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Abstract

Many organizations around the world have adopted Web services, server farms hosted by

large enterprises, and data centers for various applications. Web services offer several advan-

tages over other communication technologies. However, it still has high latency and often

suffers congestion and bottlenecks due to the massive load generated by large numbers of

end users for Web service requests. Simple Object Access Protocol (SOAP) is the basic

Extensible Markup Language (XML) communication protocol of Web services that is widely

used over the Internet. SOAP provides interoperability by establishing access among Web

servers and clients from the same or different platforms. However, the verbosity of the XML

format and its encoded messages are often larger than the actual payload, causing dense

traffic over the network.

Improving the performance of Web services by compressing SOAP messages is consid-

ered an important issue. Compression ratios achieved by most existing techniques are not

high enough, and even a minute improvement could save tremendous amounts of network

bandwidth in emerging cloud and mobile scenarios. This thesis tries to achieve this objective

by proposing three innovative techniques capable of reducing small, as well as very large,

messages. General XML trees and binary trees are constructed that support the encoding

algorithm by removing the closing tags. Instead of encoding the characters of XML mes-

sages individually, fixed length and variable length (Huffman) encodings are developed to

deal with XML tags as individual input items.

Furthermore, new redundancy-aware SOAP Web message aggregation models (Binary-

tree, Two-bit, and One-bit XML status trees) are proposed to enable the Web servers to

aggregate SOAP responses, and send them back as one compact aggregated message, thereby

reducing the required bandwidth and latency, and improving the overall performance of

Web services. XML message compressibility, the Jaccard-based clustering technique, and



the vector space model (VSM) are three similarity measurements that are developed to

cluster SOAP messages based on their degree of similarity. Clustering based on similarity

measurements enables the aggregation techniques to potentially reduce the required network

traffic by minimizing the overall size of messages.

Fractal as a mathematical model provides powerful self-similarity measurements for the

fragments of regular and irregular geometric objects in their numeric representations. Frac-

tal mathematical parameters are introduced to compute SOAP message similarities that are

applied on the numeric representation of SOAP messages. Furthermore, SOAP fractal simi-

larities are developed to devise a new unsupervised auto-clustering technique. An extension

of the aggregation model is proposed to further improve the performance of SOAP. A new

distributed aggregation is developed to support aggregation of messages from multiple Web

servers that share the path of SOAP responses over the Internet. On the other hand, a

fast fractal similarity based clustering technique is proposed with the aim of speeding up

the computations for the selection of similar messages to be aggregated together in order to

achieve greater reduction.

Extensive experiments have shown high performance of the proposed compression tech-

niques, with high compression ratios obtained, ranging from 7.38 to 8.31 for large-sized XML

documents to 11.57 to 14.70 for very large-sized documents. Furthermore, the processing

times of both compression and decompression were found to be extremely promising for

several computing platforms, such as personal computers (PCs), laptops, netbooks, and per-

sonal digital assistants (PDAs). Experiments have also shown significant performance of

aggregation techniques that achieved compression ratios as high as 25 for aggregated SOAP

messages. Moreover, the fractal clustering technique is evaluated and experiments prove that

it significantly improves the performance of Web services, and exceeds other clustering stan-

dards, such as K-means and principal component analysis (PCA) combined with K-means.

Lastly, results have shown that the distributed aggregation has outperformed regular aggre-

gation, resulting in a 100 percent higher compression ratio, and the fast fractal clustering

has reduced the required processing time by 85 percent of the classical fractal clustering

technique.
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Chapter 1

Introduction

Web services are middleware that establish access to their components over the Internet using

some network mechanisms and protocols, such as HTTP and TCP [Davis and Parashar,

2002]. A Web services interface is defined and described using Extensible Markup Language

(XML) [Heinzl et al., 2006]. In recent years, usage of Web services has increased dramatically

over the Internet due to their features, such as interoperability, the self-describing nature of

XML-based interfaces, and message format [Andresen et al., 2004]. Moreover, the fact that

they use successful Internet standards, such as HTTP, as a transport protocol is considered

to be a major reason for proliferation of Web services over the net [Abu-Ghazaleh and

Lewis, 2005]. Simple Object Access Protocol (SOAP) is the basic communication protocol

for most regular Web services and Cloud Web services [Devaram and Andresen, June 23 -

26, 2003; Dikaiakos et al., 2009] as it supports Remote Procedure Call (RPC) and message

semantics [Davis and Parashar, 2002].

Cloud Web services represent a new supplement, consumption and delivery model that

provides a variety of services over the Internet [Werner and Buschmann, 2004]. Generally,

Cloud provides dynamically scalable and usually virtual resources as a Web service that

is available on demand over the Internet. Recently, adoption of Cloud Web services has
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increased significantly by many network organizations with the aim of providing the re-

quired services without investing heavily in the computing infrastructure [M. Nakagawa and

Shimojo, 2006].

However, SOAP Web services inherit the disadvantages of XML, such as messages being

larger than the actual payload of services [Werner and Buschmann, 2004], creating high

network traffic. The use of XML strings for encoding SOAP messages is producing larger

messages where only a very small part of the encoded SOAP message represents the real

payload [Werner and Buschmann, 2004], and the remainder of these messages are XML and

protocol overhead. Therefore, Web services, and especially the most popular ones, often

suffer congestion and bottlenecks as a result of the large Web requests made by users for

their services [Devaram and Andresen, June 23 - 26, 2003]. At the same time, Web services

suffer the long execution times that are required for parsing and processing large XML

messages [Andresen et al., 2004].

This research aims to provide effective solutions that could improve Web services’ perfor-

mance. The latency of Web services is investigated and analyzed in detail, with a concentra-

tion on the fact that Web services produce larger-sized messages than the actual payloads.

Moreover, Web services are verbose in nature, resulting in high network traffic which keeps

the network generally busy, but not available for all client requests. The processing time and

network traffic reduction are considered main metrics for the proposed improvements (so-

lutions). Furthermore, large numbers of requests/responses are considered in the proposed

models to satisfy the growing network requirements.

1.1 Scope and goals

Improving the performance of Web services is a significant concern, and there are some

serious problems being discussed and analyzed in this thesis that can broaden the knowledge

of the theoretical and practical issues surrounding Web services. This research provides
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some significant benefits to both community and industry by creating new development

aspects that could be applied by industrial fields to improve the current state of Web services

middleware. Consequently, the community will receive better services through the use of

more efficient Web services.

This thesis provides some scientific improvements to Web services and supports com-

mercial Web applications, such as Banking and Quote stock systems, which require more

effective tools (i.e. Web services). This research motivates commercial and economical sys-

tems to be more involved in using enhanced Web services for their users. For example, one

important and familiar industry that could benefit from high-performance Web services is

the travel sector, such as airline reservations and car rental services. It is a well-known fact

that Web services have poor performance, and therefore, it is discouraging for commercial

and economical applications to use them as their basic communication tool. Technically, im-

proving the performance of Web services satisfies industry requirements in terms of providing

a highly qualified infrastructure for IT industrial applications. This research is motivating

industrial fields to potentially move towards information technology (IT) by providing more

efficient Web services and better quality of service (QoS).

Practically, data compression provides some important benefits for Web service applica-

tions, especially for clients that have poor network connectivity [Werner and Buschmann,

2004]. Web compression-based applications use the lossless compression family as a technique

that promises reducing the total size of a service message, and guarantees reconstructing the

exact original message on the receiver’s side. In this research, a set of compression techniques

is proposed with the utilization of the tree data structure of SOAP messages with both fixed

length and variable length (Huffman) encoding.

Aggregation of SOAP messages is another significant contribution of this thesis as it

is based on utilizing the compression concepts with the aim to potentially reduce the size

of aggregated messages. This new proposed solution will motivate future researchers to
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work on activating the multicast protocol to significantly minimize the required network

bandwidth. This can be achieved by sending the aggregated message over the network with

the development of powerful routing algorithms that have the ability to parse the compact

aggregated message, and extract the required responses at the closest hop to the destination

(client) address.

Furthermore, this study introduces new research topics to the Web services area, such

as fractal models that have never been studied as a Web service technique. In fact, this will

motivate other researchers to investigate these concepts and concentrate on the contributions

they can make based on analyzing fractal Web services and proposing new solutions. Fractal

is a well-known technique that has been applied in many applications, especially multimedia;

however, it is a completely new aspect to Web services. Fractal can be applied in Web service

applications by using the fractal self-similarity principle and other characteristics. In this

thesis, the proposed fractal models suggest utilizing fractal characteristics in Web services

after creating their numeric form. Numeric forms for Web services can be computed using

XML tree indexing, Huffman binary tree coding, or Shannon-Fano coding, in addition to the

TF-IDF scheme. Technically, fractal is proposed as a new alternative to the SOAP message

similarity measurements to support aggregating messages with a greater capability of size

reduction.

1.2 Research questions

Much work has been accomplished on improving SOAP performance and several solutions

have been suggested to address SOAP Web services’ congestion and bottlenecks. They used

several concepts: compression by reducing the XML message size to reduce the network

traffic [Werner and Buschmann, 2004; Davis and Zhang, 2002], building a caching system to

increase the locality of messages at the client side [Liu and Deters, 2007], server side [Abu-

Ghazaleh and Lewis, 2005], or both client/server sides [Andresen, 2005], binary encoding by
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encoding XML messages and transmitting them in binary instead of textual format [Julio

Cezar Estrella and Monaco, September 22-24, 2008; Lu et al., 2006], optimizing the SOAP

run-time implementation by improving the SOAP kernel performance using some effective

optimizations, or multicasting based on the similarity of SOAP messages and grouping the

similar ones in one message via a multicast protocol [Phan et al., 2008; Damiani and Marrara,

October 31 - 31, 2008].

Although Web services are mainly built with tree data structures, only few studies have

proposed the compression concept utilizing tree structures with XML messages. As such,

this research has proposed new compression techniques that try to utilize both binary- and

general-based tree structures of SOAP messages. The first two research questions relate to

the Web service message tree structure, and attempt to explore the potential efficiency of

developing both binary- and general-based tree compression techniques to minimize Web

service volumes over the network. The second two questions relate to clustering SOAP

messages based on detecting a high degree of similarity and a distributed aggregation (multi-

Web server), and minimizing the required processing times for these tasks when handling

large numbers of SOAP messages at the server side.

1. How to reduce the size of SOAP messages sent/received over the network?

Minimizing the Web service messages’ size has been widely studied and some unique

compression models have been proposed. However, the outcomes of these models pro-

vide limited significant solutions to the large size of SOAP messages. Few studies have

tried to utilize the general-based tree structure of XML messages since the concept of

using these models has not been developed in a professional and technical way. Further,

they usually add overhead parameters in order to keep the order of the tree represen-

tation that may increase the size of the encoded messages. Nor has the development

of binary-based tree transformations for XML messages been proposed. Can a binary-

based tree structure of SOAP messages in compression models potentially reduce the
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total size of SOAP messages? Could the compression models using general-based tree

structures outperform the binary-based tree models?

2. How to utilize the compression techniques (redundancy-aware) in develop-

ing SOAP aggregation models?

Many studies have been done on reducing the total network traffic created by SOAP

messages in the context of Web services. Several solutions have been proposed, such

as caching of SOAP messages at the client side, server side or both, and multicast

aggregated packets of pairs of SOAP messages. The results of these studies are still

limited, in addition to the fact that they consume large amounts of both client and

server storage space. Would the development of the compression concepts in aggregat-

ing SOAP messages group-wise, and not only as pairs, improve the reduction of total

network traffic for SOAP messages?

3. What are the cost-effective similarity parameters for clustering SOAP mes-

sages?

With the aim to aggregate SOAP messages, multicasting would be activated to min-

imize their total network traffic. Similarity parameters play a vital role in improving

the outcomes of the aggregation models. While Jaccard coefficients and vector space

models (VSM) are widely used on the Internet to compute the similarity of textual

messages, they consider very simple cost metrics, such as the intersection of XML items

and the cosine similarity of messages. In order to aggregate more than two messages in

one packet, general clustering techniques, such as K-Means and principal component

analysis (PCA) combined with K-Means, can be considered. However, these models

are not designed as XML-aware clustering. According to the self-similarity principle of

the fractal mathematical model, they can be considered for the development of a new

clustering model. Can fractal outperform both simple cost metrics (Jaccard and VSM)

and other standard (K-Means and PCA combined with K-Means) clustering models,
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in terms of finding a high similarity degree of SOAP messages and the clustering time?

4. What are the cost-effective methods to develop a distributed Web server-

based aggregation model for large numbers (hundreds and thousands) of

SOAP messages?

Aggregation of SOAP messages is an efficient solution to minimize network traffic.

However, the previously proposed aggregation models are designed to aggregate only

a few messages at the same Web server in one compact packet. The network is rapidly

growing and large numbers of messages are sent and received simultaneously. However,

the processing time of aggregating large numbers of messages is very long, and can be-

come an expensive task. Technically, current aggregation models cannot be used for

aggregating messages at several servers and share the service with a distributed tech-

nique. On the other hand, this costly aggregation task still requires high computations

for selecting similar messages, which is another processing overhead.

1.3 Research contributions

In response to the research questions posted in Section 1.2, this thesis makes a number of

contributions to the current state-of-the-art of research in improving the performance of the

SOAP communication protocol in the context of Web services. The main contributions are:

1. Binary and general tree-based structure compression techniques

New binary and general tree-based transformations are proposed and implemented for

SOAP messages as an important technical part of new compression techniques. The

tree-based transformed SOAP messages are encoded by either fixed length or vari-

able (Huffman) encoding techniques. Technically, these transformations (binary and

general tree) are found to be very supportive for compression as they remove all the

duplicated closing tags of XML items and keep only one copy of each in the trans-
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formed tree. Generally, developers deal with fixed and variable (Huffman) encoding

techniques in compressing messages by using individual symbols or characters as the

basic input parameters. However, in this research, the whole tags of SOAP messages

are manipulated individually as basic parameters for both fixed- and variable-length

techniques. The results are promising as they minimize the network traffic by reducing

the size of sent/received messages over the network. The performance of the proposed

techniques is found to be significantly better than other standard techniques, such as

gzip, bzip2, XMill, and XbMill compression techniques. Furthermore, the compres-

sion/decompression times of these techniques are tested on personal computers (PCs),

laptops, netbooks, and personal digital assistants (PDAs). Bandwidth-constrained mo-

bile communication environments and Cloud Web services are two scenarios that are

likely to benefit from the proposed compression techniques.

2. Redundancy-aware aggregation and group-based similarity measurements

New aggregation models are introduced that are mainly based on utilizing the compres-

sion concepts by exploiting the redundancies of SOAP messages. The basic objective

of the proposed model is to provide an efficient aggregation that could potentially re-

duce the size of messages. XML tree compression-based aggregation techniques aim

to enable Web servers to aggregate a group of messages that have a certain degree of

similarity, and send them as one compact message in order to minimize the network

traffic. Aggregated messages of SOAP responses are extractable at the closest routers

to the receivers (clients) to deliver only the required response to clients. Furthermore,

three similarity measurements of SOAP messages are introduced in order to investigate

the highest similarity degree of SOAP message groups (i.e. not only pairs) to enable

the aggregation techniques to potentially achieve significant message size reduction.

Compressibility measurements, Jaccard coefficients, and VSM are developed to cluster

SOAP messages based on their similarity. The results have proven that the size reduc-
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tion by aggregating messages is significantly better than compressing them separately.

Moreover, the proposed similarity measurements can significantly support aggregation

to increase compression ratios.

3. Dynamic fractal similarity-based clustering model

Fractal mathematical parameters are introduced as new efficient similarity measure-

ments for SOAP messages, and developed as a new significant unsupervised auto-

clustering technique. Fractal clustering would be an alternative to the SOAP similar-

ity measurements for selecting the most similar messages by clustering them based on

SOAP message fractal parameters. The similarity measurements are based on com-

puting fractal coefficients of numeric objects that together construct one main numeric

form. The generated dataset for SOAP messages is actually a set of numeric vectors

showing the weights of XML items, which are broken up into blocks of equal size. Frac-

tal coefficients of the vector blocks are computed and compared with others arranged in

the same order in other vectors to investigate their fractal similarity and cluster them

according to their similarities. Essentially, this model is mainly supporting the aggre-

gation of SOAP messages with the aim to improve the compression ratio by grouping

them according to a higher degree of similarity. Experimental evaluation has shown

that the fractal clustering technique outperformed other standards (K-Means and PCA

combined with K-Means) in terms of the resultant compression ratios and clustering

time.

4. Distributed aggregation and fast fractal similarity measurements

A novel distributed aggregation technique is proposed to aggregate messages at multi-

Web servers located on the same path of the aggregated responses. Huffman binary tree

encoding is developed to include more messages in the encoded format of the previously

aggregated messages. The structure of the compact packet is modified to be adaptive

for aggregating more messages at other Web servers. Furthermore, new mathematical
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models are developed with the aim to speed up the performance of classical fractal

computations. It is basically introducing new mathematical factors that are computed

in advance of the fractal coefficient computations in order to segment data object blocks

based on these factors. Fractal coefficients, such as scale, offset, and root mean square

error (RMS), are computed for only those blocks that have the same fractal factor

value. For clustering SOAP messages, fast fractal factors are computed in advance

of the fractal coefficients that belong to the same segment. Finally, clustering SOAP

messages are based on the maximum histograms of fast fractal indexes in every single

message. The results have shown a tremendous minimization of the clustering time

for the fast fractals in comparison with the classical fractals. Furthermore, fast fractal

clustering models have outperformed K-means and PCA combined with K-means for

large numbers (hundreds and thousands) of SOAP messages.

1.4 SOAP dataset

In fact, we have used more than one thousand and eight hundred SOAP messages for eval-

uating our proposed models in this thesis. Technically, we have used two datasets of SOAP

messages: 160, and 1800 messages and that is to provide a suitable evaluation to investigate

both the ability to reduce the network traffic and the processing time for regular compression,

aggregation, and clustering in addition to the fast clustering and distributed aggregation.

The World Wide Web Consortium (W3C) is an international community that develops

open standards to ensure the long-term growth of the Web. SOAP messages are completely

based on the Web Service Description Language (WSDL) schema as it represents one of

the most used bindings provided by WSDL. All the considered messages in our evaluations

are built based on the WSDL schema and the structure of the SOAP binding schema.

The generation of SOAP messages was designed to create a variety of messages in terms

the application (such as Travel Agent and Stock Quote Market applications) and size of
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messages. We consider different sizes: small (from only 140 byte to 800 bytes), medium

(800-3000 bytes), large (3000-20000 bytes), and very large (20000-55000 bytes). WSDL

schema and SOAP binding (both schemas published by W3C http://www.w3.org) are listed

in Appendices A and B respectively.

1.5 Thesis structure

The rest of this thesis is structured as follows.

• Chapter 2 analyzes related work in Web services, specifically focuses on related stud-

ies that aim to improve the performance of Web services in some specific areas, such

as compression, aggregation, clustering, caching, binary encoding, and run-time opti-

mizations for SOAP engines. Moreover, limitation of existing solutions is presented.

• Chapter 3 presents three new compression techniques for SOAP messages. Binary

tree and general tree structures are used to develop new textual expressions for XML-

based messages. Fixed- and variable-length encoding are proposed to compress the

generated textual expressions. The proposed techniques are evaluated and compared

with existing compression models (gzip, bzip2, XMill, and XbMill).

• Chapter 4 presents a novel redundancy-aware aggregation model for aggregating SOAP

messages. This chapter illustrates the development of the compression techniques

presented in Chapter 3, and shows how to utilize their redundancy search strengths

in developing a potential aggregation model that could achieve high reduction in the

aggregated SOAP messages. Furthermore, traditional similarity measurements, such

as Jaccard coefficients and VSM are developed and presented.

• Fractal similarity-based technique is presented in Chapter 5. Term Frequency with In-

verse Document Frequency (TF-IDF) is proposed to build a numeric representation for

XML documents in order to generate the dataset. The proposed clustering technique
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is evaluated and compared with other standard clustering techniques, such as K-means

and PCA combined with K-means.

• A novel distributed aggregation technique that is aggregating SOAP messages at sev-

eral Web servers over the network is presented in Chapter 6. Moreover, new develop-

ment of the classical fractal model with the aim to provide significantly fast similarity

measurements is presented. The proposed models are evaluated and promising results

are obtained.

• Finally, Chapter 7 summarizes the research contributions presented in this thesis and

discusses possible directions for future research.
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Related Work

This chapter considers some of the important existing solutions for developing the perfor-

mance of Web services. This chapter starts by briefly exploring the general Web services

architecture and layers to help understanding the strategies and goals of existing studies.

Then, the strengths and weaknesses of the considered studies are examined. Section 2.1

explores the technical architecture and communication layers used to build Web services.

Section 2.2 reviews the existing compression techniques proposed to compress Web mes-

sages in order to reduce the overall network traffic. Section 2.3 shows the proposed models

for aggregating Web messages and the similarity measurements required by the aggregation

models. Moreover, section 2.4 discusses existing clustering techniques used to cluster Web

messages in order to illustrate their measurements and general structures. Section 2.5 con-

siders the caching studies that aim to store the complete or partial copy of the sent/received

Web messages and improve the response time by using the cached copies without generating

them again. Section 2.6 illustrates the proposed models for the binary encoding of Web

messages as an efficient alternative to the textual mode of Web services. Furthermore, this

section presents few studies that have proposed serialization/deserialization improvements

for XML-based messages. Section 2.7 reviews the run-time optimizations for SOAP engines.
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Finally, section 2.8 illustrates the limitations of existing solutions.

2.1 Web services

In this section, the fundamental architecture, communication layer, and protocols used to

build Web services are presented. Web services are XML (eXtensible Markup Language)

based software systems designed and developed to be interoperable (interoperable machine

to machine interaction) [Elfwing et al., 2002]. Web services interoperability is derived from

a set of XML-based standard protocols such as WSDL (Web Service Description Language),

SOAP (Simple Object Access Protocol), and UDDI (Universal Description, Discovery and

Integration) [Davis and Parashar, 2002; Tian et al., 2003]. Web services are defined, lo-

cated, and published by the common approaches that are introduced by these XML-based

protocols [Liu and Deters, 2007; Tian et al., 2004].

2.1.1 Web service architecture

As a result of the dramatic increase in the number of Web services over the Internet, an

emerging approach that can locate the required services has appeared. The Service Oriented

Architecture (SOA) arranges locating desired services that could provide access to the tar-

geted function or data [Liu and Deters, 2007]. SOA is a component model that defines Web

services architecture [Elfwing et al., 2002]. The basic concept of SOA is to inter-relate its

three components: service provider, service registry, and service requester with three oper-

ations: publish, find, and bind to provide automated discovery for services and maintain

their use [Tian et al., 2003; Liu and Deters, 2007]. The interaction among the main three

operations is depicted in Fig. 2.1.

These three main components can be described as the following:

• Service provider is responsible for publishing services to a registry, making them avail-

able on the network for the consumer’s request.
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Figure 2.1: Web Service Architecture

• Service requester is responsible for finding a service description that is published to a

service registry, as well as to bind or invoke these services hosted by a service provider.

• Service Registry supports the service provider and the service requester to find each

other by replying to the service requester’s queries on the availability of the desired

service.

2.1.2 Web service layers

Web service layers is a collection of XML-based open protocols that support sophisticated

communications between different nodes in a network [Elfwing et al., 2002; Tian et al., 2004].

Web service layers are placed between the application layer and the transport layer as shown

in Fig. 2.2.

• Discover protocol organizes the Web service into a common registry. The service

provider can use the Universal Description, Discovery and Integration (UDDI) specifi-

cation to advertise the availability of Web services. The service requester can use the

same UDDI specification to search and discover the desired services in a registry.

• Description protocol: Web service is defined by the Web Service Description Language

(WSDL), the syntax of input and output documents, the communication protocol,
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Discover (UDDI)
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Figure 2.2: Web service protocol stack

and the location of these services. Moreover, WSDL specifies the public interface to a

specific service.

• Messaging protocol: XML is the common format for encoding messages so that all

nodes can understand each other. Simple Object Access Protocol (SOAP) is the stan-

dard format for exchanging services over HTTP.

• Transport protocol is responsible for transporting Web service messages between var-

ious applications over the network. Hyper Text Transport Protocol (HTTP) is the

main transport protocol for Web services as a result of its capability to pass through

firewalls. However, there are some other transport protocols such as TCP, UDP, SMPT

and FTP that could be used instead.
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2.2 Compression techniques

Compression is a popular strategy to reduce the overall size of large Web service messages.

It is proposed by several studies to manage the poor connectivity for clients with resource

constrained devices or resource constrained environments (e.g wireless environment).

Liefke in 2000 [Liefke and Suciu, 2000b] designed and implemented a compressor (XMill)

and a decompressor (XDemill) for XML data. This technique was based on three steps. First

step involves separating XML tags from the data items, and therefore, XML tree structure

and groups of data items are compressed separately. Next, it distributes the items into

separate containers with related meaning, where each container is compressed separately by

exploiting similarities of the considered data values. Finally, some semantic compressors are

applied to each container. The XMill method achieves a good performance and can compress

messages twice more than what gzip can achieve. For messages that had more data and less

text, XMill without any semantic compressor reduced them about 45%-60% of gzip, while

with semantic compressors the resultant size is about 35%-47% of gzip’s.

Another research by Werner in 2004 [Werner and Buschmann, 2004] evaluated the per-

formance of gzip and bzip2 compressors by comparing them with three XML compres-

sors (XMILL, xmlppm and XBXML). In this study, a test bed is set up with 182 files

of eight different methods (XML(uncompressed), XML(bzip2), XML(gzip), XMILL(bzip2),

XMILL(gzip), XMILL(ppm), xmlppm and wbxml). The evaluation shows gzip compression

is more effective than bzip2 in achieving better compression ratio but XMILL(ppm) outper-

forms both. Moreover, in order to reduce the compression overhead, a differential encoding

for both web requests and responses has been suggested. This was achieved by encoding

only the differences between the current message and the previous sent/received by a web

service. A skeleton for the previous message is generated to compute the differences with

the current message.

In 2006, Werner [Werner et al., 2006] introduced a new approach using generated single
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deterministic pushdown automaton (PDA), that can represent the XML schema. The pro-

posed algorithm first converts the XML schema into Regular Tree Grammar (RTG), then

converts RTG into a set FSA (Finite State Automaton). Finally, the considered algorithm

constructs the pushdown automaton that is based on the RTG. The compression scheme of

this research is based on the conversion of XML document as a sequence of transitions on

the path of PDA. The proposed algorithm achieves compression ratios between 5 and 10 for

large XML documents.

Catalin Rosu in 2007 [Rosu, 2007] proposed an XML dictionary compression schema that

enables both sender and receiver to build the same dictionary for XML tags. On the sending

endpoint, new tags are inserted in the dictionary and replaced by their indexes. On the

receiving endpoint, newly received tags are inserted in the dictionary with the same indexes

used at the sender side. Practically, any reused tag in the send/receive messages will be

replaced with its corresponding index.

Performance evaluation study for XML compression techniques was proposed by Ericsson

in 2007 [Ericsson, 2007] and measured their effects on SOAP Web services. This research

was based on testing all the considered techniques on two platforms: desktop computers and

different small wireless devices. These platforms were involved in this study to investigate

the performance of XML compression techniques in different real-world scenarios including

the low bandwidth environments. Five encodings (BXML, XMill, XMLPPM, Gzip, and

bzip2) were investigated by this study. While testing on small wireless devices, performance

of BXML coupled with Gzip was specified as the best in comparison with others, for all

documents. For document size ranging from 2-300 KB, XBMill and XMill outperformed

all other encodings and BXML was the worst performer. Moreover, all encodings except

BXML achieved almost the same compression ratio for document size ranging from 0.7-130

KB. For documents ranging from 0.2-9MB, the resultant compression ratio for all encodings

were almost the same, except for BXML which is considerably worse.
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Luoma in 2007 [Luoma and Teuhola, 2007] presented a novel modeling technique that is

based on traversing XML tree of the document, and adding an empty tag to each node in the

whole XML tree. The objective of the empty tag is to preserve the nested structure of the

tree, so XML tree can be regenerated again. Preorder and level-order are used to traverse the

XML tree. Different XML tree models are discussed and evaluated such as children-depth-

first, ancestor-path, and left-sibling-parent techniques. In addition, the proposed techniques

are evaluated and compared with the performance of gzip and XMill compressors. XMill

coupled with gzip outperform both level-order and preorder methods. However, when XMill

is coupled with bzip2, preorder technique slightly outperforms both level-order and XMill.

