects of 

individual elements within the PBC, on the variation of homogenized (average) properties of 

material. 

The effects of individual elements on the variation of the objective function are known as 

sensitivity numbers. The procedure which results in such numbers is known as sensitivity 

analysis (Haug et al., 1986, Huang and Xie, 2010b). As discussed in the previous chapter, the 

BESO uses an iterative process in which elements’ properties are changed from solid (with a 

design variable ( 1=ix )) to void (e.g. 001.0min =x ) or from void to solid, based on the ranking 

of their sensitivity numbers. As a result, the PBC’s topology is gradually modified until both 

volume constraint and the convergent criterion are met (Huang and Xie, 2010b).  
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The details of the procedure will be unfolded in this chapter, and will include numerical 

examples. The results of the numerical procedure are verified with the known analytical 

bounds on material properties.  

3.1. Methodology 

3.1.1 Optimization problem statement 

The stiffness of an elastic material can be described by the bulk modulus K  or shear modulus

G. In the design setting one may aim for designing cellular materials with the maximum 

effective bulk modulus or shear modulus subject to a prescribed weight. Therefore the 

topology optimization problem is to find the appropriate distribution of the solid phase within 

the PBC, subject to a prescribed volume fraction of the solid phase. Mathematically such an 

optimization problem can be defined as: 

Maximize: Kf =)(x  or G 

Subject to: 0
1

* =−∑
=

N

i
ii xVV                     (3.1) 

      1orminxxi =    

where iV   and *V are the volume of an individual element and the prescribed total structural 

volume respectively. The total number of elements within the PBC is denoted by N. The 

binary design variable ix denotes the density i th element. 
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Similarly, the topology optimization problem statement for finding a cellular material with 

maximum thermal conductivity ck subject to volume constraint on the solid phase can be 

defined as: 

Maximize: ckf =)(x   

Subject to: 0
1

* =−∑
=

N

i
ii xVV                             (3.2) 

       1orminxxi =    

The bulk and shear moduli of materials can be expressed in terms of the components of the 

effective elasticity matrix ( H
ijD ).The bulk modulus, which is an indication of materials 

stiffness to uniform pressure, is expressed in 2D problems as: 

( )HHHH DDDDK 222112114
1 +++=                 (3.3a) 

and in 3D problems as  

( )HHHHHHHHH DDDDDDDDDK 3332312322211112119
1 ++++++++=             (3.3b) 

Similarly the shear modulus defines the material stiffness with respect to shear deformation, 

and can be expressed in 2D problems as 

HDG 33=                    (3.4a) 
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and in 3D cases as 

( ) 
3

1
665544
HHH DDDG ++=                  (3.4b) 

The effective thermal conductivity of material can be correlated with the elements of 

conductivity tensor as: 

)(
2

1
2211
HH

c kkk +=    in 2D problems               (3.5)     

)(
2

1
332211
HHH

c kkkk ++=   in 3D problems      

where H
ijk  denotes the homogenized thermal conductivity matrix. 

As only orthotropic cellular material with square symmetry in 2D problems or cubic 

symmetry in 3D cases are considered in this chapter, the following relationships hold:  

in 2D cases: 

2211 DD =                                 (3.6) 

 2112 DD =   

023323113 ==== DDDD  

In 3D cases: 
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332211 DDD == ,                              (3.7) 

32232112 DDDD ===  1331 DD ==   

665544 DDD ==   

0=ijD     ji ≠∀ and { }6,5,4, ∈ji  

For isotropic and orthotropic materials the following relationship exists: 

HH kk 2211 =   cases) 3Din        ( 33
Hk= (all other elements are zero)              (3.8) 

3.1.2 Topology optimization through the soft-kill BESO 

As mentioned before, the general idea in computer-based topology optimization through 

material distribution is to assign the solid or void properties to different points of the finite 

element model of the structure, with the goal of the objective function to evolve toward an 

optimum. In the soft-kill BESO, developed by Huang and Xie (2010b) this is done by 

evaluation of the effects of the individual elements on the variation of the objective function, 

which is known as sensitivity analysis. The result of such analysis is expressed by assigning 

each element a sensitivity number. The sensitivity numbers iα are the derivatives of the 

objective function with respect to the design variables ix  of the i th element: 

i
i x

f

∂
∂= )(xα                       (3.9) 
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The optimization process consists of defining optimality criteria and ranking the elements 

based on their sensitivity numbers (Huang and Xie, 2009a, 2010b).  As the design variables 

are restricted to be either minx  or 1, the optimality criterion can be formulated in such a way 

that that sensitivity numbers of solid elements (1=ix ) are higher than those of void elements (

minxxi = ) (Huang and Xie 2010b). Therefore a scheme can be devised so that the design 

variables ( ix ) of elements with higher sensitivity numbers are increased. In contrast, the 

design variable for elements with lower sensitivity numbers is decreased. The design variable 

( ix ) can be interpreted as the density of elements. Considering a lower bound ( 001.0min =x ) 

for the design variable reduces the effect of elements in the analysis, while the sensitivity of 

such elements could be calculated directly. This enables the solid elements to grow in the 

desired regions of the structure, away from existing solid regions and avoid the numerical 

problems associated with the complete removal of elements (Huang and Xie 2009a; 2010b).  

With the help of introducing design variables, the Young’s modulus of an element can be 

treated as isotropic and interpolated as the function of the element density with a power-law 

scheme as:  

 ( ) p
i

s
i xExE =                     (3.10) 

where Es denotes the Young’s modulus for solid element, p is the penalty exponent and ix  

denotes the relative density of the thi element. In the simplest form a linear interpolation 

scheme with the penalty exponent of 1=p  may be used. However, there might be 

convergence problems in these cases (Huang and Xie, 2010a). On the other hand, the filtering 
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scheme reduces the difference between the sensitivity numbers of solid and void elements. 

Therefore when the penalty exponent is small, no recognizable solid or void regions may exist 

in some parts of the structure. When the filtering scheme is used for alleviating the numerical 

instabilities, experiences shows that selecting the 1>p  (usually 3=p ) will result in a better 

differentiation between solid and void regions in the structure, hence improves the 

convergence of the procedure (Huang and Xie 2009a; 2010b).   

Before tailoring the BESO for the design of materials microstructures, the key remaining 

issue is the evaluation of material effective properties and the derivation of the sensitivity 

numbers for the elements within the PBC.  

3.1.3. Homogenization and Sensitivity Analysis 

As discussed before, the spatial distribution of the constituent phases within the 

microstructure of the composite affects the overall effective properties of the material. For the 

design of materials’ microstructures, there is a need for the calculation of overall properties of 

composite materials, based on the distribution of constituent phases within RVE or RUC. For 

the cases in which the material is composed of periodic base cells, with dimensions that are 

much smaller than materials’ macroscopic length scale but larger than the atomic length scale, 

the effective properties of the macro-material can be found with the help of “Homogenization 

theory” (Bendsøe and Kikuchi 1988; Hassani and Hinton 1998a; 1998b; 1998c). For instance, 

in terms of the material distribution in the domain of the base cell Ω , the elasticity tensor of 

the composite can be calculated as:  
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∫
Ω

Ω−= dE
Y

E kl
pq

kl
pqijpq

H
ijkl )~(

1 εε                              (3.11) 

where Y denotes the area (or volume in 3D cases) of the periodic base cell domain Ω ; kl
pqε  

defines the linearly independent unit test strain fields which in 2D and 3D problems consists 

of 4 and 6 fields respectively. The strain fields kl
mnε~ induced by the test strains can be found 

from the following equation 

Ω=Ω∫ ∫
Ω Ω

dvEdvE kl
pqijijpq

kl
pqijijpq εεεε )(~)(                 (3.12) 

where )(1 Ω∈ perHv  is the Y-periodic admissible displacement field. Equation (3.12) is the 

weak form of the standard elasticity equation applied to the PBC with periodic boundary 

conditions. This equation is usually solved by finite element analysis of the PBC, subject to 

the independent cases of pre-strain fieldskl
pqε . With the help of the material interpolation 

scheme introduced in equation (3.10), the derivative of the homogenized elasticity tensor with 

respect to the design variableix , can be calculated from the adjoint variable method as (Haug 

et al., 1986): 

 ∫
Ω

Ω−−
∂

∂
=

∂
∂

d
x

E

Yx

E ij
rs

ij
rs

kl
pq

kl
pq

i

pqrs

i

H
ijkl )~)(~(

1 εεεε               (3.13) 

The test strain fields are usually taken as unit strains along principal directions. For instance 

in 2D problems they are usually selected as: 
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( )T22 0010=pqε   

( )T12 0100=pqε  

( )T21 1000=mnε  

By applying the unit strain fields on the PBC, the homogenized elasticity matrix HD of such 

materials, is simplified as: 

∫ −=
Y

H dY
Y

))((
1

)( BuIxDux,D                  (3.14) 

in which u  denotes the displacement field, resulting from the finite element analysis of the 

base cell, under periodic boundary conditions and equivalent forces that causes uniform unit 

strains;I  is the unit matrix; and B  is the strain-displacement matrix. The derivation of HD

with respect to the design variablesix , can be expressed as: 

∫ −
∂
∂−=

∂
∂

Y i

T

i

H

dY
xYx

)()(
1

BuI
D

BuI
D

                (3.15) 

Similarly, the matrix of homogenized thermal conductivity ( Hk ) can be calculated as: 

∫ −=
Y

H dY
Y

))((
1

),( µIxkµxk                (3.16) 

( )T11 0001=pqε
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in which µ is the induced temperature field resulting from finite element analysis of the base 

cell under the periodical boundary conditions and uniform heat flux (e.g{ }T0,1 and { }T1,0 in 

2D cases). The sensitivity of the homogenized thermal conductivity, with respect to the 

design variables can be expressed as (Hassani and Hinton, 1998a, 1998b, 1998c, Zhou and Li, 

2008a):  

∫ −
∂
∂−=

∂
∂

Y i

T

i

H

dY
xYx

)()(
1

µI
k

µI
k

                 (3.17) 

With the help of equations (3.15) and (3.17) in combination with equations (3.3), (3.4) and 

(3.5), the sensitivities with respect of different objective functions can be calculated. 

Example:  

For future applications, a series of tests were made, in order to verify the results obtained by 

the finite element solution of the homogenization theory (equation (3.15)) with existing 

literature.  In the following tables two examples were presented. The square base cells of 

materials have a rectangular void hole with different sizes in each example. The material of 

the solid phase is assumed to be isotopic with the Young’s modulus E=0.91 and Poisson’s 

ratio ν=0.3. The models were meshed with different densities in order to compare the effects 

of mesh size on the results. The examples were compared with the benchmark results 

presented in (Hassani and Hinton, 1998d).  It is noticed that, when a course mesh is used the 

predicted stiffness of material is slightly higher (also see (Zhou and Li, 2008d)). In most 

numerical examples presented in literature, the mesh density used for topology optimization 
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of the materials’ microstructures doesn’t exceed 50×50 elements (for example (Sigmund, 

1994a, 1995)).  

Base cell dimensions: 100×100 
Void dimensions: 30 ×30  

Base material properties: E=0.91 and ν=0.3 

F
E

 m
od

e
l o

f 
m

ic
ro

st
ru

ct
ur

e
s 

   
Mesh size 20×20 60×60 100×100 
Material  
stiffness 

matrix D= 
�0.7805 0.2111 00.2111 0.7805 00 0 0.2378
 �0.7650 0.2043 00.2043 0.7650 00 0 0.2320
 �0.7648 0.2040 00.2040 0.7648 00 0 0.2317
 

Benchmark solution in (Hassani and Hinton, 1998d)                                 D= �0.7644 0.2039 00.2039 0.7644 00 0 0.2313
 
 

Table 3.1: Comparison between finite element application of equation (3.15) with the benchmark result in 
(Hassani and Hinton, 1998d). The 100×100 rectangular base cells have 30×30 rectangular hole inside. 

  

Base cell dimensions: 100×100 
Void dimensions: 60 ×60  

Base material properties: E=0.91 and ν=0.3 

F
E

 m
od

el
 o

f 
m

ic
ro

st
ru

ct
ur

e
s 

   
Mesh size 20×20 60×60 100×100 
Material 
stiffness 

matrix D=  
�0.3996 0.0629 00.0629 0.3996 00 0 0.0469
 �0.3960 0.0609 00.0609 0.3960 00 0 0.0446
 �0.3957 0.0607 00.0607 0.3957 00 0 0.0443
 

Benchmark solution in (Hassani and Hinton, 1998d)                                 D= �0.3955 0.0606 00.0606 0.3955 00 0 0.0441
 
 

Table 3.2: Comparison between finite element application of equation (3.15) with the benchmark result in 
(Hassani and Hinton, 1998d). The 100×100 rectangular base cells have 60×60 rectangular hole inside. 
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3.1.4. Numerical instabilities 

Topology optimization usually encounters numerical instability in the form of checkerboard 

patterns and mesh-dependency. As discussed in Chapter 2, the checkerboard problem is 

referred to as the situation where patterns of alternating solid and void elements appear in 

some regions of the structure. The problem has its roots mainly in numerical errors that can 

occur when the low-order finite elements are used for the structural modeling. On the other 

hand, the mesh dependency is referred to as the problem of obtaining a qualitatively different 

structure by using different mesh sizes in the modeling of the structure. It has been shown that 

both problems can be avoided, to a large extent, by imposing restriction on variation of design 

variables (Sigmund and Petersson, 1998). 

In the soft-kill BESO it has been shown that by devising a filtering scheme, both above 

mentioned numerical problems can be avoided simultaneously (Huang and Xie, 2007b,  

2010b). Inspired by a similar procedure that has been applied in image processing; the 

filtering scheme replaces the sensitivity number of each element with a weighted average of 

the sensitivities of the element itself and its neighboring elements (Huang and Xie 2007b, 

2010b). The scheme works as a low-pass filter that eliminates features below a certain length-

scale in the generated topologies. In the filtering scheme the elemental sensitivity number will 

be modified by the following equation: 

∑

∑

=

== M

j
ij

N

j
jij

i

w

w

1

1ˆ
α

α                   (3.18) 
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where iα̂  is the modified sensitivity number and ijr  denotes the distance between the center of 

the element i and element j. ijw is the weight factor that is defined as: 





≥
<−

=
min

minmin

for0

for

rr

rrrr
w

ij

ijij
ij                  (3.19) 

where minr  is the filter radius that is specified as a given parameter.  

To earn a convergent solution (Huang and Xie 2007b) proposed the elemental sensitivity 

number to be modified by averaging it with its value from the previous iteration: 








+

=
= − otherwise      )ˆˆ(

2
1

     if             ˆ
~

1t
i

t
i

k
i

i

1k

αα

α
α                  (3.20) 

where superscript t  denotes current iteration number. The average sensitivity number iα~ , is 

then replaced with theiα̂  . The latter is used for adding and removing elements and is 

recorded to be used in the next iteration. In fact, the procedure of averaging the sensitivities 

with historical information moderates the irregular oscillations of the design variable. A large 

number of numerical examples indicate the capability of procedure, for stabilizing the 

evolution process (Huang and Xie, 2010b).  

3.1.5. Procedure 

The whole BESO procedure for obtaining materials with maximum bulk or shear modulus 

consists of the following steps: 
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Step 1: Define the BESO parameters, such as prescribed volume fraction *V  ; evolutionary 

ratio ER ; penalty p   (normally )3=p and filter radiusminr ;  

Step 2: Construct a solid-void finite element model for the PBC; 

Step 3: Define the periodic boundaries on PBC; define the loads that are equivalent to unit 

strain fields, kl
pqε . In 2D problems 3 cases of loading and boundary conditions and in 

3D problems 6 cases are necessary to be defined. Perform the finite element analysis 

(FEA) and extract the induced displacement fieldsu ; 

Step 4: Calculate the elemental sensitivity numbers iα  for the objective function by applying 

equation (3.15) with the help of equation (3.3) or (3.4);  

Step 5: Filter sensitivity numbers in the PBC domain using equations (3.18) and (3.19); using 

equation (3.20), average sensitivities with their historical information;  

Step 6: Determine the target volume fraction of solid elements for the next iteration. If the 

current volume of solid elements tV is larger than the prescribed volume *V , the 

target volume for the next design is set as )),1(max(  *VERVV t1t −=+
 ; determine 

the number of void elements for the next iteration; 

Step 7: Rank all elemental sensitivity numbers; determine the threshold sensitivitythα ; the 

threshold sensitivity is determined in such a way that the number of elements with 

sensitivities lower than thα , are to be equal to the number of void elements.  
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Step 8: Reset the design variables of all elements. If the sensitivity of an element is less than 

the threshold thi αα ≤ , then minx  is assigned to its density. Otherwise 1 is assigned to 

its ix .  

Step 9: Repeat 2-8 until both the prescribed volume is achieved and the convergent criterion 

are satisfied.  

