View metadata, citation and similar papers at core.ac.uk

-

P
brought to you by i CORE

PLANNING IN BDI AGENT SYSTEMS

A thesis submitted in fulfilment of the requirements for

the degree of Doctor of Philosophy

Lavindra Priyalal de Silva
B.Sc. (Hons)

School of Computer Science and Information Technology,
College of Science, Engineering and Health,
RMIT University,
Melbourne, Victoria, Australia

September 11, 2009

provided by RMIT Research Repository

https://core.ac.uk/display/18619466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

| certify that except where due acknowledgement has beerentld work is that of the author
alone; the work has not been submitted previously, in whole art, to qualify for any other
academic award; the content of the thesis is the result ok wbich has been carried out since
the dficial commencement date of the approved research prograyneditorial work, paid or
unpaid, carried out by a third party is acknowledged; antcetprocedures and guidelines have

been followed.

Lavindra de Silva,
School of Computer Science and Information Technology,

RMIT University.

To Valérie, for being a silent helper and a patient endurer,

for being a candle flame in dark times . . . for being there.

To my parents, for teaching me endurance, determination,

and patience, which were pivotal in reaching this milestone

Acknowledgements

It has been a long and sometimesidult journey, but one which has nonetheless been worthwhile
and fruitful due to the guidance and support from many. | ddinkt like to extend my gratitude to
my primary supervisor Professor Lin Padgham, and secorslgrgrvisor Dr. Sebastian Sardina.
Lin’s guidance and insight has been invaluable in shapirgthiesis. She has been a great mentor
ever since | was an undergraduate student, and she hasrttynkiaked out for and set up new
opportunities for me and other students, whether it be n&ing, scholarships, travel funding, or
job interviews. | am deeply grateful to Sebastian for histitmous guidance, for his critical and
detailed feedback, and for always taking the time to teadimoAt everything | know today about
formal methods is because of Sebastian. | admire both LirSatstian for settling for nothing
less than the highest standards.

Besides my PhD supervisors, | was fortunate to have met ankediavith a number of other
stdf members and researchers. | am grateful to Associate Poofégses Harland for supervis-
ing my project with the DSTO (Defence Science and Technologyanisation), and for giving
me many opportunities to teach over the years; Associatiesdar Michael Winiké, my hon-
ours supervisor, for introducing me to research, and fohhipful feedback during initial stages
of my PhD; Dr. Anthony Dekker, for supervising my DSTO prdjeand for many interesting dis-
cussions over dfee in the months that followed; Dr. Santha Sumanasekarthdanany teaching
opportunities over the years; Beti Stojkovska, for muchdegehelp with administrative matters
over the years; and all members of the RMIT Agents Group, Heirtuseful feedback on early
ideas and practice presentations throughout the courseg tiomours and PhD degrees. In addi-
tion to stdf, there were many fellow students who made my time at RMIT nraivie. | would
like to thank all of them, particularly Gaya (Buddhinathpah, Xiang, Simon, Binh, Dhirendra,

and David, for the great many chats, and for the unnecességedreaks.

Vi

Vii

| thank Associate Professor Gal Kaminka, Associate Profet@mes Thom, and the anony-
mous reviewer for their useful feedback which helped imprthis thesis. | thank RMIT Univer-
sity and DSTO for the opportunity to work on the RMIT-DSTO jaict on planning, and RMIT
also for my honours and PhD scholarships. This thesis wamlbafunded by the project “Plan-
ning and Learning in BDI Agents,” which was supported by thus#alian Research Council under
grant LP0560702, and Agent Oriented Software (AOS). | thaBIS for providing a free license
to use JACK for educational purposes.

From thousands of miles away, | have received much suppmrt my relatives in Sri Lanka,
Singapore, and Mauritius. For this, | would especially liaehank the Rodrigo family, the (Shan-
tha) de Silva family, Bernard and NadegeflRaand Langanee Mendis. In Australia, a handful
of friends and family have continuously reminded me thatehg a world outside the sometimes
apprehensive and melancholic PhD-student-shell. | amlylgepteful to my brother Lasantha in
particular, for making life a whole lot easier through thenygood times, and also to Nuwan
and Ashan for being there through som#éidult times. Thanks are also due to Gwenyth, Diane,
Benoit, Dronan, Sabrina, Thomas, Umesh, Chandaka, ane t8dlomons family, for their help,
friendship, and words of encouragement. Although he is ngdo with us, the pioneering work
on Buddhist-Christian dialogue by my grandfather, the Ré®. Dr. Lynn de Silva, inspired me
immensely during the writing of this thesis.

Finally, but most importantly, | would like to express my héslt gratitude to my parents
Lahan and Peace, for giving my brother and me the freedom rsupuwour interests, for their
sacrifices over decades to provide us with a good life andagdun; and for their patience and

constant support. Most of all, | thank them for always un@eding.

Credits

During the course of this research, a number of papers wekspad which are based on the

work presented in this thesis. They are listed here for esies.

e de Silva, L., Sardina, S., and Padgham, L. First Principlasring in BDI systems. In
Proceedings of the International Conference on Autonor@esnts and Multiagent Systems

(AAMAS-09) pages 1105-1112, 2009.

e de Silva, L., and Dekker, A. Planning with Time Limits in BDIg&nt Programming Lan-
guages. InProceedings of Computing: the Australasian Theory SympogiCATS-07)
pages 131-139, 2007.

e Sardina, S., de Silva, L., and Padgham, L. Hierarchicalrpfanin BDI agent programming
languages: a formal approach. Rroceedings of the International Conference on Au-

tonomous Agents and Multiagent Systems (AAMASpages 1001-1008, 2006.

e Dekker, A., and de Silva, L. Investigating organisatiortalictures with networks of plan-
ning agents. IrProceedings of the International Conference on Intelligdgents, Web

Technologies and Internet Commerce (IAWTIC;:@@ges 25-30, 2006.

e de Silva, L. and Padgham, L. Planning on demand in BDI systeitmsProceedings of
the International Conference on Automated Planning ande8gling (ICAPS-05) Poster
Sessionpages 37—-40, 2005.

e de Silva, L. and Padgham, L. A comparison of BDI based rea¢treasoning and HTN
based planning. IRroceedings of the Australian Joint Conference on Artifirigelligence

(AI-04), pages 1167—1173, 2004.

viii

Contents

1 Introduction

2 Background
2.1 The BDIAgent Architecture e
211 PracticalReasoning
2.1.2 TheAbstractBDlInterpreter
2.1.3 BDI Agent-Oriented Programming Languages
2.1.4 JACK IntelligentAgents
2.2 Other Agent Architectures e
2.3 Automated Planning e
2.3.1 FirstPrinciplesPlanning
2.3.2 Hierarchical Task Network Planning
2.4 Combining AgentsandPlanning
2.4.1 First Principles Planning in Agents
242 HTNPIlanninginAgents,

3 A HTN Planning Framework for BDI Systems
3.1 Similarities Between the BDI and HTN Approaches
3.2 Adding HTN Planning into the CAN BDI Language
3.2.1 Presentation of CAN
3.2.2 Preliminary Definitions
3.2.3 Adding HTN Planning into CAN: the Plan Construct

3.2.4 Properties of the Plan Construct

CONTENTS Xi
4 A First Principles Planning Framework for BDI Systems 83
4.1 HybridPlanning e 87
4.2 Creating Abstract Planning Operators0 90
4.2.1 Assumptions and Preliminary Definitions 92
4.2.2 Preconditions and Postconditions 96
4.2.3 Algorithms e 100
4.2.4 An Exploration of Soundness and Completeness 109
4.3 FindingHybrid-Plans 114
4.4 Validating Hybrid-Plans e 117
5 Obtaining a Preferred First Principles Plan 121
5.1 Preliminary Definitions e . 125
52 MNRMAHybrid-Plans 126
5.2.1 Non-Redundancy and Minimality 128
5.2.2 Maximal-Abstractness 130
5.3 MNRMA Specialisations of Hybrid-Plans 135
5.4 Preferred Specialisations of Hybrid-Plans 139
541 Formalisation 411
5.5 Computing Preferred Specialisations 154
6 Implementation 161
6.1 Comparing the Formal Languages with their Implemeoniati 162
6.1.1 CANVS.JACK 163
6.1.2 HTNvs.JSHOP e 167
6.2 Integrating JSHOP into JACK e 171
6.2.1 Mapping JACKtOJSHOP o, 171
6.2.2 ImplementationlIssues 176
6.3 Integrating Metric-FF into JACK e 181
6.4 Improving and Executing Hybrid-Solutions 187

7 Discussion and Conclusion

CONTENTS

A Lemmas and Proofs

A.1 Proofs for Chapter 3

A.2 Lemmas and Proofs forChapter4

A.3 Proofs for Chapter 5

B Graphs and Trees

Xii

195
195
195
199

205

List of Tables

3.1 Summary of the mapping from AgentSpeaktoHTN 57

4.1 Must literals and may literals of atomic programs ancdh{ldadies of Figure 4.4.
Note that the rightmost column only shows the may literadd Hre not also must
literals. Abbreviations used in the table are as follo@# = Calibrated HSS=
HaveSoilSampledMC = HaveMoistureContenHPS = HaveParticleSizeCE =
ConnectionEstablishedandRT = ResultsTransmittedEachP; is the plan-body

corresponding to plan-rulg, in the figure. 107

6.1 Summary of the mapping from JACKtoJSHOP 177

Xiii

List of Figures

2.1
2.2

2.3

3.1

3.2
3.3

4.1
4.2

4.3

A JACK plan-rule for travelling by catchingabus 18
A simplified planning graph for a Blocks World planningoplem. The abbrevia-

tion “Bi” (e.g., B2) is short for ‘Blocki.” Nodes are labelled with either the name

of an action or a proposition. Nodes with no labels are noabps. Solid arrows
represent add edges and precondition edges, and dashes aepresent delete
edges. Delete edges have been left out of the second actirfde readability.
Darker nodes represent the path to a solution for goal &o(83,B2). 32
A simplified representation of a HTN domain An arrow below a method indi-

cates that its tasks are ordered from lefttoright. 39

A simple Mars Rover agent. An arrow below a plan-rule gatis that its steps
are ordered from left to right. The labels adjacent to plaes are the resources

that they consumenB stands fom units of battery, aneiM stands fom units of

MEMONY. . . . o o e e e e e e e e e e e e 52
CAN'scomplete setofrules 63
CANPlan’'s complete setofrules 0u... 75
The overall framework for first principles planning in B&stems 84

A Mars Rover agent. An arrow below a plan-rule indicatetd tts steps are or-
dered fromlefttoright. 87

An inconsistent plan-rul@oToWorkFridaysPlan. 99

XV

LIST OF FIGURES XV

4.4

51

5.2

5.3

5.4

55

5.6

6.1
6.2

6.5

6.8
6.9

A slightly modified and extended version of the Mars Ragent of Figure 4.2.
This version has options for navigating and transmittirgutts, and if the lander

is not within range, transmitting involves navigating te tlander and uploading

results. 106
(a) A redundant hybrid-solutiom (b) a hybrid-solutionh’” with redundancy (ac-

tions in bold) removed; and (c) the execution tracd.of 123

A simple totally-ordered HTN domain. An arrow below a hwat indicates that

its steps are ordered from left to right. The table shows tleeqnditions and
postconditions of theactions. 128
Refinements for hybrid-solutiod(1 : to)}, true] (left) and hybrid-solution {(2 :

t1), (3 : 1)}, (2 < 3)] (right) depicted graphically. Dashed rectangles repn¢
constraints on adjacent labelledtasks. 132
The decomposition tree corresponding to decompositewe [(1 : t1)}, true] -

[{(2 : 1), (3 : t3)}, true] - [{(4 : @), (5 : @), (3 : t3)},(4 < 5)] - [{(4 : &), (5 :

as), (6 : ag), (7 : a7)},(4 < 5) A (6 < 7)]. Dotted rectangles stand for primitive
taskgactions, and missing constraints standtfae. 140
A complete decomposition tré&€ of task networkd = [{(1 : t1),(4 : t),(14 :

ts)}, (1 < 4) A (4 < 14)]. Dotted rectangles stand for primitive tgglions or

empty reductions (Nod€17 :€))). e 145
The decomposition tree obtained from the tree in figuseb§. projecting on the
CUut{(L:t1),(4:)} e e 149
The architecture of our combined framework 163
JACK plans for théavigateevent-goal and its corresponding actions in the Mars
Roveragentof Figure 4.2. e 165
Mapping from a JACK plan in the Mars Rover agent of Figuzté a JSHOP
method 176
Incorporating HTN planning into the Mars Rover agentigiFe 3.1 178
The JACKPIan specification of plan-ruRg in the Mars Rover agent of Figure 4.2 185

List of Algorithms

2.1 BDI-nterpreter() e e e 10
2.2 Linear-Greedy-Justification(o,C) 29
2.3 Forward-Search(C) o o v i 30
4.1 Summarise(ILA) o e e 102
4.2 Summarise-Plan-Body(PIL, A,Ain) o o o v o i e e e 103
4.3 Summarise-Event(e(X),IL,A) 108
5.1 Find-Preferred-Specialisation(h, H,7 ;) 155

XVi

Abstract

Belief-Desire-Intention (BDI) agent systems are a popatmroach to developing agents for com-
plex and dynamic environments. These agents rely on cosgesitive expansion of plans, acting
as they go, and consequently, they do not incorporate a igemechanism to do any kind of
“look-ahead or offline planning This is useful when, for instance, important resources by
consumed by executing steps that are not necessary for ast@a$ are not reversible and may
lead to situations in which a goal cannot be solved; and dtgets of steps are undesirable if they
are not useful for a goal. In this thesis, we incorporate milamtechniques into BDI systems.

First, we provide a general mechanism for performing “lablead” planning, using Hier-
archical Task Network (HTN) planning techniques, so thakgant may guide its selection of
plans for the purpose of avoiding negative interactions/ben them. Unlike past work on adding
such planning into BDI agents, which do so only at the impletagon level without any precise
semantics, we provide a solid theoretical basis for suchnite.

Second, we incorporate first principles planning into BDdteyns, so thatewplans may be
created for achieving goals. Unlike past work, which fosuge creating low-level plans, losing
much of the domain knowledge encoded in BDI agents, we inttech novel technique where
plans are created by respecting and reusing the procedumzid knowledge encoded in such
agents; oumbstractplans can be executed in the standard BDI engine using tlus/lkdge.
Furthermore, we recognise an intrinsic tension betweanrgrfor abstract plans and, at the same
time, ensuring that unnecessary actions, unrelated t#wfic goal to be achieved, are avoided.
To explore this tension, we characterise the set of “idebftract plans that are non-redundant
while maximally abstract, and then develop a more limitetféasible account where an abstract
plan is “specialised” into a plan that is non-redundant amdlastract as possible. We present

theoretical properties of the planning frameworks, as a®lhsights into their practical utility.

Xviil

Chapter

Introduction

Recent years have seen an increasing need for delegatiognfuter software the day to day tasks
of humans. Intelligent agent systems are a popular paraftighuilding software that exhibit the
degree of autonomy and intelligence required to aid humBpwirtue of being autonomous and
intelligent by default, such systems eliminate the needdéelopers to explicitly encode these
features into their software applications. This thesidangs adding planning — a particular kind
of intelligent reasoning — to a popular and widely used ctdsatelligent agent systems, namely,
Belief-Desire-Intention (BDI) systems.

Autonomy is the ability of an agent to act with little or noemtention from humans. In
particular, unlike objects, which are told what to do, iliggint agents have control over their
behaviour in that they can decide for themselves whetheotbit is appropriate to perform tasks
requested from them by external entities (Wooldridge, 2@025). Tasks are performed in some
environment, such as a software environment (e.g., a fligbking agent) or the real world (e.g.,
a Mars Rover robot). Intelligence arises mainly out of agdming(i) autonomous entitiegji)
active entities, i.e., having their own threads of exeeytand(iii) proactive entities, i.e., able to
initiate tasks (Wooldridge, 2002, pp. 25, 26). Adding plagrto agents adds an additional aspect
of intelligence, making for more robust systems.

The BDI agent model has been claimed to provide a more tha®306{(provement in fi-
ciency when developing complex software applications (ig#het al., 2006). While an object-
oriented software application is created by the specitinatif classes, a BDI agent is created by

the specification of a set of “recipes,” which define how therdgshould attempt to solve the

CHAPTER 1. INTRODUCTION 2

various tasks (e.g., “Book-Flight” or “Schedule-Meetipg’may encounter during its lifetime. A
recipe (e.g., “Book-Emirates-Flight” or “Book-Quantabgfit”) is a collection of steps for achiev-
ing the associated task, combined with a specification dfithations (preconditions) under which
the recipe is applicable (e.g., there must be $2000 in trditarard). Steps within a recipe can be
basic ones which are directly executable (e.qg., invokingnation to make a credit card payment),
or more abstract entities — subtasks — that are solved vir oditipes. Hence, recipes can be
considered hierarchical and partially specified — theiaitietire filled in as execution progresses.

BDI agents are flexible and robust at handling failure. Irtipalar, if it is not possible to
solve a task using some associated recipe, an alternatiperis tried to solve the task, failing
only if all associated recipes have failed, or if none areenity applicable. Moreover, BDI
agents are well suited for complex and dynamic environmémigarticular, those associated with
applications that require real-time reasoning and corgralh as Unmanned Autonomous Vehicles
(UAVs) (Wallis et al., 2002) and Air Tific Control (Ljungberg and Lucas, 1992). This is because
BDI agents multi-task the execution of steps in the real dvavgether with the reasoning about
how to solve tasks (e.g., which recipe to choose), therelygting the chances of the reasoning
being outdated due to changes in the environment by the tk@eudon happens. They also are
often able to recover from failure when a wrong decision ketaor something changes in the
environment.

One shortcoming of BDI systems is that they do not incorgoeagjeneric mechanism to do
any kind oflook-aheador planning (i.e., hypothetical reasoning). Planning is desirablegvan
mandatory in situations where undesired outcomes need &vdided. In general, planning is
useful when(i) important resources may be consumed by executing steparthaiot necessary
for a task;(ii) steps are not reversible and may lead to situations fromhwthie task can no
longer be solved(iii) executing steps in the real world takes more time than delilvgy about
the outcome of steps (in a simulated world); 4wl steps have sidefects which are undesirable
if they are not useful for the task at hand. The three mairessat we address in this thesis for

adding planning into BDI agent systems are discussed inolf@wing three sections.

Looking ahead on existing recipes

First, we extend the BDI model so that an agent is able to reabout the consequences of

choosing one recipe for solving a task over another. Sudorgéag can be useful for guiding the

CHAPTER 1. INTRODUCTION 3

selection of recipes for the purpose of avoiding negatiteractions between them. For example,
consider the task of arranging a domestic holiday, whicbliras the subtasks of booking a (do-
mestic) flight, ground transportation (e.g., airport deitto a hotel, and hotel accommodation.
Although the task of booking a flight could be solved by sétera recipe that books the cheapest
available flight, this will turn out to be a bad choice if thesalpest flight lands at a remote airport
from where it is an expensive taxi ride to the hotel, and cqusgtly not enough money is left
over for accommodation. A better choice would be to book gressive flight that lands at an
airport closer to the hotel, if ground transportation istiebeap, and there is enough money left
over for booking accommodation. By reasoning about the emumsnces of choosing one recipe
over another, the agent could guide its execution in ordewtid selecting the recipe that books
the cheapest flight.

Look-ahead can be performed on any chosen substructuresipés; the exact substructures
on which it should be performed is determined by the programah design time. Look-ahead is
not performed on all recipes by default because, althougigusok-ahead for guiding BDI exe-
cution is in some cases more appropriate (e.g., resultsl@aaer design) than using preconditions

for guiding BDI execution, carefully specified preconditioare often adequate for this purpose.

Planning to find new recipes

The second way in which we incorporate planning into the BDH#al is by allowing agents to
come up with new recipes on the fly for handling tasks. Thiseful when the agent finds itself in
a situation where no recipe has been provided to solve aldasthe building blocks for solving the
task are available. To find a new recipe, we perform first fjplas planning, that is, we anticipate
the expected outcomes oftitirent steps so as to organise them in a manner that solvessthatt
hand. To this end, we use the agent’s existing repertoiréepssand tasks, i.e., both basic steps
(e.g., deleting a file or making a credit card payment) as asethe more complex ones (e.g., a task
for going on holiday). In order to anticipate the outcometasks, we compute automatically their
intended outcomes and the situations under which they glecable, using the available library
of recipes. Like we do for looking ahead within existing pEs, the programmer can choose the
points from which first principles planning should be perfied. In addition, such planning could
also be done automatically on, for instance, the failurenahgportant task.

Using tasks for first principles planning, as opposed toguisinly the basic steps of an agent, is

CHAPTER 1. INTRODUCTION 4

desirable for two reasons. First, tasks are abstractethiat are well equipped with alternatives
(recipes) for handling failure. Second, since a task repssa state offfairs, its associated
recipes can be thought of as capturing tiser’s intent(or the user’s preferences) on how the
associated state oftairs should be brought about. Thus, by using, instead dfraribasic steps,
some combination of tasks for bringing about a given staggfairs, we are respecting the user’s
intent on how that state should be brought about, as taskevergually solved via associated

recipes.

Finding desirable recipes

It is desirable to build recipes using tasks that are asatistis possible, because such steps are
more flexible and robust to failure than those that are lessati — a higher level of abstraction
generally entails a larger collection of alternatives tpifrfailure occurs. At the same time,
however, it is also important to avoid including within nees tasks that are abstract to the extent
that they lead to a mass of unnecessary or redundant bagg: $ter example, it is undesirable
to have in a newly found recipe an abstract task that invadwesnging a holiday for the purpose
of booking a flight, when only the flight booking is requiredertte, in this thesis we attempt to
find the right balance between formulating recipes that ddesa to redundant basic steps, and

keeping steps within recipes as abstract as possible.

Research questions

The research questions we address in this thesis can be siseanas follows.

1. How can we formally describe the process of looking ahe#fdmsubstructures of existing

BDI recipes and guiding recipe selection?

To this end, we extend the BDI model by incorporating lookauth capabilities. In par-
ticular, we add a look-ahead module into the BDI model, andpovexide an operational

description of the new system’s behaviour.

2. What are the algorithms and data structures for creatavg necipes, not already a part
of the agent’s recipe library, on demand using the ageni&ieg repertoire of basic and
complex steps? In particular, what information is needethfsuch steps for this purpose,

and how can this information be used to create new recipes?

CHAPTER 1. INTRODUCTION 5

To this end, we define formally what information we need toawttfrom the existing build-
ing blocks of an agent, and we provide algorithms for exingcthis information and using

it to create new recipes.

3. What are the dlierent formal characterisations of desirability with retpe recipes? Do

such characterisations exist that can be realised with atatipnally feasible algorithms?

To this end, we define various notions including that of araid recipe, which is one that
does not lead to any redundant steps but is as abstract ablpoasd a computationally

feasible notion of a “preferred” recipe, for which we prowidlgorithms and data structures.

4. What are the theoretical properties of the formal fram&aicand how can the frameworks

be implemented? What is their practical utility?

Our frameworks have resulted in significant theoretical prattical benefits to the BDI
model. We provide insights into the practical utility of trameworks by, for instance,
highlighting the gaps between the frameworks and theirémgintations, and showing how

some of these gaps can be reduced.

Thesis outline

This thesis is organised as follows. In Chapter 2, we disthus$ackground material needed to
understand this thesis. In Chapter 3, we incorporate |dwad deliberation into the BDI model.
To this end, we make use of a planning technique called Hikizal Task Network (HTN) plan-
ning. We first compare the syntax and semantics of HTN planwiith the BDI model, and then
show how HTN planning can be incorporated into the BDI modellie purpose of performing
look-ahead within BDI recipes. In Chapter 4, we incorpofast principles planning into the BDI
model so that new BDI recipes may be obtained. This involedsohg formally what information
we need to extract from existing recipes to be able to perfinshprinciples planning, providing
algorithms and data structures for both automaticallyaeting this information as well as for
obtaining new recipes using this information, and anatysire properties of the formalisms and
algorithms. In Chapter 5, we define formally an ideal notibdesirability with respect to recipes,
and also two other less than ideal, but still desirable natiaf recipes. We provide practical algo-
rithms for one of these notions, and a formal analysis of ifternt notions and algorithms. In

Chapter 6, we discuss the implementation of the formal fraonks and algorithms discussed in

CHAPTER 1. INTRODUCTION 6

previous chapters, and we give insights into their praktithty. Finally, in Chapter 7, we discuss

the contributions and indicate some directions for futuoekuw

Chapter

Background

This chapter introduces the background material requathtlerstand this thesis. In particular,
it introduces the BDI agent architecture, automated plagrand past work on incorporating au-
tomated planning into agent systems. We will also reviewdifferent systems we have chosen to
implement the research in this thesis, namely, JACK Igetit Agents, the JSHOP HTN planner,

and the Metric-FF first principles planner.

2.1 The BDI Agent Architecture

The BDI (Belief Desire Intention) agent architecture is paeticular model of an intelligent agent.
Agents developed using this model are calal agents To understand what a BDI agent is, we
must first define the termgent and moreover, the terintelligent agent

There are various definitions of the teagent(Wooldridge and Jennings, 1995; Russell and
Norvig, 2002; Muller, 1997; Kaelbling, 1987; Franklin aGdaesser, 1997). One widely accepted
definition is that suggested by Wooldridge and Jennings (tviolge and Jennings, 1995). Ac-
cording to them, an agent is any software system that eghibé properties chutonomyand
situatednessAutonomy is the ability of the system to operate with littleno intervention from a
human, and situatedness is the ability of the system to ihkaime environment (e.g., a physical
or software environment), and to perceive and make chamgiedy respectively sensing it and
executing actions in it. Not all agents can be considémeglligent For an agent to be classified
as an intelligent agent, it needs to, according to Wooldridgd Jennings, exhibit three further

properties in addition to the two discussed above. Thesdemeribed below.

CHAPTER 2. BACKGROUND 8

e Reactivity. The agent should be able to respond in a timely manner to elsaimgthe

environment.
e Proactiveness.The agent should be able to behave in a goal-directed manner.
e Social ability. The agent should be able to interact with other agents, assligg humans.

Numerous agent architectures have been built in order tseesome of the properties at-
tributed to intelligent agents. One such architecture@sBBI architecture, which is the focus of
this thesis. The BDI architecture is based on Bratman'ophphical theory opractical reason-

ing (Bratman, 1987a; Bratman et al., 1991), which we discust nex

2.1.1 Practical Reasoning

While theoretical reasoning is focused toward what the Blgelieves, practical reasoning is fo-
cused toward the agent’s actions (Wooldridge, 2002, p.l6&Bratman, 1987b), Bratman argues
that practical reasoning can be thought of as the act of waigimultiple, conflicting considera-
tions for and against conflicting choices, in the light of wie agent believes, desires, values and
cares about (Bratman, 1987a, p. 17). More precisely, intipgdaeasoning, the first step, known
asdeliberation is to decidewhat state of &airs to bring about from the (possibly conflicting)
desires of the agent, and the second step, knownesns-ends reasoning to decidehowto
bring about that state offairs (Wooldridge, 2002, p. 66). All states dfairs that the agent wants
to bring about are calledesires the states offéairs that the agent decides to pursue from its set
of desires are calledoals and the states offiairs that the agent selects and commits to from its
set of goals are callemhtentions Means-ends reasoning is concerned with the adoption of som

plan (recipe) of action in order to bring about an “intendstiite of #airs.

For example, consider a person who believes that she hasdiles] and who
has the following desires: to go shopping at 1:00, to cleanhibuse at 1.00, and

to watch TV at 1:00. After deliberation, she may come to thaisation that sh

4]

does not have enough money to go shopping, and choose thie tiesiatch TV
instead of the conflicting desire to clean the house. Theaé&siwatch TV is then
an intention (and goal) of the person — it is a desire that sisedecided to pursye

and committed to.

CHAPTER 2. BACKGROUND 9

Bratman identifies two important properties related to goiirst, having a goal to bring about
some state offéairs, while at the same time having the belief that this stdt&Tairs cannot be
achieved, is not rational (Bratman, 1987a, pp. 37, 38). Hewehaving a goal to bring about
some state offéairs, while at the same time not having the belief that trasesof dfairs can be
achieved, is rational (Bratman, 1987a, p. 38). Bratmarrsdtethe distinction between these two
properties as thasymmetry thesis

Bratman’s theory of practical reasoning was formalised ®ghen and Levesque, 1990) and
(Rao and Geordgg 1991, 1995), so that the relationship between tiffeidint mentalistic notions
such as beliefs, goals, plans, and intentions may be stuliadormal setting. Both these for-
malisations give primary importance to intentions, in aifarr, to the role of intentions in the
interplay between the fierent mentalistic notions. For example, Cohen and Levekmiights
the following as some of the desirable properties of interdi (i) intentions should be maintained
for only a finite amount of time(ii) intentions should be dropped if they are believed to be im-
possible, or believed to have been satisfied; @dan agent’s actions should be influenced by its
intentions, and not go against them.

While the formalisation of Cohen and Levesque describemtiins in terms of beliefs and
goals, the work of Rao and Geoffgives intentions the same level of importance as beliefs and
goals. This allows Rao and Geoffyto define diferent commitment strategies for intentions, and
to thereby model dierent types of BDI agents (Rao and Gedfged91). In particular, they define
axioms for capturing three commitment strategies. Firstienblind commitmentan intention is
maintained until the agent believes that she has achievedhtantion. Second, undeingle-
minded commitmenan intention is maintained until the agent believes thathsds achieved the
intention, or that it is impossible to achieve. Finally, endpen-minded commitmerin intention
is maintained as long as it is believed to be possible.

The axioms of Rao and Geofffjean be used to capture commitmentemals(i.e., future states
of affairs) as well as commitments to means (i.e., plans for aolgduture states offéairs). By
analysing the properties of thefidirent axioms, Rao and Geoffjelike Cohen and Levesque,
show formally some desirable properties of rational actiéor instance, an agent that is blindly
committed to an intention will eventually believe that shas lachieved it. Similarly, a single-
minded agent will reach the same conclusion only if she ool to believe, until the point at

which she believes she has achieved the intention, thatttvation is achievable. Finally, an open-

CHAPTER 2. BACKGROUND 10

Algorithm 2.1 BDI-Interpreter()

1: Initialise-State()
2: while true do
3. options< Option-Generator(event.queueB, G, I)
selectedoptions< Deliberate(options B, G, |)
Update-Intentions(selectedoptions)
Execute(l)
Get-New-External-Events()
Drop-Successful-Attitudes(B, G, |)

9: Drop-Impossible-Attitudes(B, G, I)
10: end while

© NG R

minded agent will eventually believe that she has achievetht@ntion, provided she maintains
it as a goal (and continues to believe it is achievable) tinéilintention is believed to have been

achieved.

2.1.2 The Abstract BDI Interpreter

While the formalisations of Bratman'’s theory of practicaasoning by Cohen and Levesque and
Rao and Geordgeare elegant and have a clear semantics, they ardiimertly computable, and
are therefore unsuitable for building practical BDI impkmtations (Rao and Geofffje1995). To
address this, an abstract BDI architecture is proposedan éRd Georgé 1995, 1992), by mak-
ing certain simplifying assumptions about the theoretfcamework, and by modelling beliefs,
goals and intentions as data structures (e.g., beliefstabatze-like knowledge). The abstract ar-
chitecture is shown in Algorithm 2.1. Note that variabéeent.queue B, G and| are all global
variables.

The cycle begins with the agent checking its event queuetirm@e whether there are any
pending external event-goals (percepts) from the envimmmand generating a set of options
(plans) to achieve these event-goals (line 3). From allabk plans, the agent then selects a sub-
set to be adopted, and stores thessdlectedoptions(line 4). These are then added to the agent’s
set ofintentions(line 5), where an intention is a plan that the agent hasritisted and commit-
ted to in order to achieve some event-goal. Next, the agetueas a step within any intention
in 1, which may involve updating the event queue with new inteavant-goals (non-primitive
actions), or executing a primitive action in the environmg@ime 6). Finally, any new pending

external event-goals are added into the event queue (linand) all successful event-goals and

CHAPTER 2. BACKGROUND 11

intentions, as well as impossible event-goals and intestiare removed from the corresponding
structures.

This abstract interpreter explores the BDI architectucanfmore of a practical perspective
than the theoretical frameworks discussed earlier. Howbeeause the abstract interpreter leaves
out certain details, such as those for the option genernatisrioo difficult to investigate the in-
terpreter’s theoretical properties and to compare thetetive theoretical frameworks discussed.
Consequently, the AgentSpeak(L) (Rao, 1996) frameworkpragosed, which is an operational
semantics formalisation (Plotkin, 1981) based on two papuhplemented BDI systems called
PRS (Procedural Reasoning System) (Geffrged Ingrand, 1989) and dMARS (d’Inverno et al.,
1998).

2.1.3 BDI Agent-Oriented Programming Languages

AgentSpeak(L) belongs to a class of formal languages c&@Hagent-oriented programming
languages. In this section, we will give an overview of themional semantics of some of
the popular BDI agent-oriented programming languages,ehamgentSpeak(L) and its vari-
ants, 3APL (Hindriks et al., 1999), 2APL (Dastani, 2008), AQHindriks et al., 2000), CAN
(Winikoff et al., 2002), and the operational semantics of Wobcke (WaHe001). Unless other-
wise stated, all these approaches use Plotkin’s structimgle-step operational semantics (Plotkin,
1981).

AgentSpeak

An AgentSpeak(L) agent is created by the specification of afdease beliefsrepresenting what
the agent believes, and a set of plan-rules callegptiwe-library. The set of base beliefs are en-
coded as a set of ground atoms. A plan-rule is associatecawighrent-goal (called achievement
goalin AgentSpeak(L)) and contains procedural information ow ko handle the corresponding
event-goal. This information is made up of entities suchramipve actions, which can be directly
executed in the environment, and internal event-goals-fmionitive actions), which require fur-
ther refinement before their corresponding primitive addican be executed. The plan-rule can
only be used to solve its associated event-goal if the pléisrcontext conditionis met in the
current set of base beliefs, in which case the body of the-pllnis adopted as an intention. This

either amounts to instantiating and adding the body to afsetiroently executing intentions (if

CHAPTER 2. BACKGROUND 12

the event-goal is external), or updating an existing indenin the set with the new one (if the
event-goal is internal).

More formally, an AgentSpeak(L) plan-rule is of the forty : v < Py;...; Pn, where:+!g,
called thetriggering eventindicates that event-goaj Is handled by the plan-rule; is the context
condition; and eacP; is either(i) an operation+b or —b for respectively adding belief atoimto
the agent’s set of base beliefs, or for removirfgom the agent’s set of base belief) a primitive
actionact corresponding to any arbitrary operatidii) an event-goald’, or (iv) a test goal g,
which is used to test whether atgyhholds in the current set of base beliefs.

Because of errors and omissions in the semantics of Ageak8ipe many further BDI agent-
oriented programming languages were developed, such aifsl@and Bordini, 2002; d’Inverno
and Luck, 1998; Moreira et al., 2003; Bordini et al., 2002ndHiks et al., 1999; Winikf et al.,
2002; Wobcke, 2001). These either extend AgentSpeak(L)rdwe it, or are influenced by it
in some way. In (d'Inverno and Luck, 1998), a complete syrdaxl semantics is given for
AgentSpeak(L) using the Z specification language (Spivég9). Z is chosen to make more
explicit how one could implement AgentSpeak(L) — e.g., tedBome light on the kinds of data
structures that could be used to represent an agent’s ples-in addition, the authors also iden-
tify and address certain mistakes in AgentSpeak(L) andldéitat were left out, such as a mistake
regarding the situations under which the set of intenticars lse executed, and details regarding
how variables should be bound during execution.

While Z is useful as a specification language that sheds some lightmamentation specific
details, it is not well suited as a language for proving prtiee of agent systems (Moreira and
Bordini, 2002). For this purpose, a complete operationalasdics is proposed for AgentSpeak(L)
in (Moreira and Bordini, 2002). This semantics incorposatertain features that were left out
in AgentSpeak(L), such as semantics for how to executefbatierations+b and —b. Further
work on AgentSpeak(L) is done in (Hubner et al., 2006), whéke (Winikoff et al., 2002) had
done with the CAN language, the authors extend AgentSpgatkith the ability to handle failure
(i.e., the ability to try alternative plan-rules to achieme event-goal on the failure of its other
plan-rules) andleclarative goalswhich capture more closely some of the desirable progertie
of goals put forth by Bratman, such as the requirement fotsgimabe persistent possibleand
unachieved Failure handling is incorporated into AgentSpeak(L) Via triggering event-goal

—lg, which the programmer can use to specify an alternative-plenfor handling event-goal!

CHAPTER 2. BACKGROUND 13

if a standard plan-rule for handling it has failed; suchuial handling plan-rules are of the form
—lg . ¢ « Py;...;Pn. Declarative goals are added to AgentSpeak(L) without fyirdj the
syntax or semantics of AgentSpeak(L). Instead, the aufldertify differentpatternsfor plan-
rules. These patterns are used by the programmer to endbeledi types of declarative goals.
In (Bordini and Moreira, 2004), the authors prove that theser version of AgentSpeak(L)
proposed in (Moreira and Bordini, 2002) conforms to Bratmasymmetry thesidiscussed ear-
lier (recall that this basically required goals to be camsis with beliefs). Finally, in (Bordini
et al., 2003), the authors introduce a restricted versigkgeihtSpeak(L) — called AgentSpeak(F)
— and show how one can perform model checking (Clarke et @0Ron AgentSpeak(F). In
particular, the authors show how guarantees can be obtéondide behaviour of AgentSpeak(F)

agents, with respect to specifications expressed as |dgitaulae.

For example, it could be determined whether a meeting sdiedgent written ir

AgentSpeak(F), when given as input some perBasind her available time slots

for the week, is guaranteed to eventually either sched@ertbeting for the per

son and notify her of success, or notify her of the failure ¢dbeslule the meet

ing. More specifically, it could be determined whether ctindi (Schedule(P) A
NotifiedOfSucce¢B)) v NotifyFailure(P) holds at the end of all possible executions

of the agent.

3APL and 2APL

Another popular BDI agent-oriented programming languad®@APL (Hindriks et al., 1999). Like

extended versions of AgentSpeak(L), 3APL also gives a ctgmhcomplete account of the op-
erational semantics of a BDI agent-oriented programmimguage. In (Hindriks et al., 1998),
the authors show that 3APL is more expressive than Agenkfipea.e., that any AgentSpeak(L)

agent can be simulated by a corresponding 3APL agent, buthtbaonverse does not hold. In
addition to capturing the functionality of AgentSpeak(BAPL allows basic failure handling.

Specifically, failure plan-rules (calledailure rulesin 3APL) can be written to handle failure,
which have higher priority than standard plan-rules thaidi@event-goals. If both a failure plan-
rule and a standard plan-rule are applicable in some situyatie failure plan-rule is tried instead
of the standard plan-rule. 3APL also allows the specificatid plan-rules which can be used

to revise and monitor the agent’s existing intentions. B@naple, a plan-rule can be specified

CHAPTER 2. BACKGROUND 14

which replaces all steps within a currently executing iitenwith the empty plan-body; such
plan-rules can be used to drop existing intentions, whichfiature hinted by, but not addressed
in AgentSpeak(L). In (van Riemsdijk et al., 2003; Dastardlet2003; van Riemsdijk et al., 2005),
the authors extend 3APL to handle declarative goals.

2APL (Dastani, 2008) extends 3APL for implementing mugeat systems. To this end,
2APL includes many new programming constructs, e.g., falémenting external actions and
communication actions. Moreover, the semantics of failules is diferent in 2APL in that
2APL failure rules can be applied to revise only failed ptales, whereas in 3APL, failure rules

can be used to revise any arbitrary plan-rule.

GOAL

While AgentSpeak and 3APL agents do not by default have detla goals, the main feature of
GOAL (Hindriks et al., 2000) agents is that they include deafive goals as part of the language,
in the sense that goals describe a state that the agentsdiesiesach, rather than a task that needs
to be performed. Moreover, while AgentSpeak and 3APL ageelsct predefined plans from a
library, GOAL agents only select individual actions fromilaéary. Like other agent-programming
languages, actions are selected based on the agent'staueatal state. A GOAL agent, then, is
the triple(I1, oo, vo), Wherell is a set of actionsyg is a set of initial beliefs, angty is a set of
initial (declarative) goals.

In addition to declarative goals, another key feature irsmantics of GOAL is the inclusion
of a default commitment strategy (see Section 2.1.1), ngntleé blind commitment strategy.
Hence, a GOAL agent drops a goal if and only if it believes thatgoal has been achieved. The

programmer has the flexibility to use dfdirent strategy if desired.

Operational semantics of Wobcke

In (Wobcke, 2001), Wobcke provides an operational semaifticPRS-like BDI agents, by for-
malising the abstract BDI interpreter (Algorithm 2.1) hat than an implemented BDI system as
done in AgentSpeak(L). The motivation for starting from th&erpreter is to keep the seman-
tics as close as possible to the cognitive descriptions df&jfents in terms of concepts such as
beliefs, desires, and goals. The operational semanticg/ob¢ke, 2001) allows for convenient

constructs within plan-rules such disstatements andhile loops, and moreover, the semantics

CHAPTER 2. BACKGROUND 15

makes more explicit the steps of the abstract interpretrekample, th®eliberate function in
line 4 of Algorithm 2.1 is defined as a function that returnsadnitrary plan-rule from those that
have the highest priority amongst thosetions and theExecute function in line 6 is defined as
one that executes one step of an intention and returns thenmig intention along with the state
(beliefs) resulting from the execution. The semanticsqmis] also allows basic failure handling,

by forcing a failed action to be retried repeatedly untiLitseeds.

CAN

In (Winikoft et al., 2002), the CAN (Conceptual Agent Notation) BDI ageménted programming
language is introduced. CAN can be thought of as a supergegeritSpeak(L), providing addi-
tional features such as failure handling and declaratiadsgdo accommodate declarative goals,
the plan language of CAN includes the constrGdal(¢s, P, ¢¢), which, intuitively, states that
(declarative) goabs should be achieved using (procedural) plan-b&gyfailing if ¢+ becomes
true. The operational semantics provided in (Witiiket al., 2002) for goal-programs captures
some of the desired properties of goals mentioned befod) as persistent, possible and un-
achieved. For example, if the programwithin goal-programGoal(¢s, P, ¢#1) has completed
execution, but conditiorps is still not true, thenP will be re-tried; moreover, ifps becomes
true during the execution d?, the goal-program will succeed immediately. While in vatsaof
AgentSpeak(L) and in fierent versions of 3APL failure has to be explicitly prograethby the
user via, respectively, the use of the triggering event-gda and failure plan-rules, CAN has
sophisticated failure handling mechaniskslt into the framework. This allows CAN agents to
try alternative plan-rules to solve an event-goal whensstejthin a plan-body fail on execution,
or when a plan-rule’s context condition is not met. Finaliglike the operational semantics dis-
cussed so far, CAN includes semantics for concurrencywadbp steps within intentions to be
interleaved. For example, an intention to go out for a mowie loe interleaved with the intention
to buy bread, by buying bread on the way to (or on the way bawmk)tthe movie, as opposed to

buying bread before leaving for the movie or after reachiogé from the movie.

2.1.4 JACK Intelligent Agents

Much of the operational semantics for BDI agent-orientasgpgmming languages such as (Rao,

1996; WinikdT et al., 2002; Wobcke, 2001; Hubner et al., 2006) were lgripdluenced by practi-

CHAPTER 2. BACKGROUND 16

cal BDI implementations such as PRS (Gedirgad Ingrand, 1989; Ingrand et al., 1992), dAMARS
(d’Inverno et al., 1998), Jason (Bordini et al., 2007) an@KHABusetta et al., 1999). Besides these
implementations, there are numerous other agent develtpgmetforms based on the BDI agent
architecture, such as (Machado and Bordini, 2002; Hub&] 2Bokahr et al., 2003; Bordini et al.,
2002; Morley and Myers, 2004). From the available options,civoose JACK Intelligent Agents
(Busetta et al., 1999) to implement the algorithms propaseiis thesis.