A discussion on how the proposed preprocessing transformation can improve the perfor-

mance of generic compression techniques, in terms of getting better compression ratios than

XML-aware encodings, is presented by Skibinski in 2007 [Skibinski et al., 2007]. The first

preprocessing in this work requires removing single spaces that are located before the en-

coded words, and generating them again during the decompression process. The second step

of the proposed transformation is replacing every sequence of digits with two adjacent codes.

The first code is a character that shows the length of the second code, in terms of number

of consumed bytes. The digit sequence is represented by the second code using base-256

numerical representations. The test shows that PPM efficiency has been improved using the

proposed textual transformation. Based on this work, gzip improves its compression ratio by

about 30% and LZMA by about 41%. LZMA as a generic encoding technique outperformed

the gzip based XMill compression ratio by about 27%.

Johnsrud in 2008 [Johnsrud et al., 2008] evaluated compression methods on resource

constrained mobile platforms with limited processing power. Measurements have been per-

formed in both simulated environments and on wireless mobile devices. The evaluation

differentiates between generic and XML-aware compression techniques. As an XML-aware

encoding, XMLPPM achieved the best compression ratios in comparison with other XML
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compressors. On the other hand, gzip achieves the best compression ratios in comparison

with other generic techniques. The study shows that XMLPPM requires a high amount

of processing power and memory in comparison with gzip. Therefore, XMLPPM is not a

promising encoding method in mobile networks with limited resources. Moreover, ZLIB and

EFX are considered in this study as generic and XML encodings respectively. The response

time for both techniques are almost the same, with EFX being slightly better. Both encoding

methods considerably reduce the overall response time of large samples.

Cezar Estrella in 2008 [Julio Cezar Estrella and Monaco, September 22-24, 2008] discussed

how the compression techniques can decrease the time for data transfer over the network by

improving the response time and network traffic volume. Then, they introduced a heuristic

to provide preliminary information about implementing compression for Web services, and

to decide whether the SOAP message should be compressed or not. The experimental

simulation shows that the proposed heuristic can improve the service response time based

on the model scenario.

2.3 Aggregation and similarity measurements

Similarity-based aggregation models for XML-based Web messages have been proposed by

few studies, which aim to reduce the overall network traffic by exploiting Web message

similarities. Furthermore, similarity measurements have been examined and proposed by

several studies.

Leung in [Leung et al., 2005] introduced a new sequential mining-based XML documents

similarity computation in order to develop a novel technique for finding the semantic cor-

respondence of XML documents. The proposed sequential mining scheme uses preorder

traversal to traverse XML trees of XML documents in order to extract more hierarchical in-

formation, such as the paths and positions of XML items. A postprocessing step is proposed

for reutilizing the mined patterns of XML items with the aim to investigate the similar-
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ity of unmatched elements, and produce another metric for similarity measurements. The

semantics of XML elements are estimated by considering their subtree or leaf nodes. The

experimental results show that the proposed technique provides more stable and reasonable

similarity measurements for XML documents.

Another similarity measurements study by Flesca in [Flesca et al., 2005] introduced

a new similarity measurements approach for XML messages. It is mainly investigating

the structural similarities of XML documents in the generated time series representation.

The basic strategy of the proposed technique consists of linearizing the structure of XML

documents by encoding XML tags into signal pulses in order to transform XML document

into a numeric form. Then, the XML documents are distributed into clusters according to

the analysis of their numerical sequences. Discrete Fourier Transform (DFT) is proposed

to effectively compare the encoded XML documents (frequency domain). The experimental

results show the effectiveness of the proposed technique in comparison with tree-edit function

based techniques.

Ma and Chbeir [Ma and Chbeir, 2005] have addressed the problem of XML documents

similarity measurements by considering the asymmetric similarity in addition to both seman-

tic content and the XML document structure. In this research, XML schema was investigated

as XML documents may have the same schema. However, they may have different structure

like different number of occurrences for the same element. Furthermore, XML tree structure

has been addressed with ascending and descending weight for branch from bottom to up

and from up to bottom respectively. Several similarity measurements have been considered

such as instance similarity of simple and complex elements. A Java based prototype called

SimXML was implemented in order to validate the proposed approach.

A hybrid approach for XML similarity has been proposed by Tekli in 2007 [Tekli et al.,

2007]. Their approach integrates information retrieval (IR) semantic similarity in the tradi-

tional edit distance function. The hybrid model has introduced the semantic relatedness of
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XML elements/attribute labels in edit distance computations. With the aim to evaluate the

proposed similarity measurement technique, real and generated XML documents in addition

to a number of hierarchical taxonomies are considered. Moreover, the results have shown a

positive impact of the semantic meaning on improving the similarity measurements for XML

documents.

XML-aware aggregation model for SOAPWeb messages after computing their similarities

using Jaccard and Levenshtein similarity measurements is developed by Phan in 2008 [Phan

et al., 2008]. The aggregated messages are delivered using multicast protocol in order to

avoid sending the SOAP responses separately. This efficiently minimizes the network traffic.

The generated compact message includes all the addresses of clients as strings in the header

part. The structure of the aggregated messages consist of two parts: the common section

that contains message structures and common values of the messages, and the distinctive

section that contains the non-redundant values of the messages. Intermediary routers parse

the message header and create groups of client addresses based on the next hop in order to

forward only the required message along the next hop.

Wang in [Wang et al., 2009] introduced a novel approach for similarity measurement for

XML documents. The main technique is based on a weighted element tree model. The

proposed model classifies XML elements as the center, subtrees as main parts, and the

weight of the subtrees that represents the connection among elements. Basically, similarity

of XML documents is computed with respect to common XML tree features that have

been proposed in this research. Moreover, the proposed technique was evaluated using two

different datasets, and compared with the tree edit distance algorithm. The performance of

all models was investigated with respect to two metrics: the processing cost in terms of the

processing time and accuracy of the similarity measurements for XML documents.
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2.4 Clustering models

Clustering of XML-based Web messages is proposed by many studies with the aim to fa-

cilitate several advanced Web applications such as information retrieval, data integration,

structure analysis for Web messages, and documents classification. Liu in [Liu et al., 2004]

developed a new XML clustering approach using Principal Component Analysis (PCA) tech-

nique. The proposed technique first extracts features from XML documents by constructing

an ordered labeled XML tree and transform them into vectors. The resulted vectors contain

the occurrences of the considered features in XML documents. PCA is developed to min-

imize the dimensions of the dataset vectors by summarizing all of the considered features

and generating new reduced dimension vectors. Then, the K-Means clustering technique is

used to cluster XML documents based on the minimized features. In order to evaluate the

performance of the proposed approach, two sets of XML documents are considered as in-

put datasets. The performance of the developed PCA technique is compared with K-Means

technique without reducing the dimensionality of the dataset vectors. The experiments show

that the PCA has significantly improved the accuracy of K-Means clustering.

Lian [Lian et al., 2004] has proposed a hierarchical based algorithm (S-GRACE) for clus-

tering XML documents using the structural similarities of XML trees. The study discussed

that a group of XML documents could have different structures while an appropriate clus-

tering technique alleviates the fragmentation problem. The proposed clustering algorithm is

based on a distance metric, which is developed on the graph structure notation in order to

provide a minimal summary of content in the considered documents. Furthermore, with the

aim to investigate the performance of the proposed clustering technique, DBLP database

was used as a dataset and the proposed model showed a higher performance speed-up in

comparison with other techniques.

Particle Swarm Optimization (PSO), as a fast and high quality clustering algorithm for

text documents, was proposed by Cui [Cui et al., 2005]. In this research, PSO was im-
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plemented in addition to K-Means clustering technique, in order to produce an accurate

comparison for the performance of the proposed technique with a well-known clustering

method. The dataset was generated using the Vector Space Model (VSM). Although experi-

ments showed that PSO is significantly better than K-Means in terms of the clustering time,

K-Means is still more efficient for large documents than PSO. Therefore, a hybrid PSO was

presented in this study that can take the advantage of K-Means to replace the refine stage in

the proposed PSO technique. K-Means, PSO and hybrid PSO techniques have been applied

on four generated datasets with different number of documents for each one. The hybrid

PSO showed the best results in comparison with other clustering techniques.

Another XML documents clustering technique by considering the weight of frequent

structures in XML trees was proposed by Hwang and Gu [Hwang and Gu, 2007]. The

strategy of the proposed technique was completely based on the ability to recognize the

highly frequent items in XML documents in order to cluster them according to these items.

The criterion for clustering XML documents include the path details of all XML tags and

data items. Technically, the proposed technique first computes the average frequencies of

the structures in XML tree. Second, it groups any new XML document according to the

same average factor. With the aim to evaluate the performance of the developed technique,

a comparison was considered with the Hierarchical Agglomerative Clustering (HAC) and K-

Means techniques. The experiments showed that the proposed technique has outperformed

both HAC and K-Means techniques.

Yongming [Yongming et al., 2008] introduced a novel technique for the measurements

of XML similarities, and then cluster them based on both the structure and content. The

contribution of this research is a new development to the traditional Vector Space Model

(VSM) by adding the structural similarity measurements as the main technical step in the

clustering process of XML documents. The leaf path and nested elements are the main

XML features that are extracted in order to build the dataset. Moreover, VSM is technically
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based on computing the weight of XML tags and data elements as the features for clustering

purposes. In order to evaluate the proposed techniques, entropy and purity have been

computed for two different datasets. The results have shown that the new developed vector

space model outperformed the traditional version as it has shown higher purity and lower

entropy.

Homogeneous XML documents clustering technique was implemented by Nagwani and

Bhansali [Nagwani and Bhansali, 2010] using weighted similarity measurements on the XML

attributes. A new distance measurement methodology was proposed for XML documents.

They have implemented the proposed technique using several open source technologies such

as Java, JIXB, and JAXP. The processing of the proposed technique starts by retrieving

XML documents from the repositories. Then, all the retrieved XML documents are parsed

and the required information will be kept in the Java collections (API). Next, the similarity

measurements are applied based on the structure and style-sheet in addition to the content

of XML documents. Finally, K-means is applied to cluster the documents using the resultant

measurements. The Wikipedia XML Corpus is used as a dataset for the experimental results.

2.5 Caching systems

Several caching strategies are proposed by several studies [Devaram and Andresen, June

23 - 26, 2003; Terry and Ramasubramanian, 2003; Liu and Deters, 2007] to improve the

performance of Web services. Mainly, caching supports disconnected operations as it enables

clients and servers to retrieve disconnected requests and responses. Partial caching model was

proposed by Devaram and Andersen [Devaram and Andresen, June 23 - 26, 2003] to cache

SOAP messages at the client side. All SOAP messages are cached at the client when they are

first sent. The cached payloads of SOAP messages are reused to generate future requests,

and only the new parameters/values are replaced. The experimental results show higher

performance in comparison with the non-caching system (conventional SOAP messaging),
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and specially for small number of XML tags and values. On the other hand, the proposed

partial caching strategy degrades with large number of XML tags and values as a result of

the large number of accessing file (i.e. I/O operations).

Another caching strategy was proposed by Terry and Ramasubramanian [Terry and Ra-

masubramanian, 2003] which is based on developing a HTTP proxy server between the Web

service provider and the consumer, in order to cache the Web SOAP messages at the proxy

server. The proposed proxy caching model supports the disconnected operations. This study

discusses the benefits that could be provided on the server side. Technically, for the discon-

nected operations, the proxy machine sends a copy of the previously stored responses to the

client. Furthermore, all the received requests from the clients are stored in a write back

queue and would be sent to the server in case the request was sent during the disconnected

mode. However, the study has highlighted several technical issues such as consistency and

availability of offline access to Web requests/responses. Moreover, the proposed model suffers

from recognizing the required service to be played back.

A dual caching strategy for mobile Web services was proposed by Liu and Deters [Liu and

Deters, 2007]. The proposed strategy is mainly to resolve the loss of connectivity problem

between the server and client. The caching model resides on both sides (server and client).

A cache manager is proposed to arrange the coordination between the service provider and

consumer. The meta-data is described using an ontology Web language on both caching sides

including client workflow, service description, and disconnectivity description. With the aim

to develop the caching strategy, new annotations are proposed in the WSDL specification to

express some semantic information such as cacheability, life time, and default response.

2.6 Binary encodings and Serialization/Deserialization models

With the aim to reduce the size of SOAP messages, binary encodings have been proposed by

several studies. SOAP messages are transmitted using a binary format (similar to CORBA)
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instead of the textual format. Technically, both textual and binary XML schemes are sup-

ported by SOAP engines.

SOAP MTOM (Message Optimization Mechanism) [Gudgin et al., January 25, 2005a]

was introduced in a new released specifications by W3C XML Protocol Working Group and

XML binary Optimized Packaging (XOP) [Gudgin et al., January 25, 2005b]. The target of

these specifications was to facilitate the communication for multimedia data such as BMP,

JPEG, and GIF as well as data that has digital signature. Moreover, these specifications

represent a technical definition of the XML Infoset serialization. An extensible packaging

format includes the serialization of XML Infoset has created the XOP. The mechanism of

XOP and how it is layered into SOAP HTTP transport is described by MTOM.

A new mobile Web service architecture called Handheld Flexible Representation (HHFR)

was proposed by Oh and Fox [Oh and Fox, 2005]. Their proposed architecture is supported by

a binary messaging stream in order to provide optimized SOAP messaging communication.

HHFR architecture is mainly based on separating the XML syntax of SOAP messages from

the contents of the same messages. The syntax of SOAP body is characterized by an XML

schema at the initiation of the message stream to achieve the separation process. As a

consequence to the fact that sent/received SOAP messages between any two end-points

have similar structure and possibly similar content, the proposed architecture (HHFR) is

technically suited for end-points using the same Web application. SOAP messages structure

and type are transferred only once and only the payloads are transmitted for the future

transactions. The experimental results show higher performance to the SOAP messaging in

comparison with other conventional architectures.

Lu [Lu et al., 2006] has built a new binary encoding scheme for XML documents called

BXSA (Binary XML for Scientific Applications). The proposed BXSA encoding supports

both converting the textual form of XML into a binary XML format and vice versa. SOAP

messages are first modeled using bXDM model (an XML data model for scientific data that is
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developed by the same authors) instead of the XML Infoset. After modeling SOAP messages

using the bXDM model, the encoding policy provider is invoked and the message is serialized

into an octet stream. Then, the generated octet stream is transferred by the policy provider.

On the other hand, a reverse processing is used when a message is received. Experimental

results showed that both SOAP over BXSA/TCP model and SOAP with HTTP data channel

have similar performance. BXSA transport can be bound to multiple TCP streams in order

to carry larger messages.

Differential encoding is another efficient solution proposed by several studies to utilize

the fact of having similar SOAP messages in content. Differences of SOAP messages are the

only parts sent over the network. Abu-Ghazaleh [Abu-Ghazaleh et al., 2004] developed a

differential serialization model at the server side with the aim to optimize SOAP performance.

SOAP messages are serialized only in the first time as the serialized form of SOAP messages

are stored at the server. Later on, the proposed model serializes only the different elements

that have changed or not been serialized before, and reuses the main serialized parts of the

previous messages. Furthermore, the evaluation shows higher performance to the proposed

model in terms of the sending time by a factor of four to ten for Web applications that resend

the same messages repeatedly. Moreover, significant improvement was noticed for resending

SOAP messages with similar structure and have different values.

Another study by Suzumura et al. 2005 [Suzumura et al., 2005] proposed a differential

deserialization strategy for SOAP messages with similar structure. First, a new XML parser

was proposed in [Takase et al., 2005] that supports the differential deserialization process

by recognizing the differential regions between the current active XML message and the

previous messages. Technically, only the differential portions are parsed. The transitions

state is stored by a state machine during the parsing process of XML messages. This strategy

is developed to build a deserialization framework in the Web service architecture. The

experimental results show a significant optimization to the processing time at the receiver
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side.

2.7 Run-time optimizations

Run-time optimizations are proposed by few studies in order to develop real time performance

for SOAP engines. Helander and Sigurdsson [Helander and Sigurdsson, 2005] introduced a

stochastic quality sampling driven scheduler and pre-planned matching mechanism to achieve

a real-time improvement to SOAP Web services. This study proposes a self tuning planning

mechanism that predicts the required resources for the requested SOAP services by using

online sampling driven statistical technique. Technically, the proposed model separates the

temporal behavior (temporal behavior is represented by patterns that describe the required

resources for each node involved in the requested task) from the actual functions. The

required resources are described in a high-level language using the XML syntax. Several

parameters (time constraints) related to the service are provided in advance to determine the

execution time. Furthermore, execution and control flows are separated, which a continuation

rendezvous mechanism combines them later. The evaluation part shows that the proposed

model can be applied in a micro controller with 256KB of ROM and 32KB of RAM.

Another study by Jun [Jun et al., 2006] developed a real-time improvement to the per-

formance of SOAP engine by proposing a new data mapping template. The study identified

the main negative impact factor on the performance of SOAP Web services and that is

the data model mapping between XML data and Java data. Therefore, a new data map-

ping model was proposed (Dynamic Early Binding) that avoids Java reflections by reserving

the mapping data and actions in a template that is dynamically generated. Furthermore,

push-down automation with output actions is used to develop a context-free grammar tem-

plate. The proposed mapping template was applied on SOAP engine, and showed significant

improvement to the SOAP performance in comparison with Apache Axis 1.2.

Gamini Abhaya [Gamini Abhaya et al., 2010] presented a set of guidelines, algorithms,
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and techniques for building a Web service with predictable service execution. The proposed

guidelines can be classified into three requirements. First, in order to meet SOAP requests

deadline, they should be explicitly scheduled. Second, SOAP requests are based on requests

laxity. Finally, the proposed model needs to be supported with an operating system that

provides the access to system features for achieving predictability. The study discussed

the required enhancement to standalone SOAP engine to achieve service predictability and

improve the service response time. The proposed guidelines were evaluated and proved the

ability to achieve service predictability by using the proper techniques in SOAP engines.

2.8 Limitations of existing solutions

Although the proposed studies have improved the performance of Web services, they missed

some significant links to achieve higher performance.

• Most of the XML-aware compression techniques are still using some generic compres-

sion techniques such as gzip and bzip2 in specific portions of the compact message.

This strategy reduces the opportunity to increase compression ratio of messages.

• Technically, aggregation of SOAP messages is based on reducing the overall size of the

aggregated messages by exploiting the similarities inside them. However, the existing

techniques do not use the potential of redundancy encoding techniques (compression).

This could potentially result in higher size reduction.

• Clustering techniques are generally based on iterative processing which is a time con-

suming strategy. Therefore, a one pass clustering technique is a requirement for im-

proving the clustering time of Web messages.

• The proposed caching strategies degrade with large sized Web messages. Moreover,

although caching is resolving the disconnectivity problem for clients and servers, it

suffers from inconsistency and the recognition of available offline access.
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• Binary encoding solution is generally affecting the interoperability of Web services,

which is a significant goal that Web services try to achieve. Moreover, binary encoding

is proposed to reduce the size of Web messages, where the potential of compression

concepts in reducing message size was not used.

• Run-time optimizations require significant support from operating systems to meet

the suggested guidelines to improve the real time performance of SOAP engines. This

technical obstacle may result in expensive requirements for the proposed run-time

solution.
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XML-aware Compression Techniques

for SOAP Messages

This chapter answers the first research question posted in section 1.2. The main performance

problem of SOAP communication protocol is outlined. Furthermore, the proposed compres-

sion techniques as an efficient solution in terms of minimizing the required bandwidth over

the Internet for SOAP requests and responses is presented. Section 3.1 describes the problem

outlines and its negative impact on the network. Then, section 3.2 shows the motivation

for this research with the drawbacks of existing compression standards. In section 3.3, we

have described the technical structure of the proposed compression techniques. Section 3.4

shows the analysis and evaluation of the proposed techniques with the comparison with other

standards. Finally, section 3.5 summarizes the chapter.

3.1 The problem statement

As a result of the dramatic increase in the number of Web services over the Internet, an

emerging approach called Service Oriented Architecture (SOA) has appeared [Davis and

Zhang, 2002] that is capable of locating desired services and providing access to the targeted
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function or data. It is a component based model that defines the Web services Architec-

ture [Wang et al., 2006]. The protocol behind the success of SOA is Simple Object Ac-

cess Protocol (SOAP) which is a communication technology that supports interoperability

by enabling applications to communicate with each other from the same or different plat-

forms [Davis and Parashar, 2002]. XML (Extensible and Markup Language) is an encoding

scheme for SOAP Web services to translate requests/responses and send them over HTTP

transport layer [Heinzl et al., 2006]. As a result of SOAP Web service features such as in-

teroperability, self-describing nature of the XML as an encoding language, and HTTP being

used as a transport layer protocol, usage of Web services has increased dramatically over

the Internet [Andresen et al., 2004; Abu-Ghazaleh and Lewis, 2005], and will likely be the

protocol for massive data transactions in the emerging mobile, cloud and cluster environ-

ments [Cardellini et al., 2002; Levy et al., 2003; Yanping et al., 2005; Brebner and Liu, 2011;

Dikaiakos et al., 2009; AjayKumar et al., 2009].

However, SOAP Web services require more bandwidth compared with other communi-

cation technologies such as Java-RMI and CORBA [Werner and Buschmann, 2004]. The

major reason of this drawback is the use of XML as an encoding language which is ver-

bose in nature and has high overhead [Julio Cezar Estrella and Monaco, September 22-24,

2008]. Consequently, as a result of the high network traffic and the significant increase of

users demand for Web services, many organizations may suffer congestion, bottlenecks, and

degraded performance of Web applications.

As an example of high network volume, medical Web scenarios have shown high SOAP

message loads over the Internet. Figures 3.1 and 3.2 are both medical scenarios that show

large number of patients and costumers daily transactions over the Internet. Furthermore,

Fig. 3.3 represents only a small part of a large size patients report that usually medical

organizations exchange with each other periodically. Figure 3.4 shows the structure of the

large size patients report.
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Internet
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SOAP Request
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Figure 3.1: Medical SOAP Web service scenario
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Insurance
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Database

        SOAP
(Request/Response)

Figure 3.2: Patients medical Web services insurance scenario

3.2 Motivation

Compression of SOAP has been suggested as an efficient mechanism to reduce bandwidth

requirement and improve performance of Web services by a number of researchers using dif-

ferent concepts and strategies. These concepts have exploited the strategy of advocating the

segregation of XML tags from data items and compressing them separately using semantic

compressors [Liefke and Suciu, 2000a]. Moreover, traversing XML tree [Luoma and Teuhola,

2007] is another strategy of Web service compression [Skibinski et al., 2007] that requires

pre-processing steps for Web service messages in order to enable the compressors to achieve

high compression ratio.
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< Clinic Data >
< HSD Organisation ID >
24811 < /HSD Organisation ID >
< Clinic Name >
XxxxXxxx < /Clinic Name >
< Clinic Address 1 >
54 Xxxxx Street
< /Clinic Address 1 >
< Clinic Address 2/ >
< Clinic Address3/ >
< Suburb > Pascoe V ale < /Suburb >
< State > V IC < /State >
< Postcode > 3144 < /Postcode >
< Clinic Email/ > xxx@xxx.xxx < /Clinic Email >
< Telephone List >
< Telephone >
< Type > V oice/LandLine < /Type >
< Area Code > 03 < /Area Code >
< Number > xxxxxxxx < /Number >
< /Telephone >
< Telephone >
< Type > Fax < /Type >
< Area Code > 03 < /Area Code >
< Number > xxxxxxxx < /Number >
< /Telephone >
< /Telephone List >
< Practice Principals ID >
24811 < /Practice Principals ID >
< Practice Principals Name >
XxxxXxxx < /Practice Principals Name >
< Last Updated >
21/09/200911 : 05 : 41AM < /Last Updated >
< Status > A < /Status >
< /Clinic Data >

Figure 3.3: Single patient report message

Although previous studies have achieved some performance improvements to the Web

services, they still have limited performance and drawbacks as:
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<Patients_Report>

</Patients_Report>

Patient report 1

<Clinic_Data>

</Clinic_Data>

Patient report 2

<Clinic_Data>

</Clinic_Data>

Patient report n

<Clinic_Data>

</Clinic_Data>

Figure 3.4: Web message structure of bulk patients report

• Most of the proposed techniques could not achieve a very high compression ratio be-

cause they are basically based on generic compressors such as gzip and bzip2.

• Web service scenarios such as mobile and Cloud Web applications are not significantly

supported by these techniques in reducing the required bandwidth.

• The compression and decompression time of some of them is considered to be signifi-

cantly high and unsuitable for devices with limited resources (e.g Netbooks and PDAs)

over the Internet.

Although lossy compression mechanisms can achieve potentially high compression ratios,

web applications cannot tolerate any loss as Web service messages must be completely re-

constructable in order to be meaningful to the applications. Therefore, the challenge here is

to develop compression techniques that can achieve high compression ratio and at the same

time can keep their lossless feature to guarantee the translation of compressed messages to

the original ones.
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Both Cloud Web service scenarios (see Fig. 3.5) and bandwidth constrained mobile com-

munication environment (see Fig. 3.6) are two of the most Web services based scenarios and

applications that are likely to benefit from the proposed compression techniques.

Figure 3.5: Compression supports of Web services: Cloud Web services environment

3.3 The proposed compression models

In this chapter, three XML-aware compression techniques are proposed that are technically

based on three novel assignment mechanisms for XML tree of SOAP messages. The pro-

posed assignment mechanisms aim to remove all the duplicated XML tags as XML messages

have high degree of redundancy. Binary tree transformation is proposed to the general XML

tree using first child/first sibling method. Binary tree based, pre-order, and level-order tree

traversals are developed to traverse XML tree and assign the resultant order with combina-

tions of either two or one bit codes. Then, the resultant assigned XML trees are encoded
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Figure 3.6: Compression supports of Web services: low bandwidth Web services environment

by either fixed-length or Huffman (variable-length) techniques in order to reduce the overall

size of SOAP messages.

Fixed-length and Huffman encodings are developed to encode XML tags and data leaf as

individual input parameters since both encodings generate bit code strings for all tags and

data leaf. In both encodings, instead of computing a lookup table that has a bit code string

for every individual symbol in the XML message, the lookup would include a bit code string

for every XML tag and data leaf as separate items. Figure 3.7 shows the main technical

components of the Binary-tree compression techniques. Figure 3.8 shows the main technical

components of both the proposed One-bit and Two-bit status tree compression techniques

for SOAP messages.

The gains resulted from the proposed techniques are promising and show higher per-

formance in terms of high compression ratios when they compared with other well known

XML-aware encodings such as XMill and XBMill as well as generic compression techniques

like gzip and bzip2. Furthermore, the processing time for both compression and decom-

pression are found to be significantly low on PC. Moreover, the general XML tree based

compression techniques have shown significant processing time on limited performance de-
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Create Matrix Form
of XML Message

Build Binary Tree
(First child/Next sibling)

Fixed-Length
Encoding

Variable-Length
Encoding

Assigning Sibling
      Status

Create Formal
Message Expression

Figure 3.7: Binary-tree main model components

vices such as Laptop, Netbook, and PDA.

3.3.1 Computing XML tree

Generally, compression is one of the major performance enhancement techniques that can

efficiently reduce network traffic of Web service applications over the Internet [Julio Cezar Es-

trella and Monaco, September 22-24, 2008]. Technically, compression improve the perfor-

mance of Web services and protocols by supporting end users to send and receive compact

size of Web messages. Basically, Web service messages are based on tree structure which is

a serious motivation for utilizing tree data structure in developing the core of the proposed

compression techniques. These models enable both clients and servers to send compressed

messages and have the ability to decompress the received requests or responses. All the

proposed techniques are based on assigning XML tree and then encoding it using variable

and fixed length compression techniques. A stock quote application is used as an illustra-

tive example to show the practical steps of the proposed compression techniques. SOAP

message given in Fig. 3.9 is a response to the operation getStockQuote(WBC, ANZ). Gener-

ally, stock quote applications involve a large number of transactions requesting the available

41 (November 5, 2013)



CHAPTER 3. XML-AWARE COMPRESSION TECHNIQUES FOR SOAP MESSAGES

market quotes based on the requirements of the clients.

Computing the XML
SOAP Message Tree

Travers the XML Tree
using Preorder traversal

Fixed-Length
Encoding

Variable-Length
Encoding

Traverse the XML Tree
using Level-Order
 Traversal

Assign the XML Tree
using bit codes 

Figure 3.8: One-bit and Two-bit status tree main models components

< StockQuoteResponse >
< ArrayOfStockQuote >
< StockQuote >
< Company > WBC < /Company >
< QuoteInfo >
< Price > 24.74 < /Price >
< LastUpdated > 22/01/2010 < /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< StockQuote >
< Company > ANZ < /Company >
< QuoteInfo >
< Price > 21.1 < /Price >
< LastUpdated > 22/01/2010 < /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< /ArrayOfStockQuote >
< /StockQuoteResponse >

Figure 3.9: A SOAP response message to the getStockQuote(WBC, ANZ) request

Building the XML tree is the initial step of all the proposed compression models which is

preparing XML message for the encoding process. XML tree (denoted as T ) is a finite set of
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one or more nodes such that R is called the root of XML tree including both types of nodes:

leaf and non-leaf nodes. Furthermore, XML items of SOAP messages can be classified into

simple and complex nodes as they defined in definitions 3.2 and 3.3.