The convergence criterion is defined in terms of the change in the objective function (K  , G  

or ck  ) as 

τη

θ

≤
−

∑

∑

=

+−

=

+−−+−

1

1

1

11 )(

i

it

i

iNtit

f

ff

                  (3.21) 

wheref is the effective value of the objective function; τ is the prescribed allowable 

convergence error and θ  is the summation upper bound. τ  and θ  are usually set equal to 

0.1% and 5 respectively which means that the convergence is deemed to be attained when the 

variations in the effective properties over the last 10 iterations is equal to or less than (0.1%). 

The procedure for designing cellular materials with maximum thermal conductivity and 

prescribed volume fraction is very similar to the above mentioned algorithm. The only 

difference is the replacement of steps 3 and 4 with the following statements: 
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Step 3R: Define the periodic boundaries on PBC; apply uniform heat fluxes (e.g. { }T,01 and 

{ }T1,0 in 2D cases). In 2D problems 2 cases of boundary and thermal loading and in 3D 

problems 3 cases are necessary. Perform the finite element analysis for thermal conductivity 

and extract the induced temperature fieldsµ . 

Step 4R: Calculate the elemental sensitivity numbers iα for the objective function by applying 

equation (3.17) with the help of equation (3.5);  

3.2. Results and Discussion 

3.2.1. 2D examples for maximizing the bulk modulus 

In this example, the square design domain with dimensions of 100×100 is divided into 

100×100, 4-node square elements. The Young’s modulus and Poisson’s ratio of solid material 

are selected as 1=sE  and 3.0=v respectively. The evolution rate is set 02.0=ER  , filter 

radius 5min =r  and penalty 3=p  .The BESO procedure starts from an initial material 

distribution shown in Figure 3.1, which consists of four void elements at the centre of the 

model while solid properties are assigned to other elements.  

When the prescribed volume (area) of the solid material is selected to be 50%, 40%, 30% and 

20% of the total design domain volume (area), the corresponding resulting microstructures 

and their effective elasticity matrices are given in Figure 3.2. The total iterations for the 

corresponding cases are 49, 56, 64 and 80. The bulk moduli of these microstructures are 

0.179, 0.132, 0.091 and 0.056 respectively. 
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Figure 3.1: Initial material distribution in 2D problems (green area is solid) 
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Figure 3.2: Microstructures and effective elasticity matrices of 2D cellular materials with maximum bulk 

modulus for various prescribed volume (area) fractions (a) 50%; (b) 40%; (c) 30% and (d) 20%. 

Figure 3.3 demonstrates the evolution histories of the bulk modulus, volume and 

microstructural topology, when the prescribed volume (area) of the solid phase is 30% of the 

total area of the design domain. As it can be seen, by decrement of the area of the solid phase, 

the bulk modulus also decreases. Once the volume constraint is satisfied, the bulk modulus 

and micro-structural topology converge to the final solutions with a good stability. The final 

microstructure of cellular material can be interpreted as four octagonal honeycomb cells, with 
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the bulk modulus that is equals to one octagonal honeycomb cell in Sigmund (1995) using a 

truss modelled base cell.  

For well-ordered, quasi-homogenous and quasi-isotropic composites, the upper and lower 

bounds for bulk modulus have been derived by Hashin and Shtrikman (1963). As discussed in 

Chapter 2, these bounds are used for predicting the range of properties that a composite can 

achieve with a given material composition and volume fractions. They are also extensively 

used for verification of optimality of designed microstructures through topology optimization 

(Challis et al., 2008, Cadman et al., 2013). As indicated in (Gibiansky and Sigmund 2000) the 

Hashin-Shtrikman bounds on the bulk modulus are not only valid for isotropic materials but 

also applicable for materials with square symmetry (in 2D cases) and cubic symmetry (in 3D 

cases). For cellular materials that are made with a void phase and a solid phase of volume 

fraction fV ,  bulk modulus  sK and shear modulus of  
sG ,the Hashin-Shtrikman upper bound 

on bulk modulus is given as: 

 
ss

f

ss
fup

HS GKV

GKV
K

+−
=

)1(
                            (3.22) 

In figure 3.4 the bulk moduli of the materials made with the above microstructures is 

compared with the Hashin-Shtrikman upper bound. As it can be seen, the bulk moduli of 

results are very close to the Hashin-Shtrikman upper bound in equation (3.22). This closeness 

also verifies the effectiveness of the presented BESO procedure. 
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Figure 3.3: History of evolutions of bulk modulus, volume fraction and microstructural topology for maximizing 

bulk modulus 

 

Figure 3.4: Comparison between materials’ bulk modulus of resulted microstructures and the Hashin-Shtrikman 

upper bound 
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The cellular material can be constructed by repeating the presented microstructures. Figure 

3.5 shows 22×  array of the generated base cells. These configurations of the cells can be 

generated directly, as a single PBC, providing one starts the procedure with different initial 

design or optimization parameters. In general, it can be seen that there are a number of 

microstructures having the same bulk modulus, near to analytical upper bounds and that the 

attained topologies are highly dependent on initial design, optimization parameters and 

applied algorithm.  

 

Figure 3.5: 22×  array of designed base cells with maximum bulk modulus and various volume fractions of 

solids (a) 50%; (b) 40%; (c) 30% and (d) 20%. 

3.2.2. 2D examples for maximizing shear modulus 

In the algorithm of the above example the objective function is changed to find 

microstructures for materials, with maximum shear modulus of elasticity for various 

prescribed volumes of the solid phase. Similar to the above example, the design domain is 

discretized into 100×100, 4-node square elements. The Young’s modulus and Poisson’s ratio 

of solid phase are selected as 1=sE  and 3.0=v  respectively. The BESO parameters are
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02.0=ER , 5min =r  and 3=p . BESO starts from the same initial topology that is shown in 

Figure 3.1. 
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Figure 3.6: Microstructures and effective elasticity matrices of 2D cellular materials, with maximum shear 

modulus for various volume constraints (a) 45%; (b) 35%; and (c) 25%. 

For the prescribed solid volume fractions of 45%, 35% and 25%, the convergence is attained 

with 48, 59 and 73 iterations. The resulting microstructures and their corresponding materially 

effective elasticity matrices are shown in Figure 3.6. Figure 3.7 demonstrates the evolution 

history of shear modulus, volume fraction of the solid phase and the microstructural topology, 

when the prescribed final volume fraction of the solid phase is set to 25.0=fV . It 

demonstrates that shear modulus converges with a good stability after the volume constraint is 
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satisfied. The generated diamond shape microstructures are the same as those microstructures 

presented in (Neves et al., 2000). The material can be constructed by repeating the base cells. 

Figure 3.8 shows 2×2 array of the generated microstructures. 

 

Figure 3.7: History of evolutions of shear modulus, volume fraction and microstructural topology for 

maximizing shear modulus. 

 

Figure 3.8: 2×2 array of the base cells with maximum shear modulus with various prescribed volume of solid 

phase (a) 45%; (b) 35% and (c) 25%. 
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3.2.3. 3D examples for maximizing bulk modulus  

The cubic domain with 303030 ×× is discretized into 303030 ×× , 8-node cubic elements. 

The mechanical properties of solids are selected as Young’s 1=sE and Poisson’s ratio 3.0=v

. The BESO parameters are set =ER 0.04, 3min =r  and 3=p . Figure 3.9 shows the initial 

topology, in which solid property is assigned to all elements except for 8 elements at the 

centre of the model.  

 

Figure 3.9: The initial design in 3D example 

The objective is to optimize the topology of the materials’ microstructures with various 

prescribed volume fractions of solid so that the materials’ bulk moduli K  are maximized. 

Figure 3.10 demonstrates the evolution histories of bulk modulus, volume fraction of solid 

phase and micro-structural topology when the prescribed volume fraction of the solid phase is 

set as 25.0=fV .  When the prescribed volume fraction of solid phase is 45%, 35% and 25%, 
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the resulting topologies for the PBC’s, the 2×2×2 arrays of bases cells and the corresponding 

elasticity matrices are shown in Figure 3.11.  

The Hashin-Shtrikman analytical upper bound on bulk modulus of 3D cellular materials can 

be expressed as (Hashin and Shtrikman, 1963): 

s
f

s

f
ss

up
HS 4G)V(13K

VG4K
K

+−
=                  (3.23) 

 

Figure 3.10: The evolution histories of bulk modulus, volume fraction and microstructures of 3D materials   with 

maximum bulk modulus 

When the volume fraction of the solid phase is 45%, 35% and 25%, the Hashin-Shtrikman 

upper bound is calculated as 0.19, 0.14, and 0.09 respectively from the equation (3.23). The 

attained effective bulk moduli of materials can be calculated as 0.18, 0.12 and 0.08, from the 
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elasticity matrices presented in Figure 3.11. it can be seen that the attained bulk moduli have 

very good agreement with the analytical upper bounds.  
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(c) 

Figure 3.11: 3D base cells, 2×2×2 cells and effective elasticity matrices of 3D cellular materials with maximum 

bulk modulus (a) volume fraction is 45%; (b) volume fraction is 35%; and (c) volume fraction is 25%. 
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Figure 3.12:3D microstructures with maximum bulk modulus generated by 3D printing. 

3.2.4 3D examples for maximizing shear modulus 

The cubic domain with dimensions 202020 ×× is discretized with 202020 ×× , 8-node cubic 

elements. The mechanical properties of the solid phase are the Young’s modulus, 1=sE  and 

the Poisson’s ratio 3.0=v  . The BESO parameters are selected as the evolutionary rate =ER

0.04, the filter radius 5.1min =r . As before, the penalty exponent is selected 3=p .Here a 

small filter radius is used in order to have some thin members in the final micro-structural 

topology. The BESO starts from the same initial topology shown in Figure 3.9. The 

prescribed volume fractions of solid phase are set to be 45%, 35%, 25% and 15% of the whole 

design domain, respectively. 

Figure 3.13 demonstrates the topology of the resulting microstructures for the base cell, as 

well as the 2×2×2 array of bases cells and effective elasticity matrices for the various 

prescribed volumes of the solid phase. The total iterations for these examples are 38, 39, 49 
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and 64, when the prescribed volume fraction of solid phase are 45%, 35%, 25% and 15% 

respectively.  
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(d) 

Figure 3.13: 3D base cells, 2×2×2 cells and effective elasticity matrices of 3D cellular materials with maximum 

shear modulus (a) volume fraction is 45%; (b) volume fraction is 35%; ; (c) volume fraction is 25% and (d) 

volume fraction is 15%. 

3.2.5 2D examples for maximizing thermal conductivity 

The objective of this example is to generate microstructures of cellular materials with 

maximum thermal conductivity. The square domain with dimensions 100×100 is discretized 

into 100×100, 4-node square elements. It is assumed that the eigenvalue of thermal 

conductivity of the solid phase is 1=sk .The evolutionary rate =ER 0.04, the filter radius 

12min =r  and the penalty exponent equal to 3 are selected. The topology at the iteration 0 is 

shown in Figure 3.1, which consists of 4 void elements at the centre of the model while solid 

property is assigned to the rest of elements.  

Figure 3.14 demonstrates the topology of microstructures, as well as the 2×2 array of 

generated base cells and the effective thermal conductivity matrices when the prescribed 

volume fraction of the solid phase is equal to 50% and 30% of the total volume (area) of the 

PBC. The total iterations for these examples are 25 and 36 respectively.  
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Figure 3.14: 2D base cells, 2×2 cells and effective thermal conductivity matrices of cellular materials, with 

maximum thermal conductivity (a) volume fraction of solid phase is 50%; (b) volume fraction is 30% 

Hashin and Shtrikman (Hashin and Shtrikman, 1962) derived analytical bounds on the 

effective magnetic permeability of macroscopically homogeneous and isotropic materials 

based on the variational principals. The mathematical analogy enables the bounds to be also 

used for predicting the dielectric, electric conductivity, thermal conductivity, and diffusivity 

of such materials. The HS upper bound for cellular isotropic materials is expressed as: 

  
f
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2max                    (3.24) 

When the volume fraction of the solid phase is equal to 50% and 30% of the total volume of 

the PBC, the Hashin-Shtrikman upper bound on thermal conductivity can be calculated as 
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0.333 and 0.176 respectively from the equation (3.24). As it can be seen from the thermal 

conductivity matrices presented in Figure 3.14, good consistency exists between the thermal 

conductivity of generated materials and the Hashin-Shtrikman upper bounds. Figure 3.15 

demonstrates the evolution history of the microstructure when the prescribed volume (area) 

fraction of the solid phase is 30% of the total volume (area) of the PBC. 

 

Figure 3.15: The evolution histories of thermal conductivity, volume fraction and microstructures of 2D 

material’s microstructure with maximum thermal conductivity 
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3.2.6. 3D examples for maximizing thermal conductivity 

For the topology optimization of 3D microstructures for material with maximum thermal 

conductivity, a cubic domain with dimensions 303030 ×× is discretized into 303030 ×× , 8-

node cubic elements. It is assumed that the eigenvalue of thermal conductivity of the solid 

phase is 1=sk . The BESO parameters are set as the evolutionary rate =ER 0.04, the filter 

radius 3=minr and the penalty exponent as before is3=p . The starting topology consists of 8 

void elements at the centre of the domain while other elements are assigned with solid 

properties. 
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Figure 3.16: 3D base cells 2×2×2 array of cells and effective thermal conductivity matrices of cellular materials 

with maximum thermal conductivity (a) volume fraction of solid phase is 30%; (b) volume fraction is 40% 
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Figure 3.16 demonstrates the topology of microstructures, as well as the 2×2×2 array of 

generated base cells and effective thermal conductivity matrices when the prescribed volume 

fraction of the solid phase is equal to 30% and 40% of the total volume of the PBC. The total 

iterations for these examples are 38 and 31 respectively. 

The Hashin and Shtrikman (1962) analytical bounds on the effective thermal conductivity of 

3D cellular materials can be expressed as: 

 

s

sHS

k

kk

3
1

max α
α

−
+=                    (3.25) 

in which 

 
2

)1(3 s
f kV −

=α                    (3.26) 

The Hashin-Shtrikman upper bound is calculated 0.222 and 0.307 when the volume fraction 

of solid phase is 30% and 40% respectively which shows good agreement with the values 

shown in Figure 3.16. 

Figure 3.17 demonstrates the evolution history of the microstructure when the prescribed 

volume (area) fraction of the solid phase is 30% of the total volume (area) of the PBC. 
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Figure 3.17: The evolution histories of thermal conductivity, volume fraction and microstructures of 3D 

material’s microstructure with maximum thermal conductivity 

3.3. Concluding remarks 

In this chapter the BESO has been developed for the designing of microstructures for cellular 

materials with maximum bulk modulus, shear modulus or thermal conductivity. The 

developed BESO algorithm seeks optimal material distribution within the PBC by performing 

topology optimization subject to volume constraints. By applying the Homogenization theory 

the overall properties of material were calculated based on the analysis performed on the 

PBC.  The Homogenization theory was also applied for calculation of elemental sensitivity 

numbers, which are a measure of estimation of the changes in homogenized material effective 

properties, as a result of alternation of elemental density within the PBC. Based on the 
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ranking of elemental sensitivity numbers, the BESO changes the density of elements from 1 

to minx  or from minx to 1 by imposing volume constraint iteratively, until the solution 

converges. Several 2D and 3D examples were presented to demonstrate the effectiveness of 

the proposed BESO method. The known analytical bounds were used for verification of the 

results. Some interesting topological patterns have been found for guiding cellular material 

design.  

As it has been shown, the BESO can be easily implemented as a “post-processor” to 

commercial FEA software packages. In this study ABAQUS was used as the FEA analysis 

tool. The proposed method has other advantages in terms of the convergence speed and 

quality of the generated microstructures. The resulted topologies are represented by either 

solid or void elements without intermediate densities, which make the interpretation of results 

and manufacturing easier. The methodology developed in this chapter will be further extended 

to various other material design scenarios in the next chapters. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 4 

Topology optimization of microstructures for isotropic cellular 
materials 
 

 

 

 

Background 

The objective of this chapter is to introduce a computational procedure to equip the 

methodology proposed in previous chapter with additional performance constraint. To this 

end, the design of materials with maximum stiffness in the form of bulk or shear modulus of 

elasticity with additional constraint on the isotropy of material is sought. In an isotropic 

material, the physical properties such as bulk or shear moduli are independent of material 

orientation an are identical in all directions. The elements of material constituent tensor of 

these types of materials remain unchanged under any transformation, from one coordinate 

system to another. Isotropic materials are the most common materials used in industry and are 

attractive for engineering applications (Barbero, 1999).  
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For the purpose of designing the microstructures of materials with symmetrical properties, a 

number of methods have been proposed in the literature. For instance a method based on the 

SIMP topology optimization has been introduced by Sigmund and Torquato (1997) and 

Sigmund (2000) in which the constraint on square symmetry of materials (in 2D problems in 

the form of 02211 =− DD ) and isotropy ( in 2D problems:    04 3321122211 =−+−+ D)DD(DD ) 

are chosen to be implemented as a penalty function added to the objective function  ((x)f 0 ). 