JACK is a leading edge, commercial BDI agent developmertfgta, used for industrial

software development (Jarvis et al., 2003; Wallis et al020It has similar core functionality to
a collection of BDI systems, originating from the PRS (Gefirgnd Ingrand, 1989) and dMARS
(d’Inverno et al., 1998) systems. JACK is built on top of Jawéh the following additions:(i)
constructs to support BDI concepts such as event-goalsland-pules (called respectively events
and plans in JACK)(ii) a compiler that converts JACK syntax into standard Java;caale(iii)
a kernel to manage things such as concurrent intentionglefaeilt behaviour of an agent in the
event that a failure occurs, and the default behaviour ofgg@miawhen reacting to external event-
goals. Being based on Java, JACK inherits all the advantafjdava, such as object oriented
programming, and strong typing, which helps reduce programg errors caused by mis-typing.

A JACK agent is created by identifying its plan-rules, evgoals that are external, event-
goals that are internal (i.e., those set by the agent fdf)itdmliefs, and finally, the elementary
Java classes that are required to manipulate the agentsroes. Such Java classes could, for
example, have functions for querying an external datalasey performing internal mathemat-
ical calculations. Plan-rules are similar to plan-ruleshie BDI agent-oriented programming
languages discussed so far, in that they have a contexttmmadind their body consists of a col-
lection of primitive and non-primitive steps. In additiosince JACK is a practical BDI system,
JACK plan-rules provide a variety of features not suppointeBDI agent-oriented programming
languages, such aseta-plangor dynamic, programmed choice of the most appropriate-plés
andmaintenance condition®r ensuring that solutions pursued are aborted if the wohlahges
in unspecified ways. The beliefs of a JACK agent are expregsed a database, which allows
complex queries to be performed, as well as the encodingkfiownfacts (e.g., the agent may
not know what the weather is outside) in addition to facts Hra eithertrue or false Encod-
ing unknown beliefs in this way is not possible in any of thelBIgent-oriented programming

languages discussed so far because they all followltds=d world assumptiofiReiter, 1987).

CHAPTER 2. BACKGROUND 17

An example of a JACK plan-rule is shown in Figure 2.1. Thisnptale could be
one of many plan-rules used to handle an event-goal forltirmydrom some initial
location to a destination. Thiuses dataeclarations specify which belief databases
this plan-rule accesses — each of these databases areeshatidi separate JACK
file. Thelogical declarations are used to specify that this plan-rule usefotical
variables calledoc, locBus tktCost andbalance ThemaxWalkingDistariable is a
standard Java integer specifying that the maximum walkistadce is 500 metres.
The context condition (i.e., the code within tbentext()function) specifies that th|s

b

plan-rule is only applicable if there is a bus stop within 50@tres from the agent

(D

current location, and if the agent has enough money to paghéobus ticket. (Not
that as.int() and as._string() are simply used to extract respectively a Java integer
instance and Java string instance from the correspondgicgliovariables.) Observe

that the context condition invokes the Java functiiistance in order to obtain th

11

distance between two locations (the code for this functias tbeen omitted).

The body of the plan-rule specifies that the agent shouldviiatit to the bus

—

stop (line 30), then buy a ticket at the bus stop (line 32), famally, that the agen

should catch the bus (line 36). Walking to the bus stop archaag the bus are non
primitive steps, involving the posting of event-go&ialk and CatchBus respec
tively. Buying a bus ticket, on the other hand, is a primitstep that can be directly

executed in the world, by instantiating the standard Jazas@8luyBusTicketvith

132
1

appropriate arguments. Since buying a bus ticket resultsarbank balance d

D

creasing (we assume that buying a ticket always succeddshelief regarding th

bank balance is modified in lines 33 and 34.

The JACK execution engine works in a similar way to the algst&DI interpreter shown in
Algorithm 2.1. The JACK engine repeatedly monitors the éwpreue for external event-goals
from the environment, and converts event-goals into iftest by selecting and instantiating as-
sociated plan-rules whose context conditions are met wpect to the agent’s current beliefs.
Intentions are executed by giving each of them a programomdrallable time slice. Executing a
primitive step may involve, for example, querying an exédmhatabase for information, or physi-
cally moving the wheels of a robot. If an event-goal withiniatention fails during execution, an

alternative plan-rule for achieving the event-goal is f(if available) and added to the intention

WWWWRNNRNRNNNNNNNRRRR R R R R R R
WNROOWONOURWNROOWONOUIRAWNROOONOUIRWNER

w
B~

AEADMDOWWWW
WNFR,POWOVW~NO Ol

CHAPTER 2. BACKGROUND 18

plan CatchBusextendsPlan
#handles evenfTravel travel;

#posts eventWalk walk;
#iposts eventCatchBus catchBus;

#uses dataBusStopLocations busLocs;
#uses dataBankBalance bankBal;
#uses dataBusTicketPrices busPrices;
#uses dataCurrentLocation myLoc;

private int maxWalkingDist= 500;
logical string $loc, $locBus;
logical int $tktCost, $balance;

context()

{
myLoc.query($loc) &&
busLoc.query($locBus) &&
maxWalkingDist= distance($loc.astring(), $locBus.astring()) &&
busPrices($loc.astring(), $locBus.astring(), $tktCost) &&
bankBal.query($balance) &&
$tktCost.asnt() <= $balance.ait();

}

body()

{
@subtask(walk.post($loc.atring(), $locBus.astring()));

@actionfew BuyBusTicket($locBus.astring()));
bankBal.remove($balance.im());
bankBal.add($halance.as() — $tktCost.asint());

@subtask(catchBus.post($locBussaing()));
}

private int distanceifit loc1,int loc2)
{

-

Figure 2.1: A JACK plan-rule for travelling by catching a bus

structure. If no such alternative exists, the event-goidd,faausing the plan-rulimtention con-
taining the event-goal to also fail. This causes the agelaiiofor a new plan-rule to achieve the
event-goal handled by the failed plan-rule, creating a fofrtbacktracking.” Such sophisticated

failure handling by “backtracking” is also captured by th&NClanguage discussed before.

2.2 Other Agent Architectures

There are many agent architectures besides the BDI artlrigec In this section, we give an
overview of some of the well known agent architectures. lawfbllows, we will give examples

using the populaBlocks World(Gupta and Nau, 1992) domain. In this domain, there are block

CHAPTER 2. BACKGROUND 19

placed on a table with enough space to hold all the blocksttandrm of a robot for doing tasks
such as picking up a block from the table, stacking a blockoprof another block, and placing a

block on the table.

Logic based agent architectures

Traditional agent architectures, such as Agent Orientedr@mming (Shoham, 1993), ConGolog
(Lespérance et al., 1995), and Concurrent MetateM (Fidl¥8&4; Barringer et al., 1989) use sym-
bolic representations and reasoning in order to define thef$and the behaviour of an agent. In
these architectures, an agent’s beliefs are representegieca formulae, and an agent’s behaviour
arises out of deductions performed on the formulae. Spettificdeductions are performed by
applying a supplied set afeduction rulego the belief formulae, and these deductions lead to
predicates corresponding to executable actions.

The ConGolog (Concurrent Golog) architecture is based ersttuation Calculus (Mccarthy
and Hayes, 1969), which is an adapted version of the PrediCatculus to cater for dynam-
ically changing worlds (Lespérance et al., 1995). In ColoGothe world is represented as a
situation which changes only when an agent performs an action in ite dd¢t of perform-
ing an action in a situation is represented by the telofact, s), whereact is the action per-
formed on situations. For example Oper(Doorl, do(open(Doorl), s)) is the situation result-
ing from performing actioroper(Doorl) in situations. Actions have preconditions andfects,
which are specified using axioms. For example, the predonditxiom Posgoper(Doorl), s) =
ClosedDoorl, s) states that it is only possible to opPoorl if it is closed in situatiors; and dfect
axiomPosgoper(Doorl), s) > Oper(Doorl, do(oper(Doorl), s)) states that theffect of opening
Doorl in situationsis that the door is open in the situation resulting from pening the action.
Itis also possible to define complex actions in ConGolog biintause of standard programming
constructs such as procedurdsstatements, andihile loops. For example, the following could

be a complex action for the Blocks World domain:

proc unstackall
[while [(Iblockl, block?2) on(blockl, block?)]
do unstackblockl, block?)
endWhile]

CHAPTER 2. BACKGROUND 20

endProc

This procedure, nameaghstackall, repeatedly unstacks blocks until all blocks are on theetabl
Given the set of all the axiom& of the domain, such as the precondition afigée axioms des-
cribed above, running the above ConGolog procedure amaartteeorem proving in order to

determine the following:
A E (ds)Do(unstackall, Sg, s).

In words, running the procedure involves obtaining a bigdior the situations that results from
performing procedureainstackall in the initial situationSy. For example, assuming that the
Blocks World domain has only the three blodkeckl, block2 andblock3, where initiallyblockl is
on the tableblock? is stacked on top dflockl, andblock3 is stacked on top dflock2, a possible
binding for sis s = do(unstackblock2, blockl), do(unstackblock3, block?), Sp)). This binding
states that, firsthlock3 should be unstacked froblock?, and therblock? should be unstacked
from blockl. The sequence of actions encoded in bindings are executkd real world.

Like ConGolog, the Concurrent MetateM architecture is adalgagent architecture based on
theorem proving, which is used for, among other things, theise specification and prototyping
of reactive agent systems (Fisher, 1994). In this architectan agent is given a specification in
temporal logic capturing the behaviour that the agent shexhibit. The specification is encoded
as a set of rules of the forantecedents consequentwhere the antecedent is a temporal logic
formula relating to the past, and the consequent is a terhlogjia formula relating to the present
and future. Intuitively, such a rule reads: “if the anteadgd®olds in the past, do the consequent
in the present aridr future.” Hence, if the antecedent of a rule is met with eg$po the agent’s
history, the rule can ‘fire’, causing the consequent to beweel in the world. If the consequent
allows more than one option, for example, to go by bus or to yardin, the agent performs
deductive reasoning in order to choose an option that wélhesally lead to a successful execution.

Like Concurrent MetateM the Agent Oriented Programmingagiym (Shoham, 1993) uses
a temporal language for specifying agents in terms of netguth as beliefs, decisions and capa-
bilities. For example, belieB3Oper(Doorl)®> means that at time 3, ageatbelieves thaDoorl

will be open at time 5. Actions in this framework are treatedaxts, and thereby considered in-

CHAPTER 2. BACKGROUND 21

stantaneous. An agent commits to actions by performingatemtuon its belief base after taking
into consideration new percepts (messages) from the emaiat.

Although logic based agent architectures are elegant aveldalear semantics, they are not
always practical due to the complexity of theorem provingp@iridge, 2002, p. 54). Moreover,
such architectures do not model accurately human decisakng — humans do not use purely
logical technigues when making decisions (Wooldridge,2Z2@0 65). Consequently, thpractical

reasoningmodel of agency was developed, which we discussed in Seztioh.

Reactive agent architectures

Although less complex than logic based agent architectyexctical reasoning still relies on
symbolic representations and reasoning. As a result, thiealsystem of a practical reasoning
agent can still be quite complex. In order to discard the rieeslymbolic reasoning altogether, an
entirely diferent agent architecture was proposed, called (among thtingis) thereactiveagent
architecture. This architecture does not rely on symbaa&soning, but instead, it is based on
the idea that intelligence emerges from an agent’s intemetith its environment. Consequently,
agents are provided with simple interacting behaviourd,amechanism for evolving intelligent
behaviour from the interaction between the simpler behasio

From the early reactive agent architectures such as PEN@k(And Chapman, 1987), the
subsumption architecturéBrooks, 1986), thegent network architecturéMaes, 1989), andni-
versal plang(Schoppers, 1987), perhaps the most popular architecagdéden the subsumption
architecture. In this architecture, agents are built irefaywith the lowest layer having the most
generic behaviours, and higher layers having more spedfieNiours. For example, when build-
ing a mobile robot, the first (lowest) layer may be to avoidtachwith objects; the second layer
may be to wander around without hitting any objects; thedtldyer may be to explore the world
by observing distant, reachable places and heading toward;tand the fourth layer may be
to build a map of the environment, and to plan routes from daegpto another (Brooks, 1986).
Higher layers have lower priority than the lower layers, etiallows lower layers to inhibit higher
level behaviours. More concretely, an agent constructedyuke subsumption architecture has a
set of behaviours of the forlrond — act, wherecondis a set of percepts arattis an action. A
behaviourb is selected for execution if any percept in its conditionisshle in the current environ-

ment, and if there is no other behaviour with higher priotitgnb. The subsumption architecture

CHAPTER 2. BACKGROUND 22

has been used successfully for building numerous robots asid/ars Rovers (Steels, 1990) and
indoor dfice robots (Brooks, 1990).

Like the subsumption architecture, agents are construntélte agent network architecture
(Maes, 1989) by the specification of a set of modules with gmditions and fects. However,
unlike the subsumption architecture, in addition to thecpnglition of a module, there is also an
“activation level” for determining whether a module can bledi The higher the activation level
of a module, the better are its chances of being fired. The tesdue linked to each other to form
a network, by connecting together modules whose preconditand postconditions match. Exe-
cuting a module within a network may either result in an acteing executed in the world, or in
the activation level of another module being increasede Llile agent network architecture (Maes,
1989), PENGI (Agre and Chapman, 1987) also uses a netwargtsie for generating complex
behaviours. In particular, based on the percepts fed itmétwork, actions are suggested by the
network. Actions in PENGI are generated by simple, low lestalctures, capturing the routine
activities of the agent.

In (Schoppers, 1987), a structure calledraversal planis built offline using the most basic
behaviours of the agent, such as stacking a block on top ahanblock. A universal plan is a
decision tree encoding, as options and as the root node rélacates that the agent may come
across during execution, and as leaf level nodes, the etdeldctions. The actions within such a
tree are typically generic —i.e., they typically only mentivariables. For example, the root node
of such a tree could b&n(blocki, block?), with one option being:lear(block?), another being
—-Clear(block?), and with theClear(block?) option leading to optioiolding(blockl) and then to
leaf level node (actiondtackblockl, block?). The decision tree structure defines the behaviour of
the agent at runtime. Specifically, the architecture work$réversing the decision tree until an
executable action is reached. This action is then execatetifhe process is repeatedly continu-
ously. Such decision trees are called “universal plansabse they are always “applicable,” i.e.,
there is always a path through a decision tree irrespecfitieecstate of the world.

There are many advantages of reactive architectures, sushmglicity, low computational
complexity, and robustness against failure (Wooldrid@92 p. 96). However, these architectures
are not without their shortcomings. According to Woolded@Vooldridge, 2002, p. 97), some
of the shortcomings of reactive agent architectures arellsvs. First, since such architectures

make decisions only based on the current state of the waikinbt clear how agents can make

CHAPTER 2. BACKGROUND 23

decisions that take into account future states. One sudbkidglecould be to travel by bus today
in order to have enough money left over to take public trartsmnorrow. Second, there is
no principled approach for building reactive agents, sisigeh agents are constructed based on
experimentation. Finally, in the layered reactive arddtitees, where complex behaviour arises
from interactions between the behaviours dfetent layers, it is not always straightforward to

understand the dynamics of the interactions between thedsviours.

Hybrid agent architectures

In an dtort to combine purely reactive architectures with thoséulka symbolic reasoningybrid
agent architecturegmerged. In these architectures, the lowest layer exhigtstive behaviour,
and higher layers exhibit more proactive behaviour. Forgda, in the InteRRaP (Muller, 1997)
hybrid architecture, the lowest layer contains low-leveh&aviours similar to those in the sub-
sumption architecture, allowing the agent to respond dyittk changes in its environment; the
intermediate layer deals with the planning of typical tagisd has access to a hierarchical BDI-
like plan-library which allows the agent to perform more Isisficated, goal-directed reasoning
than the lowest layer; and the highest layer allows the amperdason about and cooperate with
other agents. Percepts from the environment arrive at thedblayer, which either handles them
or passes them on to higher layers. The higher layers may usakef the functionalities provided
by the lower layers in order to handle the percept. Likewiis¢he TouringMachines (Ferguson,
1992) hybrid architecture, the lowest layer is composed s¥éteof low-level behaviours such as
obstacle avoidance, the intermediate layer captures thiet'agroactive behaviour with a BDI-
like plan-library, and the highest layer captures the dgeaicial aspects, by modelling itself and

other agents, as well as detecting and avoiding conflictsdmat the goals of multiple agents.

2.3 Automated Planning

In Section 2.1.1, we introducetheans-ends reasoninthat is, decidinghow to achieve a goal

of the agent. In the BDI architecture, this decision is magdhle programmer — the agent is
supplied with a library of plan-rules for achieving thefdrent goals that the agent may come
across. However, it is also possible for the agent to cocissuch plan-rules from scratch, when

necessary, using its primitive building blocks — actioAsitomated Plannings the deliberation

CHAPTER 2. BACKGROUND 24

process that involves choosing and organising an agertisnac by anticipating their expected
outcomes (Ghallab et al., 2004, p. 1).

Automated planning can be broadly classified idtonain independent plannir(@lso called
classical planningandfirst principles planninyjanddomain dependemlanning. In domain inde-
pendent planning, the planner takes as input a descripfititeanitial state of the world, models
of all the actions available to the agent, and a goal to aehieie., a state offtairs. The planner
then attempts to put the actions into an order such that wiendre executed in that order from
the initial state, the goal is achieved. Domain dependeamirphg takes as input additional domain
control knowledge specifying which actions should be gett@nd how they should be ordered
at different stages of the planning process. In this way, the pignpiocess is more focused,
resulting in plans being found faster in general than finstggples planning. However, using such
control knowledge also restricts the space of possiblesplan

In this section, we discuss first principles planning, and approach to domain dependent

planning calleiHierarchical Task NetworkHTN) planning.

2.3.1 First Principles Planning

The first classical planner was STRIPS (Fikes and Nilssor119The input for STRIPS is an
initial state and agoal state— which are both specified as sets of facts — and a sepefa-
tors.! An operator has areconditionencoding the conditions under which the operator can be
used, and postconditionencoding the outcome of applying the operator. We will nowrmze
precise. Astateis a set of ground atoms, and amtial state and agoal stateare states. An
operatoro is a 4-tuple(namégo), pre(o), del(o), add(o)), where(i) namgo) = act(X), the name of
the operator, is a symbol followed by a vector of distinctiafales such that all free variables in
pre(o), dello), andaddo) also occur inact(X); and(ii) pre(o), deo) andadd(o), called respec-
tively the preconditiondelete-listandadd-list are sets of atoms. The delete-list specifies which
atoms should be removed from the state of the world when theatqr is applied, and the add-list
specifies which atoms should be added to the state of the wdah the operator is applied. An
operatorKnamédo), pre(o), delo), add(0)) is sometimes, for convenience, represented as a 3-tuple
(nam€o), pre(o), post(0)), whereposio) = addo) U {=I | | € del(0)} is a set of literals that com-

bines the add-list and delete-list by treating atoms to beoxeddeleted from the belief base as

1The following definitions are mainly from (Ghallab et al.,(20.

CHAPTER 2. BACKGROUND 25

negative literals. We make use of this definition extengivelChapter 4. Finally, amactionis a
ground instance of the name of an operator, apdraitive plano is a sequence of actions.

Given an initial state/’, a goal statg and a set of operato@p, aclassical planning problem

Cis the tuple(Z, G, Op). The planner’s task is to find a primitive plan that achievesgdoal state
G when executed from the initial stae with respect to the given set of operat@®@p. Such
plans are callegrimitive solutions(or correct primitive plans) for the given planning problem
Before we define the notion of a primitive solution, we wilugtrate with an example the notions

presented so far.

Suppose we have the following initial state in a Blocks Waltanain:

{OnTabl€Blockl), On(Block2, Blockl), Clear(Block2), ArmEmpty.

This initial state specifies thaBlockl is on the table,Block? is on top of
Blockl, BlocR2 is clear (i.e., there is no other block on top of it), and thatrobot's
arm is empty. An operator for picking up any bloelockl from the table could be

the following:

(pickup(blockl),
{Clear(blockl), OnTabldblockl), ArmEmpty,
{OnTabl€blockl), ArmEmpty,
{Holding(blockl)}

The operator states thdtlockl can be picked up if there are no blocks |on
top of it, if it is on the table, and if the robot’'s arm is emptjhe delete-list specifies
thatblockl is no longer on the table, and that the arm is no longer entpihally,
the add-list specifies the arm is holdiblpckl.

Similarly, the followingunstacKblockl, block?) operator is used for unstacking

a blockblockl that is on top of some other blotkock2:

(unstacKblockl, block?),

CHAPTER 2. BACKGROUND 26

{On(blockl, block), Clear(blockl), ArmEmpty,
{On(blockl, block2), ArmEmpty,
{Holding(blockl), Clear(block?)}

This operator states that to unstack a bldadibckl from some other block
block2, blockl must be on top dblock?, blockl must be clear, and the robot’s afrm
has to be empty. The delete-list specifies thlatckl is no longer orblock2 and
that the arm is no longer empty. Finally, the add-list stét@s$ the arm is holding

blockl and thatblock? is now clear. Other operators suchpagdowr{blockl) and

stackblockl, block?) can be specified in a similar manner.

When an action is applied to a state, the atoms in its dakdtedle removed from the state,
and the atoms in its add-list are added to the state. For drarie result of applying action
unstackBlock2, Blockl) to stat§ OnTabl€Blockl), On(Block2, Blockl), Clear(Block2), ArmEmpty
is the statgOnTabléBlockl), Clear(Blockl), Clear(Block2), Holding(Block?)}. Then, formally,
given a set of operato@p, a stateS, and an actiomact, theresultof applyingactto S relative to
Op, denotedRegact, S, Op), is defined as follows (recadictis ground):

Redact. S, Op) = { (S\ del(0)d) U add0) if o € Opandact = naméo)d andS E pre(o)o;
undefined otherwise
Similarly, we can define the result of applying a sequencectibias to a state as follows. Given
a set of operator®p, a stateS and a sequence of actioast; - ... - act,, theresultof applying
the sequenceact; - ... - act, to S relative toOp, denotedRes(act; - ... - act,, S, Op), is defined

inductively as follows:

Regact;, S, Op) ifn=1,
Res(act -...-act, S,0p) ={ Res(ach - ... - act, Regact;, S,0p),Op) if n> 1;

S otherwise

Intuitively, Res states that the result of applying a sequence of actions tata$y is the result

of applying the first action of the sequence&g to obtain stateS;, followed by the result of

CHAPTER 2. BACKGROUND 27

applying the second action of the sequence to obtain Statend so on, until stat8,, is obtained
by applying the last action of the sequence to sfatg. StateS; is called thdinal state

Now we can define what a primitive solution is. Recall thatitively, a primitive solution is
a primitive plan that achieves a goal state, from an initiates with respect to a set of operators.

Formally, aprimitive solutionfor a classical planning problet = (7, G, Op) is a primitive plan

o such thatRes(o, 7,0p) E G, i.e., the preconditions of actions inare satisfied, and the final

state entails the goal state.

For example, consider the following initial state:

{OnTablé€Blockl), On(Block?2, Blockl), Clear(Block2), ArmEmpty.

Next, consider the following goal state to swap the two bépcke., to place

Blockl on to of Block2:

{OnTabl€Block?), On(Blockl, Block?), Clear(Blockl), ArmEmpty.

Then, a possible primitive solution is the following, witkspect to the set of

operators mentioned so far in previous examples:

log = unstackBlock?, Blockl) - putdowr{Block?) - pickupBlockl)
stack Blockl, Block?).

The solution states that the goal state is achieved by WistpdBlock2 from
Blockl, puttingBlock2 on the table, picking uBlockl, and finally, stackind3lockl
on Block2.

Non-redundant solutions

In addition to correctness, many domains require that péalieere to certain other properties.
This is because correct plans can still have shortcomingé, anon-minimalityandredundancy
A primitive solution of lengthn for a classical planning problem is said to fen-minimalif a

primitive solution of length less thamexists for the problem. A primitive solution for a planning

CHAPTER 2. BACKGROUND 28

problem is said to beedundantif one or more actions can be removed from the solution afid sti
have a solution. Of particular relevance to this thesisésthtion of non-redundancy (also called
perfect justificatioph According to (Knoblock et al., 1991) and (Fink and Yang92}p the notion

of non-redundancy is defined as follows.

Definition 1. (Perfect Justification (Fink and Yang, 1992)) A primitivdwion o for a classical

planning problenC = (7, G, Op) is aperfect justificationfor C if there does not exist a proper

subsequence’ of o such thatr’ is a primitive solution foiC. [|

For example, consider the initial state and goal state inpite¥ious example.

Suppose that the primitive solution for this problem is tbikofving:

o = unstackBlock2, Blockl) - stackBlock2, Blockl) - unstackBlock?, Blockl) -
putdowr{Block?) - pickup(Blockl) - stack Blockl, Block?2).

Observe that the second and third actions — staciBiack2 on Blockl, and
then unstackingBlock? from Blockl — are redundant actions. (Alternatively, the
first two actions can also be considered redundant.) Thevanud these twg

actions will not cause the resulting primitive plan to beomect.

Unfortunately, finding perfectly justified primitive solabs is NP-hard (Fink and Yang, 1992).
Consequently, Fink and Yang propose a greedy algorithnfitidg an “almost” perfectly justified
primitive solution in polynomial time. An adapted versiditluis algorithm is shown in Algorithm
2.2. The algorithm works by determining whether an actiohin a primitive solutiono is nec-
essary. To this end, the action is removed frer(line 2) to obtaino’, and then it is determined
whether there is any other actiact in o’ whose precondition is no longer satisfied as a result
of removingact from o If so, actionact' is removed fromus’ (line 8). This process continues
until all actions are removed froo® whose preconditions are not satisfied as a result of removing
actionact from o If the final value ofs’ achieves the goal state from the initial state (i.e., it
is correct), then the initially removed acti@tt is considered unnecessary, and the algorithm is
called recursively with the new primitive solutierf. On the other hand, if the final value of is

not correct, then the algorithm tries to remove fiatent action fromr.

CHAPTER 2. BACKGROUND

Algorithm 2.2 Linear-Greedy-Justification(c, C)

Input: Solutiono for classical planning problei@ = (7, G, Op).
Output: A primitive solution that is an “almost” perfect justificati.
1: for eachacte o do

2. o’ < o with actremoved

33 S&7T

4: for act < first action ing” to last action ino”’ do
5: if S E pre(0)d, whereo € Opandact = namégo)d then
6: S < Regact, S, 0p)

7: else

8: removeact from o~

9: end if

10: if S E Gthen

11: return Linear-Greedy-Justification(c”’, C)
12: end if

13: endfor

14: end for

15: return o

To illustrate how the algorithm works, consider the follogriredundant primitiv

solution from the previous example.

o = unstackBlock2, Blockl) - stackBlock2, Blockl) - unstackBlock2, Blockl) -
putdowr{Block?) - pickup(Blockl) - stack Blockl, Block2).

Suppose the algorithm removes actistackBlock2, Blockl) from o. This

will result in the following primitive plans’:

o’ = unstackBlock2, Blockl) - unstackBlock2, Blockl) - putdowr{Block?) -
pickup(Blockl) - stack Blockl, Block?).

However, the precondition of the second action ah does not hold in th
state that results from applying the first action in the &hititate — oncdlock? is
unstacked, it cannot be unstacked once more. Consequietiglgorithm remove

the second action from’” to obtain the following primitive plan:

(D

D

n

CHAPTER 2. BACKGROUND 30

o’ = unstackBlock?, Blockl) - putdowr{Block?) - pickupBlockl)
stackBlockl, Block?).

Since o’ is a primitive solution for the given planning problem, thigaaithm
is called recursively witho” as an argument. However, no more actions cap be
removed fromo’, resulting in it being returned as a greedily justified ptivnei

solution (which, in this example, is also a perfectly justifsolution).

Algorithms for planning from first principles

So far, we have discussedidrent notions related to first principles planning, suchhasrotion
of an operator, a primitive solution, and a perfectly justifprimitive solution. Next, we discuss

some of the algorithms for finding primitive solutions for igemn classical planning problem.

Algorithm 2.3 Forward-Search(C)

Input: Classical planning problei = (7, G, Op).
Output: A primitive solution forC, or failure if no such solution exists.
1. if 7 E Gthen
return the empty plan
cend if
. applicable< {namédo)é | o € Op, nam€o)d is a ground instance ofamé€o), 7 E pre(0)6}
. if applicable= 0 then
return failure
end if
. for eachact € applicabledo
I’ & Regact, 7,0p)
o < Forward-Search((Z’, G, Op))
if o # failure then
return act- o
end if
: end for
: return failure

o e R A

e ol o =
a ks wdhR o

The most basic planning algorithm is tleward searchalgorithm. An adapted version of
the forward search algorithm in (Ghallab et al., 2004, p. i8Qhown in Algorithm 2.3. The
input for this algorithm is a classical planning problemddine output is a primitive solution for
the problem. First, the algorithm finds all actions that gpliaable in initial stateZ, and saves

these in the sedpplicable(line 4). From this set, an action is picked arbitrarily, dhd result of

CHAPTER 2. BACKGROUND 31

applying this action in staté is obtained ad”’ (line 9). Next, the algorithm is recursively called
with the new statd”. If the recursive call returns a primitive solution for pteim (7', G, Op) —
i.e., the goal state is eventually reached after applyimgessequence of actions 16 (line 1) —
then the result of the forward search is attached to the emdtadnact, and the resulting plan
returned as a primitive solution fa. Otherwise, a dierent action is picked frorapplicableand
the process is repeated. If none of the actionapplicablecan be used as the first action of a
sequence of actions that leads to the goal state,ftikeme is returned.

There are many state of the art planners based on forwardhséag., (Bonet and Gimer,
1999; Hdfmann and Nebel, 2001; Refanidis and Vlahavas, 2002; Do amidbKampati, 2001;
Hoffmann and Brafman, 2006)). Of particular relevance to outkvisithe FF (Héfmann and
Nebel, 2001) planning system. The main idea behind FF isdilate-lists of operators @p are
ignored. More specifically, given a planning probléhx (7, G, Op), arelaxed planning problem
C’' = {Z,G,0p) is obtained wher®©p = {{(namé€o), pre(o), ,addo)) | o € Op}. In addition,
FF, like its predecessor HSP (Bonet andi@er, 1999), also uses affieient heuristic function
in order to determine what the most promising actions arbeénset of applicable actions (line 8
of Algorithm 2.3). The search can then be biased toward thee mmmising actions, allowing
solutions to be found faster in general than would be pas$iplselecting actions arbitrarily. The
heuristic function is based on the Graphplan algorithm ifBand Furst, 1995), which we discuss
in detail next.

The Graphplan algorithm is based on the concept piaaning graph A planning graph is
a directed, levelled graph, that is, a graph in which nodessplit into levels, and an edge only
connects two nodes from adjacent levels. There are two typasdes: proposition nodegnd
action nodes There are three types of edggsecondition edgesadd edgesanddelete edges
representing the preconditions, add-lists and delete-dfoperators, respectively. The levels of a
planning graph alternate betwegposition levelsi.e., those containing only proposition nodes,
andaction levelsi.e., those containing only action nodes, with the firseldaeing a proposition
level. Any node at an action levelin the planning graph is connected by a precondition edge to
each of the atoms in its precondition, which occur at prafmsieveli in the graph. Similarly,
the action node is connected by an add edge to each of the atdtasadd-list, which occur at
proposition level + 1 in the graph. The same is true for atoms in the delete-ligieaction node.

An example of such a planning graph for a particular planmpngblem from a Blocks World

CHAPTER 2. BACKGROUND 32

domain is shown in Figure 2.2.

stackB2, B3)

staci B3, B2)

* On(B2, B3)
StacB2, B1)
On(B3, B2)
pytdowifB3) L4
OnTabl€B2)
putdowi{B?2)
Holding(B3) Holding(B3)
. [
pickug(B3) pickup(B3)
e Clear(B1) Clear(B1)
unstackB2, B1) unstackB2, B1)
Holding(B2) Holding(B2)
ArmEmpty ArmEmpty ArmEmpty
[J
Clear(B3) Clear(B3) Clear(B3)
[J
Clear(B2) Clear(B2) Clear(B2)
[J [J [J
On(B2,/B1) On(B2,/B1) Oon(B2, B1)
OnTablgB3) OnTabldB3) OnTabld¢B3)
[J
OnTablgB1) OnTabléB1) OnTablgB1)
Proposition Action Proposition Action Proposition
level 1 level 1 level 2 level 2 level 3

Figure 2.2: A simplified planning graph for a Blocks World iténg problem. The abbreviation

“Bi” (e.g., B2) is short for ‘Blocki” Nodes are labelled with either the name of an action or
a proposition. Nodes with no labels are no-op actions. Sadidws represent add edges and
precondition edges, and dashed arrows represent delete.ddglete edges have been left out of

the second action level for readability. Darker nodes i=grethe path to a solution for goal atom
On(B3, B2).

Next, we describe how a planning graph is built, and how itdsduas a heuristic, given a
classical planning problem. First, all propositions (grdwatoms) in the initial state are added
to the first proposition level of the (initially empty) plaing graph. Second, actions are created,

with respect to the set of operato®p, whose preconditions are met with respect to the first

CHAPTER 2. BACKGROUND 33

proposition level. Third, all such actions are added to thst &ction level of the graph, and the
precondition edges corresponding to those actions areldddbe graph. Any action levélalso
contains oneno-op (dummy) action for each proposition at proposition lenelNo-op actions
are simply used for “carrying forward” propositions to thext proposition level. Fourth, the
propositions in the add lists and delete lists of all actionthe first action level are added to the
second proposition level of the graph, and the correspgnrditd edges and delete edges created.
This process continues until eith@) all propositions in the goal state are present in the current
proposition level, none of them are mutually exclusive .(ga@nd-p), and a correct plan can be
extracted from the graph, @i) the planning graplkevels ¢, that is a proposition level is reached
that is identical to the previous proposition level, whioHicates that no solution exists. Note that,
while a planning graph can be created in polynomial time,etkteaction of a correct plan from
the graph cannot be done in polynomial time.

To determine whether a correct plan can be extracted fromlémaing graph at some proposi-
tion leveln, the algorithm performs recursilmckward searchUnlike forward search, backward
search starts from the goal state and works backward toweruhitial state. In Graphplan, back-
ward search is performed using the planning graph to guidesd#arch, as follows. The search
begins from propositiong, = G in the goal state, which occur at proposition lemelFirst, the
algorithm obtains a set of actiomg,_1 occurring in action leveh — 1 that are connected by add
edges to propositions i&,. Next, the algorithm finds the corresponding set of propstG,,_;
at proposition leveh — 1 that are connected by precondition edges to actions,in. The algor-
ithm continues in this manner until the first propositiondiev the initial state — is reached. Note
that at any given action levelthere may be many possible sets of actiganthat could be created.
This is because a proposition in a g1, could be brought about by many actions at action level
and sef; only includes one action per proposition. The algorithno &des into account actions
that are mutually exclusive. For example, if one action m@sgupropositionp to hold, and another
requires—p to hold, only one of them is included iy;. Information about mutually exclusive
actions is added to the graph when it is constructed. At argngaction level, the algorithm may
have to try backward search with multiple values Apbefore it finds one that eventually leads to

the initial state.

To illustrate how a planning graph is built, and how backwaséhrch can be

performed on such a graph, consider the planning graph ur&i.2. Suppose that

CHAPTER 2. BACKGROUND 34

we have the following initial state:

I = {OnTabl€Blockl), OnTabléBlock3), On(Block2, Blockl), Clear(Block2),
Clear(Block3), ArmEmpty,

and the following goal state:
G = {On(Block3, Block2)}.

To build the graph, the initial state is added as the first psdpn level of
the graph, as shown in the figure. To create the first actiosl,le@ actions th
are applicable with respect to the first proposition level abtained. These j:e
actionspickup(Block3) andunstackBlock2, Blockl), whose preconditions are met
in the first proposition level. Next, propositions that agpi the first level (carried
forward by no-ops), as well as those that are brought abouihdywo applicable
actions are added to the second proposition level. (A daahedv incident on a
proposition node indicates that the proposition is remavedhe corresponding
action’s delete-list.) The rest of the graph is built in aimmanner.

When the third proposition level is reached, all proposiim the goal statg —
i.e.,On(Block3, Block?) — occur at this level. Consequently, the algorithm sties
backward search process. The search starts from propo€itiBlock3, Block?),
and then moves one step backward in the graph, finding (noflictong) actiong
that bring about the proposition, i.e., actistack B3, B2). The propositions at the
second proposition level, which correspond to the pred¢mmdi of this action, are

then selected, i.e., propositioholding(B3) andClear(B2). At the next step, ac

tion pickup(B3) and a no-op action are selected, since they bring abopogitmns
Holding(B3) andClear(B2). Finally, the search process ends when the first propo-
sition level is reached. The primitive solutignickupgB3) - stackB3, B2) is then

extracted from the path traversed.

In the FF planner, the Graphplan algorithm is used as a hieutdsguide forward search. In

particular, a planning graph is built for a relaxed cladguanning problem by using a modified

CHAPTER 2. BACKGROUND 35

Graphplan algorithm in order tdi) estimate the most promising actions from the set of apgkcab
actions (line 8 of Algorithm 2.3); anli) estimate the distance to the goal state from the current
state. Given a statg at some point in the planning process, and a goal giatiee most promising
actions are considered to be the ones that appear in the dirsh devel of a planning graph
built for S and G, and moreover, those that are “connected” by some path tosato G; the
distance to the goal is the number of actions occurring ia gath. Such a path is obtained
in polynomial time by basically starting from the propasitileveli in the graph containing all
atoms inG, collecting actions that bring about those atoms, obtgitire preconditions of those
actions, collecting actions that bring about those preitimmd, and so on, until the first action
level is reached. Note that, unlike the backward searchessofor extracting a correct plan from
a planning graph, finding actions in a graph that are conddoct¢he goal state does not involve

recursion.

For example, suppose forward search begins from the plgnproblem
given in the previous example. Then, although acti@iskugBlock3) and
unstackBlock?, Blockl) will both be included in the setpplicableat line 8 of Al-
gorithm 2.3, actiorunstackB2, B1) will not be considered to be a promising actipn,
because in the planning graph shown in Figure 2.2, aaiitstackB2, B1) is not
connected to the goal ato®n(Block3, Block?). Moreover, the distance to the goal

at this point in the forward search is 2 — at least two actioesn@eded to achieve

the goal state.

The FF planning system has been used as the basis for marggsebs planners. Some
examples relevant to this thesis are {fwann, 2003; Botea et al., 2005). Metric-FF is the planner
we have chosen for incorporating first principles plannimg ithe JACK BDI agent platform. In
Metric-FF, the FF algorithm is extended to handle more esgive preconditions andfects. In
particular, numerical calculations are allowed in predtimas and &ects, which are useful when
using the planner in conjunction with real world BDI appticas. For example, a precondition
such as the following is possiblear{d (At Robof locl) (At Robo? loc2) (< (- locl loc2) 10)),
which requirefRobotl andRobo® to be less than ten distance units apart.

In Macro-FF (Botea et al., 2005), the FF planner is extendil the ability to use macro
actions, that is, sequences of (standard) actions. Madronacare automatically learnt from

primitive solutions for sample planning problems. Theskoas are then used in the planning

CHAPTER 2. BACKGROUND 36

process, by treating them as standard actions. The authovg that macro actions speed up
forward search because it is possible to select a singlema&tion to achieve some state (e.g., the
goal state), instead of selecting multiple standard astiorachieve the same state. Moreover, the
authors argue that macro actions are useful when perforbaongward search within a planning
graph: since standard actions within a macro action areyahsampatible, there is no need to take

into account the possibility of those standard actionsdeintually exclusive.

2.3.2 Hierarchical Task Network Planning

Unlike first principles planners, which focus on bringingpabstates of ffairs or “goals-to-be,”
Hierarchical Task Network (HTN) planners, like BDI systenfiscus on solvingabstractcom-
pound task®r “goals-to-do.” Abstract tasks are solved by decomposgiafining) them repeat-
edly into less abstract tasks, by appealing to a given jboamethodsuntil only primitive tasks
(actions) remain. Methods contain procedural control Kedge for constraining the exploration
required to solve abstract tasks — an abstracttté&skolved by using only the tasks specified in a
method associated with In this thesis, we mostly follow the definitions of HTN plang from
(Erol et al., 1996).

We will now be more precise about the notions associateditN planning. In the previous

section, we defined a classical planning problem as a tuplg, Op). A HTN planning problem

#, on the other hand, is a 3-tupld, 7, D), whered is atask network 7 is an initial state, and

D is a HTNplanning domain In turn, a HTNplanning domainD is a tuple(Op,, Me), where

Opi, is a set of HTN operators aride is a set of methods. The objective of the HTN planner is
to solve task networld by starting from statd’, and by making use of the set of methdde and
set of operator©p,;,.

Intuitively, a task network is a partially ordered collectiof tasks. Before we formally define
a task network, we define a (compound or primititagkas a syntactic construct of the fown(t),

wheref’is a vector of function-free terms. Thentask networks a syntactic construct of the form:

H(ny 1), (Nm am)}, @],

where the first component is a set of labelled tasks, and tumdecomponent istask network for-

mula— informally, a formula of constraints. Labels are used &tidguish between multiple non-

CHAPTER 2. BACKGROUND 37

unique tasks occurring in the task network. The task netugsklved by solving each task in its

first component, while conforming to the task network formormally, aask network formula

is a boolean formula constructed from negation, disjuncind the following entities(i) variable
binding constraint®f the form ¢ = t’), wheret andt’ are variables or constan{s) ordering con-
straintsof the form g < n’) with task labelsy andn’; andstate constraintef the form (, n), (n,1)
and .1, ") with task labelsh andn’, and with literall. A variable binding constraint & t) indi-
cates that variable or constamnust be equivalent to variable or constdne.g., fame= John.
An ordering constraintr(< n’) indicates that task with labalshould precede the task with label
n’. State constraintd,) and f, 1) indicate that literal should hold immediately before the task
with label n, and that literal should hold immediately after the task with lalsglrespectively.
Finally, state constraint(l, n’) indicates that literal should hold between tasks with labaland
n’. Task labels can also be of the fofirst[ny, ..., Ny andlastny, ..., Ny, so that we can refer
respectively to the task that starts first and to the taskethds$ last among the sgt, ..., ny}.

Next, we define the structures that are used to solve tasksrougin a task network. Prim-
itive tasks occurring in a task network are handled by opesat Like a STRIPS operator, a

HTN operatoris a syntactic construct of the form:

[operator ac(xX) (pre: {l1,...,Im}) (post: {I1,.... L],

where: act(X), a primitive task, is the name of the operatgri§ a vector of distinct variables);
l1,...,Im is @ set of literals corresponding to the operator’s pretmmg andl’,..., I}, is a set

of literals corresponding to the operator’s postconditidnke STRIPS operators, all variables
occurring in the precondition and postcondition of a HTN raper also occur irk. A primitive
taskact will have exactly one corresponding operator in theGgy,,, i.e., exactly one operator in
Opyi, With a name that unifies witact Compound tasks occurring in a task network are handled
by methods. Amethodis a syntactic construct of the formr,(d), wherea is a compound task
andd is a task network. A compound task can have more than oneiatbmethod irMe. A
method indicates that one way to solve compound tagkto decompose it into task netwodk

and to solved.

For example, consider the HTN domaih = (Op,;,,, Me) illustrated graphically i
Figure 2.3. (Note that this Blocks World encoding is slightifferent to that use

CHAPTER 2. BACKGROUND 38

[72)

in the previous section in that a block can be picked up froentéble as well &

e

from on top of another block). The top-level task in this damia the compoun
taskunstackbl, b2), which is used for moving a blodikl that is on top of a block
b2 to the table. The set of methods in this domaiMis = {m;, mp}. Observe that

methodm, = (unstackbl, b2), d’), where task networl’ is the following:

d’ = [{(ny : pickugbl, b2)), (n, : putdowr{bl))}, (N1 < Np) A ¢],

and where¢ = (Clear(bl),n;) A (On(bl, b2),n;) A (ArmEmptyn;). Taskg
pickugbl, b2) and putdowrfbl) are primitive tasks for, respectively, picking
up a blockbl that is on top of a block2, and for placing a blockl that is
currently in the robot’'s arm onto the table. The task netwiorknula ofd’ stateg
that pickupbl, b2) must precedgutdowr{bl), and that initially (i.e., before task
pickugbl, b2)): bl should be clealhl should be on top db2, and that the robotis
arm should be empty. Hence, methmgd can move blockbl only if there are no
other blocks orbl. Otherwise, methody, must be used.