The nodes of XML tree except the root node (R0) are partitioned into K ≥ 0 number of

disjoint subsets T1, T2, ..., TK , each of which is a subtree that has its own root R1, R2, ..., RK ,

respectively, and at the same time they are children of the main root R0 of the considered

XML tree. Considering all the subtrees, there are N ≥ 0 complex nodes (X1, X2, ..., XN) in

the whole XML tree. In addition, the last two levels of each subtree (Ti), there is a number

of simple nodes that are M ≥ 0 such that M ≥ 0 (S1, S2, ..., SM) in all the subtrees of the

XML tree.

Definition 3.1 A SOAP message tree (denoted as T ) is a finite set of one or more

complex nodes Xi where i ≤ N − 1 and one or more simple nodes Sj where j ≤ M − 1. N

and M are numbers of complex and simple nodes respectively. R0 is considered to be the

root of XML tree and each complex node (Ri) is a root of a subtree of XML tree T{R0}

Definition 3.2 Simple nodes {S} is a set of data leaf elements and the parent nodes of

all data leaf elements.

Definition 3.3 Complex nodes {X} is a set of elements Xi /∈ {S}

Based on definitions 3.1, 3.2, and 3.3, XML tree can be represented by the following

formula:

T{X0} = {X0, X1, ..., XN−1} ∪ {S0, S1, ..., SM−1} (3.1)

Technically, computing the matrix form of the XML messages that is based on transfor-

mation of XML string into a general XML tree has resulted in reducing the overall number

of XML tags. For every non-leaf tag, there is a closing tag and the matrix form of XML tree

has one tag occurrence of every two occurrences of non-leaf tag. The overall number of tags

(TNodes) can then be computed as:
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TNodes = C × 2 + L (3.2)

Where L and C are the number of leaf and non-leaf tags respectively. For example, the

given message in Fig. 3.9 has 12 non-leaf tags (C = 12), and the message has 6 leaf nodes

(L = 6). Therefore:

TNodes = (12)× 2 + 6 = 30 (3.3)

The number of non-leaf tags is reduced by 50% and the final reduced number of the tags

can be computed as:

RNodes =
TNodes − L

2
(3.4)

Where RNodes is the number of the reduced tags, and by applying this equation for the

same example before:

RNodes =
30− 6

2
= 12 (3.5)

Finally, the resultant number of nodes (SNodes) for the generated matrix form can be

computed as:

SNodes = TNodes −RNodes = 18 (3.6)

As shown in Fig. 3.10, the XML tree of the given XML message (Fig. 3.9) has only

18 tags while the message had 30 where 12 tags are removed. Technically, building XML

tree is converting the XML message from the text form into a matrix data structure. The

matrix form of XML tree has two columns, the first is for tags (Xi and Sj) content while the

second column is for recording the parent index for the considered tag in the same matrix.
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Figure 3.11 shows the generated matrix form of XML tree of SOAP messages. The procedure

to build the XML tree is summarized in algorithm 3.1 and the matrix form can be expressed

as:

XML Tree =



X0 −

X1 PX1

. .

. .

. .

XN−1 PXN−1

S0 PS0

S1 PS1

. .

. .

. .

SM−1 PSM−1
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Figure 3.10: SOAP response message tree
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Figure 3.11: Matrix form of the SOAP response

In the worst case, the number of operations is controlled by the matching of parent and

children nodes in the XML tree in addition to the bubble sort = O(n3), where n is the

number of nodes and data values in the XML tree.

3.3.2 Binary-tree SOAP expression

The proposed Binary-tree based model has been designed for generating the compact ver-

sion of SOAP messages by first building their XML tree and then create the transformed
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expression using assignment binary codes. Then, SOAP expression is encoded by either

fixed-length or Huffman (variable-length) encodings.

Algorithm 3.1 Build the XML tree

01: //Notation Description:

02: //P holds the parent index

03: //X holds the input XML text

04: //D holds the current node content

05: //XTr[][] holds the XML tree

06: D ← getNode(X)//Get Root Node

07: i← 0//Counter Initialization

08: XTr[i][0]← D

09: P ← i

10: for all parent nodes (P ) of XML message do

11: for all children of node P do

12: D ← getNextChild(X)

13: i← i+ 1

14: XTr[i][0]← D

15: XTr[i][1]← P

16: end for

17: P ← P + 1

18: sort all XTr from P to i

19: end for
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Binary XML tree transformation

Generally, the structure of XML tree is known as ordered tree such that each node in the

tree can have an arbitrary number of child nodes. It is well-known that any ordered tree

can be converted into a binary tree [Shaffer, 1997]. ”First child/next sibling” is one of the

encoding methods that can transform any ordered tree and represent it as a binary tree.

Technically, first child of each node in the ordered tree becomes the left child for the same

node, and the next sibling of each ordered node becomes the right child for the new left

child node. Basically, the architecture of full binary tree using matrix form is based on index

measurements to allocate specific locations to both left and right children of each parent

node. Based on this discussion, left and right children allocation indexes can be computed

as:

LChild = Pindex × 2 + 1 (3.7)

RChild = Pindex × 2 + 2 (3.8)

Where Pindex is the index of the parent node. Equations 3.7 and 3.8 are used to allocate

the positions of both left and right children respectively. The architecture of the binary tree

is illustrated in Fig. 3.12. Figure 3.13 shows the resultant binary tree of XML tree (shown in

Fig. 3.10) of SOAPmessage. Finally, to create full binary tree, any missing child (left or right)

is filled with ”Nil-leaf”. This procedure is summarized in algorithm 3.2 which is required

to achieve the XML binary tree construction. Furthermore, binary tree of SOAP messages

can be encoded as an expression: {StockQuoteResponse (ArrayOfStockQuote (StockQuote

(Company (WBC, QuoteInfo (Price (24.74, LastUpdated (22/01/2010, Nil)), Nil)), Stock-

Quote (Company (ANZ, QuoteInfo (Price (21.1, LastUpdated (22/01/2010, Nil)), Nil)),

Nil)), Nil), Nil)}. The complexity of algorithm 3.2 is O(n2), where n is the number of nodes
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and data values in the XML tree.

0 1 2 3 4 5 6

Figure 3.12: Binary tree architecture

Algorithm 3.2 Build the XML binary tree

01: //Notation Description:

02: //Pindex holds the parent index

03: //XTree[][] holds the XML tree

04: //BTree[] holds the binary XML tree

05: Pindex ← 0

06: BTree[Pindex] = XTree[Pindex][0]

07: repeat

08: Chindex ← Pindex × 2 + 1

09: BTree[Chindex]← getF irstChild(Pindex)

10: OChindex = Chindex

11: repeat

12: NChindex = OChindex × 2 + 2

13: BTree[NChindex]← getNextChild(Pindex)

14: OChindex = NChindex

15: until No more children of Pindex

16: Pindex ← get Index Of Next Parent

17: until No more parent nodes
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StockQuoteResponse
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WBC QuoteInfo
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StockQuote
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ANZ QuoteInfo

Price

21.1 LastUpdated

22/01/2010 Nil

Nil

Nil

Nil

Nil

Figure 3.13: The binary tree of the SOAP response message

Assigning siblings status

In fact, building the XML binary tree of SOAP messages has resulted in producing large

number of Nil-leaf which seems wasteful. Technically, Nil-leaf can be avoided by representing

them with two bits. Therefore, we have four bit-codes for four cases: ”11” prefix is denoting

a binary node that has two binary nodes (left and right children), ”10” prefix is for a binary

node that has left child and right Nil-leaf (right child is nil), ”01” representation is referring
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to a binary node that has left Nil-leaf and an ordinary right binary child, and finally, the

prefix ”00” is to show the ordinary leaf of the tree for which they do not have any children.

Algorithm 3.3 is describing the procedure that is required to achieve the assignment process.

This assignment algorithm requires only O(n) (linear), where n is the number of both nodes

and data values in the binary XML tree.

Consequently, message expression of binary tree for SOAP message can be encoded

by applying algorithm 3.3 as {10StockQuoteResponse 10ArrayOfStockQuote 11StockQuote

11Company 00WBC 10QuoteInfo 11Price 0024.74 10LastUpdated 0022/01/2010 10Stock-

Quote 11Company 00ANZ 10QuoteInfo 00Price 0021.1 10LastUpdated 0022/01/2010}

3.3.3 Two-bit status tree based SOAP expression

Two-bit status XML tree based SOAP expression is the second proposed assignment mech-

anism that aims to remove the duplicated closing tags directly on the general structure

tree without any transformation. At the same time, the assignment mechanism generates

some combinations of bit codes that would enable the receiver to reconstruct the XML tags

through the capability of recognizing the correct order for tags position.

There are three suggested bit codes for assigning each node in the considered XML tree

including the data leaf items. Algorithm 3.4 is required to assign the one and two bits prefix

codes using the depth-first traversal technique. The first bit code ”0” assigns all the non-leaf

elements of the XML tree. Second code is a combination of two bits ”11” to assign the

right end leaf element of any complex node Xi. The second code is used to recognize the

closing tag of the complex element which is considered to be the root of the tree or a subtree.

Third code ”10” assigns the rest of the leaf elements as it is used to refer to the data leaf

elements and closing tags for their parents. The Depth-First traversal assignment algorithm

is a linear process as it requires only O(n), where n is the number of nodes and data values

in the general XML tree.
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The assigning algorithm is mainly based on the depth-first traversal. Generally, tree

traversals refer to the target of visiting each node in the tree in such a specific order that

depends on the considered traversal technique. Therefore, the bit code assignments are

decided to be inserted due to traversing the tree. In depth-first traversal of a tree, once a

node is visited, all its subtrees would be traversed next. The nodes of any subtree will be

traversed completely before starting traversal of the next subtree nodes. For each non-leaf

node the algorithm will assign it with ”0” and for all the leaf nodes, they will be assigned

with ”10” except the last visited leaf node of each subtree as it will be assigned by ”11”.

As a result of this assigning process, the XML message would be transformed again into a

textual form but in a different representation. For example, the assigned textual form for the

status XML tree (Fig. 3.14) would be in the following form: {0StockQuoteResponse 0Array-

OfStockQuote 0StockQuote 0Company 10WBC 0QuoteInfo 0Price 1024.74 0LastUpdated

1122/01/2010 0StockQuote 0Company 10ANZ 0QuoteInfo 0Price 1021.1 0LastUpdated

1122/01/2010}

0StockQuoteResponse

0ArrayOfStockQuote

0StockQuote

0Company

10WBC

0QuoteInfo

0Price

1024.74

0LastUpdated

1122/01/2010

0StockQuote

0Company

10ANZ

0QuoteInfo

0Price

1021.1

0LastUpdated

1122/01/2010

Figure 3.14: Two-bit assigned SOAP message tree

This assignment of bit codes would enable the decompression algorithm to recognize the

correct positions of each tag. To build the XML tree again, the order would be divided into
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two queues, the first queue starts with the root node of that tree and ends with the first

node that is assigned as ”11”, where it means the end of the current level. As described

before, both bit codes ”10” and ”11” refer to data leaf items and the parent is the closest

node to them at the left hand side of the queue which assigned with ”0”.

Algorithm 3.3 Assigning siblings status

01: //Notation Description:

02: //index holds the nodes index

03: //BTree[] holds the binary XML tree

04: //LCh and RCh hold the indexes of nodes children

05: for index = 0 to n− 1

06: LCh ← index× 2 + 1

07: RCh ← index× 2 + 2

08: if Both BTree[LCh] and BTree[RCh] ̸= Nil

09: Assign BTree[index]← 3 ((11)2)

10: //has two children

11: else if (BTree[LCh] = Nil) and (BTree[RCh] ̸= Nil)

12: Assign BTree[index]← 2 ((10)2)

13: //has one left child

14: else if (BTree[LCh] ̸= Nil) and (BTree[RCh] = Nil)

15: Assign BTree[index]← 1 ((01)2)

16: //has one right child

17: else Assign BTree[index]← 0 ((00)2)

18: //has no children

19: end if

20: end for
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Algorithm 3.4 Depth− First traversal assignment

01: //Notation Description:

02: //Nd holds a node content

03: Nd← Root Node of Tree

04: repeat

05: if Nd a non− leaf element then

06: Nd← Assigned Nd with ”0”

07: else if GetNextChildNode(Nd) = False then

08: Nd← Assigned Nd with ”11”

09: else

10: Nd← Assigned Nd with ”10”

11: end if

12: Nd← GetNextChildNode(Nd)

13: until No More Elements

3.3.4 One-bit status tree based SOAP expression

The One-bit status tree is another proposed bit assignment process that uses only one bit

code for each tag and data leaf item in the tree. The suggested bit codes (”0” and ”1”’)

as assignment codes are completely based on the breadth-first traversal for the XML tree.

In the breadth-first traversal, all nodes that are given at a specific level would be traversed

completely before traversing any node at the next level. The basic strategy of this model is

to assign the last traversed node of each level of the XML tree with ”1” and assign all other

nodes with ”0”. Therefore, when the decompression technique reads a node with status ”1”,

that means the end of the current level nodes and all the nodes between the current status

node and the considered parent node in addition to that status node are children to that
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parent node at the considered level.

Algorithm 3.5 is required to perform the breadth-first assignment process for the XML

tree. The complexity of this assignment algorithm is O(n2), where n is the number of nodes

and data values in the XML tree. Figure 3.15 shows the resultant status XML tree of the

assignment process for this model. For example, the status textual form of the assigned

XML tree would be expressed as {0StockQuoteResponse 1ArrayOfStockQuote 0StockQuote

1StockQuote 0Company 1QuoteInfo 0Company 1QuoteInfo 1WBC 0Price 1LastUpdated

1ANZ 0Price 1LastUpdated 124.74 122/01/2010 121.1 122/01/2010}

0StockQuoteResponse

1ArrayOfStockQuote

0StockQuote

0Company

1WBC

1QuoteInfo

0Price

124.74

1LastUpdated

122/01/2010

1StockQuote

0Company

1ANZ

1QuoteInfo

0Price

121.1

1LastUpdated

122/01/2010

Figure 3.15: One-bit assigned SOAP message tree

3.3.5 Encoding of SOAP expressions

Both fixed and variable length encoding techniques are developed for the generated SOAP

message expressions.

Huffman as variable-length encoding

As a variable-length encoding technique, Huffman binary tree encoding is one of the well-

known methods that removes the redundancies of letters. Huffman is one of the lossless
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Table 3.1: XML tree nodes redundancies of SOAP message

Node Node
Content Redundancy
StockQuoteResponse 1
ArrayOfStockQuote 1
StockQuote 2
Company 2
QuoteInfo 2
WBC 1
ANZ 1
Price 2
LastUpdated 2
24.74 1
22/01/2010 2
21.1 1

entropy encoding technique that could remove redundant information efficiently. The resul-

tant compressed version of Huffman is completely determined by a set of probabilities. The

input symbol with a very high probability of occurrences is encoded with very few bits. On

the other hand, the input symbol with a low probability is encoded with a larger number of

bits. This technique replaces each symbol in the input message with another symbol code

(bit code). Basically, Huffman technique assigns variable length binary codes to characters

such that determining the length of the binary codes is based on the relative frequencies

(redundancies) of the corresponding characters.

Building Huffman binary tree is generally based on a number of iterative computing steps.

First, order the characters of a list by ascending weight (weight is characters redundancy).

Second, assign the first two characters that have the minimum weights (redundancies) as

the children of an internal node such that its weight is the sum of the weight of the two

children. Next, remove the two first characters and pick up the sum and put it on the same

list in the correct position keeping the ascending order of the whole list. Table 3.1 shows

the redundancies of XML tags in the given SOAP message. This process is repeated until
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all the items are assigned under one internal node. Once the Huffman tree is constructed,

assigning the binary codes to individual characters is started. Technically, all the left edges

in the tree are assigned by ’0’ and all the right edges are assigned by ’1’.

Algorithm 3.5 Breadth− First traversal assignment

01: //Notation Description:

02: //QN is a queue of the traversed nodes

03: //Nd holds a node content

04: Nd← Root Node of Tree

05: Nd← Assigned Nd with ”0”

06: QN ← Add Nd to the queue

07: repeat

08: Nd← Assigned Nd with ”0”

09: repeat

10: Ch← GetNextChildNode(Nd)

11: if Ch is the last child then

12: Ch← Assigned Ch with ”1”

13: QN ← Add Ch to the queue

14: else

15: Ch← Assigned Ch with ”0”

16: QN ← Add Ch to the queue

17: end if

18: until No More children of Nd

19: Nd← Next Node of the Queue(QN)

20: until No More Elements

Traditionally, Huffman binary tree encoding is used to encode characters. Huffman
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method has been developed in this model to encode the whole content of XML complex

and simple nodes as individual items of SOAP Message. In other words, contents of the

XML nodes of the SOAP message are the basic items of Huffman encoding as alternative to

characters. Table 3.2 shows the binary codes of the XML simple and complex nodes resulted

from Huffman encoding technique.

Fixed-length encoding

Fixed length encoding is considered as a another encoding technique for encoding the as-

signed XML tags and data leaf. In fixed-length encoding, every input word would have the

same code length. Therefore, the number of the required bits (Blen) for every single code is

completely based on the total number of the considered XML tags and data leaf of the input

XML text.

Blen = Round(log(n) + 0.5) (3.9)

Where n is the total number of the input XML tags and data leaf items. Table 3.2

shows the generated binary codes of the XML nodes using fixed-length encodings for the

SOAP message given in Fig. 3.9. Figure 3.16 shows the structure for the compressed SOAP

message.

Original
XML Message

Compression Lookup Table

Encoded Data

Compressed Message

Figure 3.16: Compressed XML message structure
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Table 3.2: Binary codes of XML nodes of SOAP message

Node Huffman fixed-length
Content Code Code
StockQuoteResponse 0000 0000
ArrayOfStockQuote 0001 0001
StockQuote 001 0010
Company 010 0011
QuoteInfo 011 0100
WBC 11110 0101
Price 100 0110
LastUpdated 101 0111
24.74 11111 1000
22/01/2010 110 1001
21.1 1110 1010

3.4 Experiments and discussions

Generally, most experimental work of SOAP compression evaluation is for large and very

large messages that vary from few kilobytes to tens of kilobytes. In this chapter, we consider

message size varying from only 140 bytes to 53 Kbytes to show the efficiency of the proposed

techniques for small as well as large message size. This also helps in investigating the

performance of the proposed techniques on small messages against some of the well-known

compression techniques such as XMILL, XbMILL, Gzip, and bzip2. In fact, the proposed

compression techniques have shown significant achievements with promising compression

ratio for all message sizes including very tiny samples as small as 140 bytes.

Technically, lossless compression techniques create lookup tables for mapping symbols

to binary codes during the compression process. In the proposed models, once an XML

message is compressed, it consists of two parts: lookup table and encoded data (i.e. tags

and data leaf). For small messages, the lossless encoding would result in a big lookup table

in comparison with the encoded part of the tags and data leaf. However, for large and very

large SOAP messages, the resultant lookup table is quite small in comparison with the other
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Table 3.3: Average compression ratio of both fixed and variable length encoding of Two-bit
and One-bit status techniques in addition to the Binary-tree compression technique

Message Type Small Medium Large Very large
Range(byte) 140-800 800-3000 3000-20000 20000-55000
No.of Messages 40 40 40 40
Two-bit Fix.Length 2.16 3.2 7.38 11.57
Two-bit Var.Length 2.02 3.1 8.03 13.9
One-bit Fix.Length 2.2 3.24 7.6 12.11
One-bit Var.Length 2.04 3.11 8.31 14.7
Binary-tree
Fix.Length 2.14 3.16 7.16 11.08
Binary-tree
Var.Length 2.01 3.03 7.78 13.2

encoded part of the considered message. Consequently, the overall resultant compression

ratio of large messages is higher than the small ones.

The evaluation of the proposed techniques is based on testing their performance in terms

of the compression ratio and the processing time for both compression and decompression

for messages in various sizes. A test bed has been set up with 160 SOAP messages that is

equally divided into four groups based on message size. Each group of these messages has 40

samples. The considered groups are small (140-800 bytes), medium (800-3000 bytes), large

(3000-20000 bytes), and Very large (20000-55000 bytes). The resultant average compression

ratio for all the proposed techniques have been shown in Table 3.3. Both fixed-length and

Huffman encodings of the proposed models showed very high compression ratios for large

and very large documents. At the same time, all techniques have reduced the size of small

and medium messages successfully. The results for small documents are interesting giving

the fact that non of the existing techniques achieve such compression ratio. In fact, when

these techniques were applied to small sized documents they may even add overhead to the

compressed message size.

Both Two-bit and One-bit techniques using both fixed and variable length encodings
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Table 3.4: Resultant compressed size of different SOAP messages using XMILL, Xb-
MILL,gzip, and bzip2 compressors

Size(b) XMILL XBMILL Gzip bzip2
146 121 167 116 128
211 161 193 154 165
313 208 261 192 214
593 294 351 278 301
817 324 399 322 337
1392 475 556 473 492
2544 671 784 706 776
3110 739 829 833 804
9775 1458 1462 1861 1528
16997 2090 1900 2822 2019
22728 2500 2226 3531 2393
36114 3893 3447 5164 3193
47800 4764 4008 6462 3856
53346 5175 4236 7150 4105

Table 3.5: Resultant compressed size of different SOAP messages using fixed and variable
length encodings of One-bit, Two-bit status techniques, and Binary-tree based technique

Original Binary-tree Two-bit Technique One-bit Technique
Size(b) Fix.Len Var.Len Fix.Len Var.Len Fix.Len Var.Len
146 84 90 84 89 83 89
211 120 128 119 127 119 126
313 171 183 170 182 169 181
593 268 288 266 285 263 283
817 306 323 302 320 299 317
1392 483 512 477 507 471 501
2544 667 687 657 678 648 668
3110 772 795 760 783 748 771
9775 1441 1370 1403 1332 1366 1295
16997 1927 1723 1862 1658 1798 1594
22728 2318 2009 2232 1922 2146 1836
36114 3236 2702 3099 2565 2962 2427
47800 4033 3339 3851 3157 3670 2975
53346 4411 3635 4208 3432 4006 3230
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are compared to each other in addition to the Binary-tree based compression technique in

Table 3.3 and to other XML-aware and generic compressors in Tables 3.4 and 3.5 showing

their average compression ratios and the resultant reduced size for all the tested SOAP

messages. There is a marginal difference between the results of fixed and variable length

encodings of the Binary-tree based, Two-bit status tree based, and One-bit status tree based

techniques for small and medium size messages as the fixed length encoding achieved better

reduction than the variable length encoding. However, variable length encoding achieved

significantly better results for large and very large size messages. On the other hand, One-bit

technique shows better reduction than Two-bit technique when they use the same encoding

for their status XML tree. All the proposed techniques in this chapter are compared against

XML-aware compressors (e.g XMill and XbMill techniques) as well as generic compressors

(e.g gzip and bzip2).

The SOAP messages size reduction that can be achieved by the Binary-tree based com-

pression technique has been shown in Fig. 3.17 as results show the significant achievement of

the Binary-tree technique on different size of messages. Figure 3.18 shows the original and

compressed size of the four groups of XML documents (small, medium, large, and very large)

using Huffman and fixed-length encodings for the Two-bit status tree compression technique.

The results show that the size of all the tested documents have been compressed efficiently,

even the smallest document (140 bytes) has been reduced to less than 90 bytes. Even better

results were obtained by One-bit status tree compression technique. The results in Fig. 3.19

show the significant achievement of the One-bit status tree compression technique as the size

of all the large and very large documents have been reduced significantly as well as reducing

the size of small and medium documents successfully.

As shown in Table 3.4 and 3.5, all the proposed techniques outperformed both XML-

aware (XMill and XbMill technique) and generic (gzip and bzip) compressors except one

sample that is reduced slightly more by bzip2 technique than fixed length encoding of the
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Figure 3.17: Binary-tree compression of different size of SOAP messages

Binary-tree based technique and Two-bit status XML tree technique. Considering all the

proposed techniques, fixed length encoding of all techniques has achieved slightly better
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Figure 3.18: Two-bit variable-length and Two-bit fixed-length of different size of SOAP mes-
sages

reduction in comparison with variable length encodings for small and medium size messages.

On the other hand, variable length encoding (Huffman) has significantly outperformed the
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Figure 3.19: One-bit variable-length and One-bit fixed-length of different size of SOAP mes-
sages

fixed length encoding as well as all the other techniques for large and very large size messages.

The achievement of bzip2 is very competitive with other XML-aware compressors for small,
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medium, and large XML messages and at the same time bzip2 outperformed both XMill and

XbMill as well as gzip for the very large size messages. For small messages, gzip as a generic

compressor has shown higher reduction than all the considered XML-aware encodings in

addition to the bzip2. Furthermore, the results show better size reduction by XMill than

XbMill for small messages while XbMill marginally outperformed XMill for all medium and

large, and significantly for the very large messages.

Table 3.6: Experimental devices features

Device PC Laptop NetBook PDA
Manufacturer HP Dell Acer dopod
Model HP Compaq INSPIRON1525 AOD260 dopod 838

dc7800
Processor Intel(R) Intel(R) Intel(R) Samsung

Core(TM)2 Pentium(R) Atom(TM) @ 400 MHz
Duo CPU E8500 Dual CPU T2370 CPU N450
@ 3.16GHz @ 1.73GHz @1.66GHz

RAM 3.48 GB 1.00 GB 1.00 GB 64 MB
System Type 32-bit 32-bit 32-bit Microsoft

Operating Operating Operating Windows Mobile
System System System Version 5.0

Figure 3.20 shows the resultant average compression ratios for all the proposed tech-

niques and other techniques that are involved in the designed testbed for the evaluation. As

mentioned earlier, although fixed length encodings of the Binary-tree, Two-bit, and One-bit

status tree techniques outperformed all the techniques (including variable length encoding of

the proposed techniques) for small and medium messages. However, variable length encod-

ing of all techniques again have achieved significantly better compression ratios than fixed

length encoding as well as other techniques. At the same time, this confirms the fact that

gzip has higher performance than other standards on small messages.

With the aim to evaluate the compression and decompression time on different platforms,

four devices: personal computer (PC), laptop, netbook, and PDA are selected to run the
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Figure 3.20: Average compression ratio of different implementations for all types of messages

proposed techniques. Table 3.6 shows the features of all the experimental devices (PC,

Laptop, NetBook, and PDA). Figures 3.21, 3.22, and 3.23 show the compression time of

small, medium, large, and very large sized messages using Binary-tree, Two-bit and One-bit

Huffman based techniques respectively. Both One-bit and Two-bit compression techniques

have shown significantly better compression time than the Binary-tree technique. It is clear

that the performance of the experimental device has an impact on the consumed processing

time as the PC device showed the best results for all techniques in comparison with other

devices for the same technique. Although the PDA device has very limited computing power,

it shows promising results for One-bit and Two-bit techniques. Table 3.7 shows the average

compression time for small, medium, large, and very large sized messages in addition to the

overall average compression time using all models. Both One-bit and Two-bit compression
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techniques require compression time significantly less than Binary-tree based technique of

both fixed length and Huffman encodings. The results are potentially promising showing

the fact that the proposed techniques require less than one millisecond for compressing small

messages on PC and not more than 31.6 millisecond on PDA device.