The penalty functions are defined as the square of the deviation from fulfilment of square 

symmetry or isotropy constraint as: 

   2

1211

1211  )
DD

-DD
(   D sq +

=                (4.1.a) 

  
22 2

1211

33121211  )
DD

)DD(DD
(   D iso +

+−+
=              (4.1.b) 

the modified objective function is then stated as: 

isosq DwDw(x)f f(x) 210 ++=                 (4.1.c) 

where f0(x), is the optimization objective function. However, the selection of the penalization 

factors of w1 and w2 are highly dependent on the user’s experience.  In addition, the need for 

some interactions by the user during the optimization procedure makes the approach not fully 

systematic. Moreover, by using the Sequential Linear Programming (SLP) technique, this 

procedure needs several thousand iterations to be converged, due to the flatness of the 

modified objective function (Sigmund and Torquato, 1997).  
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Figure 4.1: Examples of isotropic and anisotropic (square symmetric) microstructures of materials; (a) 

microstructures of an isotropic material; (b) microstructures of a square symmetric material 

Imposing symmetrical constraints on microstructural geometry is another approach for the 

design of isotropic materials through inverse homogenization (Neves et al., 2000, Torquato, 

2002). Based on the Neumann principle (Love, 1934, Sadd, 2005), it is known that certain 

type of geometrical symmetry of the material microstructures leads to the symmetry in the 

response of the material. Figure 4.1 demonstrates a microstructure of isotropic and an 

anisotropic material. In the Figure 4.1a the microstructure possesses 60° symmetry and the 

resulting material is isotropic (Bendsøe and Sigmund, 2003, Neves et al., 2000, Sadd, 2005). 

In the microstructure shown in Figure 4.1b such a 60° symmetry does not exist and dissimilar 

elasticity properties are expected, for example along directions 1 and 2. However, the 45° 

symmetry of the microstructure produces square symmetry characteristics on the material 

response. This feature could be used in the material design by imposing a geometrical 

constraint on the periodic base cell.  However, it should be noted that the symmetry of the 

microstructure is sufficient but not a necessary condition for the symmetry of material 
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properties (Sigmund and Torquato, 1997) and imposing geometrical constraint may inhibit the 

realization of many potential solutions in an inverse homogenization based optimization.  

Recently, a Level-set method was applied for the design of two-phase isotropic composites 

with maximum stiffness and thermal conductivity (Wilkins et al., 2007, Challis et al., 2008). 

In this proposed approach, a “nearest” feasible isotropic thermal conductivity and elasticity 

tensors are formulated at each iteration. The objective function is defined to minimize the 

difference between the thermal conductivity and elasticity tensors of material and their 

corresponding feasible and nearest isotropic tensor. The extra constraint is imposed by 

modifying the evolution rate in the Hamilton-Jacobi equation. The proposed method is 

capable of generating microstructures for 3D isotropic materials (Challis et al., 2008).  

However as mentioned in Chapter 2, the Level-set implementation is usually difficult and, so 

far, has not reached to the level of regular application (Rozvany, 2009). 

In this chapter an alternative approach for topology optimization of cellular isotropic 

materials will be presented. 

4.1. Methodology    

4.1.1. Problem statement of isotropic material topology optimization  

In this study, for the purpose of designing isotropic materials, the necessary and sufficient 

conditions of isotropy are defined as an additional constraint in the optimization procedure. 

As mentioned before, in an isotropic material the constituent tensor remains unchanged under 
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any transformation from one coordinate system to another. Considering the elasticity matrix 

of an orthotropic material in 3D form as:   
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it can be shown that that relations (4.3) to (4.6) are necessary and sufficient conditions for 

isotropy of material.  

      ,    3322111 DDDD ===                                                                                  (4.3) 

 , 1332213123122 DDDDDDD ======                                                                  (4.4)      

   ,     6655443 DDDD ===                                                                                              (4.5) 

 DD   D 321 2=−                                                                                                            (4.6) 

In the cases where the equations (4.3), (4.4) and (4.5) hold, the material is known as cubic 

symmetric, in which, each of the three principal axes has fourfold symmetry. By engaging all 

elements of the cubic symmetric elasticity matrix, the condition (4.6) can be rewritten as 

equation (4.7a) for 3D cases: 

 04 2 665544321321233112332211 =++−+++++−++= )DDD()DDDDDD()DDD(Ciso                 



 
 
 
 
 
 

Chapter 4                                                                                                                              126 
 
 
 
 
 

        (4.7a) 

Similar relationships exist in 2D plane stress problems. By treating elements of square 

symmetric elasticity tensor equally, the condition (4.6) can be rewritten as:  

   04 3321122211 =−+−+= D)DD(DDCiso                                             (4.7b) 

As it was seen from numerical results of Chapter 3, the cubic symmetry conditions of 

relations (4.3) to (4.5) are always satisfied when the BESO procedure starts from an initial 

square or cubic symmetric topology and treats all corresponding elements in perpendicular 

directions equally. Therefore, in order to obtain an isotropic material, condition of equation 

(4.7) needs to be introduced, as an additional constraint in the BESO method. 

In the BESO setting, the topology optimization problem of cellular material with a maximum 

stiffness and with constraints on the isotropy and volume fraction can be expressed 

mathematically as: 

  Maximize K)x(f =1  or G                                                                                    (4.8.a)  

             Subject to: 0=isoC                                                                                                 (4.8.b)  

                   ∑=
n

i
ii

* VxV                                                                                             (4.8.c) 

                 minxxi = 1or                                                                                             (4.8.d)   
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in which material’s stiffness is expressed by bulk ( K ) or shear (G ) moduli defined in 

equation (3.3) or (3.4); the equation 0=isoC  defines the constraint on materials isotropy with 

the expansion shown in equation (4.7); iV  is the volume of the thi element and *V denotes the 

prescribed volume of the solid phase. As before the design variable
ix  represents the density 

of the thi  element, which is restricted to a binary value of either 1 for a solid element or a 

small value, minx  (e.g. 0.001) for a void element.  

4.1.2. Solution Method  

For solving the problem (4.2), the optimality criterion can be described as that sensitivity 

numbers of solid elements (    ix = 1) to be higher than void elements ( min xxi = ). Therefore, 

an update scheme is devised to change the design variable    ix from 1 to   min x  for elements 

with lower sensitivity numbers and from min  x  to 1 for elements with higher sensitivity 

numbers (Huang and Xie, 2010b). As discussed in Chapter 3, in the BESO method, the 

volume constraint can be easily satisfied by gradually removing and adding elements through 

the introduction of evolutionary rate.  

One of the explored features of the new soft-kill BESO method is its capability to be 

integrated with an extra performance constraint, in addition to the volume constraint. In the 

stiffness optimization of structures in macro-scale, the new soft-kill BESO procedure has been 

successfully combined with an additional constraint on allowable displacement (Huang and 

Xie, 2009b, Huang and Xie, 2010a). In the approach, the variation of the displacement for the 

next iteration is approximated through a gradient based estimation. The topology of the 
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structure is evolved toward the desired functional property, through introducing a Lagrangian 

multiplier. This methodology can be extended to impose the isotropy constraint by modifying 

the original objective function of equation (4.2) as:  

iso1 C(x)ff(x) ×+= λ
                 

(4.9a)
 

in which the Lagrangian multiplier [,]λ ∞+∞−∈  . This equation is equivalent to: 

iso1 C
)(1

(x)ff(x) ×
−

+=
l

l
                                                                                                 (4.9b) 

where the new variable ]1,1[−∈l  corresponds to the changes of the Lagrangian multiplier in 

the range of [,]λ ∞+∞−∈ . It can be seen that the modified objective function is equivalent to 

the original one, when the isotropy constraint is satisfied. With the help of Homogenization 

theory the derivatives which reflect the variation of objective function with respect to the 

density change within the element can be expressed as: 

i

iso

i

1

i dx

dC

)(1dx

(x)df

dx

df(x) ×
−

+=
l

l
              (4.10a) 

Since in BESO only the ranking of elements based on sensitivity numbers is important, by 

multiplying the above equation in the positive value of l−1  the sensitivity number of 

elements can be expressed as: 

i

iso

i

1
i dx

dC

dx

(x)df
)(1α ×+×−= ll                                                                                       (4.10b) 
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The derivatives of the first term in equation (4.10) can be calculated numerically using the 

equation (3.15). Likewise, the term isoC can be readily expanded through equation (4.7) and 

the derivatives with respect to the design variableix can be calculated using the same equation 

(3.15). But before the calculation ofiα  the Lagrangian multiplier needs to be calculated. 

4.1.3. Determination of the Lagrangian multiplier 

In an iterative process, the Lagrangian multiplierλ  is determined in such a way that, the value 

of constraint isoC , to be zero in the subsequent iteration. For this purpose, the following 

gradient-based expression is used to estimate the next iteration value of the constraint: 

          
1

i
i i

t
isot

iso
t
iso x

dx

dC
CC ∆+≈ ∑+                                                                                       (4.11) 

where the superscript t  and 1+t  denotes the current and the next iteration numbers 

respectively. The above equation yields a linearized estimation of the constraint function 

around the design point        x  by using the expansion of the first term of Taylor series. Equation 

(4.11) is very similar to the expressions used in sequential linear programing (SLP) (see 

Chapter 3).  The derivatives in equation (4.11) are determined numerically. 

At the beginning of each iteration, initial elemental sensitivity numbers are calculated by 

assuming 0 =l . Then, by ranking elements and imposing volume constraint, a set of possible 

updated design variables are evaluated. The constraint value for the next iteration 1+t
isoC  is 

estimated by using the equation (4.11).  If the constraint value 1+t
isoC  is negative, thenl  has to 
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be gradually increased from 0 to 1. Thus the modified objective function maximizes the bulk 

or shear modulus and increases the1+t
isoC  simultaneously. Contrarily, if the calculated value of 

1+t
isoC  is positive, the summation term in equation (4.11) has to be decreased. This could be 

done by gradually decreasingl  from 0 to -1; thereby, the modified objective functions 

maximize the bulk or shear modulus and minimizes the positive 1+t
isoC simultaneously.   

The precise value of   l  could be determined using the bisection algorithm in an internal loop, 

by exploiting two auxiliary variables   lowl and   upl . For instance at the beginning of each 

internal loop with 0  =l , if the calculated value 1+t
isoC  is positive, then the boundary values of 

the auxiliary variables are selected  1- =lowl ,  0 =upl and the new value of    l  is calculated 

by setting  2/)( lowup lll += . Then the sensitivity numbers are updated according to equation 

(4.9) and new set of design variables as well as 1+t
isoC  are calculated by the ranking of 

elemental new sensitivity numbers. If the updated  01 >+t
isoC , then the upper auxiliary variable (

  upl ) should be replaced by the current l  and the new coefficient is calculated as

 2/)( lowup lll += . If  01 <+kC then the lower auxiliary variable (   lowl ) is replaced with 

current   l and the updated value is calculated by setting  2/)( lowup lll += . The procedure of 

the internal loop comes to an end when the discrepancy between boundary variables (   lowl ,

  upl ) is sufficiently small (e.g. -501 ). 

4.1.4. Procedure 

The whole BESO procedure can be described by the following steps: 
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Step 1: Define the BESO parameters such as prescribed volume fraction ( *V ); evolutionary 

ratio (ER); penalty exponent p (normally )3=p  and filter radiusminr ; 

Step 2: Construct a solid-void finite element model for the PBC; 

Step 3: Define the periodic boundaries on PBC; define the loads that are equivalent to unit 

strain fields, kl
pqε . In 2D problems, 3 cases of loading and boundary conditions and in 

3D problems 6 cases are necessary. Perform the finite element analysis (FEA) and 

extract the induced displacement fieldsu ; 

Step 4: Calculate 
idx

xdf )(1  and 
i

iso

dx

dC
 numerically, filter the term 

idx

xdf )(1  ; 

Step 5: Let 0 =l ; 

Step 6: Calculate  α i using equation (4.10b). Rank all elemental sensitivity numbers and 

obtain new set of design variables   ix by applying volumetric constraint as

)),1(max(  *1 VERVV tt −=+ ; 

Step 7: Calculate 1+t
isoC  using equation (4.11); 

Step 8: If 01 >+t
isoC  then decreasel within the range ]0[-1, using the above mentioned 

bisection algorithm; otherwise, increasel within the range ]1[0, ; 
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Step 9: Repeat steps 6 to 8 until the difference between auxiliary variables   lowl and   upl

becomes sufficiently small (e.g.-501 ); 

Step 10: Average the sensitivity numbers with their values of previous iteration and then 

update design variables x  i
; 

Step 11: Repeat steps 2 through to 8, until both volume constraint and convergence criterion 

are met. The convergence criterion is regarded to be satisfied when the changes in the 

objective function are less than a specific tolerance, for example 

001.0
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it

i

itit

f

ff
error                                                                          (4.12) 

in which f  is the objective function and superscript is the iteration number. 

4.2. Results and discussion 

This section presents some examples of the microstructures that are designed by the proposed 

method. Because the loadings and boundary conditions in a square base cell are symmetrical 

with respect to main perpendicular axes, in all 2D cases, only one-fourth of square PBC is 

modelled; this assumption reduces the computational costs. Similarly, only one-eighth of the 

PBC is modelled in all 3D problems. 
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The presented results are verified with known analytical bounds of bulk and shear moduli. As   

mentioned in previous chapters, in quasi-homogenous and quasi-isotropic composite materials 

the analytical upper bounds on materials attainable bulk and shear moduli were derived by 

Hashin and Shtrikman (Hashin and Shtrikman, 1963). For cellular materials that are made 

with a void phase and a solid phase of volume fraction   fV , bulk modulus sK and shear 

modulus of sG , the Hashin and Shtrikman (HS) upper bounds are given as: 

ss
f

ss
fup

HS G)KV(1

GKV
K

+−
=             2D plane stress bulk modulus upper bound                          (4.13a) 
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=    3D shear modulus upper bound                                (4.13d) 

For cubic symmetric materials, Zener (1948) has proposed an index for measurement of the 

anisotropy of materials. This index is frequently used in literature (Ledbetter and Migliori, 

2006, Wang et al., 2011) and is known as the Zener anisotropy ratio. In terms of the three 

main coefficients of the cubic symmetric material elasticity matrix defined in equations (4.3) 

to (4.5), the Zener anisotropy ratio is expressed as: 

21

32

DD

D
A

−
=                                                                                                               (4.14) 
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The above ratio defines a measure for resistance to elastic deformation along the direction 

[010], under a shear stress acting across plane (100) with respect to the resistance to 

deformation along the direction [110] under a shear stress acting across the (110) plane (Zener 

1948). A comparison with equation (4.6) indicates that this ratio should be equal to 1.0 for an 

isotropic material. The Zener anisotropy ratio is also applicable for square symmetric material 

with 3D standing for 33D in equation (4.14). 

4.2.1. 2D cellular materials with maximum bulk modulus 

To obtain microstructures for materials with maximum bulk modulus, the square design 

domain of PBC with dimensions of 120×120 is discretized into120×120, 4-node square 

elements. The Young’s modulus and Poisson’s ratio of the solid phase are selected as  1=sE  

and 30  .=ν  respectively. The BESO parameters are set at the evolutionary rate 0.006   ER=   the 

filter radius 6 =r  and the penalty exponent as 3=p .The prescribed volume (area) fraction 

of the solid phase is selected to be equal to 20% of the total area of the base cell. At the 

beginning of the procedure, solid properties are assigned to all elements of the PBC, except 

for four elements at the centre of the base cell which are defined as void (Figure 3.1).  

In order to compare the microstructures generated with and without imposing the isotropy 

constraint, two microstructures are presented in Figure 4.2. Figure 4.2a shows the 

microstructure of the isotropic cellular material, while Figure 4.2b demonstrates the 

microstructural topology of the cellular material which is generated without imposing the 

constraint on isotropy. Figure 4.2c and 4.2d illustrates the corresponding 3×3 array of base 

cells. The effective elasticity matrices of these cellular materials are also given in the figure.  
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Figure 4.2: Microstructures of 2D cellular materials with maximum bulk modulus; (a) PBC generated by 

imposing the isotropy constraint; (b) PBC generated without imposing the isotropy constraint; (c) 33×  base 

cells of (a) ; (d) 33× base cells of  (b) ; (e) elasticity matrix of isotropic material; (f) elasticity matrix of square 

symmetric material; (g) elasticity matrix of square symmetric material with 45° transformation. 

The bulk modulus of the isotropic cellular material is 0.0555, which demonstrates a good 

agreement with HS upper bound, calculated 0.0575 from equation (4.13.a). It can be shown 

that the elasticity matrix of the isotropic solution is invariant under any transformation 

(rotation) from one coordinates system to another. However, as it can be examined, for 

instance by 45° transformation of the elasticity matrix, the microstructure that is generated 

without isotropy constraint demonstrates different properties along different directions (Figure 

4.2g).  