Observe from the figure that method = (unstackbl, b2),d””), where task

networkd” is the following:

d” = [{(ny : unstackb3, bl)), (n, : pickupbl, b2)), (nz : putdowr{bl))}, (N <

n2) A (N2 < N3) A ¢'],

and where¢’ = (On(bl,b2),n;) A (On(b3,bl),n;) A (ArmEmptyn;). Ob-
serve that this task network can handle the case where tteemna or more blocks
stacked on top obl, by first clearingol — i.e., recursively moving each block pn

top of bl to the table — and then movirgg. from b2 to the table.

Intuitively, given a HTN planning problerf? = (d, 7, D) (whereD = (Opy,, Me)), the HTN
planning process works as follows. First, an applicableicedn method (i.e., one whose precon-
dition is met in the current state) is selected frivie and applied to some compound taskdin
This will result in a new, and typically “more primitive” tasietworkd’. Then, another reduction

method is applied to some taskdf and this process is repeated until a task network is oltaine

CHAPTER 2. BACKGROUND 39

primitive task

unstackbl, b2)

Y1

| y1 = Clear(b1) A On(b1, b2) A ArmEmpty

’ 2 = 0On(bl, b2) A On(b3, bl) A ArmEmpt%

Primitive Task Precondition Postcondition
putdavn(bl) Holding(bl) =Holding(b1) A ArmEmptyA On(bl, Table
pickup(bl,b2) On(bl, b2)A Clear(bl) A ArmEmpty Holdinol) A ~ArmEmpyA

—On(b, b2) A Clear(b2)

Figure 2.3: A simplified representation of a HTN domd An arrow below a method indicates
that its tasks are ordered from left to right.

containing only primitive tasks (actions). At any stageidgirthe planning process, if no appli-
cable method can be found for a compound task, the plannektiagks” and tries an alternative
reduction for a compound task previously reduced.

To be more precise about the HTN planning process, we first@lgfhat a reduction is. Sup-
pose thad = [s ¢] is a task network,i{ : @) € sis a labelled compound task occurringdn
and thatm = (o’,d’) € Meis a method that may be used to decompegee., @ anda’ unify).
Then,reducéd, n, m) denotes the task network that results from decomposirgjléabtask @ :)
in task networkd using methodn. Informally, such decomposition involves updating boté set
sin d, by replacing labelled task(«) with the tasks ird” (by arbitrarily renaming task labels),
and the constraintg in sto take into account constraints dh. The set of all possible reductions

of task networld is then defined as follows:

red(d, ©) = {d' | d’ = reducdd,n,m), (n: @) € s, me Me}.

°Note that in the original formalisation of functioad in (Erol et al., 1996), there is a third argument, namely, a
state. We have omitted this argument because it is not needed

CHAPTER 2. BACKGROUND 40

If all compound tasks in a given initial task network can aually be replaced by primitive
tasks via reductions, the resulting final primitive taskwaek is used to find @ompletionof the
task network, that is, an ordering and grounding of the piwmitasks in the final task network
such that the ordering conforms with the constraints imgasethose tasks by the network. More
precisely, a plaw- is a completion of a primitive task netwodqi.e., one containing only primitive
tasks) at statd’, denotedr- € comfd, 7, D), if o is a total ordering of the primitive tasks in a
ground instance ofl, such thats is executable i/ (i.e., all preconditions of actions ior are
satisfied), andr satisfies the constraint formula th We refer the reader to (Erol et al., 1996) for
more detail about reductions and completions.

Finally, by using setsed(d, D) and comfd, 7, D), one can easily define the set of plans
sol(d, 7, D) that solves a HTN planning problefh= (d, I, D) assol(d, I, D) = Un«, SOh(d, 7, D),

wheresoh(d, 7, D) is, in turn, defined as follows:

soh(d, 7, D) comid, 7, D),

SOk, 1(d, 7, D)

soh(d,7,D)U | | soh(d, 7, D).

d’ered(d,z,p)
Intuitively, the set of primitive plans that solves a HTNmféng problenxd, 7, D) is the set of all
completions of all primitive task networks that can be afdi from zero or more reductions ef
We call such primitive planprimitive plan solutiongo distinguish them from primitive solutions,

which achieve some goal state, and from primitive plansctvhre arbitrary sequences of actions.

As one example of how the HTN planning process works, condide HTN
domain® depicted in Figure 2.3. Suppose task netwdrks [s;, ¢1] from Figure
2.3, wheres; = {(n : unstackBlockl, Block?))} and¢, = true. Moreover, suppose

we have the HTN planning problef = (d, 7, D), where:

I = {On(Block2, Tablg, On(Blockl, Block?), On(Block3, Blockl), Clear(Block3),
ArmEmpty.

Then, observe that the reduction of the labelled compoursk tén

unstackBlockl, Block?)) € s; using methodmy — that is, reducdds, n, my)

— results in the following primitive task network:

CHAPTER 2. BACKGROUND 41

d> = [{(ny : pickugBlockKl, Block?)), (n, : putdowr{Blockl))}, (N < ny) A ¢2],

where ¢, = (Clear(Blockl),n;) A (On(Blockl, Block?),n1) A (ArmEmptyns).
However, observe that the completion df is comfd,, 7,D) = 0, because
constraint Clear(Blockl),n;) does not hold with respect to initial state —
Clear(Blockl) is not true inf.

Next, consider, instead, the reduction of labelled compoutask|

(n : unstackBlockl, Block?)) € s; using methodm,. Observe that the result

of this decomposition is the following task network:

dz = [{(np : unstackBlock3, Blockl)), (n, : pickugBlockl, Block?)),

(nz : putdowr{Blockl))}, (n1 < n2) A (Np < N3) A @3],

wheregs = (On(Blockl, Block2), n1) A (On(Block3, Blockl), n;) A (ArmEmptyns).
Since there is a compound taskstackoccurring inds, it needs to be reduced
further before a primitive task network can be obtained. @@gp methodm is

used for this reduction. The resulting primitive task natady, is then the following

dz = [{(ns : pickupgBlock3, Blockl)), (ns : putdowr{Block3)), (n,
pickugBlockl, Block?)), (n3 : putdowr{Blockl))}, (ns < o) A (N5 < Np) A (N2 <

nz) A (Na < Ns) A ¢a],

where ¢4 = (Clear(Block3),ns) A (On(Block3, Blockl), ng) A (ArmEmptyns) A
(On(Blockl, Block?), n4). Observe that the contents of the task network in method
my is incorporated into task networdg. In particular: (i) the constraint formula af
methodm is added as a conjunction to the constraint formula of taskani dy;

(ii) labelled tasks ofn; are added, after the renaming of task labels, to the get of

=

labelled tasks ofl,; and(iii) old constraints ofl; — e.g., (i1 < np) — are update
to accommodate the new task labels.

The final step is to obtain the completicomds, 7, D) of task networkd,.

CHAPTER 2. BACKGROUND 42

The completion is composed of the following primitive platugion:

o = pickupgBlock, Blockl) - putdowr{Block3) - pickupBlockl, Block?) -
putdowr{Blockl).

Observe that plawr is a primitive plan solution — it is executable iA, and

¢4 can be satisfied with respect to the initial state

The style of HTN planning we have described so far is cail@dially-orderedHTN planning.
This is because it is not necessary for tasks in a task netiwdr& ordered in any way. In fact, itis
legal for the constraint formula to not have any constraaisll. This allows tasks to be executed

in parallel with other tasks, by overlapping their subtasks

For example, consider a Blocks World domain in which theeetaio robot arms.

Suppose we have the following initial task network:

d = [{(n; : unstackBlockl, Block?)), (n, : unstackBlock3, Blockd))}, true].

This task network specifies that the two unstack operators b performed
in parallel, that is, their decompositions can be inteebvOne example of such an

interleaving is the following primitive plan solution:

o = pickugBlockl, Block?) - pickugBlock3, Blockd) - putdowr{Block3) -
putdowr{Blockl).

In the example in Figure 2.3, however, all tasks within taskworks argotally-ordered that
is, all tasks occurring in a task network have a (possiblyliititp ordering enforced relative to
all other tasks occurring in the network. While partial-@rddTN planning is more expressive
than total-order HTN planning (Nau et al., 1998), and it lesadvantage of preventing excessive
backtracking by not committing to the ordering of steps patmely, total-order HTN planning
also has its advantages. First, since the ordering of tasksawn in advance, total-order HTN
planners know the complete state of the world at each stdgiplanning process. Consequently,

powerful preconditions can be written such as those thatuhoenical computations or interact

CHAPTER 2. BACKGROUND 43

with external information sources. Second, the complexitptal-order HTN planning is signifi-
cantly less than that of partial-order HTN planning (Naulgtl®98). This is because, without the
need to interleave subtasks belonging to compound tasid;a@er HTN planners do not have

the additional complexity of handling interactions betwsebtasks.

JSHOP total-order HTN planner

One of the most popular implementations of a total-order Hbldner is JSHOP, which we have
chosen for incorporating HTN planning into the JACK agentalieoment platform. JSHOP is a
Java version of the Lisp based SHOP (Nau et al., 1999) (Sii@emarchical Ordered Planner)
total-order HTN planner, whose successor, SHOP2 (Nau ,e2@0.3), won one of the top four
prizes at the 2002 International Planning CompetifidBoth JSHOP and SHOP have been inte-
grated into many dierent types of applications (Muioz-Avila et al., 2001; Bixal., 2003; Nau
et al., 2005).

A JSHOP planning problem, like a HTN planning problem, is e (@, I, D), wherea
Is a sequence of (primitive and compound) taskss the initial state, and> = (Op,,,, Me) as
before. Unlike a HTN method, a JISHOP method is of the forrméthoda [h] ¥ T), wherea
is a compound tasky is a conjunction of literals representing the preconditibithe methodT,
called thetail, is a sequence of (primitive and compound) tasks, amlan optional name for
the method. Note that the precondition of a JSHOP methoesponds to a constraint formula
of a HTN method, and that the precondition needs to be satiffiethe corresponding method
to be applicable. Task decomposition in JSHOP works like itndd TN, except that tasks are
decomposed in the same order in which they are specified iimplo¢ sequence of taskéand in

the tails of methods.

2.4 Combining Agents and Planning

A number of studies have focused on combining automatechiplgrwith agent architectures.
Both HTN-style planning as well as first principles plannieghniques have been incorporated.
With first principles planning, an agent can obtain new pldnad are not already a part of the

programmer supplied plan-library, whereas HTN-style piag allows an agent to look-ahead

3httpy/ipc.icaps-conference.qrg

CHAPTER 2. BACKGROUND 44

on its existing plans in order to obtain a viable decompasitf the plan. In this section, we
review the works that combine agents and planning, and cmrtham, when appropriate, with

the research questions we address in this thesis.

2.4.1 First Principles Planning in Agents

The Propice-Plan (Despouys and Ingrand, 1999) framewdhnieisombination of the IPP (Koehler
et al., 1997) first principles planner and an extended versithe PRS (Ingrand et al., 1992) BDI
system. In Propice-Plan, the IPP planner is used to obtainRiRS plan-rules at runtime when
none of the existing plan-rules are applicable for an egeat-that the agent wants to achieve.
To formulate plans, IPP uses the plan-rules of PRS, by trgdkiese plan-rules as operators. In
particular, the precondition of an operator is taken as tmext condition of the corresponding
plan-rule, and the postcondition of the operator is takethasffects of the corresponding plan-
rule, which are supplied for each plan-rule by the programrii@ée goal state to plan for is the
primary dfect of the event-goal that failed, which is also suppliedh®y programmer. Solutions
found by IPP are returned to PRS, which executes them by mgyipeir actions back into ground
plan-rules.

The issues addressed by the Propice-Plan system are similhe research questions we
address in this thesis. In particular, we are also intedesteplanning from first principles in
order to obtain new plan-rules not already in the agentiaijp However, there are also important
differences between our work and that of (Despouys and Ingr888) 1First, we are interested in
planning with the event-goals of the agent, as opposed tmrlg with the plan-rules of the agent.
This is because we want plans found toflesiblelike typical BDI plans. BDI plans are flexible
in that they are built from high-level abstract goals, foriethdifferent alternatives may be tried
if necessary. In the work of (Despouys and Ingrand, 1999}herother hand, a plan returned by
the planner will have committed to a sequence of ground plées. The second fierence is that
we are interested in finding plans that are non-redundami,those that can be decomposed into
primitive steps that are necessary for achieving the ga#é stt hand. Plans found in the work of
(Despouys and Ingrand, 1999), however, do not addresssthie iof redundancy: their plans may
be decomposed into steps that are not necessary for adhibnamgoal state.

With the experience gained from the Propice-Plan systeemgi and Ingrand, 2004) propose

the IxTeT-eXeC system, which is built specifically with rdicoarchitectures in mind, such as

CHAPTER 2. BACKGROUND 45

Mars Rovers. IxTeT-eXeC is a combination of PRS and the Ix{I&borie and Ghallab, 1995)
planner, which allows an expressive temporal specificabboperators. Unlike Propice-Plan,
IXTeT-eXeC gives more control to the planner than the BDkaays Initially, IxTeT-eXeC is
given a top-level goal state to achieve by the user. IxTeg@Xhen uses the IxTeT planner to
formulate a complete solution for the goal state in termshefdperators in the domain, which
correspond to, essentially, leaf-level event-goals in PRS those handled only by plan-bodies
that do not mention any event-goals). The solution is thesteted by IxTeT-eXeC by sending
each individual operator in the solution to PRS, one at a.tilRBRS executes a given operator
by mapping it into the corresponding event-goal, and thertatng it using the BDI execution
mechanisms, which may involve (local) failure recovery tyyrig alternative leaf-level plan-rules.
The plan-rules are composed of primitive steps that canreettli executed by the robot. Finally,
PRS sends a report back to the planner indicating the rasglt 6uccess or failure) of executing
the event-goal. If during the execution of a plan found byelX& new goal arrives from the user,
the old plan is repaired (if necessary) to take into accduatrtew goal.

The focus of our research isfiiirent from (Lemai and Ingrand, 2004) in that we want the
BDI system to maintain full control on when to use the planrather than using the BDI system
only to execute plans found by the planner. Moreover, we rerasted in using BDI systems
in a manner that exploits their full potential by having flagi plan-libraries with dterent levels
of abstraction. In the work of (Lemai and Ingrand, 2004), Bi& system is only used for basic
execution, that is, for the decomposition of event-goalsddly into primitive actions.

In (Meneguzzi et al., 2004a,b), the X-BDI (da Costa MoraletZ098) model is extended
with first principles planning capabilities. The X-BDI mdde a traditional cognitive BDI agent
architecture based on notions such as beliefs, desiresnégntions. The reasoning process of
X-BDI involves the following steps. First, a set efigible desiress obtained from the agent’s
set of desires, where an eligible desire is one that medtsceationality constraints put forth by
Bratman, such as being unachieved. Second, the set oflel@gbires is refined further to obtain a
set ofcandidate desiresvhich are desires that are both possible (i.e., a plansstagtandle them)
and consistent as described in Section 2.1.1. Finally,ghefsandidate desires are used to obtain
a set ofprimary intentions which are plans corresponding to the agent’'s commitmeatiweve
its candidate desires. First principles planning is iniitl into the X-BDI model to replace the

algorithm which selects the set of candidate desires frarsét of eligible desires. In particular,

CHAPTER 2. BACKGROUND 46

candidate desires are essentially eligible desires fochvybians can be found.

While X-BDI allows a logical and declarative specificatiohBDI agents, it does not lend
itself well to practical and ficient implementations (Meneguzzi and Luck, 2007). On thiot
hand, we use a practical BDI agent-oriented programminguage. More importantly, however,
unlike their work, our work focuses orfi) finding plans that re-use and respect the hierarchical
domain information inherent in the agent’s plan-libranhareas in their work planning is per-
formed with basic, primitive actions of the agent, thereloy making use of, and possibly not
conforming to the domain information inherent in the lilgraand (ii) using first principles plan-
ning solely for the purpose of means-ends reasoning — eeidohghowto bring about a state of
affairs (see Section 2.1.1) — whereas in their work, first ppled planning is used primarily to
aid in deliberation — i.e., decidingghatstate of #airs to bring about.

Another approach that incorporates first principles plagninto a BDI system is (Meneguzzi
and Luck, 2008, 2007). In this work, planning is added inte #gentSpeak BDI agent pro-
gramming language. Like our work, (Meneguzzi and Luck, 3Gilibws calls to the planner to
be made at any programmer specified point in the agent’slifleary, and moreover, the planning
is performed for a goal state that is supplied by the programrihe domain information used
by the planner is automatically extracted (at runtime) fibw primitive actions belonging to the
agent, which are encoded as leaf-level AgentSpeak eves.ga plan found is executed by the
agent by mapping actions in the plan back into their cornedjpg event-goals. Like the previ-
ous work described, the work of (Meneguzzi and Luck, 2008,72@&lso performs first principles
planning with the primitive actions of the agent, rathemthidth higher level entities like we do
in this thesis.

The intermediate layer of the InteRRaP hybrid architectliseussed in Section 2.2 can also
plan from first principles in case a plan-rule is not avagaiol its library. However, like some of
the systems described above, the solutions generated edsencomposed entirely of primitive
actions.

Apart from the systems that combine first principles plagrand BDI-like systems, there are
also systems that add planning into other agent archiextuf particular relevance to our work
are systems that combine first principles planning with tlodo® (Levesque et al., 1997) action
language, which has been successfully used for robot dohtr@ClalRen et al., 2007), IndiGolog

(Sardina et al., 2004) — an implementation of Golog — is edednwith the FF (Hmann and

CHAPTER 2. BACKGROUND a7

Nebel, 2001) classical planning system. IndiGolog alreadyports planning from first principles
via its achievgG) procedure, wher6 is a goal state formula to achieve. In (ClaRen et al., 2007),
another similar construct is added to the language, whiobuais to calling the FF planner. The
returned plan (if any) — a sequence of primitive actions xecated within the IndiGolog engine.
The objective of this work is twofold(i) to provide a translation from IndiGolog actions into a
version of PDDL (Planning Domain Definition Language); diidto show that by using the FF
planner for planning, as opposed to the built-in IndiGologcedure, anféiciency improvement
can be gained.

Compared to our work, the work of (Clal3en et al., 2007) usesi® mxpressive language to
describe primitive actions, which has the ability to specifings such as quantification within
preconditions. Still, since the plans found by FF are a secgief the agent’s primitive actions, as
opposed to the more abstract entities that make up our glamgrocedural information inherent
in Golog procedures are not exploited, and the plans areeablé.

On the other hand, (Baier et al., 2007; Fritz et al., 2008yeskks the issue of planning from
first principles in ConGolog — Golog with support for speaify concurrency — in a way that re-
spects and exploits the domain control knowledge inhere@adnGolog programs. To this end,
they provide a translation from a subset of the language ofGiog into PDDL operators. The
translation takes into account the domain control knowdsdberent ConGolog programs. Specif-
ically, these operators ensure that primitive solutiossiiterg from the planning process conform
to the ConGolog programs given. Moreover, (Baier et al.,72@@ovides diferent heuristics for
planning, which show how planning speed can be improved wiexdomain control knowledge
encoded in the operators iffectively used.

The issue we address in this thesis of conforming to the groeginformation inherent in BDI
programs is similar to the issue addressed in (Baier et@D72Fritz et al., 2008) of conforming
to the domain control knowledge inherent in ConGolog prograHowever, while the solutions
found by the first principles planner in this thesis can cionédostract (and hence flexible) BDI
entities corresponding to event-goals, solutions founthework of (Baier et al., 2007; Fritz
et al., 2008) are composed entirely of primitive actionsrtfi@rmore, although these primitive
solutions do conform to the given ConGolog programs, they stifl have redundant steps, which
Is undesirable in our work.

In addition to the above fferences with Golog based languages, our work is at§erdnt

CHAPTER 2. BACKGROUND 48

to such languages because they are cognitive agent largjwaitje no explicit notions of entities
such as event-goals, plan-rules, plan selection and éailuhereas our approach is linked to a
family of (practical) BDI agent-oriented programming laiages and systems.

Finally, work such as (Clement et al., 2007; Tambe and Zha6@0) deal with planning in
order to coordinate actiofigans belonging to multiple agents. In (Tambe and ZhangQR0®
state in the state space is an agent's model of the overédl gtahe team to which the agent
belongs, and actions used for planning are team actionsthase that typically fect the entire
team. Unlike the works mentioned, this thesis deals witlglsiagent planning. However, we
discuss in detail the work of (Clement et al., 2007) in Chagtevhere we extend their algorithms

for the purpose of adding first principles planning into th&NJanguage.

2.4.2 HTN Planning in Agents

Perhaps some of the first systems to incorporate HTN-stylk-ddhead into agents are (Lyons
et al., 1991; Mcdermott, 1991). In these systems, the taiieoplanner is to continuously revise
the plan-rules of the agent in order to make the agent belmaeniore goal directed manner.
For example, the XFRM (Mcdermott, 1992) system incorparat&N-style look-ahead into RPL
(Mcdermott, 1991) (Reactive Plan Language), a BDI-likeglaage which has many similarities
with its ancestors PRS and RAP (Firby, 1987). Execution irRKFbegins when the agent is
given a set of top-level event-goals to achieve. While thenagries to achieve these event-goals
via decomposition, the planning component continuousbk$oahead on the agent’s currently
executing plan-rule in order to assist the agent in avoiflitigre failures. To this end, the planning
component revises the agent’s plan-rule(s), e.g., by gdobnstraints on the ordering of steps, or
forcing the agent to follow a particular decomposition.

Although these works have certain similarities with theeggsh questions we address in this
thesis, we are only interested in performing HTN look-ahabgrogrammer specified points in
an agent’s library. In this way, HTN-style look-ahead isyonsed when it is needed. Moreover,
although we are also interested in guiding the agent aloogessful (virtual) decompositions, we
do not do this by revising the agent’s currently executirnplules. This is because conforming
to the user’s intent is important in our work, and such modifans may result in plan-rules that
no longer conform to the user’s intent.

In the Cypress system (Wilkins and Myers, 1995; Wilkins et B995), the SIPE-2 (Wilkins,

CHAPTER 2. BACKGROUND 49

1990) HTN planning system is combined with an extended oBrsiPRS-CL — of the PRS BDI
system. After identifying similarities between the syntmd semantics of PRS-CL and SIPE-2,
the authors combine the two systems viaAlmtlanguage, which is a superset of the languages of
PRS-CL and SIPE-2. The programmer writes the domain spatdicin the Act language, which
is converted, at runtime, into the languages of PRS-CL aR&ES] as and when needed.

The system works by using the SIPE-2 HTN planner to look-dlogsPRS-CL event-goals up
to a level of abstraction decided by the programmer for thergdomain. Once an abstract plan is
returned by SIPE-2, the PRS-CL execution engine fills in @meaining details, by decomposing
the event-goals in the plan completely, down to the levelrohitive actions. For this to work,
certain plan-rules are only allowed to be used by SIPE-2,thadthers are only allowed to be
used by PRS-CL. In this way, the planner does not decomposemmgvent-goal beyond a certain
level of abstraction, and PRS-CL does not execute evensdoat are above a certain level of
abstraction. The rationale behind this is that it is oftehfeasible (e.g., due to time constraints)
for the planner to look-ahead up to the smallest level ofietad that the executor should not
execute very abstract event-goals without performing ank-bhead. Therefore, in some sense,
solutions returned by SIPE-2 are flexible — they are compadeabstract entities whose exact
refinements are handled by PRS-CL. In addition to using llwéad for solving very abstract
event-goals, the SIPE-2 planner is also used by PRS-CL waeairt types of failures occur
during execution, such as when no plan-rules exist to haark/ent-goal.

In comparison with Cypress, our system always focuses oaongeasing event-goals com-
pletely, i.e., up to the level of primitive actions, because are interested in getting a guarantee
that a given event-goal has some successful (virtual) dposition. While it is also possible to
get such guarantees in Cypress by forcing both PRS-CL and-31® use the same set of plan-
rules, this will result in solutions found by SIPE-2 beingrgqmosed entirely of primitive actions.
Consequently, while failure will only be detected in Cymes the failure of a primitive action,
in our system, failure may be detected earlier due to a plbeing inapplicable, as the HTN
planner is used only as a means for guiding the BDI systemansihg appropriate plan-rules at
choice points.

In the RETSINA (Paolucci et al., 1999) system, agents stle& top-level event-goals by per-
forming HTN decomposition. If the information required teampose some lower level event-

goal is not available at the time of planning, the agent thispends the decomposition, locates the

CHAPTER 2. BACKGROUND 50

relevant information gathering actions in the plan beingettgped that would obtain the necessary
information, and then executes these actions. Once themafmn is obtained, the decomposition
of the top-level event-goal continues. RETSINA also makes af Rationale Based Monitoring
(Veloso et al., 1998) in order to monitor conditions thatrlated to the plan being developed. If
while a plan is being developed a change in the environmekesia monitored conditions false,
the planning process is abandoned.

In comparison with our work, RETSINA agents always perforfiNHook-ahead, unless in-
formation needs to be gathered from the environment. In arkwon the other hand, the agent
typically follows standard BDI execution, and uses the HTIBnper only at points during the
execution where the programmer has deemed it necessaryféonpéi TN look-ahead. However,
we assume that all the information necessary for HTN plapisravailable before the planner is
called, whereas they do not make this assumption.

Finally, none of the systems mentioned above provide a fantegration of a HTN semantics
into a BDI agent-oriented programming language, and anyaisabf the properties of such an

integration, which we do in this thesis.

Chapter

A HTN Planning Framework for BDI
System$

In this chapter, we incorporate look-ahead deliberatiaiénstyle of Hierarchical Task Networks
(HTN) into BDI agents. Such look-ahead is desirable, or evemdatory in situations where
undesired outcomes need to be avoided. For instance, ah mggrwant to reason about the
consequences of choosing one expansion of a task over grfotiguiding the selection of recipes
to avoid negative interactions between them.

We choose HTN planning because of the similarities it sheti#s BDI systems in problem
representation and in reasoning, but also because HTN siemand implementations are well un-
derstood in the planning community (Nau et al., 2005; Erall et1996). We first explore in detail
the similarities mentioned in past work (e.g., (Wilkins kf 4995)) between the two approaches,
and then exploit these similarities. To this end, we incaaHTN planning into the semantics
and infrastructure of a BDI agent programming language, [megise and formal manner. Our
new BDI infrastructure includes HTN planning as a built-eafure that the agent programmer
can use when required. We show that the new infrastructupeoigably more expressive than
HTN systems alone, and that it allows the programmer to, uoeléain restrictions, rule out BDI

executions that are bound to fail.

The updated version of CAN in Section 3.2 was developed piiynay Sebastian Sardina (co-supervisor of the
author of this thesis), with some participation from thehautof this thesis, from Lin Padgham (supervisor of the
author of this thesis and co-author of (Winiket al., 2002)), and in discussion with Michael Winik¢first author
of (Winikoff et al., 2002)). Part of the work presented in this chapterbie@sn previously published in (de Silva and
Padgham, 2004, 2005; Sardina et al., 2006).

51

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 52

l ExploreSoilLocatiotsrc, dsf ‘

“action

6B,5M or 7B,4M

Navigatésrc, dsf GatherDatddsf) TransmitDatgd s

1B,1M

Figure 3.1: A simple Mars Rover agent. An arrow below a plale-indicates that its steps are
ordered from left to right. The labels adjacent to plangudee the resources that they consume:
nB stands fon units of battery, andM stands fom units of memory.

Although frameworks do exist that incorporate some typ@okiahead planning as a built-in
feature of BDI-style systems (e.g., (Ambros-Ingerson,7188ilkins and Myers, 1998; Despouys
and Ingrand, 1999; Graham et al., 2003; Paolucci et al., ;1R08block, 1995)), these are mostly
implemented systems with no precise semantics, and will &t no programmer control over
when to plan. It is worth noting that, in fact, look-aheadqadures can sometimes be explicitly
programmed into existing BDI systems. However, such progsiwould in general be domain
dependent, fairly complex, and would not be tightly intégdawith the infrastructure support pro-
vided by the BDI agent platform. It is sometimes also posstbl avoid look-ahead altogether,
by carefully specifying context conditions of plan-ruleBhe types of BDI applications that re-
quire look-ahead are those in which there are potentialfjatiee interactions betweenfiiirent
branches of an event-goal, and these interactions needpdredeted and avoided during execu-

tion.

As one example of the value of the kind of look-ahead planmegoropose, cor
sider Figure 3.1, which shows a simple Mars Rover agent. ®liers top-leve
event-goal is to carry out a soil experiment at some destimaitst from its current
location src, which involves navigating to the destination, gatheriagadrom the
destination, and then transmitting the data to the landapp&se that the actions
shown in the figure require the following resources (whestOpticallmagegets 4

coloured image using an optical microscope, &&dElectronimagegets a greyscale

image using an electron microscope, which has a higher meamon than the op

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 53

tical microscope):

1. Move three units of battery and one unit of memory;
2. GetOpticallmageone unit of battery and two units of memory;
3. GetElectronimagetwo units of battery and one unit of memory; and

4. GetMoistureSendDataone unit of battery and one unit of memory.
Since each microscope has one advantage and one disadvaotagared with

the other (i.e., colour versus greyscale, and high magtidicaersus low magnifi

cation), we assume that it does not matter which microsceopséd if there are at
least two units of battery and two units of memory.

Next, suppose plan-rules have the following context coonit (i) R is appli-
cable only if the rover is at locatiosrc, and there are at least three units of battery
and there is at least one unit of memory for moving to the dastn; (i) R4 is
applicable only if the rover has data for the destinatiom, #uere is at least one unit
of memory and battery for sending the data to the lan@@rR » is applicable only

if the rover is at the destination, and there are at least it of battery and thre

0]

units of memory for both getting an image with the optical regzope and extragt
ing moisture content from the soifiv) R3 is applicable only if the rover is at the

destination, and there are at least three units of battahvam units of memory for

—

both getting an image with the electron microscope and etigamoisture conter
from the soil; and finally(v) Ry is applicable only if the rover is a&rc, and one of
both of the following conditions holda) there are at least six units of battery and

five units of memory (for navigating, gathering data by gettan image with th

D

optical microscope, and sending data)(lorthere are at least seven units of battery
and four units of memory (for navigating, gathering data bitigg an image with
the electron microscope, and sending data).

Now, observe that if the rover initially has seven units dtéry and four units
of memory, the rover will successfully navigate to the destibn, but it may thep
selectR; instead ofR; (since both are applicable) and not have enough memary to

transmit data. Similarly, if the rover initially has six tsiof battery and five unit

[72)

of memory, the rover will successfully navigate to the destibn, but it may then

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 54

selectRs instead oR, and not have enough battery to transmit détawever, if the
agent were able to perform look-aheadRyfrom the initial state in which there are
seven (respectively six) units of battery and four (redpelst five) units of memory,
the agent would realise that plan-rue (respectivelyRy) is the one that leads to a

successful (virtual) decomposition Bf, and it would selecR3 (respectivelyRy)

during execution.

This chapter is organised as follows. In Section 3.1, we @ma typical BDI agent pro-
gramming language, namely AgentSpeak (Rao, 1996), wittHfAN language of (Erol et al.,
1996), in order to identify their similarities andff#irences, which involves mapping from BDI
entities to HTN entities. Then, in Section 3.2, we create s lamguage, namely CANPIan, by
incorporating HTN planning into the CAN BDI agent programuilanguage (Winikfi et al.,
2002), which is based on AgentSpeak. Incorporating HTNmfaminto CAN involves(i) adding
a planning module into the CAN semantics, and providing agrajonal semantics that defines
the behaviour of the new module (Section 3.2.3); éildexploring the theoretical properties of

the new framework (Section 3.2.4).

3.1 Similarities Between the BDI and HTN Approaches

While BDI agent systems are focused on thecutionof agent programs in dynamic environ-
ments, HTN systems are concerned wWitfpothetical reasoningbout actions and their potential
interactions within a whole plan for achieving a task. Desfieir diferent purposes, however,
BDI systems and HTN planners share many similarities. Thredede how knowledge is repre-
sented, as well as how this knowledge is manipulated to swlvklems. Despite integrated sys-
tems such as (Wilkins et al., 1995; Paolucci et al., 1999ctwhicorporate some of the strengths
of each approach, and despite there being past work thatanssimilarities between the two ap-
proaches (e.g., (Clement and Durfee, 1999, 2000; Firby9;18@kins et al., 1995; Paolucci et al.,
1999)), there does not appear to be any work which formallgpsietween the domain represen-
tations of the two approaches. In Sections 2.1.3 and 2.2 2{escribed the conceptual entities of

the BDI and HTN approaches. In this section, we compare anttasi the two approaches, and

INote that, although such failure can be avoided by writingetext condition forR, that requires at least seven
units of battery and five units of memory, such a context dibmlis too restrictive, as it will rule out the possibility o
exploring a soil location with fewer resources (e.g., sikuof battery and five units of memory).

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 55

provide a mapping from BDI entities to HTN entities.

In terms of syntax, both BDI and HTN approaches assume arncéxgpresentation of the
agent’s knowledge, namely, the belief base and state,atagglg. Moreover, the domain informa-
tion of each approach is described procedurally, in the fofplan-rules and reduction methods,

respectively.

Let us once again consider Figure 3.1. In addition to repitesga BDI plan-library.

wn

this structure also represents a HTN method-library. Iri@#ar, the rectangle

represent both BDI event-goals (or achievement goals) amdl¢dmpound (or non

primitive) tasks; the rounded rectangles represent both @&n-rules and HTN

[°2)

methods; and the dotted rectangles represent both BDIngctind test condition

as well as HTN primitive tasks and state constraints, reas@he

In terms of semantics, the two approaches formulate solsifie a similar manner. Both ap-
proaches decompose higher-level tasks into lower-lewiisteaby appealing to a given library of
recipes. While a BDI system decomposes an event-goal innalimdy program using a relevant
and applicable plan-rule from the plan-library, a HTN sgstdecomposes a compound task into a
task network using a relevant and applicable reduction atefitom the method-library. If the path
of decompositions pursued for solving a particular tasksarmnot working, both systems back-
track, i.e., return to a higher-level task, to pursue arr@dtive path of decompositions. However,
due to a diference in the meaning of actionin the two approaches, the reasons for backtracking
are dtferent.

While actions in the BDI approach are executed in the realdyaictions (primitive tasks) in
the HTN approach only make changes to its internal model efatbrld. As a result, while the
intended outcome of executing a BDI action can only be comditioy (external) events from the
environment, the intended outcome (i.e., postconditidrg TN primitive task is guaranteed on

its (virtual) execution.

N

Move(src, mid) | - Movemid, dsf)
Consider the above plan-rule of a Mars Rover agent, whiclsésl dor navigating

from the current locatiorsrc to a locationdst via an intermediate locatiomid.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 56

Suppose the precondition of the action on the lehtisrc), the precondition of the
action on the right ig\t(mid), the plan-rule’s context condition always succeeds,|and
that the rover is asrc.

Now, observe that if actiodMaove(src, mid) does not move the rover fromsrc
to mid (e.g., the action fails), then actiodove(mid, ds?) will not be applicable
resulting in the plan-rule failing.In HTN planning, on the other hand, actipn
Move(mid, dst) will always be applicable, because actittove(src, mid) will al-

ways bring about its intendedfect At(mid) A —At(src) within the context of the

planner.

Due to the diference in the meaning of an action, the followinffetiences also arise in the
semantics of backtracking in the two approaches. In the HifMaach, backtracking is performed
when it is predicted via complete look-ahead, that a salutieing pursued will not work due to
unavoidable conflicts between tasks. Consequently, g involves “ignoring” the solution
pursued so far, from the point at which backtracking begipgp the point at which an alternative
decomposition is tried. On the other hand, backtrackingerfgpmed in a BDI system due to its
inability to predict the consequences of actions. More i$jpady, a BDI agent backtracks when
an action executed (in the real world) does not bring absuniended outcome. Backtracking
in BDI does not, however, involve “ignoring” the solutionngued so far, because actions have
already been executed in the real world. Rather, backimgdkidone to try and achieve the failed

event-goal using a fferent plan-rule in a potentially new world state.

Mapping the AgentSpeak BDI Language to the HTN Language

We will now give a precise account of how BDI entities can bepped to HTN entities. Such
a mapping is essential to be able to use BDI entities for HTammihg, which we do in the next
section. The BDI agent programming language we have chasdhi$ mapping is AgentSpeak
(Rao, 1996; Moreira and Bordini, 2002; Bordini et al., 20682nverno and Luck, 1998), in par-
ticular, the original formalisation in (Rao, 1996)AgentSpeak is a high-level plan language that

attempts to extract the essence of a class of implementgbéig platforms, such as PRS (Gedfge

20f course, if the rover is somehow movedrtod by some other means, then the second action will indeed be
applicable.
3Note that a formal mapping from CAN entities to HTN entitiemde found in the proof of Theorem 2.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 57

and Ingrand, 1989) and dMars (d’Inverno et al., 1998). Maonpartantly, AgentSpeak forms
the basis for later BDI agent programming languages suchfa$ @Vinikoff et al., 2002) and
3APL(Hindriks et al., 1999). The HTN language we have chdseahat of (Erol et al., 1996),
which is one of the most widely used HTN formalisations in litkerature. Table 3.1 provides a

summary of the conceptual mapping from AgentSpeak entiiésI'N entities.

AgentSpeak Entities HTN Entities

set of base beliefs state

belief operations«{b and—b) primitive task

action @ct) dummy primitive task
achievement goal §) compound task

test goal (@) state constraint
plan-context state constraints
sequencing (;) ordering constraints
plan-body task network
plan-rule method

plan-library set of methods

Table 3.1: Summary of the mapping from AgentSpeak to HTN

Set of base beliefs to state
As mentioned before, set of base beliefand astateare both representations of knowledge about
the world in AgentSpeak and HTN, respectively. Moreovertao$ base beliefs and a state have

the same form: they are both sets of ground atoms. An exptiafiping is therefore not needed.

Belief operation to primitive task
An AgentSpeak agent updates its knowledge about the woird belief operations+b and—b.*
Similarly, a HTN planner updates its knowledge about thedvasingprimitive tasks

The mapping is done as follows. First, a unique primitivé iasssigned to each unique belief
operation of the agent (recall from Section 2.3.2 that a fiientask is simply a symbol followed

by a vector of terms). Second, for each such primitive taslomerator is created to handle it, with

4Actually, in AgentSpeak, the agent programmer is not albbweespecify belief operations in plan-bodies — up-
dates to the set of base beliefs are only performed intgrbgllAgentSpeak, when belief-update events arrive from
the environment. However, we do provide a mapping for berations in the style of CAN, because they are an
important BDI feature that has been included in improvemamtd extensions of AgentSpeak (Moreira and Bordini,
2002; Bordini and Moreira, 2004; Bordini et al., 2002).

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 58

preconditiontrue, and with postconditiorb} if the corresponding belief operation b, or {=b}

if the corresponding belief operation-i.

Action to dummy primitive task

In AgentSpeak, aactionis used to make changes to the real world. Although AgentSfrea
CAN) actions do have intended outcomes, such actions mpresbitrary operations, and their
intended outcomes are not explicitly specified. For thisoeawe provide a model of actions in
the next section. For now, however, we will simply assumé tthaintended outcomes of actions
are specified as belief operations, and map actiomsitemyHTN primitive tasks, i.e., primitive

tasks with the preconditiotrue and with the empty postcondition.

Achievement goal to compound task

An achievement goah AgentSpeak and eompound taskh HTN both correspond to a task that
the agent wants to solve. Moreover, as mentioned beforh,dmstievement goals and compound
tasks are solved in a similar manner, by appealing to a gigeofgecipes. Mapping an achieve-
ment goal to a compound task is straightforward since theyath essentially just names (i.e., a
symbol followed by a vector of terms) representing the @héwlan-rules and reduction methods,

respectively.

Plan-body to task network
An AgentSpealplan-bodyand a HTNtask networks respectively one possible way of solving an
achievement goal and a compound task. While a plan-bodgtedlés added to the agent’s set of
intentions and executed, a task network selected is addbd swlution being pursued. In terms of
syntax: a plan-body is of the forRy; . . . ; Pk, where eacl®; is an (achievement or test) goal, action
or belief operation; and a HTN task network is a tuple of thenf¢{(ny : t1),..., (Nm : tm)}, &],
where the element on the left is a set of labelled (compourtionitive) tasks, and the element
on the right is a task network formula.

Mapping from a plan-body to a task network consists of twdgdi) mapping all entities
within the plan-body, excluding test goals, to a set of lioktasks; andii) mapping test goals
within the plan-body to state constraints — testing for ¢omas can only be specified in HTN as

state constraints within a task network formula.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 59

For the first part of the mapping, we create a$ef labelled tasks from plan-bod¥s; .. . ; Pk,
by adding toS the labelled taski(; tj) for every elemenP; in the plan-body that is not a test goal,
wheret; is the HTN entity corresponding to (i.e., HTN mapping Bf)

For the second part of the mapping, we create a formula of Hinsttaintsy from the plan-
body by(a) adding state constraint, §) as a conjunction for every test goa| =7y mentioned
in the plan-body, where< j is the largest task label occurring $) and(b) adding an ordering
constraint (< j) as a conjunction for every task lalielj occurring inS such that < j. Recall
from Section 2.3.2 that,(g) entails thayy must hold immediately after task lakhebnd thati(< j)
entails that the task labellédnust precede the task labell¢d

In order to cater for situations in which the first program ti@red in the plan-body is a test
goal (in which case state constraintg) cannot be specified since there are no elem8htsve

initially add to S the labelled dummy task (Odumny).

For example, consider plan-bod®/ =?p; +q; —r, which first tests for conditiorp,
then performs the belief operatiorg, and finally performs belief operatioar.

Initially, the set of labelled tasks is

S = {(0 : dummy)}.

In the first part of the mapping, the setis populated with the HTN entities corre-
sponding to the BDI entities within plan-bod¥ A possible result of this first step

is the set

S ={(0 : dummy), (2 : addQ, (3 : delR)},

whereaddQis the primitive task corresponding to belief operatiem anddelRis
the primitive task corresponding to belief operation Observe that the labels of
tasks added t8 are the positions withi® of the corresponding BDI entities; there-
fore, since the first program &fis a test condition, taskddQ which corresponds to

the second program &, is given label 2. In the second part of the mapping, since

program P is the only test condition withir®, the initial value of the constraint

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 60

formula is simply

¢ = (0, p),

which states that conditiopmust hold right at the beginning, i.e., immediately after
the dummy task. Finally, formula is updated with ordering constraints to obtain

formula

d=(O,p)A0<2)A0<3)A(2<3),

which additionally states that the dummy task precedes ther awo tasks, and
that primitive taskaddQ precedes primitive tasklelR Therefore, the final HTN

mapping of plan-body =7?p; +q; —r is task network §, ¢].

Plan-context to state constraints
In AgentSpeak, a plan-rule'sontextspecifies the conditions under which the plan-rule is ap-
plicable for an achievement goal, with respect to the setasklbeliefs. Similarly, HT Nstate
constraintswithin the constraint formula of a method are used (amongrdthings) to specify the
conditions under which the method is applicable for a comgadask, with respect to the state.
Mapping a plan-context to state constraints is straightdod. Since a plan-rule’s context is
simply a conjunction of literals of the forta A ... A |, the corresponding formula of state con-
straints isp = (I1,0) A ... A (I, 0), where 0, as shown in the previous mapping, is the labdileof t

first (dummy) task in a task network.

Plan-rule to method
A plan-rule (or plan) in AgentSpeak is of the formlg : [1 A ... Al « P1;...;Pn, where

+lg is the triggering evert,l1 A ... A Iy is the plan-context, anBl;. . .; P, is the plan-body. In

S5Actually, a triggering event is of the formb, —b, +!g, +?g, —?y, or —!g, where } is an achievement goalg?s
a test goal antb is a base belief. There are two things to note regardingdrigg events. First, like (Hindriks et al.,
1998), we do not consider triggering events of the forfly, —?y, and—!g in our mapping because the operational
semantics of such triggering events are neither providedlear in (Rao, 1996). In (Hubner et al., 2006), an informal
semantics for-lg is given where this is used as a means to facilitate “badkimgg i.e., the trying of alternative plans
on the failure of a plan to solve an achievement goal. We withpare the “backtracking” mechanisms of HTN and
BDI systems later in this chapter. Second, simbeand—b triggering events arexternalevents from thesnvironment
notifying the agent of a change that occurred (Bordini anddita, 2004), we do not need to consider these in our

mapping.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 61

HTN, amethodis of the form ¢, [{(ny : t1),...,("m : tm)}, #]), wherea is a compound task and
[{(n :t1)...("m: tm)}, @] is a task network. The mapping from a plan-rule to a methdidg®n
the following mappings discussed previous(i): achievement goal to compound tagik), plan-
body to task network, anii) plan-context to state constraints. In particular, the @uglitional
step required is to add the state constraints corresponditige plan-context as a conjunction to

the task network formula corresponding to the plan-body.