Table 3.7: Average compression time (millisecond) of small, medium, large, and very large
sized messages using fixed-length and Huffman based One-bit, Two-bit status techniques, and
Binary-tree technique

Binary-tree Two-bit Status Tree One-bit Status Tree
Device Message Fixed Huffman Fixed Huffman Fixed Huffman

Size

PC Small 4.05 4.025 0.1 0.18 0.1 0.53
Medium 10.8 10.85 1.55 2.68 1.33 2.6
Large 599.68 599.48 61.65 65.05 61.13 65.1
Very large 12327.15 12330.85 609.33 611.7 607.98 611.65
Overall 3235.42 3236.3 168.16 169.9 167.63 169.97

Laptop Small 13.225 17 0.875 1.525 0.8 1.7
Medium 33.1 30.98 7.28 6.95 5.58 8.75
Large 1453.28 1458.08 198.55 197.28 179.48 188.38
Very large 29515.48 29680.28 2026.7 2002.3 1978.63 1990.75
Overall 7753.77 7796.58 558.35 552.01 541.12 547.39

NetBook Small 14.73 17.45 1.65 4.48 4.63 5.1
Medium 48.88 47.2 14.65 21.48 17.73 24.6
Large 2350.68 2335.58 573.65 728.95 776.75 770.93
Very large 43486.95 43057.73 4906.05 5321.78 5198.55 4899.85
Overall 11475.31 11364.49 1374 1519.17 1499.41 1425.12

PDA Small 305.9 308.85 28.78 36.93 24.68 31.6
Medium 1085.13 1049.58 187.68 235.55 180.05 239.85
Large 53187.73 52055.05 5582.2 5788.55 5567.13 5746.35
Very large 1020907 1034418 59075.35 59602.85 59193.35 59617.93
Overall 268871.4 271958 16218.5 16415.97 16241.3 16408.93

Furthermore, Figures 3.24, 3.25, and 3.26 show the decompression time for small, medium,

large, and very large sized messages using Binary-tree, Two-bit and One-bit techniques re-

spectively. Again, both Two-bit and One-bit techniques showed potentially higher perfor-

mance in terms of the required decompression time on the devices in comparison with the

Binary-tree technique. Table 3.8 shows the average decompression time for small, medium,
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Table 3.8: Average decompression time (millisecond) of small, medium, large, and very large
sized messages using One-bit, Two-bit status techniques, and Binary-tree technique

Device Message Size Binary-tree Two-bit Status Tree One-bit Status Tree
PC Small 0.06 0.02 0.02

Medium 0.53 0.03 0.06
Large 223.85 0.23 0.185
Very large 5894.6 1.58 1.55
Overall 1529.76 0.46 0.43

Laptop Small 0.16 0.15 0.03
Medium 2.55 0.18 0.13
Large 536.6 1.58 1.33
Very large 13753.5 4.48 4.23
Overall 3573.16 1.59 1.43

NetBook Small 0.18 0.16 0.18
Medium 3.78 1.13 1.2
Large 852.23 5.45 5.95
Very large 21992.18 12.65 21.25
Overall 5712.04 4.83 7.14

PDA Small 7.68 0.23 0.18
Medium 71.75 1.68 1.7
Large 8133.68 12.55 12.85
Very large 194035.5 40.35 40.45
Overall 50562.14 13.7 13.79
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Figure 3.21: Compression time of small, medium, large, and very large sized messages using
Huffman based Binary-tree technique

large, and very large sized messages in addition to the overall average decompression time

using all models. Both techniques require even less than one millisecond to decompress small

sized messages on all devices. Moreover, they require about only 14 milliseconds to decom-
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Figure 3.22: Compression time of small, medium, large, and very large sized messages using
Huffman based Two-bit status technique

press the very large sized messages on the PDA device and less than 2 milliseconds on the

PC.
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Figure 3.23: Compression time of small, medium, large, and very large sized messages using
Huffman based One-bit status technique

3.5 Conclusion

Developing Web services compression techniques and getting higher average compression

ratio would improve the performance of Web services by reducing the network traffic. More-
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Figure 3.24: Decompression time of small, medium, large, and very large sized messages
using Binary-tree technique

over, this development would support low bandwidth environment, and especially, the low

connectivity clients such as PDAs connected to an enterprise server. In this chapter, SOAP

message tree structure has been developed in an innovative way to reorder the XML nodes

73 (November 5, 2013)



CHAPTER 3. XML-AWARE COMPRESSION TECHNIQUES FOR SOAP MESSAGES

100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

Message Size (byte)

D
e
c
o
m

p
re

s
s
io

n
 T

im
e
 (

M
il
li
s
e
c
o
n
d
)

Decompression Time of Small Messages using 2Bit Status Tree Technique

 

 

PC
Laptop
NetBook
PDA

500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

Message Size (byte)

D
e
c
o
m

p
re

s
s
io

n
 T

im
e
 (

M
il
li
s
e
c
o
n
d
)

Decompression Time of Medium Messages using 2Bit Status Tree Technique

 

 

PC
Laptop
NetBook
PDA

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

25

30

35

Message Size (byte)

D
e
c
o
m

p
re

s
s
io

n
 T

im
e
 (

M
il
li
s
e
c
o
n
d
)

Decompression Time of Large Messages using 2Bit Status Tree Technique

 

 

PC
Laptop
NetBook
PDA

2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

0

10

20

30

40

50

60

70

80

Message Size (byte)

D
e
c
o
m

p
re

s
s
io

n
 T

im
e
 (

M
il
li
s
e
c
o
n
d
)

Decompression Time of V.Large Messages using 2Bit Status Tree Technique

 

 

PC
Laptop
NetBook
PDA

Figure 3.25: Decompression time of small, medium, large, and very large sized messages
using Two-bit status technique

in such a way to be re-constructable. At the same time, the entire XML nodes have been

chosen as individual input for both fixed-length and variable-length encodings.

Three assignment techniques for SOAP message tree are developed using several bit codes
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Figure 3.26: Decompression time of small, medium, large, and very large sized messages
using One-bit status technique

strategies to create a reduced size as well as re-constructable XML expression by removing

the duplicated tags. First technique is mainly based on developing new Binary-tree based

transformation to the XML tree and then assigning the generated binary tree with four bit
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code combination in order to generate a re-constructable SOAP messages expression. Second

technique (Two-bit technique) is based on assigning all the XML tags with one bit code ”0”

if it is not a data leaf item and two bit code with two values ”10” and ”11” if it is a data

leaf item. This technique is utilizing the features of the depth-first traversal for XML tree.

The third technique (One-bit technique) assigns all the tags and data leaf items with one

bit code ”0” or ”1”, and it is mainly based on the breadth-first traversal for XML tree.

Fixed length and Huffman as a variable length encodings are proposed to encode the re-

sultant XML expression of the assignment techniques. Experiments show that the proposed

techniques outperform all the existing methods by achieving higher compression ratios. Fur-

thermore, The required compression and decompression time for the proposed techniques

are found to be potentially supportive for both low connectivity devices over the Internet

and bandwidth constrained communication environment.

While Huffman showed a significant average of compression ratio in comparison with

other considered techniques, fixed-length encoding dose not perform as well for very large

samples. Fixed length encoding is found to be efficient for small and medium document size

outperforming all other techniques including variable length encoding. However, Huffman

encoding is the most efficient for large and very large documents.
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Chapter 4

Redundancy-aware SOAP Messages

Similarity & Aggregation

This chapter tries to answer the second research question posted in section 1.2. Simple cost

similarity measurements such as Jaccard coefficient and cosine similarity measurements have

been developed in this chapter to provide the capability of grouping more than two similar

messages in one cluster. Then, new redundancy-aware aggregation models are proposed with

the aim to potentially reduce the total SOAP network traffic.

The chapter is organized as follows: Section 4.1 discusses the main drawbacks of SOAP,

motivation for this research, and briefly describes the proposed solution. Section 4.2 intro-

duces a predictor for compressibility measurements for SOAP messages. Then, states the

development of Jaccard based clustering technique, and finally explains the Vector space

model and its clustering model for grouping SOAP messages based on their cosine similarity

degrees. Section 4.3 shows the technical strategy for utilizing the compression concepts in

the aggregation process with the proposed Binary-tree, Two-bit, and One-bit aggregation

models. The evaluation of the proposed techniques is depicted in section 4.4. Finally, section

4.5 concludes the chapter.
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4.1 Introduction

SOAP has been developed to improve interoperability of Web services in Cloud environ-

ments [Xiong and Perros, 2009; Miyamoto et al., 2009]. However, Cloud Web services inherit

the disadvantages of SOAP as messages are bigger than the real payload of requested ser-

vices [Stantchev, 2009], which can cause high network traffic. As a result, Cloud Web services

often suffer from congestion and bottlenecks due to the high number of client Web requests

and the large size of Web messages [Vecchiola et al., 2009]. This could result in slowing

down the performance of the Cloud Web applications or halting them completely [Miyamoto

et al., 2009; Mancini et al., 2009].

4.1.1 Motivation

Several approaches have been proposed to develop compression techniques and only few

for textual aggregation models as an efficient solution that could improve the performance

of Web services significantly by minimizing the network traffic. Despite the fact they are

capable of enhancing the performance of web services to some extent, they still suffer tech-

nical drawbacks that could affect their overall performance like high storage consumption.

Although both compression and aggregation models have similar objectives and exploit sim-

ilarity within the message itself (redundancy in compression) or with other messages (sim-

ilarity in aggregation), they have failed to take advantage of each other to achieve higher

performance.

Furthermore, aggregation technically needs the support of SOAP similarity measurement

schemes to enable aggregating messages with potential size reduction through utilizing the

high similarity degree inside the group of the considered messages. Generally, the existing

simple cost SOAP similarity measurements such as Jaccard coefficient work on pairs of

messages which more advance measurements are required to strengthen the performance of

the aggregation models.
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4.1.2 Proposed solution

In this chapter, three aggregation models are introduced that are based on utilizing the

compression concepts to exploit the redundancies of SOAP messages. The basic objective

of the proposed model is to provide an efficient aggregation that can reduce the size of the

messages significantly. The compression techniques proposed in chapter 3 are developed

in this chapter as redundancy-aware aggregation models. Binary-tree, Two-bit and One-

bit status XML tree aggregation techniques aim to enable the Cloud application servers to

aggregate a group of messages that have a certain degree of similarity and send them as

one compact message in order to minimize the network traffic (see Fig. 4.1). The resultant

aggregated messages of SOAP responses are extractable at the closest routers to the receivers

(clients) to deliver only the required response to these clients.

Internet

Saved bandwidth
channels

Stock Quote Clients

Database
(Storage)

Control
Node

Application
Servers

Figure 4.1: Cloud Web services scenario for a Stock Quote

Three similarity measurements of SOAP messages are introduced in order to investigate

the similarity based clustering model that can group messages with a significant similarity

degree to enable the aggregation techniques to achieve potential message size reduction.

Compressibility measurement, Jaccard coefficient, and Vector Space Model are proposed
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in order to cluster SOAP messages based on their similarity. Compressibility is developed

to predict the possibility of size reduction that can be achieved on SOAP message pairs.

Jaccard coefficient and Vector Space Model are developed to group SOAP messages in larger

predefined size clusters (not only pairs).

4.2 Similarity measurements and clustering of SOAP messages

Similarity-based clustering of SOAP messages represent a defacto operation for aggregation

approaches by clustering messages with a high level of similarity to strengthen aggrega-

tion resulting in high size reduction. In this chapter, we first introduce compressibility for

pairs of SOAP messages as a simple and effective similarity measurement tool to support

the proposed compression based aggregation technique by computing the compressibility

of messages. Jaccard coefficients are well-known for computing similarity of pairs of mes-

sages [Phan et al., 2008], and next, we exploit this feature to build a new clustering algorithm

with n-message (where n ≥ 2) sized clusters. Furthermore, another new clustering technique

based on Vector Space Model is proposed as a fixed cluster size technique in order to exploit

the highest similarity that can be achieved in group of messages.

4.2.1 Compressibility measurements

Compressibility measurement is proposed in this chapter as an alternative to the traditional

similarities of SOAP messages by considering the redundancy within messages. In fact,

clusters of SOAP message measurements determine the compressible SOAP Web messages

that have common redundancy and can be combined efficiently with the aim of achieving

high size reduction. As the proposed aggregation technique is a redundancy based model,

the size of the Web messages is an effective criteria in predicting the potential reduction

of the aggregated message size. Hence, the compressibility measurements consider the Web

message size as a basic parameter as well as computing the overlapped ratio of the XML
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< StockQuoteResponse >
< ArrayOfStockQuote >
< StockQuote >
< Company > IBM < /Company >
< QuoteInfo >
< Price > 22.36 < /Price >
< LastUpdated > 06/05/2010 < /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< StockQuote >
< Company > HP < /Company >
< QuoteInfo >
< Price > 21.54 < /Price >
< LastUpdated > 06/05/2010 < /LastUpdated >< /QuoteInfo >
< /StockQuote >
< /ArrayOfStockQuote >
< /StockQuoteResponse >

a. S1

< StockQuoteResponse >
< ArrayOfStockQuote >
< StockQuote >
< Company > NAB < /Company >
< QuoteInfo >
< Price > 26.47 < /Price >
< LastUpdated > 06/05/2010 < /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< StockQuote >
< Company > CommonWealth < /Company >
< QuoteInfo >
< Price > 27.51 < /Price >
< LastUpdated > 06/05/2010 < /LastUpdated >< /QuoteInfo >
< /StockQuote >
< /ArrayOfStockQuote >
< /StockQuoteResponse >

b. S2

Figure 4.2: a. (S1):SOAP response to the getStockQuote(IBM, HP) request, b.(S2):SOAP
response to the getStockQuote(NAB, CommonWealth) request
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StockQuoteResponse

ArrayOfStockQuote

StockQuote

Company

IBM

QuoteInfo

Price

22.36

LastUpdated

06/05/2010

StockQuote

Company

HP

QuoteInfo

Price

21.54

LastUpdated

06/05/2010

Figure 4.3: Generated XML message tree for S1 SOAP messages

tags between messages. Equation 4.1 is required for computing the overlapping ratio for a

set of SOAP messages (S1, S2, ...SN).

Ov(S1, S2, ...SN) =

∑N−1
i=1

∑N
j=i+1 Sh(Si, Sj)∑N

i=1 Tot(Si)
(4.1)

Where

• Sh(Si, Sj) is the number of common XML tags and data items in both messages Si

and Sj.

• Tot(Si) is the total number of XML tags and data items in message Si.

Equation 4.2 computes the overlapping Ov(S1, S2) ratio of only two SOAP messages S1

and S2.

Ov(S1, S2) =
Sh(S1, S2)

Tot(S1) + Tot(S2)
(4.2)

Equation 4.3 is required to compute the overall compressibility measurement Cm(S1, S2)

of messages S1 and S2.
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StockQuoteResponse

ArrayOfStockQuote

StockQuote

Company

NAB

QuoteInfo

Price

26.47

LastUpdated

06/05/2010

StockQuote

Company

CommonWealth

QuoteInfo

Price

27.51

LastUpdated

06/05/2010

Figure 4.4: Generated XML message tree for S2 SOAP messages

Cm(S1, S2) = Ov(S1, S2)× Log(Tot(S1, S2)) (4.3)

Where

• Ov(S1, S2) is the overlapping ratio between two messages S1 and S2.

• Tot(S1, S2) is the total number of XML items in both S1 and S2 messages.

For the given SOAPmessages S1 and S2 in Fig. 4.2, the shared common nodes (Sh(S1, S2))

is 14 as it can be computed from generated matrix form of SOAP messages (see Fig. 4.5).

The total nodes (Tot(S1)+Tot(S2)) in both messages is 36. Therefore, the overlapping ratio

can be computed as:

Ov(S1, S2) =
14

36
= 0.388 (4.4)

Then, the overall compressibility of messages S1 and S2 can be computed as:

Cm(S1, S2) = 0.388× Log(36) (4.5)
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Cm(S1, S2) = 0.388× 1.556 = 0.61 (4.6)

4.2.2 Jaccard messages grouping

The Jaccard similarity coefficient is a statistical factor that is usually used for comparing the

similarity and diversity of XML messages [Wang and hua Li, 2009]. The Jaccard coefficient

is defined as the size of the intersection of two XML messages divided by the size of the union

of the same messages [Chung et al., 2010]. Similar messages are determined by computing

their similarities of both non-leaf and leaf nodes of all the XML trees. For non-leaf nodes,

the Jaccard similarity is computed as the ratio of common nodes between two messages.

Jctemp(S1, S2) =
|Nnd(S1) ∩Nnd(S2)|
|Nnd(S1) ∪Nnd(S2)|

(4.7)

Where

• Nnd(XMLtree) is a set of distinctive non-leaf XML nodes; and

• |X| is the cardinality of the set X

In this chapter, the same Jaccard coefficient equation is modified to compute the simi-

larity of the XML messages for leaf nodes only.

Jcleaf (S1, S2) =
|Nch(S1) ∩Nch(S2)|
|Nch(S1) ∪Nch(S2)|

(4.8)

Where

• Nch(XMLtree) is a set of the distinctive characters of the leaf XML nodes; and

The similarity between two service messages S1 and S2 is computed using the following

equation:

SimJc(S1, S2) = Jctemp(S1, S2)×Nx + Jcleaf (S1, S2)×Nl (4.9)
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Figure 4.5: Generated matrix form for two SOAP messages (a.) S1 and (b.) S2

Where

• Nx is the total number of non-leaf XML nodes; and

• Nl is the total number of leaf XML nodes.

Furthermore, Jaccard similarity measurement is proposed in this chapter as a simple

grouping technique of XML messages that are clustered into equally sized groups (more
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than two messages) based on their Jaccard similarities. Algorithm 4.1 is required to create

the XML message groups in order to enable the proposed models to aggregate messages

according to the resultant Jaccard clustered groups. In this algorithm, the centroids are

selected based on the first available point (i.e. unclustered message). Firstly, the messages

are flagged with a Boolean value (initially ’true’) to assign all points as either still available

and waiting to be clustered or already clustered to one of the generated groups based on

the similarity to the nominated centroids. After selecting the first available centroid, the

Jaccard similarity is computed with the remaining available points. Then, the clustered

points are selected according to their high degree of similarity with the considered centroid.

The complexity of algorithm 4.1 is O(n2 × m), where n is the number of the considered

documents (Sn) and m is the number of groups of items (Gn) in each message.

4.2.3 Vector space messages grouping

The vector space model is one of the well-known techniques in information retrieval and

textual documents clustering [Liu et al., 2010]. It is mainly based on computing the cosine

similarities of documents in order to investigate their similarity degree [Chen and Song,

2009]. The basic cosine similarity of the Vector space model involves computing the items

weight of the documents which reflect their descriptiveness in a statistical way [Liu et al.,

2010]. In this chapter, the Vector space model is proposed as similarity measurement for

SOAP messages as it is developed to cluster them into equal sized groups. Equation 4.10

measures the similarity between two SOAP messages S1 and S2:
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Algorithm 4.1 Jaccard Clustering

01://Notation Description:

02://Sn holds the number of documents

03://Gst holds the resultant groups

04://Gn holds the number of groups

05:

06:For i = 1 To Sn//Initializing flags

07: V F lag(i)← True

08:Next i

09:Gst← ””//Initializing the resultant groups

10:Gn← Sn
Gs

//Number of groups

11:For Gindex = 1 To Gn

12: For i = 1 To Sn //Determine the next center document

13: if V F lag(i) = True then

14: C ← i

15: Gst← concatenate(Gst, C)

16: exit loop

17: end if

18: Next i

19: For i = C + 1 To Sn //Compute the Jaccard similarities

20: if V F lag(i) = True then

21: SimJc(i) = Jctemp(SC , Si)×Nx + Jcleaf (SC , Si)×Nl

22: end if

23: Next i

24: For i = 1 To Gs//Find the closest documents

25: Maxindex ← 0

............................................................................................................Continue

87 (November 5, 2013)



CHAPTER 4. REDUNDANCY-AWARE SOAP MESSAGES SIMILARITY & AGGREGATION

26: //Initializing the closest document index

27: For j = C + 1 To Sn

28: if (Maxindex = 0) then

29: Maxindex ← j

30: else

31: if (V F lag(j) = True) and (SimJc(j) > SimJc(Maxindex)) then

32: Maxindex ← j

33: end if

34: end if

35: Next j

36: Gst← concatenate(Gst,Maxindex)

37: V F lag(Maxindex) = False

38: Next i

39: Gst← concatenate(Gst, ”&”)//End of Group

40:Next Gindex

SimV S(S1, S2) =
WS1 .WS2

∥WS1∥ ∥WS2∥
(4.10)

Where

• WS1 and WS2 are vectors that include the XML document items weight of messages S1

and S2 respectively.

• ∥WS1∥ and ∥WS2∥ represent the resultant norm values of the weight vectors of both

messages S1 and S2 respectively.

Therefore, the cosine similarity equation can be described in details as shown in equation

4.11:
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SimV S(S1, S2) =

∑N
i=1WS1(i)×WS2(i)√∑N

i=1WS1(i)×
√∑N

i=1WS2(i)
(4.11)

The Vector space model is developed to cluster SOAP messages according to their cosine

similarities. Algorithm 4.2 is required to generate the Vector space based SOAP clusters.

First, the algorithm determines the centers of documents by computing the summations of

the frequencies of the weighted XML items for each vector and sorting them in descending

order and then cluster them based on the required group size using the values of summations

as the key of their distribution. The first XML document of each cluster is assigned as a center

point. Then, the rest of the XML documents are grouped into their clusters based on the

similarity degree with the document that is being compared. Again, the points (messages)

are initially flagged as available using Boolean (initially ’true’) and then the centroids are

excluded as they are flagged ’false’. For every single centroid, its cosine similarities with the

rest available points are investigated to be clustered with the considered centroid. Algorithm

4.1 complexity is O(n2) + O(m), where n is the number of SOAP messages (Sn) and m is

the number of groups of XML items (Gn) in each message.

4.3 Compression based aggregation of SOAP messages

Generally, compression techniques have been used to enhance the performance of Web ser-

vices by reducing the overall size of SOAP messages over the net to minimize the network

traffic. Technically, compression techniques are based on exploiting the redundant items in-

side the same object. In this chapter, the targeted redundancy of compression techniques is

extended to be exploited with other objects (SOAP messages) to be the key factor of a new

aggregation strategy powered by the compression concepts. The new proposed aggregation

models would enable Cloud Web servers to aggregate SOAP responses using compression

targets to reduce the aggregated messages size efficiently.
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Algorithm 4.2 V ector Space Clustering

01://Notation Description:

02://Sn holds the number of documents

03://Gst holds the resultant groups

04://Gn holds the number of groups

05:

06:Gst← ””//Initializing the resultant groups

07:Gn← Sn
Gs
//Number of groups

08:Cn← Gn//Number of centers

09:For i = 1 To Sn//Sum Weights of Samples

10: SumW (i)←
∑N

j=1WSi
(j)

11:Next i

12:TCnt(1..N)← Ascending Sort(SumW (1..N))

13: //Sorting weight vector

14:K ← 1//Initializing the centers index

15:For i = 1 To Cn //Determine centers index

16: Cnt(i)← K

17: K ← K +Gs

18:Next i

19:For i = 1 To Sn//Initializing flags

20: V F lag(i)← True

21:Next i

22:For i = 1 To Cn//Exclude centers

23: V F lag(Cnt(i))← False

24:Next i

25:For i = 1 To Gn//Clustering documents

............................................................................................................Continue
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26: C ← Cnt(i)//Get center index

27: Gst← concatenate(Gst, C)

28: For j = 1 To Sn//Compute similarities

29: if V F lag(j) = True then

30: Dp←
∑N

k=1[WSC
(k)×WSj

(k)]

31: Np← SumW (C)× SumW (j)

32: SimV S(j)← Dp
Np

33: end if

34: Next j

35: TSim(1..N)← Descending Sort(SimV S(1..N))

36: //Sorting similarities

37: For j = 1 To Gs− 1//Include closest documents

38: Gst← concatenate(Gst, TSim(j))

39: Next j

40: Gst← concatenate(Gst, ”&”)//End of cluster

41:Next i

In this chapter, the compression models proposed in chapter three are developed to gen-

erate the compact aggregated messages by first building XML trees, then investigating their

compressibility or their similarities based on Jaccard measurements or Vector Space Model

(VSM) and finally encoding them using the Binary-tree, Two-bit, and One-bit compression

based aggregation process which start by computing the textual SOAP expression and then

make use of fixed-length or Huffman (as a variable-length) encoding.
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4.3.1 Generation of SOAP message expression

It is required to generate the minimized XML textual expression (using the XML tree) in

such a way that guarantees rebuilding the XML tree again in order to regenerate the original

SOAP message. In the aggregation models, the same traversals (binary-tree, depth-first, and

breadth-first) of the proposed compression techniques are used to generate the minimized

XML textual expression by assigning all the tags with some binary codes to enable rebuilding

the XML tree by recognizing the correct position of each tag.

Equation 4.12 represents the general formula of the proposed traversals in assigning the

XML items to generate the textual expression for SOAP messages.

TEXP =
Nd∪
i=1

BiTagi (4.12)

Where

• Bi is the binary code value of the considered XML textual items.

• Tagi is the assigned XML textual item.

• Nd is the total number of both complex and simple XML items (Nc +Ns).

Binary-tree traversal

The generated SOAP expression using the Binary-tree traversal of S1 is: {10StockQuoteRe-

sponse 10ArrayOfStockQuote 11StockQuote 11Company 00IBM 10QuoteInfo 11Price 002-

2.36 10LastUpdated 0006/05/2010 10StockQuote 11Company 00HP 10QuoteInfo 00Price

0021.54 10LastUpdated 0006/05/2010} and for S2 is {10StockQuoteResponse 10ArrayOf-

StockQuote 11StockQuote 11Company 00NAB 10QuoteInfo 11Price 0026.47 10LastUp-

dated 0006/05/2010 10StockQuote 11Company 00CommonWealth 10QuoteInfo 00Price

0027.51 10LastUpdated 0006/05/2010}
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Depth-first traversal

The resultant textual expression using the depth-first traversal of S1 can be represented as fol-

low. {0StockQuoteResponse 0ArrayOfStockQuote 0Stock Quote 0Company 10IBM 0Quote-

Info 0Price 1022.36 0LastUpdated 1106/05/2010 0StockQuote 0Company10HP 0Quote-

Info0Price1021.540LastUpdated 1106/05/2010}. Similarly, message S2 can be expressed as:

{0StockQuoteResponse 0ArrayOfStockQuote 0StockQuote 0Company 10NAB 0QuoteInfo

0Price 1026.47 0LastUpdated 1106/05/2010 0StockQuote 0Company 10CommonWealth

0QuoteInfo 0Price 1027.51 0LastUpdated 1106/05/2010}

Breadth-first traversal

The textual expression using breadth-first traversal of S1 would be as follow. {0StockQuoteR-

esponse 1ArrayOfStockQuote 0StockQuote 1StockQuote 0Company 1QuoteInfo 0Company

1QuoteInfo 1IBM 0Price 1LastUpdated 1HP 0Price 1LastUpdated 122.36 106/05/2010

121.54 106/05/2010} and for S2 would be expressed as: {0StockQuoteResponse 1ArrayOfS-

tockQuote 0StockQuote 1StockQuote 0Company 1QuoteInfo 0Company 1QuoteInfo 1NAB

0Price 1LastUpdated 1CommonWealth 0Price 1LastUpdated 126.47 106/05/2010 127.51

106/05/2010}.

4.3.2 Aggregation process of SOAP expressions

Encoding of XML textual expressions is the core component of the proposed aggregation

models that would generate the final compact version of the considered messages. Fixed

and variable length encoding techniques are proposed to generate the aggregated compact

message of the combined textual SOAP expressions. Both encodings are well-known as

lossless compression techniques that can remove the redundancies of letters by assigning

binary codes for these letters. The resultant encoded message structure has two parts:

the lookup table which includes unique content for every single item in the XML textual

93 (November 5, 2013)



CHAPTER 4. REDUNDANCY-AWARE SOAP MESSAGES SIMILARITY & AGGREGATION

expression while the second part includes the binary codes of the encoded messages. SOAP

messages are aggregated during the encoding process by generating one common lookup

table for all the considered SOAP expressions.

Figure 4.6 shows the structure of both the individually compressed messages. In compar-

ison with the new structure of the aggregated messages, Fig. 4.7 shows the structure of the

common look up table that is shared with all the aggregated SOAP expressions which reduce

the required size by removing the duplicated occurrences and keeping only one occurrence

in the look up table. Figure 4.8 shows the technical strategy of the aggregation process of

the textual expressions for two SOAP messages. The size of the aggregated message lookup

table is smaller than the accumulated size of lookup tables of the individually compressed

messages as a result of the fact of sharing the common XML items of different messages in

generating one common lookup table as it increases the probability of occurrences of items.

Referring to Fig. 4.7 and 4.6, Common Lookup Table (CLT) is smaller than the accumulated

size of both lookup table 1 and lookup table 2 (LT1+ LT2). On the other hand, the size of

the binary encoded parts of the aggregated message is smaller than the encoded parts of the

compressed messages. It is mainly based on the lengths of the binary codes of the generated

mappings for the XML items in the lookup table as they are encoded with fewer bits in the

common lookup table.

SOAP 1 Message
Expression

SOAP 2 Message
Expression

Lookup Table1
       (LT1)

Lookup Table2
       (LT2)

Message 1 Code
       (MC1)

Message 2 Code
        (MC2)

Compressed Message Compressed Message

Figure 4.6: Compressed message structures
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Fixed-length and Huffman are extended to exploit the redundancy inside the single mes-

sage itself in addition to the redundancy with other involved messages. Both encoding replace

XML items with unique binary codes based on their total frequencies in all the considered

messages. Table 4.1 shows the redundancies and binary codes for the XML items in both

expressions of S1 and S2 messages.

