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Abstract 

It is demonstrated that the monetary model of exchange rates is better than the random walk 

in out-of-sample forecasting if forecasting accuracy is measured by metrics that take into 

account the magnitude of the forecasting errors and the ability of the model to predict the 

direction of change. It is suggested that such a metric is the numerical value of the Wald test 

statistic for the joint coefficient restriction implied by the line of perfect forecast. The results 

reveal that the monetary model outperforms the random walk in out-of-sample forecasting for 

four different exchange rates.  
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Introduction 

Since the publication of the highly-cited paper of Meese and Rogoff (1983), it has become 

something like an undisputable fact of life that conventional exchange rate determination 

models cannot outperform the naïve random walk model in out-of-sample forecasting. This 

view is still widely accepted to the extent that it is typically argued that the Meese-Rogoff 

findings, which are “yet to be overturned”, constitute a puzzle. Evans and Lyons (2004) 

describe the Meese-Rogoff finding as “the most researched puzzle in macroeconomics”. 

Furthermore, Frankel and Rose (1995) argue that the negative results have had a “pessimistic 

effect” on the field of exchange rate modelling in particular and international finance in 

general. Likewise, Bacchetta and van Wincoop (2006) point out that the poor explanatory 

power of existing exchange rate models is most likely the major weakness of international 

macroeconomics.  

 

Several reasons have been put forward for the failure of exchange rate forecasting models to 

outperform the random walk, including simultaneous equations bias, sampling errors, 

stochastic movements in the true underlying parameters, misspecification, non-linearities,  

improper modelling of expectations and over-reliance on the representative agent paradigm. 

What seems to be overlooked in the literature is the fact that forecasting accuracy is typically 

measured in terms of the root mean square error (RMSE) and similar metrics without paying 

attention to the ability of the model (and the random walk) to predict the direction of change 

in the exchange rate. Moosa (2013a) has recently demonstrated that we should expect nothing 

but the finding that exchange rate models cannot outperform the random walk when 

forecasting accuracy is measured in terms of the RMSE. Although some economists have 

produced results showing that it is possible to outperform the random walk in terms of the 

RMSE, they did that by using dynamic specifications that boil down to the introduction of a 
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random walk component to the model, hence beating the random walk by using a random 

walk process (Moosa, 2013b).  

 

The objective of this paper is to demonstrate that by measuring forecasting power in terms of 

the magnitude of the error as well as the ability to predict the direction of change, it can be 

shown that the monetary model outperforms the random walk in out-of-sample forecasting. A 

measure of forecasting accuracy is proposed for this purpose. 

 

A Proposed Measure of Forecasting Accuracy 

Figure 1 is the four-quadrant prediction-realisation diagram where the predicted change in the 

exchange rate, 
1

ˆ



tt

SS , is plotted against the actual change, 
1


tt

SS . Each dot represents a 

combination of an actual change and the corresponding predicted change. This device allows 

us to observe the magnitude of the forecasting error as well as the ability of the underlying 

model to predict the direction of change. The line of perfect forecast, which is a 45-degree 

line passing through the origin, has the equation 
11

ˆ



tttt

SSSS . The magnitude of the 

error is represented by the distance between a dot and the line of perfect forecast. Errors of 

direction are represented by the points falling in the second and fourth quadrants. They occur 

when the model predicts a positive change but the actual change turns out to be negative 

(second quadrant) and when the model predicts a negative change but the actual change turns 

out to be positive (fourth quadrant). Formally, an error of direction occurs if the condition  

0))(ˆ(
11


 tttt

SSSS  is satisfied. For example, Figure 1 is the prediction-realisation 

diagram of a model that is good on direction because fewer points fall in the second and 

fourth quadrants than the first and third quadrants.   
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The literature typically examines forecasting accuracy in terms of magnitude or direction 

separately (predominantly in terms of magnitude). For example, the magnitude of error is 

measured in terms of the RMSE while errors of direction are measured in terms of direction 

accuracy, which is the percentage of times the model predicts the direction correctly. Suppose 

then that we are comparing two models, one of which is good on magnitude and bad on 

direction and the other (such as the model in Figure 1) is the other way round. Can we say 

which model is better overall? Not unless we have some sort of a combined measure of 

forecasting accuracy that involves some sort of a trade-off between magnitude and direction.  

 

One possible way to combine the ability to predict magnitude and direction is to adjust the 

RMSE by a factor that reflects direction accuracy, which would produce the adjusted root 

mean square error proposed by Moosa and Burns (2012). The alternative combined measure 

of magnitude and direction accuracy proposed here is found in the prediction-realisation 

diagram. Consider Figure 2, which shows the line of perfect forecast, a line representing an 

exchange rate model and a line representing the random walk with a positive drift factor. The 

line representing the model is the best-fit line, obtained by regressing the predicted change on 

the actual change. The three lines have the general equation )(ˆ
11 


tttt

SSSS  . By 

imposing the restrictions )1,0(),(   we obtain the equation for the line of perfect forecast. 