To demonstrate the effects of imposing isotropy constraint, the variations of the Zener 

anisotropy ratio for the two generated cellular materials are compared in Figure 4.3. It can be 
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seen that the proposed algorithm effectively sustains the Zener anisotropy ratio close to 1, 

through the entire process for designing the microstructure of the cellular material with the 

isotropy constraint. When the isotropic constraint is not imposed, the Zener anisotropy ratio is 

about 27.5 at the final design stage of generating square symmetric material.  

 

Figure 4.3: Evolution histories of the Zener anisotropy ratio for designing isotropic cellular material and square 

symmetric cellular material with maximum bulk modulus. 

4.2.2 2D cellular materials with maximum shear modulus 

In this example, the objective is to design microstructures for cellular materials with 

maximum shear modulus and the solid phase volume (area) fraction of 25%. The PBCs with 

dimensions 120×120 are divided into120×120 four-node square elements.  The evolutionary 

rate  0.005R =E and filter radius  5 min =r are set as BESO parameters. As before, the 

Young’s modulus 1 Es = and Poisson’s ratio 3.0=v  are selected as the mechanical properties 
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of the solid constituent phase. The initial topology consists of a domain in which all elements 

are assigned solid properties except for four void elements at the centre (Figure 3.1).   

 

Figure 4.4: Microstructures of cellular materials with maximum shear modulus; (a) the PBC  with the isotropy 

constraint; (b) the PBC without the isotropy constraint; (c)   base cells of (a) ; (d)  base cells of  (b) ; (e) 

elasticity matrix of isotropic material; (f) elasticity matrix of square symmetric material. 

The two microstructures that are generated with and without imposing the isotropy constraint 

are shown in Figure 4.4. The corresponding33×  array of unit cells and material elasticity 

matrix are also presented. As is shown in Figure 4.4, the attained shear modulus for the 

resulting isotropic material is 0.0351, which is very close to the HS upper bound on shear 

modulus calculated at 0.0376 from equation 4.13b. It is also noted that although the objective 

of this example is to maximize the shear modulus of material, the attained bulk modulus of 
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the isotropic design is 0.0703, which is very close to the HS bulk modulus upper bound 

0.0746 (calculated from equation (4.13.a)).        

 

Figure 4.5: Evolution histories of Zener anisotropy ratio for designing isotropic and square symmetric cellular 

materials with maximum shear modulus 

Figure 4.5 demonstrates the evolution history of the Zener anisotropy ratio throughout the 

whole optimization process. As can be seen from the figure, when the constraint on isotropy 

is imposed, the Zener anisotropy ratio is kept very close to 1 throughout the whole process. 

However, when such a constraint is not imposed, a square symmetrical material with a Zener 

anisotropy ratio of 3.35=A  is generated (Figure 4.5). 

4.2.3. 3D cellular materials with maximum bulk modulus 

The proposed algorithm can be readily extended for topology optimization of microstructures 

in 3D cases, without any theoretical difference. The cubic PBC with dimensions 46×46×46 is 
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discretized into 46×46×46 eight-node cubic elements and the prescribed volume fraction of 

solid constituent phase is selected equal to 20% of the total volume of the PBC.  The BESO 

parameters are chosen as the evolutionary rate of 0.006R =E and the filter radius 5.2min =r  

The Young’s modulus and Poisson’s ratio of the solid phase are 1=sE  and 3.0=v  

respectively. As it is shown in Figure 4.6, the initial topology of the PBC entirely consists of 

solid elements except for eight void elements at the centre and one void element at the eight 

corners.  

 

Figure 4.6: Initial material distribution in 2D problems (solid elements are shown in green) 

With the abovementioned design parameters and initial topologies, Figures 4.7a and 4.7b 

show the two microstructures that are designed for the maximum bulk modulus, with and 

without isotropy constraints. The interior views of these microstructures and the 

corresponding 22×  arrays of unit cells and elasticity matrices of the materials are also shown 

in the Figure 4.7. The bulk modulus of cellular material with the isotropy constraint is 0.0599. 

Figure 4.8 demonstrates the evolution history of the Zener anisotropy ratio throughout the 
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design procedure for both base cells. As indicated, the Zener anisotropy ratio is very close to 

1 for the design with the isotropy constraint. 

 

Figure 4.7: 3D microstructures of materials with maximum bulk modulus; (a)  PBC with isotropy constraint; (b) 

PBC without isotropy constraint; (c)  half of the PBC shown in (a); (d)  half of the PBC shown in (b); (e)   22×  

base cells of (a); (f)  22×   base cells of (b); (g)  isotropic material elasticity matrix; (h) cubic symmetric 

material elasticity matrix 
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Figure 4.8: Evolution histories of Zener anisotropy ratio for designing isotropic cellular material and cubic 

symmetric cellular material with maximum bulk modulus. 

Figure 4.9 shows another example of isotropic and cubic symmetric microstructures in which 

the BESO parameters are set as 007.0=ER  and 3min =r . The PBC and elements dimensions 

are similar to the previous example. For both isotropic and cubic symmetric microstructures 

of this example, similar to the Figure 3.9, the initial topologies include eight void elements at 

the centre of the PBC while solid properties are assigned to other elements. The generated 

topologies are shown in Figure 4.9. The bulk moduli of the resulting isotropic and anisotropic 

cellular materials are 0.0585 and 0.0619 respectively. As it is shown in Figure 4.10, the Zener 

anisotropy ratio for the isotropic and anisotropic materials are 0.1=A  and 2.52 respectively. 
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Figure 4.9: 3D microstructures of materials with maximum bulk modulus; (a) the PBC with the isotropy 

constraint; (b)  PBC without the isotropy constraint; (c)  half of the PBC shown in (a); (d)  half of the PBC 

shown in (b); (e) 2×2×2 base cells of (a); (f) 2×2×2 base cells of (b); (g)  isotropic material elasticity matrix; 

(h) cubic symmetric material elasticity matrix 
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Figure 4.10: Evolution histories of Zener anisotropy ratio for designing isotropic cellular material and cubic 

symmetric cellular material with maximum bulk modulus. 

4.2.4. 3D cellular materials with maximum shear modulus 

The objective of this example is to design 3D microstructures of cellular materials with 

maximum shear modulus. The finite element model of the base cell with dimensions 

606060 ××  is discretized into  606060 ××  , eight-node cubic elements. The mechanical 

properties of the solid phase are selected as the Young’s modulus of 1=sE  and the Poisson’s 

ratio of 3.0=v  . The evolution rate 0.007R =E , filter radius  3 min =r  and the penalty 

exponent  3=p are selected as the BESO parameters.  The procedure starts from the initial 

topology, which consists of elements with solid properties except for eight void elements at 

the centre and four void elements at the centre of each 6 sides of the finite element model of 

the PBC. The prescribed volume fraction of the solid phase is selected as 40% of the total 

volume of the PBC. 



 
 
 
 
 
 

Chapter 4                                                                                                                              144 
 
 
 
 
 

 

Figure 4.11: 3D microstructures of materials with maximum shear modulus; (a) the PBC with the isotropy 

constraint; (b) the PBC without the isotropy constraint; (c) half of the PBC shown in (a); (d) half of the PBC 

shown in (b); (e)   base cells of (a); (f)   base cells of (b); (g) isotropic material elasticity matrix; (h) cubic 

symmetric material elasticity matrix 
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Figure 4.11 demonstrates the generated microstructures and elasticity matrices of isotropic 

and cubic symmetric cellular materials. As indicated in the figure, the shear modulus of the 

isotropic cellular material is equal to 0.0984, which is very close to HS shear modulus upper 

bound that is calculated equal to 0.0995 from the equation  

(4.13d). The Zener anisotropy ratio for the isotropic cellular material is 0.1=A . However, the 

topology optimization without the isotropy constraint results in the microstructure with the 

Zener anisotropy ratio of 1.25. It is noticed that the bulk modulus of isotropic material 

(0.1405) is also very close to the HS upper bound (0.1688), although the objective of this 

example is to maximize the shear modulus.  

4.2.5. 2D isotropic cellular materials with negative Poisson’s ratio 

To demonstrate the capability of the proposed procedure in imposing the isotropy constraint 

in combination with other objective function, in the following example 2D microstructures for 

isotropic cellular materials with negative Poisson’s ratio are sought. Negative Poisson’s ratios 

in foams were observed by Lakes (1993). It was further qualitatively demonstrated by (Phan-

Thien and Karihaloo, 1994), that composite materials with randomly distributed 

microstructures can have isotropic behaviour with negative Poisson’s ratio. The key feature of 

their microstructures is the existence of re-entrant corners, which was already noticed by 

Lakes (1993). 

Through inverse homogenization, Sigmund (1994a, 1994b) found that by modelling the 

materials microstructure as a continuum environment, it is very difficult to attain topologies 

with negative Poisson’s. The Poisson’s ratio can attain the negative value of -1, if the shear 
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modulus of material is much larger than its bulk modulus. On the other hand, the numerical 

experiences in 2D problems demonstrates that the attainable values of12D and 33D  are 

correlated (Sigmund, 1994a, 1994b). In this study the following statement has been used as 

the objective function to find a material with negative Poisson’s ratio,  

Minimize: 3312211 2)( DDDxf −+=                 (4.15) 

 

Figure 4.12: Microstructure of isotropic material with negative Poisson’s ratio ( 4min =r ); (a) periodic base 

cell; (b) unit cells; (c) isotropic material elasticity matrix 

The PBC with dimensions 160×160 is discretised into 160×160 four-node square elements. 

The prescribed volume (area) fraction of the solid phase is selected equal to 35% of the total 

volume (area) of the base cell, with Young’s modulus 1=sE and Poisson’s ratio 2.0=v . The 

BESO parameters are the evolution rate of 0.004R =E  and the filter radius 4min =r ; the 

penalty exponent is selected equal to 3.  Similar to the topology that is shown in Figure 3.1, 



 
 
 
 
 
 

Chapter 4                                                                                                                              147 
 
 
 
 
 

the BESO procedure starts from a domain of solid elements, except for four void elements at 

the centre.  

 

Figure 4.13: Microstructure of isotropic material with negative Poisson’s ratio ( 5.1min =r ); (a) periodic base 

cell; (b) 33×  unit cells; (c) isotropic material elasticity matrix 

Figure 4.12 illustrates the generated microstructure of the isotropic cellular material which its 

Poisson’s ratio is calculated equal to -0.5482.  When a smaller filter radius 5.1min =r  is 

defined as the BESO parameter and the prescribed volume fraction is set to 30% of the total 

volume of the PBC, the microstructure of Figure 4.13 is obtained. From the elasticity matrix 

of the Figure 4.13, the Poisson’s ratio is calculated equal to -0.4118. The Zener anisotropy 

ratios of both materials are also very close to 1. One can easily perceive the lateral expansion 

of the microstructures in Figures 4.12 and 4.13 as the result of imposing tensile force, due to 

existence of the re-entrant corners. It is interesting to note that these microstructures are 

qualitatively similar to models of Phan-Thien and Karihaloo (1994). As it is stated before, 

changing the design parameters such as filter radius can cause obtaining qualitatively different 
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solutions in an optimization procedure. This is mainly because of existence of many local 

optima in topology optimization of material’s microstructures. In the two examples presented 

in this section, it can be seen that reducing the filter radius produces a material’s 

microstructure that has more regions of smaller width. In a continuum structure, these regions 

may act as hinges during the deformation. The formation of these hinge-typed regions is 

essential especially in materials with negative Poisson’s ratio (Phan-Thien and Karihaloo, 

1994, Lakes, 1993). 

4.3. Concluding remarks 

Using the BESO method, a new approach for designing microstructures for isotropic cellular 

materials with maximum bulk or shear moduli was proposed in this chapter. The isotropy of 

the materials was defined as an additional constraint to the optimization problem. The 

modified objective function was constructed by introducing a Lagrange multiplier to 

implement the isotropy constraint. The proposed procedure utilizes a gradient-based method 

to impose the isotropy constraint and gradually evolves the microstructures of cellular 

materials to the optimum. Effectiveness of the proposed method has been demonstrated by the 

topology optimization of microstructures of isotropic cellular materials, with maximum bulk 

modulus or maximum shear modulus. Numerical examples clearly indicate the difference 

between the generated square (cubic) symmetric materials, without imposing the isotropy 

constraint and isotropic cellular materials in which the isotropy constraint is imposed. The 

histories of Zener anisotropy ratios through the evolution of microstructures indicate that the 

isotropy constraint has been properly incorporated into the optimization algorithm for 

designing all isotropic material cases. The presented examples also indicate that the proposed 
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method can be extended to the designing of isotropic cellular materials, with other desired 

functional properties such as materials with the negative Poisson’s ratio. 



 

 
 
 
 

 

Chapter 5 

Topology optimization of multi-phase periodic composites with 
extreme properties 

 

 

 

Background  

In comparison to cellular material that is composed of one material phase and a void phase, 

composites of two or more materials are more advantageous and attractive for practical 

applications. As discussed in Chapter 2, one of the advantages of such materials is that by 

combining different constituent phases, a wider range of properties can be achieved, which 

are not attainable by the individual constituent phases (Zhou and Li, 2008a). On the other 

hand, multi-functional materials are inevitably composites of two or more constituent phases 

(Gibson, 2010). Such materials play a significant role in the development of composites in 

industry.  
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As mentioned in Chapter 2, the SIMP method has been applied in the form of inverse 

homogenization for the design of periodic microstructures for composites with two material 

phases and a void phase (Sigmund and Torquato, 1997, Gibiansky and Sigmund, 2000). The 

key point in these studies is the introduction of three design variables)1(
ix , )2(

ix and )(
ix 3 ,  for 

each element i that corresponds to the three constituent phases. By defining an artificial 

mixing function, the local material properties are correlated with the design variables. 

However an inherent problem with the SIMP method is that such an approach leads to 

intermediate densities in the final topology. In comparison with microstructures designed with 

one material phase and one void phase, in multi-phase materials design, the SIMP method 

usually causes more ambiguity in the interpretation and identification of the boundaries 

between constituent phases. Increasing of the penalty exponent not only cannot solve the 

problem completely, but may also result in numerical instability (Kohn and Strang, 1986, 

Swan and Kosaka, 1997, Yin and Yang, 2001, Zhou and Wang, 2007). For instance, the 

application of Optimality Criteria (OC) or Sequential Linear Programming (SLP) causes 

difficulties in the convergence of the solution (Yin and Yang, 2001, Zhou and Li, 2008a). 

The BESO approach has been developed for stiffness optimization of macro-structures with 

multiple materials (Huang and Xie, 2009a, 2010b). Although the generated structures are 

topologically similar to the results of the SIMP approach, it has been shown that the 

procedure is independent of the selection of penalization factor. Better convergence of the 

procedure, together with high computational efficiency and more importantly, the capability 

of the BESO in separating the constituent phases, has made it a promising tool for topology 

optimization of multi-material structures.  
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In this chapter, the methodology for obtaining materials with extreme physical properties will 

be extended to multi-phase composite materials. The objective functions are maximum bulk 

modulus, shear modulus or thermal conductivity.  It is assumed that the composite consists of 

N constituent phases. After ranking the constituent phases based on their contribution in the 

objective function, they are divided into N-1 groups and the sensitivity analysis is performed 

between groups. Elements’ material properties are changed based on the ranking of these 

sensitivity numbers and imposing volume constraint on the constituent phases. To tackle the 

numerical issues of the checkerboard pattern and mesh dependency, the filtering is conducted 

separately within the elements of each group.  

5.1. Methodology 

5.1.1. Optimization problem statement and sensitivity numbers 

It is assumed that the composite material consists of N constituent phases with equal 

Poisson’s ratios and the Young’s moduli or the thermal conductivities that have been ordered 

descending (that is: NE...EE >>> 21  or Nk...kk >>> 21 ). The optimization problem 

statement for attaining periodic materials with maximum bulk modulus, shear modulus or the 

thermal conductivity with constraints on the volume fraction of each constituent phase can be 

expressed as: 

Maximize  Kxf i =)( ,G  or ck   
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Subject to:  ∑∑
=

−

=

=−
M

i
iij

j
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kj VxVV
1

1

1

**                                                                        (5.1) 

   minxxij = 1or             ( 1,,2,1 −= nj L ) 

in which iV  denotes the volume of element i ; *jV is the prescribed volume of thj  material 

phase and K , G or ck are the bulk modulus, shear modulus or the thermal conductivity of 

materials ; ijx  is the design variable which indicates the density of the thi element for the thj  

material. The ijx can take a binary value of either 1 when the element is filled with material 

phase j  or constituent phases with larger stiffness/thermal conductivity, or a very small value 

(i.e. 0.001) otherwise.  