SOAP 1 Message
Expression

SOAP 2 Message
Expression

Common Lookup Table (CLT)

Aggregation-based
Message 1 Code
       (AMC1)

Aggregated Message

Aggregation-based
Message 2 Code
       (AMC2)

Figure 4.7: Aggregated message structures

4.4 Experiments and discussion

In the evaluation of the proposed aggregation models, we have considered the same variety

of SOAP message sizes used in chapter three that range from only 140 bytes to 53 Kbytes

in order to show the efficiency of the models on small messages as well as large ones. The

objective of considering small messages is to investigate the fact that lossless encodings

usually create large lookup table in comparison with the encoded part of the input message.

It could cause in many cases an even larger encoded message than the uncompressed one.

At the same time, this evaluation shows an accurate investigation for both fixed-length and

Huffman encodings of Binary-tree, Two-bit, and One-bit techniques against other standard

compression techniques (i.e gzip, bzip2, XMill, and XBMill).
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Figure 4.8: SOAP Web message aggregation strategy and compact message structure

The same testbed used in chapter 3 is used again in this chapter that consists of 160 real

SOAP Web messages that are distributed equally into four groups based on the message size:

small (140-800 bytes), medium (800-3000 bytes), large (3000-20000 bytes), and Very large

(20000-55000 bytes). Since single compression concepts are used as basis for the proposed

aggregation model, the compression schemes are first applied as standalone techniques and

then compared against their developed aggregation models in order to show the ability of

the compression schemes in achieving higher reduction in their aggregation process. With

the aim to investigate the performance difference of the aggregation techniques from the

compression, all of the SOAP messages in the proposed testbed are first divided into two

lists (’A’ and ’B’) and compressed separately using the Two-bit status tree compression

technique. Then, the Two-bit status tree aggregation technique is applied on every pair of

messages for all groups (small, medium, large, and very large).
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Table 4.1: Binary codes of XML nodes for SOAP messages S1 and S2

Node Node Huffman Fixed-Length
Content Redundancy Code Code
StockQuote 4 100 0000
Company 4 1011 0001
QuoteInfo 4 1010 0010
LastUpdated 4 001 0011
06/05/2010 4 000 0100
Price 4 0011 0101
StockQuoteResponse 2 1101 0110
ArrayOfStockQuote 2 1100 0111
IBM 1 001001 1000
HP 1 001000 1001
NAP 1 001011 1010
CommonWealth 1 001010 1011
22.36 1 11101 1100
21.54 1 11100 1101
26.47 1 11111 1110
27.51 1 11110 1111

Figures 4.9 and 4.10 show the ability of the Two-bit status tree standalone compression

technique in compressing SOAP messages using both fixed-length and Huffman encodings.

Both encodings show promising results as fixed-length encoding has achieved compression

ratios that are up to 2.81, 4, 9.8, and 12.74 for small, medium, large, and very large messages

respectively. On the other hand, Huffman encoding has shown similar results for small and

medium messages while it has achieved significantly higher compression ratios on large and

very large messages, up to 2.9, 4.14, 11.78, and 16.1 for small, medium, large, and very large

messages respectively. From these results, we can see that fixed-length encoding performs

better on small and medium sized messages.

Furthermore, The developed aggregation versions of the proposed compression techniques

are applied using the same set of messages by aggregating SOAP message pairs that belong

to the same group (see Fig. 4.11). The results have shown higher compression ratios that are

up to 2.93, 5.17, 11.69, and 13.68 using Two-bit status tree based on fixed-length encoding
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Figure 4.9: Original and compressed size for small, medium, large, and very large sized SOAP
messages of List ’A’ using Two-bit status tree based fixed-length and Huffman encodings

for small, medium, large, and very large messages respectively. Aggregation with Two-bit

status tree based on Huffman encoding achieved even higher compression ratios for all types,
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Figure 4.10: Original and compressed size for small, medium, large, and very large sized
SOAP messages of List ’B’ using Two-bit status tree based fixed-length and Huffman encod-
ings
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Table 4.2: Minimum, maximum, and average compression ratios for stand alone compression
techniques of fixed and variable length encodings

Standalone
Message Fixed-Length Huffman

Size Min. Max. Average Min. Max. Average
Binary-tree Small 1.64 2.79 2.14 1.51 2.62 2.00

Medium 2.25 3.89 3.16 2.10 3.73 3.03
Large 4.03 9.44 7.16 3.91 10.81 7.78

V.Large 9.29 12.16 11.08 10.62 14.83 13.2
Two-bit Tree Small 1.66 2.81 2.16 1.68 2.90 2.22

Medium 2.27 3.96 3.20 2.30 4.14 3.34
Large 4.09 9.79 7.38 4.3 11.78 8.5

V.Large 9.64 12.74 11.57 11.57 16.1 14.33
One-bit Tree Small 1.66 2.85 2.18 1.69 2.93 2.24

Medium 2.28 4.02 3.24 2.32 4.21 3.38
Large 4.16 10.17 7.60 4.37 12.33 8.80

V.Large 10.01 13.38 12.12 12.11 17.16 15.17

except for the small group (2.75, 5.22, 13.8, and 17.52 for small, medium, large, and very

large messages respectively). Moreover, detailed results are shown in Tables 4.2 and 4.3 on

the achievements of both the compression and aggregation models respectively. Clearly, ag-

gregation models significantly outperformed their compression techniques showing the fact

of the powerful aggregation process with the utilization of the compression techniques. Fur-

thermore, results have clarified that high compression ratios have been achieved for large and

very large documents and aggregation with both fixed-length and Huffman encodings using

the proposed techniques have reduced the size of small and medium messages successfully.

The results for small SOAP messages are interesting as very few existing standard techniques

are capable of reducing small messages. The results also show that the One-bit status tree

based aggregation technique has outperformed both Two-bit status tree and Binary-tree

based models.

With the aim of showing a precise evaluation for the aggregation techniques, another

two lists (‘C‘ and ‘D‘) of SOAP messages are created with 12 samples each and used to
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Figure 4.11: Resultant aggregation compact message and accumulated size for compressed
messages (i.e pairs) using Two-bit status technique deploying fixed-length and Huffman en-
codings
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Table 4.3: Minimum, maximum, and average compression ratios for aggregation techniques
of fixed and variable length encodings

Aggregation (Pairs of Messages)
Message Fixed-Length Huffman

Size Min. Max. Average Min. Max. Average
Binary-tree Small 2.67 4.52 3.63 2.53 4.50 3.55

Medium 4.39 9.02 6.99 4.34 10.16 7.54
Large 9.64 13.07 11.93 11.07 16.43 14.62

V.Large 12.62 14.1 13.64 15.70 18.45 17.53
Two-bit Tree Small 2.70 4.60 3.69 2.56 4.59 3.60

Medium 4.46 9.35 7.19 4.41 10.57 7.79
Large 10.02 13.76 12.51 11.57 17.55 15.51

V.Large 13.26 14.90 14.39 16.71 19.85 18.8
One-bit Tree Small 2.73 4.69 3.75 2.59 4.67 3.65

Medium 4.54 9.69 7.40 4.49 11.01 8.04
Large 10.42 14.53 13.15 12.12 18.81 16.51

V.Large 13.97 15.80 15.23 17.85 21.49 20.26

investigate the aggregation models performance against such well known standard compres-

sion techniques such as XMILL and XbMILL as XML-aware techniques and gzip in addition

to bzip2 as generic techniques. The resultant aggregated size for every pair of messages is

compared to the accumulated compressed size of its messages using standard compression

techniques in addition to their compression versions. The results shown in Tables 4.4, 4.5,

and 4.6 confirm the high performance of the proposed aggregation models in achieving the

highest compression ratios in comparison with all other standalone compression techniques.

Binary-tree, Two-bit, and One-bit aggregation based on fixed length and Huffman encodings

have shown promising achievements for small and medium message pairs. However, Huff-

man based aggregation technique is shown to be the best performer for large and very large

message pairs.

Compressibility measurement is investigated and it has proven that aggregated messages

with higher compressibility can be reduced more (see Fig. 4.12) which justifies the need

for clustering SOAP messages for the purpose of aggregation. For the aggregation, we cre-
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Table 4.4: Accumulated size for compressed SOAP messages using XMILL, XbMILL, gzip,
bzip2 techniques

Message Accumulated Compressed
Size(Byte) Size

List C List D Gzip bzip2 XMILL XBMILL
636 463 517 563 542 650
358 140 304 316 320 417
265 602 433 470 458 556
1743 2340 1250 1272 1184 1362
2122 1542 1122 1132 1054 1233
1442 820 834 931 854 1024
8129 19697 4845 3584 3659 3666
11516 18285 5069 3744 3783 3758
16997 4510 3936 3052 3045 2951
47800 45085 9653 6063 9377 8621
29876 48257 7448 4972 5247 6574
52899 40961 8332 7559 9470 8603

Table 4.5: Accumulated size for compressed SOAP messages using Fixed and Variable length
based Binary-tree, Two-bit, One-bit compression techniques

Message Accumulated Compressed Size
Size(Byte) Binary-tree Two-bit One-bit

Fixed Fixed Fixed
List C List D Length Huffman Length Huffman Length Huffman
636 463 466 499 462 495 458 491
358 140 238 257 236 254 233 252
265 602 406 435 403 432 400 429
1743 2340 1219 1270 1203 1255 1187 1239
2122 1542 1042 1086 1026 1072 1011 1057
1442 820 825 860 817 851 809 844
8129 19697 3444 3115 3336 3007 3230 2899
11516 18285 3561 3210 3448 3097 3336 2984
16997 4510 2906 2694 2824 2611 2743 2530
47800 45085 7924 6586 7568 6230 7214 5875
29876 48257 6898 5873 6599 5575 6302 5277
52899 40961 7982 6538 7624 6180 7266 5821
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Table 4.6: Aggregated size for SOAP messages using Fixed and Variable length based Binary-
tree, Two-bit, One-bit compression techniques

Message Aggregated Messages Size
Size(Byte) Binary-tree Two-bit One-bit

Fixed Fixed Fixed
List C List D Length Huffman Length Huffman Length Huffman
636 463 400 420 395 416 391 412
358 140 194 209 192 206 190 204
265 602 371 393 367 389 364 386
1743 2340 952 941 936 925 921 910
2122 1542 836 827 821 812 807 798
1442 820 586 599 578 591 570 583
8129 19697 2699 2305 2592 2198 2485 2090
11516 18285 2798 2376 2685 2263 2573 2150
16997 4510 2240 1978 2158 1896 2077 1815
47800 45085 7161 5665 6806 5309 6451 4954
29876 48257 6135 4934 5837 4636 5539 4338
52899 40961 7220 5794 6861 5436 6503 5077

ate groups of messages which may contain more than two messages for higher compression.

Both Jaccard and Vector Space Model based clustering are evaluated in terms of the possi-

ble achieving compression ratio by the proposed aggregation techniques in addition to the

processing time they require to cluster SOAP messages according to their similarity degrees.

Figure 4.13 shows the average clustering time of both Jaccard and Vector Space Models for

small, medium, large, and very large messages. Vector Space Model requires less processing

time than Jaccard based clustering technique for all messages. The resultant SOAP mes-

sages clusters of the proposed clustering models are aggregated by Binary-tree, Two-bit, and

One-bit techniques.

Figures 4.14, 4.15, and 4.16 show aggregated message size reduction using One-bit and

Two-bit status tree techniques and Binary-tree aggregation respectively with Jaccard based

clustered groups of 5 messages per group. Furthermore, Fig. 4.17, 4.18, and 4.19 show

aggregated message size reduction using One-bit and Two-bit status tree techniques and
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Figure 4.12: Compressibility measurements and compression ratios of aggregated SOAP Web
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Figure 4.13: Average clustering time in (milliseconds) for Jaccard and Vector Space Model
for small, medium, large, and very large messages with 40 messages each

Binary-tree aggregation respectively with Vector Space Model based clustered groups of 5

messages per group. The aggregation models have shown significant messages size reduction.

However, the One-bit status tree aggregation technique has achieved the best size reduction

in comparison with Two-bit status tree and Binary-tree aggregations.

Figures 4.20 and 4.21 show the average compression ratios that have been achieved using

Two-bit and One-bit status tree based aggregation models in addition to the Binary-tree

aggregation model for Jaccard and Vector Space Models based clustered messages. SOAP
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Table 4.7: The aggregation time in (milliseconds) for Binary-tree, Two-bit, and One-bit
techniques for computed SOAP message clusters using Jaccard clustering model

Number of Binary-tree Two-bit One-bit
Message Messages Fixed Fixed Fixed

Size per Cluster Length Huffman Length Huffman Length Huffman

Small 2 9.2 9.6 0.25 0.65 0.35 0.65
3 10.43 10.93 0.36 0.86 0.36 0.86
4 13.3 14.1 0.4 1.3 0.5 1.2
5 16 17.25 0.63 1.63 0.75 1.63
6 19.57 20.86 1 2.29 1.29 2.57
7 22.67 24 1.33 2.83 1.5 3.17
8 30.8 32.8 1.2 3.4 1.6 3.4
9 34 36.4 2 3.8 1.8 3.6
10 37.25 40 2.5 4.5 2.5 4.75

Medium 2 22.65 24.8 3.4 5.5 3.45 5.65
3 43.57 32.14 5.29 7.86 5.36 8
4 40.6 42.8 7.7 11.1 7.7 11.1
5 49.13 52.75 9.63 13.63 9.63 13.25
6 58.14 63 11.43 15.43 11.14 15
7 69.33 73.5 14.33 17.83 14 17.5
8 89.4 93.4 16.4 20.2 16.2 20.4
9 89.8 93.6 16.8 20.4 16 20.6
10 111.25 115.75 21 26.5 20.5 24.75

Large 2 1217.6 1223.5 122.2 126.55 122.45 126.4
3 1745.29 1755.79 173.43 178.43 173.79 177.86
4 2440.2 2440.4 248.7 253.4 247.7 252.3
5 3017.63 3049.75 317.88 322.38 316.13 318.88
6 3490.57 3485.14 366.14 373.14 364.29 370.29
7 4037.17 4051.83 428 435.83 426.5 432.17
8 4848.6 4849.8 507.8 513.4 508.8 513.8
9 4851.2 4893.4 513.8 519.4 507 512.8
10 6053.75 6065.75 627.5 643.5 633.5 644.75

V.Large 2 24832.7 24878.7 1254.85 1262.5 1256.75 1257
3 35539.36 35602.5 1802.29 1806.36 1807.64 1807.93
4 49741 49826.9 2545.7 2549 2545.8 2545.9
5 62331.63 62449 3186.13 3190.5 3197.25 3196.25
6 71238.71 71364 3659.57 3663.71 3674 3667
7 83158 83290.33 4277.83 4288 4288.17 4283.5
8 99798.4 99960.4 5133.8 5139.6 5248.8 5149.8
9 99946 100151.2 5197.2 5175.4 5241.4 5186.2
10 125038.8 125278.3 6472 6484 6528 6503.75

106 (November 5, 2013)



CHAPTER 4. REDUNDANCY-AWARE SOAP MESSAGES SIMILARITY & AGGREGATION

Table 4.8: The aggregation time in (milliseconds) for Binary-tree, Two-bit, and One-bit
techniques for computed SOAP message clusters using Vector Space clustering model

Number of Binary-tree Two-bit One-bit
Message Messages Fixed Fixed Fixed

Size per Cluster Length Huffman Length Huffman Length Huffman

Small 2 9.25 9.5 0.3 0.65 0.75 0.7
3 9.71 10.5 0.29 0.79 0.5 1.07
4 12.5 13.5 0.6 1.7 0.5 1.7
5 17 18.25 0.75 2 0.88 1.88
6 22.71 24.14 0.71 2.57 0.71 2.57
7 22.5 24.33 1.33 3.17 1.33 3.17
8 30.4 33 1.6 4.4 2 4
9 33.6 36 2.2 3.8 1.8 4.2
10 30.25 32.75 2.5 5.25 2.5 5

Medium 2 22.1 24.55 3.55 5.75 3.55 6
3 29.43 32.86 5.21 8.36 5.36 8.5
4 42.3 46.3 8 11.8 8 12.3
5 48.63 53 9.75 13.63 9.63 13.63
6 62.43 67.43 12.14 16.29 12.29 15.89
7 71 75.33 14.17 18.67 14.17 18
8 89.2 93.4 17 21.2 17.2 21.2
9 92.4 97.2 17.2 21.6 17.2 22.2
10 89.5 95 20.75 25.25 21 25.25

Large 2 1208.5 1219 121.7 126 122.7 126.6
3 1643.36 1653.36 168.93 173.71 169.36 173.93
4 2610.7 2631.9 268.4 272.1 268.6 272.5
5 2936.63 2967.88 310.63 317.5 309.5 316.13
6 3624.86 3644 378.57 384 377.43 383.43
7 3841.33 3870.33 413.33 410.83 406.33 413.17
8 4975 5030.4 533 528.8 528.6 527.4
9 5028.2 5061 528.4 536.6 529.6 533
10 5117.75 5152.25 560.25 573.75 566.25 575.5

V.Large 2 24833.45 24831.1 1260.4 1260.8 1261.3 1259.9
3 36132.79 36154.79 1839.64 1847.21 1834.79 1845.93
4 47977.8 48014.1 2477.2 2487.8 2481.8 2475
5 65797 65929.88 3351.5 3360.63 3358.5 3353.38
6 74040.14 74067.71 3791.86 3798.86 3794.86 3791
7 84062.67 84113 4296.5 4306.5 4304.83 4307.67
8 103559 103653.6 5322.2 5357.2 5325.8 5324.8
9 99212.8 99157 5111.2 5126 5134.8 5182
10 104450.5 104586.3 6589 6589.25 6598.25 6616.25
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Table 4.9: The De-aggregation time in (milliseconds) for Binary-tree, Two-bit, and One-bit
techniques for the aggregated SOAP message based on Jaccard clustering resultant groups

Number of Messages Jaccard based Clustering Model
Message Size per Cluster Binary-tree Two-bit One-bit

Small 2 0.05 0.05 0.05
3 0.05 0.05 0.05
4 0.2 0.1 0.05
5 0.125 0.05 0.05
6 0.857 0.143 0.05
7 1.333 0.333 0.05
8 2 0.6 0.4
9 3.4 1.2 1.4
10 6 1.75 1.75

Medium 2 0.05 0.05 0.05
3 0.05 0.05 0.05
4 0.2 0.05 0.05
5 1 0.05 0.125
6 1.714 0.143 0.429
7 2.333 0.833 0.833
8 4 1.2 1.8
9 4.6 1.8 2.2
10 8.5 3 3.5

Large 2 0.05 0.05 0.05
3 0.571 0.05 0.05
4 1.5 0.5 0.4
5 2.625 1 1.375
6 4 1.857 1.571
7 5.833 2.5 2.667
8 8.8 4 4
9 10.6 4.4 4.8
10 16 7.25 7.25

V.Large 2 0.1 0.05 0.05
3 1.714 0.643 0.786
4 4.3 1.8 1.9
5 7.5 3.5 3.5
6 10.426 5 5.143
7 16.167 7.167 7.333
8 22.4 10.4 11.4
9 26.4 12 13
10 39.5 18.5 18.75
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Table 4.10: The De-aggregation time in (milliseconds) for Binary-tree, Two-bit, and One-
bit techniques for the aggregated SOAP message based on Vector Space Clustering resultant
groups

Number of Messages Vector Space Model based Clustering
Message Size per Cluster Binary-tree Two-bit One-bit

Small 2 0.05 0.05 0.05
3 0.05 0.05 0.05
4 0.1 0.05 0.1
5 0.625 0.05 0.05
6 1 0.286 0.286
7 1.333 0.05 0.5
8 2.8 1 0.8
9 3.4 1.4 1.2
10 5.5 2 1.75

Medium 2 0.05 0.05 0.05
3 0.143 0.05 0.05
4 0.6 0.05 0.05
5 1.125 0.125 0.125
6 1.857 0.429 0.143
7 2.667 0.833 0.833
8 4.2 1.4 1.6
9 5.2 2 2.2
10 8 3 3.25

Large 2 0.05 0.05 0.05
3 0.214 0.071 0.071
4 1.8 0.8 0.4
5 2.875 1.375 1.5
6 4.286 1.571 1.857
7 6.333 2.833 2.333
8 10 4.2 4.2
9 10.6 4.8 5.4
10 14 6.75 7

V.Large 2 0.15 0.05 0.05
3 2 0.929 0.857
4 4.5 2.2 2.2
5 8.125 4 4.125
6 11.143 5.429 5.571
7 16.333 7.667 7.667
8 24.2 12.2 12.8
9 28 12.6 12.8
10 36.25 19.75 19.75
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Figure 4.14: One-bit resultant aggregated compact size of small, medium, large, and very
large SOAP messages using Jaccard similarity grouping with 5 messages per group as the
group size

messages are aggregated with 9 different group sizes starting from 2 messages per cluster

and up to 10 messages per cluster. The results show that as cluster size increases, a higher
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Figure 4.15: Two-bit resultant aggregated compact size for small, medium, large, and very
large SOAP messages using Jaccard similarity grouping with 5 messages per group as the
group size

compression ratio can be achieved. The compression ratios of the aggregated groups based

on the Vector Space Model clustering are slightly higher than the aggregated groups based
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Figure 4.16: Binary-tree resultant aggregated compact size for small, medium, large, and
very large SOAP messages using Jaccard similarity grouping with 5 messages per group as
the group size

on Jaccard clustering.

The aggregation and de-aggregation time for Two-bit and One-bit status tree techniques
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Figure 4.17: One-bit resultant aggregated compact size for small, medium, large, and very
large SOAP messages using Vector Space Model similarity grouping with 5 messages per
group as the group size

in addition to the Binary-tree technique are investigated for five SOAP messages, one for

each group size: small, medium, large, and very large. Figures 4.22 and 4.23 show the aggre-
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Figure 4.18: Two-bit resultant aggregated compact size for small, medium, large, and very
large SOAP messages using Vector Space Model similarity grouping with 5 messages per
group as the group size

gation time for all proposed aggregation models with both Jaccard and Vector Space Model

based clustering respectively. Furthermore, Figures 4.24 and 4.25 show the de-aggregation
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Figure 4.19: Binary-tree resultant aggregated compact size for small, medium, large, and
very large SOAP messages using Vector Space Model similarity grouping with 5 messages
per group as the group size

time for all proposed aggregation models with both Jaccard and Vector Space Model based

clustering respectively. The One-bit and Two-bit aggregation techniques have shown sig-
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Figure 4.20: Resultant average compression ratios for small, medium, large, and very large
groups of aggregated SOAP messages using Jaccard similarity grouping

nificantly better processing time than the Binary-tree technique. The same applies to the

de-aggregation time as both One-bit and Two-bit techniques outperformed the Binary-tree

technique by consuming potentially less processing time for de-aggregating SOAP messages.

In order to investigate the required processing time for both the aggregation and de-
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Figure 4.21: Resultant average compression ratios for small, medium, large, and very large
groups of aggregated SOAP messages using Vector Space Model similarity grouping

aggregation techniques in more detail, both approaches are investigated using different cluster

sizes of SOAP messages that range from only 2 and up to 10 messages in each cluster.

Tables 4.7 and 4.8 show the processing time for aggregating small, medium, large, and very

large sized messages using Binary-tree, Two-bit, and One-bit aggregation models based on

both Jaccard and Vector Space clustering models. Moreover, Tables 4.9 and 4.10 show the
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Figure 4.22: One-bit, Two-bit, and Binary-tree aggregation time for Jaccard based clustered
small, medium, large, and very large SOAP messages with 5 messages per group as the group
size

de-aggregation time for the aggregated clusters of SOAP messages that are grouped using

both Jaccard and Vector Space models. The results show that both Two-bit and One-bit
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Figure 4.23: One-bit, Two-bit, and Binary-tree aggregation time for Vector Space Model
based clustered small, medium, large, and very large SOAP messages with 5 messages per
group as the group size

techniques have achieved tremendously better performance in terms of the processing time

for both aggregation and de-aggregation versions. Furthermore, the aggregation and de-
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Figure 4.24: One-bit, Two-bit, and Binary-tree de-aggregation time for Jaccard based clus-
tered small, medium, large, and very large SOAP messages with 5 messages per group as the
group size

aggregation time for Two-bit and One-bit techniques are very close to each other and the

processing time increases as the size of SOAP messages (small, medium, large, and V.large)
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Figure 4.25: One-bit, Two-bit, and Binary-tree de-aggregation time of Vector Space Model
based clustered small, medium, large, and very large SOAP messages with 5 messages per
group as the group size

increase.
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4.5 Conclusion

XML-aware compression techniques can be developed into efficient SOAP aggregation mod-

els that can exploit redundancies in several SOAP messages. In this chapter, we have shown

that redundancy-based aggregation techniques can outperform all standalone compression

techniques by achieving higher compression ratios for small, medium, large and very large

sized messages. The performance of the Web services can be improved by applying the

redundancy-aware aggregation models enabling Cloud Web servers to generate a compact

message that can be used by receivers and extract the original messages. A new compressibil-

ity measurement technique in our work shows that we can predict the ability of aggregation

models when we group similar messages appropriately. The One-bit XML status tree ag-

gregation technique outperformed all other standard compression techniques in addition to

the Two-bit XML status tree and Binary-tree based aggregation models. Both Jaccard and

Vector Space based clustering models have shown significant performance, enabling aggrega-

tion models to achieve high compression ratios ≥ 20. However, Vector Space outperformed

Jaccard clustering in terms of supporting the aggregation models to reduce the size of SOAP

messages efficiently and the required processing time to cluster messages.
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Chapter 5

Fractal Self-Similarity for Dynamic

SOAP Clustering Model

This chapter answers the third research question posted in section 1.2 by modulating and

developing the self-similarity principle of fractal mathematical model to compute the simi-

larity of SOAP messages. Fractal is proposed as an unsupervised clustering technique that

is dynamically grouping SOAP messages.

The chapter is organized as follows. First, subsections 5.1.1, 5.1.2 and 5.1.3 show the

motivation, main contributions, and evaluation strategy respectively. Section 5.2 explains

the process of computing XML documents dataset and how to represent XML messages as

numeric vectors in the generated dataset. Section 5.3 discusses the fractal mathematical

model and how it can be utilized in clustering SOAP messages. Next, section 5.4 explains

the computations of fractal coefficients of SOAP messages in a separate algorithm and then

the fractal root mean square error criteria. Section 5.5 describes the experimental evaluation

of the proposed clustering technique. Finally, the conclusion is presented in section 5.6.
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5.1 Introduction

Aggregation of SOAP messages is an effective solution that could potentially reduce the

required bandwidth. Although SOAP aggregation has resulted in significant improvements,

it still needs to be supported with advance similarity measurements for SOAP messages with

the aim to cluster SOAP messages with high similarity degree as group-wise and not only

pair-wise.

5.1.1 Motivation

Aggregation of SOAP messages is one of the modern and effective models to reduce network

traffic. The aggregation schemes can be used in a number of network applications and sce-

narios to be enabled to minimize the required bandwidth over the Internet like multicasting

of aggregated SOAP messages to the Web clients and split them at the closest routers (see

Fig. 5.1). In chapter 4, we have introduced a new SOAP messages aggregation strategy by

utilizing compression concepts. The proposed aggregation models are basically strengthened

by the redundancy awareness features of compression as alternative similarity measurements

to aggregate messages in one compact structure. Technically, these aggregation models con-

sist of two main activities: transforming the XML tree of SOAP messages into minimized

SOAP textual expression and then encoding them with either fixed-length or Huffman en-

coding techniques. Although these aggregation techniques can aggregate as many messages

as requested by the Web server, advance cluster-based similarity measurements are still re-

quired to find out which group of SOAP messages is optimum to be aggregated as alternative

to the traditional pair-based SOAP messages similarity measurements.

Generally, standard clustering techniques such as K-Means and Vector Space Model [Liu

et al., 2004; Yongming et al., 2008] could be alternatives to the SOAP similarity measure-

ments. However, they do not represent an efficient similarity measurement because of the

following drawbacks:
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InternetClient 1

Client n

Client 2

Stock Quote Application Servers

 Stock Quote
Database

Control
Node

Stock Quote Cloud

Figure 5.1: Clustering and aggregation support for stock quote cloud Web services over the
Internet

• High complexity : They have high complexity that could result in long clustering time.

This is caused by their iterative computations for finalizing clusters.

• Inefficient prediction of clusters : A fixed number of clusters usually results in inefficient

prediction of clusters. Messages are likely to be clustered without having high similarity

degree with other messages in the same cluster. Moreover, fixed number of cluster based

models do not work efficiently with non-globular clusters such as SOAP clusters with

high redundancy.