3.2 Adding HTN Planning into the CAN BDI Language

In (Winikoff et al., 2002), the CAN (Conceptual Agent Notation) BDI agerdgramming lan-
guage is introduced. CAN is a high-level plan language whiige AgentSpeak, attempts to
extract the essence of a class of implementable agent pretfoWe choose CAN from the nu-
merous available options (e.g., AgentSpeak (Rao, 1996)3a&mi (Hindriks et al., 1999; van
Riemsdijk et al., 2003)) because it includes semanticsdphisticated BDI failure handling.

In this section, we present first an updated version of CANicwvii) is cleaner than the
version in (Winikdf et al., 2002), andii) incorporates variable binding details that were omitted

in (Winikoff et al., 2002). We then incorporate HTN planning into this fe@mguage.

3.2.1 Presentation of CAN

A CAN BDI agent is created by the specification obelief baseB, i.e., a set of formulas from
some logical language, andptan-library I, i.e., a set of plan-rules. However, since in practice
the belief base is a set of ground atoms, and since we needpdetiaf bases tatatesin the
planning literature (which are sets of ground atoms), werrassthat a CAN belief base is a set
of ground atoms. The language of the plan-library is thedageg of first-order logic with equal-
ity, excluding functions and universal quantification (dfere, all free variables are existentially
quantified). A plan-rule is of the forma : ¢ « P, wheree is anevent-goalandy is thecontext
condition The componenP within a plan-rule is called @lan-bodyor program which is built
using the following components: primitive actioracf) that the agent can execute directly; oper-
ations to addb) and remove{b) beliefs; tests for conditions §¥, and event-goal programs or

(internal) achievement goalsef! Complex programs can be specified using sequen&mngPt)

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 62

and parallelismP1||P,). Theuser languag®f CAN, then, is described by the following grammar:

P:i=act| +b|-b|?p |'e| P1; P2 | P1||P2.

In the original version of CAN in (Winikff et al., 2002), the user language also includes the
declarative goal-program constru@bal(¢s, P, ¢), which, intuitively, states that (declarative) goal
¢s should be achieved using (procedural) progfnfailing if ¢ becomes true. The operational
semantics provided in (Winikb et al., 2002) for goal-programs captures some of the desired
properties of declarative goals, suchpessistent possible andunachieved For example, if the
programP within goal-programGoal(¢s, P, ¢¢) has completed execution, but conditiggis still
not true, thenP will be re-tried; moreover, iips becomes true during the execution Bf the
goal-program will succeed immediately. However, we do redldvith declarative goals in our
work, because we are only interested in adding planning ygpigdl BDI agent programming
language. We refer the reader to (Sardina and Padgham, 3@6édina et al., 2006) for details on
how declarative goals can be incorporated into CANPlan.

In addition to the user language, there are also auxilisam pbrms which are used by CAN
internally, when assigning semantics to constructs. Tlaeeethe programsil, P1 » P,, and
(41 P1,....¢n: Pq). Intuitively, nil is the empty program—there is nothing left to execute,
program(y1 : P1,....¢n : Py) is a set of relevant plan-rules for some event-goal, andrpmg
P1»> P> means that program; should be executed first, and that progrmgshould be executed if

and only if P, fails. Thefull languageof CAN is therefore described by the following grammar:

Pu=nil|act| 2| +b| -b|!e| P1; P2 | P1>Py | P1l[P2 | (¥1: P1,....¥n: Pn).

Since the language of CAN allows variables in certain pnograve frequently make use of

notions associated with variable bindingssabstitutions

Definition 2. (Substitution) Asubstitutiond is a finite set of the formx;/ty, ..., Xn/tn}, where
X1,...,X%n are distinct variables, and eathis a term such that, # x. We say that is a

ground substitutiorif ty,...,t, are ground terms. Finally is avariable renaming substitution

for some expressiok if each variable occuring il is in {X,..., Xa} andty,...,t, are distinct

variables. []

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 63

As usual,8¢’ denotes the composition of substitutiohend &, and given an expressida
and a substitutio® = {x;/t1, ..., Xn/tn}, we useEd to denote the expression obtained frénty
simultaneously replacing each occurrence;dh E with tj, foralli € {1,...,n}.

The operational semantics of CAN is given by a set of tramsitules in the style of Plotkin’s
structural single-step operational semantics (Plotkd81). A transition C — C’ denotes that
configuration Cyields configuratiorC’ in a single execution step. Similarlg, — denotes that
there is some configuratio@’ that can be reached by performing a single execution step fro
C. The relation—> denotes the reflexive transitive closure-b. Thetransition relationon a
configuration is defined using one or more derivation rulesriation rules have aantecedent
and aconclusion the antecedent can either be empty, or it can consist ditrams and auxiliary

conditions; the conclusion is a single transition.

A={yi0:PO|€ :yi— Pell Af=mgu(e €)}
(B, A,le) — (B, A, (A))
YiiPieA BEyil

(B, A, (A)) — (B, A,Pig> (A\ {i : Pi}))

B = ¢o
— actk — ?
(B, A, act) — (B, A, nil) (B, A, %) — (B, A, nil)

Event

Sel

b

(B, A, +b) — (B U {b}, A, nil) +b (B, A,-b) — (B\ (b}, A, nily ~
(B, A,P) — (B, AP
(B, A, (nil ; P)) — (B, A, P) (B, A, (P1; Pao)) — (B, A, (P; P2))
(B, A,P) — (B, A, P) .
(B,A,(P1>P2)) — (B, A, (P > P2))

P1 #nil (B, A, P /—
(B,A, (P1> P2)) — (B,A,Py)

Seq

Seq

>t

(B, A (il > PY) — (B, ANy !

(B, A, (nil | P)) — (B, A, P) s (B, A, (P nil)) — (B, A,P) ey
(B, A, P — (B, A, P | (B, A, Py — (B, A, P
<B’ ﬂ’ (Pl || P2)> — <B/’ﬂ/’ (P/ ” P2)> ! <B’ ﬂ’ (Pl || P2)> — <B”ﬂ” (Pl || P/)>

Il2

Figure 3.2: CAN’s complete set of rules

The derivation rules of CAN are shown in Figure 3.2. In thades, a configuration, called
a basic configuration is the tuple(8, A, P), where 8 is a belief baseP is a plan-body, and
componentA is a sequence of actions, which is used to keep track of thenaatxecuted so far.

This component will be used in a derivation rule introducated in this chapter.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 64

The Event rule collects all the relevant plan-bodies for the corresjimg event-goal, along
with their associated context conditions, and stores tmefn)i. TheSelrule selects an applicable
plan-body from(A), i.e., one whose corresponding context condition is meténcurrent belief
base, and schedules the plan-body for execution.+Hrelle adds belief atorh to the belief base,
and similarly, rule-b removes belief atorb from the belief base. Rule€SegandSeq handle the
execution of two programs in a sequence in the usual way:dimedr rule takes a single step on
the program on the left, and the latter rule replaces prognémith the program on the right. Like
the Seqrule, ther rule takes a single step on the program on the left. Fheule handles the case
where the executing progral has failed —i.e., wherB; cannot make a transition — by selecting
and scheduling the alternative progr&snfor execution. The>; rule handles the case where the
program on the left has successfully executed, by replatiagntire program withil. Theact
rule states that the execution of any action trivially sectse

Rule ? handles the execution of a test conditign the test condition succeeds if formupa
holds in the current belief base, and it fails otherwiset ithat cannot make a transition. Observe
from the antecedent of this rule that a substitutids applied top. There are two things to note
regarding substitutions. First, although not shown in @amantics, configurations must include
a substitution to keep track of bindings obtained so far faniables during the execution of a
plan-body, so that the stored bindings can be applied tabis that occur again in the remaining
plan-body. Second, observe that variables may be sharedgaprograms occurring in a larger
program, and that programs may fail during execution. Famgde, in progranP; > P», the
same variable, say, may occur in bottP; and P,, andP; may eventually fail. Therefore, the
semantics should be able to handle the “removal” of bindgigsn to variables occurring in failed
programs, so that variables may be bound once again by tee ptbhgrams. For example, if a
binding is given to variabl& whenP4 is tried, andP; then fails,P, should be allowed to obtain a
different binding forx. However, for legibility, and because reassigning binditegvariables is not
necessary for the semantics of our planning framework, ve@ lseibstitutions implicit in places
where they need to be carried across multiple rules. We tieéereader to (Hindriks et al., 1999;
Sardina and Padgham, 2010) for an account of how substitutian be carried across derivation
rules.

Finally, thel|; and||, rules handle the execution of two programs in parallel bydeserminis-

tically selecting either the program on the left, or the ondfe right, and then performing a single

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 65

step on the selected program, and riilesind|;, remove the programil from parallel programs.

3.2.2 Preliminary Definitions

In this section, we present some preliminary backgrouncen@tfrom (Sardina et al., 2006). In
particular, we focus on two things: first, how an agent ewdlfrem one state to another, that is,
rules foragent configurationswhich work at a level above those defined so fatfasic configura-
tions and second, what it means for a plan-body program to (wgakiyulateanother plan-body
program. This notion is needed in the next section to showifttiee expressivity of a BDI agent is
limited in a certain way, then HTN planning is no more thanaklahead mechanism on standard
BDI execution.

Note that in the original operational semantics of CAN, aarddncludes ajoal baseg that
keeps track of the declarative goals that the agent hasdgle@mmitted to via goal-programs.
Although this goal base is not utilised in the original CANr&atics, it can potentially be used
at the agent level execution for reasoning about goals,fergconflict detection and resolution as
done in (Thangarajah et al., 2003b). Since we do not deahiigiehe Goal(¢s, P, ¢¢) construct,
we exclude the goal baggfrom our agents.

An agent configurationor just an agent, is a tuple of the forqv, A, I1, B, A, T'), where N

is the name of the agenf\ is an action-libraryIT is a plan-library,8 is a belief baseA is
the sequence of actions that the agent has executed soddr,iarthe set of current intentions
(that is, plan-body programs). Observe, therefore, thaisichconfiguration is simply an agent
configuration thafi) focuses on a single intention, a(ij does not contain the static components
N, A, andIl. Transitions between agent configurations are dictatetidojoilowing three rules:
Pel' (B,AP) — (B A P)
N,ATL B, AT = (N,AILB, AL, (C\{P)U{P}

eis an external event-goal
N,ATL B, AT = (N,ATLB, AT U{le))

Pell' (8,AP) />
N, AILB, AT = (N, AILB, AT (P

Aste p

Aeuent

Aclean

Rule Astepperforms a single step in one intention. More specificaliyjs possible to perform
a single step in one of the intentions Iiin rule Agiep replaces that intention with the result of

performing a single step in it. RulBgen: Creates a new intention from a new external event-

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 66

goal. Note that we assume that the agent is made known ofrglethhanges in the environment
via external event-goals. Such event-goals could arrigmfsome external source or from the
agent’s own sensors. Finally, rubean removes from the intention base a top-level intention
that hag(i) successfully completed, i.e., the intentioih; or (ii) failed, i.e., one that cannot make
a transition. Intuitively, this is in accordance with the Bibeory of (Rao and Georgg 1991),
where an intention is dropped if it has been achieved, oriihjgssible to achieve (see Section
2.1.1).

Next, we move on to the technical definitions. First, we defirtiemeaning of aagent execu-
tion. Intuitively, an agent execution is a sequence of agent gordtions, where each configura-

tion in the sequence is obtained by performing a single ifianson the previous configuration.

Definition 3. (BDI Execution) A BDIlexecutionE of an agentCq = (N, A, I1, Bg, Ap, o) IS a,
possibly infinite, sequence of agent configurati@GgC1-. . .-Cp-. .. such thaC; = C;, 1, for every
i > 0. Aterminatingexecution is a finite executiofp - . .. - Cn whereCp = (N, A, I1, By, An, .8

An environment-fre@xecution is one in which rul&lgent has not been used — that is, there have

been no changes in the environment.]

To be able to define what it means for a program to simulatehangirogram, we need to
first define what it means for two executions todspiivalent For this notion, given an execution,
we only take into account configurations within the exeauiio which changes occur in either
the executed actiongl or the belief bas& — i.e., configurations that do not change with respect
to either of these entities are disregarded. The rationaténd this is that we are sometimes not
interested in what the agent executes, unless the exealtamges it's internal beliefs, or updates
its sequence of executed actions. An execution with unathegnfigurations removed is called

a derived execution Before we define this notion, given any basic configuratiBnA, P), we

define theprojectionof the first component of the tuple @z, the second component of the tuple
asC| 4, and the third component of the tuple @». Then, formally, ifE = Co-...-Cpis a

finite execution, thelerived executiofE of E is the sequence of configurations obtained filém

by removing all configuration€; in the sequence such thaflg = Cj_1|g andCj|# = Cj_1| #.
In addition to the notion of a derived execution, we also beefollowing notation to track

the evolution of an intention within an execution. Supp@ge ... - Cy is a normal or derived

5Note thatl", = {} is possible if, for example, an external event-goal is addadule A.eny, the event-goal turns out
to have no associated plan-rules, and consequently, tiné-gual is removed via rul¢ean

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 67

execution andP is an intention irCq (i.e., P € I'g). Then, the sequend® = P, Py, ..., P, denotes
P’s evolution within the execution, where for ang {0,...,n}, P; € T'j U {€}, wheree is used to
denote that the intention had been removed from the intetiése at som€;, for j <i. Observe

thate is not a program itself, but just an auxiliary meta-levelatian.

For example, consider agent configuration= (N, A, I, {q}, act {(+p; +Q), +r}).
Observe thafi) intention basd” contains the two intentionsp; +q and+r; (ii) the
sequence of executed actiorfs contains one actiomact, and that(iii) the belief
base8 of the agent i§q}. Now, consider the following agent level execution of

configurationC:’

(N, ALTL {g}, act {(+p; +0), +r}) -
(N,AIL{p, g}, act {+q, +r}) -
(N, AL {p, g, act {nil, +r}) -
N, AL P,), act {+r}) -

(N, AIL{p, g, r}, act {nil}) -

N, AT {p, g, 1}, act, 0).

Observe that the third, fourth and sixth configurations mdRecution are un

changed configurations, because each of these configwwdimre the same be-
lief bases and action sequences as the configurations iratalgdbefore them.
Observe, further, that the evolution of intentierp; +q within this execution i$
(+p; +09), +q, nil, €, €, €, and that the evolution of intentioar within this executior]

IS +r, +I, +r1, +r, nil, €.

Based on the notions of a derived execution and the evoluian intention, we can now
define what it means for two agent executions to be equival8pecifically, we are interested
in agent executions that are equivalent modulo particulEntions. This is because, in order to
define what it means for a prograRi to simulate another prograf relative to an execution of
P, we need to know whethé? can produce the same execution, modulo the (possilfiigrdit)

programsP andP’.

"Note that the transition to the last configuration happeaswie Agean.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 68

Definition 4. (Equivalent Executions) Two, possibly derived, agent akenosCy - ... - C, and

Cp - ... - Cj are said to bequivalent modulo intention# for every 0< i < n, the configuration

Cl = (N, AT, Bi, AL T, whereCi = (NG, AL T, Bi, A;, 1), Also, the two executions are

equivalent modulo intentionsgRE I'y and P, € I if they are equivalent modulo intentions and for

every 0< i < n, (I7T\ {P}}) = (I \ {Pi}), whereP; (P)) is Po's (Py's) evolution within execution

Co-...-Ci(C)-...-C)). n

Finally, we define some basic terms associated with the &racaf an intention, and we

define what we mean by a program simulating another program.

Definition 5. (Intention Execution) LeE be a BDI executiorCqy - Cq - ... - C, for an agent
Co = (N, AT, By, Ag, Tg), WherePy € Ty, andPg, Py, ..., P, is the evolution ofPy within
the execution. Then, intentidRy in Co has beeriully executed irE if P, = €; otherwisePq is
currently executingin E. In addition, intentionPg in Cy has beersuccessfullyexecuted inkE if
Pi = nil, for somei < n; intention Py hasfailed in E if it has been fully but not successfully

executed ire.]

We say that a prograr®’ simulates another progra® relative to an executiok of P, if P’
has an executio’ that is equivalent t&& modulo (respectivelyP’ andP, andE’ is successful if

E is successful.

Definition 6. (Program Simulation) Le®, P’ be programs and I& be an execution of a configu-
rationC = (N, A, I1, B, A, T'U{P}), whereP, P’ ¢ I'. ProgramP’ simulategprogramP in execution
E iff there is an executioB’ of configurationC’ = (N, A, I1, B, A, T U{P’}) such tha(a) E andE’
are equivalent modulo respectivedyandP’; and(b) if P has been successfully executedsinso
hasP’ in E’. We say thaP’ simulatesP iff P’ simulatesP in every execution of any configuration.

3.2.3 Adding HTN Planning into CAN: the Plan Construct

In order to integrate HTN planning into the revised CAN laage described in Section 3.2.1, we
need to address several issues. First, we need to providelal wicactions. Second, we need to
keep the full language as uniform as possible. Third, we tegi/e the BDI programmer control

over when to perform HTN planning. Fourth, we need to deteemvhat BDI domain knowledge

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 69

the HTN planner will use — we want the planner to re-use as nmfohmation as possible from
the existing BDI domain. Finally, we need to determine hovetecute a HTN solution from
within the BDI execution cycle, while at the same time moniitg the execution if possible.

We address the last four issues by introducing a new progoastitict into the CAN language,
namely, Plan(P), whereP is a plan-body program. Intuitively, this construct meaegecute
program P only if there is a complete hierarchical decompiosifor P.” In this way, an agent
executing a program within tHelan construct performs a complete HTN look-ahead search before
committing to even the first step in the program. Before mhog an operational semantics to
define the behaviour of thelan construct, we first discuss our representation and sensamitic

actions.

Actions

In the BDI languages proposed by (Rao, 1996; Wifiikb al., 2002), actions are not modelled —an
action is defined as any arbitrary operation that is alwapticgble, and one that always succeeds.
In contrast, we consider actions to be the usual basic mdaas agent to make changes to its
environment. This view of actions is especially importanbur work because we are interested in
adding planning (HTN and classical) to BDI agents, and ptasinequire an explicit representation
of the preconditions and postconditions of actions.

In order to incorporate actions into CAN, we add to the definiof an agent a STRIPS-like
action-library A, containing rules of the formct : et «— O, @5, ONe for each action type
in the domain. Like CAN actions, the action naime can correspond to any arbitrary operation
(e.g., a low-level function in C that activates a robot'suatbrs). All that we are interested in
capturing is the action’s preconditign,: and its postcondition, i.e., its add list of atod%., and
delete list of atom®;,. The language of the action-library is the same as that obtdne-library.
Moreover, like the definition of a classical planning opergGhallab et al., 2004, p. 28), the
following conditions hold for our action-rulegi) free variables i e, @5 and®Z are also free
in act, (i) wact is a conjunction of literals; angii) act is a symbol followed by a vector of distinct

variables.

For example, actiomae(X, y, 2), which moves objeck from y to z, could be repre*—

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 70

sented in the action-librank as follows:

mae(X, y, 2) : Freg2) A At(X, y) «—
{Freg(2), At(x, y)}; {Fre€(y), At(x, 2)}.

An alternative, more involved approach for modelling atcsiavould be to follow (Hindriks
et al., 1999) and to assume that a partial functionspecifying the update semantics of basic
actions, is given. More precisely, if(act, B) is defined, it yields the new updated belief base
B’; otherwise, the action’s precondition is not metAn However, for simplicity, we stick to the
STRIPS-like action library described.

The rule that defines the behaviour of an action is shown riéxs rule states that an action
is executed byi) selecting an applicable action-rule (if any) from the agtibrary A; (i) adding
the action to the sequence of actigAs and (iii) updating belief bas# with the add and delete

lists of the action.
act ;Y « @ ;d* e A act@=act BE yo

(B,A,acty — (B\ D 0) U D0, A - act, nil)

Finally, we add another reasonable restriction to the difinbf an action: we require the post-
conditions of actions to beonsistent This restriction ensures, to a certain extent, that astare

written with appropriate care.

Definition 7. (Consistent Actions) LeA be an action-library and letct ; ¢ <« ®~;®* € A be
an action-rule. Theract: y « ®; ®* is consistentelative toA iff for all ground instanceacty

of actand belief base8, if B E 0, then®d*9 U {=b | b € ®~6} is consistent. [|

Plan construct

We now provide operational semantics to define the behawbtlire Plan construct. To do this,
we first introduce two types of (labelled) transitions oniba®nfigurations:bdi-type transitions
andplan-type transitions. Intuitivelybdi-type transitions are used for the standard BDI execution
cycle, andplan-type transitions are used for (internal) deliberatiopst&ithin aplanningcontext.

By distinguishing between these two types of transitioresave able to disallow certain rules, such
as those dealing with failure handling, from being used iteaming context. We writ€ L

to specify a single step transition of typavheret is eitherbdi or plan. When no label is specified

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 71

on a transition, both types apply.

Next, we show the main operational rule for thtan construct. This rule, which is influ-
enced by the construct of (De Giacomo and Levesque, 1999), states thasia bonfiguration
(8B, A, Plan(P)) can evolve into a configuratiof8’, A’, Plan(P’)) if the following two conditions
are met:(i) configuration8, A, P) can evolve into configuratiotB’, A’, P’), and(ii) it is possible

to reach dinal configuration from{8’, A’, P’} in a finite number of planning steps.

plan,

|
(B, APy 5 (B APy (BLALPY s (B, A, nily oran
(B, A, Plan(P)) -5 (8", A, Plan(P))

There are also two simpler rules associated withPla@ construct. These are shown below.

(B. A Plan(nil)) — (B.A.niTy Tan
8,4,P) 55 (8, AP
< b b > ﬁ < b b > PIanP

(B, A, Plan(P)) @ (B, A, Plan(P"))

Rule Plan; deals with the trivial case of planning on prograuih by simply removing theélan
construct from the program. RuRanp handles thélan construct within a planning context: if
a Plan(P) program is encountered during an execution that is alreathin a planning context,
rule Planp, unlike rulePlan, avoids looking ahead oR, and performs instead a single (arbitrary)
plan-step onP. The reason for performing a single stepmis that it is not clear what it means to
perform planning when already within a planning contexterBfiore, any (nesteddlan construct
encountered from within a planning context is essentigjhored.

Certain transition rules only make sense in the context dfé@cution, in particular, the rules
that deal with failure handling. As mentioned before, thaaapt of BDI-style failure handling,
where on the failure of a step in some state an alternativéeid from that state, does not exist
in HTN planning — HTN solutions do not include such failur@he rule that handles BDI-style
failure is>¢ from Section 3.2.1. We make this rule unavailable duringipiiag by making it ddi-
type transition, and we refer to the new version of the rule*ﬁ‘s In addition to this modification,

we also need to modify slightly the agent level rulege, and Aciean from Section 3.2.2, so that

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 72

they are defined in terms btli-type transitions. The three updated rules are shown below:

Py #nil (B, A P1) 7% [>tf)di
(B, A, (P15 P2)) - (B, A, Py)

Pel (B, A P) b, (B' A", P)

N,ATLB, AT = (N, AILB L, AL (C\{PY) U{P})

Aste p

PeT (B.AP) 1% A
(N.ATLB,AT) = (N,AILB AT\ {P}) *olean

Observe that, with the alternative rwlédi, only the BDI execution cycle would be allowed to
try alternative plans from for an event-goal upon the failure of some plan previousedtfrom
A. Therefore, although a program of the fornfia{8er> (A)) has no transition within a planning
context, this program does have a transition within a BDItexin— program(A) will be tried.
Since the above rules are not available in the planning ggnt&anning does not merely amount

to looking ahead on the BDI execution cycle.

Let us explain how th@lan construct works with an example. Consider an agent

with the following four plan-rules (wher, is some plan-body):

: true « Plan(!ey)
P U le

D aU — +r

P P 2P &

:q<—P2

Suppose the initial belief base of the agenBis = {p}. To understand how
programPlan(!€) works, let us first consider the execution of prograndlone.
In the first execution step, rulBventis applied to obtain the set of relevant

plansA for event-goak;:

A={(p:+u;'e), (-u: +r)}
(Bo, A, ler) — (Bo, A, (A))

Event

In the next step, an applicable plan-body is selected ffoamd scheduled fqg

=

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 73

execution. Since both plan-bodiesArare applicable in this case, suppose the glan-

body selected is-u; !e:

(p:+ule) e A BoE p
(Bo, A, (A)) — (Bo, A, (+U; lex) > ({—u : +r}))

Sel

In the next step, the belief operation in prograuon !e; is performed; in partic

ular, belief atormu is added to belief basBg to obtain belief bas®; = {p, u}:

(Bo, A, +U; &) — (B1, A, nil; &) +b 5
(Bo, A, (+U; &) > ({—u: +r})) — (B1, A, nil; lex > ({—u : +r}))

Two steps later, the set of relevant planfor event-goal & is obtained:

A=1{q: P2}
(B1, A, &) — (B1, A, (A)) .
(B, A& > ({mU 2 +r})) — (B1, A, (A) > ({=u: +r}))

Event

Now, observe that the only plan iis not applicable for event-goa, because
B1 £ q. Consequently, a transition is not possible from configanatB;, A, (A)).
Moreover, the alternative plan-bodyr in ({—u: +r}) cannot be successfully exe-
cuted either, because the belief baseBis= {p,u} and the context condition of
plan-body+r requires—u to hold. Consequently, the top-level event-goal program
lefails.

Let us now consider the execution of progr&tan(!e). In the first step of th

11

execution, rulePlan will be applicable, resulting in the set of relevant planmbe

selected as before:

A={(p:+u;'e), (wu: +r)}

plan

(Bo, A, ler) — (Bo, A, (A))
(Bo, A, Plan(le))) =5 (Bo, A, Plan((A)))

Event

Plan

In the next step, rul®lan will be applicable again. However, unlike before,

from the relevant set of plans, plan-body+u;!e, will not be selected, becausg it

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 74

is not possible to successfully execute (decompose) thisIpbdy, for the reasons
shown before. More specifically, conditigq®Bo, A, (+u;!ex) > ({-u: +r})) pﬂ
(B, A, nil) required by the antecedent of rian is not met. However, condition
(Bo, A, +r > ({p: +u;'ex}))) pﬂ (B, A, nil) is indeed met, resulting in plan-bogy
+r being selected for execution, and progrBian(!e) succeeding. It is important
to note that, of course, the first execution step of progPdmn(!e) would not have
happened at all, if the successful execution ofRten(!e) program were not possi

ble.

The full set of CANPIan rules is shown in Figure 3.3.

3.2.4 Properties of the Plan Construct

So far, we have provided a framework for planning from wittiie CAN BDI language, namely,
thePlan(P) program construct. Next, we discuss properties ofPtlhea(P) construct. In particular,
we show thaPlan(P) does indeed amount to HTN planning on program

It was shown in the previous example that an agent will notereBDI step on a program
Plan(P) unless that step leads to a successful executidh tfcan then be expected that, if there
is a successful HTN execution for a progr&nthen there is also a successful BDI execution for

the program, provided there is no intervention from the idetenvironment.

lan,
Lemma 1. For every belief baseB sequence of actiongl and program P, K8, A, P) il

(Bt Ay, nily, then(B, A, Plan(P)y 25 (B¢, Ay, nil).
Proof. See Appendix A.1. m]

Similarly, but more importantly, if an agent contaiRtan(P) as its only intention, and the
intention is able to start executing, then there is at least successful BDI execution for the

intention, provided there is no intervention from the adésenvironment.

Theorem 1. Let C = (N, A, I1, B, A, {Plan(P)}) such that(B, A, Plan(P)) ~5. For any environ-
ment-free agent execution E of C, intent®lan(P) is either executing or has been successfully
executed in E. Moreover, there is an executiohdE C in which intentionPlan(P) has been

successfully executed irfE

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS

Pel (8B A, P> <B’ AP
N,ATL B, AT = (N,AILB A, (C\{P) U{P})

eis a new external event Ag,
N, AL B, AT = (N,AILB, AT U{le) =~ oent

Aste p

Pel (8,4 P) 1%
N ATLB, AT = (N, AIL B, AT\ [Py /cean
A={yi0: PO € :yi— P eIl A0 =mgu(e €)}
(B, A,1e) — (B, A, (A))
yiiPieA BEyil
(B, A, (A)) — (B, A,Pif> (A\ {yi : Pi}))
BE ¢0 7
(B, A, %) — (B, A,nily

Event

Sel

B.A+D S @BUDLAND P BA D = @\ (bLAn P

act (Y «— @ ;®* e A actd=act BE yd
(B,A,acty — (B\ D 0) U D*0, A - act, nil)
Seq (B, A, Py — (B, A, P)
(B, A, (nil ; P)y — (B, A, P) (B, A, (P, P2)) — (B, A", (P;Py))
(B, A, Py — (B A, P)
(B, A, (PL>Py)y — (B A", (P > P2)> (B, A, (nil > P")y — (B, A,nil)

Py #nil (B, A P1) ﬂ th)di
(B, A, (P P2)) - (B, A, Py)

Seq

B>t

(B, A, (nil [P)) — (B, A, P) s (B, A, (P nil)y — (B, A, P) ke,
(B, A, P — (B, A, P) (B, A, Py) —> (B, A, P)

(B,A, (P11 P2)) — (B' A, (P P2)) h (B, A, (Pl | P2)) — (B, A, (P1 1| P"))
(B, A, P) (B’ AP (B’ A, P’) <B” A, nll)
(B, A, Plan(P)) P (B, A, Plan(P"))

B.A Plan(nil)) B ANy A

(B, A, P) (B' AP
(B, A, Plan(P)) —> (B, A, Plan(P"))

Planp

Figure 3.3: CANPlan’s complete set of rules

75

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 76

Proof. Suppose the contrary, i.e., tHaian(P) is neither executing nor has been successfully ex-
ecuted in the environment-free executiBn Observe from Definition 5 that this can only be true
if E is of the formCy = C - ... - C¢ such thak By, Ak, Plan(Py)) ﬂ wherePlan(Py) = Cylp.
Observe, then, thaiB, A, Plan(P)) ﬂ (B, Ak, Plan(Py)). By the antecedent of rulelan and

|
from the fact that is an environment-free execution, we know tk@t A, P) Fﬂf (B, Ak, Px)

i (B¢, Ay, nil), and therefore, thatBy, Ax, Pk) s (Bs, Az, nil)y holds. Then, from Lemma
1, we get that By, Ak, Plan(Pk)) ﬂ (Bt, Az, nily. Consequently, there exis®’, A, P” such
that (By, Ak, Plan(Py)) L (B, A", P’y b (Bs, As, nil). Therefore, it cannot be the case that
(B A, Plan(Py)) 7= holds.

The second part follows easily from the fact tl%l-aa% stands for dinite chain of transitions: if

the agent follows those exact transitioRsyill eventually terminate successfully. m]

The above theorem is important, as it implies that the prognar can use the new look-ahead
constructPlan(P) in order to avoid — to some extent — failing executions ofgpamn P. This is
in contrast to the standard BDI executionRfwhich may lead to the failure d® due to wrong
decisions at choice points. It is important to note, howeet the deliberation construetan(P)
is only local in the sense that it does not take into accownptiential interactions d? with other
concurrent intentions and the environment.

Next, we make clear the relationship between existing HTiNas#ics and oulPlan construct.
To do this, we first require that our agentshiminded We say that a CANPIlan agentbhsunded
if (i) +b and-b programs do not occur in the agent, i.e., the agent only dwitg belief base
via primitive actions; andii) all entities belonging to the agent conform to the same caimss
and logical language as those of the corresponding entiéisiging to the HTN domain. Note
that, althought+b and —b programs cannot occur in a CANPlan agent, this restrictioeschot
in any way decrease the expressive power of the agenthasd—b operations can always be
represented using special actions.

Using the definition of a bounded agent, we can now state dibynthe link between th€lan
construct of CANPlan and HTN planning of (Erol et al., 199@)irst, we show thaPlan(P)
does indeed amount to HTN planning on progr&m Second, we show that executions of a
programPlan(P) encode HTN plan solutions. Finally, we show that any HTNhalution can

be successfully executed by the BDI execution cycle.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 77

Theorem 2. For any bounded agent,
1. (8, A, Plan(P)) =5 iff so(P. B,TTU A) # 0.
2. (8, A,Plan(P)) % (B, A - act; - ... - ack, Plan(P’)) with k > 1 iff there exists a plan
o € solP, B,ITU A), such thatr = act; -...-ack - ... - act,, for some > k.

3. Ifthere exists a plap- = act; - .. .-act, € sol(P, 8,I1UA), then(B, A, (acty;...;act,)) ﬂ
(B, A - o, nil).

Proof. This is an involved proof showing thatan-type transitions perform no more than the task
decomposition done by HTN planners. The proof is based otrdhslation between BDI domain

knowledge (i.e., librariesI and A) and HTN domain knowledge (i.e., the method-library and
operator-library), as discussed in Section 3.1. We refere¢lader to (Sardina and Padgham, 2010)

for the complete proof.]

Therefore, provided we conform to the language of HTN, olibdeator construcPlan pro-
vides a built-in HTN planner within the BDI framework. Theae theorem is an important
practical result as it provides a rationale for using engstHTN systems, such &MCP, SHOP

and SHOP2, within existing BDI implementations such as@da3ade and JACK.

Planning versus BDI execution

We conclude this chapter by exploring th&diences between the execution of a planning program
Plan(P) and the standard BDI execution Bf In particular, we present two results: first, we show
that if the expressivity of a BDI agent is limited in a certaiay, thenPlan(P) is nothing more than
look-ahead on the standard BDI executiorPpfand second, we show that in some BDI program
structures, the standard BDI executionPotan find solutions tha®lan(P) cannot find.

To show the first result, we define a CANPiaagent as a CANPlan agent whose plan language
does not include thgconstruct. This restriction corresponds to classical Bird programming
languages such as AgentSpeak, antbtal-order HTN planners such as SHOP- neither system
includes concurrency. Under such restricted, AgentSfisak=ANPIlan agents, any step that can
be taken using the planning construct can also be taken gtimglard BDI execution. This is

stated by the following lemma.

Lemma 2. For every CANPlan agent, if(8, A, Plan(P)) ﬂ (B, A, Plan(P")), then(B, A, P)

LN =23

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 78

Proof. The only possible rule that could have been used for tramsitB, A, Plan(P)) —

(B, A',Plan(P")) is rule Plan. Moreover, from the antecedent of tRéan rule, we know that
the following two conditions must holda) (B, A, P) B AP and(b) (B, A’, P’) iinll
(Bt, Az, nily. Let L(n) be the statementB, A, P> (B’ A, P’). Using (a) and(b), we will

prove by induction on the numbarof plan-type derivation rules involved ia), thatL(n) holds.

[Base Case:n = 1.] If only one derivation rule is involved ifa), then one of the following cases
must hold:
1. P = act |2 | +b | —b. In this caseP’ = nil, and(B, A, Py -5 (&', A, nil) follows
trivially.
2. P = (nil; P3). In this caseP’ = P2 and(8, A, P) (B’ A, P?) follows trivially.
3. P = (nil > P3). In this caseP’ = nil and($, ﬂ P> <B’ A, nil) follows trivially.
4. P =le. In this caseP’ = (A), and(8B, A, P) <B’ A, (A)) follows triviaIIy
5. P = (A). In this caseP’ = Pi6r> (A \ Pj)) due to ruleSel and(8, A, P> <B’ A, P>
(A \ P;)) also holds.
6. P = Plan(nil). In this caseP’ = nil and(8B, A, P) — bd — (B, A, nil) follow directly from

derivation rulePlan;.
[Induction Hypothesis] Assume that.(n) holds forn < k.

[Inductive Step] Supposen = k, that is,k derivation rules are involved ita). Then, one of the
following cases must hold:
= (P1; P,). In this caseP # nil andP’ = (P4; P2), where(8, A, P1) @ (B',A',P))
plan — (B”,A”,nil). By the induction hypothesis, we know th&, A, P;) L (B',A',P))
holds; therefore(8B, A, Py — bd — (B, A’, P’y must also hold due to rulBeq
2.P = (P> P2) In this caseP # nil and P’ = (P, > Py), where (8, 4, Py)
(B',A',P) (B” A”, nil). By the induction hypothesis, we know th&#&, A, P1) od
(8, A, P)) holds; therefore(B, A, P) — bd — (B, A, P’y must also hold due to rute.
3. P = Plan(Py). In this caseP’ = Plan(P}), where(8, A, Py) "o (&', A, P,) "
(B”,A”, nily. By the induction hypothesis, we know tH&, A, P1) —> (8', A, P) holds;
therefore{8B, A, P) — bd — (B, A’, P’y must also hold due to rulelan.

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 79

O

Then, it follows that the planning construct is no more thémok-ahead mechanism on top of

the BDI execution cycle.
Theorem 3. Program P simulates progratlan(P) in every CANPIlan agent.
Proof. Follows directly from Lemma 2. m]

On the other hand, when concurrency is allowed in the langupgrforming planning on a
programP may result in more executions than the standard BDI exatwtid. It can be shown
that executingPlan(Plan(P,)||P2), which is equivalent to executiriglan(P1||P,), is very diferent
from executing Plan(P1)||P2). The reason, informally, is thatRlan construct is ignored within

the context of anothdPlan construct—there is no notion of planning within planning.

To understand why a prograi does not necessarily simulate progr&an(P)
when concurrency is involved, consider the following exémp

Suppose progran = Plan(P1)||P2, where plan-bodyP; = +r;?p and
P, = +p, and the initial belief base i = {q}. Let us now consider the exequ-
tion of programP. In the first step, the only applicable rule (see Figure 3.3)
will be used to execute programp. Observe that rul¢; cannot be used because
programPlan(P,), i.e., Plan(+r; ?p), does not have a full HTN decompositior] —
test condition B will not succeed in belief bas8 = {g}. Nonetheless, after belief
atomp is added tdB in the first step, prograrRlan(+r; ?p)||nil can be successfully
executed in the next few execution steps, resulting in pmd? succeeding.

Let us now consider the execution of programian(P), i.e., progran
Plan(Plan(P1)||P2). Unlike we saw earlier, in the first execution step herehbot
concurrency ruleg; and||, are applicable. Now, suppose rulgis applied first
This will result in programPlan(Plan(nil; ?p)|| + p) and belief baseB1 = {q,r}.
Suppose ruldls is applied two steps later (i.e., after the removal of progral).
This will result in programPlan(Plan(?p)||nil) and belief baseB, = {p,q,r}. As
one can observe, this will eventually lead to the top-lewelgpam Plan(P) suc-
ceeding, because test conditiop ®ithin P; will succeed in the new belief base

B, ={p,q,r}. Observe, then, that it is not possible to execute progPasuch that

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 80

the resulting evolution of the belief base is identical te #volution of the belief
base resulting from the above execution of progRlan(P). This is because the
first belief addition taB by the execution of program is the belief atonp, whereas
the first belief addition teB by the above execution of progratan(P) is the belief

atomqg. Consequently, although bothandPlan(P) execute successfully, there is a

successful execution &#lan(P) that cannot be obtained by executiAg

Lemma 3. There exists a program P such that P does not simulate progpiam(P).

Proof. Refer to the above example. m]

Finally, we show how the BDI execution engine may find sudtgégxecutions that the plan-

ner cannot find. To see why this is the case, let us considdolioe/ing example.

(0

Action/Plan-rule Prec. Post.

Re P -
/ \ _’ act, true p

ach true Any

acty true Ary

. J

The above figure shows two plan-rules for handling event-gpthat is, rulg

e : true « acty; 7q; ack and rulee : p « acts; ack. Observe from the figure that
all actions are possible, and that actimet; makesp true. Now, suppos@ andq
are both false initially. Then, observe that there is no Bkdaaition for program
Plan('e). However, a successful BDI execution for programibes exist, if action
act; in the first plan-rule is executed first, and then, upon failfrthe test condition

20, the second plan-rule is fully executed.

The following theorem states this result formally.

Theorem 4. There exists an agent configuration C of the fqn A, I, 8, A, T" U {P}) for which
there is an execution where P is successfully executed, umlt that no execution of 'C=

N, AN B, A, T U {Plan(P)}) can successfully execuian(P).

Proof. Refer to the above example. m]

CHAPTER 3. AHTN PLANNING FRAMEWORK FOR BDI SYSTEMS 81

As one can observe, the proof relies on the failure handlieghanism built into the BDI
execution cycle, as well as on the programmer specifying anpartial BDI plan-library. In
fact, if the plan-library in the above example had includied additional plan-rule : true «
acty; ?p; actz; ach, then the planner would also have found a successful executHowever,
since agent programs—that is, plan-libraries—are oftereldped incrementally and in modules,
the above situation could well arise.

It can then be seen that the combined framework, which irddxbth standard BDI execution
as well as local HTN planning, is strictly more general thagal HTN planning alone. Moreover,
as discussed after Theorem 1, by using the new local plam€mmodyple, the programmer can, to a

certain extent, rule out BDI executions that are bound fo fai

Chapter

A First Principles Planning Framework for
BDI System$

In the previous chapter, we provided a principled approacimd¢orporating HTN planning into
the BDI framework, using the domain knowledge containechim BDI plan-library. However,
this approach only allows look-ahead planning to assishoosing appropriate plans in a given
context. Itis not possible to construct new BDI plan stroeswising this approach. In this chapter,
we provide an approach which uses first principles planrorfind BDI plans that do not currently
exist in the plan-library. Such an approach is useful whenirfstance, none of the existing plans
are applicable for an event-goal, or all applicable plan®iailed during execution.

In earlier work on adding first principles planning to BDikdi systems, the focus has been on
constructing plans composed of low level steps (e.g., (B@gpand Ingrand, 1999)) or primitive
actions (e.g., (Wilkins et al., 1995; Meneguzzi et al., 2002lal3en et al., 2007)). In contrast,
we are concerned here with the problem of constructing ptansposed of hierarchical struc-
tures capturing the typical “standard operational prooesiuof a BDI agent. We call such plans
abstract-plans In more precise terms, abstract-plans are plans in whitbrecare not primitive
but abstract, representing BDI event-goals.

Abstract-plans are particularly appealing in the contéX8DI systems because they respect
and re-use the procedural domain knowledge that is alreaailable in the system. According

to (Kambhampati et al., 1998), the primitive plans that edastplans produce preserve a property

fPart of the work presented in this chapter has been preyipusllished in (de Silva et al., 2009).

83

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 84

calleduser intentwhich according to (Kambhampati et al., 1998) is the priypehere a primitive
plan can be “parsed” in terms of event-goals whose primfiects support the goal state. Another
feature of abstract-plans is that they are, like typical BRhs, flexible and robust: if a primitive
step of an abstract-plan happens to fail, another optionbedyied to achieve the step.

In order to include event-goals as (abstract) actions inptamning domain, we need to ax-
iomatise event-goals with precondition and postconditndormation. We obtain this information
offline using an adaptation and extension of the “summary” dhgos of (Clement et al., 2007).
In particular, we take as the precondition of an event-gualisjunction of the context conditions
of the associated plans in the plan-library, and we comphgepbstcondition of an event-goal
based on the structure of the event-goal’s hierarchy, coetbivith existing knowledge about the
effects of primitive actions. After abstract actions are oigdi we use them at runtime as input
for a first principles planner, and we validate abstractplund by checking if there is a viable
decomposition, which may involve calling the HTN plannerisTvalidation step is necessary
due to the representation we use when transforming evex$-gao abstract actions. Our overall

framework for first principles planning is depicted in Figut.1.