The coefficient restrictions are violated by the equation of the line representing the model 

shown in Figure 2 because 0 and 10   . For the random walk line, the coefficient 

restrictions are violated because 0  and 0 .  

 

Any violation of the coefficient restrictions defining the line of perfect forecast implies less 

than perfect forecasts, invariably involving magnitude and direction errors. Either of the 

conditions  0  and 1  may imply a combination of errors of magnitude and direction. 
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For example, suppose that 1  but   is becoming increasingly positive. The more positive 

  is, the greater will be the distance between the model line and the line of perfect forecast, 

implying bigger errors (magnitude wise). At the same time, as   becomes increasingly 

positive, a larger number of dots will fall in the second quadrant, implying increasingly large 

numbers of direction errors. Now suppose that 0 , but the model line becomes 

increasingly steeper—that is,  increases. As that happens, the distance between the model 

line and the line of perfect forecast widens, signifying bigger errors. If   ( 
1

tan


 ) rises 

such that 2/   , then the dots will fall in the second and fourth quadrants, signifying 

errors of direction. 

 

It follows, therefore, that a measure of forecasting accuracy that combines both magnitude 

and direction is the extent of deviation from the coefficient restriction )1,0(),(  . A Wald 

test of coefficient restrictions can be conducted to find out if the violation is statistically 

significant as implied by the 2
 statistic. If it is then a comparison can be made between a 

model and the random walk on the basis of the numerical value of the 2
 statistic, such that 

the bigger the value, the greater the violation of the coefficient restriction and the worse is the 

model with respect to predictive power as judged by magnitude and direction. For the random 

walk to outperform the model it must produce a smaller 2
 statistic for the restriction 

)1,0(),(   than the model. A further test is that of the null that the estimated coefficients 

for the model are equal to those of the random walk—that is, ),(),(:
0 MMRR

H   where 

the subscripts R and M refer to the random walk and monetary model, respectively.  

 

Forecast Generation   
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The basic flexible price monetary model of exchange rates is used to generate forecasts. It is 

specified in logarithmic form as follows: 

ttbtatbtatbtat
iiyymms   )()()(

,,3,,2,,10
                                 (1)            

where s is the log of the exchange rate, m is the log of the money supply, y is the log of 

industrial production, i is the interest rate, and a and b refer to the countries having a and b as 

their currencies, respectively (the exchange rate is measured as the price of one unit of b—

that is, a/b). The model is estimated over part of the sample period, mt ,2,1 , then a one-

period ahead forecast is generated for the point in time m+1. The forecast log exchange rate is 

)(ˆ)(ˆ)(ˆˆˆ
1,1,31,1,21,1,101 


mbmambmambmam

iiyymms              (2) 

where 
i

̂  is the estimated value of 
i

 . Hence the forecast level of the exchange rate is  

)ˆexp(ˆ
11 


mm

sS                                                                   (3) 

The process is then repeated by estimating the model over the period 1,2,1  mt   to 

generate a forecast for the point in time m+2, 
2

ˆ
m

s , and so on until we get to 
n

ŝ , where n is 

the total sample size. This process, therefore, involves recursive regression, which is 

preferred to rolling regression from an efficiency point of view. 

 

In order to avoid the problem of choosing between the random walk with and without drift, 

the random walk model is estimated as an AR(1) process following the equation  

ttt
bsas 

1
                                                                      (4)            

Meese and Rogoff (1983) actually considered the issue of which random walk model to 

choose. The consensus view seems to be that the random walk with drift should be used only 

if the drift factor is statistically significant. In this study the random walk is estimated for 

another reason: without estimating equation (4), the Wald test cannot be conducted. 
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Data and Empirical Results 

The empirical results are based on four exchange rates involving the U.S. dollar (USD), 

Japanese yen (JPY), British pound (GBP) and Canadian dollar (CAD). Two of the four 

exchange rates are against the dollar (JPY/USD and CAD/USD), and the other two are cross 

rates (JPY/CAD and GBP/USD). Monthly data (obtained from the IMF’s International 

Financial Statistics) are used covering the period January 1990-July 2010. For the purpose of 

generating out-of-sample forecasts, the sample period is split at December 2005 into an 

estimation period and a forecasting period, so that forecasts are generated over the period 

January 2006-July 2010.  