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 >≥

=
otherwisex

kkEEif
x

jj

ij

min

)(or      1
                                                                          (5.2) 

The local material of an element within the PBC can be assumed to be isotropic, with the 

physical property that varies between the properties of the two phases. The material properties 

are interpolated between two neighbouring phases using a power-low scheme. For instance, 

the elements of elasticity matrixDare interpolated as (Huang and Xie, 2009a): 

1)1()( +−+= jp
ij

jp
ijij xxx DDD                                                                                       (5.3a) 

1,,2,1 −= nj L  
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in which the subscript of j and 1+j indicates the phase numbers. Similarly the material 

thermal conductivity can be interpolated between two neighbouring phases as: 

 1)1( +−+= jp
ij

jp
ij xx kkk                              (5.4) 

1,,2,1 −= nj L  

 in which k  denotes the thermal conductivity matrix. Since the design variables are either 

  min x  or 1, the optimality criterion can be described as that the constituent phase j  and those 

phases that have larger Young’s modulus than j  (    ijx = 1) always have higher sensitivity than 

the rest of constituent phases ( min xxij = ). With this assumption a scheme could be devise to 

update the design variable   xij 
 by changing from 1 to   min x  for elements with the lower 

sensitivity numbers and from min  x  to 1 for elements with the higher sensitivity numbers.   

Similar to the relationships introduced in Chapter 3, the sensitivity of the elements of the 

homogenized elasticity matrix can easily be calculated with the introduced interpolation 

scheme (Haug et al., 1986) as: 

∫ −
∂
∂−=

∂
∂

Y ij

T

ij

H

dY
xYx

)()(
1

BuI
D

BuI
D

                                                                        (5.5) 

where u denotes the displacement fields of the unit cell caused by these uniform strain fields; 

and B is the strain-displacement matrix. It should be noticed that the sensitivity of each group 

is calculated for all elements of the base cell, although it is only used for assigning the design 
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variables between the two neighbouring phases of j and 1+j  (Huang and Xie, 2010b). The 

appropriate equations for calculations of the sensitivities are similar to the equation (3.17). 

5.1.2. Numerical procedure 

To solve the above mentioned optimization problem using the BESO, the phases are divided 

into N-1 ordered groups and the sensitivity calculation must be carried out between these N−1 

groups of phases (Huang and Xie, 2009a).  Here the procedure is explained for the case where 

the material’s microstructure is composed of 3 constituent phases. The procedure for the cases 

that the material is composed of more constituent phases follows the same procedure. 

The BESO can start from a finite element model with nearly all elements from material 1 

except for some limited number of elements from material 2. Through successive iterations, 

some more elements are turned into material 2, with the specified evolution rate (ER) so that 

the volume of material 2 is restricted as: 

)),1(max(  *
)2()2(

1
)2( VERVV tt +=+                                                                                      (5.6) 

where subscript in the parenthesis indicated the material number. The transition between 

materials 1 and 2 is performed based on the sensitivity number αi1.  αi1 is calculated assuming 

that elements from material 1 have higher sensitivity (    i1x = 1) and the rest of elements have 

lower sensitivity  ( min1 xxi = ).  The gradual addition of material 2 through iterations 

continuous until its volume reaches to the prescribed value. In later iterations, the volume of 

material 2 is kept constant although its distribution is allowed to change. At this stage the 
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volume of material 3 is allowed to gradually increase. The transition between combination of 

materials 1 and 2 with material 3 is performed by satisfying the volume constraint of material 

3 and ranking the αi2 sensitivities. αi2 is calculated assuming that elements from material 1 and 

2 have higher sensitivity (    i2x = 1) and the rest of elements have lower sensitivity  ( min2 xxi =

). The procedure of increasing the number of elements with material 3 properties continuous 

until the volume of material 3 reaches to its prescribed value. If there are more than 3 

constituent phases, the other materials can be included with a similar procedure. The 

numerical procedure comes to an end when the volumes of all materials satisfy the prescribed 

values and the variation of the objective function diminishes. 

The design algorithm for 3-phase materials contains following steps: 

Step 1: Define the BESO parameters with objective volume, *
)1(V  , *

)2(V
 
and *

)(V 3 , evolutionary 

rate ER , filter radius minr  and penalty factor p (normally )3=p ;  

Step 2: Build a finite element model for the PBC in which all elements are assigned with 

material 1 properties, except for some limited number of elements from material 2 as 

the initial topology; 

Step 3: Apply periodic boundary conditions to the PBC. Impose nodal test load fields. The 

nodal loads are calculated to produce a uniform strain in that particular element. Carry 

out the finite element analysis (FEA) to obtain nodal displacements. In case of 

maximization of thermal conductivity the uniform heat fluxes are imposed and the 

induced temperatures are extracted; 
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Step 4: Calculate the elemental sensitivity numbers1iα . Calculate 2iα  if volumetric constraint 

on material 2 has already been satisfied;  

Step 5: Filter sensitivity numbers 1iα ; average 1iα  with its corresponding value from previous 

iteration;  

Step 6: If the prescribed volume of material 2 has already been satisfied, filter the sensitivities 

2iα  and perform similar averaging with historical information;    

Step 7: Determine the target volume for the next iteration. When the current volume tV )2(  is 

larger than the prescribed value* )2(V , the target volume for the next iteration can be 

calculated by 

)ER*VV,Vmin(V t
)(

t
)(

*
)(

t
)( 222
1

2 +=+                                                           (5.7)  

Step 8: If *
)2()2( VV =  then the volume of material 3 is set as:  

)ER*VV,Vmin(V t
)(

t
)(

*
)(

t
)( 333
1

3 +=+                                                                            (5.8)   

 Step 9: Rank elements based on1iα  Reset elemental densities1ix by changing from 1 (material 

1) to minx  (material 2) for elements with lower sensitivities and form minx to 1 for 

materials with higher sensitivities, while satisfying the volume constraint of material 

2. 
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Step 10: If *
)2()2( VV =  then rank elements based on2iα . Reset elemental densities 2ix by 

changing from 1 (material 2 or stiffer) to minx  (material 3) for elements with lower 

sensitivities and form minx  to 1 (material 2) for materials with higher sensitivities 

while satisfying the volumetric constraint of material 3. 

Step 11: Repeat Steps 3 to 10, until both the volume constraints and convergent criterion are 

satisfied. The convergence criterion is defined in equation (3.21).  

5.2. Results and discussion 

5.2.1. 2D two- phase materials with maximum bulk modulus  

For designing microstructures for composites with two constituent phases and maximum bulk 

modulus, the square design domain with dimensions 8080×  is discretized into 8080× , 4-

node square elements. The Young’s modulus of materials 1 and 2 are selected 0.31 =E and

0.12 =E respectively; the Poisson’s ratio of both materials is 3.0=v . The BESO parameters 

are the evolution rate 04.0=ER , filter radius 0.6min =r  and penalty exponent 3=p . The 

initial finite element model of the PBC consists of all elements with material 1 properties, 

except for four elements of material 2 at the centre of the design domain (similar to Figure 

3.1). The prescribed volume (area) fraction of material 1 is 30% of the total volume (area) of 

the PBC.  

The designed microstructures and corresponding materials elasticity matrix are shown in 

Figure 5.1. 
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The HS upper bound for composites of two materials can be expressed as (Hashin and 

Shtrikman, 1963):  

max

max
2

2

max
1

1max

1
G

GK

f

GK

f
K HS −

+
+

+

=                  (5.9) 
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Figure 5.1: Microstructures and effective elasticity matrixes of a 2D composite material with 2 constituent 

phases and maximum bulk modulus (a) single base cell (b) 3×3cells (c) elasticity matrix 

in which 1f and 2f  are the volume fractions of materials 1 and 2 respectively; 1K and 2K  are 

the bulk moduli of the constituent phases and maxG  is the shear modulus of the stronger 

material defined as: 

)1(2/1
max ν+= EG                              (5.10) 
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The HS upper bound for the above material composition is calculated 0.9934 from the 

equation (5.9). As shown in Figure 5.1c, the bulk modulus of the designed material is 

0.99108, which demonstrates a good consistency with the HS upper bound. 

Figure 5.2 demonstrates the evolution histories of bulk modulus, volume fraction and the 

topology of the resulting microstructure. The total iterations for this design are 35. As can be 

seen from Figure 5.2, once the volume constraint is satisfied, the bulk modulus and the micro-

structural topology converge to their final solutions with a good stability. 

 

Figure 5.2: Evolution history of bulk modulus, volume fraction and microstructures for maximizing bulk 

modulus. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40

V
ol

um
e

 F
ra

ct
io

n V
f

Materials effective bulk modulus

Material 2 volume fraction

B
ul

k
M

od
ul

us
 K

Iteration



 
 
 
 
 
 

 
Chapter 5                                                                                                                               161 
 
 
 
 
 

 

5.2.2.2D three-phase materials with maximum bulk modulus  

The square design domain with dimensions 80×80 is discretized into 80×80, 4-node square 

elements. The Young’s modulus of materials, 1, 2 and 3 are selected 0.41 =E , 0.22 =E and

0.13 =E respectively The Poisson’s ratio of all materials is assumed to be assumed 3.0=v . 

The evolution rate of 02.0=ER , filter radius 8min =r  and the penalty exponent 3=p  are 

selected as the BESO design parameters. The initial material distribution of the finite element 

model consists of all elements from material 1, except for four elements of materials 2 located 

at the centre of the model. The prescribed volume fractions of material 1, 2 and 3 are 30%, 

40% and 30% respectively.  

 

(a) 

 

(b) 
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Figure 5.3: 3-phase material’s microstructure with maximum bulk modulus; Material 1 is shown in dark blue 

(E1=4); material 2 in light blue (E2=2); and material 3 in yellow (E3=1); (a) single base cell; (b) 3×3 cells; (c) 

elasticity matrix 

The final microstructures and the material’s effective elasticity matrix are shown in Figure 

5.3. As calculated from the elasticity matrix, the bulk modulus of the material is 1.411. For 
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2D materials which consist of three constituent phases, the HS upper bound is given with the 

following expression (Hashin and Shtrikman, 1963): 

max

max
3

3

max
2

2

max
1

1max

1
G

GK

f
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f

GK

f
K HS −

+
+

+
+

+

=                 (5.11) 

in which 3f and 3K  are the volume fraction and the bulk modulus of material 3 . The rest of 

variables have defined before. For the setting of this example, The Hashin-Shtrikman upper 

bound is calculated 1.435, which shows a good agreement with the attained result. 

 

Figure 5.4: Evolution history of bulk modulus, volume fraction and microstructures for maximizing bulk 

modulus. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 10 20 30 40 50 60

Material Bulk Modulus

Material 2 Volume Fraction

Material 3 Volume Fraction

B
ul

k 
M

o
du

lu
s 

K

V
o

lu
m

e
 F

ra
ct

io
n V

f

Iteration



 
 
 
 
 
 

 
Chapter 5                                                                                                                               163 
 
 
 
 
 

 

The whole procedure takes 51 iterations for this instance. Figure 5.4 shows the evolution 

histories of bulk modulus, volume fraction and microstructural topology of this example.  

5.2.3. 3D three-phase material with maximum bulk modulus  
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Figure 5.5: 3-phase material’s microstructure with maximum bulk modulus. Material 1 is shown in dark blue 

(E1=4); material 2 in light blue (E2=2); and material 3 in yellow (E3=1); (a) single base cell; (b) middle-cut of  

the cell; (c) elasticity matrix of corresponding material 

The cubic finite element model with dimensions 404040 ××  is discretized into 404040 ×× , 

8-node cubic elements. As before, mechanical properties of constituent phases are selected as 

the Young’s modulus 0.41 =E , 0.22 =E and 0.13 =E  for materials 1, 2 and 3 respectively, 

and the Poisson’s ratio of all materials 3.0=v . The evolution rate of 02.0=ER , filter radius 
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2=minr  and penalty exponent 3=p  are selected as the BESO design parameters. The initial 

material distribution in the finite element model consists of all elements from material 1, 

except for eight elements at the centre and eight elements at the eight corners from material 2. 

The prescribed volume fraction of material 1, 2 and 3 are 30%, 50% and 20% respectively. 

 

Figure 5.6: Evolution history of bulk modulus, volume fraction and microstructures. 

The final microstructures and the material’s effective elasticity matrix are presented in Figure 

5.5. The HS upper bound for 3D materials which are composed of three constituent phases 

can be expressed as (Hashin and Shtrikman, 1963):  
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The equation parameters were previously defined. The HS upper bound for the setting of this 

example is calculated 1.801. As it can be calculated from the elasticity matrix (Figure 5.5c), 

the bulk modulus of the designed material is 1.782. 

The whole procedure converges in 53 iterations. Figure 5.6 demonstrates the evolution 

histories of bulk modulus, volume fraction and microstructural topology of this example.  

5.2.4. 2D three-phase material with maximum shear modulus 

The objective of this example is the topology optimization of three-phase microstructures 

with maximum shear modulus, under prescribed volume fractions of the phases. The 2D 

square design domain with dimensions 80×80 is discretized into 80×80, 4-node square 

elements. The Young’s modulus of constituent phases are selected as 0.41 =E , 0.22 =E and

0.13 =E . The Poisson’s ratio of all materials is assumed equal to 3.0=v . The evolution rate 

of 02.0=ER , filter radius 8min =r  and penalty exponent 3=p  are selected as the BESO initial 

parameters.  In the initial finite element model of the PBC, material 1 physical properties are 

assigned to all elements, except for four elements of materials 2 at the centre of the design 

domain. The prescribed volume fraction of materials 1, 2 and 3 are 30%, 40% and 30% 

respectively.  
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Figure 5.7:2D 3-phase microstructure with maximum shear modulus. Material 1 is shown in dark blue (E1=4); 

material 2 in light blue (E2=2); and material 3 in yellow (E3=1); (a) single base cell; (b) 3×3 cells; (c) elasticity 

matrix 

 

Figure 5.8: Evolution history of shear modulus, volume fraction and microstructures for the design of a 2D 

material’s microstructure with maximum shear modulus 
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The generated microstructures, as well as the material effective elasticity matrix are shown in 

Figure 5.7. As it can be seen, there are similarities between the generated microstructure of 

this example with the microstructure of cellular material shown in Figure 3.8. Figure 5.8 

demonstrates the evolution history of shear modulus and volume fraction of the generated 

microstructure throughout the process. The procedure converges to the final topology after 51 

iterations. 

5.2.5. 3D three-phase material with maximum shear modulus 

For the design of three-phase microstructures of material with maximum shear modulus, a 

cubic design domain with dimensions 24×24×24 is discretized into 24×24×24, 8-node cubic 

elements. As before, the Young’s moduli of constituent phases are selected as 0.41 =E , 

0.22 =E and 0.13 =E  ; the Poisson’s ratio is assumed 3.0=v . The BESO parameters are the 

evolution rate 02.0=ER , filter radius 2min =r  and penalty exponent 3=p . The prescribed 

volume fraction of materials 1, 2 and 3 are 25%, 45% and 30% respectively. The initial 

material distribution of the finite element model consists of all elements from material 1, 

except for four elements of materials 2 at the centre of the design domain.  

The resulted microstructural topology is shown in Figure 5.9; the figure also demonstrates the 

spatial distribution of each of the constituent phases, as well as the homogenized effective 

elasticity matrix of material. Figure 5.10 demonstrates the evolution history of shear modulus 

and volume fraction of the designed microstructure throughout the iterative process. As can 

be seen from the figure, the procedure converges to the final topology after 56 iterations.  
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Figure 5.9: 3D 3-phase material’s microstructure with maximum shear modulus; (a) single base cell; (b) 

distribution of constituent phase 1(E1=4); (c)  distribution of constituent phase 2(E2=2); (d)  distribution of 

constituent phase 3 (E3=1);(e) elasticity matrix of material 

 

Figure 5.10: Evolution history of shear modulus, volume fraction and microstructures 
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5.2.6. 2D three-phase material with maximum thermal conductivity 

To verify the procedure for the topology optimization of materials with maximum thermal 

conductivity, the square design domain of the PBC with dimensions 80×80 is discretized into 

80×80, 4-node quadrilateral elements. The thermal conductivities of materials 1, 2 and 3 are 

selected as 0.41 =k , 0.22 =k and 0.13 =k  respectively. The BESO parameters are set as the 

evolution rate 02.0=ER , filter radius 8min =r  and penalty exponent 3=p . The initial finite 

element model of the PBC consists of elements with material 1 properties, except for four 

elements of materials 2 at the centre of the design domain. The prescribed volume fraction of 

materials 1, 2 and 3 are 25%, 25% and 50% respectively.  
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Figure 5.11: 3-phase material’s microstructure with maximum thermal conductivity. Material 1 is shown in dark 

blue (k1=4); material 2 in light blue (k2=2); and material 3 in yellow (k3=1); (a) single base cell; (b) 3×3 cells; 

(c)  thermal conductivity matrix 

The final microstructure and the material homogenized thermal conductivity matrix are given 

in Figure 5.11. As mentioned in Chapter 2, Hashin and Shtrikman (1962) used the variational 

theorem to derive the bounds on the effective magnetic permeability of macroscopically 
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homogeneous and isotropic multiphase materials. The mathematical analogy enables the 

results to be also used for dielectric, electric conductivity, heat conductivity, and diffusivity of 

composite materials. The Hashin-Shtrikman upper bound for three-phase isotropic materials is 

expressed as: 
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in which maxk  is the largest eigenvalue of the thermal conductivity of constituent phases. With 

the help of the above equation, the upper bound HS
maxk  is calculated equal to 1.783, which is 

very close to the thermal conductivity of generated materials (1.764476 from the material 

matrix in Figure 5.11c). 