Chapter 3
I Action-library | (Chapter 3)
|

(Chapter 4) '

Summarise

Abstract
action-library

HTN Planner

(Chapter 4)

First
Principles
Planner

Hybrid-plan Validate

(Chapter 5)

Extract
“preferred”
hybrid-solution

Hybrid-
solution

Figure 4.1: The overall framework for first principles plamnin BDI systems

As one example of the value of first principles planning in Biglents, consider
Figure 4.2, which shows a Mars Rover agent. The top-levattegeal of the agent

is to explore a soil location, and one way of doing this is teigate to the locatio

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 85

and perform a soil experiment at the location. Observe thewmng:

1. navigating involves the primitive ste@alibrateViaGPSandMove

2. performing a soil experiment involves the non-primitiveteps

ObtainSoilResultand TransmitSoilResults
3. transmitting results to the lander involves the pringitstepSendResulis

4. obtaining soil results involves the following primitie&d non-primitive steps:
PickSoilSampléprimitive), AnalyseSoi(non-primitive), anddropSoilSample
(primitive); and

5. analysing soil involves the primitive step&etMoistureContentand
GetSurfacelmage

Note that in order to get an image of the surface of the soiloatesloca
tion (GetSurfacelmage the rover needs to be at the location. Next, suppose that
PickSoilSampl@ st places a soil sample in the soil compartment, and that the ac
tion’s precondition is met only if there is no soil in the coanment. Moreover,

suppose the following:

1. Ry is applicable only if the rover is arc and the soil compartment is empty;

2. Ry is applicable only if the rover is arc;
3. R, andRg3 are applicable only if the rover is distand the soil compartment fis
empty;

4. R4 is applicable only if the rover is atstand there is a soil sample frodstin

the soil compartment;

5. Rs is applicable only if the soil results (i.e., moisture carttand surface im

age) fordstare available; and finally,

6. Rs is applicable only if the rover is not arc and if it has not transmitted
results fordst, andRg involves calling a first principles planner in order to find
a solution that can take the agent from its current statdqie@oal state where

soil results fordsthave been transmitted.

Hence, note thaRs is used for dealing with failed explorations in which the eov

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 86

has successfully navigated frosnc, but has not managed to, for whatever reason,
transmit soil results fod st

Now, suppose that the agent starts exploring some soilitoc&t/aypoin
from its initial locationWaypoinf,, and that soon after navigating and picking a [soil
sample fromWaypoin®, the rover’s location (unexpectedly) changes to somer pthe
locationWaypoinB. (This could happen, for instance Waypoin® is at the top of
a sandy slope; the rover successfully navigate®/&ypoin®; and then soon after
picking a soil sample the rover slips, perhaps due to strong,vand moves down
the slope tdWaypoinB.) Observe, then, that the second stefRefwill also fail,
as this step requires the rover to be/ypoin. ConsequentlyRy will fail, and

the agent will select the alternative plan-rikg, which will call a first principles

—

planner in order to find an abstract-plan for reaching the giade from the currer

locationWaypoin8. One such abstract-plan is shown below.

1. NavigatéWaypoin8, Waypoing)
2. AnalyseSo{wWaypoing)
3. TransmitSoilResulf8Vaypoin)

Observe that this abstract-plan does not involve pickingo& sample after
navigating toWaypoinf as the soil compartment already contains a soil sample

from Waypoing.

Itis important to note that, while in this chapter we providieamework for planning from first
principles using BDI knowledge, we do not, unlike the preg@hapter, integrate the framework
into a BDI agent-programming language itself, i.e., we doprovide an operational semantics
for first principles planning in a BDI agent-programming daage. Such a semantics may re-
quire the inclusion of new operational rules into the larggyaalong with a new construct such as
PlanFP(¢), whereg is a goal state to achieve. We briefly discuss such a semamtitisapter 7.

This chapter is organised as follows. First, in Section %é,introduce some preliminary
notions, in particular, the notiors/brid planning problenandhybrid solution Second, in Section
4.2, we(i) define precisely the precondition and postcondition infaion we want to extract

from BDI event-goals for use in first principles plannin@) provide algorithms for extracting

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 87

’ ExploreSoilLocatio¢src, dsf ‘

ox
|
— action

| Navigatdsrc ds} | | PerformSoilExperimexds |

| ObtainSoilResultsls? | | TransmitSoilResul(ds |
—
GetMoistureConteigls) | - GetSurfacelmagels :

Figure 4.2: A Mars Rover agent. An arrow below a plan-ruledates that its steps are ordered
from left to right.

this information; and(ii) discuss the properties of the proposed algorithms. Thirdgaction
4.3, we describe how to create abstract actions from thenv#tion gathered, and how to obtain
an abstract-plan by using these actions for first principlasning. Finally, in Section 4.4, we

provide algorithms for validating an abstract-plan found.

4.1 Hybrid Planning

In this section, we introduce some preliminary notionsteslao hybrid-plans which are more
generic than abstract-plans in that they allow the inclusibprimitive actions where necessary.
The main notions we introduce dngbrid planning problenandhybrid-solution

As mentioned earlier, using event-goals as abstract apsrituitively ensures that resulting
hybrid-plans preserve the user intent property (Kambhdanepal., 1998), which is the property
where a primitive plan can be “parsed” in terms of event-g@dioserimary (or intended) &ects

support the goal state. The primarffexts of event-goals (in (Kambhampati et al., 1998)) are

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 88

supplied by the programmer. We will start by illustrating tiser intent property with an example.

Consider the Mars Rover agent of Figure 4.2. Suppose thaadgbat, for som

11

reason, invokes the planner from locatdfaypoint2 in order to find a solution far
the goal state where the soil compartment is empty, andtsefsam Waypoint2for
moisture content and surface image are available. Furtihresnsuppose that the

planner returns the following primitive solution:

1. PickSoilSampl@VaypoinR)

2. GetMoistureContelftWaypoing)
3. GetSurfacelmag®VaypoinR)

4. DropSoilSampléNaypoing)

Observe that the action sequenc&etMoistureConterfVaypoing) -
GetSurfacelmag®Vaypoin) can be parsed by plan-rulé,, and hence
by event-goal AnalyseSo{MWaypoing). Observe, further, that the re-
sulting sequence PickSoilSampl@Vaypoin2) - AnalyseSo{Waypoing)
DropSoilSampl@NVaypoinR) can be parsed by plan-rul®;, and hence by

event-goalObtainSoilResul@VaypoinR), whose primary fect — i.e., to havg

1%

soil results fromWaypoin2 — supports the goal. Therefore, the primitive solution

preserves user intent, as all of its actions can be parseernmstof event-goal

[72)

whose primary ffects support the goal state. On the contrary, suppose thegr|a

D

finds the following primitive solution instead, for the samitial state and goal stat

1. PickSoilSampl@Vaypoing)

2. GetSurfacelmag®Vaypoin®)

3. GetMoistureConterfWaypoing)
4. DropSoilSampléNaypoing)

Notice that, compared with the previous primitive solufidhe second and

third (independent) actions are in afdrent order. In this case, action sequence

GetSurfacelmag&Vaypoin®) - GetMoistureConterftVaypoin) cannot be parsed

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 89

by R, (and hence event-go&nalyseSo{MWaypoinR)) because the ordering of the
two actions in the solution does not conform to the prefemetkring of those ag-

tions, i.e., the ordering imposed [Rs.!Consequently, the primitive solution daes

not preserve user intent.

Next, we move on to the definitions. Since we have already sHowhe previous chapter
the relationship between CAN entities and HTN entitiesyfroow on, we will use CAN entities
and HTN entities interchangeably for convenience (e.gwillesometimes refer to event-goals as
compound tasks, to plan-rules as methods, and to plansaditask networks).

Intuitively, a hybrid-plan is a collection of operators, @b each operator has a precondi-
tion and postcondition, but if the operator is abstractnthés also associated with one or more
plan-rules. More specifically, a hybrid-plan is a partiadkdered set of primitive tasks and com-
pound tasks; the partial ordering allows tasks in the hyplah to be performed in parallel with
other tasks in the plan. Thus, hybrid-plans are what is oftégrred to apartially-orderedplans
(Minton et al., 1994). Formally, hybrid-planh = [s ¢] is a task network, wherg stands for a
conjunction of HTN ordering constraints.

In this chapter, we investigate what we refer tdwgbrid planning which deals with formulat-
ing hybrid-plans that can bring about a certain statef@iits (as in classical planning) by making
use of available domain knowledge (as in HTN planning). hkt/ptanning is used to find solu-

tions forhybrid planning problems~ormally, ahybrid planning problenis a tupleH = (7, G, D),

where[is the initial state(is the goal state, anfd is a HTN domain. Hybrid-plans that solve
hybrid planning problems are calldg/brid-solutions More specifically, a hybrid-solution is a
hybrid-plan that can be decomposed using the domain kngelado a primitive plan that brings

about the goal state.

Definition 8. (Hybrid-Solution) A hybrid-plarh is ahybrid-solutionfor a hybrid planning prob-
lemH =(I,G, D)iff solh, I,D)nsolI,G,Op) + 0, thatis, if there is a HTN solution fdr—a
primitive plan—that achieves the goal. A hybrid-plais astrong hybrid-solutiorfor hybrid plan-

ning problem iff sol(h, 7, D) C sol(7, G, Op), that is, if all HTN solutions foth achieves the

goal. |

In this thesis, we will only deal with (weak) hybrid-solutis.

1The preference for obtaining moisture content before argémaf the soil surface could, for instance, be for
mechanical reasons.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 90

Let us illustrate the notions hybrid-plan and hybrid-sioiatwith an example. Cor
sider the Mars Rover agent of Figure 4.2. Suppose that thet agenitially at
location Waypoin8 with an empty soil container and no soil results, and that th
agent wants to find a solution for the following gof). results have been transmit-

ted for Waypoin8, and(ii) the rover is at locatioWaypoini. Now, consider th

1]

hybrid-plan [, ¢], where:

s = {(1:ObtainSoilResul@@VaypoinB)), (2 : NavigatéWaypoin8, Waypoint)),
(3 : TransmitSoilResul{8VaypoinB))};
o = 1<2A1<3

Observe that this hybrid-plan is a hybrid-solution, beeaascording to Figur

1]

4.2, the hybrid-plan can be decomposed into a primitive piahachieves the gogal

at hand. Observe, further, that the constraint formuleequires soil results fd

=

WaypoinB to be obtained first, and that it does not enforce an orddyetgeern
navigating and transmitting results. Therefore, thesetasks can be performed fin

parallel by executing primitive actions in the followingder: (i) CalibrateViaGP$

(il) SendResuli®aypoinB), and(iii) Move(Waypoin8, Waypoini.).

To obtain hybrid-solutions, we need to first transform exgudls in the BDI domain into
a format that is understood by classical planners, thants, (abstract) planning operators. In
the next section, we show how the precondition and posttiondinformation that is required to

create abstract operators is extracted from event-goals.

4.2 Creating Abstract Planning Operators

In this section, we define precisely the meaning of the prdition and postcondition of an event-
goal, we present algorithms for computing such informatsrd finally, we discuss the properties
of the algorithms presented.

Intuitively, the precondition of an event-goal encodes d¢baditions under which the event-
goal will successfully execute. Since, typically, precatinds are specified on plan-rules as con-

text conditions, obtaining the precondition of an evergdgovolves taking the disjunction of the

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 91

context conditions of the associated plan-rules. Althquggiconditions can be manually specified
for plan-rules in some BDI systems such as (Despouys andrdgrl999), in most BDI systems
and BDI agent programming languages (e.g., (Bordini eR807; Busetta et al., 1999; Hindriks
et al., 1999; Rao, 1996; Winikbet al., 2002)), postconditions cannot be specified for plées

or event-goals. More importantly, manually calculatingfeonditions of event-goals can be trou-
blesome for the programmer, and could lead to erroneousgutitions, which may eventually
lead to the planner finding incorrect hybrid-plans. Consedtly, we automatically derive the post-
condition of an event-goal based on the structure of itsahofry, combined with knowledge about
the dfects of primitive actions. To this end, we adapt and exterd'shhmmary” algorithms of
(Clement et al., 2007), to allow for the specification of aevidange of BDI plan-libraries, and to
allow for variables in literals, event-goals and actions.

Specifically, what we derive from an event-goal’s hierarahy itsdefinite gfectsandpossible
gffects Intuitively, definite éfects are those things that are always true after succgssidtuting
any decomposition of plan-rules to achieve the event-goad, possible féects are those things
that are possibly true after executing some decomposifigfan-rules to achieve the event-goal.
However, for use as postconditions of abstract operatoesonty use the definitefiects of the
corresponding event-goals. The reason for this is twofBidst, we want an abstract operator to
encode, to the extent possible, only the primaffpas of the corresponding event-goal, which
are supplied by the programmer in the work of (Kambhampadi.etL998). Our definiteféects
include all such primaryféects (provided the programmer has specified prim&gces with care),
but they will also include any necessary sidieets. Second, we want to avoid an exponential
blow-up (with respect to the height of the given plan-lilgdain the number of abstract operators
created. Such a blow-up could happen because possiblgseof an event-goal correspond to the

different ways in which the event-goal could be decomposed,aasim the following example.

event-goal
plan-rule

action

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 92

Consider the BDI hierarchy above. Suppose we want to caristhstract op
erators from the top-level event-gaal, using the possiblefiects ofe;. Observe
then, that we need to create an abstract operator for the gagisible decomposi-
tions of ey, that is: one operator containing th&eets brought about by selecting
plan-rulesR;, R, andRy4; another containing theffects brought about by selecting
plan-rulesR;, R, andRs; another containing theffiects brought about by selecting
plan-rulesRy, Rz andR4; and so on.

It is worth noting that, although it would be possible to ¢eea single operatg

=

for e with a disjunctive precondition (i.epr, A (¢r, V dr;) A (PR, VOR;) V IR A - . -,

where eachpr is the context condition of plan-rulg;), or a single operator fq

=

e; with conditional éfects (i.e., where subsets of the postcondition are asedciat
with separate preconditions), such an operator wouldhstillsyntactic sugar,” and
it would eventually be compiled away into separate opesafdebel, 2000; Ghallab
et al., 2004, pp. 64, 101) as described above.

On the other hand, by taking into account only definifie&ts, we only need

two operators foe; (or a single operator with a precondition containing two- dis

juncts); the postcondition of both operators is the set dihde efects ofe;, and

the preconditions of the operators are the context comditafR; andRs.

Although we do not include the possiblfexrts of event-goals in their corresponding post-
conditions, we do need to compute them in order to computel¢fiaite dfects of event-goals.
Moreover, we use the possibl&ects of event-goals in order to validate hybrid-plans oledi
via classical planning, that is, to determine whether algiatecomposition of the plan exists.
This validation step is necessary because we only take fivatdeffects of event-goals as their
postconditions, which can potentially lead to situatiomsvhich conflicts occur in a hybrid-plan
between preconditions of event-goals (abstract opejasmms possible ffects brought about by

decompositions of other event-goals.

4.2.1 Assumptions and Preliminary Definitions

Before we move on to the technical sections, which defindg#lcthe meaning of preconditions,
definite éfects and possibleffects of event-goals, we will present in this section somEgrpireary

notions and state the assumptions we make in this chapter.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 93

As usual, we use, i, andZ to denote vectors of distinct variables. Moreover, we tiaad
C to denote vectors of (not necessarily distinct) terms antstemts, respectively. A subscript
n on a vector (e.g.xn) denotes a vector af elements. In this chapter, we assume that, like in
AgentSpeak(L) (Rao, 1996; Moreira and Bordini, 2002), tlengibrary does not mention any
parallel programd?; || P,. Since, without parallelism, we would not need to avoid ayuly
in plan-body programs with the use of parenthesis — e.gergprogramPy; (P,; P3), program
(P1; P2); P3, and progranPy; P,; P3, the BDI execution engine will execut, first, P, second
andPs5 third in all cases — we assume that parenthesis are not meudtia plan-bodie3.

Second, we assume that the plan-library does not have racurélthough this may seem
limiting, we can overcome this restriction to a certain extey using first principles planning to
emulate recursion, as we will show in Section 6.3. To be mogeigpe regarding our assumption,
we define the two notionschildren andranking Intuitively, the children of an event-goalare

event-goals mentioned in the plan-rules associatedavith

Definition 9. (Children) Thechildren of an event-goak telative to a plan-libraryiI, denoted
children(&, 1), is defined as follows:

children(&,IT) = {e| € : ¢y « P € I1, @and€ have the same type, anglis mentioned irP}. m

Intuitively, the ranking of an event-goal is the height of wvent-goal in the given hierarchy

(plan-library).

Definition 10. (Ranking) Arankingfor a plan-librarylIl is a functionRy; : Er — Np from event-
goal types mentioned ifl to natural numbers, such that the following condition holiids each
event-goal®y, e, € Eyy such thak; is the same type as some event-gaad children(e, IT), it is
the case thaRp(e1) > Rp(e). [|

Then, we assume that a ranking exists for the plan-library.s&y thaiRp(€) is therank of e
in I1, and moreover, given any event-geg) mentioned if1, we defineRp(e(f)) = Ru(e(X)), that

is, the rank of an event-goal is equivalent to the rank ofyiiet

For example, consider the plan-library in Figure 4.2. Rmesiank functions o’f

20n the other hand, observe that due to the use of parenthgmisgramsPy; (P; || P3) and Py; P,) || Ps, there are
executions of the latter program that cannot be obtainedbguting the former, because the former program requires
P, to be (completely) executed first.

3Two event-goalg ande’ have the samiypeif they have the same predicate symbol and arity.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 94

event-goals mentioned in this plan-library are shown below

Ri(Navigatésrc,ds))) = 1
Ru(AnalyseSoilSamplds)) = 1
Rp(TransmitSoilResulfds)) = 1
R(ObtainSoilResuligls)) = 2

R (PerformSoilExperimeids)) = 3

Rn(ExploreSoilLocatiofds)) = 4

Our third assumption is that plan-libraries aae i.e., all plan-rules in them are written so
that whenever the context condition of a plan-rule is mebime belief base, there is at least one
successful HTN execution of the corresponding plan-bodytehat this does not imply that the
plan-body should be successfully executed by the BDI ei@talcle — the BDI execution of the
plan-body may still fail if the agent makes a wrong choice.

We define asuccessful HTN executiaf a programP (relative to a plan-library and an action-

library) as a finite sequence of configurations of the f@m= (B1, A1, P)-...-Ch = (B, Ap, Nil),
such thaC; @ Ci.1, foreveryi € {1,...,n - 1}. We say that a plan-librarli is safe(relative to
an action-library) if for all plan-rules : « P € II, ground instances of e, and belief base8;,

if 81 F 66, then there exists a successful HTN executin. .. - C, of P6¢’, whereCy|g = B,
(recallClg denotes the projection of the belief base in configura@®nThis definition is in terms
of HTN executions rather than BDI executions because we arenterested in solutions that
include BDI-style failure and recovery.

Similarly, we assume that belief operations in plan-lilesiare written with appropriate care.
For example, a situation should never be reached in whiclmground atom is added to the belief
base. Specifically, for any finite sequence of configuratadribe formC; = (81, A1, P)-...-Cy =
(Bn, An, P’), whereP, P” are programs an@; — C;j,; for everyi € {1,...,n- 1}, we require that
for eachi € {1,...,n}, B is a set of ground atoms (and hence consistent).

Recall from theEventrule of the CAN operational semantics in Figure 3.2 (p. 63 ih
order to select a plan-ru(t’) : ¢ « P to achieve a given event-goal prograe), the plan-rule
must berelevantfor !e(f), that is, e(f) must unify withe/(f'). This entails, for instance, that if

the argument (term) at some indin t' and the argument at the same index are constants,

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 95

then the two arguments must be equivalent. We assume thategairements on the bindings
of arguments in event-goals are encoded in context condital associated plan-rules. More
precisely, we assume, without loss of generality, that laihpulese(f) : v « P in a given plan-

library IT are such thafis a vector of distinct variables.

Let us illustrate this assumption with an example. Supposédave the following

three plan-rules for travelling to threefidirent destinations from Melbourne:

Trave(Melb, Syg : 1 « Py;
Trave(Melb, Perth) : v, « Py;

Travelsrc, src) : 3 « Pa.

Observe that the third plan-rule handles the situation e/ties agent is already
at the destination (hencBz may be the empty plan-body). Our assumption requires

that the above three plan-rules be encoded as follows:
Travel(x1, y1) : 1 A =(x1, Melb) A =(y1, Syd « Pq;
Travelx2, y2) : g2 A =(x2, Melb) A =(y2, Perth) « Po;

Travel(x3, y3) : Y3 A =(X3,y3) « Pa.

Observe that the event-goals no longer mention constamisthat the contex

—

condition of each plan-rule includes equality predicat8sch predicates within|a

o

plan-rule encode the conditions under which arguments evotiginal associate
event-goal (e.g.TravelMelb, Syd) will unify successfully with those of a given

event-goal program for travelling (i.e., an event-goalgoaon with symbolTravel

and two arguments).

Observe that the encoding of such binding details into tmeesth conditions of plan-rules can

be easily automated.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 96

4.2.2 Preconditions and Postconditions

Next, we present the main notions of this chapter, namedypthconditionmust literals(definite

effects), andnentioned literalgpossible &ects) of a program. We start by defining some basic

notions, namelyatomic programprimitive programandpostconditionof a primitive program.
Formally, given a prograr®, we say thaP is anatomic programf P =le| act| +b | —b |2,

and thatP is a primitive programif P is an atomic program that is not an event-goal program.

Like the postcondition of a STRIPS action, thestconditionof a primitive program consists of
the atoms added to and removed from the belief base due tadheam’s execution. Formally,
the postconditionof a primitive programP relative to an action-library\, denotedpos(P, A), is

the set of literals defined as follovs:

0 if P =7;
{b} if P=+b;
pos(P,A) =
{=b} if P=-b;
®*guU{-b|be ® 0} if P=actandact :y « ®*;®" € A s.t.act=acto.

Observe that test conditions have the empty postconditiare £xecuting them does not result in
an update to the belief base. The last condition in the digiingtates that the postcondition of
an action program is the combination of the add list and ddist of the associated action-rule,
after applying the appropriate substitution. Note #hatay not be a ground substitution — it may
simply be a variable renaming substitution.

We will now move on to the notions precondition, must liteaald mentioned literal. Intu-
itively, the precondition of an event-goal program encotiesconditions under which the pro-
gram will execute successfully. More specifically, the pratdition of an event-goal program is a
formula, such that the formula is met in some state if and drtlyere is at least one successful

HTN execution of the program from that state.

Definition 11. (Precondition) A formulap is apreconditionof an event-goal prograne (relative
to a plan-library and an action-library) if for all groundstancesé of !e and belief base®;, it

is the case thaB; E ¢0 holds if and only if there exists a successful HTN execufan. .. - C,

4Recall that any action program mentioned in a plan-library &xactly one corresponding action-rule in the action-
library, and that an action-rulact : ¢ « ®*; @~ is such thaf(i) act is a symbol followed by a vector of distinct
variables, andii) all variables free iy, ®* and®~ are also free imct

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 97

of leg such thaCy|g = B;. [|

In the above definition and in those that follow, we blur thstidction between event-goals
and event-gogbrograms— that is, the definitions in this chapter that apply to e\goat programs
also apply to event-goals. Next, we define a must literal afogimm as a literal that holds at the

end of every successful HTN execution of the program.

Definition 12. (Must Literal) A literall is amust literalof a progranP (relative to a plan-library
and an action-library) if and only {fi) free variables in are also free ifP; and(ii) for all ground
instancesPd of P and successful HTN executiofi§ - ... - Cy of P, it is the case thatn|g F 16.

Note that we require free variableslito also be free irP so that we can know, given some
ground instance oP, exactly which ground instance bholds inCy|g. Recall from Definition
7 (p. 70) that all action-rules in any action-librafymust be consistent. Similarly, because we
eventually convert event-goals into abstract planningatpes, we need to show that the operators
we create will beconsistenti.e., that whenever the precondition of an event-goalydlte set of
must literals of the event-goal does not contain conflictitegals. This is stated in the following

theorem.

Theorem 5. Let e be an event-goal, leétbe the precondition of e (relative to a plan-librafiyand
an action-library A), and let ™ be a set of must literals of e (relative fband A). Then, for all

ground instanceséof e and belief baseB, if B ¢0, then L™ is consistent.

Proof. SinceL™¥ is a set of ground literals, observe thaLif'p is consistent, then for all literals
I,I” € L™Uitis the case thd®b # 16 (i.e., 16 is not the complement df6).

We prove the theorem by contradiction. Suppose the theooss ot hold. Then the follow-
ing conditions must hold: there exists a belief b#eand a ground instana® of e, such that
B1 E ¢0 but such thatd = 1’6 for somel, I’ € L™,

First, notice from the first condition of Definition 12 (Musttéral) that bothl¢ andl’9 are
ground. Next, observe from Definition 11 (Precondition)ttsiaceB; £ #6 holds, it must also
be the case that there exists a successful HTN execa@tion. . - C, of &9 such thatCy|g = B.
Therefore, sincéis a must literal ok, we know from Definition 12 (Must Literal) th&n|g [16.

Moreover, sincd’ is also a must literal o, it must also be the case th@f|g k= I'6. However,

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 98

since we know from our assumption tHat= 1’6 (i.e., thatlg is the complement of ¢), both
Chlg E 160 andCilg 1’6 cannot hold (recall thatn|g is consistent according to our assumption

in Section 4.2.1). Therefore, our assumption does not hold. m|

Intuitively, a mentioned literal is a literal that is memid in the program or in one of its

decompositions. Formally, the setmientioned literalof a programP (relative to a plan-library

IT and an action-library) is defined as follows:

mntP1) U mnt(P,) if P=Pq; Py,
mni(P) =< {I| le mn(P’),€ :y « P’ eIlande= €6} if P=le
pos(P, A) if P=+b|-b|act|?.

Although our notion of a mentioned literal is based on thaaahay summary conditiom
(Clement et al., 2007), the latter notion is stronger in fhabrresponds to a literal that is met
at the end of at least one successful HTN execution of theranogn question. Our rationale for
using a weaker notion is explained next.

In (Clement et al., 2007), there is a requirement that alkides traces through a goal-plan
tree resulting from a plan-body are able to successfullcaee If this is not the case, then the
plan-body is said to be inconsistent. However, this requéngt is too strong, since it is natural
for an event-goal to be used in a plan-body with the expextatiat only certain plan-rules of
that event-goal will be applicable. This is particularlydrif event-goals, and their associated
plan-rules, are to be re-usable components. In (Clement, &087), if an event-goal (sast) in
a plan-body (sayP;) has some plan-rule whose precondition could be clobbeyeddian-rule of
some earlier event-goal iR;, thenP; is said to be inconsistent, even though there may always
be other suitable plan-rules for handlieg Thus for a plan-body to be consistent, according to
(Clement et al., 2007) every event-goal mentioned in it rbestandled only by plan-rules whose
preconditions are not made false keets brought about by plan-rules of other event-goals in the

plan-body in question.

For example, consider Figure 4.3, which shows a subset gilgmelibrary belongt
ing to a simple personal assistant agent. The library sheviorigoing to work or]

Fridays, which involves travelling to work, doing work, liag after-work drinks

and then travelling home from work. (Note that all detail &t in the figure —

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 99

e.g., for travelling to work — are not important for this exalm) Observe that the
Travel[Homeevent-goal is a separate “module” — it can be used from wigtmip
plan-body. Suppose that the postcondition of having driskiadDrinks Suppose,
further, that the context condition of the plan-rule forvarg home isHaveCar
(i.e., the car is at the same location as the person)-atabDrinks that the cont
text condition of the plan-rule for travelling home by taziHlaveMoneyForTaxi

and that the context condition of the plan-rule for travejlihome by train i

U7

HaveMoneyForTicket

Then, observe that plan-rut@oToWorkFridaysPlaris inconsistent (according

—h

to (Clement et al., 2007)), because literdladDrinksin the context condition g

plan-rule DriveHmPlanis clobbered by literaHadDrinks brought about by ag

tion HaveDrinks This is despite the fact that plan-rul@savelHmByTaxiPlarand

TravelHmByTrainPlarmay be applicable for event-go@tavelHome

’ GoToWorkFriday$

[GoToWorkFridaysPla} action

/N

TravelToWork Work HaveDrlnks HadDrinks TraveIHoma
ar

HaveCarA —HadDrinks| DriveHmPlan

HaveMoneyForTa>{TravelHmByTaxiPIaﬂ1

HaveMoneyForTickeETraveIHmByTrainPIaﬂl

Figure 4.3: An inconsistent plan-rul@oToWorkFridaysPlan

We avoid constraining our plan-bodies in this way, althotlgk leads to a weaker notion —
mentioned literals- than the corresponding definition of a may summary comditio(Clement
et al., 2007). In our definition, there can be literals which mentioned in some plan-body but
in fact can never be asserted, due to interactions whichrerisat the particular plan-body which

asserts that literal can never be applied. For examplegevitv postconditions of actions in the

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 100

plan-body for driving home are mentioned literals of thenptendy, these literals will never be
asserted, as the plan-rule for driving home will never bdiegiple (with respect to the hierarchy
shown). We do not define a notion of possibléeets that does not take into account literals
that will never be asserted because, in practice, recognsich a literal requires reasoning about
whether a context condition is definitely clobbered by aapfitan-rule(s), which, in turn, requires
propagating the féects of appropriate plan-rules as a formula (in a similar mearto how we
propagate must literals in the algorithms), and then detgng whether the context condition is
met with respect to the formula. Since this last step amaorfisst order entailment, the problem
is semi-decidable (Gabbay et al., 1994).

In the next section, we will provide algorithms to obtaingoeditions, must literals and men-

tioned literals of event-goals, given a plan-library andhation-library.

4.2.3 Algorithms

For use in the algorithms that follow, we define@anmary informatiomf a program as follows.

Definition 13. (Summary Information) Aummary informationf a progranP (relative to a plan-

library and an action-library) is a tuplé®, ¢, L™, L™, where¢ is a precondition oP if P is an
event-goal program, angl = € otherwise;L™ is a set of must literals dP; andL™" is a set of

mentioned literals oP.]

In order to compute the must literals of a program, we needk®e into account the possibility
of literals brought about by the program’s executa@mflictingwith other literals brought about
by the execution. More specifically, we need to take into antaituations in which literals are
definitely undonéor must undoneandpossibly undonéor may undongwithin a program. Since,
unlike the work of (Clement et al., 2007), we do allow varebin literals, event-goals and actions,

finding such conflicts involves reasoning about values assigt runtime to variables in literals.

For example, take the following plan-body:

+Colour(Blockl, Blue);
?(Blockb) A Colour(b, Blue));
—Colour(b, Blue);

+Colour(b, Red.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 101

This plan adds a belief th&lockl is blue, then binds the varialid¢o some blue
block (possiblyBlockl), removes the belief théitis blue and adds the belief thiat
is red. The literal€olour(Blockl, Blue) andColour(b, Red are both asserted in the
body of this plan. However, onl€olour(b, Red can be considered a definitfext,

as Colour(Blockl, Blue) will be true only if b is not bound toBlockl. Therefore

Colour(Blockl, Blue) is only a possible féect.

We say that a literdlis must undonén some progranf if the negation of the literal is a must
literal of some atomic program mentioned 1 Note that, although can beany literal andP
can beanyprogram (i.e., sequence of atomic programs), we will onlchi® use this definition to
determine whether a literal belonging to some atomic progeain a plan-body is must undone in
the sequence of atomic programaiter P. Formally, given a prograr® and the sef of summary
information of all atomic programs mentioned i a literall is must undonén P relative toA,
denotedMust-Undone(l, P, A), if there exists an atomic prograRi mentioned inP and a literal
I” € L™, with (P’,¢, L™ L™ e A, such thal = I, i.e.,| is the complement of .5 Similarly,
we say that a literal is may undonen a programP if there is a literall’ that is a mentioned
(or must) literal of some atomic program isuch that” may become the negation bflue to
variable substitutions at runtime. More precisely, givegpragramP and the sefA of summary
information of all atomic programs mentioned i) a literall is may undonen P relative toA,
denotedMay-Undone(l, P, A), if there exists an atomic prograRi mentioned inP, substitutions
6,0, and a literal’ € L™, with (P’, ¢, L™, L™ € A, such thatg = I'¢’.

Next, we move on to the main algorithms for computing the samyninformation of pro-
grams, that is, algorithms 4.1, 4.2 and 4.3. We will use g4 and Table 4.1 as a running

example.

Algorithm 4.1. Given a plan-library and an action-library, Algorithm 4.&neputes the sum-
mary information of each event-goal mentioned in the plaraty. In a nutshell, the algorithm
works bottom up, by summarising first the leaf-level ergita the plan-library, that is, primi-
tive programs (line 1), and then repetitively summarisitegngbodies using Algorithm 4.2, and
event-goals using Algorithm 4.3, in increasing order ofrthevels of abstraction (lines 3-8). The

algorithm terminates after all top level event-goals (iteose with the highest rank) have been

5Thecomplemenbf a literall € {a, ~a} is aif | = —a, and—a otherwise.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 102

Algorithm 4.1 Summarise(Il, A)
Input: Plan-libraryIl and action-libraryA, where a ranking exists faf.
Output: SetA of summary information of event types mentionedlin
1: A & {{P, e, pos(P, A), pos{P, A)) | Pis a primitive program mentioned i}
// Summarising primitive programs; recall pos{P, A) is a set of literals

2: E & {g(X) | eis an event-goal mentioned I} // Construct the set of event types in IT
3: for i & min({Rnu(e) | e € E}) to max{Rnu(e) | e€ E}) do // Recall Rp(€) is the rank of e
4. for eache € E such thatRp(e) =i do
5: A & AU {Summarise-Plan-Body(P,IT, A,A) | € . «— P eIl, € = e}

// Summary information of event-goals mentioned in P is available due to ranking
6: A & A U {Summarise-Event(e, I1, A)}
7. end for
8: end for
9: return A\ {u|u € A,uis not the summary information of an event-goal

summarised.

In lines 2-8, all event-goal types mentioned in the plamalifp are obtained and then sum-
marised in increasing order of their rank. This way, theeegsiarantee that whenever the summary
information of an event-goal or plan-body needs to be coethull the summary information of
associated less abstract entities has already been campinelly, before returning the computed
setA in line 9, we remove all the summary information tuples ofterst other than event-goals,
since we are only interested in the summary information ehegoals.

Observe that, although according to Definition 12 (Must flaifg any literal that holds at the
end of all successful executions of a program is consideredist literal of the program (i.e.,
even if a literal holds at the end of such an execution onlytdygreconditions that require it to
hold), the algorithm only classifies as must literals those &re actuallyprought abouduring the
program’s execution, i.e., literals in postconditions oifiptive programs. This is because our aim
is to create operators from event-goals, and consequdtehgls that are required to hold due to

preconditions do not need to be added to postconditions exboqrs.

For example, consider an event-gedhat is handled by one plan-ruge: p «
act, where the operator associated with actamtdoes not mention proposition
Observe thap is a must literal ofe because it holds at the end of all successful
executions oke. However, sincep is not actually brought about by the execution

of e—i.e., pis only required by some precondition — we do not inclyzlie the

postcondition of the operator correspondingeto

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 103

Algorithm 4.2 Summarise-Plan-Body(P, I1, A, Ain)

Input: Plan-bodyP; plan-libraryIT, where a ranking exists fdil; action-libraryA; and the set
Ain of summary information ofi) primitive programs mentioned iR, and(ii) event types
mentioned irP.

Output: The summary information d®.

1 A <= Aip U {{1e(R), ¢, L™ L™Mg | 1e(f) occurs inP, (e(X), ¢, L™ L™ € Aj,, &(f) = (X))
// Variables in L™ must be renamed appropriately

2: SupposeP = P1; Py;...; Py
3 LRt (I |1 e L™ (P, ¢, L™ L™ € A,i € {1,...,n}, ~May-Undone(l, Pi,1; ...; Pn, A)}
4: LQ” =

{111 e LMU L™ (P;, ¢, L™ L™ € A,i € {1,...,n}, -Must-Undone(l, Pi,1; . ..; Pn, A)}
5: return (P e, LT, LY

Algorithm 4.2: This algorithm summarises the given plan-body with respet¢he given plan-
library, action-library, and set;, of summary information. The algorithm first obtains the sum-
mary information of each event-goal program mentioned étlan-body, from the already avail-
able summary information if;, of the corresponding event-goal types (line 1). Next, tlyorl
ithm computes the set of must Iiteralsg(‘) and the set of mentioned literals{") of the given
plan-bodyP, by determining, from the must and mentioned literals ofratogprograms mentioned
in P, which literals will definitely be met and which literals Wwiossibly be met on the successful
executions oP (lines 3 and 4). More specifically, a must litetadf an atomic progranf; men-
tioned inP = Py;...; Pyis considered a must literal & only if | is not may (or must) undone in
Pi.1;...; Pn (line 3). If this is not the case, thdns considered a mentioned literal Bf provided

| is not must undone iR;.1;...; Pn (line 4). The reason we do not summarise mentioned literals

that are must undone is to avoid losing completeness. Tiisown in the following example.

Suppose the algorithm does summarise mentioned literatsatie must undon

1%

=

Next, consider the plan-library below. Observe the follogvi the postcondition g

ap anday is p; the postcondition od; is —p; and the postcondition @& is g.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 104

Furthermore, observe that:
1. pis a must literal oRy;
2. gis a must literal oRy;

3. e1 has no must literals—there are no literals that are guagdnie hold irre-

spective of the plan-rule selected to achieve
4. —p (brought about by;) is a mentioned literal oR;; and
5. =pis also mentioned literal af;.

Observe, further, that, according to the algorithm, therditp brought about byg
is not a must literal oRy because it may be undone by mentioned literal of
e;. However, in reality, althouglit; does bring about literatp, actiona, of Ry
later addsp. This means thap is indeed a must literal dRy. The algorithm will
recognise this (i.e., it will be more complete)(ij the algorithm recognises that
mentioned literakp is must undone iRy, and(ii) the algorithm excludes p from

the set of mentioned literals &%.

Then, the literals added to deif" by the algorithm are not just mentioned literals, but what we
call mayliterals, that is, mentioned literals of atomic programsuwrang in the given plan-body
that are not must undone later in the plan-body. It is imparta note, however, that our may
literals are still a weaker notion than the correspondingionoof a may summary condition in
(Clement et al., 2007), because it is still possible thatroay literals are never asserted, due to
interactions which ensure that the particular plan-bodyctvlasserts a may literal can never be

applied.

To illustrate how Algorithm 4.2 works, consider Figure 44daTable 4.1. Ob

serve that literaldHaveMoistureContelidis) and HaveParticleSiz@ls) are must
literals of plan-bodyPs because(i) they are must literals of primitive actions
GetMoistureConterftlsf) andGetSoilParticleSizgl sf), and(ii) they are neither must
undone nor may undone F.

Next, consider plan-body P4. Observe that, although literal
HaveSoilSampl@st) is a must literal of primitive actionPickSoilSamplél s,

the literal is must undone by the last primitive actibropSoilSamplés) of P,.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 105

Therefore,HaveSoilSamplelsi) is neither a may nor must literal of the plan-body.
Literal -HaveSoilSamplg@ s is a must literal ofP4, along with the must literals
HaveMoistureConteljsf) and HaveParticleSiz@s) belonging to event-goal
AnalyseSoilSamp{ds?).

Finally, consider plan-bod#?y. Observe that literaCalibratedis a may litera
of the plan-body because the literal is a may literal of exgevell Navigatesrc, dsf),
and the literal is not must undone iRerformSoilExperimefds). On the
other hand, observe that although literat(ds)) (respectively —At(src)) is a

must literal of event-goaNavigat€src, dsf), this literal is only a may literal

of Pg, because-At(ds) (respectively At(ldr)) is a may literal of event-goa

PerformSoilExperimeiiis?), and consequentlyAt(dst) (respectively—At(src)) is

may undone irPerformSoilExperimeid sf).

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 106

ExploreSoilLocatiotsrc, dsf) ‘

action

N

- Move(src, ds -

Figure 4.4: A slightly modified and extended version of the$/M/over agent of Figure 4.2. This
version has options for navigating and transmitting reswhd if the lander is not within range,
transmitting involves navigating to the lander and uplogdiesults.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 107

Program Must Literals May Literals

CalibrateViaGPS CA -

Movesrc, dsf -At(src), At(ds) -

PickSoilSampli@ st HSSds) -

DropSoilSampl@ s?) -HSSKds) -

GetMoistureConterfd sf HMC(ds9) -

GetSoilParticleSizgl sf HPSdsi) -

EstablishConnection CE -

SendResul(ds) RT(ds) -

BreakConnection -CE -

UploadResult@ s) RT(dsY) -

Py -At(src), At(dsp), CA -

P, -At(src), At(ds) -

Ps HMC(ds?), HPSdst) -

P, HMC(ds?), HPSdsf), -HSSds) -

Ps RT(d SD, -CE -

P7 -At(dsd, At(ldr), RT(ds) CA

Ps3 RT(dsf), HMC(ds), HPSd s, -CE, —At(d s,
-HSSds) At(ldr), CA

Po RT(dsf), HMC(dst), HPSdst), -CE, At(dsf), -At(ds?),
-HSSds) At(ldr), CA —At(src)

Navigatésrc, ds -At(src), At(ds) CA

AnalyseSoilSamp(ésf) Same a$s -

ObtainSoilResul(sl s Same a$, -

TransmitSoilResuld s} RT(ds) -CE, —At(dsi)

At(ldr), CA
PerformSoilExperimefds) Same a$; Same a$;
ExploreSoilLocatiofsrc,dsf) Same a$y Same a$y

Table 4.1: Must literals and may literals of atomic prograamel plan-bodies of Figure 4.4.
Note that the rightmost column only shows the may literalst thre not also must literals.
Abbreviations used in the table are as followSA = Calibrated HSS = HaveSoilSample
HMC = HaveMoistureContentHPS = HaveParticleSizeCE = ConnectionEstablishedand
RT = ResultsTransmittedeachP; is the plan-body corresponding to plan-riein the figure.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 108

Algorithm 4.3: This algorithm summarises the given event-goal with resfmethe given plan-
library and setA of summary information. In a nutshell, in lines 3-8, the aitjon computes the
mentioned literals of the event-goal, and the algorithnaioistthe precondition of the event-goal as
the disjunction of the context conditions of all associgh&h-rules. Next, the algorithm obtains
the must and may literals of the event-goal by respectivaliynt the intersection of the must
literals of associated plan-rules (lines 6 and 10), and ttieruof the may literals of associated
plan-rules (line 7).

More specifically, in line 5, the current plan-rule’s coritegndition is added as a disjunction
to the current value of the event-goal’s precondition, rafterforming the appropriate variable
renamings. In line 10, the must literals of the event-goaltaken as the must literals that are
common across the plan-bodies of all plan-rules handliegetrent-goal, since such literals are
guaranteed to be true after any successful execution of/trd-goal, irrespective of the plan-rule

chosen to achieve it.

Algorithm 4.3 Summarise-Event(e(X), I1, A)

Input: Event-goal typex(X); plan-libraryIl, where a ranking exists fdil; and the sef of sum-
mary information of plan-bodies of plan-rules: y «— P € II such thae’ = g(X)6.
Output: The summary information a{X).
. ¢ < false
S LMLMN S < // LM L™ are sets of literals and S is a set of sets of literals
: for eache(yy) : ¥ « P € I1 such thai(X) = &(i)6 do
: // Variables in ¢ and tuple (P, €, L}", L") € A need to be renamed appropriately

S & SU (LD}, where(P,e, LT, L™ € A
LM < LMy LIy
: end for
. if S # 0then // Obtain the must literals of &(X)
10 LMeS
11: L™ {11 e L™, variables occurring ihalso occur ing(X)}
12: end if
13: return (&(X), ¢, L™, L™

1
2
3
4.
5 ¢<=odVyo
6:
.
8
9

For example, consider Figure 4.4 and Table 4.1. Observetlieabnly must lit-
eral in common between plan-bodi®g and P7 is RT(dst). This literal is alsg
a must literal of event-goalransmitSoilResul{dsi), because there is a guarantee
that a ground instance of this literal will be true on the sssful execution of

TransmitSoilResul{d s, irrespective of whethelPg or P7 is chosen to achieve the

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 109

event-goal. Observe that all other (must or may) literaltheftwo plan-bodies are

may literals of the event-goal.

4.2.4 An Exploration of Soundness and Completeness

In this section, we will explore the properties of the altoris presented in the previous section.
In particular, we will show tha{i) whenever Algorithm 4.1ummarise) classifies a literal as
a must literal, this is indeed the cage) the algorithm correctly computes the preconditions of
event-goals; and thdiii) the algorithm terminates. Moreover, we will give some ihsigto the
situations in which the algorithm is not complete. In whatd@s, we assume that any given

plan-libraryIT is such that a ranking exists for.

Soundness and termination

The lemmas that follow rely on the following definition of wHameans for a set of literals to
capturea program. Intuitively, a set of literals captures a progibamy literal resulting from any

successful execution of the program is in the set.