• Inaccurate and inefficient centroids selection:Most clustering models start with initial

partitions that might be selected randomly usually result in inaccurate and inefficient

clustering of messages.

Unsupervised and dynamic clustering models are effective techniques to solve the problem

of SOAP clusters with high common redundancy.
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Figure 5.2: Main model components

5.1.2 Contribution

Fractal, as a mathematical model, provides powerful self-similarity measurements for the

fragments of regular and irregular geometric objects in their numeric representations [t, 1994].

Partitioning Iterated Function System (PIFS) represents the power of fractal in depicting

the similarity of smaller parts in the same numeric object [Baharav, 1999]. PIFS explains

the dynamics of creating fractals by uniting several copies of the same object with different

scales which every copy is made up of smaller scaled copies of itself. In comparison with

other traditional XML similarity measurements, fractal can provide similarity measurement

to complete parts (set of features) of the objects at once and not only investigating XML

features separately.

With the aim to provide efficient clustering predictions, this chapter investigates fractal

fragments in SOAP messages as their XML tree could be segmented into several fractal

objects. Figure 5.6 shows SOAP fractal segments in comparison with Mandelbrot fractal

set. Figure 5.2 states the main components of the proposed clustering technique. The main

contributions made in this chapter are:

• Efficient prediction: Fractal mathematical parameters are introduced to compute SOAP
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message similarities that are applied based on the numeric representation of SOAP

messages. The proposed technique aims to create clusters with a very high degree of

similarity by dynamically grouping them together where the proposed technique does

not require a predefined number of clusters. Experimental results show significant

predictions for similar SOAP messages by the proposed technique in comparison with

K-Means and PCA combined with K-Means. The accurate predictions of the pro-

posed technique is capable of achieving better compression ratios than other clustering

models [Liu et al., 2004; Yongming et al., 2008].

• Low complexity clustering: SOAP fractal similarities are developed to devise a new

unsupervised auto clustering technique. These similarity measurements are based on

computing fractal coefficients of numeric fragments that construct a single numeric

object [Baharav, 1999]. The proposed technique provides a low complexity clustering

in comparison with iterative models. The clustering time required by the proposed

technique is potentially less when compared with other iterative clustering models [Liu

et al., 2004; Yongming et al., 2008]. Fractal clustering requires only 20% and 16% of

the required time by K-Means and PCA combined with K-Means respectively.

• Efficient dataset for accurate clustering: The proposed dataset of SOAP messages is

a set of numeric vectors showing the local and global loads of XML items. These

vectors are broken up into equally sized blocks. Fractal coefficients of the vector blocks

represent the similarity parameters that are compared with blocks of other vectors to be

the key metric for clustering SOAP messages. The proposed structure for the dataset

has accurately reflected the features of SOAP messages and enabled the clustering

technique to efficiently measure their similarities.
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< StockQuoteResponse >
< StockQuote >
< Company > AFI
< /Company > 
< QuoteInfo >
< Price > 20.06 < /Price >
< LastUpdated > 01/09/2010
< /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< /StockQuoteResponse >

< StockQuoteResponse >
< StockQuote >
< Company > AMI
< /Company >
< QuoteInfo >
< Price > 31.52 < /Price >
< LastUpdated > 01/09/2010
< /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< /StockQuoteResponse >

a. S1 b. S2

< QuoteAndStatisticResponse >
< QuoteAndStatistic >
< QuoteInfo >
< Symbol > Holden < /Symbol >
< Price > 24.52 < /Price >
< /QuoteInfo >
< Statistic >
< Change > +0.50 < /Change >
< OpenPrice > 24.02
< /OpenPrice >
< /Statistic >
< /QuoteAndStatistic >
< /QuoteAndStatisticResponse >

< QuoteAndStatisticResponse >
< QuoteAndStatistic >
< QuoteInfo >
< Symbol > Ford < /Symbol >
< Price > 28.56 < /Price >
< /QuoteInfo >
< Statistic >
< Change > -0.10 < /Change >
< OpenPrice > 28.66
< /OpenPrice >
< /Statistic >
< /QuoteAndStatistic >
< /QuoteAndStatisticResponse >

c. S3 d. S4

Figure 5.3: SOAP message responses to the requests getStockQuote(X) and getQuoteAnd-
Statistic(Y)
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5.1.3 Evaluation strategy

In order to evaluate the performance of the proposed fractal clustering technique, the

compression-based aggregation models (Binary-tree, Two-bit, and One-bit aggregations) de-

veloped in chapter 4 are used to compute the achievable SOAP messages size reduction after

aggregating the clustered messages by the proposed fractal technique and both the K-means

and PCA combined with K-means for comparison regards. The evaluation showed that the

fractal clustering technique enables the compression-based aggregation models to achieve

higher messages size reduction than other techniques. Furthermore, local errors (i.e. error

rates between every single message and the center message of the same cluster) and global

errors (i.e. error rates between every center message and centers of other clusters) have

been evaluated. Moreover, the processing time of the proposed model is investigated and

compared with the processing time of other techniques and it is found to be significantly

lower than other models.

5.2 Document representation

Clustering techniques are usually developed to work on a specific dataset format that repre-

sents the considered XML documents. The XML tree is the main structure of XML messages.

Therefore, the first step of the proposed XML document preparation is to build the XML

tree of all the XML messages. the generated XML trees for the given SOAP messages in

Fig. 5.4 are shown in Fig. 5.3. Level-order traversal is used to traverse all the generated

XML trees to build the matrix form of XML messages (see Fig. 5.5). Matrix form is the

basic format of the transformed XML messages that is required to convert them into time

series representation (as shown in Eq. 5.5).

With the aim of transforming the XML document from the textual domain to the fre-

quency domain (time series), modification of the XML dataset starts with computing the

vector template that has a unique copy of every single XML item in the XML documents.
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Figure 5.4: XML messages trees of SOAP messages (S1, S2, S3, and S4)

The frequencies of XML items represent the time series attributes of the XML document.

The dataset vectors contain frequencies of the XML items that are ordered in the same way

of their distinctive textual contents of the composed vector template. Equation 5.1 shows

the general format of the vector template.

Vtemplate = [Nd1, Nd2, Nd3, ..., Ndn] (5.1)

where Ndi is the node content of the ith XML item in the generated XML tree. Equation 5.2
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represents the dataset system that consists of the generated time series items of the XML

documents.

V1 = [X1, X2, X3, ..., Xn]

V2 = [X1, X2, X3, ..., Xn]

.

.

.

Vm = [X1, X2, X3, ..., Xn] (5.2)

where:

• Vi is the frequency vector of the ith XML message in the dataset,

• Xi is the frequency of ith XML item of the XML message,

• n is the total number of all the distinctive XML items in the generated XML matrix

forms, and

• m represents the total number of the XML messages in the dataset.

In most clustering approaches, the datasets are usually generated as a set of vectors

V = {x1, x2, ..., xn}, where every single element xi refers to a single item that represents a

single feature of the document. In this research, the Term Frequency with Inverse Document

Frequency (TF-IDF) weights [Hwang and Gu, 2007] is used to generate the dataset of the

XML documents in order to prepare them to be clustered by fractal clustering technique.

The XML tag content is formalized as a frequency that shows the weight of the corresponding

XML item in a two-dimensional space that consists of a number of frequency vectors. In other
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Figure 5.5: Generated matrix form of SOAP messages (S1, S2, S3, and S4)
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words, every single vector V in the dataset (V = {x1, x2, ..., xn}), such that xi = wi where

wi(i = 1, 2, ..., n) represents the weight of the XML item for the term ti in the XML document.

This set of frequencies shows the significance of these terms in their XML documents. The

TF-IDF scheme reflects the weight of XML items within the XML document in addition to

the entire set of vectors (i.e. transformed document). In other words, the significance of

XML items are determined by both local (within XML document) and global (entire set of

vectors) factors. XML documents have great similarity with other documents in the dataset

if they share similar frequencies of their XML items. The weight of the XML item wi in the

XML document d is computed as in Eq. 5.3 below:

wi(d) = tfi × log
D

dfi
(5.3)

where:

• tfi is the XML item frequency in the document d (local information),

• dfi is the number of documents containing the ith XML item, and

• D is the total number of XML documents in the dataset.

Equation 5.4 represents the generated vector template of SOAP messages (S1, S2, S3,

and S4), and Eq. 5.5 represents the generated dataset of the same SOAP messages.

Vtemplate = [StockQuoteResponse, StockQuote, Company,QuoteInfo, AFI, Price

, LastUpdated, 20.06, 01/09/2010, AMI, 31.52, QuoteAndStatisticResponse

,QuoteAndStatistic, Statistic, Symbol, Change,OpenPrice, Holden, 24.54

, + 0.50, 24.02, Ford, 28.56, − 0.10, 28.66]

(5.4)
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V1 = [ .3, .3, .3, 0, .6, 0, .3, .6, .6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

V2 = [ .3, .3, .3, 0, 0, 0, .3, 0, 0, .6, .6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

V3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .3, .3, .3, .3, .3, .3, .6, .6, .6, .6, 0, 0, 0, 0]

V4 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .3, .3, .3, .3, .3, .3, 0, 0, 0, 0, .6, .6, .6, .6]

(5.5)

The process of generating vectors of the dataset in this section is summarized in algorithm

5.1. Occurrences of every single feature is counted locally in the messages and globally in

other messages. Then Eq. 5.3 is applied to compute the final load of features. The complexity

of algorithm 5.1 is O(n2), where n is the total distinctive XML items in the vector template.

5.3 Fractal for Web service

Fractal is defined as a fragmented geometric shape that can be divided into several parts;

each one is approximately a smaller copy of the whole shape [t, 1994]. Fractal has been

found to form a mathematical description for the enormous and irregular shape of objects

[Tao et al., 2000]. The term “fractal“ was established by Mandelbrot who derived it from the

Latin fractus which is an adjective for the irregular and fragmented objects [Kumar Bisoi and

Mishra, 1999]. Mandelbrot standard set shows that the fractal pattern of the whole object is

the same fractal pattern of many other particular regions of the same pattern [Kumar Bisoi

and Mishra, 1999]. Figure 5.6 shows Mandelbrot set and the fractal similarities within its

smaller objects. These particular regions are only smaller and the same way it goes from

the largest scales to the smallest. In other words, fractals are the repetition of the same

structural form.

Geometric shapes are represented by fractal in a numeric form or geometric mathematical

models. Fractal models are applied on geometric shapes in their numeric forms. In other

words, fractal can be defined as the repetition of the same or approximately same structural

form of any numeric object.
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Figure 5.6: (a.) fractal similarity inside Mandelbrot set smaller parts and (b.) fractal
similarity inside SOAP message tree branches
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Fractal can be applied in web service applications using fractal self-similarity principle and

other fractal characteristics that could be used in a variety of applications. In this research,

the proposed fractal model suggests utilizing fractal characteristics in Web services after

creating their time series representation. Fractal is proposed to compute SOAP message

similarities in order to cluster them in the frequency domain of SOAP messages. This

is suitable when we have large number of messages that must be clustered quickly and

accurately.

5.3.1 XML fractal self-similarity

Self-similarity is the basic principle of fractals and it is the key solution to most fractal

applications [Hart, 1996]. Fractals can be classified according to the type of self-similarity.

There are three types of self-similarity found in fractals:

• Exact self-similarity: This is the strongest type of self-similarity where fractal appears

identical at different scales. Fractals are defined by iterated function systems often

display exact self-similarity.

• Quasi-self-similarity: This is a loose form of self-similarity where fractal appears

approximately (but not exactly) identical at different scales. Quasi-self-similar fractals

contain small copies of the entire fractal in distorted and degenerated forms. Fractals

defined by recurrence relations are usually quasi-self-similar but not exactly self-similar.

• Statistical self-similarity: This is the weakest type of self-similarity where fractal has

numerical or statistical measures which are preserved across scales. Most reasonable

definitions of “fractal“ trivially imply some form of statistical self-similarity.

In the proposed technique, fractal self-similarity is applied on the numeric form of SOAP

Web service messages manipulating every single message as a numeric segment. A numeric
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object is constructed from all the considered segments and fractal self-similarity is investi-

gated with all the numeric segments in order to cluster them according to their similarity

values.

5.3.2 Fractal iterated function system

Fractal is made up of the union of several copies of itself, each copy being transformed by a

function. Iterated Function System (IFS) fractal is made up of several possibly-overlapping

smaller copies of the same object, each of which is made up of copies of itself [Baharav, 1999].

Traditionally, IFS fractals are computed in 2D but they can be of any number of dimensions.

For example, 3D Sierpinski triangle is a well-known example showing the self-similarity of

objects in three dimensions. Fractal takes advantage of the fact that real life objects are to

a great extent self-similar [Tao et al., 2000]. In other words, many parts of the object can

be approximated by transforming another part of the same object by applying some affine

transformation (usually linear). Based on the fractals theory, for a given object P , fractal

process tries to find a Partitioned Iterated Function System (PIFS), F = fi : i = 1, ..., k,

which are non-overlapping tiles (usually called range blocks) of the object, where each of the

“tiles“ is formed by applying an affine transformation fi on a section of P . This process can

be represented as in Eq. 5.6

F (P ) =
k∪

i=1

fi(di) (5.6)

where k is the number of range blocks, di is an arbitrary section of the numeric object, called

domain. The “tile“ approximated by fi(di) is referred to as range or ri. Each transformation

fi(di) gives the best possible approximation of ri.

5.3.3 Fractal mathematical form

The general form of fractal transformation is:
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Ŕ = S ×D +O (5.7)

where Ŕ is the approximated range value, D is a part of the same object (usually called

domain), S and O are the scaling and shifting (offset) factors. The formula of the PIFS is

applied to compute the fractals of all parts (Pi) of the object as shown in Eq. 5.8 below:

d́ = S × d(pi) +O (5.8)

where d́ is equivalent to the approximated range block, d(pi) is a part of the domain section.

The optimal values of the coefficients can be obtained by calculating the following:

S =
n
∑n

i=1 d(pi)r(pi)−
∑n

i=1 d(pi)
∑n

i=1 r(pi)

n
∑n

i=1 d(pi)
2 − (

∑n
i=1 d(pi))

2 (5.9)

and

O =
1

n

(
n∑

i=1

r(pi)− S
n∑

i=1

d(pi)

)
(5.10)

where n is the number of values in the object fragment, d(pi) is the value of the ith item in

numeric object d, and r(pi) is the value of the ith item in numeric object r.

RMS =

√√√√ 1

n
[

n∑
i=1

r(pi)2 + S(S

n∑
i=1

d(pi)2 − 2

n∑
i=1

d(pi)r(pi) + 2O

n∑
i=1

d(pi)) +O(nO − 2

n∑
i=1

r(pi))]

(5.11)

A given object is typically partitioned into k vectors. Equation 5.11 represents the

criteria to investigate the similar vectors in order to assign them to their clusters. The

similar messages are investigated by computing the scale and offset fractal factors for all the

considered vectors derived from XML messages. Then, they are clustered based on their
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fractal similarity that is reflected by having the small root mean square error (RMS) inside

the same group of XML messages.

Algorithm 5.1 Build the XML Dataset

01://Notation Description:

02://D holds the number of XML vectors in the dataset

03://V [D][n] holds the frequencies of XML items

04://V t[n] holds the nodes content of XML items (Vector template)

05://n holds the total number of the distinctive XML items in the vector template

06://Mx holds the current matrix form of the current XML document

07:i← 0//Counter Initialization

08:j ← 0//Counter Initialization

09:Repeat

10:Mx← load the current (ith) matrix form

11:for all nodes content in the V t do

12:Nd← V t[j] // get the current node in the vector template

13:j ← j + 1

14:F ← Count(Nd,Mx) //Count all the occurrences of Nd in Mx

15:G← Count(Nd,D) // Count the number of documents having Nd

16:V [i][j]← F × logD
G

17:end for

18:i← i+ 1

19:Until i = n
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Figure 5.7: Fractal similarity of SOAP messages inside the numeric dataset and final clus-
ters. The fractalization process starts after building the numeric form of SOAP messages
with a one dimensional numeric vector for each SOAP message allocated as one row in the
final two-dimensional matrix (dataset) that represent all messages. The major steps are: 1.
Break the vectors into smaller blocks, 2. Flag zero blocks as ignored to be excluded from the
fractal computations because these blocks mean their features are not existent in the message
(non-feature blocks), 3. Compare every block with all other feature blocks located in the same
column with fractal factors (scale, offset, and RMS) to find the most similar one that created
the smallest RMS, 4. Assign the block with the message index of the similar block, 5. His-
togram assigned indexes (indexes represent message references) for every single vector and
cluster them with the message of the highest index appearance of the histogram
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Algorithm 5.2 Fractal Coefficients Computations

01://Notation Description:

02://FBS holds the fractal block size

03://FBn holds the number of blocks in XML vector

04://Sn holds the number of XML vectors in the dataset

05://V s holds the number of frequencies per vector

06://V [Sn][V s] vectors of the generated dataset

07://Flg[Sn][FBn] holds the flags to recognize the ignored blocks

08:for i = 0 To Sn - 1 do// All vectors

09:for j = 0 To FBn - 1 do All blocks in vector

10:Flg[i][j]← False// F lag initialization

11:for co = 0 To FBS - 1 do All frequencies in the block

12:FSL← j × FBS// Determine the start location of the required frequency

13:If V [i][FSL+ co] ̸= 0

14:Flg[i][j]← True// not ignored block

15:Break the loop

16:end If

17:end for

18:If Flg[i][j] = True// not ignored block

19:R[i][j]← 0//Initialization

20:Rs[i][j]← 0//Initialization

21:for co = 0 To FBS - 1 do All frequencies in the block

22:R[i][j]← R[i][j] + V [i][FSL+ co] //
∑

ri fractal coefficient

23:Rs[i][j]← Rs[i][j] + Sqr(V [i][FSL+ co]) //
∑

ri
2 fractal coefficient

24:end for

............................................................................................................Continue
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25:Das[i][j]← Sqr(R[i][j]) //(
∑

di)
2 fractal coefficient

26:D[i][j]← R[i][j] //
∑

di fractal coefficient

27:Ds[i][j]← Rs[i][j] //
∑

di
2 fractal coefficient

28:end If

29:end for

30:end for

5.4 Fractal coefficients and RMS

Fractal mathematical models are well-known as time consuming techniques [Hart, 1996].

With the aim to reduce the required computations of fractal technique, fractal redundant

coefficients are calculated in advance. As a result, the required processing time for the fractal

clustering algorithm is reduced significantly as most of the major coefficients have already

been computed and buffered. This process is summarized as in algorithm 5.2.

After investigating the main fractal equations ??, ?? and 5.11, five major fractal coeffi-

cients are selected to be computed in advance as listed below:

•
∑

ri: summation of the ith range block in the considered vector in the generated

dataset.

•
∑

ri
2: summation of the squared values of the ith range block of the XML vector.

•
∑

di: summation of the ith domain block in the considered vector in the generated

dataset.

•
∑

di
2 summation of the squared values of the ith domain block of the XML vectors.

• (
∑

di)
2: summation of the squared value of the ith domain block.
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Another strategic step of the proposed fractal clustering model is considering the same

range blocks of the generated XML vectors as domain blocks excluding the currently selected

range block. Therefore, every single block in the generated dataset vectors is having the same

fractal coefficients as range and domain block. Technically, the fractal coefficients
∑

ri and∑
ri

2 will be equal to
∑

di and
∑

di
2 respectively. Therefore, only one set needs to be

computed as they are duplicated from the range block coefficients.

As previously stated, the resultant frequencies in the generated vectors of the dataset

represent the actual properties of the XML messages. According to the proposed fractal

strategy which breaks up these vectors into equal sized blocks, some of these blocks have

zeros only as some of the XML items are non-existent in their XML messages. In algorithm

5.2, these zero frequency blocks are identified by checking and flagging them as ignored blocks

as they do not have any impact on the clustering distributions of the final XML messages.

Flagging these blocks and removing them from the computations of the fractal coefficients

can potentially minimize the processing time. Figure 5.7 shows fractal similarities inside the

SOAP messages numeric particles and explains the fractal similarity based clustering process.

Fractal factors (scale, offset, and RMS) are computed for the current selected feature-block

with all other feature-blocks that are located on the same column in order to to find the

closest matching block that has the smallest RMS. Blocks are assigned with message index

of similar block in other messages.
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Algorithm 5.3 Fractal RMS metric

01://Notation Description:

02://FBS holds the fractal block size

03://FBn holds the number of blocks in XML vector

04://Sn holds the number of XML vectors in the dataset

05://V s holds the number of frequencies per vector

06://V [Sn][V s] vectors of the generated dataset

07://Flg[Sn][FBn] holds the flags to recognize the ignored blocks

08:for i = 0 To Sn - 1 do// All vectors

09:for j = 0 To FBn - 1 do All blocks in vector

10:If Flg[i][j] = True// not ignored block

11:RMSo = 500000// Initializing the RMS error with high value

12:for k = 0 To Sn - 1 do

13:If k ̸= i

14:RD ← 0//Initialization

15:FSL← j × FBS

16:for co = 0 To FBS - 1 do

17:RD ← RD + V [i][FSL+ co]×

18:V [k][FSL+ co]

19:end for

20:Scale← (FBS ×RD −R[i][j]×D[k][j])/(FBS ×Ds[k][j]−Das[k][j])

21:Offset← (R[i][j]− Scale×D[k][j])/FBS

22:RMSn← Sqrt((Rs[i][j] + Scale× (Scale×

23:Ds[k][j]− 2×RD + 2×Offset×

24:D[k][j]) +Offset× (FBS ×Offset

............................................................................................................Continue
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25:−2×R[i][j]))/FBS)

26:If RMSn < RMSo

27:S[i][j]← k

28:RMSo← RMSn

29:end If

30:end If

31:end for

32:end If

33:end for

34:end for

Fractal Root Mean Square error (RMS) is the basic metric of the proposed clustering

technique that determines block similarities as all the generated vectors in the dataset are

broken up into equal sized blocks. The computations of the RMS metric is based on com-

paring the resultant RMS values of the blocks that are located on the same column in the

dataset with different vectors (blocks on the same column reflect the same features). The

smallest RMS value with the considered block means higher similarity of their template

features (XML items). Algorithm 5.3 is required to compute the RMS metric and fractal

similarity. It creates a decision matrix that refers to the closest XML sample of every single

block.

145 (November 5, 2013)



CHAPTER 5. FRACTAL SELF-SIMILARITY FOR DYNAMIC SOAP CLUSTERING MODEL

Algorithm 5.4 Histogram V ectors Distribution

01://Notation Description:

02://FBS holds the fractal block size

03://FBn holds the number of blocks in XML vector

04://Sn holds the number of XML vectors in the dataset

05://Sindex holds the current sample index

06://Hist[Sn] holds similar samples histogram

07://Flg[Sn][FBn] holds the flags to recognize the ignored blocks

08://FClust[Sn] holds the final samples distribution

09:for i = 0 To Sn - 1 do// All vectors

10:for j = 0 To FBn - 1 do All blocks in vector

11:SIndex← S[i][j]

12:Hist[Sindex]← Hist[Sindex] + 1

13:end for

14:MaxIndex← 0

15:for j = 0 To Sn - 1 do

16:If Hist[j] > MaxIndex

17:MaxIndex← Hist[j] : SIndex← j

18:end If

19:end for

20:FClust[i]← SIndex

21:end for

The generated decision matrix is the key solution to finalize allocating messages based on

the maximum histogram of sample indexes in every single vector. Algorithm 5.4 is required

to compute the histogram of all the existent sample indexes of every single vector in the

generated dataset and distribute them according to the maximum histogram of these sample
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indexes in the decision matrix. For example, in Fig. 5.7, vector blocks of the first indexed

messages ([0.3, 0.3, 0.3, 0, 0.6] and [0, 0.3, 0.6, 0.6, 0]) are checked with other vector blocks

located on the same column and the best matched blocks are [0.3, 0.3, 0.3, 0, 0] and [0,

0.3, 0, 0, 0.6] respectively from the second indexed message. The smallest RMS for the best

matches are 0.189 and 0.222 respectively and therefore both messages are clustered together

based on their resultant histograms for the similar indexes.

5.5 Experiments and discussion

With the aim of showing an accurate assessment of the proposed fractal clustering technique,

the experimental evaluation has considered a wide variety of SOAP messages size. These

samples include real small messages (i.e. only 140 bytes) as well as very large messages

that could be as large as 53 kbytes. Moreover, the compression-based aggregation model

of SOAP Web messages (proposed in chapter 4) is considered as a tool to demonstrate

the superior ability of the proposed fractal clustering model when compared with other

standard clustering techniques. The basic testing criteria is by applying the compression-

based aggregation model on the resultant clusters and measuring the achievable compression

ratios on these clusters. Then, comparing them with other standard techniques as the

one that could achieve higher compression ratio is the one can achieve better clustering.

Furthermore, local error rate (RMS) inside clusters in addition to the global error rate which

investigates the similarity level are measured for every single cluster.

A testbed of 160 SOAP messages has been configured that consists of four groups each

with 40 messages. The testing SOAP messages are allocated to these groups based on their

size as they are classified as small, medium, large, and very large sized messages. They have

the ranges of 140-800, 800-3000, 3000-20000, and 20000-55000 bytes respectively. Both K-

Means and PCA combined with K-Means [Liu et al., 2004] are implemented in this research

to evaluate the proposed technique by comparing their resultant compression ratios that
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could be achieved on their resultant SOAP message clusters in addition to their required

processing time. K-Means and PCA combined with K-Means are applied on the generated

dataset with different cluster numbers that start from only two and up to ten clusters. On

the other hand, fractal model is developed and applied to work on a fractal block size that

can be pre-determined by the developer. In this work, fractal block sizes are 10%, 20%, 25%,

50%, and 100% of the overall considered vectors size in the generated dataset of the XML

messages.

All techniques showed significant results by enabling the compression-based aggregation

tools to achieve potentially high compression ratios on the clustered SOAP messages. Table

5.1 summarizes the performance of all the clustering techniques on SOAP message groups. It

shows the resultant average compression ratios of all the experiments with different numbers

of cluster and fractal block size percentage. Furthermore, it states the average time to cluster

40 SOAP messages of each group in the generated dataset. In this table, the fractal model

displays better performance than other models in terms of enabling the aggregation model

to achieve higher compression ratios. Moreover, the table shows that the processing time

required to cluster SOAP messages is potentially reduced by the fractal based clustering

technique in comparison with other standards. Figures 5.8, 5.9, 5.10, 5.11,and 5.12 depict

the significant ability of reducing the overall size of the clustered SOAP messages. This is

achieved by aggregating messages of each cluster after clustering them using fractal clustering

technique with fractal block sizes: 10%, 20%, 25%, 50%, and 100% from the overall vector

size by Binary-tree, Two-bit, and One-bit aggregations models.

Figures 5.13, 5.14, and 5.15 illustrate the detailed results of the achievable average com-

pression ratios by the compression-based aggregation tools after clustering SOAP messages

using K-Means, PCA combined with K-Means, and the proposed technique respectively with

different numbers of clusters and block sizes. It is clear that, as the number of clusters de-

creases, higher compression ratio can be achieved. Both Huffman and fixed-length based
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Figure 5.8: Compressed size of small, medium, large, and very large aggregated messages with
40 messages each group by BT (Binary-tree), 2B (Two-bit), and 1B (One-bit) aggregation
techniques based on 10% block size of fractal clustering
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Figure 5.9: Compressed size of small, medium, large, and very large aggregated messages with
40 messages each group by BT (Binary-tree), 2B (Two-bit), and 1B (One-bit) aggregation
techniques based on 20% block size of fractal clustering
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Figure 5.10: Compressed size of small, medium, large, and very large aggregated messages
with 40 messages each group by BT (Binary-tree), 2B (Two-bit), and 1B (One-bit) aggrega-
tion techniques based on 25% block size of fractal clustering
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Figure 5.11: Compressed size of small, medium, large, and very large aggregated messages
with 40 messages each group by BT (Binary-tree), 2B (Two-bit), and 1B (One-bit) aggrega-
tion techniques based on 50% block size of fractal clustering
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Figure 5.12: Compressed size of small, medium, large, and very large aggregated messages
with 40 messages each group by BT (Binary-tree), 2B (Two-bit), and 1B (One-bit) aggrega-
tion techniques based on 100% block size of fractal clustering
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aggregations are applied on the resultant clusters of both fixed cluster numbers cluster-

ing techniques and Huffman. They clearly showed better performance by achieving higher

compression ratios than fixed-length encoding. On the other hand, fractal block size has

significant impact on the overall performance of the fractal clustering technique as fractal

block size decreases better aggregation can be achieved (i.e. higher compression ratios). The

basic explanation of this fact is when XML messages are broken up into more blocks, more

object features can be caught precisely leading to better fractal similarity measurements.