The whole procedure completes in 29 iterations in this instance. Figure 5.12 demonstrates the 

evolution histories of thermal conductivity, volume fraction and microstructural topology of 

this example.  

5.2.7. 3D three-phase material with maximum thermal conductivity 

The objective of this example is to design 3D microstructures for materials with maximum 

thermal conductivity. The PBC with dimensions 42×42×42 is discretized into 42×42×42, 

eight-node cubic finite elements. As before the eigenvalues of thermal conductivity of 

materials 1, 2 and 3 are selected as 4, 2 and 1 respectively. The BESO parameters are 

evolution rate 0.02R =E  and the filter radius  3 min =r  and penalty exponent 3=p .   The 
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procedure starts from the initial design, in which all elements are assigned with material 1 

property, except for 4 elements of material 2 at the centre of the finite element model. The 

prescribed volume fraction of the materials 1, 2 and 3 are 25%, 25% and 50% respectively. 

 

Figure 5.12: Evolution history of thermal conductivity, volume fraction and microstructures. 

Figure 5.13 shows the resulting microstructures and the thermal conductivity matrix of 

material. The HS upper bound on thermal conductivity of 3-phase materials with the 

eigenvalues sorted as  ( 321 kkk >> ) can be expressed as (Hashin and Shtrikman, 1962): 
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Figure 5.13: 3-phase material’s microstructure with maximum thermal conductivity. Material 1 is shown in dark 

blue (k1=4); material 2 in light blue (k2=2); and material 3 in yellow (k3=1); (a) single base cell; (b)  middle-cut 

of the cell; (c) spatial distribution of material 1; (d) thermal conductivity matrix 
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The HS upper bound from the above mentioned formula is calculated 1.863, which is 0.7% 

higher than the designed microstructure (1.84911) from the Figure 5.13d).  
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Figure 5.14: Evolution history of thermal conductivity, volume fraction and microstructures. 

5.3. Concluding remarks 

In this chapter, the BESO method was extended into the design of multi-phase 

microstructures for materials, with maximum bulk modulus, shear modulus or thermal 

conductivity. Following the ranking of the constituent phases based on their contribution to 

the objective function, they were divided into groups and the sensitivity analysis is performed 

between these groups. Changing the properties of elements was conducted based on the 
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ranking of these sensitivity numbers and imposing volume constraint. The numerical 

examples demonstrate that the proposed approach is capable of finding microstructures, with 

properties very close to the known analytical bounds. The procedure demonstrates very good 

convergence with high computational efficiency, which is independent of the selection of the 

penalization factor. Moreover, as an inherent property of the BESO, there are distinctive 

interfaces between the constituent phases in the generated microstructures. This makes the 

manufacturing of the generated materials easy.  

The methodology of this chapter provides the basis for the development of a technique for the 

design of multi-phase multi-objective functionally graded materials which is the subject of 

Chapter 7. 

 

 

 

 

 

 

 



 

 

 

 

Chapter 6 

Topology optimization of functionally graded materials 
 

 

 

 

 

Background 

As discussed in Chapter 2, the functionally graded materials (FGMs) are characterized by a 

gradual variation in properties as a result of the inhomogeneity in materials’ 

microstructural/compositional characteristics.  One of the challenges in designing such 

materials is the prediction of the material characteristics. Depending on the rate of gradation 

with respect to the dimensions of the representative volume element (RVE) or representative 

unit cell (RUC), theoretically two general methods are applied. If a steep gradient in material 

property is expected, then the heterogeneity nature of the RVE should be taken into account 

by analysing the material at both the microscopic and macroscopic levels. However, in the 

case of a small gradient in the material properties, adequate accuracy can be achieved by 
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applying the homogenization theory with periodic boundary conditions (Birman and Byrd, 

2007, Zhou and Li, 2008b). 

Another challenging issue in the design of an FGM is the determination of the optimal spatial 

distribution of constituent phases (Markworth et al., 1995). Based on the “inverse 

homogenization” (Sigmund, 1994a, 1994b, 1995), some researchers have proposed 

techniques for designing microstructures for materials with graded properties. For instance 

Chen and Feng (2004) and Lin et al (2004) used similar techniques for the design of cellular 

microstructures, in which the gradient of properties was realized by gradually varying the 

volume fractions of solid phase. These studies however, are mostly focused on the topology 

optimization of a series of separate base cells for graded properties. They do not ensure proper 

connection between adjacent cells along the gradient direction. 

As pointed out in Chapter 2, Zhou and Li (2008b; 2008c) have proposed systematic 

approaches for the designing of two-phase (solid/void) FGMs, with gradual change in the 

prescribed elasticity properties in one direction. In these approaches the gradation in 

properties is achieved by designing a series of base cells for different regions of the FGM. To 

preserve the connectivity between adjacent cells, three methods, namely connective 

constraint, pseudo load and unified formulation with non-linear diffusion, were proposed by 

the authors.  

In the connective constraint method, some non-designable solid elements are defined on the 

boundaries of each base cell. Through the filtering of densities, these fixed solid regions 

guarantee the existence of materials in their vicinity. They hence serve as connectors between 
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adjacent periodic base cells. Localizing these solid elements is a critical step and may lead to 

different final solutions. In the pseudo load technique, the idea is to produce a load path along 

the gradient direction by defining a pseudo load and kinematic boundary conditions along the 

gradient direction. This treatment allows the growth of material around the pseudo boundaries 

and loading areas, and produces pseudo stiffness along all base cells. However, the weighting 

factor of the pseudo load should be selected carefully in the procedure. If not its effects can 

play an excessively dominant role and may lead to a non-optimal solution (Zhou and Li, 

2008b).  

In the unified formulation, the non-linear diffusion technique has been used for obtaining an 

edge preserving solution.  The non-linear diffusion is a mathematical technique that was 

originally developed as an image processing technique and has been applied to tackle 

numerical instabilities in topology optimization (Wang et al., 2004a, Zhou and Li, 2007, 

2008d, Aubert and Kornprobst, 2006). In topology optimization through the SIMP method, 

which uses continuous design variables, the non-linear diffusion can circumvent the existence 

of intermediate densities on the boundaries of the structure. The technique achieves this by 

diffusing the densities along the tangential direction on the boundaries of the structure, while 

in other regions the non-linear diffusion equation acts as an isotropic filtering equation and 

diffuses the density uniformly (Wang et al., 2004a). In the unified formulation, the topology 

of a series of connected microstructures (known as the graded base cell or GBC) are 

simultaneously optimized for different functional properties and their connectivity is 

preserved by non-linear diffusion of densities (Zhou and Li, 2008b). 
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Apart from the connectivity of the base cells, the prohibitive issue in designing a series of 

base cells for an FGM is the computational costs, especially in 3D cases. In this chapter an 

alternative and computationally more efficient solution method is introduced, for designing a 

series of base cells for FGMs with gradation in stiffness or thermal conductivity. It is assumed 

that the base cells are composed of one solid phase and one void phase and that the gradual 

variation in the FGM properties is controlled by changing the material distributions within 

these base cells. The elasticity and conductivity characteristics within each base cell are 

estimated using the Homogenization theory.  In particular, the connectivity issue between 

adjacent base cells are addressed in the optimization algorithm. 

6.1. Methodology 

6.1.1. Topology optimization problem and connectivity between base cells 

The FGM can be tailored to make material more efficient, under non-uniform distribution of 

stresses or thermal gradient. For the design of cellular materials, the volume or weight is 

another important factor which should be considered.  For designing an FGM with the 

gradient in stiffness, in the form of bulk or shear modulus, or thermal conductivity, it is 

divided into a series of base cells along the gradation direction. As shown in Figure 6.1, it is 

assumed that there are totally N base cells along the gradation direction and that each base cell 

has a different prescribed bulk modulus, shear modulus or thermal conductivity. To achieve 

the optimal spatial distribution of materials within the base cells, the topology optimization 

problem can be mathematically defined for the jth base cell as:  
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Minimize  ∑
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c
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c kk = )                       (6.1b) 

         minxx j

i
= 1or     ;       ( Mi ,,2,1 L= )  and ( Nj ,,2,1 L= )                     (6.1c) 

where V denotes the volume (or weight); *K , *G  or *
ck  are the prescribed bulk modulus, 

shear modulus or the thermal conductivity respectively which are determined by the 

prescribed gradation of FGM for the thj  base cell; M denotes the total number of finite 

elements within each base cell.  As described before, the design variable jix  is the density of 

the thi  element within the thj  base cell, which can take a binary value of either 1 for a solid 

element or a small value, minx  (e.g. 0.001) for a void element.  

 

Figure 6.1: FGM base cells numbering along gradation direction and design stages. 

The optimization problem (6.1) can be solved by designing base cells, one by one, for the 

prescribed elasticity modulus or thermal conductivity. It can be expected that both the 

topologies and volume fractions of base cells vary from one to another. However, this 
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procedure does not ensure a proper connection between neighbouring cells (Zhou and Li, 

2008b). As mentioned before, Zhou and Li (2008b, 2008c) proposed three methods namely 

connective constraint, pseudo load and unified formulation with non-linear diffusion to 

overcome this problem. 

In the proposed method of this study, it is assumed that the prescribed bulk modulus, shear 

modulus or the thermal conductivity of the FGM gradually decreases from the first cell to the 

last one. Therefore, the solid volume fraction should also be decreased from the first base cell 

to the last cell.  Starting from a base cell that is almost entirely occupied by solid elements, 

the BESO procedure gradually reduces the number of solid elements. After obtaining the 

optimal topology for each base cell, the initial topology of the next base cell is constructed 

based on the resulting topology of the previous cell. The optimization procedure continues 

until the optimized topologies of all base cells are obtained. Comparing with designing a 

series of independent base cells, the proposed procedure significantly reduces the 

computational cost.  

The connectivity of the adjacent base cells can be maintained by considering 3 base cells at 

each stage of design. Referring to the Figure 6.1, during the topology optimization of the thj  

base cell, the connectivity between cells j and 1−j , and between 1−j  and 2−j are 

maintained by applying the filtering technique (Huang and Xie, 2007b) on the design domain 

of these three base cells together. However, the base cellsj , 1−j  and 2−j  are treated 

differently during the optimization process; whereas, base cells j  and 1−j  are optimized 

based on the optimization statement (6.1) for their individual prescribed functional properties, 
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the topology of base cell 2−j  is kept unchanged. Due to the effect of the filtering, the 

material within base cell 1−j  is gradually redistributed to provide proper connections with 

base cells 2−j and j .  

The remaining key issue is how to optimize the topology of a base cell according to equation 

(6.1). Therefore, the superscript j is dropped in the next section.  

6.1.2. Solution method  

In order to solve the topology optimization problem in equation (6.1) for each base cell using 

the BESO method, similar to the procedure used in Chapter 4, the objective function is 

modified by introducing a Lagrangian multiplierλ . For instance, when the constraint function 

is the bulk modulus, the objective function is re-written as: 

Minimize ( ) )KK(Vxxf *
M

i
iii −+=∑

=

λ
1

                            (6.2) 

It is seen when the constraint on bulk modulus is satisfied, the modified objective function is 

equivalent to the original one and the Lagrangian multiplier can take any value. The 

derivative of the modified objective function is expressed as: 

i
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i x
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In the BESO only the ranking of sensitivity numbers is important. By discretising the base 

cells into uniform mesh size (in which all elements have equal volume or area), the sensitivity 

of each element can be re-written as: 

i
i
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i x
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dx
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where ixK ∂∂ can be calculated using the homogenization theory from equations (3.15) and 

(3.3) : 
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Similarly, when the constraint function is defined on the shear modulus or the thermal 

conductivity, the sensitivity numbers are obtained from the equations (3.15), (3.4) or (3.17) 

and (3.5) respectively. 

As was discussed in Chapter 3, to circumvent the numerical instabilities of mesh-dependency 

and checkerboard patterns, the filtering scheme is applied by averaging the elemental 

sensitivity numbers, with their neighbouring elements (Huang and Xie, 2007b, 2010b). Here 

the filtering scheme is applied across all elements of the 3 base cells, at each stage of 

procedure. As it will be shown by numerical examples, this technique can provide a good 
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interconnection between different base cells of the FGM. The following weighting equation is 

used for filtering the sensitivity numbers: 

∑
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1

1ˆ                                                                                                           (6.5) 

in which MP 3= denotes the total number of elements in the design domain of 3 adjacent  

base cells (see Figure 6.1). The weighting factor mnw is defined as: 
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mn                                                                                       (6.6) 

in which mnr is the distance between element m and element n centres. The filter radius minr is 

defined to specify the neighbouring elements that affect the sensitivity of element m. To 

improve the convergence of the procedure, as described in Chapter 3, the elemental sensitivity 

numbers can be further modified by averaging with their values from the previous iteration.  

The gradual change in the volume of the solid phase is ensured by imposing the constraint in 

the form of:  
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where superscripts of t  and 1+t denote the current and the next iteration numbers 

respectively. ER is the evolution rate that is positive and defined as the BESO initial 

parameter. 

6.1.3. Numerical implementation 

The whole optimization procedure can be summarized with the following steps: 

Step 1: Define the prescribe modulus of elasticity (when the objective function is bulk or 

shear modulus) or thermal conductivity *jck for the different base cells of the FGM; 

define the BESO parameters such as evolution rate (ER), filter radius (rmin) and 

penalty exponent; 

Step 2: Initiate a finite element model for the base cellsj and 1−j (if j>1) ; apply periodic 

boundary conditions and loads which are equivalent to unit strain fields in elasticity 

analyses. Alternatively, apply uniform heat fluxes in thermal analyses; Carry out the 

finite element analyses to obtain output displacement fields u  in elasticity analyses or 

induced temperature fieldsµ  in thermal analyses; 

Step 3: Calculate the elemental sensitivity numbers iα  described above. Use the saved 

sensitivity numbers of base cell j-2 (if  j>2); 

Step 4: Filter sensitivity numbers of base cellsj , 1−j (if j> 1) and 2−j  (if j> 2) together 

using equation (6.5). Average sensitivity numbers of base cells 1−j and j  with their 

corresponding values from the previous iteration;  
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Step 5: Rank all elemental sensitivity numbers within the base cells j  and 1−j separately. 

Reassign design variables ix  to 1 or minx  so as to satisfying the volume constraint for 

the next iteration defined in equation (6.7) for base cellsj  and 1−j ; 

Step 6: Repeat steps 2 through to 5, until the objective function converges; 

Step 7: Use the topology of base cell j  as the starting topology for the next base cell.  Repeat 

steps 2 to 6 for other base cells until optimized topologies of all base cells are 

achieved. 

6.2. Results and discussion 

6.2.1. 2D FGM with the variation in bulk modulus 

The objective of the first example is to design a least weight cellular FGM, with a variation in 

bulk modulus from 40% to 15% of that of the solid constituent phase. It is assumed that the 

design domain of the FGM is simply divided into 10 base cells.  Each base cell has the 

dimensions of 80×80 and is discretized into 80×80, 4-node square elements. The Young’s 

modulus and Poisson’s ratio of the solid constituent phase are selected as 1=sE , and 3.0=ν . 

The BESO parameters are the evolution rate, 03.0=ER and filter radius 6min =r . The initial 

topology of the first base cell consists of four elements at the centre with void properties, 

while solid properties are assigned to other elements. 

The designed microstructures are shown in Figure 6.2 in which the bulk modulus decreases 

linearly from the left to the right. The total number of iterations for this example is 176. As it 
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is demonstrated in the figure, the established BESO procedure provides appropriate 

connections between the adjacent cells. Comparing to the designing of all base cells 

simultaneously, the proposed procedure needs to conduct finite element analyses for only two 

base cells in each iteration. Consequently a significant saving in computational time and 

memory is achievable. Using an ordinary computer with a 2.7GHz, core i7 CPU and 8GB of 

RAM, the total computational time for this example is about 96min.  

 
 

Figure 6.2: Optimized FGM with linear gradation in bulk modulus of elasticity. 

Figure 6.3 demonstrates the variation of the bulk modulus of the generated FGM; the 

resulting bulk modulus conforms well to the prescribed values, with a deviation of less than 

0.2%.  