Definition 14. (Capturing a Program) L& be a program ant be a set of literals. Sétcaptures
P if and only if for any ground instanc? of P, successful HTN executio@; - . . .- C, of P/, and
ground literall such thatCy|g | andCy|g E |, itis the case that there is a litefak L such that

| = 1’9, for some substitution. [

Observe, then, that the (full) set of mentioned literals pf@gram captures the program. We
start by showing that the computation in Algorithm 4.1 of thast literals of primitive programs

is sound. The proofs for the lemmas in this section can bedfauAppendix A.2.

Lemma 4. Let P be a primitive program (i.e., B?¢ | +b | —b | act) mentioned in a plan-library
I1, and letA be an action-library. Giverl and A as input for Algorithm 4.1, at the end of line 1 of
the algorithm, there exists exactly one tugiee, L™, L™ € A such that the tuple is the summary

information of P, and [™ captures P.

The following lemma states that Algorithm 4.8y mmarise-Plan-Body) is sound, that is,

whenever it classifies a literal as a must literal this is attithe case.

Lemma 5. Let P be a plan-body mentioned in a plan-librarly and letA be an action-library.

LetAj, be a set of tuples such that:

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 110

1. for each primitive program Pmentioned in P, there is exactly one tupk, e, L™ L™ e

Ain such that the tuple is the summary information gfahd L™" captures P; and

2. for each event-goal prograhe mentioned in P, there exists exactly one tyglgp, L™, L™
€ Ajn such that the tuple is the summary information ‘ofexent-goal &is the event type of

e, and ™" captures &

Finally, let tuple(P’, e, L™, L™ = Summarise-Plan-Body(P,I1, A, Ain). Then, it is the case that

the tuple is the summary information of P, an@"lcaptures P.

Next, we move on to Algorithm 4.3ummarise-Event). The following two lemmas state that
this algorithm is sound, that is, whenever it classifiesexditas a must literal this is indeed the

case, and that the algorithm correctly computes summangppditions of event-goals.

Lemma 6. Let e be the event type of some event-goal mentioned in diptany I1. LetA be a
set of tuples such that for each plan-rufe:& < P € II, where e and’ehave the same type, there
exists exactly one tupkP, e, L™, L™ e A such that the tuple is the summary information of P,
and L™ captures P. Finally, let tuplée’, ¢, L™, L™ = Summarise-Event(e,T1, A). Then, it is

the case that e &, L™ is a set of must literals of e, and thaf'L.captures e.

Lemma 7. Let e be the event type of some event-goal mentioned in diptany II, and let

(¢,¢, LM LM = Summarise-Event(e,I1, A), for someA. Then,¢ is the precondition of e.

Finally, the following two theorems state that the main alpon — Algorithm 4.1 — is sound,

and always terminating. They rely on the two lemmas givenwoel
Lemma 8. Algorithm 4.2 always terminates.

Lemma 9. Algorithm 4.3 always terminates.

Theorem 6. Algorithm 4.1 always terminates.

Proof. Follows trivially from the fact that, from Lemmas 9 and 8,ds6 and 5 (respectively)

always terminates. m]

Theorem 7. LetII be a plan-library, A be an action-library, e be an event type mentionedlljn
and letAqy = Summarise(I1, A). Then, there is exactly one tuple ¢, L™, L™ € Aoyt such that

the tuple is the summary information of e, ari®'lcaptures e.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 111

Proof. We prove this by induction on the rank efn I1.

[Base Casel et e be an event of rank 0 i, that is,Rp;(€) = 0. Observe from the definition of a
ranking for a plan-library (Definition 10) that ®;(e) = 0, thenchildren(e, IT) = 0. This entails
that for all plan-rules’ : y « P € II such thate = €, no event-goals are mentionedmn If e
has no associated plan-rules, then observe that the cath¢eqgureSummarise-Event(e, IT, A) in
line 6 of proceduresummarise(Il, A) returns tuple(e, false 0, 0), which is indeed the summary
information of e, and® captures e (see thaté has no successful executions).

Consider the case where there are one or more plan-€lleg «— P e II such thate and
€ have the same type, but such that no event-goals are metiortbe corresponding plan-
bodies. LetPy denote the (non-empty) set of plan-bodies correspondiradl ®uch plan-rules.
Then, we know from Lemma 4 that, due to line 1 in the algorithihere is exactly one tuple
(P, e, LB, L™ € A for each primitive progranP’ mentioned in each plan-body € Py, such
that the tuple is the summary information®f, andLJ" capturesP’.

Next, observe that before reaching line 6 of procedsuenmarise-Event(II, A), procedure
Summarise-Plan-Body(P, II, A, A) is called in line 5 for each plan-body € Pg. Then, from
Lemma 5, we know that, on the completion of line 5, there istyane tuple(P, ¢, Lg“, LEM e A
for each plan-bod¥ € Py such that the tuple is the summary informatiorPoindL]" captures
P. Finally, from Lemmas 6 and 7, we can conclude that on the ¢stiop of line 6 of proce-
dure Summarise-Event(I1, A) (i.e., after calling procedur8ummarise-Event(e, I1, A)), there is
exactly one tuplee, e, LT, L™ € A such that the tuple is the summary informatioreadind that

L capturese. Therefore, the theorem holds.

[Induction Hypothesis] Assume that the theorem holdsRfi(e) < k, for somek € Ng.

[Inductive Step] SupposeRr(e) = k+1. LetPy = {P| € : ¥ « P € II, eande have the same type
There are three cases to consider. First, there is no pldy-Boe Py such that there is an
event-goal mentioned iR (i.e., all plan-bodies iP5 mention only primitive programs). Thus,
children(e, IT) = 0 (Definition 9). The proof for this case is the same as the pfoothe Base
Case above. The second case is Bhat= 0 (i.e., there is no plan-rul€’ : « P € IT such thae

ande have the same type). The proof for this case is also the sathe gsoof for the Base Case

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 112

above. The third case is thBf; # 0 and there exists a plan-bo@ye Py, such that an event-goal
is mentioned irP. This final case is discussed next.

Let E4 denote the (non-empty) set of event-goal types of all egeats mentioned in all
plan-bodiesP € Pg. From Definition 10 (Ranking), for all event-goads € Eg), Ru(€) <
Rn(e) < k. Then, from the induction hypothesis, for eaghe Eg, there is exactly one tuple
(€, e, Lg‘t, LY"™ € Aoyt such that the tuple is the summary informatioregfandL" captures?.
In particular, it is not dificult to see from procedur8ummarise that all such tuples exist ifgy;
because the value returned by procedsuenmarise-Event(€,I1, A) is added to seA in line 6,
for each event-goa € E, . Moreover, since all event-goals iy have lower ranks thag it is
easy to see from procedusaimmarise(Il, A) that procedur&ummarise-Event(e, I1, A) is called
only after procedureSummarise-Plan-Body(P, I1, A, A) is called for each plan-body € Py, and
in turn, that the latter procedure calls only take placergftecedureSummarise-Event(€, 1, A)
is called for each event-goél € Ey.

Then, from Lemma 4, the induction hypothesis, and from Lenond follows that on the
completion of the call t®ummarise-Plan-Body(P,II, A, A) in line 5 for eachP € Py, there is
exactly one tupléP, e, L’FT,“, LE"™ € A such that the tuple is the summary informatiorPpaind such
thatL]" capturesP. Finally, from Lemmas 6 and 7, we can conclude that afteingarocedure
Summarise-Event(e, I1, A) in line 6, there is exactly one tuple, ¢e, LT, LT € A such that the

tuple is the summary information efandLy" capturese. Therefore, the theorem holds. m]

Completeness

So far, we have shown that Algorithm 4.3ummarise) is sound, that is, whenever it determines
that a literal is a must literal of some program, this is gntgad to be the case. However, the
algorithm is not complete, that is, there may exist a mustditof some program that the algorithm
determines to be (only) a may literal of the program. Next,wilk give some insight into the
situations in which the algorithm is not complete, whichdécussed before, arise because the
algorithm does not reason about context conditions of pligs.

It is important to note that, although the summary algorithnthe work of (Clement et al.,
2007) is both sound and complete, they only deal with pradjpos, whereas we deal with first
order atoms, and moreover, as discussed earlier, they nsakefwan assumption which requires

plan-bodies to be consistent, whereas we do not have thisngs®n. In particular, because of

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 113

their assumption, one of the situations (shown below) inclvluiur algorithm loses completeness
is not handled by their algorithm.

Next, we give three scenarios in which our algorithm classifi literal as only a may literal,
while according to Definition 12 (Must Literal), the literiglalso a must literal. First, given some
plan-library I, suppose there is an event-goal mentionedlithat is associated with a single
plan-rule having a context condition which entaits(b, Blockl), and the plan-body shown below

(from Section 4.2.3):

+Colour(Blockl, Blue);

?Blockb) A Colour(b, Blue));

—Colour(b, Blue);

+Colour(b, Red.
Then, observe that, according to Definition 12, liteZalour(Blockl, Blue) is a must literal of the
event-goal, since the literal will be true at the end of evargcessful execution of the event-goal,
due to the context condition disallowing varialblérom binding toBlockl. However, since the al-
gorithm does not reason about context conditions, accgtdithe algorithnColour(Blockl, Blug)
is only a may literal of the event-goal, as the literal is maglane by belief operationColour(b, Blue).
Note that, although it is obvious from the given context gbad that variableb will not bind to
Blockl, in practice, such a constraint can be enforced in varibeswe ways. For example, there
could be an event-goal program(h) occurring immediately before stegColour(Blockl, Blue)
in the plan-body that is associated with a single plan-rahérig test condition (b, Block2)).

Second, suppose that there is an event-goal mentionBdwith two associated plan-rules,

and that one of the plan-rules has context conditmbour(Blockl, ¢) along with the following

plan-body:

—Colour(Blocki, c);
+Colour(Blocki, Blue).

Furthermore, suppose that the second plan-rule has caeditionColour(b, ¢) A =(b, Blockl),

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 114

along with the following plan-body:

—Colour(b, ¢);
+Colour(b, Blue).

Then, observe that, according to Definition 12, liteZalour(Blockl, Blue) is a must literal of the
event-goal, because the literal will be true in the finalestasulting from any successful execution
of the event-goal (i.e., irrespective of the plan-rule @mo® achieve it). However, according to the
algorithm, literalColour(Blockl, Blue) is only a may literal of the event-goal, because the literal

is not a must literal of all plan-bodies associated with tené-goal.

Finally, consider the plan-rulg in the above figure. Suppose the following: the postconditio
of actionag is p; the postcondition of actioag is r; propositionr is not mentioned anywhere else;
the context condition of plan-rulg; is —p; the context condition dR; is g; and that all remaining
context conditions and preconditions drae. Then, note that since literaip in the context
condition of Ry is clobbered by literap brought about by, plan-ruleR; is never applicable.
Consequently, according to Definition 12, literalk a must literal ofRy andey. However, since
the algorithm will not realise thd®; is never applicabley, is classified as only a may literal 8%

andep.

4.3 Finding Hybrid-Plans

So far, we have shown how to compute summary information ehegoals mentioned in the
plan-library. In this section, we show how the domain infation for classical planning is con-
structed, in particular, how abstract actions are conwtcuasing event-goals and their summary

information. Moreover, we show how hybrid-plans are olgdinsing this domain information.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 115

In what follows, we assume, without loss of generality, ti@two event-goal types mentioned
in a given plan-librantI have the same predicate symbol, and that no event-goal tgpianed in
I1 has the same symbol as an action mentionetdrin order to create the domain information for
classical planning given a plan-library and an actiondlilgy we first obtain using Algorithm 4.1
(Summarise) the setA of summary information of event-goal types mentioned indlam-library.
We then create an operator for each event-goal typk &s follows. First, we obtain the name
of the operator by adding to the name of the event-goal @saticcurring in its precondition.
This is necessary because an operator narheeeds to contain all free variables occurring in its
preconditiony (Ghallab et al., 2004, p. 28). Next, we take as the precamditi the operator the
precondition associated with the event-goal. Finally, akeetas the postcondition of the operator
the set of must literals of the event-gdal.

Formally, given the seh = Summarise(Il, A) for some plan-libraryI and action-libraryA,

we extract the set of abstract operators as follows:

AA) = (e(X7) ¢ — D50 (R, 0, L™ L™ e A, D = (|-l e L™,
@ ={l |1 e L™ | is positive, i are the variables occurring if
but not inX}.

The domain information used as input for our classical pans the seA U A(A), that is,
the set of newly created abstract operators together withagient's existing action-library. We
include the existing action-library in the domain informoeat in order to not unnecessarily miss
existing solutions.

At runtime, wherever it is desirable to apply classical piag to achieve some goal stage
(e.g., ata programmer specified point in a plan-body), tmeado information, the belief baseof
the agent, and the goal state can be used with any classicaieplto obtain a solutidhThe only
requirement on the classical planner is, of course, thaitilsl be able to handle the expressivity
of our operators. Specifically, the planner should be ableatalle negative goals; preconditions

and postconditions containing restricted first order atdmparticular, atoms with variables and

5Recall that two event-goatsande’ have the same type if they have the same predicate symbotiandvioreover,
as usual, given any event-gagf), we usex(X) to denote its type, wheld = |ff andX is a vector of distinct variables.

"Recall from Definition 12 that variables occurring in the iiterals of an event-goal will also occur in the event-
goal.

8We use Metric-FF(Hffmann, 2003).

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS

constants but no function symbols; and preconditions wisfudction, negation, and

116

equality.

From the classical planner’s point of view, the domain infation and solutions are composed

entirely of primitive actions, despite the fact that soméhaim may represent event-goals.

Once a solution is found, abstract actions present in thdisol (if any) need to be

mapped

back into their corresponding ground event-goals. Moreipety, given a primitive solutioo €

sol(7, G, A U A(A)), we obtain the hybrid-plan (i.e., a partially-ordered skeprimitive actions

and event-goals) correspondingatawith respect tdl, denoted byry, as follows:

on = [s¢], where

s = {(i:act)|act € o, there is no event-goal mentionedIihhaving as its symbol
the symbol ofact} U {(i : &(t1,...,tm)) | &t1,...,tn)i € o, &) is an event-goal
mentioned i1, m < n};

¢ = Mi<jlije{l,... lolLi<]}

and the symbol ofct, matches the symbol of event-goglx, y) mentioned inII.
Moreover, supposact = &P, Q, R). Then,o; = [s, ¢], where

(0]
Il

{(1:act), (3 :ack)} U{(2:eP Q)}, and

1<2A1<3A2<3.

<
Il

e(X, y, 2) is because, although variables (ez).pccurring in plan-rules associat
with event-goak(x, y) do not have to also occur in the event-goal, by the defin
of an operator (Ghallab et al., 2004, p. 28), any variableiogrg in the precondi

tion or postcondition of operat@&(x, y, 2 must also occur in the operator name.

For example, suppose = act; -ack-acts, whereact; andacts are primitive actions,

In particular, the third argument of abstract act&fR, Q,R) € o is removed. Thg

reason an extra third argument is included in the name of istract operatd

117

=

tion

Unfortunately, hybrid-plans obtained in this manner arenexessarily correct, that is, there

might not exist a viable decomposition of the hybrid-plathariespect to the planning

problem.

This is because of potential conflicts betwediees brought about by event-goals and the pre-

conditions of other event-goals in the hybrid-plan. In tlextnsection, we will show why such

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 117

conflicts occur, and provide techniques for detecting swctilicts.

4.4 Validating Hybrid-Plans

Since abstract operators do not encode the may literaleofdbrresponding event-goals, this en-
tails that, although the classical planner will find corigetns for the given planning problem with

respect to the given encoding of the abstract and primitperators, the corresponding hybrid-
plan will not necessarily have a decomposition that sollkegptanning problem. This is because,
when a hybrid-plan is decomposed, it is possible that a niesalibrought about by the decom-
position of an event-goal conflicts with a precondition amgered during the decomposition of

some other event-goal, as shown in the following example.

Suppose hybrid-plan(l : &), (2 : &)}, 1 < 2] is obtained for initial stat¢p, r} and
goal state{s} via classical planning as described in the previous sectideree;
ande, have following summary information:

¢ the precondition o&; ande; is respectivelyp andq A r;
e the set of must literals af, ande; is respectively igq} and{s}; and

o the set of may literals af; ande; is respectively{—r} and®.

Now, observe that if the decomposition@fbrings about may literatr, then

—

the state resulting from the execution @fis {p, g, —r}. Consequently, it is ng

possible to decompos®, because its precondition (i.e., all of its decomposifions

requirer to hold.

Because of this potential complication due to may literidls,necessary to validate the hybrid-
plan that is obtained, to ensure that it is viable. To this, emgl perform two checks. We first
perform a simple polynomial-time check to ascertain whethe hybrid-plan is potentially incor-
rect. If this is the case, we perform a second check using Hahhing to determine whether the
hybrid-plan is actually incorrect.

The first check involves determining whether there is amyditmentioned in the precondition
of an event-goal in the hybrid-plan such that this litergbassibly clobbered by a may literal of
some other event-goal in the hybrid-plan. This processadsvamext. For convenience, given a
set of summary information, with (P, ¢, L™, L™ € A, we use functiorpre[P, A] = ¢, function

musfP,A] = L™, and functionmerjP, A] = L™. Moreover, given a totally-ordered hybrid-plan

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 118

h = [s ¢] and a goal statg&, we useh¢ to denote a modified version &f that incorporates
the goal state, that i9)° = [sU {(ny : ack)}, ¢ A (Nast < Ng)], where: (i) acty is an action
whose corresponding operator’s precondition is the gaéé sand whose corresponding operator’s
postcondition is the empty sdij) n; is a task label not occurring i and (i) nyast is the task
label of the labelled task ordered to occur after all othbelied tasks irh. This modification tdh
ensures that the check for correctness takes into accaaifdcththat, as highlighted in Definition
8, hybrid-planh must bring about the given goal state.

Then, letH be a hybrid planning problem; l&, = Summarise(Il, A); leto € sol(J, G, A U
A(Ain)); let hybrid-planh = [s, ¢] = op; and letA =

(e ¢, L™ L™0 | (e ¢, L™ L™ e Ajp,(n:€)esE =ef} U
{(acty,L,LYd | (n:act)esact:y « ®";d" € A,act = act,

L=0*U{-b|bed}}.

We say that hybrid-plar is correct with respect toH if for each @1 : e1),(n2 : &) € &,
with ny # np andh? = [, ¢9], literal I, mentioned inpre[ey, A], and literall; € merjey, A]
such that(i) 1.6, = 1161, for somedy, 6>, wherel,6, is ground;(ii) 1161, 1161 ¢ musfe;, A]; and
(i) ¢¢ E (M < mp): there existsif : €) € & such that¢? £ (n1 <) A (N < ny), and

1161 € musfe, A] or 116, € musfe, A]. Otherwise, we say that is potentially incorrectwith

respect toH.

In words, for a hybrid-plarh to be considered correct, there should not be a literad the
precondition of some event-goal in h such that a may literal of some earlier event-geain
h can potentially become the negationlgf unlessl, or its negation is also a must literal of an
event-goale’ that occurs betweee; ande,.® Note that, although this condition &yficient to
determine whether a hybrid-plan is correct, the condit®ndtnecessaryo determine whether a
hybrid-plan is correct. Therefore, given a correct hylpidn, the algorithm will not necessarily
infer that it is correct; however, whenever the algorithneslmfer that the hybrid-plan is correct,

this is guaranteed to be the case.

Theorem 8. If a hybrid-plan h is correct with respect to a hybrid plangiproblem?, then h is

9Note that because the negationlofs a must literal o, this guaranteedclobbering ofl, by & does not maké
invalid — the planner has already accounted for this cloblgerHence, anyotentialclobbering ofl, by event-goals
occurringbefore ¢ cannot makén invalid either.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 119

a hybrid-solution forH.

Proof. Let us assume the contrary, i.e., tiis correct, but thasol(h?, 7, D) = 0, whereh¢ =
[¢9, #9] is h modified to take the goal state into account. Supposeéhate; - ... - ey is the
sequence of (ground) tasks corresponding to the (totatlgred) hybrid-pla® — i.e., there is a
permutation iy : e1)-...-(Nm : em) of & such that for each;, nj, withi < jandi, j € {1,...,m}, it

is the case that® = (n; < n;). Informally, sincesol(h’, 7, D) = 0, there must be at least one task
g € éthat cannot be successfully decomposed. Formally, thewallg condition must hold: there
is a taskg € such that for all primitive plan solutions € sol([{(1 : e1),...,(i—1:e-1)} A{(j <
K)| j,kefl,...,i—1},j < K] Z,D), it is the case thasol([{(1 : &)},true], I, D) = 0, where
I’" = Res(o, I, Op) is the result of applying-in 7. Consequently, there does not exist a successful
HTN executionCy - ... - Cy of & with C4|g = I’ (Theorem 2, p. 76), and we can infer from the
definition of a Precondition (Definition 11, p. 96) thAt |~ pre[e, A]. Then, informally, it is not
difficult to see that there must exist a literahentioned inpre[g, A] and a taskey, with 1 < x < i,
such that some “hidden” mentioned literal &xf conflicts withl, that is, (i) there is a successful
HTN executiorCy -....- Cy of ey, with Cilgg k= 16, C1lg # 16, andl6, 16 ¢ musfe,, A; and(ii) there

is no taske,, with x < y < i, such thaté € musfe,, A] or 16 € musfe,, A]. From condition(i), it
follows that literall is in the set of literals captured by task(Definition 14), and from Theorem
7, it follows thatl € merjey, A] (up to variable substitutions). Finally, combined withndition

(i), it follows thath is not a correct hybrid-plan — a contradiction. m]

If a hybrid-plan is found to be correct, then it can either kecaited, or as we will show in
the next chapter, improved. However, if a hybrid-plan isfdto be potentially incorrect, then we
determine whether it is (actually) incorrect. To this engleg a hybrid planning problert, we
use HTN planning to determine whetheis a hybrid-solution forH.

It is worth noting that it may be possible tepair an incorrect (totally-ordered) hybrid-plan
in order to make it correct, by adding actions to it, removaugions from it angbr removing

constraints from its constraint formula. Let us illustrétes with an example.

Suppose we have the total-order hybrid-plas: [{(1 : €1),(2 : €),(3 : e3)},1 <
2 A 2 < 3], where the preconditions ef, e, andesz are respectivelyp, g andr; the
set of must literals 01, & andes are respectivelyr}, {w} and{s}; the set of may

literals of e, & andes; are respectively, {—r} and®; the initial state igp, q}; and

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 120

the goal state isw, S}. Moreover, suppose that may literat of e is unavoidable,
that is, literal-r is true at the end of every successful decompositiogp of

Then, observe that hybrid-planis incorrect, as may literatr of e clobberg
the preconditionr of e3. However, we can repalr by removing ordering constraint
2 < 3 from its constraint formula, which then allowes to precedes;; in this way,
may literal—r of e, is brought about only aftess is executed, and the clobbering|of
e3's precondition can be avoided.

Alternatively, if there is an actiomct in the action-library that brings about

11%

literal r and whose precondition is applicable in stgpeg}, we could repair th
original hybrid-planh by placingact betweene, ande;s to obtain hybrid-plan{{1 :
€),(2:e),(4:ac),3:e3)},1 <2A2<3A2<4A4 < 3]. Inthis way, the

clobbering ofes’s precondition can be avoided.

It is not difficult to see that, in some situations, we can only repair dyplans by adding
andor removing actions —i.e., removing constraints will notrkvdHowever, in general, repairing
a (sequential or partially-ordered) plan in this mannersihard as generating a new plan from
scratch (Nebel and Koehler, 1995). Therefore, if a hybtatps found to be incorrect, we obtain

a new hybrid-plan via classical planning, using the techesydiscussed in Section 4.3.

Chapter

Obtaining a Preferred First Principles
Plan’

In the previous chapter, we provided the means for obtainorgect hybrid-plans, i.e., hybrid-
solutions, for a given planning problem. In particular, iwed how to summarise the plan-
library, how to create operators using summary informatbmvent-goals, and how to obtain
hybrid-plans that are correct, via first principles plamnitn this chapter, we investigate how to
obtainpreferredhybrid-solutions. We will present filerent notions of preferred hybrid-solutions,
properties of such hybrid-solutions, and data structunesadgorithms for realising one of these
notions.

In first principles planning, a plan is said to be a solutiond@lanning problem if the plan
is correct relative to the planning problem, i.e., if executing thenpfeom the initial state will
result in the goal state being met. Correctness is an impiqutaperty that all plans must meet. In
addition to correctness, many domains require that plahsrado certain other properties. This
is because correct plans can still have shortcomings, suddandancyandnon-minimality A
solution for a planning problem is said to bedundantif one or more actions can be removed
from the solution to obtain a plan that is still a solution tbe problem. A solution of length
for a planning problem is said to b®n-minimalif a solution of length less than exists for the
problem.

Similarly, correct hybrid-plans, i.e., hybrid-solutigrsan also have shortcomings. A signifi-

fPart of the work presented in this chapter has been preyipusllished in (de Silva et al., 2009).

121

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 122

cant shortcoming is that a hybrid-solution can be redundan; every primitive solution produced
by the hybrid-solution, for the given planning problem, dsnredundant. This means that the
agent cannot avoid executing one or more redundant actiamsgdits execution of the hybrid-
solution. Intuitively, redundancy occurs as a result oksaexisting in the hybrid-solution that are
unnecessary afor overly abstract. Since tasks can be thought of as a dolteof other tasks,

a higher level of abstraction implies a larger collectiontasgks. Consequently, having overly
abstract tasks in a hybrid-solution results in the hybdli#son producing, in addition to the nec-

essary actions, also unnecessary (redundant) actions.

Let us illustrate our overall framework with an example. €ider the Mars Rove

=

agent of Figure 4.4 (p. 106), excluding the optional plaest, andR;. Suppose
that at some point, the agent invokes a planner, which rettiv@ hybrid-solution
h shown in Figure 5.1(a). Consider next the actual executfdmybrid-solutionh
shown in Figure 5.1(c). Now, notice that breaking the cotinorafter sending the
results forRock, and then re-establishing it before sending the resuliRdcl3 are
unwarranted, or redundant steps. Such redundancy is krabght by the overly
abstract taskPerformSoilExperiment What we would prefer to have is theon-
redundanthybrid-solutionh’ shown in Figure 5.1(b). This solution avoids the |re-
dundancy inherent in the initial solution, yet still retaimuch of the structure of
the abstract plans provided by the programmer. In particula retain the abstragt
tasksNavigateand ObtainSoilResultswhich would allow us to achieve these tasks

in an alternative manner to that shown here, if such existedveas warranted b

- <

the situation during execution. The replacement of eadPeoformSoilExperimer
and TransmitSoilResultwith a subset of their components is clearly motivated in

order to remove redundancy.

It is important to note that, while our framework does ret@mmuch as possible the structure
of the abstract plans provided by the user, it may be the tedhe user does not want certain
important tasks to be removed at all from plans, even if thiasks are redundant. For example, as
illustrated in (Kambhampati et al., 1998), although thd tafsbuying a ticket when travelling by
bus may not be necessary for achieving the goal of gettingetdéstination, one may still want to
always perform this task when travelling by bus. Here, fordicity, we have used “redundancy”

as the sole criteria for classifying a task as unnecessarthérequired goal. However, a more

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 123

1. NavigatéRocK., Rock) 1. NavigatéRocKL, Rock)
2. PerformSoilExperimef(Rock) 2. ObtainSoilResul{Rock?)
3. Navigat€Rock, Roclk3) 3. EstablishConnection
4. PerformSoilExperime(Rock3) 4. SendResul{Rock2)
5. Navigat€Rock, Roclk3)
6. ObtainSoilResul{Roclk3)
7. SendResul{RoclB3)
8. BreakConnection
(a) Hybrid-solutiorh (b) Hybrid-solutionh’

1. NavigatéRocKL, Rock)
(A) CalibrateViaGPS
(B) MovgRocKL, Rock)
2. PerformSoilExperime(Rock)
(A) ObtainSoilResul{®kock?)
(i) PickSoilSampl@roci?)
(i) AnalyseSoilSamp{Rock)
(a) GetMoistureContefRock2)
(b) GetSoilParticleSiz&ock)
(iif) DropSoilSample
(B) TransmitSoilResul{Rock)
(i) EstablishConnection
(i) SendResul{Rock?)
(i) BreakConnection
3. Navigat€Rock, Roclk3)
(A) CalibrateViaGPS
(B) MovgRock, Rock3)
4. PerformSoilExperimeRock3)
(A) ObtainSoilResul{®ock3)
(i) PickSoilSampl@roci3)
(i) AnalyseSoilSamp(Rock3)
(a) GetMoistureConteiRock3)
(b) GetSoilParticleSiz&ock3)
(iii) DropSoilSample
(B) TransmitSoilResul{Rock3)
(i) EstablishConnection
(i) SendResul{Rock3)
(iif) BreakConnection

(c) Execution trace of hybrid-solutidm

Figure 5.1: (a) A redundant hybrid-solutidn (b) a hybrid-solutiorh” with redundancy (actions
in bold) removed; and (c) the execution tracenof

flexible approach could be used for classifying a task as eessary for the required goal. We
give insights into such an approach in Chapter 7.

As we can see from the above example, non-redundant hytlitiens favour specific tasks
over abstract tasks. On the other hand, uker intentnotion discussed in the previous chapter
(Section 4.1, p. 87) favours abstract tasks over specifictaRecall that, intuitively, a hybrid-
solution conforms to user intent if it can Iparsedin terms of the method-library; therefore, any
hybrid-solution composed entirely of arbitrary abstrastks will conform to user intent, whereas
only certain hybrid-solutions containing primitive taglestions) will conform to user intent. In

this chapter, we make the preference for abstract taskssénmrger by requiring that hybrid-plans

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 124

are as abstract as possible nmaximally-abstractIntuitively, a maximally-abstract hybrid-plan is
one which does not contain a collection of abstract taskslwtould potentially be combined into
a single (more) abstract task, thus improving the abstnadével of the hybrid-plan. Therefore,
maximal-abstractness ensures that hybrid-plans onlhagotiie most abstract tasks possible. The
advantage of such hybrid-plans is that, in addition to tivelly capturing the user intent property,
they support flexibility and robustness in execution, tleey are better able to deal with failure
during execution, by trying alternative reductions on thieufe of less abstract tasks.

As one can observe, while non-redundancy favours specics tahe need for flexibility and
robustness favours abstract tasks. Consequently, the aimaif this chapter is to investigate
what the desired level of abstraction is for hybrid-plans.particular, we focus on finding non-
redundant hybrid-solutions that are maximally-abstragt alsominimal where a minimal hybrid-
solution is one that is a non-redundant hybrid-solutioomfrhich no tasks can be removed to
obtain another non-redundant hybrid-solution. To this, @veldefine three compound notions of
hybrid-plans, based on the notions of minimality, non-rethncy and maximal-abstraction. The
strongest notion is calledminimal non-redundant maximal-abstraction (MNRMA) hghpian
the second strongest notion is calleMAIRMA specialisation of a hybrid-plamnd the weakest
notion is called greferred specialisation of a hybrid-plan

A MNRMA hybrid-plan is one that is at the ideal level of abstian. This notion is defined
relative to all other conceivable hybrid-plans for the giveybrid planning problem. Consequently,
finding a MNRMA hybrid-plan is very computationally expevesi The intermediate notion —
MNRMA specialisations of a hybrid-plan — defines the desimabl of abstraction for a@iven
hybrid-plan relative to the space décomposition®f the hybrid-plan. Although still computa-
tionally expensive, this notion is conceptually closertie tinal notion — MNRMA specialisation
of a hybrid-plan, which defines the desired level of absibactor a given hybrid-plan relative to
asingledecomposition of the hybrid-plan. A preferred speciaiisafor a given hybrid-plan can
be computed in polynomial time.

This chapter is organised as follows. First, in Section &éd give some definitions, conven-
tions and preliminary notions. Second, in Section 5.2, wesdtigate the three desired proper-
ties of hybrid-plans, that is, non-redundancy, minimaéit/d maximal-abstractness, and we then
formulate our ideal (MNRMA) notion of a hybrid-plan. Thirtgh Section 5.3, we discuss the in-

termediate notion: MNRMA specialisations of a hybrid-pland in Section 5.4, we discuss the

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 125

weakest notion: preferred specialisation of a hybrid-pRinally, in Section 5.5, we provide data

structures and algorithms for obtaining preferred spiseiibns of a given hybrid-plan.

5.1 Preliminary Definitions

In this chapter, we make use of the notion ofadelled primitive plan, i.e., a primitive plan
constructed from labelled tasks rather than un-labellskistaMore precisely, Ebelledprimitive
plant = (ng @ tg) - ... - (hm : ty) is a sequence of labelled tasks. We will uséo denote
labelled primitive plans, and to denote (un-labelled) primitive plans. We will sometintggr
the distinction between primitive plars and labelled primitive plans — in particular, we will
use labelled primitive plans in place of (un-labelled) ptive plans with the obvious meaning.
The other conventions we use in this chapter are the follgw(h for hybrid-plans or hybrid-
solutions(ii) d for task networks, anglii) A for decomposition traces (introduced in Section 5.4).
In HTN planning, it is sometimes convenient to specify a rodtlwhich, given a particular
condition, amounts to “doing nothing.” However, in HTN sgrt conditions cannot be specified
inside methods that have no tasks. Moreover, the semaritid3 ¥ does not allow conditions
to be specified on compound tasks that are eventually redotethe empty set. For specifying
conditions in such situationglummyprimitive tasks, which we calé tasks in this chapter, are
used. Althoughe tasks are still primitive tasks, they have no preconditioreftect; therefore,

executing them amounts to “doing nothing.”

To illustrate whye tasks are necessary in HTN planning, consider an elevator
domain consisting of the following two methods for handlihg compound task
go-to-bottom which keeps moving down one floor until the ground floor (flopr

is reached:

(go-to-bottom[{(1 : move-dowin (2 : go-to-bottom}, (1 < 2) A (=Floor(0), 1)])
(go-to-bottom[{(1 : €)}, (Floor(0), 1)]).

Observe that without the task in the second method, there is no way of

specifying that the elevator should stop moving down onee gtound floor is

reached-

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 126

We make two reasonable assumptions regarditasks. First, since tasks are used solely
for the purpose of specifying conditions in the two situationentioned above, we assume in this
chapter, without loss of generality, that alasks mentioned in primitive plans in s&il(d, 7, D)
of HTN primitive plan solutions have been removed. Secorelagsume that given any method,
its task network is such that the set of labelled tasks iserapty (even if its constraint formula is
true), i.e., that the set of labelled tasks contains at least almellede task.

Finally, we assume, without loss of generality, that labheithin a HTN task network are
unique, and that its constraint formula does not mentiontask labels that do not occur in the

task network’s set of labelled tasks.

5.2 MNRMA Hybrid-Plans

In this section, we consider three inter-related concegtsl, define these precisely in order to
obtain an unambiguous description of an “ideal” hybridapla@hese concepts we catlaximal-
abstractnessminimality andnon-redundancy Intuitively, given a hybrid planning problerf{, a
non-redundantybrid-solution forH is one which can produce (via one or more HTN reductions)
a primitive plan that is a non-redundant solution 4ér a minimal hybrid-solution forH is a non-
redundant hybrid-solution fok from which no (primitive or non-primitive) tasks can be rerad

to obtain a hybrid-solution that is still non-redundant #ér and a maximally-abstract hybrid-plan
is one which does not contain a collection of abstract tagkislwcould potentially be combined
into a single (more) abstract task.

More precisely, a maximally-abstract hybrid-plan is oret ik not a “refinement” of any other
hybrid-plan. Intuitively, the refinements of a task netw¢ok hybrid-plan) are all the “interme-
diate” or “partially reduced” task networks encounteredriny the HTN search for primitive
plan solutions of the given task network. The notions refieetnmaximal-abstractness, non-

redundancy and minimality are illustrated in the followiexpmple.

Consider the HTN domain in Figure 5.2. Observe that the nefergs of hybrid}\

1One may wonder whether the following encoding works:
(go-to-bottom[{(1 : move-dowh (2 : go-to-botton)}, (1 < 2) A (=Floor(1), 1) A (=Floor(0), 1)])
(go-to-bottom[{(1 : move-dowi, (Floor(1), 1)]).
This encoding will not work when the initial state is suchtttize elevator is at floor 0. In this case, no methods of
go-to-bottomcan be applied and the search fails.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 127

solutiontg in the figure is basically the following set:

{to, t; - o, t1-t3- 1,
ti-t3-ag, t1-a -1, ti-a1-a- g,
t1-ay-as, ti-ag-a-a3 ai-ty

13- g, a - t3- ag, a - ap -y,
ai-a;-ax-ty, a;-ar-as, al-al-az-ag}.

Refinement; - a; - a - t4 is obtained by reducing three times: firstty is reduced
using methodny to obtain task networlg - t>; secondf; - t; is reduced using method
My, to obtain task network -t3 - t4; and third,t; - t3 - t4 is reduced using method, to
obtain task network; - a; - a - t4. Similarly, refinemeng; - a, - t4 is obtained using
methodsmy, my, mp, andmg; refinementa; - a; - a - t4 is obtained using methods
my, My, Mp, andmy; refinementa; - a, - az is obtained using methodsy, My, Ny,
mg, andms; and refinemend; - a; - a, - ag is obtained using methodsy, M, N,
my, andms. The rest of the refinements are obtained in a similar manner.
Next, consider the table below, which shows some of thEemint hybrid-
solutions possible, for the hybrid planning problem cdirsjsof initial state{p},
goal state s}, and the HTN domain in Figure 5.2. Based on the above refinesmen
we can see that hybrid-solutidp is maximally-abstract because it is not a refine-
ment of any other hybrid-solutiorto(does not have a refinement that matches
alone). On the other hand, hybrid-solutign t, is not maximally-abstract because
it is a refinement ofp.
Hybrid-solutionty is non-redundant because it can produce the non-redundant
primitive solutiona; - a, - ag, by selecting methods in the following sequenng;
my, Mp, Mg, andms. Hybrid-solutionts - t; is redundant because all of its primitive
solutions -a4-a5-az-ag anday - as - a1 - a2 - ag — are redundant; soluticey -as-ay - ag
is redundant because actiafior a; can be removed from the solution and still have
a solution, and solution, - a5 - a1 - a - az is redundant because acticsysandasg
(or other combinations of actions) can be removed from theisa and still have a

solution.

Hybrid-solution ts - t4 is minimal becausdi) it is a non-redundant hybrid

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN

128

solution, and(ii) none of its proper subsequences &ndts) are non-redundant
hybrid-solutions. Finally, although - to is hon-redundant, it is not minimal, be-
cause a proper subsequence oftit — is a non-redundant hybrid-solution.
HyBriD-SoL. NON-REDUNDANT MINIMAL ~ MaxmaLLy-ABstrRaAcT MNRMA
fo v v v v
t2 v v v v
t5 - ta v v v v
t3 . t4 \/ \/ X X
ts- X X v X
t-to v X X X
t1-13-14 \/ X X X
ts-t3-14 X X X X
’ compound task
— action
& % 8%
s . N
Action Prec. Post.
a p q
a q r
as r s
Ay p q
as q r
as S t

Figure 5.2: A simple totally-ordered HTN domain. An arrowldye a method indicates that its
steps are ordered from left to right. The table shows thegoditions and postconditions of the

actions.

5.2.1 Non-Redundancy and Minimality

In what follows, we shall make precise the notions of hondretincy and minimality for hybrid-

solutions. To define non-redundancy, we extend from Fink €Eank and Yang, 1992) the notion

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 129

perfect justificatiordefined for primitive solutions.

Definition 15. (Perfect Justification (Fink and Yang, 1992)) A primitivdwgmn o for a classical

planning problenC = (7, G, Op) is aperfect justificationfor C if there does not exist a proper

subsequence’ of o such thatr’ is a primitive solution foiC. [|

It is easy to see from this definition that a perfect justifaratan be obtained from any given
primitive solution. We say that a hybrid-solutionnsn-redundantif it can produce at least one

perfect justification.

Definition 16. (Non-redundant Hybrid-Solutions) Lé{ = (7, G, D) be a hybrid planning prob-

lem. Thenh is aweakly non-redundarttybrid-solution forH if there existso- € sol(h, 7, D) N

sol(7, G, Op) such thato is a perfect justification for probleniZ, g, Op). Also, d is strongly

non-redundantf every o € sol(d, 7, D) n sol(Z, G,Op) is a perfect justification for problem

<Iagaop> | |

In the rest of this chapter, when we refer to non-redundaweyare referring to the weak
notion. Next, we define the notiominimality. Intuitively, we say that a non-redundant hybrid-
solutionh is minimal, if there is no substructure lofvhich gives the same result. More precisely, a

non-redundant hybrid-solutidm= [s, ¢] for a hybrid planning probler# is aminimal non-redundant

hybrid-solutionfor H if there does not exist a non-redundant hybrid-solutibe: [s', ¢'] for H
such thats' c s, where¢’ is obtained fromp by replacing withtrue every (ordering) constraint
that mentions some task label occurring in thesset'.

Note that minimality is a stronger notion than non-redurgarT his is illustrated in the table
of the previous example, with hybrid-solutiofist, andt; - t3- t4, which are non-redundant but not
minimal. We do not define minimality and non-redundancy dgpendent concepts because this
can lead to a situation in which there is a hybrid-soluticat fe non-redundant and non-minimal,

but all minimal hybrid-solutions that can be obtained frdrare redundant.

Let us illustrate with an example how such a situation caseariBut first, let ug
assume that minimality is defined relative to hybrid-salng, rather than relative to
non-redundant hybrid-solutions, i.e., a minimal hybridasion is a hybrid-solution
from which no tasks can be removed to obtain a hybrid-plahighstill a hybrid-

solution.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 130

Now, let us consider hybrid-solutidg - t; for the hybrid planning problem co

-
1

sisting of initial statg p, u}, goal statgs}, and the HTN domain below. Observe that
this hybrid-solution is non-redundant and not minimalsinbon-redundant because
it can produce the non-redundant primitive solutsna; - az, by selecting methods
my andmy, and it is not minimal because its proper subsequénrsealso a hybridt
solution —tp can produce the primitive solutiam - a, - ag - as, by selecting method
my. However, although hybrid-solutioty is minimal, it is redundant, because |its

(only) primitive solutiona; - a, - ag - a4 contains the redundant actiag.

Action Prec. Post.
OR ai p q

m ™| L .

fap: @yl iay: ap: ag: a4 iag: as r S

a u v

Consequently, although it may be possible to extract a tydwlution that is non-redundant
(alone), and one that is minimal (alone) from a given hylsatistion, it may not be possible to
extract from the given hybrid-solution one that is both medundant and minimal. To avoid such

situations, we define minimality as a strengthening of reghindancy.

5.2.2 Maximal-Abstractness

Next, after building the necessary foundations, we will mkefthe third desirable property of
hybrid-plans: maximal-abstractnessAs mentioned earlier, a hybrid-plan is maximally-abstrac
if it does not match a refinement of any other hybrid-plan, iehbe refinements of a given task
network are all the “intermediate” task networks encowsdeduring the HTN search for primitive
plan solutions of the task network. Although the HTN sentndf Erol et al. (Erol et al., 1996)
provides construcsol(d, 7, D) for representing the primitive plan solutions of a taskwuek d
(see Section 2.3.2), there is no construct in the semauwticepresenting such “intermediate” task
networks. Therefore, in this section we extend the HTN seicgof (Erol et al., 1996) with such
a construct.

Technically, therefinementf a task networld is the set of all task networks obtained by

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 131

reducingd zero or more times; gefinements a member of this set. We define refinements of
a task networld as the reflexive transitive closure of the set of HTN redungtieed(d, D) (see
Appendix A.3). In the definition belowgefn(d, D)" is the set of task networks obtained fram
reductions o, andrefn(d, D) is the set of task networks obtained from all finite redutdiof

d.

Definition 17. (Refinements) Letl andD be a task network and an HTN domain, respectively.
The set ofrefinementsof d relative to D, denoted byrefn(d, D), is defined agefn(d, D) =

refn’(d, D), where

refn’(d, D) = {d};

refl™(d, D) = U red(d’, D);
drerefn’(d.o)

refr’(d, D) = U ref’(d, D).

neNp
|

Notice that since a refinement of a task networéng “intermediate” task networkl encoun-
tered during the decomposition of the given task networbelis no guarantee that a refinement
will produce a primitive plan solution, i.e., it is possitifeatsol(d, 7, D) = 0, for all states/ and
for the HTN domain® in question.