 

Figure 3 is the empirical counterpart of the theoretical prediction-realisation diagram shown 

in Figure 2. Four prediction-realisation diagrams are presented for each of the four exchange 

rates—each diagram exhibits the line of perfect forecast as well as the lines representing the 

forecasting power of the monetary model and the random walk. We can readily see that the 

random walk line is very close to the horizontal axis—this is because the drift factor is 

statistically insignificant.
1
 In all cases the slope of the model line is closer to that of the line 

of perfect forecast than the random walk, which has a slope of zero. 

 

Table 1 reports the results of the coefficient restrictions tests. To start with, the restrictions 

0 and 1 are rejected in all cases except for the model in the case of the CAD/USD 

rate. The joint restriction )1,0(),(  is rejected in all cases, implying that the model and 

the random walk provide forecasts that are significantly inferior to perfect forecasts. The 

question is which forecasts are better, or less bad, those of the random walk or what the 

                                                           
1
 The drift factor is effectively the mean percentage change in the exchange rate. It can be estimated by 

regressing the percentage change in the exchange rate (or the first log difference) on a constant. For the four 

exchange rates, the estimated values of the drift factor and the t statistics are as follows: JPY/USD (-0.53, -1.30), 

CAD/USD (-0.13, -0.26), JPY/CAD (-0.26, -0.39) and GBP/USD (0.28, 0.65).   
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model provides. The Meeses-Rogoff puzzle is that the random walk is better or less bad than 

any model, but this is not what we see here. The values of the 2
  associated with the random 

walk are multiples of those associated with the monetary model. Since the numerical value of 

the 2
 is indicative of the deviation of the values of   and  from 0 and 1 respectively, it 

follows that the model is less far away from perfect forecasts than the random walk—in other 

words, the model is better than the random walk. These results are confirmed by the 

coefficient restriction test of the null hypothesis ),(),(
MMRR

  . In all cases the 2


statistic is significant, implying that the model is significantly better (or less bad) than the 

random walk. The monetary model and the random walk are not equally bad as compared 

with perfect forecasts. This finding casts doubt on the soundness of using market-based 

forecasting whereby the best forecast is the current level. It also has implications for the 

profitability of carry trade relative to a forecasting-based currency trading strategy. 

 

Conclusion 

It is typically claimed that exchange rate models cannot outperform the random walk in out-

of-sample forecasting, as first suggested by Meese and Rogoff (1983). This result is 

associated with the measurement of forecasting accuracy by metrics that depend on the 

magnitude of the forecasting errors, while ignoring the ability of the model to predict the 

direction of change. However, when forecasting accuracy is measured by a metric that takes 

into account both magnitude and direction, it can be demonstrated that the monetary model of 

exchange rates can outperform the random walk. In this paper we suggest that such a metric 

is the numerical value of the test statistic for the joint coefficient restriction implied by the 

line of perfect forecast. For four different exchange rates, it was found that the monetary 

model outperforms the random walk in out-of-sample forecasting. The Meese-Rogoff puzzle 
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is only a puzzle if we judge forecasting accuracy by the magnitude of the forecasting error 

while ignoring the direction of change.  
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Table 1: Tests of Coefficient Restrictions* 

Exchange Rate Model Random Walk 
JPY/USD 

0:
0

H  

1:
0

H  

)1,0(),(:
0

H  

 

8.98 

-2.80 

101.78 

 

4.87 

-62.53 

4201.10 

),(),(:
0 MMRR

H    
 

78.15 

CAD/USD 

0:
0

H  

1:
0

H  

)1,0(),(:
0

H  

 

5.66 

-1.34 

34.79 

 

6.64 

-258.18 

6705.50 

),(),(:
0 MMRR

H    
 

31.66 

JPY/CAD 

0:
0

H  

1:
0

H  

)1,0(),(:
0

H  

 

-22.83 

-2.93 

522.93 

 

-7.77 

-117.23 

13745.10 

),(),(:
0 MMRR

H    
 

520.96 

GBP/CAD 

0:
0

H  

1:
0

H  

)1,0(),(:
0

H  

 

-14.21 

-2.47 

220.59 

 

-12.10 

-57.49 

3693.10 

),(),(:
0 MMRR

H    
 

176.77 

* The test statistics for 0:
0

H  and 1:
0

H have a t distribution. The test statistics for 

)1,0(),(:
0

H  and ),(),(:
0 MMRR

H   are distributed as )2(
2

 .  
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Figure 1: The Prediction-Realisation Diagram 

 

 

 
 

         
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
          
 

 

        
          
          
          
           

Error of Direction 

Error of Direction 

Line of Perfect Forecast 

Magnitude of Error 

 

  



13 
 

Figure 2: Prediction-Realisation of the Monetary Model and the Random Walk with 

Positive Drift 
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Figure 3: Prediction-Realisation Diagrams for Four Exchange Rates  
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