In order to compare the elapsed time with the conventional approach of simultaneous 

designing of all base cells (Zhou and Li 2008b; 2008c), an example with the same parameters 

of the above example is considered. The total number of iterations required for the 

convergence of simultaneous design of base cells is 75 but the elapsed time is 409 minutes 

which is more than 4 times greater than the approach proposed in this paper. The generated 

microstructures are shown in Figure 6.4. 

In some cases FGMs with non-linear variation in functional properties are desirable. As 

another example, the above mentioned method is applied for the topology optimization of an 

FGM, with the same initial parameters but with the prescribed bulk modulus that varies non-
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linearly along the gradation direction. Here the prescribed bulk modulus in the thj  base is 

defined as:  

 

 

Figure 6.3: Linear variation of bulk modulus and volume fractions for the optimized FGM where K0 is bulk 

modulus of the solid. 

 

Figure 6.4: Simultaneous Optimized cells for an FGM with linear gradation in bulk modulus of elasticity. 
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where 10=n  is the total number of base cells in the design domain of the FGM. *
1K  and *

nK  

are the prescribed bulk moduli of the first and last base cells, which in conformity to the 

above example, are selected equal to 40% and 15% of bulk modulus of the solid phase, 

respectively. The generated microstructures are shown in Figure 6.5. It demonstrates that the 
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proposed optimization procedure can successfully obtain a proper connected, optimized 

cellular FGM. Figure 6.6 shows the variation of volume fraction through the cells. The 

variation of the bulk modulus of the generated FGM is also compared with the prescribed 

values in the same figure. The total number of iterations in this instance was 166. 

 
 
 

Figure 6.5:  Optimized FGM with non-linear gradation in bulk modulus of elasticity. 

 

 

Figure 6.6: Non-linear variation of bulk modulus and volume fractions for the optimized FGM. 

As discussed before, in Homogenization theory, the difference between average field 

behavioural responses under assumed and actual boundary conditions are smaller when the 

number of base cells is increased in the design domain. Figure 6.7 demonstrate another 2D 

example in which the FGM domain is divided into 60 base cells and the bulk modulus varies 

linearly from 40% to 15% of that of the solid constituent phase. Each base cell is divided into 
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a coarse mesh of 40×40 elements and the filter radius 4min =r . Other parameters are similar to 

above examples. 

 

Figure 6.7: 2D FGM divided into 60 

cells along the gradation direction with 

linear variation of bulk modulus. The 

designed microstructure has been 

repeated 20 times perpendicular to the 

gradation direction 

 

6.2.2. 2D FGM with variation in shear modulus 

The objective of this example is to design a 2D plane stress FGM, in which the shear modulus 

varies linearly between 50% and 20% of that of the solid material. The design domain is 
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divided into 12 base cells, and each base cell with dimensions 80×80, is further discretized 

into 80×80, 4-node square elements.  As before, the model of the first base cell is entirely 

composed of elements with solid properties, except for four void elements at the centre. The 

BESO parameters are the evolution rate 04.0=ER  and the filtering radius 5min =r . The 

mechanical properties of the solid phase are selected as the Young’s modulus and Poisson’s 

ratio of 1=sE and 3.0=ν  respectively. 

 

Figure 6.8: Optimized FGM with linear gradation in shear modulus of elasticity. 

 

Figure 6.9: Variation of shear modulus and volume fractions for the optimized FGM where G0 is the shear 

modulus of the solid. 

The optimized microstructure of the FGM is shown in Figure 6.8, which demonstrates the 

proper connections between base cells. Figure 6.9 presents the effective shear modulus of the 
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generated FGM in comparison with the prescribed values. It clearly indicates that the 

resulting FGM has the prescribed variation in shear modulus with high accuracy.   

6.2.3 3D FGM with variation in bulk modulus 

To test the algorithm in 3D problems, this example aims to generate a series of base cells for 

an FGM, with the gradation in bulk modulus from 50% to 5% of the solid constituent phase. 

The design domain is divided into 10 base cells, each of which discretized into 31×31×31, 8-

node cubic elements; the dimensions of each element are 111 ×× . As before the dimensionless 

Young’s modulus 1=sE and the Poisson’s ratio 3.0=ν  are selected for the solid constituent 

phase. The evolution rate 03.0=ER and filter radius 3min =r  and the penalty exponent 3=p

are the BESO design parameters. The initial finite element model of the first base cell is 

entirely occupied by solid elements, except for one void element at the centre.  

 

Figure 6.10:  3D FGM with gradation in bulk modulus of elasticity (a) optimized microstructure (b) cross 

section of FGM showing internal structure 

The generated microstructures are shown in Figure 6.10 which demonstrates appropriate 

connections between the base cells. The total iteration number for this example is 205. Figure 
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6.11 represents the resulting bulk modulus of the FGM in comparison with the prescribed 

values and corresponding volume fractions. The deviation of FGM effective bulk modulus 

from the prescribed values is less than 0.15%.  

 

Figure 6.11: Variation of bulk modulus and volume fractions for the 3D FGM. 

6.2.4. 3D FGM’s with variation in shear modulus 

An FGM is designed with 8 base cells, with variation in the average shear modulus from 40% 

to 5% of that of the solid constituent phase. Each base cell with dimensions of 303030 ×× is 

discretized into 303030 ×× , 8-node cubic elements. The initial finite element model of the 

first base cell is entirely occupied by solid elements, except for 8 void elements at the centre 

of the model. As before, the Young’s modulus and Poisson’s ratio of the solid phase are 

selected as 1=sE and 3.0=ν respectively; the design parameters are selected as 03.0=ER , 

3min =r  and 3=p .  
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The resulting topology, with appropriate connection between the base cells is shown in Figure 

6.12. The total number of iterations is 169. The resulting shear modulus and volume fractions 

are also presented in the Figure 6.13, which demonstrates a very good agreement with the 

prescribed shear modulus (the deviation from prescribed values is less than 0.2%). 

 

Figure 6.12: 3D FGM with variation in shear modulus of elasticity (a) optimized microstructure (b) cross 

section of FGM showing internal structure. 

 

Figure 6.13: Variation of shear modulus and volume fractions for the 3D FGM 
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6.2.5 2D FGM with variation in thermal conductivity 

The objective of this example is to generate a series of base cells for an FGM, with prescribed 

variation in the thermal conductivity. Each base cell is discretized into 8080× square 

elements with the dimensions11× . The BESO design parameters are selected as 02.0=ER , 

8min =r and 3=p . It is assumed that the FGM is divided into 10 cells and the prescribed 

average thermal conductivity of FGM varies between 50% and 20% of the nonporous solid 

phase. The thermal conductivity of the solid material is assumed to be 1=sk .  

 

Figure 6.14: 2D FGM with variation in thermal conductivity 

 

Figure 6.15: Variation of thermal conductivity and volume fractions for the 2D FGM where0ck  is the thermal 

conductivity of the solid phase 
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The generated topology with appropriate connection between base cells is shown in Figure 

6.14. The total number of iterations is 166. The resulting average thermal conductivity and 

volume fractions are also presented in Figure 6.15, which demonstrates a very good 

conformity with the prescribed values; the deviation from prescribed values is less than 0.1%. 

6.2.6 3D FGM with variation in thermal conductivity 

This example demonstrates the effectiveness of the method for topology optimization of 

microstructures for a 3D FGM, with prescribed variation in thermal conductivity. It is 

assumed that the FGM consists of 8 base cells with dimensions 252525 ××  which are 

discretized into 252525 ×× cubic elements. The BESO design parameters are selected as the 

evolutionary rate 02.0=ER , the filter radius 3min =r  and the penalty exponent 3=p . The 

prescribed thermal conductivity of the FGM is set to vary between 55% and 25% of the 

nonporous solid phase. As before, It is assumed that the eigenvalue of the thermal 

conductivity of the solid material is 1=sk .  

The generated base cells are shown in Figure 6.16. The total number of iterations is 146. The 

resulting thermal conductivity and volume fractions are also presented in the Figure 6.17, 

which demonstrates a very good conformity with the prescribed values. The deviation from 

prescribed values is less than 0.2%. 
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Figure 6.16: 3D FGM with variation in thermal conductivity (a) optimized microstructure (b) cross section of 

FGM showing internal structure. 

 

 

Figure 6.17: Variation of thermal conductivity and volume fractions for the 3D FGM where 0ck  is the thermal 

conductivity of the solid phase 
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6.3. Concluding remarks 

This study proposed a new and computationally efficient technique for the topology 

optimization of functionally graded cellular materials. The method addresses the connectivity 

issue between the adjacent base cells, by considering the topology optimization of three cells, 

at each stage of design and filtering their sensitivities together. The process only requires that 

the finite element analyses to be conducted for only two base cells in each iteration. This also 

considerably reduces the computational cost. Numerical examples have been presented to 

demonstrate the efficiency of the proposed algorithm for the topology optimization of 

microstructures for cellular FGMs, with gradual changes in bulk modulus, shear modulus or 

thermal conductivity with the minimum volume (or weight) of the solid material.  Due to the 

existence of local optima in material design, different topologies can be achieved by selecting 

different design parameters. The proposed procedure can be applied to the designing of FGMs 

with gradation in other functional properties, such as magnetic permeability or electrical 

permittivity. In the next chapter the method will be used for topology optimization of multi-

phase FGM with two functional properties. 

 
 



 

 

 
 
 
 
 
 
 
 

Chapter 7 

Topology optimization of multi-objective graded composites 

 

 

 

Background 

In the previous chapter a systematic method utilising topology optimization techniques, has 

been proposed for the design of FGMs. The cellular FGM was represented with a series of 

base cells and the structural topology optimizaiton is applied to find the optimal material 

distribution within the base cells, so that the FGMs develop a gradual varition in the 

prescribed property. As discussed in Chapter 2, multi-functional materials are inevitably 

composites of two or more constituent phases (Gibson, 2010). In comparison with cellular 

materials, composites of two or more materials are more advantageous, for practical 

application. This is attributed to the fact that by combining different constituent phases, a 
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wider range of possible properties can be achieved, which are not attainable using individual 

phases.  

The common approach for the topology optimization of materials for multi-functional 

properties is to extremize a combination of functional properties (Cadman et al., 2013). 

Assuming two functional properties of 1P and 2P  for the composite, the optimization objective 

function is usually defined by applying some weighting factors to different parts of the 

objective functions:  

2211 PwPw +                                             (7.1) 

By varying the weighting factors 21,ww , materials with different properties can be achieved 

due to varying effects of 1P and 2P  on the objective function (de Kruijf et al., 2007, Torquato 

et al., 2003, Guest and Prévost, 2006, Cadman et al., 2013). However, a drawback of such an 

approach is that by applying different 21 / ww rates, a proportional variation in the objective 

functions cannot be anticipated (de Kruijf et al., 2007). One reason for such a phenomenon is 

the possible non-linear cross-properties of the objective functions, especially when these 

functional properties are selected from different physical characteristics. More importantly, it 

is largely attributed to the existence of local optima in material design. When pairs of fixed 

weighting factors are used during the whole optimization procedure, the existence of the local 

optima may cause the topology optimization algorithms to trap in a nearby solution and 

hence, by varying 21 / ww irregular fluctuations appears in the final material performance. As a 

consequence, the results of such an optimization problem statement are usually expressed 

with a generated Pareto front (Chen et al., 2009, 2010, de Kruijf et al., 2007). This provides a 
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visual representation of attainable functional properties with respect to a particular set of 

design parameters. However in the case of designing an FGM where a prescribed gradual 

variation in functional properties is desirable, this optimization method with given fixed 

weighting factors, is not appropriate because of the uncontrolled fluctuations in resulted 

properties. 

In this chapter, a computational technique for topological design of microstructures for FGMs 

with multiple graded properties, e.g. bulk modulus and thermal conductivity, is presented. It is 

assumed that the FGM is composed of two non-zero constituent phases. As before, the FGM 

is divided into of a series of base cells and the topology optimization is utilized to design the 

base cells for desire functional properties. Instead of applying pairs of fixed weighting factors 

to different terms of the objective function, an optimization problem statement is defined to 

maximize one functional property, with the constraint being the gradual change of another 

functional property. Similar to the method proposed in the previous chapter for cellular FGM, 

to improve the connectivity of adjacent base cells, they are optimized progressively by 

considering three base cells at each stage and filtering their sensitivities together. Numerical 

examples will be presented to demonstrate the effectiveness of the proposed method in 

controlling the functional properties.  

7.1. Methodology  

7.1.1. Problem statement and sensitivity numbers 

By assuming that the FGM totally consists of N base cells along the gradation direction (see 

Figure6.1), the topology optimization statement for designing the jth base cell with maximum 
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bulk modulus and prescribes variation of thermal conductivity and volume fraction can be 

expressed as: 

Maximize  jK                                                                                                (7.1a) 

Subject to:  *j
c

j
c kk =                                          (7.1b) 

   ∑
=

=
M

i

j
i

j
i

j VxV
1

                  

    minxx j
i =   or 1                                              (7.1c) 

( Mi ,...2,1= ) and ( Nj ,...2,1= ) 

where M denotes the number of total elements within the model of each base cell. It is 

assumed that the material is composed of two non-zero constituent phases with the Young’s 

modulus and thermal conductivity of 1E  and 1k  for material 1 and 2E  and 2k  for material 2;  

jV represents the volume (or weight) of material 1 in the thj  base cell; jK  is the bulk 

modulus of the thj  base cell which is defined in equation (3.3); j
ck  is the effective thermal 

conductivity of the thj  base cell defined with equation (3.5) and *j
ck is its prescribed value of 

the materials thermal conductivity which is determined by the desired gradation of thermal 

conductivity of FGM.  

The j
ix  is the design variable of the thi  element within the thj  base cell; it can be defined in 

such a way to take a binary value of either 1 or a small value (i.e. 0.001) for elements with 
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material 1 or 2 respectively. The local material of an element within the base cells is assumed 

to be isotropic, with the physical property that varies between the properties of the two 

constituent phases. For the cases in which the two materials are well-ordered (i.e. 21 EE > and 

21 kk > ), the following power-law interpolation scheme is applicable (Rozvany et al., 1992, 

Bendsøe and Sigmund, 2003):  

21 )1( ij
p
iij

p
iij DxDxD −+=                  (7.2a) 

21 )1( ij
p
iij

p
iij kxkxk −+=                  (7.2b) 

in which ijD  and ijk  are the elements of stiffness and thermal conductivity matrices 

respectively; the superscripts denotes the constituent phase numbers; p  is the penalty 

exponent ( 3=p  is used). When the two constituent phases have ill-ordered properties, (i.e. 

21 EE > and 21 kk <  ) the interpolation schemes are defined as: 

21 )1( ij
p
iij

p
iij DxDxD −+=                 (7.3a) 
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As before, for the calculation of the overall properties of composite materials the 

Homogenization theory is used (Bendsøe and Kikuchi, 1988, Hassani and Hinton, 1998a, 

1998b). For calculation of the elements of stiffness and thermal conductivity matrices, the 

appropriate expressions are given by equations (3.14) and (3.16) respectively. Using 
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equations (7.2) or (7.3), the derivation of stiffness matrix HD  with respect to the design 

variables ix , is found by using the adjoint method as given by equation (3.15). Similarly, the 

sensitivity numbers of the conductivity matrix  Hk   with respect to the design variable, can be 

calculated via equation (3.17). 

7.1.2. Solution method and Lagrangian multipliers  

For solving the optimization problem (7.1), it is necessary to modify the original objective 

function by adding the constraint function through introducing a Lagrangian multiplier  λ . 

Similar to the method introduced in Chapter 4 for imposing isotropy, the objective function is 

modified as: 

      )kk(K)(f *j
c

j
c

j −+= λx                 (7.4a) 

or by setting       
1 )( l

l

−
=λ it can be rewritten as: 

11- ;       
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≤≤−
−

+= l
l

l
)kk(

)(
K)(f *j

c
j

c
jx                                    (7.4b) 

where the Lagrangian multiplierλ  can takes any value, if the prescribed thermal conductivity 

is attained. Otherwise, it is determined in such a way that the thermal conductivity jck  tends 

towards its prescribed value *j
ck  in the subsequent iterations. The thi  element sensitivity 

number is defined by the sensitivity of the modified objective function in (7.4) as: 
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Since just the ranking of elements matters it can be rewritten as: 

iii  )( 211 ααα ll +−=                           (7.5b) 

where  i1α  and i2α  are expressed by 
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which can be readily calculated numerically by applying (3.15) and (3.17). To determinel , it 

is necessary to estimate the variation of the thermal conductivity due to the changes of the 

design variables. The thermal conductivity of the next iteration can be estimated based on the 

material’s thermal conductivity at the current iteration by exploiting the following equation: 

i
i i

t
j

ctj
c

tj
c x

dx

kd
kk ∆+= ∑++ )(

)()( 11                                 (7.7) 

in which superscripts of t and  t+1 denote the current and next iteration numbers respectively. 