To determine whether a given hybrid-plaratchesa given refinement, we need to determine
whether: (i) tasks in the hybrid-plan are also present in the refinem@ntprdering constraints
specified on tasks in the hybrid-plan are compatible with,(do not conflict with) those specified
on tasks in the refinement; afid) the refinement produces any of the primitive plan solutidns o
interest produced by the hybrid-plan.

The final check is necessary for the following reason. Evenreéfinement and hybrid-plan
contain the same labelled tasks and the same ordering amtstspecified on them, the refinement
may still contain state and variable binding constraintsesgas the hybrid-plan (by definition) will
only contain ordering constraints. Consequently, the eefient may be more constrained than the
hybrid-plan, and possibly unable to produce any of the piimiplans that the hybrid-plan can

produce.

For example, let us consider Figure 5.3. The figure showshigally the reductior‘\

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 132

of hybrid-solutionh = [{(2 : t1), (3 : t2)}, (2 < 3)] on the right, and the reductions
of hybrid-solutionh’ = [{(1 : tg)}, true] on the left. Observe that task netwadk=
[{(2 : t1), (3 : t2)}, (p, 2)] in the figure is a refinement &f — the former is obtained

—

from a single reduction of the latter. Observe, also, thatdtdering constrain
(2 < 3) of hybrid-solutionh is compatible with the ordering constraintscbf

Now, supposé andh’ are hybrid-solutions for initial statie-p} and some goal

—

state. Suppose, further, that we wish to determine whétiemaximally-abstrag
relative to the sef(4 : ag) - (5:a4) - (6 : a5) - (7 : tg)} Of primitive plan solutions for
h. Although ordering constraints of hybrid-solutibirare compatible with those of
refinementd, and they both have the same tasks, the refinement cannaicertitg
primitive plan solution (4 az)- (5 : a4)- (6 : a5)- (7 : ag) because the state constraint
of d — (p,2) — conflicts with initial statg—p}. Sinceh’ does not have a refinement
that matche#$, we say thah is maximally-abstract.

On the other hand, suppose we have initial stpiénstead of—p}. In this case,
h is not maximally-abstract, because refinemaif hybrid-solutionh” matchesh,

i.e., d andh have the same tasks, their ordering constraints are cdoimasindd

can produce the primitive plan solution (4g) - (5 :a4) - (6 : as) - (7 : ag).

4:8;1(4<5)1 5:a, 6:a51(6<7)7 a8

Figure 5.3: Refinements for hybrid-solutiof(1 : tg)}, trug] (left) and hybrid-solution {(2 :
1), (3 :)}, (2 < 3)] (right) depicted graphically. Dashed rectangles regné constraints on
adjacent labelled tasks.

We can now define the notion maximally-abstract. We say thgtbaid-planh is maximally-

abstract if there is no other hybrid-plan such that one akfimements match.

Definition 18. (Maximally-Abstract) LetD be an HTN domain andl be a state. LeA be a set of
hybrid-plans andh = [s,, 1] € A be a hybrid-plan in it. LeE,, € sol(h, I, D) be a set of primitive

plan solutions.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 133

Hybrid-planh is (strongly) maximally-abstracemong sei\ for Xy, if there is no hybrid-plan

h =[sv,dr] € A with |sy| < |s| such that:
1. d; e refn(h’, D),
2. dy = [sq,, ¢d,] Is @ ground instance and task label renamingd;ofuch thatsy, 2 s,
3. d3 =[Sy, ¢a, A pn], and
4. ¥ nsol(ds, I, D) + 0;

moreover, if¥, C sol(ds, 7, D) also holdsh is weakly maximally-abstra@mongA for X,. []

In words, a hybrid-plarh is (strongly) maximally-abstract among hybrid-plansArfor a
set of primitive plan solution&, if there is no shorter hybrid-plaly in A that can producd
by refinements, without losingll of the primitive plan solutions ix,. Similarly, h is weakly
maximally abstract amongy for Xy, if there is no shorter hybrid-plan in A that can produch by
refinements, without losingny of the primitive plan solutions i&y,. In the rest of the chapter we
use the weaker notion of maximal-abstraction.

So far, we have defined the three desirable properties ofdygblutions: non-redundancy
minimality, and maximal-abstractnessSince ideally? a hybrid-solution should satisfy all three
properties, we will now define what “ideal” hybrid-solut®are, by combining the notions maximal-
abstractness and minimal non-redundancy. More preciselgonform to this “ideal” notion,
a hybrid-solution must be minimal, and maximally-abstratative to the set of perfect justifica-
tions of the hybrid-solution. We call such “ideal” hybridapsminimal non-redundant maximally-

abstract(MNRMA) hybrid-plans.

Definition 19. (MNRMA Hybrid-Plans) A hybrid-planh is a minimal non-redundant maximal

-abstraction(MNRMA) for a hybrid planning problent = (7, G, D) if and only if
1. his a minimal non-redundant hybrid-solution f&f; and

2. his a (strongly) maximally-abstract hybrid-plan amaigpossible hybrid-plans for the set
Znsolh, 7, D), whereX is the set of all perfect justifications for, G, Op).

The set of all MNRMA plans fofH is denoted MNRMA).]

2Although there may be other desirable properties of hybadiditions, we are only interested in the three mentioned.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 134

The definition states that a hybrid-plan is considered a MMRIWbrid-plan if it is (i) a
maximally-abstract hybrid-plan with respect to all possitiybrid-plans, and the set of all perfect
justifications the hybrid-plan is able to produce, dida minimal (and hence non-redundant)
hybrid-plan.

The following theorem states that, whenever a hybrid plagnproblem can be solved, there

is, at least, one (ideal) MNRMA hybrid-plan.

Theorem 9. Let H = (I, G, D) be a hybrid planning problem. If §dI, G, Op) # 0, then there
exists an MNRMA fofH.

Proof. Let =" be the set of all perfect justifications faf, G, Op), let o € sol(Z, G, Op) be a
primitive solution, and let’ be a subsequence ofsuch thatr’” € . Moreover, leth! = [{(i :
act) |lact e o/}, A{(i <) 11, €{L,...,|07l},i < j}] be the hybrid-plan representing. First,
supposel E G. Then, the theorem holds trivially, &8'| = 0 andh! = [0, true] is a MNRMA for
H. Next, supposd £ G. Then, observe that hybrid-pldrt is a minimal non-redundant hybrid-
solution forH. If ht is not a maximally-abstract hybrid-plan among all posskiybrid-plans for
the set{c’}, then according to Definition 18 (Maximally-Abstract), a m@bstract hybrid-plan
exists, that isMA(h?, ht, {c’}) holds for some hybrid-plah?, whereMA(H, h, X) (for any hybrid-
plansh = [, ¢n] andh’ = [sy, ¢rv], and set of primitive plan& C sol(h, 7, D)) stands for the
conditions in Definition 18 (i.elsy| < ||, d; € refn(h’, D), etc.).

Next, letmin(h) denote the set of minimal non-redundant hybrid-solutiafg = [Smin, @min]
for H that can be obtained from a hybrid-plan= [s,, ¢n] (that iS Syin € $h, andémin is obtained
from ¢y, by replacing withtrue every constraint that mentions some task label occurrinipen
sets, \ Smin). Now, if there is a hybrid-plam® € min(h?) such thath® is a maximally-abstract
hybrid-plan among all possible hybrid-plans for the 3&tn sol(h®, I, D), thenh?® is a MNRMA
for H, and the theorem holds. Otherwise, for each hybrid-pfar: [$3, ¢%] € min(h?), there
must exist a hybrid-plah* such thatMA(h* h?, 2%) holds, wherez® = =" N sol(h®, 7, D). This
reasoning can be continued fot = [s*, ¢%] like we did before for hybrid-plarh?®. However,
observe that sinc®| < |s°| holds according tdA(h*, h®, £3), this reasoning can only be applied
a finite number of times until some hybrid-plah, with h" = [{(n : t)}, tru€] (recall hybrid-plans
cannot mention state constraints) is reached for some comopiskt. Hybrid-planh" is then a
minimal non-redundant hybrid-solution f@{f, and also a maximally-abstract hybrid-plan among

all possible hybrid-plans for the st N sol(h", 7, D). o

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 135

Unfortunately, it is not clear how one could compute an MNRKsAa hybrid planning prob-
lem, without considering all possible hybrid-plahsBefore we can develop, and show how to
implement, a weaker notion than MNRMA that looks for the nipseferred” specialisation of a
fixed hybrid-solution, in the next section we will developiatermediate notion which, although

still not implementable, is conceptually closer to our fimaplementable notion.

5.3 MNRMA Specialisations of Hybrid-Plans

Rather than exploring the set of all conceivable hybridiplto find one that is an ideal MNRMA
hybrid-plan, we focus in this section on improvinggeven hybrid-plan, within the confines of
its refinementsinto one that contains no redundancy, while keeping it adratt as possible.
While such improved hybrid-plans are not necessarily @lgh ideal MNRMA hybrid-plans,
they will still be ideal with respect to the space of hybrid#s inherent in the refinements of the
given hybrid-plan. A hybrid-plan found by improving a givepbrid-plan in this manner is called
anMNRMA specialisatiomf the given hybrid-plan. MNRMA specialisations of a hybgthn are
conceptually closer to the final implementable notion wéaidicuss in the next section, compared
with the ideal MNRMA notion discussed in the previous settio

Intuitively, a specialisationis a non-redundant hybrid-plan inherent in a refinement; e
ordering enforced on tasks compatible with, but possiblyer@mnstrained than the ordering en-
forced on tasks in the refinement. More precisely, a speei&n of a refinement is subsetof
the refinement, where the constraint formula of the subseth®afollowing properties(i) it does
not contain state constraints, aijl it is anextensiorof the partially ordered constraint formula
in the refinement, i.e., the constraint formula of the subs&y contain additional ordering con-
straints compatible with those of the refinement. Therefasgpecialisation can be totally ordered
even if its corresponding refinement is not. Observe thayitiye of the specialisation being a
subset of the refinement, all ordering constraints entéieithe refinement (on tasks in the subset)
are also entailed by the specialisation. We do not includbearspecialisation state constraints of
the refinement because specialisations represent hyland;pvhich do not account for state con-
straints. Nonetheless, by conforming to ordering constsanf the refinement, we ensure that the
user’s intent with respect to the ordering of tasks in thenegfient is maintained in any extracted

specialisation.

3Technically, one would consider only shorter plans tharotieat hand.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 136

It is worth noting the reason why specialisations aubsetsof refinements. In situations
where the given hybrid-solution is redundant, any refingnoéthe hybrid-solution will also be
redundant in generé&lBy allowing specialisations to be subsets of refinementsillibe possible
to remove any redundant tasks in refinements. Note, howthadrremoving redundant tasks in
refinements is at the expense of user intent, which requiressks appearing in refinements to be

intact.

For example, consider the (totally ordered) hybrid-soluti, - ts for initial state
{p} and goal statds,t}, created using tasks in the method-library of Figure [5.2.
Observe that-tg is a redundant hybrid-solution because its (only) prireigelution
a;-ap-ag-ag-ag IS redundant. Observe, also, that the redundancy cannéhbeated
by removing either of the tasks or ts — if t; is removed, the necessary actiang

anday will also be removed; and if; is removed, the necessary actianwill also

be removed. However, if we consider a hybrid-solution (sdsation) at one leve
of abstraction below, - tg, sayts - t4 - ts, we can now remove redundant tasko
obtain the minimal non-redundant hybrid-solutitn- ts. Moreover, observe that

this hybrid-solution is maximally-abstract relative td kaybrid-plans that can he

extracted from refinements of - tg.

Next, we define a specialisation of a given hybrid-plan asctimbination of a subset of the
tasks in a refinement of the hybrid-plan, withall the constraints entailed on tasks in the subset by
the refinementgz(%), and(ii) possibly additional constraints that do not conflict with ttonstraint

formula of the refinemenisg).

Definition 20. (Plan Specialisation) LeD be an HTN domain and lét; be a hybrid-plan. A

hybrid-planh; = [, ¢2] is a plan specialisatiorof h; with respect taD if there exists formulas

¢3 and¢3 with ¢, < ¢35 A ¢3, and a ground instance and task label renanting [sq, ¢q] of a

refinementd’ € refn(hy, D) such that:

1. $C s

4Since a specialisation, being a hybrid-plan, will not cantany state constraints, a specialisation containing all
tasks of the refinement may actually be less constrained ttiamefinement. In particular, the specialisation may
be capable of producing a non-redundant solution that tfeeraent cannot produce. Therefore, in such cases, the
specialisation may be non-redundant, even though its sporeding refinement is redundant.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 137

2. qb% is the largest formula with unique constraints such thatafbstatess, sol(d, 7, D) =

sol([sd, ¢ A @3], I, D); and

3. if there exists a staté such thasol(d, 7, D) # 0, then there also exists a statesuch that

sol[sg, ¢a A 3], 7', D) # 0.
The set of all plan specialisations lof with respect taD is denotedspechy, D).]

In words: ¢>% is the formula of implicit and explicit constraints entailby ¢, i.e., those that
can be added tpy without losing any of the primitive plan solutions ttdhtan already produce in
any initial state; and;% is any formula of constraints that does not contradigti.e., any formula
that can be added iy without losing all of the primitive plan solutions thdtan already produce
in some initial state.

Finally, a MNRMA specialisation is any specialisation ofiaem hybrid-solution that i¢i) a
minimal non-redundant hybrid-solution, atij maximally-abstract among abecialisationsof

the given hybrid-solution.

Definition 21. (MNRMA Specialisation) LetH = (I, G, D) be a hybrid planning problem and
let h be a hybrid-solution fo#{. Then,h’ is aMNRMA specialisatiof h for # if and only if

1. ¥ e specgh, D);
2. i is a minimal non-redundant hybrid-solution f#f; and

3. h’is a maximally-abstract hybrid-plan among thesgech, D), for the seEnsolh’, 7, D),

whereX is the set of all perfect justifications fof, G, Op). m

The following theorem states that, given any hybrid-solutithere is, at least, one MNRMA

specialisation for it.

Theorem 10. LetH be a hybrid planning problem, and let h be a hybrid-solution#. Then,

there exists an MNRMA specialisation of h it

Proof. Let =" be the set of all perfect justifications faf, G, Op), let o € sol(Z,G,Op) be a
primitive solution, and let” be a subsequence ofsuch thatr’ € =". Moreover, leth! = [{(i :
act) lact e o/}, A{(i <) 11, €{L,...,|07"l},i < j}] be the hybrid-plan representing. First,
supposel E G. Then, the theorem holds trivially, &8’| = 0 andh! = [0, true] is a MNRMA

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 138

specialisation oh for H. Next, supposé ¥ G. We will now show thah! € spe¢h, D), i.e., that
h! = [s., #11] is a plan specialisation df with respect taD (Definition 20).

Since there is a ground instance and task label renathiad sy, ¢4] of some primitive task
networkd’ e refn(h, D) such thats;: C sy, the first condition of Definition 20 holds for hybrid-
planh!. The second condition of the definition is also satisfied bseh! is totally ordered, and
consequently, we can always takepém Definition 20 some formula constructed from constraints
in ¢1. Finally, sinceo” is a subsequence of, it follows that sol[sy, g A ¢nil, 7, D) # 0 holds
— the constraints i are in agreement with plan. Therefore, the third condition of Definition
20 holds, andh! is indeed a plan specialisation lofvith respect taD.

Next, observe thah! is a minimal non-redundant hybrid-solution f@f. If h' is not a
maximally-abstract hybrid-plan amorgpech, D) for the set{c”’}, then according to Definition
18 (Maximally-Abstract), a more abstract hybrid-plan &ighat is,MA(h?, ht, {c’}) holds for
some hybrid-plarh? € spe¢h, D), where MA(IY, h,X) (for any hybrid-plansh = [s,, ¢n] and
h = [sy, ¢r], and set of primitive plan& C sol(h, 7, D)) stands for the conditions in Definition
18 (i.e.,|sv| < |snl, d1 € refn(l’, D), etc.).

Let min(h) denote the set of minimal non-redundant hybrid-solutibgg = [Smin, #min] for
H that can be obtained from a hybrid-plan= [s, ¢n] (that is Spin € S, andémin is obtained
from ¢y by replacing withtrue every constraint that mentions some task label occurrinigpén
sets, \ smin). Observe from Definition 20 that if a hybrid-pldn is a plan specialisation df
with respect taD, then each hybrid-plan imin(h’) is also a plan specialisation bfwith respect
to O. Then, if there is a hybrid-plah® such thath® € min(h?), h® € spech, D), andhd is
a maximally-abstract hybrid-plan amosgech, D) for the set=™ n sol(h?, 7, D), hybrid-plan
h3 is a MNRMA specialisation fof, and the theorem holds. Otherwise, for each hybrid-plan
h® such thaths € min(h?) andh® e spech, D), there must exist a hybrid-planf € spech, D)
such thatMA(h*, h3, 23) holds, wherez® = =" 1 sol(h3, 7, D). This reasoning can be continued
for h* = [s* ¢%] like we did before for hybrid-plarh®. However, observe that sings’| < |s7|
holds according taVIA(h*, h3, £3), this reasoning can only be applied a finite number of times
until some hybrid-plarh”, with " = [{(n : 1)}, trug] (recall hybrid-plans cannot mention state
constraints) is reached for some compound task/brid-planh” is then a minimal non-redundant
hybrid-solution forH, and also a maximally-abstract hybrid-plan amapgch, D) for the set
2" nsolh", 7, D). i

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 139

The next theorem shows the relationship between an ideal MAIRybrid-plan and an MNRMA
specialisation of a hybrid-plan. It states that, whenewspegialisation of a hybrid-solutidmis an
ideal MNRMA hybrid-plan, it is also the case that the spés#ion is a MNRMA specialisation
of h.

Theorem 11. Let h be a MNRMA hybrid-plan for a hybrid planning probleth = (7, G, D).
Let i be a hybrid-solution, where h is a plan specialisation oWith respect taD. Then, his a

MNRMA specialisation of'tHfor .

Proof. Sinceh is a MNRMA hybrid-plan for#, we know thath is a minimal non-redundant
hybrid-solution forH, and thah is a maximally-abstract hybrid-plan amoall possible minimal
non-redundant hybrid-solutions for the setE n sol(h, 7, D), whereX is the set of all perfect
justifications for(Z, G, Op). Since the set of plan specialisatiosie¢h’, D) C A, hybrid-planh
must be a maximally-abstract hybrid-plan amapg¢h’, D) for T n sol(h, 7, D). Hencehis a
MNRMA specialisation oft for H.]

Like the ideal MNRMA notion, it is not clear how one could contg@ an MNRMA speciali-
sation of a hybrid-plan, without considering all refinenseot the given hybrid-plan. Therefore,
in the next section we will present an even weaker, but implgable notion calledreferred spe-
cialisationsof a given hybrid-plan. This notion finds a preferred spésddion by exploring not
the full set of refinements of a given hybrid-plan, but onlg get of refinements captured within a

singledecompositiorof the hybrid-plan.

5.4 Preferred Specialisations of Hybrid-Plans

Instead of improving a hybrid-solution by explorirdj of its specialisations, in this section we
focus on improving a hybrid-solution by exploring only thmited set of specialisations inherent
in one of its ‘decomposition% and extracting a most abstract and non-redundant sjsstiah
of the hybrid-solution from the limited set. Like we saw iretprevious section, the particular
hybrid-solution that we start from may have been produced fisst principles planner operating
in the BDI domain.

We state the problem we are interested in solving as follogigen a, possibly redundant,

hybrid-solution for a hybrid planning problem, togethetiwane of its successful decompositions,

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 140

find a specialisation of the hybrid-solution that is both medundant and as abstract as possible,
within the confines of the decomposition. We call such spliseigonspreferred specialisations

It is important to note that a preferred specialisation i alavays one that is an (ideal)
MNRMA hybrid-plan as defined in Section 5.2. However, wherea MNRMA hybrid-plan
occurs in a decomposition of some given hybrid-ptathen this MNRMA hybrid-plan will also
be a preferred specialisation laf

Intuitively, a decomposition(or decomposition trace) is a trace of the reductions pevéor
on a hybrid-plan. Therefore, any hybrid-plan that produgsimitive plan solution will have a
decomposition trace, which starts from the hybrid-plan ends with the primitive task network
corresponding to the primitive plan solution. Such decositpm traces that produce primitive

plan solutions are callesliccessfutliecomposition traces.

For example, suppose we are given a method library contathimfollowing reduct
tions: (i) taskt; is reduced into labelled tasks (2;) and (3 :t3) with constraintrue,
(i) taskt, is reduced into labelled tasks (actions) @) and (5 :as) with constraint
4 < 5, and(iii) taskts is reduced into labelled tasks (G&g) and (7 :a7) with con-
straint 6< 7. Then, a possible decomposition trace of hybrid-pléh { t1)}, true]
is the following:

[{(L:ta)) true] - [{(2 : t2), (B :)}, true] - [{(4 : @), (5 : @), (3 :t3)}, (4 < 5)] - [{(4:
a4), (5 :a5), (6 :86), (7 :a7)}, (4 <5) A (6 < 7))

Figure 5.4: The decomposition tree corresponding to deositipn trace {(1 : t1)}, true] - [{(2 :

t2), (3 i ta)}, true] - [{(4 : @), (5 : @), (3 : t3)}, (4 < 5)] - [{(4 1 @), (5 : &), (6 : &), (7 : a7)}, (4 <
5)A (6 < 7)]. Dotted rectangles stand for primitive tagksions, and missing constraints stand for
true.

It is easy to see that a decomposition trace inducdecamposition treei.e., intuitively, a

tree depicting how compound tasks are reduced into othkes tasd constraints. For example, the

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 141

decomposition tree induced by the decomposition traceeimghown in Figure 5.4. Observe
that each node in the tree is a labelled task, and that eachisdabelled with the constraints for
its child nodes. Observe, further, that the children of thet node are the labelled tasks in the
given hybrid-plan.

We can now be more specific about the aim of this section. Gaveybrid-planh for a hybrid
planning problentH and a decomposition treé€ induced by a successful decomposition trace of
h, we want to find a subtreg” of 7~ that yields a perfect justification, but one that is not sufesd
by some other subtree @f that yields the leaf-level nodes @f. We can then take the hybrid-plan

at the top level (below root) of " as the preferred specialisationtofor H.

For example, suppose the decomposition trace shown eigréesuccessful trace pf
hybrid-planh = [{(1 : t1)},true], and that (4 :a4) - (5 : as) - (7 : &7) Is a perfec
justification for some hybrid planning problefd — i.e., labelled task (6 ag) is
redundant. Then, the preferred specialisatioh fafr /{ and the decomposition tree
in Figure 5.4 is hybrid-plan{(2 : t5), (7 : a7)},trug] in the subtree of Figure 5|4
shown below. This is becaugg the subtree yields a perfect justification, gyl
there is no other subtree of Figure 5.4 that is more abstiaatthe one below. Note
that the subtree of Figure 5.4 with top-level hybrid-pl&2[: t2), (3 : t3)}, true] is
not more abstract than the one below, because the formetdesenot yield exactly

the same leaf level nodes as the tree below.
(root : €)

— T,
4<5 (7 : a7)

A subtree of the decomposition tree in Figure 5.4.

5.4.1 Formalisation

In order to develop an account of what a preferred speciaisdor a hybrid-plan is, we will
define three basic notiongi) decomposition trace(ii) decomposition tregand (iii) a cutin a
decomposition tree. Intuitively, a cut in a decompositicgetcorresponds to a hybrid-plan — in

particular, a cut is a subset of the nodes in the decompoditee. Our aim is to find a most

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 142

abstract cut whose decomposition tree yields a perfedfigagion.
A decomposition tracef a task network is a sequence of ground task networks, wdeare

task networld; of the trace is a reduction of some task in the preceding taskarkd;_;.

Definition 22. (Decomposition Trace) LeD be a HTN domain and led be a task network. A

decomposition tracef d relative toMe is a, possibly infinite, sequence of ground task networks

Ay = d1-...-dy-..., such that(i) d; = dg, and(ii) for eachd;, i > 0, it is the case thaa)
di;1 = reducdd;, n, m), and(b) there is no common task label occurringsp; \ 5 andd - ... - d;,

wheren is a task label occurring id; andm is a ground instance of a method hfe. A finite

decomposition tracgy = d; - ... - dy of d relative toMeis acomplete decomposition traifed, is
a primitive task network. A complete decomposition trage= d; - ... - d, of d relative toMeis a
successful decomposition tragesol(d,, 7, D) # 0. []

Observe that we force new labelled tasks added to a tracedguation, i.e., the sef,1 \ s,
to have diferent labels to those already occurring in the trace. Thdoige to ensure that task
labels uniquely identify tasks in the decomposition traObserve, further, that a decomposition

trace encodes a specific order on the reduction of tasks.

For example, consider again the following decompositi@edrfrom the introdug
tion:
[{(L:ty)) true] - [{(2 : t2), (B :)}, true] - [{(4 s @), (5 : @), (3 :t3)}, (4 < 5)] - [{(4:
a4), (5 : as), (6 :), (7 :a7)}, (4 < 5) A (6 < 7))

In this trace, task; is reduced first, task is reduced second, and taskis
reduced last. Reducing task beforet, will result in a diferent decomposition

trace, namely, the one shown below:

(1 :ty)), true] - [{(2 : t2), (3 : ta)}, true] - [{(2 : t2), (6 : @), (7 : a7)}, (6 < 7)] - [{(4 :
a),(5:as),(6:36),(7 :a7)},(4<5) A (6< 7).

Finally, observe that the last task network of a complet@ngosition trace can contain tasks
for which no ordering is specified. This can be seen with tagkandag in the above decom-
position traces. Consequently, the last task network ofcam@osition trace may be capable of
producing more than one primitive plan solution.

A decomposition treeepresents the structure of a decomposition trace, by wepibow

compound tasks are reduced using methods, to other (ch##yt and to constraints on child

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 143

tasks. In particular, a node of a decomposition tree is dllab&compound or primitive) task, and
each node is labelled with the constraints on its child ta¥¥s usee-nodes to account for root
nodes, and for (dummayg tasks, i.e., those having no precondition fieet. Recall from Section
5.1 that it is sometimes useful to have a method consisting ©ihglee task — such a method,
given a particular condition, amounts to “doing nothingtielfollowing definition uses the notion

of avertex-labelled tre@nd other related notions given in Appendix B.

Definition 23. (Decomposition Tree) Alecomposition tre@ = (V, E, &) of a task networld =

[s4, #4] relative to a HTN domairD is a vertex-labelled tree, where

1. for each nodeai € V: () u = (n : t), wheren is a unique task label in the tree ahi a

ground domain task ar, and(ii) £,(u) is a ground constraint formula;
2. root(7") is nodeu = (root : €), {y(U) = ¢q6, andchildren(u, 77) = 46,

3. if u = (n: t) is a non-root node ¥~ such thatchildren(u, 7)) = {u1¢,...,und’}, with
tv(U) = ¢¢, then there exists a reductios, §] € red([{(n : t)},true], D) of t wheres =

{ug, ..., Um};
4. if u € leaveg7), thenéy(u) = true. u

Note that, like decomposition traces, decomposition tegesalso ground. Moreover, by the
definition of a reduction, decompaosition trees can alwaysdrestructed with arbitrary labels for
the tasks (except for the root’s children, specified)inMoreover, note that, unlike decomposition
traces, which encode a specific order on the reduction oftaldcomposition trees are agnostic
on whentasks are reduced. Thereforeffeient decomposition traces may induce the same de-
composition tree, up to renaming of task labels. For exapiméh decomposition traces shown
previously induce the decomposition tree in Figure 5.4.

Next, we define what it means for a decomposition tree todacedfrom a decompaosition
trace. Basically, an induced decomposition tree of a deositipn trace is a vertex-labelled tree,
where the vertices of the tree correspond to labelled tasksrong in the trace, edges correspond
to tasks introduced by reductions, and labels of nodes sjoorel to constraints introduced by

reductions.

Definition 24. (Induced Decomposition Tree) Lat= [s1,¢1] - ... - [Sk. ¢#k] be a decomposition

trace of some task network relative to a method-libfdiy Suppose/, is the set of labelled tasks

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 144

mentioned im, andrt = (root : €). Then, arinduced decomposition trex 1 is the vertex-labelled

tree(V, U {rt}, E, £v), where

E = U({(rt,u)}uedgeé(u));
ues;
edge$(u) = edgegu) U U edges(u’);
(uu)eedges))
edgegy) = {(uUu)|0<i<k U e(su\S) ues, u¢ s} and

& o= (e U | Jiug)10<i<k ues, ug S, g1 =diAQ}U

ueV,

U {(u,true) | (u,u’) ¢ E}.5

ueV,
|

Note that, like in Definition 22, set,; \ 5 is the set of new labelled tasks introduced by the
reduction of labelled task. Note, further, that the label of the root node is the constfarmula
¢, of the first task network i1, and that leaf nodes are assigned the |ats.

It is not difficult to see that any induced decomposition tree of a decaitipoface is indeed

a (valid) decompoaosition tree.

Lemma 10. Let d be a task network) be a HTN domaind = d; - ... - d, be a decomposition
trace of d relative to Me, and™ be a decomposition tree of d relative #o. Then, the induced
decomposition treg , of 1 is a decomposition tree of d relative , and moreovery is the

induced decomposition tree of some decomposition traceedative to Me.

Proof. See Appendix A.3. m|

So far, decomposition trees are mergytacticobjects and therefore independent of any (ini-
tial) state—they describe legal syntactic ways of tramafog tasks into other tasks with respect
to the method library. We will now associate decompositiees with an initial staté’; in partic-

ular, we will define what it means for a decomposition treed@kecutablén 7, with respect to

S5Actually, ¢; will have to be modified so that all occurrences of the taskllabu are replaced appropriately with
expressions of the foriirst[] or last]], as done in Definition 31 (p. 200). Also, sinég is a mapping from task labels
to constraint formulag)y is treated as a set of ordered pairs for convenience.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 145

(root:e)|1<4An4<14

Figure 5.5: A complete decomposition tré&e of task networkd = [{(1 : t1),(4 : t2),(14 :
ts)}, (1 < 4) A (4 < 14)]. Dotted rectangles stand for primitive tag&lctions or empty reductions
(node((17 : €))).

a primitive plan yielded by the tree. To do this, we first detime following preliminary notions:
complete decomposition trdearisation andfull decomposition tree

We say that a decomposition treedsmpleteif no leaf node represents a compound task.
Notice, therefore, that in a complete decomposition trdeafinode can be a primitive task, or a
node of the form1f : €) corresponding to am task. We extract from a complete decomposition

tree the set of nol-nodes that are primitive as follows:

actiond7) ={(n:t) | (n:t) € leavegT),t # €}.

We say that dinearisation v of a complete decomposition tré&€ is a permutation of the
elements ifeave$7) \ {(root : €)}, i.e., a labelled primitive plan built from exactly the nowst
elements ineave$7). For example, a linearisation of the decomposition tre€igure 5.5 is
:a) - B:a)-6:a3)-(7:a4)-(9:a5) (12 :a7)-(10:ag) - (13 :ag) - (15 :ag) - (17 : ¢).
Note that the ordering of elements in a linearisation is jrestelent of any ordering constraints
enforced on those elements M, and that a linearisation is independent of any (initiadtest
Therefore, although a linearisation of a hybrid-plan’s ptete decomposition tree is a labelled
primitive plan, the linearisation may not be a labelled pive plan solutionfor the hybrid-plan
at any initial state.

A full decomposition treés the combination of a complete decomposition tree and bite o

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 146

linearisations. Formally, &ull decomposition treedenoted by, is a tuple(7,), where7 is a

complete decomposition tree, ands a linearisation of”. Therefore, a full decomposition tree
encodes not only how tasks are fully reduced to primitivkdabut also how these may be ordered
to form a labelled primitive plan.

Next, we define the final notion related to decompositionstred@/e say that a full decom-
position tree7 , is executablen an initial state if (i) the tree is legal ir¥, i.e., all constraints
occurring in the decomposition tree are satisfied;imnd(ii) the labelled primitive plan is exe-
cutable inf. Recall from Section 2.3.1 th&es(act; - ... - act,, I, Op) is the state resulting from
applying actionsct; -. . .- act, to the initial statef, if it is possible to do so, and that it is undefined

otherwise.

Definition 25. (Executable Decomposition Tree) L&t. be a full decomposition treef be an
initial state, and leOp be an operator-library. Theff;, is executablen I relative toOpif (i) for
all u € V(7°), constraint formulay(u) is satisfiedin 7, relative to; and (ii) Res (r, Z, Op) is

defined. []

To determine whether a constraint formula is satisfied, eaostraint occurring in it needs to
be evaluated based on the given initial stAtand linearisatiorr. More specifically, a constraint
is evaluated by determining whether the primitives comesiing to task labels mentioned in the
constraint are in the correct order i(in the case of ordering constraints), or whether certain
conditions hold for the primitives corresponding to tadkells mentioned in the constraint (in the

case of state constraints), relativelt@andr.

Definition 26. (Satisfying a Constraint Formula) L&t., witht =u;-...-uyand7 = (V, E, {y),

be a full decomposition tree, I¢tbe a state, and |€p be an operator library. Finally, for amye

Ny, the set of indexegIx(n) = {i |[u=(n:t) e V(T), U €leavegu,7), i € {1,...,m}, U = u;}.
Then, a ground constraint formulais satisfiedin 7. relative toZ and Op, denoted by

(T, Z,0p) E ¢ (or simply as(7 ., I) E ¢), if ¢ is satisfied, where the constraint formula is

evaluated as follow8:
e (c1 = ¢p) is true ifcy andc, are the same constant symbols;

e (N1 < np)is true ifmaxidx(ny)) < min(idx(ny));

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 147

o (I,ng) is true ifRes(uy - ... - Uminiaxn))-1. £ > OpP) E |, i.e., (ground) literal is true in the
state that results from applying fothe actions irr up to the action immediately beforg;

e (ng,l)is true ifRes(uz - ... - Umaxiaxn)): Z>OpP) E I

e (N, l,np)istrue ifRes(uy - ... W, I, 0p) E |, for all maxidx(ny)) < k < min(idx(ny)); and

¢ logical connectives-, A, v are evaluated as in propositional logic.]

For example, consider the full decomposition tfEe, where7 is the complete
decomposition tree in Figure 5.5, andg- (2 :a1) - (3:a2)- (6 :a3)-(10:ag) - (7 :
a)-(9 :as) (12 :a7) - (13 : ag) - (15 : ag) - (17 : €). Suppose we want o
determine whether the constraint formula of node {4),:i.e., (5< 8) A (5 < 11),
is satisfied relative te (the initial state is not necessary in this example as we [only
deal here with ordering constraints). Observe thak (8) is satisfied inr because
all primitives corresponding to task label 5, i.e., (&3) and (7 :a4), precede all
primitives corresponding to task label 8, i.e., (8s) (12 : a7). However, observe
that constraint (5< 11) is not satisfied because one of the primitives correspgnd
to task label 11, i.e., (10as), does not precede all primitives corresponding to task
label 5. Consequently, formula &8) A (5 < 11) is also not satisfied.

On the other hand, if = (2 :a1) - (3:a2)-(6:a3)- (7 :a4)-(9:as) (12 :
a7) - (10 :ag) - (13 :ag) - (15 : ag) - (17 : €), then constraint (5 8) and formula
(5<8)A (5<11) are satisfied.

As shown in the example, the initial state is not necessadetermine whether a constraint
formula is satisfied, provided the constraint formula hastate constraints. Hence, we sometimes
write 7 ; E ¢, instead of 7,) [¢, if there are no state constraintsr{

It is useful to note the relationship between complete dgumition traces and complete de-
composition trees, in particular, that a complete decolitipastrace corresponds to a set of (in-

duced) full decomposition trees.

Lemma 11. LetD be a HTN domaind = d; - ... - dkx be a complete decomposition trace of some

task network relative to Me, arid be an induced (complete) decomposition tre@.dfFhen, there

"Notice that the truth value of any constraint in a full decasifion tree can be determined given the initial state.
However, this is not necessarily the case for (non-full)asegosition trees, as the satisfaction of the constrainterge
ally depends on a total-ordering of the primitive tasks.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 148

exists a plan agt- . .. - act, € comfdy, 7, D) if and only if there exists a full decomposition tree
7 ; that is executable i relative to Op, where = (n; : acty) - ... - (ny : acty).
Proof. See Appendix A.3. m|

Now we can define the third and final basic notion of this sactimmely, ecutin a decom-
position tree. Informally, a cut in a decomposition tree gulset of the nodes in the tree which,
together with the necessary constraints, can form a hyidad- In particular, the set of nodes
forming a cut does not contain any node that is a descendaayobther node in the set. For
example{(1 : t1), (4 : t2)} in Figure 5.5 is a legal cut, byf4 : t5), (5 : t3)} is not because (5t3)

is a descendant of (4t3).

Definition 27. (Cut) A cutin a decomposition tre@ is a set of nodex c V(7"), with 7 #
{(root : €)}, such that for alu, u” € &, with u # U, it is the case thatdgscendan(s, 7) U {u}) N

(descendants’, 7) U {u'}) = 0. []

Given a cutr in a decomposition tre€, we can form a new decomposition tréé by pro-
jecting only on those nodes i, trivially adding a noderpot : €) as root withzr as its chil-
dren, and adding a labé{,((root : €)) = true. Figure 5.6 shows the projected tree for the cut
{(1:11), (4 : tp)}. Formally, the decomposition tree obtainedgsgjectingon a cutr C V(7") in a

decomposition tre&, denoted by |,, is defined as follows:

Tl =<V, E', {,), where:
T =(V,E, tv);
rt = (root : €);
V' ={rt}urU{U | U € descendan(s,7), u € r};
E'={(rt,u) |Jluentu{(uu)]|(uu)eEanduu €V'};and

€, = {(rt, true)} U {(u, ¢) | (U, ¢) € &y andu € V', u # rt}.

The notion of projection trivially generalises to full deaposition trees, denoted y,|,, by
projecting int only the primitive tasks that are leaf nodes/inl,; in particular7 |, = 7., where
T’ =Ty, andr’ = T||eave$7~'). For any set of labelled tasksand sequence of labelled primitive
tasksr, 7| is defined as the largest subsequericef r such that for each taske 7/, u € .

We have now provided most of the notions necessary for our dief@nition of apreferred

specialisatiorof a hybrid-plan. Recall that a preferred specialisatioa bybrid-plan is one that is

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 149

(4:t)[5<8A5<11

Figure 5.6: The decomposition tree obtained from the trdegime 5.5 by projecting on the cut
{(1:t),(4:t2)}

both non-redundant and as abstract as possible within tfenes of the decomposition. Guided
by the notion of maximal-abstraction in Section 5.2.2, westfitefine the notion oflominance
which, intuitively, states that some cuts are more absthast others. More specifically, a cut
dominates a cut if 7, together with its descendants, contathandn’ produces exactly the same

non-< primitive tasks as those produced oy

Definition 28. (Dominance) Given two cutg andx in a decomposition treg’, cutz” dominates

rmin7 if 1 C |J,er descendan(s, 7) U o/, andactions7 |») = actiong7 |,).]

For example, cutr;y = {(4 : tp)} dominates cut, = {(56 : t3),(8 : t4), (11 : tg)} in Figure
5.5 because the latter occurs in the descendants of therfantethey both yield the same nen-
primitive tasks. Observe that whenever a gutlominates a cut, any compound task that is a
descendant of’, but not ins nor its descendants, only yieldtasks.

We can now use cuts and the associated notions to define vehattetferred specialisations of
hybrid-plans are. For convenience, we ueeso(h, /) to denote the set of full decomposition
trees7 ; of a hybrid-planh relative to a domairD, where(i) 7 is executable i relative toOp,
and(ii) T € sol(Z, G, Op), i.e., the linearisatiorr achieves the goal stagg Moreover, given a cut
nin a full decomposition tre@ ., we define the ordering constraints impliedBby onr astrue if

7 = (0, and otherwise as follows:

O[T+, 7] = /\{n1<n2| (ne:ty),(n2:t2)en, T Em<ng} -

For example, suppose we are given the ezut {(5 : t3),(8 : t4),(11 : t5)} and

full decomposition tre€ ., where7 is the decomposition tree in Figure 5.5, and

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN

T=02:a) - B:a)-(6:a3)-(7:a4)-(9:a5)-(10:a)-(12:a7)- (13 :ag) - (15:
ag) - (17 : €). Now, since all primitives corresponding to labelled tgSk: ts3),
i.e., (6 :ag) and (7 :ay), occur before all primitives corresponding to label
task (8 :ts), i.e., (9 :a5) and (12 :a7), we can conclude that ordering constra
5 < 8 holds. Similarly, we can conclude that511 also holds. However, orderir
constraint 8< 11 does not hold, because the primitive (12&7) corresponding
to (8 : t4) does not precede the primitive (10a;) corresponding to (11 ts),
i.e., the primitives corresponding to (8s) and (11 :ts) overlap int. Therefore

we can conclude that the formula of ordering constraintslisdpby 7. on r is

150

led
uint
g

)

O[T, 7] =5<8A5<11.

A preferred specialisation corresponds to asxcit the given full decomposition tre
the cut yields a perfect justification, and the cut is not dwted by any other cut in the t

the cut is as abstract as possible in the tree.

Definition 29. (Preferred Specialisation) L#{ be hybrid planning probleninbe a hybrid

e, where

ree —i.e.,

-solution

for H, and let7; € decsolh, H). Then, a hybrid-pla, is apreferred specialisatiof h within

T, for H if hy =[x, O[T, x]] for some cutr in 7 such that
1. the projected linearisatiofaciongy,) IS @ perfect justification fo¢Z, G, Op);

2. the projected full decomposition tr&e |, is executable i relative toOp;

3. thereis no cut’ in 7, with |7’| < |x|, that dominates in 7 and such thal .|+ is executable

in 7 relative toOp.

The third condition ensures that a ctitthat containsr, but also contains other compound

tasks that lead te tasks, is not preferred over. However, observe that it may be

the case

thatn’ is also a preferred specialisation, even if it containsdadkkt lead ta tasks. Therefore,

preferred specialisations that do not contain any compdaskis leading t& tasks are called

minimal preferred specialisations.

Let us illustrate minimality with an example. Observe thgbitid-planh = [{(1 :

t1), (4 : 1), (16 :tp)}, (1 < 4) A (4 < 16)] may be a preferred specialisation for a full

decomposition tree corresponding to the tree in Figure@dvided the hybrid-pla

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 151

can yield a perfect justification within the full decompamit tree. However, notice
that hybrid-plarh is not minimal — compound task (16p) is reduced into altask,

thereby allowing a subset of the hybrid-plan, namdi f t1), (4 : t2)}, (1 < 4)] to

also be a preferred specialisation.

Formally, a preferred specialisation ¢] of a hybrid-planh within a full decomposition tree
7 . for a hybrid planning problerH is aminimal preferred specialisation &f within 7 for H
if there does not exist a preferred specialisatishd s, ¢’] of h within 7, for H, where¢’ is
obtained fromp by replacing all (ordering) constraints that mention soasitabel in §\ s') with
true.

The following result guarantees that there is always a medespecialisation of a hybrid-
solution. In particular, whenever a full decompositiorettbat achieves a given goal state exists

for a hybrid-planh, a preferred specialisation will also exist tar

Theorem 12. LetH be a hybrid planning problem, and let h be a hybrid-plarir}f e decsofh, H),

then there exists at least one preferred specialisationwithin 7 for H.

Proof. Take7; € decsofh, H), that is,r € sol(7, G, Op) is a primitive solution forH. Then,
it follows from Lemmas 10 and 11 thate solh, 7, D) is also a primitive plan solution fdn.
Taket’ to be a subsequence othat is a perfect justification fa® = (7, G, Op). Letr be the
“low-level” cut corresponding ta’, i.e.,7r ={(n:t) | (n:t) e 7}. If T E G, thent = 0 and
hybrid-planh, = [0, true] is a preferred specialisation bfwithin 7. for H.