Thus, the more similar messages are clustered in one cluster. The fractal clustering tech-

nique has shown better performance in terms of supporting the aggregation model to reduce

the network traffic significantly in comparison with other techniques.

Experimental results clearly demonstrated that the proposed technique has clustered

SOAP messages with high level of similarity by selecting messages with the smallest er-

ror (RMS) with the centroid point of the cluster. Tables 5.2 and 5.3 show the minimum,

maximum, and average error values (RMS) in order to investigate both local and global

similarities within the same cluster and with other clusters. The results showed higher RMS

values for global similarities than local measurements as messages have less error rate inside

their clusters.

With the aim to evaluate the processing time of the technique, clustering time has been

investigated and compared with both K-Means and PCA combined with K-Means. Figure

5.16 shows the average processing time of all the considered clustering techniques in details for

small, medium, large, and very large XML messages. PCA combined with K-Means requires

more processing time than K-Means as it requires more computations to implement the PCA

for the SOAP messages. However, the proposed technique shows a significant processing time

in comparison with other techniques as it mainly requires about 15 milliseconds to cluster

40 SOAP messages while other techniques require between 50 to 70 milliseconds. Processing

time for the dataset generation is investigated to give an accurate evaluation to the overall
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Figure 5.13: Average compression ratios of the aggregated SOAP messages using Binary-
tree aggregation technique based on K-Means, K-Means combined with PCA, and fractal
clustering techniques
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Figure 5.14: Average compression ratios of the aggregated SOAP messages using Two-bit
aggregation technique based on K-Means, K-Means combined with PCA, and fractal clustering
techniques
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Figure 5.15: Average compression ratios of the aggregated SOAP messages using One-bit
aggregation technique based on K-Means, K-Means combined with PCA, and fractal clustering
techniques
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Table 5.1: Average compression ratios and clustering time of K-Means, PCA + K-Means,
and fractal clustering models for small, medium, large, and very large messages

K-Means PCA + K-Means Fractal
40 fixed-length Average Cr. 3.920295 3.850353 4.002463
Small Huffman Average Cr. 3.820822 3.7136433 3.92449
messages Average Clustering Time (Ms) 50.8831 65.3333 15.6249
40 fixed-length Average Cr. 6.766314 6.797503 7.275127
Medium Huffman Average Cr. 7.715699 7.843987 7.985582
messages Average Clustering Time (Ms) 52.3342 62.8888 15.8441
40 fixed-length Average Cr. 12.943645 12.815021 13.100785
Large Huffman Average Cr. 16.020012 16.279294 16.633852
messages Average Clustering Time (Ms) 54 68.1111 15.7241
40 fixed-length Average Cr. 15.109293 15.127478 15.334334
Very large Huffman Average Cr. 20.163554 20.253857 21.7001
messages Average Clustering Time (Ms) 53.6231 70.4444 15.6383

Table 5.2: Clusters Local RMS errors and resultant clusters numbers and sizes

Messages Block Size Min. Max. Average Min. Max. Clusters
Size Percent RMS RMS RMS Cluster Size Cluster Size Number
Small 10% 0 0.5047 0.2605 2 27 6

messages 20% 0 0.9191 0.45306 2 6 11
25% 0.3022 0.9876 0.5227 2 5 12
50% 0.2576 0.974 0.54172 2 7 12
100% 0 0.8181 0.53623 2 6 12

Medium 10% 0 1.6317 0.88507 2 7 11
messages 20% 0 1.8818 1.08179 2 7 11

25% 0 2.1393 1.24371 2 7 13
50% 0 1.821 1.18298 2 6 12
100% 0 1.8448 1.18366 2 9 8

Large 10% 0 4.4824 2.46939 2 5 12
messages 20% 0 5.0462 2.8716 2 9 8

25% 0 5.2648 3.04482 2 10 8
50% 0 4.8300 3.06731 2 10 10
100% 0 4.5297 2.92064 2 14 7

Very large 10% 0 6.9137 4.60908 2 9 10
messages 20% 0 10.079 5.72626 2 10 11

25% 3.5036 8.7243 5.8157 2 7 10
50% 3.3639 8.8624 5.85116 2 8 10
100% 0 7.8088 5.56375 2 9 11
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Figure 5.16: The average clustering time of K-Means, PCA combined with K-Means and
fractal model of small, medium, large, and very large SOAP messages
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Figure 5.17: The required processing time to generate the dataset Vectors of small, medium,
large, and very large SOAP messages
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Table 5.3: Clusters Global RMS errors

Messages Block Size Min. Max. Average
Size Percent RMS RMS RMS

Small messages 10% 0.187966 0.514816 0.330745
20% 0.228095 0.906718 0.488379
25% 0.188495 0.84212 0.546586
50% 0.261493 1.040522 0.581153
100% 0.247343 0.979189 0.652142

Medium messages 10% 0.640369 1.637905 0.960197
20% 0.845921 2.086727 1.290225
25% 0.809719 2.191491 1.301323
50% 1.115513 2.503145 1.656588
100% 1.307663 1.916698 1.614943

Large messages 10% 1.586618 5.678355 3.393421
20% 2.389237 5.422692 3.444342
25% 2.114001 6.160388 4.097186
50% 3.102103 8.144498 4.965433
100% 3.299164 5.342282 4.21083

Very large messages 10% 3.339759 8.11057 5.561411
20% 3.475809 10.19773 6.441515
25% 4.211633 9.365102 7.110114
50% 5.469511 11.3655 7.910134
100% 5.203311 9.729922 7.023571
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requirements of the clustering models and it is obvious that it changes with the size of SOAP

messages where large messages require more processing time (as shown in Fig. 5.17).

5.6 Conclusion

Web scenarios and applications with the aggregation of SOAP messages are significantly

strengthened by clustering models as potential alternatives to the traditional simple cost

similarity measurements. Network traffic would be highly reduced through the ability of

aggregating large number of SOAP messages and not only pairs of messages. Fractal coef-

ficients are introduced as efficient similarity measurements to SOAP messages utilizing the

self-similarity principle of fractal mathematical model. The proposed clustering model is de-

veloped to compute fractal similarity of the proposed numeric form of SOAP messages. The

experimental results have shown higher performance to the proposed technique than well-

known clustering techniques such as K-means and PCA combined with K-means. Finally,

the resultant improvement in the performance of SOAP would be able to support many Web

scenarios and applications such as Cloud Web services, low bandwidth environments, and

mainly the low connectivity devices like PDAs and regular mobiles.
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Chapter 6

Distributed Aggregation and Fast

Fractal Clustering

This chapter tries to answer the fourth research question posted in section 1.2 by developing

the aggregation of SOAP messages to aggregate messages at several nodes (servers) working

on the same network and improving the performance of fractal clustering technique in terms

of the processing time.

The chapter is organized as follows: section 6.1.1 discusses the motivation for this re-

search. Section 6.1.2 describes the proposed techniques. Section 6.1.3 illustrates the evalua-

tion strategy for the proposed techniques. Furthermore, section 6.2 briefly describes the core

aggregation model that represents the infrastructure base for the new proposed accumulat-

ing aggregation models. Section 6.3 illustrates the proposed distributed aggregation model

in detail. Moreover, the proposed development to the fractal clustering technique is shown

in section 6.4. Section 6.5 shows the experiments and results. Finally, section 6.6 concludes

the chapter.

162 (November 5, 2013)



CHAPTER 6. DISTRIBUTED AGGREGATION AND FAST FRACTAL CLUSTERING

6.1 Introduction

SOAP has reflected the technical disadvantages of XML in generating bigger Web messages

than the real payload of the requested services over the Internet.

6.1.1 Motivation

With the aim to improve the performance of Web services, new compression and aggregation

approaches for SOAP messages are proposed in chapters 3 and 4 respectively. Aggregation

models include computing the redundancies that can be found in SOAP messages and ag-

gregating them with a new compression-based technique to ensure reducing their size sig-

nificantly. However, these approaches are designed as standalone (at one server) techniques

without sharing other servers to aggregate more messages with the same compact packet of

the previously aggregated messages (at predecessor machine).

Furthermore, aggregation of SOAP requires significant similarity measurements for a

potential reduction in network traffic. Similarity measurements and clustering (based on

message similarity) are proposed by this research for better Web service performance. Fractal

is introduced (in chapter 5) as a new potential similarity measurement for SOAP messages

with the aim of supporting aggregation models with high similar clusters of SOAP messages.

However, fractal models are time consuming for large dataset, representing a bottleneck for

fractal clustering. Moreover, distributed aggregation will increase the number of messages

for aggregation and requires efficient similarity measurements.

6.1.2 Proposed solution

A novel distributed aggregation technique is proposed to provide aggregation of SOAP mes-

sages from several nodes (servers) over the network. The aggregation starts by excluding the

XML items of newly added messages that have already appeared in the core aggregated mes-

sage to remove redundant items. A new modified Huffman tree encoding method has been
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developed, allowing the tree to be extended with more nodes without the need to rebuild the

Huffman tree from scratch. Finally, the accumulating lookup table of the new accumulating

aggregated packet is built. Figure 6.1 shows the main functions of the proposed distributed

aggregation model.

Build the XML Huffman tree
based on the binary codes
of the lookup table of the
core aggregated messages

Search XML tages and items and
exclude them from the lookup
list of the core aggregated
messages

Compute the minimum
required weight from the
shortest path of the XML
Huffman tree

Assign the XML Huffman tree
with accumulated weights

Add the new XML tags and
items to the Huffman tree
based on their redundancy

Compute the binary codes of
the new XML tags and items
based on their paths in the
Huffman tree

Figure 6.1: Main components of the distributed aggregation model

Fractal clustering for SOAP messages is a potential similarity measurement to support

aggregation with accurate predictions of SOAP clusters. However, fractal clustering is time

consuming especially when dealing with a large number of messages (up to thousands). The

fast fractal similarity measurements are proposed in this chapter to utilize their potential with

the new proposed aggregation of SOAP messages. Fast fractal introduces new mathematical

factors that are computed in advance to the regular fractal process, in order to classify fractal

object blocks into distinctive segments. Then, the fractal coefficients (scale, offset, and RMS)

are computed for blocks that only have the same fractal factor value. The proposed model

starts by generating the dataset from the SOAP messages, creating a set of numeric vectors

showing the local and global loads of XML items. Next, fast fractal factors are computed in

advance, then the fractal coefficients are computed, and finally cluster the XML messages
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based on the maximum histograms of fast fractal indexes in every single message. Figure 6.2

shows the main functions of the proposed fast fractal clustering model.

Compute the General
XML Vector Template

Build the XML Dataset

Compute the Fractal
Coefficients

Compute the Fast Fractal
Factors and Indexes

Fractal Matching
Process for Blocks
with same Index

Histogram Vectors
Distribution

Figure 6.2: Main components of fast fractal model

Fractal similarity measurements and aggregation of SOAP messages support Web services

in several scenarios and applications including Web applications over the Cloud. Figure 6.3

illustrates the utilization of aggregation models over Cloud computing including low band-

width constrained environments.

6.1.3 Evaluation strategy

The evaluation of the proposed distributed aggregation and fast fractal is mainly focusing on

investigating the required processing time and the messages size reduction. The distributed

aggregation has significantly outperformed the standalone aggregation model in terms of

reducing the total size of the aggregated messages. On the other hand, the results have

shown a tremendous minimization of the clustering time of the fast fractals in comparison

with the classical fractal. Furthermore, the processing time of the proposed clustering models

are compared with both K-means and Principle Component Analysis (PCA) combined with
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Cloud Application Server

Service
Database

Control Node

Cloud SOAP Web Service

SOAP Request SOAP Request

SOAP Response SOAP Response

Clients from a number of organizations
sharing the same service on the Cloud

Clients with a low Bandwidth environment
sharing the same service on the Cloud

Internet

Figure 6.3: Cloud Web services scenarios including high and low bandwidth constrained
environments

K-means as two standard clustering models. The proposed fast fractal clustering models

have outperformed all the other considered clustering models in terms of the clustering time.

Furthermore, the compression-based aggregation model proposed in this research is used

as a tool to compute the SOAP messages size reduction after aggregating the fractal based

clustered messages. The proposed fast fractal clustering models have shown almost equal

efficiency of the classical fractal model in reducing the overall size of SOAP messages. More-

over, they have been compared with both the K-means and PCA combined with K-means

as the fractal clustering models enable the compression-based aggregation model to achieve

higher messages size reduction.
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6.2 Core aggregation of SOAP messages

This section overviews the basic aggregation model suggested in chapter 4, used as the core

component of the proposed aggregation model. Redundancy-aware aggregation of SOAP

messages starts with building the XML trees for the aggregating messages. Figures 6.4

and 6.5 show an example of three XML messages (S1, S2, and S3) and their corresponding

XML trees. Next, XML trees are transformed into matrix form by indexing all the XML

items of these trees and organizing them into a matrix form (see Figure 6.6). Breadth-first

traversal is used to generate a textual format, assigning all the XML items with one bit

(0 or 1) in order to recognize the positions and provide the ability to rebuild the matrix

form again. Huffman tree encoding is used to include all the generated textual expressions

and encode them with one common lookup table. Figure 6.7 illustrates the strategy of

computing the aggregated textual expressions lookup table for two SOAP messages S1 and

S2. Finally, Huffman encoding is used to finish the encoding of the textual expressions using

the mapping binary codes of the XML items in the common lookup table. Figure 6.8 shows

the final structure of the compact aggregated SOAP messages S1 and S2.

6.3 Distributed aggregation of SOAP messages

The main target of the distributed aggregation is to aggregate m messages with another

n messages that have already been aggregated by another node. Figure 6.9 shows the dis-

tributed aggregation scenario for SOAP messages over the network. There are two challenges

that need to be covered in order to accomplish distributed aggregation. The first is to develop

Huffman tree encoding to generate more binary paths (binary codes) without rebuilding the

pre-generated Huffman tree of the core aggregated messages. The second challenge is to

design the compact packet structure of the core aggregated messages to be adaptive for the

new added accumulating aggregated messages. Both challenges have been addressed with the
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< StockQuoteResponse >
< StockQuote >
< Company > MSFT
< /Company > 
< QuoteInfo >
< Price > 26.03 < /Price >
< LastUpdated > 27/12/2011
< /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< /StockQuoteResponse >

< StockQuoteResponse >
< StockQuote >
< Company > UAL
< /Company > 
< QuoteInfo >
< Price > 19.85 < /Price >
< LastUpdated > 27/12/2011
< /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< /StockQuoteResponse >

a. b.

< StockQuoteResponse >
< StockQuote >
< Company > HMC
< /Company > 
< QuoteInfo >
< Price > 30.26 < /Price >
< LastUpdated > 27/12/2011
< /LastUpdated >
< /QuoteInfo >
< /StockQuote >
< /StockQuoteResponse >

c.

Figure 6.4: SOAP message responses to the requests getStockQuote(MSFT), getStock-
Quote(UAL), and getStockQuote(HMC)

new accumulating Huffman tree encoding scheme and the adaptive structure of the compact

packet.

168 (November 5, 2013)



CHAPTER 6. DISTRIBUTED AGGREGATION AND FAST FRACTAL CLUSTERING

StockQuoteResponse

StockQuote

Company

MSFT

QuoteInfo

Price

26.03

LastUpdated

27/12/2011

StockQuoteResponse

StockQuote

Company

UAL

QuoteInfo

Price

19.85

LastUpdated

27/12/2011

a. S1 b. S2

StockQuoteResponse

StockQuote

Company

HMC

QuoteInfo

Price

30.26

LastUpdated

27/12/2011

c. S3

Figure 6.5: XML message trees of SOAP messages (S1, S2, and S3)

6.3.1 Accumulating Huffman tree encoding

Regenerating the XML Huffman binary tree for the aggregated messages is a significantly

time consuming function, as it requires computing the redundancy of all the XML items

included in the lookup table. Moreover, as the compact packet has only the binary encoded

forms of the aggregated messages, it adds extra high computations for searching the XML

items using their mapping binary codes and not the textual contents.

Traditional Huffman binary tree encoding creates unique binary codes for the encoded
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Figure 6.6: Generated matrix form of SOAP messages (S1, S2, and S3)
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Huffman binary codes of the aggregated XML items

Figure 6.7: Computing Huffman tree as a part of the aggregation process of SOAP messages
(S1, and S2)

items that do not share any binary combinations. This fact is a result of the general strategy

of the Huffman technique and the structure of the generated binary tree as all the encoded

items are located at the bottom level of the tree. Furthermore, every single Huffman gen-

erated binary code leads to a unique path over the Huffman binary tree. In this chapter,

Huffman binary trees have been developed to share the shortest path of the core Huffman

tree as the initial path to the newly added items to the same tree. In other words, the small-

est binary combination in the tree represents the first sub combination for all newly added

XML items. The structure of the new sub-tree is based on the same iterative processing

of Huffman encoding. Another small lookup table that has the newly added XML items
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StockQuoteResponse
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QuoteInfo
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UAL

19.85

010

011

001

1010

1110

1111

1011

110

1000

1001

000

0010 1011 0000
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0010 1011 0000
1001 11000 01110
11111 11001 1110

XML item Binary
code

Aggregated Lookup Table

Message 1 Code

Message 2 Code

Aggregated Message of S1 and S2

Figure 6.8: Aggregated message of S1, and S2

with their mapping binary codes in addition to the shared binary code (Accumulating RBC

(Root Binary Code)) is created and added to the accumulating aggregation compact packet.

Figure 6.10 illustrates the processing of the accumulating aggregation of SOAP message S3

to the core aggregated packet of SOAP messages S1 and S2. Figure 6.11 shows the structure

of the packet for the distributed aggregation of SOAP messages.

6.3.2 Optimized aggregation with binary search

As mentioned before, every new accumulating XML item would be first checked if it appears

in the core aggregation lookup table. For large numbers of messages, selection search would

be a very expensive function that would highly affect the overall processing time of the aggre-

gation model. Therefore, the proposed model has been optimized by replacing the selection
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Lookup Table n messages

Lookup Table n+m messages

Lookup Table n messages

Lookup Table m messages

Aggregating n
SOAP messages

Accumulating aggregation
m SOAP messages

Split messages

Figure 6.9: Scenario for distributed aggregation of SOAP messages over the network

search with the binary search in order to minimize the processing time. Furthermore, all the

newly added XML items have been sorted using optimized bubble sort because the binary

search only works with sorted lists of items.

6.3.3 Adaptive compact aggregation structure

The new development of the Huffman binary tree encoding by having shared sub combination

binary codes would create technical conflicts during the de-aggregation process to extract

the original SOAP messages. Technically, new accumulating items starting with the same

sub combination binary code would result in the same extracted item by following the binary

path over the Huffman tree. With the aim to avoid these conflicts, a few modifications have

been included to the final structure of the accumulating aggregated compact packet. One

extra binary bit (0 or 1) has been added to every single encoded message in order to recognize

if this message has an accumulating XML items or not. Assignment bit with “0” value means

no accumulating items are included and assignment bit with “1” value means accumulating
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Figure 6.10: Generation of the accumulating lookup table to accumulate message S3 to the
core aggregated packet of messages (S1, and S2)

items are included. Messages with no accumulating items are only using the core lookup

table for decoding the binary codes. On the other hand, messages with accumulating items,

another extra binary bit has been injected after the shared accumulating RBC (0 or 1) to

recognize the correct lookup table (core or accumulating) for decoding the binary codes.

Binary bit with “0” refers to the core lookup table and with “1” refers to accumulating

lookup table (see Fig. 6.11).

6.4 Fast fractals for SOAP clustering

This section illustrates the proposed fast fractal clustering model showing the mathematically

derived fractal factors used to reduce the search time. Moreover, it describes the generation of
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Figure 6.11: Accumulating aggregated message of S1, S2, and S3

the dataset and the overall clustering strategy. Fractal similarity measurement is a potential

unsupervised dynamic clustering model that can support aggregation scenarios of SOAP

messages with the aim to achieve significant SOAP message size reduction [t, 1994]. However,

fractal mathematical models are time-consuming techniques, this drawback represents the

bottleneck of fractal applications [Hart, 1996; Kumar Bisoi and Mishra, 1999]. Therefore,

new mathematical models are developed that aim to speed up the performance of regular

fractals. We introduce new mathematical factors that are computed in advance of the fractal
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coefficients computation in order to segment data object blocks based on their fractal factors.

Then, fractal coefficients (scale, offset, and RMS) are computed for only blocks that have

the same fractal factor value. The proposed models first start by generating the dataset of

the SOAP messages that have a set of numeric vectors showing the local and global loads

of XML items. Then, fast fractal factors are computed in advance, then we compute the

fractal coefficients, and finally cluster the XML messages based on the maximum histograms

of fast fractal indexes in every single message.

6.4.1 Dataset generation

The generation of dataset is the first step of XML document preparations by transforming

them into numerical vectors for each XML document. The same technique that has been

proposed in chapter 5 is used to generate the dataset for the fast fractal clustering technique.

XML tags and data values are the physical descriptive features of the XML documents.

Hence, generating the dataset starts with computing the general vector of all the distinctive

tags and data values and consider it as the vector template for all XML documents V =

{X1, X2, ..., Xn}. The position of the distinctive XML tags and data values in the vector

template is considered as a search key of clustering documents as it shows the impact of

the considered feature in the counterpart XML messages. In the dataset, every single XML

document has a vector that carry the frequencies of the XML features counted in the vector

template. Term Frequency with Inverse Document Frequency (TF-IDF) technique is used to

compute the dataset vectors by finding the frequencies of all the XML tags and data values

for the XML documents.

6.4.2 Fractal similarity measurement model

Fractal is a mathematical approach that can approximate regular and irregular objects based

on the ability to find the self similarity of smaller objects of the same overall object. Fractal
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self-similarity feature is the fundamental aspect exploited by applications such as digital

image compression, and in audio and image pattern recognition. In this chapter, fractal is

proposed as a clustering technique to classify XML messages by utilizing its self-similarity

measurements.

The origin of the fractal self-similarity is the transformation of the object fragments

(block) as objects are made up from smaller copies of themselves. Moreover, every single copy

is made up again of smaller copies of itself. For a given object say P , fractal is systematically

partitioning that object into smaller fragments (blocks) which are called range blocks (ri).

Furthermore, range blocks can be recreated (approximately) from other similar fragments

(blocks) usually called domain blocks di from the same object using the partitioning function

fi. Equation 6.1 is to compute the approximated range blocks (Ŕ).

Ŕ = S ×D +O (6.1)

The strategy to find the best match of range blocks is by computing the fractal Root

Mean Square Error (RMS) and to select the domain block with the smallest RMS. In this

technique, when a matching process of a range block is active, the rest of the dataset blocks

are considered as domain blocks. Moreover, all vectors are divided up into same sized blocks.

The block size in this work is based on the overall size of the vector length as five block sizes

are considered: 10%, 20%, 25%, 50%, and 100% of the vector length. For every single

block, the best match is computed and assigned to the dataset vector of that best match.

Then, data objects are classified according to the maximum histograms of their blocks best

matches.

6.4.3 Fast fractal similarity measurement model

Although fractal models are considered to be time consuming approaches [Tao et al., 2000],

fractal can provide significant contributions in many fields like remote sensing applica-
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tions [Hart, 1996]. In this chapter, new fractal mathematical derivations are introduced

in order to speed up the clustering task of the XML documents. The basic strategy of the

proposed derivations is to find out new common fractal factors that can be computed sep-

arately on both sides: range and domain blocks of the search area. The total number of

the required computations for the matching process is reduced by segmenting all the range

and domain blocks separately into a number of segments based on the values of these fractal

factors. In this technique, the matching computations do not require checking the similarity

of a range block with all the domain blocks, the range blocks are checked and compared with

only the domain blocks that have the same fractal index (factor) value.

Fractal mathematical derivations

First, Eq. 6.1 can be formed in a different representation as:

R̂ = S × D̂ +O (6.2)

where R̂ is the average value of R range block and D̂ is the average value of D domain

block. Then, the same equation can be formed into another representation:

Ri = S ×Di +O (6.3)

where Ri represents one cell in the R range block and Di represents one cell in the D

domain block. The next step is to consider three range block parameters α, β, and χ as:

α =
i=n∑
i=1

∣∣∣Ri − R̂
∣∣∣ (6.4)

β =
i=n∑
i=1

(
Ri − R̂

)2
(6.5)
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and

χ =
i=n∑
i=1

(
Ri − R̂

)4
(6.6)

By substituting equations 6.2 and 6.3 in Eq. 6.4, Eq. 6.7 is derived to represent the

fractal parameter α in a different form.

α = |S| ×
i=n∑
i=1

∣∣∣Di − D̂
∣∣∣ (6.7)

where n is the length of range blocks (R) and domain blocks (D). Now, by substituting

equations 6.2 and 6.3 in Eq. 6.5, we obtain Eq. 6.8 that represents the fractal parameter β

in a different representation.

β = S2 ×
i=n∑
i=1

(
Di − D̂

)2
(6.8)

Furthermore, by substituting equations 6.2 and 6.3 in Eq. 6.6, we obtain Eq. 6.9 that

represents the fractal parameter χ in a different form as well.

χ = S4 ×
i=n∑
i=1

(
Di − D̂

)4
(6.9)

• First fast fractal factor (F1)

Equation 6.10 represents the general form of the fast fractal factor F1:

F1 =
β2

χ
(6.10)

By substituting equations 6.5 and 6.6 in 6.10, we obtain the first range fast fractal

factor (F1) as stated in Eq. 6.11.
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F1 =

(∑i=n
i=1

(
Ri − R̂

)2)2

∑i=n
i=1

(
Ri − R̂

)4 (6.11)

Then, by substituting equations 6.8 and 6.9 in 6.10, we obtain the first domain fast

fractal factor (F1) as stated in Eq. 6.12.

F1 =

(∑i=n
i=1

(
Di − D̂

)2)2

∑i=n
i=1

(
Di − D̂

)4 (6.12)

• Second fast fractal factor (F2)

Equation 6.13 represents the general form of the fast fractal factor F2:

F2 =
α2 × β

χ
(6.13)

By substituting equations 6.4, 6.5, and 6.6 in Eq. 6.13, we obtain the second range

fast fractal factor (F2) as stated in Eq. 6.14.

F2 =

(∑i=n
i=1

∣∣∣Ri − R̂
∣∣∣)2 ×∑i=n

i=1

(
Ri − R̂

)2
∑i=n

i=1

(
Ri − R̂

)4 (6.14)

Then, by substituting equations 6.7, 6.8, and 6.9 in Eq. 6.13, we obtain the second

domain fast fractal factor (F2) as stated in Eq. 6.15.

F2 =

(∑i=n
i=1

∣∣∣Di − D̂
∣∣∣)2 ×∑i=n

i=1

(
Di − D̂

)2
∑i=n

i=1

(
Di − D̂

)4 (6.15)
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6.4.4 Fast fractal based clustering strategy

The strategy of the fast fractal clustering model is to compute the fast fractal factors in

advance of the fractal matching process and separately for both range and domain fractal

blocks. Then, the fractal computations are computed with only range and domain blocks

that have the same fractal factor value. The processing time for clustering SOAP messages

is potentially minimized by avoiding the fractal computations for range and domain blocks

that are different and select only the domain blocks that share the fast fractal factors value.

6.5 Experimental analysis

Both distributed aggregation and fast fractal clustering have been evaluated and compared

with their non-optimized original models with respect to processing time (aggregation and

clustering time) and aggregated messages size reduction (compressed size and compression

ratio).

6.5.1 Distributed aggregation

In order to evaluate the performance of the distributed aggregation model, a testbed of

1800 real SOAP messages is created. These messages have been split into two main groups,

the first represents the group of messages for accumulating aggregation, which includes

600 messages. The second group (1200 messages) is for the core aggregated messages that

represent the base for adding the newly coming messages from network nodes over the

path of these messages by accumulating aggregation. The distributed aggregation model

has been evaluated for both the ability to reduce the total aggregated messages size and

the aggregation time. Furthermore, both aggregations (core and accumulating) have been

implemented with a varying number of messages starting with only 50 messages of each and

gradually increasing in increments of 50 messages each time.
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Figure 6.12 shows the ability of both classical (standalone) and distributed aggrega-

tion models in minimizing the total size of aggregated SOAP messages. Both models have

been implemented to aggregate 12 groups of messages with different sizes starting from 50

messages up to 600 messages. Furthermore, the distributed aggregation model has been

evaluated using a wide range of core aggregated messages that start from 50 messages up

to 1200 messages, increasing the core aggregated packet by 50 messages each time. The

distributed aggregation has significantly outperformed the standalone aggregation technique

by adding more than 50% of the performance of the standalone aggregation technique.
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Figure 6.12: Compressed size of both standalone and aggregated (accumulated) SOAP mes-
sages

The compression ratio has been investigated for three different cases: standalone aggre-

gation, resultant accumulation for distributed aggregated messages, and the overall compres-

sion ratio for the resultant packet size of both core and accumulating messages. Figure 6.13

shows the compression ratios of standalone and distributed aggregation for 12 groups of

SOAP messages with sizes that starting from 50 up to 600 messages. Accumulating SOAP
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messages have been aggregated a) over 12 groups of core messages that starts from 50 up

to 600 messages and b) over the same number of groups but with sizes that starting from

650 up to 1200 messages. It is clear that the distributed aggregation model has resulted in

higher compression ratios than the standalone aggregation model. Moreover, results have

shown the impact of the size of core messages on achieving higher compression ratio as the

accumulating aggregation over 650-1200 core messages has resulted in better compression

ratios than over 50-600 core messages.