Similar to the method described in Chapter 4, the Lagrangian multiplier λ  is determined in 

such a way that the constraint on the thermal conductivity is satisfied in the subsequent 
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iterations. For instance, in the challenging case where the two constituent phases have ill 

ordered properties, the initial elemental sensitivity numbers are calculated by assuming0 =l . 

Then, by ranking the sensitivity of elements and imposing the volume constraint, a possible 

new set of design variables are evaluated. The thermal conductivity in subsequent iteration 

1)( +tj
ck is estimated using equation (7.7). If the thermal conductivity 1)( +tj

ck  is less than the 

prescribed value *j
ck , then l  has to be gradually increased, which means that the modified 

objective of optimization gradually turns to the maximization of thermal conductivity. On the 

other hand, in the case where the two constituent phases have ill ordered properties, gradual 

decreasing the Lagrangian multiplier to 0 will convert the optimization to the maximization of 

bulk modulus, in which the thermal conductivity gradually reduces due to the opposite effects 

of ill ordered constituent phases. 

The precise value of l  could be determined using the bisection algorithm in an internal loop, 

by exploiting two auxiliary variables   lowl and   upl . When the constituent phases are ill-

ordered at the beginning of each iteration they are set equal to 0 and 1 respectively. If the 

calculated value *1)( j
c

tj
c kk −+  is negative, then the lower bound of auxiliary variables is 

updated as   ll =low  and 2/)( low uplll += . The sensitivity numbers are updated according to 

equation (7.5) and new set of design variables, as well as 1)( +tj
ck , are calculated. Every time 

that the predicted thermal conductivity is less than prescribed value (i.e. *1)( j
c

tj
c kk <+ ), the 

above updating scheme (   ll =low  and 2/)( low uplll += ) is applied; otherwise the upper 

bound is updated as   ll =up   and 2/)( low uplll += . The internal loop is halted when the 
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difference between axillary variables (   lowl ,   upl ) is acceptably small (e.g. -501 ). To stabilize 

the procedure, the coefficient  l can be averaged with previous iteration value before final 

adding and removing of elements. 

7.1.3. Numerical implementation 

As discussed in the previous chapter, in the design of a series of base cells for an FGM, the 

transition between adjacent unit cells is an important issue that should be considered. In the 

optimization procedure implemented in this chapter, the proposed method from Chapter 6 is 

utilized, to provide a smooth transition between base cells. This means, at each stage of the 

design, three base cells are considered and their sensitivities are filtered together. The filtering 

is made by averaging the sensitivity number of each element with its neighbouring elements 

(Huang and Xie, 2007b, 2010b). As pointed out before, the same filtering scheme can 

effectively circumvent the numerical instabilities of the checkerboard pattern and mesh-

dependency in the BESO procedure. The filtering is performed using equation (6.5).   

The whole optimization procedure can be summarized in the following steps: 

Step 1: Define constituent materials properties, prescribed thermal conductivity and volume 

fraction ( * V ) for the different regions of the FGM. Define the BESO design 

parameters of evolutionary rate (ER), filter radius ( min r ) and penalty exponent;  

Step 2: Initiate finite element models for the base cells j  and 1 −j  (if 1 >j ) for structural 

analysis; apply periodic boundary conditions and uniform strain fields. As described in 

Chapter 3, in 2D problems 3 independent load cases and in 3D cases 6 independent 
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load cases are required. Carry out the finite element analysis to obtain the output 

displacement fields; 

Step 3: Initiate separate finite element models of the base cells j  and 1 −j   with appropriate 

periodic boundary conditions and uniform heat fluxes for thermal analysis. In 2D 

problems 2 independent fields of heat fluxes and in 3D cases 3 independent fields are 

required. Carry out the finite element analysis to obtain the induced temperature fields; 

Step 4: Calculate the sensitivities i1α  and i2α using equations (7.6) for base cells j  and 1 −j . 

Use the saved sensitivity numbers of the base cell 2 −j  (if 2 >j ) and filter the 

sensitivities of the elements within these three base cells using equation (6.5); Let

0=l ; 

Step 5: Calculate iii  21)1( ααα ll +−=  for the elements of the base cells j  and 1 −j ; rank 

elemental sensitivity numbers ; obtain new set of design variables i x  by applying 

volume constraint on material 1 for base cellsj and 1 −j separately as:

)),1(max( *1 VERVV tt −=+ ;  

Step 6: Calculate the effective thermal conductivities tj
ck )( and tj

ck )( 1− ; calculate their next 

iteration approximations 1)( +tj
ck  and 11)( +− tj

ck using equation (7.7) for base cells j  

and 1 −j respectively; 

Step 7: Use the above explained method to calculate the modified l  for base cells j  and

1 −j ; 

Step 8:  Repeat steps 5 through 7 until l  converges to a constant value; 
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Step 9:  Average the sensitivity numbers of the base cells j  and 1 −j  with their values from 

the previous iteration if applicable; update the design variablesix  by changing from 1 

to minx  for elements with lower sensitivity numbers and from minx  to 1 for elements 

with higher sensitivity numbers;  

Step 10: Repeat steps 2 to 9 until both the volume constraints and the thermal conductivities 

of base cells j  and 1 −j are converged to their corresponding prescribed values; 

Step 11: Use the final topology of base cell j  to construct the starting model for the base cell

1 +j .   

Step 12: Repeat steps 2 to 11 until optimized topologies of all base cells are achieved.  

7.2. Results and discussion 

7.2.1. 2D Examples 

The objective of the first example is to design an FGM with maximum bulk modulus, while 

the thermal conductivity varies linearly from the Hashin-Shtrikman (HS) lower bound 

corresponding to 60% volume fraction of material 1, to the upper bound corresponding to 

40% of material 1 (Hashin and Shtrikman, 1962). The design domain of the FGM has been 

divided into 16 base cells and it is assumed that the base cells are composed of two ill-ordered 

constituent phases. The non-dimensional Young’s modulus and thermal conductivity of 

material 1 are selected as 3 1 =E   and 1 1 =k  respectively ; the Yong’s modulus and thermal 

conductivity of material 2 are assumed 1 2 =E   and 3 2 =k .  Each base cell with dimensions 

of 6006 × is discretized into 6006 × , 4-node square elements. The initial topology of the first 

base cell consists of four elements with material 2 properties, while other elements are 
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assigned with material 1 properties. The BESO design parameters are the evolution rate of

0.04R =E , filter radius 3min =r  and the penalty exponent 0.3=p . 

The generated microstructures for the FGM are demonstrated in Figure 7.1. The total iteration 

numbers for the procedure is178. Figure 7.2 shows the variations of the bulk modulus and 

thermal conductivity along the FGM gradation direction. It can be seen that the bulk modulus 

gradually decreases from the left to the right while the thermal conductivity gradually 

increases. It is noted that the resulting thermal conductivity conforms well to the prescribed 

values, with a deviation of less than 1.5%.   

 

Figure 7.1:  Four rows of 2D base cells designed for the FGM with prescribed thermal conductivity and volume 

fraction; the volume fraction of material 1 (shown in dark blue) varies between 60% and 40% of the total volume 

of the cell 

When the prescribed volume fraction of material 1 is 50% for all base cells, the 

microstructures that are shown in Figure 7.3 are generated. The variation of thermal 

conductivity and bulk modulus of this case are shown in Figure 7.3. The figure demonstrates 

a good conformity between the attained thermal conductivity and prescribed values. The bulk 
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modulus also demonstrates a smooth variation, although the constraint is only imposed on the 

thermal conductivity of material.  

 

Figure 7.2: Variation of thermal conductivity and bulk modulus along the gradation direction, (kc: thermal 

conductivity; K: bulk modulus) 

 

 

Figure 7.3: Four rows of 2D base cells designed for the FGM with variation in thermal conductivity; the 

prescribed volume fraction of material 1 (shown in dark blue) is 50% in all base cells 
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Figure 7.4: Variation of thermal conductivity and bulk modulus along the gradation direction, (kc: thermal 

conductivity; K: bulk modulus) 

When the prescribed volume fraction of material 1 is 50% for all base cells, the 

microstructures that are shown in Figure 7.3 are generated. The variation of thermal 

conductivity and bulk modulus of this case are shown in Figure 7.3. The figure demonstrates 

a good conformity between the attained thermal conductivity and prescribed values. The bulk 

modulus also demonstrates a smooth variation, although the constraint is only imposed on the 

thermal conductivity of material.  

7.2.2. 3D Examples 

To verify the proposed procedure in 3D cases, an FGM is modelled with variation of thermal 

conductivity from the HS lower bound to the upper bound, while the prescribed volume 

fraction of material 1 varies between 80% and 50% of the total volume of FGM. The domain 

of FGM is divided into 12 base cells and each cell is discretized into 23×23×23, 8-node cubic 

elements. As before, the non-dimensional Young’s modulus and thermal conductivity of 
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material 1 are selected as 3 1 =E  and 1 1 =k  . For material 2 the corresponding values are  

1 2 =E   and 3 2 =k . The initial design of the first base cell is constructed by assigning 

material 1 to all elements, except for eight elements at the corners of the base cell which are 

assigned with material 2 properties. 

 

Figure 7.5: (a) 3D cells for the FGM with variation in thermal conductivity and volume fraction of materials; (b) 

longitudinal sections of (a); (c) topology of material 1 (dark blue) 

The final topology of the optimized FGM is shown in Figure 7.5. This shows a smooth 

transition between the generated base cells. Figure 7.6 presents the variation of the bulk 

modulus and thermal conductivity along the gradation direction of the FGM. The thermal 

conductivity agrees to the prescribed values, with less than 1.3% deviation. The bulk modulus 

also varies smoothly. 
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Figure7.6: Variation of thermal conductivity and bulk modulus along the gradation direction of 3D FGM, (kc: 

thermal conductivity; K: bulk modulus) 

 

Figure 7.7:  (a) 3D cells for the FGM with variation in thermal conductivity and volume fraction of materials; 

(b) longitudinal sections of (a); (c) topology of material 2 (light blue) 

Figure 7.7 demonstrate another optimization example with the above parameters, but with 

different initial design. A series of microstructures have been generated, in which the initial 

topology of the first base cells contains one element of material 2 at the centre of the first base 

cell, while other elements are assigned with material 1. By repeating the base cells 
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perpendicular to the direction of gradation, it can be shown that Figures 7.5 and 7.7 are 

essentially refereeing to identical microstructures for FGM. The corresponding variation of 

the thermal conductivity and bulk modulus of the microstructure of Figure 7.7 are presented 

in Figure 7.8.  

 

Figure 7.8:  Variation of thermal conductivity and bulk modulus along the gradation direction of 3D FGM, (kc: 

thermal conductivity; K: bulk modulus) 

The generated microstructures are comparable with the non-functionally graded base cells 

found by Challis et al. (2008). 

7.3. Conclusions 

This chapter presented a computational method for the topology optimization of functionally 

graded composites with multi-functional properties and two non-zero constituent phases. The 

gradation of functional properties of the composite along one direction was attained by 

gradually changing the topological distribution and volume fraction of constituent phases.  To 
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save the computational time and obtain a smooth transition between adjacent base cells, a 

progressive design approach based on the topology optimization of three adjacent base cells 

was applied at each stage. The numerical examples were presented, which demonstrate the 

effectiveness of the proposed approach in providing precise control over the variations of 

functional properties. The procedure could also be used for topology optimization of FGMs 

with other multi-functional properties. 

  

 

 



 

 

 

 

 

 

Chapter 8 

Conclusion 
 

 

 

Previous studies on topology optimization at the macrostructural level have clearly indicated 

the advantages of Bi-directional Evolutionary Structural Optimization (BESO) in terms of 

lower computational costs, quality of generated microstructures, and the simplicity of the 

methodology in implementation with commercial software packages.  Moreover, in the design 

of materials through topology optimization, it has been shown that the selection of the 

structural optimization methodology highly affects the results. The primary objective of this 

study was to open a pathway toward applying the BESO for the topological design of 

materials microstructures. Upon the successful accomplishment of the primary objective, the 

methodology was extended into various material design scenarios. 
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The literatures on several structural topology optimization algorithms that have already been 

used for the design of materials microstructures have been critically reviewed here. Moreover, 

as the process of material design usually involves the application of material modelling 

techniques, some of these techniques are briefly surveyed. Applications of topology 

optimization techniques in the design of microstructures for materials have been addressed.  

In the first stage, the topology optimization of periodic microstructures using BESO has been 

sought for cellular materials with, maximum bulk modulus, shear modulus and thermal 

conductivity. By assuming the base cell as a continuum structure, the optimal spatial 

distribution of the solid phase within the microstructure has been determined. The effective 

elasticity matrix evaluation and the sensitivity analysis have been performed by applying the 

Homogenization theory. By ranking elements based on their sensitivity numbers and by 

imposing a volume constraint, the density of elements iteratively changes until the solution 

converges. The numerical examples clearly demonstrate the high computational efficiency of 

BESO in topology optimization of materials microstructures. Some interesting topological 

patterns for the cellular materials have been presented. 

Next, an algorithm has been developed for the design of isotropic cellular materials by 

introducing an additional constraint to the optimization problem. The modified objective 

function has been constructed by introducing a Lagrange multiplier to implement the isotropy 

constraint. The numerical examples indicate that the extra constraint is very well incorporated 

in the optimization algorithm. With the established elemental sensitivity numbers, isotropic 

materials with maximum bulk or shear modulus have been designed.  It has been shown that 

the developed methodology is applicable to other design scenarios. 



 
 
 
 
 
 

Chapter 8                                                                                                                                218 
 
 
 
 
 

 

Thereafter, the design of a multi-phase microstructure for materials with maximum bulk 

modulus, shear modulus or thermal conductivity has been investigated. Following the ranking 

of constituent phases based on their contribution to the objective function, they have been 

divided into some groups and the sensitivity analysis has been performed between groups. 

The addition and removal of elements has been performed based on the ranking of these 

sensitivity numbers, and by imposing volume constraint between different groups. The 

generated microstructures demonstrate very good agreement with known analytical bounds on 

material properties. The procedure has demonstrated a very stable convergence without any 

numerical difficulty, as opposed to other proposed procedures in the literature. The other 

major advantage of the BESO in the design of composites is that there are distinctive 

interfaces between constituent phases in the generated microstructures. 

Furthermore, the methodology has been extended into the designing of a series of base cells 

for cellular FGMs. In particular, the approach addresses the connectivity issue between 

adjacent base cells by considering the topology optimization of three adjacent base cells at 

each stage of the design. The proposed approach performs finite element analyses for only 

two base cells at each stage of the design and maintains the connectivity of cells by devising a 

filtering scheme, thereby greatly reducing the computational cost. Numerical examples for 

designing FGMs with, bulk modulus, shear modulus or thermal conductivity demonstrate the 

effectiveness of the approach. 

Finally, a computational procedure for the topology optimization of functionally graded 

composites with multi-functional properties has been proposed.  It is assumed that the FGM 

consists of two non-zero material phases and the design objective is defined as the 
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maximization of one functional property, while a performance constraint is imposed on the 

variation of another functional property.  To save the computational cost and obtain a smooth 

transition between adjacent base cells, a progressive design approach is used by performing 

topology optimization on three adjacent base cells at each stage. The numerical examples 

demonstrate the effectiveness of the approach in designing FGMs with smooth variation in 

maximum stiffness and prescribed variation in thermal conductivity.  

The topology optimization problems solved in this thesis are rather simplified cases. However 

the design scenarios considered in this thesis demonstrate that the BESO method can be 

successfully applied in the design of microstructures for materials. For engineering 

applications, a variety of demands in terms of functionality or performance constraints may be 

placed on material systems; these issues could not be addressed in this thesis.  

In Terms of the functional properties only stiffness and thermal conductivity optimization 

problems were considered in this thesis. Various other design objectives functions for 

materials can be considered in future studies. For example, materials with prescribed or 

tailored plasticity, viscosity or frequency characteristics can be the objective of optimization. 

Such materials have wider demands in advanced materials systems.   

In this thesis, the topology optimization of materials with volume constraint and one 

performance constraint has been investigated. The methodologies in the presented form 

cannot be used for material optimization, when there are two or more performance 

constraints. When there are such kinds of demands, more advanced mathematical 

methodologies are needed to be developed. 
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Through the optimization process for the design of FGM’s in the current study, periodic 

boundary conditions were applied on microstructures and the Homogenization theory is used 

for calculation of effective properties of materials. This assumption yields accurate effective 

properties for material only if the number of base cells in the design domain is large enough. 

The accuracy in the prediction of FGM characteristics can be increased by analysing FGMs in 

the two micro and macro scales. Inspired by the method introduced in this thesis, in which the 

FGM has been designed by dividing it into different stages, methodologies can be developed 

for topology optimization of the connected microstructures for FGMs via multi-scale 

analyses. 
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