Furthermore, the processing time for the distributed aggregation model and the stan-

dalone aggregation model have been compared. Figure 6.14 shows the average aggregation

time for aggregating SOAP messages over 50-600 and 650-1200 core aggregated messages

with both approaches for both including and excluding the optimized bubble sort and

binary search. The optimized accumulating aggregation (bubble sort and binary search)

outperformed the non-optimized accumulating aggregation significantly with respect to the

processing time, as it only requires approximately 50% of the non-optimized approach.

6.5.2 Fast fractal clustering

With the aim of investigating the performance of the proposed fast fractal clustering tech-

nique, the evaluation work in this chapter has been achieved using SOAP messages varying

between 140 bytes and 53 Kbytes. Furthermore, a large sized testbed of real SOAP messages

has been considered as it has 6000 messages that are distributed into four groups based on

their size range (small, medium, large, and very large) with 1500 messages in each group.

Moreover, the compression-based aggregation model of SOAP Web messages (proposed in

chapter 4) is deployed as a tool to investigate the proposed clustering model in computing

the similarity based clustered groups. It is found to be more efficient than other standard

clustering models. The compression-based aggregation tool is used to aggregate the resultant

fractal based clusters in order to evaluate the compression ratios achieved as a result of the
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Figure 6.13: Resultant compression ratios (Cr) for both standalone and aggregated (accu-
mulated) SOAP messages over a. 50-600 core aggregated messages and b. 650-1200 core
aggregated messages
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Figure 6.14: Processing time for a. standalone and non-optimized accumulating aggregation
(based on selection search) of SOAP messages and b. standalone and optimized accumulating
aggregation (including optimized bubble sort and binary search) of SOAP messages
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high fractal similarity of SOAP messages in each cluster.

The processing time required to generate the XML message dataset has been investigated

on multi-sized datasets (varying number of messages per dataset) starting from only 50 XML

messages up to 1500 XML messages. Figure 6.15 shows the consumed processing time for

dataset generation for small, medium, large, and very large XML documents. It is clear that

for smaller messages, less processing time is needed. Dataset generation for small messages

does not need more than 1200 milliseconds for 1500 messages and not more than a few

milliseconds for small sized dataset with 50 messages.

Fractal block size plays a vital role in reducing the processing time to compute the fractal

similarity of XML messages. Five fractal block sizes (10%, 20%, 25%, 50%, and 100%) are

investigated as they have clearly proven the impact of block size on the clustering time.

The enhanced performance fractal clustering techniques (F1 and F2) have tremendously

shown significant reductions in the clustering time, in comparison to the regular fractal

clustering model. Figures 6.16, 6.17, 6.18, 6.19, and 6.20 show the significant efficiency of

the proposed fast fractal technique with fractal block sizes of 10%, 20%, 25%, 50%, and 100%

respectively. Breaking up the dataset vectors into smaller blocks leads to a higher fractal

similarity of XML messages. However, small fractal block size based clustering requires

more fractal computations as it increases the number of blocks in each dataset vector and

therefore increases the number of fractal parameters and factors that need to be computed.

As a result, small block sizes cost more in processing time. Figures 6.16 and 6.20 show the

average clustering time of highly different sized datsets using 10% and 100% fractal block

sizes, which are the smallest and largest block size percentage respectively that have been

developed in the proposed fractal techniques. Fast fractal clustering techniques (F1 and F2)

have tremendously minimized the required processing time as they require less than 2500

milliseconds for the 10% block size based model and only less than 100 milliseconds for the

100% block size based model.
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Table 6.1: Average compression ratios (Cr.) of the aggregated messages using fractal, fast
fractal (F1), and fast fractal (F2) clustering techniques with different fractal block sizes

Average Compression Ratio
Fractal Technique Fast Fractal (F1) Fast Fractal (F2)

Message Fractal
Group Block Fixed- Fixed- Fixed-

Size length Huffman length Huffman length Huffman
Small

10% 3.96244 3.846 3.92281 3.80754 3.803941 3.69216
20% 3.92242 3.80676 3.8832 3.768688 3.765517 3.654485
25% 3.88239 3.78713 3.84357 3.749262 3.727094 3.635648
50% 3.84236 3.76751 3.80394 3.729835 3.68867 3.61681
100% 3.83436 3.74789 3.79602 3.710409 3.680985 3.597972

Medium
10% 7.20238 7.8259 7.13035 7.747612 6.914281 7.512836
20% 7.12962 7.74602 7.05833 7.668554 6.844439 7.436174
25% 7.05687 7.70609 6.9863 7.629026 6.774598 7.397843
50% 6.98412 7.66616 6.91428 7.589497 6.704757 7.359512
100% 6.96957 7.62623 6.89988 7.549969 6.690789 7.321182

Large
10% 12.96978 16.30117 12.84008 16.13816 12.45099 15.64913
20% 12.83877 16.13484 12.71038 15.97349 12.32522 15.48944
25% 12.70776 16.05167 12.58068 15.89115 12.19945 15.4096
50% 12.57675 15.9685 12.45099 15.80881 12.07368 15.32976
100% 12.55055 15.88533 12.42505 15.72648 12.04853 15.24992

V.Large
10% 15.18099 21.2661 15.02918 21.05344 14.57375 20.41545
20% 15.02765 21.0491 14.87737 20.83861 14.42654 20.20713
25% 14.8743 20.9406 14.72556 20.73119 14.27933 20.10297
50% 14.72096 20.8321 14.57375 20.62378 14.13212 19.99881
100% 14.69029 20.7236 14.54339 20.51636 14.10268 19.89465
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Figure 6.15: The processing time (milliseconds) for generating the data set of small, medium,
large, and very large messages

Furthermore, all of the proposed fractal clustering techniques have been compared with

Principle Component Analysis (PCA) combined with K-means in addition to the standalone

K-means as two standard clustering models in terms of the processing time (see Fig. 6.21).

Fractal clustering technique is competitive with other models when it is clustering up to 50

messages as it costs less time than both PCA + K-means and K-means. However, it costs

significantly more time than other models when the dataset size is greater than 50 messages.
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Figure 6.16: The average processing time (milliseconds) of 10% fractal block size based clus-
tering technique
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Figure 6.17: The average processing time (milliseconds) of 20% fractal block size based clus-
tering technique
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Figure 6.18: The average processing time (milliseconds) of 25% fractal block size based clus-
tering technique
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Figure 6.19: The average processing time (milliseconds) of 50% fractal block size based clus-
tering technique
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Figure 6.20: The average processing time (milliseconds) of 100% fractal block size based
clustering technique

On the other hand, both fast fractal techniques (F1 and F2) have outperformed all other

techniques that are involved in the evaluation. They both have shown similar efficiencies to

each other and they have sharply reduced the required processing time in comparison with

the classical fractal technique.

The ability of the proposed fractal clustering techniques in supporting the compression

based aggregation model to achieve high network traffic reduction is investigated. Moreover,

the proposed techniques are compared with other models (PCA+K-means and K-means).

Table 6.1 shows the resultant compression ratios that can be achieved by getting the support

of fractal clustering to aggregate the most similar XML messages. It is clear that fast fractal

factor F1 has slightly outperformed fast fractal factor F2. Both fast fractal factors F1 and

F2 have shown more than 98% efficiency of the classical fractal technique in achieving a

high compression ratio for the aggregated messages. Furthermore, it is obvious that as long

as the fractal block size is small, a higher similarity and compression ratio can be achieved.

191 (November 5, 2013)



CHAPTER 6. DISTRIBUTED AGGREGATION AND FAST FRACTAL CLUSTERING

0
250

500
750

1000
1250

1500
1750

0

1000

2000

3000

4000

5000

 

Number of Messages
 

C
lu

st
er

in
g 

T
im

e 
(M

ill
is

ec
on

ds
)

Fast Fractal (F1)
Fast Fractal (F2)
Kmeans
PCA+K−means
Fractal Technique

Figure 6.21: Average clustering time (milliseconds) of variant sizes of datasets of Web mes-
sages using fractal technique, PCA combined with K-means, K-means, fast fractal (F1), and
fast fractal (F2) clusterings

Table 6.2: Average compression ratios (Cr.) of the aggregated XML messages based on K-
means, PCA combined with K-means, fractal, fast fractal (F1), and fast fractal (F2) clusters

Messages Group Small Medium
Encoding Technique Fixed-length Huffman Fixed-length Huffman

K-means 3.57769 3.544639 6.503032 7.204943
PCA + K-means 3.616578 3.525683 6.573717 7.174087
Fractal Technique 3.888793 3.791057 7.068513 7.714072
Fast Fractal (F1) 3.849905 3.753147 6.997828 7.636931
Fast Fractal (F2) 3.733241 3.639415 6.785773 7.405509

Messages Group Large V.Large
Encoding Technique Fixed-length Huffman Fixed-length Huffman

K-means 11.71042 15.1042 13.88572 19.28531
PCA + K-means 11.83771 14.94352 13.85592 19.49494
Fractal Technique 12.72872 16.0683 14.89884 20.9623
Fast Fractal (F1) 12.60144 15.90762 14.74985 20.75267
Fast Fractal (F2) 12.21957 15.42557 14.30289 20.1238
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Table 6.2 shows the average compression ratios of the aggregated messages based on fractal,

K-means, PCA+K-means, fast fractal (F1), and fast fractal (F2) XML message clusters.

6.6 Conclusion

Distributed aggregation for SOAP messages is a new potential that can reduce the network

traffic significantly, better than the regular aggregation models. It supports aggregating

messages from several resources taking advantage of having higher redundancy with other

accumulating messages. Furthermore, fractal similarity of SOAP messages is a potential

clustering model that can efficiently cluster SOAP messages based on their high fractal

similarity degree. The proposed fast fractal development has increased the performance of

the fractal clustering model tremendously. The results are highly promising as the pro-

cessing time has been significantly reduced in comparison to the classical fractal clustering

technique. Moreover, fast fractal clustering models have outperformed K-means and PCA

combined with K-means in terms of both the clustering time and the SOAP messages size

reduction ability. The experimental results have shown the significance of fractal support in

the aggregation scenarios by minimizing both the required processing time and bandwidth

to send and receive messages over the network.
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Conclusion

This chapter is organized as follows. Section 7.1 summarizes the aims of this research,

including the main research questions. In section 7.2, main contributions made by this

thesis are presented. Furthermore, section 7.3 describes the future directions specific to the

thesis. Final remarks are stated in section 7.4.

7.1 Research aims

This thesis aims to generally improve the performance of SOAP Web services. Latency of

Web services has been investigated and analyzed, focusing on the fact that Web services

generate larger-sized messages than the actual payloads. Furthermore, we were particularly

motivated by the specific problem of creating high network traffic by Web services as a

result of their verbose nature. Regarding this problem, several recent significant studies

have concentrated on proposing standalone compression techniques and textual aggregation

models for pairs of SOAP messages. In light of these strategies, we focused our efforts on

the modeling and developing of novel and efficient compression and aggregation techniques

for groups of messages that can potentially reduce network traffic.

Despite the fact that Web services are built based on the tree structure, few studies have
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developed tree structure-based models with the aim to reduce network traffic. The first two

research questions in this thesis focused on devising more effective models to minimize the

high network traffic created by SOAP Web services. Regarding these research questions,

this thesis particularly aims to provide new efficient tree structure-based compression and

aggregation models.

XML similarity measurements and clustering represent an important issue for improving

the performance of Web services. The second two research questions in this thesis focused on

the development of potential similarity-based clustering models, as well as devising efficient

collaboration among multi-Web servers for novel distributed aggregation models for SOAP

messages. Moreover, the fractal self-similarity principle is investigated for the first time with

SOAP messages to provide a new efficient fractal clustering model.

Specifically, the following four research questions have been addressed in this thesis:

1. How to reduce the size of SOAP messages sent/received over the network?

2. How to utilize the compression techniques (redundancy-aware) in develop-

ing SOAP aggregation models?

3. What are the cost-effective similarity parameters for clustering SOAP mes-

sages?

4. What are the cost-effective methods to develop a distributed Web server-

based aggregation model for large numbers (hundreds and thousands) of

SOAP messages?

7.2 Research contributions

In response to the four research questions originally posed in section 1.2, the following four

main contributions were made:
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1. Binary and general tree-based structure compression techniques

Three compression techniques are proposed with the development of both binary and

general tree transformations of XML trees. The proposed transformations (binary and

general tree) are technical supportive techniques to the compression operation by re-

moving the duplicated XML tags. A binary-bit assignment process is developed in

order to generate new textual expressions for the XML tree using binary and general

tree traversals, such as breadth-first and depth-first traversals. Both fixed length and

variable length (Huffman) are used to encode the textual expressions of XML docu-

ments. Traditionally, fixed length and Huffman techniques are developed to encode

individual symbols or characters. In this research, XML tags and data values of SOAP

messages are treated overall as individual parameters for both fixed length and Huff-

man encoding. Furthermore, the proposed compression techniques are evaluated with

extensive experiments, and promising results are obtained in potentially reducing the

SOAP messages size. Moreover, the resultant performance is compared with other

standard compressors, such as gzip, bzip2, XMill, and XbMill, and found to be sig-

nificantly better. In addition, compression and decompression times are tested using

PCs, laptops, netbooks, and PDAs.

2. Redundancy-aware aggregation and group-based similarity measurements

Redundancy aware aggregation models are proposed using the compression potential

by exploiting the shared redundancy in SOAP messages. The new aggregation mod-

els aim to effectively minimize SOAP messages and aggregate them in one compact

packet. Furthermore, network traffic has been reduced potentially through enabling

the SOAP Web servers to aggregate SOAP responses with a high degree of similarity,

and send them back as one compact-sized packet. SOAP responses can be extracted

from the aggregated packet at the closest node to the recipient. Moreover, similarity

measurements represent an important factor in achieving significant size reduction for
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the aggregated messages by selecting highly similar messages for aggregation as they

share large portions of redundant information. Compressibility, Jaccard coefficient,

and VSM are proposed as group-based similarity measurements that cluster SOAP

messages based on their textual similarities. All the proposed aggregation models and

similarity measurements are evaluated as they have proven the capability of potentially

reducing message size.

3. Dynamic fractal similarity-based clustering model

A novel unsupervised dynamic fractal self-similarity based clustering model is proposed

for SOAP messages. Technically, fractal mathematical parameters (scale and offset) are

introduced as similarity metrics for SOAP messages that can express their similarities

based on their numeric forms. TF-IDF technique is proposed to generate the numeric

form of the considered SOAP messages focusing on their redundancies. The generated

dataset is a set of numeric vectors (one vector to every SOAP message) expressing the

local loads of SOAP messages. Dataset vectors are organized into a set of columns

dividing all vectors into equal-sized blocks. Technically, fractal clustering represents

an efficient alternative to the traditional textual similarity by computing the fractal

parameters for all blocks in every single vector. Blocks located on the same column are

matched with each other by computing the minimum RMS using the scale and offset

for each block. Vectors are then clustered according to the fractal similarities of their

blocks. The proposed clustering model is evaluated and compared with well-known

clustering techniques, such as K-means and PCA combined with K-means. The results

have proven the high performance of the fractal clustering in comparison with other

techniques, in terms of the ability to support aggregation models in achieving higher

compression ratios. Moreover, the proposed model requires less processing time than

other techniques for a dataset set the size of 40 SOAP messages or less.
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4. Distributed aggregation and fast fractal similarity measurements

Amulti-Web server based distributed aggregation model is proposed that can aggregate

SOAP responses from several Web servers that are located on the same network delivery

path of the aggregated packet. New developed Huffman encoding is proposed to add

the encoding of more SOAP responses at other Web servers without decoding the

aggregated messages. Furthermore, an adaptive structure is developed for the compact

packet to suit the inclusion of new SOAP responses. On the other hand, the fractal

mathematical model is modified by deriving new fractal factors with the aim to reduce

the search task (fractal matching process). This has been accomplished by segmenting

the vector blocks based on their similarities using the new fractal factors. Only blocks

placed in the same segment are matched using fractal coefficients (scale, offset, and

RMS). This development has led to a potential improvement required in cluster times

compared with the classical fractal clustering model. Experimental results for large

numbers of messages (hundreds and thousands) have shown a significant improvement

in performance compared with K-means and PCA combined with K-means.

7.3 Limitations and future work

In this thesis, several advances were made regarding the performance of SOAP Web services.

However, there is still critical work that needs to be analyzed and implemented in the area

of Web services performance, and especially in reference to reducing the high network traffic

created by SOAP Web services.

• In Chapters 3 and 4, several compression and aggregation models are proposed. Binary

tree and general tree structures are three transformations developed to generate new

reduced-size textual expressions for SOAP messages. Then, fixed length and Huffman

binary tree techniques are used to encode the generated textual expressions. The

limitation of these models is that they treat both XML tags and data values as the
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same technical weight. Data values are encoded as individual items. Generally, SOAP

messages have small actual payloads and heavy loads of XML tags. Therefore, the

proposed models have proven their potential in reducing SOAP message size. However,

we expect the performance of the proposed models to degrade with messages having a

heavy actual payload with small loads of XML tags. For example, Shakespeare’s plays

are represented in SOAP messages.

• Generic compressors, such as gzip and bzip2, are more efficient in compressing text.

Therefore, a new combination of the XML-aware techniques proposed in this thesis

with other generic compressors would be a significant future direction. Furthermore,

heuristic methods are interesting suggestion to have an advance decision for involving

the generic compressors or not by analyzing the considered SOAP messages before the

encoding process.

• In Chapters 5 and 6, the fractal self-similarity principle is used to propose new efficient

clustering techniques for SOAP messages using their numeric forms. TF-IDF weights

are developed to transform the textual representation of SOAP messages into a numeric

representation expressing the local redundancies in every single message. Since fractal

clustering models are developed to cluster numeric objects, it is an interesting future

direction to investigate their performance on other Web service contexts, such as the

JSON Web service. Regarding this suggestion, it is required to develop a numeric

transformation for the textual representation of the considered Web services.

• The proposed work in this thesis has been extensively evaluated and proven that po-

tential improvement to the SOAP Web services can be achieved. Technically, several

scenarios, such as Cloud Web services and Inter-Cloud, in addition to the bandwidth-

constrained environments (i.e. wireless Web services), may significantly benefit from

the proposed work. However, network simulations and real experiments are still needed
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to validate this fact.

7.4 Final remarks

This thesis has made several advances in the area of Web services. The large size of SOAP

messages has been significantly minimized by the three tree structure-based compression

techniques proposed in this thesis. Furthermore, the problem of having high network traffic

created by the verbose nature of SOAP Web services was analyzed, and a potential solution

was provided by aggregating a group of SOAP responses with the ability of utilizing the

redundancy exploitation in compression techniques. Similarity measurements were shown to

play a vital role in strengthening aggregation models by having a high degree of similarity

in the considered SOAP messages. Both textual and numeric similarity-based clustering

models are developed. Lastly, a multi-Web server distributed aggregation model is proposed

with the aim to consolidate Web servers and sharply reduce network traffic.
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WSDL Schema

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://schemas.xmlsoap.org/wsdl/"

elementFormDefault="qualified">

<element name="documentation">

<complexType mixed="true">

<choice minOccurs="0" maxOccurs="unbounded">

<any minOccurs="0" maxOccurs="unbounded"/>

</choice>

<anyAttribute/>

</complexType>

</element>

<complexType name="documented" abstract="true">

<sequence>

<element ref="wsdl:documentation" minOccurs="0"/>

</sequence>
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</complexType>

<complexType name="openAtts" abstract="true">

<annotation>

<documentation>

This type is extended by component types

to allow attributes from other namespaces to be added.

</documentation>

</annotation>

<sequence>

<element ref="wsdl:documentation" minOccurs="0"/>

</sequence>

<anyAttribute namespace="##other"/>

</complexType>

<element name="definitions" type="wsdl:definitionsType">

<key name="message">

<selector xpath="message"/>

<field xpath="@name"/>

</key>

<key name="portType">

<selector xpath="portType"/>

<field xpath="@name"/>

</key>

<key name="binding">

<selector xpath="binding"/>

<field xpath="@name"/>

</key>
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<key name="service">

<selector xpath="service"/>

<field xpath="@name"/>

</key>

<key name="import">

<selector xpath="import"/>

<field xpath="@namespace"/>

</key>

<key name="port">

<selector xpath="service/port"/>

<field xpath="@name"/>

</key>

</element>

<complexType name="definitionsType">

<complexContent>

<extension base="wsdl:documented">

<sequence>

<element ref="wsdl:import" minOccurs="0" maxOccurs="unbounded"/>

<element ref="wsdl:types" minOccurs="0"/>

<element ref="wsdl:message" minOccurs="0" maxOccurs="unbounded"/>

<element ref="wsdl:portType" minOccurs="0" maxOccurs="unbounded"/>

<element ref="wsdl:binding" minOccurs="0" maxOccurs="unbounded"/>

<element ref="wsdl:service" minOccurs="0" maxOccurs="unbounded"/>

<any namespace="##other" minOccurs="0" maxOccurs="unbounded">

<annotation>

<documentation>to support extensibility elements
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</documentation>

</annotation>

</any>

</sequence>

<attribute name="targetNamespace" type="uriReference" use="optional"/>

<attribute name="name" type="NMTOKEN" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="import" type="wsdl:importType"/>

<complexType name="importType">

<complexContent>

<extension base="wsdl:documented">

<attribute name="namespace" type="uriReference" use="required"/>

<attribute name="location" type="uriReference" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="types" type="wsdl:typesType"/>

<complexType name="typesType"> <complexContent>

<extension base="wsdl:documented">

<sequence>

<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>
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</complexType>

<element name="message" type="wsdl:messageType">

<unique name="part">

<selector xpath="part"/>

<field xpath="@name"/>

</unique>

</element>

<complexType name="messageType">

<complexContent>

<extension base="wsdl:documented">

<sequence>

<element ref="wsdl:part" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="name" type="NCName" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="part" type="wsdl:partType"/>

<complexType name="partType">

<complexContent>

<extension base="wsdl:openAtts">

<attribute name="name" type="NMTOKEN" use="optional"/>

<attribute name="type" type="QName" use="optional"/>

<attribute name="element" type="QName" use="optional"/>

</extension>

</complexContent>
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</complexType>

<element name="portType" type="wsdl:portTypeType"/>

<complexType name="portTypeType">

<complexContent>

<extension base="wsdl:documented">

<sequence>

<element ref="wsdl:operation" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="name" type="NCName" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="operation" type="wsdl:operationType"/>

<complexType name="operationType">

<complexContent>

<extension base="wsdl:documented">

<choice>

<group ref="wsdl:one-way-operation"/>

<group ref="wsdl:request-response-operation"/>

<group ref="wsdl:solicit-response-operation"/>

<group ref="wsdl:notification-operation"/>

</choice>

<attribute name="name" type="NCName" use="required"/>

</extension>

</complexContent>

</complexType>
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<group name="one-way-operation">

<sequence>

<element ref="wsdl:input"/>

</sequence>

</group>

<group name="request-response-operation">

<sequence>

<element ref="wsdl:input"/>

<element ref="wsdl:output"/>

<element ref="wsdl:fault" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</group>

<group name="solicit-response-operation">

<sequence>

<element ref="wsdl:output"/>

<element ref="wsdl:input"/>

<element ref="wsdl:fault" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</group>

<group name="notification-operation">

<sequence>

<element ref="wsdl:output"/>

</sequence>

</group>

<element name="input" type="wsdl:paramType"/>

<element name="output" type="wsdl:paramType"/>
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<element name="fault" type="wsdl:faultType"/>

<complexType name="paramType">

<complexContent>

<extension base="wsdl:documented">

<attribute name="name" type="NMTOKEN" use="optional"/>

<attribute name="message" type="QName" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="faultType">

<complexContent>

<extension base="wsdl:documented">

<attribute name="name" type="NMTOKEN" use="required"/>

<attribute name="message" type="QName" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="startWithExtensionsType" abstract="true">

<complexContent>

<extension base="wsdl:documented">

<sequence>

<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>
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<element name="binding" type="wsdl:bindingType"/>

<complexType name="bindingType">

<complexContent>

<extension base="wsdl:startWithExtensionsType">

<sequence>

<element name="operation" type="wsdl:binding_operationType"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="name" type="NCName" use="required"/>

<attribute name="type" type="QName" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="binding_operationType">

<complexContent>

<extension base="wsdl:startWithExtensionsType">

<sequence>

<element name="input" type="wsdl:startWithExtensionsType" minOccurs="0"/>

<element name="output" type="wsdl:startWithExtensionsType" minOccurs="0"/>

<element name="fault" minOccurs="0" maxOccurs="unbounded">

<complexType>

<complexContent>

<extension base="wsdl:startWithExtensionsType">

<attribute name="name" type="NMTOKEN" use="required"/>

</extension>

</complexContent>
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</complexType>

</element>

</sequence>

<attribute name="name" type="NCName" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="service" type="wsdl:serviceType"/>

<complexType name="serviceType">

<complexContent>

<extension base="wsdl:documented">

<sequence>

<element ref="wsdl:port" minOccurs="0" maxOccurs="unbounded"/>

<any namespace="##other" minOccurs="0"/>

</sequence>

<attribute name="name" type="NCName" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="port" type="wsdl:portType"/>

<complexType name="portType">

<complexContent>

<extension base="wsdl:documented">

<sequence>

<any namespace="##other" minOccurs="0"/>

</sequence>
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<attribute name="name" type="NCName" use="required"/>

<attribute name="binding" type="QName" use="required"/>

</extension>

</complexContent>

</complexType>

<attribute name="arrayType" type="string"/>

</schema>
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SOAP Binding Schema

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

targetNamespace="http://schemas.xmlsoap.org/wsdl/soap/">

<element name="binding" type="soap:bindingType"/>

<complexType name="bindingType">

<attribute name="transport" type="uriReference" use="optional"/>

<attribute name="style" type="soap:styleChoice" use="optional"/>

</complexType>

<simpleType name="styleChoice">

<restriction base="string">

<enumeration value="rpc"/>

<enumeration value="document"/>

</restriction>

</simpleType>

<element name="operation" type="soap:operationType"/>

<complexType name="operationType">
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<attribute name="soapAction" type="uriReference" use="optional"/>

<attribute name="style" type="soap:styleChoice" use="optional"/>

</complexType>

<element name="body" type="soap:bodyType"/>

<complexType name="bodyType">

<attribute name="encodingStyle" type="uriReference" use="optional"/>

<attribute name="parts" type="NMTOKENS" use="optional"/>

<attribute name="use" type="soap:useChoice" use="optional"/>

<attribute name="namespace" type="uriReference" use="optional"/>

</complexType>

<simpleType name="useChoice">

<restriction base="string">

<enumeration value="literal"/>

<enumeration value="encoded"/>

</restriction>

</simpleType>

<element name="fault" type="soap:faultType"/>

<complexType name="faultType">

<complexContent>

<restriction base="soap:bodyType">

<attribute name="parts" type="NMTOKENS" use="prohibited"/>

</restriction>

</complexContent>

</complexType>

<element name="header" type="soap:headerType"/>

<complexType name="headerType">
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<all>

<element ref="soap:headerfault">

</all>

<attribute name="message" type="QName" use="required"/>

<attribute name="parts" type="NMTOKENS" use="required"/>

<attribute name="use" type="soap:useChoice" use="required"/>

<attribute name="encodingStyle" type="uriReference" use="optional"/>

<attribute name="namespace" type="uriReference" use="optional"/>

</complexType>

<element name="headerfault" type="soap:headerfaultType"/>

<complexType name="headerfaultType">

<attribute name="message" type="QName" use="required"/>

<attribute name="parts" type="NMTOKENS" use="required"/>

<attribute name="use" type="soap:useChoice" use="required"/>

<attribute name="encodingStyle" type="uriReference" use="optional"/>

<attribute name="namespace" type="uriReference" use="optional"/>

</complexType>

<element name="address" type="soap:addressType"/>

<complexType name="addressType">

<attribute name="location" type="uriReference" use="required"/>

</complexType>

</schema>
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