Suppose, however, thatl: G, and consider hybrid-plam, = [z, ®[T ., 7]]. Sinceﬂactions‘ﬂ,,) =
7’ is a perfect justification fo€, the first condition of Definition 29 (Preferred Specialisaj is
met for hybrid-planh, to be considered a preferred specialisation (of hybrig-plavithin 7
for H). Moreover, since the label (i.e., constraint formula) le# toot node iV |, is true, and
Res(7’, I,0p) is defined (i.e., the state resulting from applyirign 7), it follows that7 |, is
executable iy relative toOp (Definition 25). Therefore, the second condition of Defonit29 is
also met for hybrid-plathn,.

Suppose that, does not meet the third condition of Definition 29, that igréhexists a cut’
in 7, with |7’| < ||, that dominateg in 7 and such thaf .|, is executable ir¥ relative toOp.
Sincen’ dominatesr in 7, it is the case, from Definition 28 (Dominance), tlaationg7 |,/) =

actiong7), and therefore, thaliyciongy) = 7’ Is a perfect justification fo€. If hybrid-plan

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 152

[7',®[T ;,7']] is not a preferred specialisation afwithin 7. for H, then there must exist yet
another cutr” in 7, with [7”’| < |7’|, that dominateg’ in 7 and such tha¥ .|, is executable in
I relative toOp. This reasoning can be continued fdf like we did before for cutr’. However,
since|n”’| < |n’|, this reasoning can only be appliedfiaite number of times, until some cut
n'°P c children((root : €), 7)) is reached. In such a case, since no strict subsgt®béan dominate

nt°P, hybrid-plan f'°P, ®[7,, #'°P]] is then the preferred specialisation lofvithin 7, for H. o

Note that, since the dominance relation among cuts is nalt tmd there may exist more than
one perfect justification that can be extracted from a lisaéion, there may actually be more than
one preferred specialisation for a hybrid-plan within aegivull decomposition tree.

Recall that our (ideal) MNRMA hybrid-plan (Definition 19)ssntially defined a non-redundant
hybrid-plan that is as abstract as poss#iteong all conceivable hybrid-plang preferred special-
isation, however, is one that is non-redundant and as abstsgpossible among only the hybrid-
plans that occur in a decomposition tree of a given hybradiplOne would expect, then, that
whenever a MNRMA hybrid-plan occurs in a decomposition tiea given hybrid-plan, then the
MNRMA hybrid-plan is also a preferred specialisation of gieen hybrid-plan. This is what the
next theorem states. For convenience, wedesesol' (h, H) < decso{h, H) to denote the set of

full decomposition tree$”; wherer|,ctiongg) is a perfect justification fo{7, G, Op).

Theorem 13. Let h be a hybrid-solution for hybrid planning problet, and let7 ", € decso{h, H).
Suppose that there exists a auin 7, such that h = [z, O[T ;, 7]] € MNRMAH) and such that
there is a decomposition in dec8gh,, #) that is equivalent t&|,, modulo their root nodes.

Then, hybrid-plan his a preferred specialisation of h withif,. for H.

Proof. Leto = Tlactiongy,) Pe the projected linearisation of actions representing c@tbserve
that (i) o is a perfect justification fotZ, G, Op; (ii) o € solh,, I, D) follows from Lemmas 10
and 11; andiii) the projected full decomposition trée.|, is executable i relative toOp.

Due to(i) and(iii), the first two conditions in the definition of a preferred sphsation (Def-
inition 29) are met by hybrid-plah,. Next, we will prove that the third condition in Definition
29 is also met by hybrid-plah,. On the contrary, suppose that there does exist a’cint 7,
with |7’| < |x], that dominates in 7~ and such tha¥, is executable i/ relative toOp, where
7' =Ty andt’ = TleavesT):

Informally, we shall prove below that sinaé dominatesr, a more abstract hybrid-plan than

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 153

n exists, namely, the one correspondingrto Consequentlyy is not maximally abstract, which
contradicts our assumption that € MNRMA(H). We will now show this contradiction in more
detail. Observe from Definition 18 (Maximally-Abstracthat to showh, ¢ MNRMA(H), it is
suficient to show that the following four conditions hold floy = [#/, true] (we takeh’ = h,, for

Definition 18):

d; € refn(hy, D); (5.1)
dp = [sg,. ¢g,] is a ground instance af; such thatsg, 2 ; (5.2)
ds = [s4,- 6, A [T~]]; and (5.3)
o € solds, T, D). (5.4)

We start by showing that Equations 5.1 and 5.2 hold. FirstnfLemma 10, there must exist
a (complete) decomposition track - ... - d; of h, relative toMe such that7” is the induced
(complete) decomposition tree of the trace, wdth= h,.. Second, as illustrated in (Erol et al.,
1994), observe from the definition of a reduction (DefinitRi p. 200) that it does not matter in
which order reductions are performed on a task network. lligjreince 7/ dominatesr, it is not

difficult to see that there is a decomposition trace that, inflynfgoes through”z, namely

dy =[st, 1] ... - [85 ¢ - - A =[S0 Al

where(@) s, = n’; (b) 7 C s, and(c) j € {2,...,K} (note thatj # 1 becauseén| > |si]).
Then, since task networlsj, ¢;] is a ground instance of some refinement (Definition 17, p.) 131
dy € refn(hy = [s1, 1], D) such thatr C sj holds, Equations 5.1 and 5.2 also hold.

Finally, let us show that Equations 5.3 and 5.4 hold. &t 7'|actiongg)- Sinces” domi-
natesr in 7-, we know thatr = ¢’. Then, it follows from Lemma 11 that € sol([s;, ¢;], 7, D).
Next, due to conditiortii) at the start of the proof, and sind§7 ., x| is the conjunction of order-
ing constraints entailed by on elements im, it follows thato € sol[s;, ¢; A ®[7 ., x]) holds.
Therefore, Equations 5.3 and 5.4 also hold, and conseguéntlis not a maximally-abstract

hybrid-plan, andh, ¢ MNRMA(H), which is a contradiction. O

In the next section, we will show how a preferred specidbsatan be obtained, given a hybrid

planning problem and hybrid-solution. In particular, wdl st show how a full decomposition

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 154

tree can be obtained from the hybrid-solution, and then wiepnavide a bottom-up algorithm

that obtains a preferred specialisation from the decortipodiree.

5.5 Computing Preferred Specialisations

As mentioned before, a preferred specialisation of a hyjiad h, relative to a hybrid planning
problem, is a most abstract non-redundant hybrid-plan ¢hatbe extracted from a givefall
decomposition tre@ ;. of h; in particular,t is alabelled primitive plan that achieves a givegoal
state

We obtain such a full decomposition tree by inducing (as ifiritéon 24) a decomposition tree
from a decomposition trace bf where the trace produces a labelled primitive plan thaiesel a
given goal state, in addition to solvirtig To do this, we need to address three issues. First, we need
to extend theJMCP HTN algorithm of (Erol et al., 1996) so that it returndadoelled primitive
plan solution, rather than a (un-labelled) primitive platution. This extension is trivial, as all
we need to do is ensure that the procedure which computesthpletion(comd, 7, D)) of the
final primitive task network returns primitive plan solut@with the labels of primitive tasks left
intact. Second, we need to ensure that any primitive plantisol found, for a given initial task
network and initial state, also achieves a giggal state Finally, we need to extend théMCP
algorithm so that, in addition to returning a primitive plsolution, it returns thelecomposition
tracethat produces the primitive plan solution.

The second issue can be addressed by adding a constraietdortstraint formula of a given
initial task networkd, requiring the given goal statg to hold in the state immediately after the
last action in any primitive plan solution far In particular, we obtain a task netwadkby adding

a conjunct to the constraint formula of the given task nekwbe [s, ¢], as follows:

d=[s¢A /\(Iasl{nl, ..., D], where{ny, ..., ny} is the set of task labels occurring $n
leG
Recall thatastn,, ..., ng] is the task that occurs last among the task&in. . ., ny}, relative to a
primitive plan solution ford.
To address the third issue, we extdatid CP in the following manner(i) we keep track of the
sequence of reductions performed during the HTN planninggss (recall that the HTN planning

process involves reducing compound tasks in the initidd tegwork repeatedly, until only primi-

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 155

tive tasks remain)ii) we make the resulting sequence into a decomposition trggepkacing all
variables occurring in the sequence in a consistent maandgjii) we return the decomposition
trace together with the (labelled) primitive plan solution

After a decomposition trace and labelled primitive plarutioh are obtained, the trace and
solution are simply combined to obtain a full decompositice.

Next, we will show how a preferred specialisation can be aaten from a full decomposi-
tion tree, given a hybrid-solutioh and hybrid planning problerit{. Algorithm 5.1 computes a
preferred specialisation. Basically, the algorithm wdsktom-up, starting at the leaf-level with a
labelled primitive perfect justification plari (line 1), and repetitively abstracting out one or more
steps into a higher-level more abstract step (lines 3-9)eOm more abstractions are possible,
the corresponding constraints entailed by the decompaoditee for the final steps are calculated

(step 11) and the final hybrid-plan returned.

For example, a possible value for the perfect justificatiorfline 1), relative ta

1%

some hybrid planning problem and the decomposition tredgarg 5.5, could b
(2:a1)-(9:a5)-(10:ag) - (12 :ay) - (13 : ag) - (15 : ag)—that is, actions (3 ap),

(6 : a3), (7 : a4), and (17 :€) are redundant for achieving the goal.

Algorithm 5.1 Find-Preferred-Specialisation(h, H, 7 ;)

Input: Hybrid-solutionh, hybrid planning probleriH, 7, € decsolh, H), where7 = (V, E, {y).
Output: A preferred specialisation &fwithin 7, for H.

1. 7" & Get-Perfect-Justification(r, H) // As in (Fink and Yang, 1992); ignore e tasks
2re{n:t)|(n:t)er'}

3: for £ & 1to heigh{7;) — 1do // Leaves are at level 0
4. for each noda at levelf in tree7 do

5 if children(u,7") € 7 and{7 .|, I) E ty(u) then // éy(u) is satisfied in 7|, relative to T
6: 7 & (7 \ children(u, 7)) U {u} // Replace u’s children with u
7: end if

8. endfor

9: end for
10: m &\ A < {u]| uemr,allleaves of/ |, aree node$
11: ¢ & O[T 4, 7] // As defined just before Definition 29

[EnY
N

: return [, ¢]

At any point in time, the algorithm maintains a “currestit (initially, a perfect justification).
Inline 4, anodaiin the tree is selected for abstraction. If all the childrén are part of the current

cut and the constraints required to decompos#o its children are indeed satisfied (line 5), then

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 156

all the children olu are abstracted out into nodétself (line 6). Therefore, the abstraction process
relies not only on the children of a node being present in tiveeat cut, but also on it being

possible to satisfy the parent’s constraint formula witspext to the current cut.

For example, if, as before; = (2 :a1)-(9:a5)-(10:a5)- (12 :a7)- (13 :ag)- (15 :
ag), then at the end of the first iteration of the inner loop, aspime value forr is
{(2 :a1),(8 :1ts), (10 : &), (13 : ag), (15 : ag)}, that is, (9 :as) and (12 :a7) have
been replaced with their parent (84). However, for the same initial value of,
observe that it will not be possible farto have the valug(l : t;), (9 : as), (10 :
as), (12 : a7), (13 : ag), (15 : ag)} at the end of the first iteration of the inner loop,

because one of the children of (1;), namely (3 :a), does not exist in”.

We will now explain the rationale behind ignorirgtasks in line 1. In this line, function
Get-Perfect-Justification will consider alle nodes inr as redundant, becauseasks have no ef-
fects. However, as explained before (Section %1xsks are dummy tasks with no precondition
or postcondition, which use up negligible resources duexgcution. Consequently, considering
them as redundant tasks is unnecessary. More importaittipugh e tasks are technically re-
dundant, they are special tasks which are necessary in wraeaintain “links” to, for example,

recursive compound tasks. This is illustrated by the folhgrexample.

Consider again the elevator domain example from Section Bht example cor

sists of the following two methods for handling the compouask go-to-bottom

which keeps moving down one floor until the ground floor (flopisGreached:

(go-to-bottom[{(1 : move-dowin (2 : go-to-bottom}, (1 < 2) A (=Floor(0), 1)])
(go-to-bottom[{(1 : €)}, (Floor(0), 1)]).

Now, suppose the elevator is initially at the second floor. e Thiecomposition

tree for hybrid-plan {go-to-botton), trueg] is shown in the figure below.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 157

(root : €)

’ ©O: go-to-bottorr)‘ 1< 2 A (=Floor(0),1)

(1 FF‘,‘?Y?'P'PY,V?‘E | (2 : go-to-botton) | 3 < 4 A (=Floor(0),3)
[o
- (3 : move-dowin: | 4: go-to-bottor’r)| (Floor(0),5)
................................ —T—
(5:¢):

The preferred specialisation for this decomposition tigieen the primitive

plan solutiont = (1 : move-dowh- (3 : move-dowh- (5 : ¢€), is [{(O :

go-to-bottom}, true]. This preferred specialisation cannot be obtained if tiie
tial cut # does not contain node (5 ¢€) — state constraintKloor(0), 5) will not

hold without node (5 &), resulting in it being impossible to abstract out into f@gh

nodes.

Consequently, HTN tasks should not be removed framvhen finding a perfect justification
of .

Itis not difficult to see that the abstraction process can be carried tontoip, by performing
the abstraction of all nodes at levebefore abstracting to nodes at leket 1. Eventually, the
hybrid-plan computed as a preferred specialisation foreeample based on Figure 5.5 would be

h =[s, ¢], where:
s={(2:a1),(8:1),(11 :15),(14 : tg)};

p=2<8A2<11A8<14A11<14A2< 14

Notice that this is a partial-order plan, as the executiorrahpound tasks 8 and 11 may be
interleaved (and, in fact, they arein,).

Finally, we will explain the rationale behind line 10. Sinoedes reduced inte tasks (e.qg.,
(16 : tg)) may be abstracted, that is, added to the currentcute need to remove such trivially
abstracted nodes from the final cut, if they are still presieerte (i.e., if they were not abstracted
out). We do this because we are interested in findimigimal hybrid-plans, i.e., those that only
include compound tasks that contribute to the perfectfjoation.

The algorithm can be proved correct with respect to Definifi®. In fact, it computes not any

preferred specialisation, batinimal ones.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 158

Theorem 14. Algorithm 5.1 always terminates and returns a minimal prefe specialisation of

hybrid-solution h withir7—, for H.

Proof. Termination (of loops in lines 3 and 4) follows trivially bhé fact that the tree (and its
height) is finite. We will now prove that the algorithm retara preferred specialisation of hybrid-
solutionh within 7, for H. We will first claim that any value of cut, after line 2 and before line
10, conforms to the first two conditions of Definition 29 (witspect to/ . andH). Since the
only line in the algorithm where is modified after it is constructed is line 6, we will proveghi
claim by induction on the numbérof times line 6 of the algorithm is executed.

For the base case, we take= 0. Then,r = {(n: t) | (n : t) € 7'} is the “low-level” cut of
labelled primitive tasks. Since the projected linear®ati|actigngy, IS @ perfect justification
for (7, G, Opy, and since the projected full decomposition tfEg, — in which all constraint
formulas aretirue — is executable inZ relative toOp, the first two conditions of Definition 29
hold for 7.

Assume that the claim holds K < x, for somex € Ng. Finally, let us takek = x + 1.
Let m_1 be the value of cutr after line 6 is executed — 1 times, and letry be the value of
cut r after line 6 is executed times. Then, from the induction hypothesis, we know that
(7k_1 \ children(u, 7)) U{u}, for some nodel in the decomposition tree, and that aut, conforms
to the first two conditions of Definition 29. Since the only n&ask inz (compared withry_1)
is u, and(7 ¢|_,,Z) E ¢tv(u) holds according to line 5, it follows that the first two cotmlis of
Definition 29 also hold forry. Therefore, our claim holds.

Next, letr be any value of cut immediately before line 10 in the algorithm. We will next
show that the third and final condition of Definition 29 holds €utr. Let S denote the following
statement: there does not exist a nadeV(7"), with u # (root : €), such thachildren(u,7) C
and(7 |, I) E ¢ty(u). Observe from the algorithm th& holds. Then, to show that the third
condition of the definition holds fot, it is suficient to prove that entails that there does not
exist a cutr’ in 7, with |7’/| < |n|, that dominatex in 7 and such tha¥ .| is executable i/
relative toOp.

Let us assume the contrary (i.e., tisaholds but that the third condition of the definition does

not). Letd = T | andt = Sincenr’ dominatesr, and sincer containsall e tasks in

Theavesr)
linearisationr or their abstracted out nodes (i.e., those in which ertlgsks occur in leaves), it is

not difficult to see that there must exist a sequence of£ts. . - ry, such that:(i) 77 = #’; (ii)

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 159

m, =, (iii) for eachi € {2,...,k},x{ = (x{_; \ {u}) U children(u, ‘f) for someu € «/

i, and(iv)

k > 1 (becausér’| < |r]). Therefore, it follows that there is a nodes V((f'), with u # (root : ¢),
such thatchildren(u, T) C n. Moreover, since™ + is executable i relative toOp, we know that
<‘AT;,I> E ¢v(u), and therefore, thal7 .|, I) E ¢v(u). ConsequentlyS cannot hold, and our
assumption is incorrect. Hence, hybrid-plan= [r, ®[7 ;, 7]] is indeed a preferred specialisation
of hybrid-solutionh within 7, for H.

Finally, the fact that hybrid-plan returned by the algaritts a minimal preferred specialisation
of hwithin 7, follows trivially due to line 10, which removes fromlabelled tasks that are either

labellede tasks, or those for which only labelledasks occur in leaves. O

It is important to note that the computational complexityfiofling a perfect justification of
a primitive solution, relative to a given planning problei®,NP-hard (Fink and Yang, 1992).
Although we obtain a perfect justification fromin line 1, it is possible to replace function
Get-Perfect-Justification with any other function that finds a “preferred” primitivelstion from
7. For example, we could obtain a so-callgdll justification(Fink and Yang, 1992), which can be
found in polynomial time on the length of the given primitiselution. Intuitively, a plan is said
to be well justified if all its actions are well justified, wigean action is well justified if it brings
about a literal not brought about by some earlier action valnidh is required by the precondition
of some action in the plan. While well justified plans, likefpetly justified plans, cannot contain
unnecessary actions, they still may, unlike perfectlyifiest plans, contain unnecessaypupsof
actions. Hence, although no single action can be elimintated a well justified plan, it may be
possible to eliminate several actions together. We referd¢lader to (Fink and Yang, 1992) for
further details on the notion of well justification.

By replacing functionGet-Perfect-Justification with a function that finds some other kind
of preferred primitive solution, our algorithm would thegturn a preferred specialisation that is
sound with respect to the corresponding definition of théepred primitive solution obtained in
line 1. Itis not dificult to see that Algorithm 5.1, once a perfect justificatiopieferred primitive

plan is obtained, runs in polynomial time on the size of theodeposition tred™.

Lemma 12. Algorithm 5.1, after completion of line 1, runs in polynoirtiane on the size of the

decomposition tre& .

Proof. See Appendix A.3. m]

Chapter

Implementatioh

So far, we have provided three formal frameworks. First, wavided a framework for HTN
planning in BDI systems, which allows an agent to look-ahe#tin the context of its existing
plan structures in order to make the right choices duringhgosition. Since look-ahead does
not allow the creation of new plan structures, we providecaework for first principles planning
in BDI systems, which uses the agent’s existing domain kadge so as to construct new hybrid-
plan structures not already in the agent’s library. Finallg provided a framework for improving
a hybrid-plan obtained, in order to extract its most abs@ad non-redundant part.

In this chapter, we implement the three frameworks into alwoed system using the JACK
Intelligent Agents (Busetta et al., 1999) BDI implementati The combined system is a prototype
that implements the algorithms described in Chapters 31di5aAlthough JACK provides certain
features — such ameta-plangor dynamic, programmed choice of the most appropriate plan
that are not supported by the HTN language we use in Chapteth& aestricted CAN language
we use in Chapter 4, we still allow the programmer to explétfull functionality of JACK when
developing real-world applications, and to use planninthwnly a selected subset of the plan-
library. Moreover, by highlighting gaps between the forfnaimeworks and their implementations
— such as dterences in how they handle negation — and showing how sontesétgaps can
be reduced, we give insights into how certain features ofKIA@at are not supported by the
formal frameworks can be specified in formats that are sup@gdyy the frameworks. Finally, we

shed some light on the practical utility of our implementggtems by, for instance, showing how

fPart of the work presented in this chapter has been preyigusilished in (de Silva and Padgham, 2004, 2005;
Sardina et al., 2006).

161

CHAPTER 6. IMPLEMENTATION 162

certain diferences between them and the formal semantics, such asnigglat every step as
indicated by thePlan derivation rule of Chapter 3, versus planning once and dxera stored
solution, are necessary in order to develop practical BBiesys.

JACK is a leading edge, commercial BDI agent developmerttgela, used for industrial soft-
ware development (Jarvis et al., 2003; Wallis et al., 2002has similar core functionality to a
collection of BDI systems, originating from the PRS (Gedigad Ingrand, 1989) system. For
the HTN planning system we use JSHOP, which is a Java versithe d.isp based SHOP (Sim-
ple Hierarchical Ordered Planner) (Nau et al., 1999) totder HTN planner, whose successor,
SHOP2 (Nau et al., 2003), won one of the top four prizes at @2 2nternational Planning Com-
petition! Both JSHOP and SHOP have been integrated into mafgreint types of applications
(Muioz-Avila et al., 2001; Dix et al., 2003; Nau et al., 200%or first principles planning, we
use the C based Metric-FF (ifmann, 2003) planning system, which was a top performer in the
Numeric Track of third International Planning Competitiddetric-FF is largely based on the FF
(Hoffmann and Nebel, 2001) planning system, which was awardédiftatanding Performance at
the second International Planning Competition, and avehide Performer in the STRIPS Track
of the third International Planning Competition. An ovewiof the architecture of our combined
framework is shown in Figure 6.1.

This chapter is organised as follows. First, in Section &d show the relationship between
the formal languages — CAN and HTN — and their respectiveémphtations — JACK and JSHOP.
In particular, we show what gaps exist between the formaguages and their implementations,
and how some of these gaps can be overcome. Next, in Secfoan€l. 6.3, we discuss our
integrations of respectively JSHOP and Metric-FF into JACKhis includes highlighting the
differences between the semantics of previous chapters anmplemented system, and showing
why these dierences are necessary in order to have a practical BDI systarally, in Section
6.4, we discuss our implementation of the Algorithms in Ghap, in particular, how we obtain a

decompoaosition tree from JSHOP, and how a preferred speai@in is extracted from the tree.

6.1 Comparing the Formal Languages with their Implementatons

In Section 3.1, we provided a mapping from AgentSpeak (R886)LBDI entities to HTN (Erol

et al., 1996) entities. In this section, we will focus on shryvthe relationship between CAN

httpy/ipc.icaps-conference.qrg

CHAPTER 6. IMPLEMENTATION 163

execution

Offline b Online
||
HTN Y | |
Methods : : HTN Planner
[
(. -
I ol |2
J1 § 3 Belief base
[| | = S
- [+] =
3 [N 5
& P ©
= |
| Intention
|
|
|

Hybrid-plan

K Hybrid-plan

Hybrid-plan
sjaljaq Juaung

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Plan—ruleg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Plan Improvement
First Principles Planner
C 1O OO

Figure 6.1: The architecture of our combined framework

entities and JACK entities, and between HTN entities and@Bldntities. An understanding of
these relationships is important in order to map from JACKties to JSHOP entities, and for

translating JACK plan-libraries into Metric-FF planningavators.

6.1.1 CANvs. JACK

Most CAN entities have a corresponding entity within JACKowever, JACK provides a variety
of features not supported in CAN, such mgta-plansfor dynamic, programmed choice of the
most appropriate plan, amdaintenance conditiorfer ensuring that solutions pursued are aborted
if the world changes in unspecified ways. An overview of JAGKtax can be found in Section

2.1.4.

CHAPTER 6. IMPLEMENTATION 164

Beliefs and belief operations

The belief base of a CAN agent corresponds to a JAEHKefset A JACK beliefset is a database
consisting of multiple relations, each representing fiedint characteristic of the environment.
However, while the belief base of CAN ttosed world where any atom not present in the belief
base is assumed to be false, JACK additionally allows theofisgpen worldrelations, where
a tuple not present in a relation can either be false or unknowhe belief additior+b and
belief removal-b operations of CAN correspond respectively to #uel() andremove()beliefset

methods of JACK.

For example, the CAN belief operatiarAt(rover, rock3) can be encoded in JAGK

asat.add“Raver”, “Rocl3”), whereat is an instance of the beliefset relatiéin

Actions

Like AgentSpeak, JACK does not have a model of actions; asiin JACK correspond to arbitrary
Java functions. However, like CAN and AgentSpeak actiortgclivare non-interruptible, JACK
has an@actionreasoning statement that allows steps requiring lengtbgugion (e.g., physically
moving a robot to a new location) to be executed until conimetbefore the JACK engine moves
on to other intentions. Therefore, we can represent theracif our revised version of CAN
using events an@actionreasoning statements in JACK. This is done as follows. Firstew
JACK event is created along with a new JACK plan for it, andXaea function corresponding to
the action is specified as gmactionreasoning statement within the body of the plan. Second, the
precondition of the Java function (if any) is encoded witlie context condition of the new JACK
plan, and the fects brought about when the function is invoked are spedifiede body of the
plan, either as JACK beliefset operations, or witheginEFFandendEFFtags. We have intro-
duced these tags into the system so that ffeets of actions can be specified within thenfteEts

specified within these tags are later extracted during drestation to JSHOP and Metric-FF.

For example, consider the JACK plan on the right in Figure @Re body of this
plan contains actions for calibrating and moving. The cadecélibrating, which i$
encapsulated within evealibrateEvent calls some Java function for calibrating

the rover’s instruments via GPS. The code for moving, whsagnicapsulated with

>

eventMoveEvent, calls a Java function which moves the rover to the destingti

CHAPTER 6. IMPLEMENTATION 165

The dfects of executing the two pieces of code are specified imredgiafter them

within beginEFFandendEFFtags. The@wait for statement in the plan for nayi

gating makes the intention wait, for a maximumtioheoutseconds, until an event

is received from the environment confirming the rover’s neeation.

1
2 plan CalibratePlarextendsPlan
3
4 #handles eventCalibrateEvent calibrate;
5
6 context()
7
8 true;
9)
10
11 body()
12 {
13 @actionfew CalibrateViaGPS());
14 /= beginEFF
15 (Status Calibrated)
16 endEFFxs/
17) 1 i
18 } g E[:)Ian NavigatePlarextendsPlan
4 #handles eventNavigate nav;
1 5
2 plan MovePlanextendsPlan 6 #uses dataAt at;
3 | 7
4 #handles eventMoveEvent move; 8 #iposts eventCalibrateEvent calibrate;
5 9 #posts eventMoveEvent move;
6 #uses dataAt at; 10
7 11 context()
8 context() 12
9 { 13 at.query(nav.src);
10 at.query(move.src); 14
11 } 15
12 16 private int timeout= 5;
13 body() 17
14 { 18 body()
15 @actionfew Move(move.src, move.dst)); 19 {
16 /++ beginEFF 20 @subtask(calibrate.post());
17 (not (At ?nav.src)) 21 @subtask(move.post(nav.src, nav.dst));
18 (At ?nav.dst) 22
19 endEFFs/ 23 @waitfor(at.query(nav.dst), timeout);
20 } 24 }
21 } 25 }

Figure 6.2: JACK plans for th&lavigateevent-goal and its corresponding actions in the Mars
Rover agent of Figure 4.2.

Achievement and test goals

Event-goal programs€) of CAN correspond to the posting of JACK events of t@gielGoalEvent
via the @subtaskeasoning statement. However, unlike CAN, JACK providegsrety of event

types with diferent behaviours (e.gBDIFactEventandinferenceGoalEveitas well as attributes

CHAPTER 6. IMPLEMENTATION 166

for customising the behaviour of events. Moreover, theeed#ferent options for posting events,
via reasoning statements such@sachieveand @insist statement@achieveposts an event only
if a given condition does not hold, and trivially succeedseovise; and@insistposts an event

repeatedly until a given success condition is met.

For example, a CAN event-goal progranMadve(RocK, Rock) mentioneg
within some plan-body can be specified within a JACK planybods
@subtasimave.pos(“RocKL”, “Rock”)), wheremoveis an instance of the event

type Move.

The test for a condition ¢ of CAN has a straightforward mapping to a JA®Kliefset query
modulo a discrepancy in how the two systems handle negatibich we will discuss in Section

6.2.

A CAN test condition ®@n(b, Blockl) mentioned within some plan-body can|be
specified within a JACK plan-body as the beliefset quemgquery($b, “ BlockL”),

whereonis an instance of a beliefset relation, metlpeny is a Java method whigh

queries the relation, and$s a logical variable.

Plan-rules

A CAN plan-rule corresponds to a JACK plan: the context ctodiof a plan-rule maps to a
JACK context condition, modulo the discrepancy mentionkedva regarding negation, and the

plan-body of a plan-rule maps to a JACK plan-body.

For example, the CAN context condition On(block Tablg A

Clear(block can be encoded as the JACK context condition

on.querny($block “Table) && clearquen($block. Moreover, the CAN par
allel program Move(Blockl, Tablg || 'Move(Block2, Table can be written in

CHAPTER 6. IMPLEMENTATION 167

JACK as follows:

@parallel(...)

{
@subtaskmave. pos(“Blockl”, “ T able’));
@subtaskmave. pos(“Block2”, “T abl€));

6.1.2 HTNvs. JSHOP

The HTN language allows partial ordering of tasks, and thikyabo specify conditions that must
hold before, after or between tasks in a task network. AliiodSHOP does not have either
of these features, it has features not supported in the HTijukege, such as axioms (derived
predicates) and the ability to call functions from withintmads. Next, we will show how certain
features of the two systems can be mapped, and we will igethtif entities that do not have a

mapping. An overview of JSHOP syntax can be found in Secti8r22

Task networks and methods

The representation of a method in JSHOP is similar to theesgmtation of a method in HTN.
Recall from Section 2.3.2 that a HTN method is of the fom[{(n1 : t1),...,(Nm : tm)}, @],
where the first componemnt is a compound task, and the second component is a task network
In the task network, the first component is a set of labellsiiaand the second component is
a constraint formula. Similarly, a JSHOP method is of therfdr methoda [h] C T), wherea

is a compound task; is a conjunction of literals representing the preconditbtdthe methodTT,
called thetall, is a sequence of (primitive and compound) tasks,laiscan optional name for the
method? Note that, while the tasks in a tailmust be totally ordered, the labelled tasks ina HTN
task network can be partially ordered. Therefore, a HTN teetkvork is more expressive than a
JSHOP tail, and a mapping cannot be performed from a pgrtatiered HTN task network to a
single JSHOP taif. Moreover, note that, although a HTN method does not haveapdition per

°Note that in JSHOP, a question mark before a symbol indi¢chtgshe symbol is a variable, and an exclamation
before a symbol indicates that the symbol is a primitive faction.

3Although it is sometimes (Nau et al., 1998) possible to @aatSHOP tail for every possible (viable) total-ordering
of a given partially ordered HTN task network, this will ledan exponential number of JSHOP tails in the worst case.

CHAPTER 6. IMPLEMENTATION 168

se, the preconditio@ of a JSHOP method can be encoded as state constraints ghtonstraint

formulag of a HTN method.

For example, the following HTN method:

(mave(bl, b2, b3), [{(1 : pickugbl)), (2 : stacKbl, b3))}, ¢]),

where

¢ = (1 < 2) A (Clear(bl), 1) A (On(bl, b2), 1) A (Clear(b3), 1),

can be represented in JSHOP with the following method:

(: method(mave 201 M2 3)
((Clear ?01)(On ?b1 b2)(Clear 7b3))
(("pickup?0l)(!stack?bl 713))

),

wherepickupandstackare primitive tasks anchae is a compound task.

Initial states, compound tasks, and primitive tasks

The initial state in both HTN and JSHOP is a set of ground atdvitreover, primitive tasks and
compound tasks in both frameworks have an identical reptatien. However, there is a sub-
tle difference between a JISHOP operator and HTN operator in thatebergition of a JSHOP
operator can only contain atoms, whereas the precondifienHoIN operator can contain liter-
als? This restriction in JSHOP can be overcome by using JSHOPadsths “wrappers” around
operators that require literals within their precondifionn this way, the expressivity of the pre-

conditions of methods can be exploited.

“Note that, although, according to some JSHOP related patldits, preconditions cannot be specified for operators,
the implementation does, in fact, allow such preconditions

CHAPTER 6. IMPLEMENTATION 169

For example, the HTN operator

[operator pickub)
(pre: On(b, b2), Clear(b), ~ArmOccupied
(post: =On(b, b2), ArmOccupiedClearn(b2))
B

can be represented in JSHOP with the following method andatqre

(: method(pickup?b)
((On 2 ?2)(Clear ?0)(-ArmOccupied)
(" picku b 2))

I

and
(: operator (! picku2 % 7b2)

0
((On?2b 702))
((ArmOccupied(Clear 702))

State constraints

It is not, in general, possible to specify in JSHOP that a gé@mmmust hold before a task — if
a condition needs to hold before the first task in a HTN taskvo, then this can be specified
within the precondition of a JSHOP method. Moreover, it ispassible to specify in JSHOP that
a condition must hold after a task or between two tasks.

These restrictions in JISHOP can be overcome, to a certaimtexty using compound tasks
and methods. To specify that a condition must hold betweentaskst; andt, within a JSHOP
tail, (i) a new compound task is created along with a method that isyalweevant, with the
precondition of the method containing the condition in qloes and(ii) a call to the compound
task is placed in the tail of the JISHOP method, between thetaskst; andt,. Other state

constraints can be handled in a similar way.

CHAPTER 6. IMPLEMENTATION 170

For example, to specify that liter@n(b, Blockl) should hold immediately before
some task;j inthe taillT =t; - ... t, of a JSHOP method, we first create the new

method:
(: method(test?blocK)

((Onblock BlockK.))
0
)
and we then place JSHOP compound tasist(?b) immediately before task in
the tail. Similarly, if literalOn(b, Blockl) needs to hold between two tagkandt;

(wherei < J)in T, task (est?v) is placed after all taskig in T such thai <k < j.

The limitation of this approach, however, is that JSHOP dussallow the substitutions ap-
plied to variables within the precondition of a method todte applied (or propagated) to cor-
responding variables within the tail that calls the methdtherefore, substitutions applied to a

precondition within a tail cannot be applied to the remairsteps in the tail.

Consider once again the previous example. Suppose compaske st?) occurs
twice in tail T. Moreover, suppose variabledoes not occur anywhere else in the
tail except in these two compound tasks. Finally, suppasesitime valudlock? is
assigned to variablelockwhen precondition@n ?block BlocK) is evaluated.
Now, when precondition@n ?block BlocK) is evaluated for the second time
to solve the second occurence of compound tésgtPb) in T, the value assigned
to variableblock may not beBlock2. This is because, when the precondition is

evaluated for the first time, the substitution applied taalae blockis not applied

to variableb occurring in tailT.

This limitation can be overcome by obtaining a binding lioirom within the precondition
corresponding to tail' in the above examples. In this way, all occurences of vagialnh T will
be bound beford is solved. For example, JSHOP liter&l¢ck ?b) could be included in the
precondition corresponding fb, which would allow variableb to be bound tany block in the
domain. Of course, alternative bindings can be triedofantil a binding is found (if one exists)

that allowsT to be solved.

CHAPTER 6. IMPLEMENTATION 171

6.2 Integrating JSHOP into JACK

So far, we have shown the relationship between CAN and JAQH,the relationship between
HTN and JSHOP. In this section, we show the mapping from JA@GtKies to JSHOP entities by
incorporating the mappings discussed in the previousmsextand we discuss our implementation

of the operational semantics in Chapter 3.

6.2.1 Mapping JACK to JSHOP

Our mapping from JACK to JSHOP includes mapping betweeraicefeatures of JACK and
JSHOP that do not conform exactly to their respective foisatibns, but are nonetheless useful
in practice. We point out discrepancies between certairt hasctionalities of the two systems,

and show how these can be addressed.

Belief operations

Since a JACK beliefset is a database, a subset of the aéisilnfita relation can be chosen to form
the primary keyof the relation. Consequently, adding to a relation a tupth the same value for
the primary key as a tuple that already exists in the relatidircause the old tuple to be replaced
with the new tuple. On the other hand, since a JISHOP (as walHiEN and CAN) belief base is
simply a set of ground atoms, all arguments of atoms (reigjiare treated as their primary keys.
Hence, the removal of an existing belief atom, on the additiba new one, has to be explicitly

handled by the programmer.

For example, consider the initial CAN belief basgAt(Raer, RocKl),
At(Lander RocK3)}. Observe that the corresponding JACK agent BAasas 4
beliefset relation. If in JACK the first attribute in relaticAt is a primary key of
this relation, then performing belief additiat.add”Raer”’, “Rock3”) (where at
is an instance of beliefset relatidxt) will result in the previous locatiofRockl of
the rover being removed from the beliefset. However, periiog belief operation
+At(Raver, Rock3) in CAN will only result in this new belief atom being added
to the set of base beliefs — the previous location of the re/@ot automatically

removed from the set of base beliefs.

CHAPTER 6. IMPLEMENTATION 172

While JSHOP could be modified to allow the programmer to ch@subset of an atom’s argu-
ments as its primary key, we have not implemented this fopbkaity. However, for an industrial
strength system, this should be implemented, and it coulidnpbemented straightforwardly. In
the current system, the JACK programmer must select abatérs of relations to be their primary

keys, and handle the deletion of existing tuples explictly.

Preferences

Although not directly supported in agent programming laaggs such as CAN, AgentSpeak, and
3APL, JACK allows plans to have preferences. Preferencedesspecified for JACK plans by
declaring within a JACK agent the order in which plans shdddested for applicability. Such
preferences are useful to specify the order in which plaosldibe tried, if more than one plan is
applicable.

Similarly, it is also possible to specify within a JISHOP damrfée the order in which methods
should be tried when decomposing compound tasks. It isfirerstraightforward for JSHOP to

use and respect the preference information available fGKJplans.

Negation

The negation of a beliefset query in JACKnsgation as failurgClark, 1978), while negation in
JSHOP (as well as CAN and HTN) is standard logical negatimms€quently, while the negation
of a beliefset query in JACK succeeds only if no appropridtelings exist for variables occurring
in the query, the negation of an atom in JSHOP succeeds ifrgadxist for variables occurring

in the atom such that the resulting ground atom is false imibrdd state.

For example, suppose we have the JACK or CAN initial s{@&ersorfJohn),-
PersorfMark), PersoriDavid), PersorfJame$, Married(John), Married(Dawid)}.
In JACK, the beliefset querymarriedquen($x),°where ¥ is a logical variable,
returns false, since there is a binding forsuich thatmarriedquerny($x) holds. In

JSHOP, on the other hand, literaMarried(?x) (i.e., (hot (Married ?x)) in JISHORH

syntax) will hold, with a binding of eithedamesor Mark for variablex.

5Note that the exclamation symbol ! in JACK means negatiorgreds the same symbol is used in CAN in order to
distinguish between event-goals and event-goal programs.

CHAPTER 6. IMPLEMENTATION 173

To address this élierence, we disallow the use of negation on a JACK beliefsetyqifi vari-
ables occurring in the beliefset query will not already barxbby the time the query is evaluated.
Such bindings can be obtained from elsewhere in the JACK (@an, if the query occurs in a
context condition, bindings for all of its variables can fezoned from a previous conjunct in the
context condition). In this way, negation as failure anddagnegation are evaluated in the same

manner.

For example, we can add beliefset quepgersonquerny($x) as a conjunct
to the beliefset querynharriedquery($x) in the previous example, such that
personquerny($x) occurs beforerharriedquerny($x) in the formula. This results
in the formulapersonqueny($x) && ! marriedquerny($x). This formula will en-

sure that variable ¥is bound by the timerharriedqueny($x) is evaluated, because

JACK evaluates formulas from left to right.

Calling arbitrary Java functions

JSHOP allows arbitrary Java functions (e ggetShortestDistandeo be called from within the
precondition and tail of a method, and for values returndmbtoompared with variables, constants,
or the values returned by other such function calls. In HTNhods, on the other hand, functions
cannot be mentioned within a task network — only first orderdis are allowed. Like JSHOP,
JACK context conditions and plan-bodies also allow arbjtfanctions to be called.

JSHOP functions only accept arguments of a single gengredglledISTermand they only
return the same type. Consequently, the main step thatugeedo be able to use a JACK function
from within JSHOP is to modify the JACK function so that it apts and returns objects of type
JSTerm All JACK functions that need to be translated into JSHOR:fioms are specified in a

separate Java Class file, and the translation is done autathaat compile time.

For example, a JSHOP method can have a precondition tha a&allser de
fined function to obtain the shortest distance between twations % and 7,
and then compares the value returned with the amount of rémgaifuel 7,
as follows: €all <= (call getShortestDistanc&x ?y) ?f), where call de-
notes a procedure call. In JACK the same requirement couldviiiten ag

getShortestDistan¢®x.as.int(), $y.asint()) <= $f.asint(), where & $y and ¥

CHAPTER 6. IMPLEMENTATION 174

are logical variables. If the JACK code for functigetShortestDistances encoded

as follows:

public static double getShortestDistan@uble x doubley)
{
double shortestDist= calculateShortestDigk, y);

return shortestDist

b

then the corresponding JSHOP function would look as follows

public static JSTerm getShortestDistar{@d&Term x JSTerny)
{

double 2 = numericV aluéx);

doubley2 = numericValu);

JSTerm t= new JSTern);

t.makeConstalify;

double shortestDist= calculateShortestDigk2, y2);

t.addElemen(inew DoublgshortestDis));

return t

Axioms

JSHOP supports the useafioms or derived predicate$Thiébaux et al., 2005) within precondi-
tions of methods, which can be used to define new predicatiesnts of predicates that already
exist in the domain. This allows preconditions to be writtiest are more elegant and concise than
those that do not make use of axioms (Thiébaux et al., 2@353ingle predicates can be used in

place of their constituent predicates.

For example, the following JSHOP axiom states that a lonagowithin walking

distance if(i) the weather is good and the location is within two kilometiresn

CHAPTER 6. IMPLEMENTATION 175

home, or(ii) if the location is within one kilometre from home:

((WalkingDistance?x)
((Weather Gooy{Distance Homéx ?d)(call <= d 2))
((Distance Homé&x 7d)(call <= 7d 1))

When writing a precondition, axiom{alkingDistance?x) can be used as a pred

cate.

It is not difficult to see that such axioms can easily be specified as Jastiofusin JACK, which
can then be called from within JSHOP preconditions. Theegfae do not deal separately with

translating parts of JACK context conditions into JSHORmS.

Summary of the mapping from JACK to JSHOP

Table 6.1 shows a summary of the mapping from JACK to JSHORe that, for simplicity, we
do not automatically translate JACK beliefset queries tBlO8 compound tasks and methods
— the programmer needs to encode beliefset queries as tamteditions of JACK plans, as
we described for JSHOP and state constraints earlier (p). I&8ally, since a JSHOP context
condition is a conjunction of literals, we assume that JAGKtext conditions do not contain
disjunction; no generality is lost here, as any plan withsjutictive context condition can be split
into multiple plans, each containing one of the disjunatghe example below, we illustrate some

of the mappings highlighted in the Table 6.1.

Figure 6.5 shows a possible encoding of a JACK plan that leandhe
ObtainSoilResultgevent of the Mars Rover agent in Figure 4.2, along with the cor
responding JSHOP method. Note that the actions of pickinhdropping a soil

sample have not been encapsulated within separate JACKsediasndone in Figun

D

6.2) for simplicity. Observe that the context conditionrianslated into a JSHQP
precondition which uses the JACK event types as predicatdsls. Similarly, the
body of the JACK plan is translated into a JSHOP tail whiclsulBCK event type

[2)

as compound tasks, and JACK beliefset types for naming fiveractions.

CHAPTER 6. IMPLEMENTATION 176

The JACK belief addition and removal associated with the @actionstate-

ments are translated respectively into JSHOP ac{i&xi3D_HaveSoilSample ?ds

—
N

and('DEL_HaveSoilSample ?dst@long with operators to handle these actions (not
shown).

Statements withitveginEFFandendEFFtags are translated to JISHOP actigns,
similarly to the translation of JACK beliefset operatiortsor example, theféects
(not (At ?src))and (At ?dst)in Figure 6.2 are translated into the JSSHOP actjons
('DEL_At ?src)and (!ADD_At ?src) respectively, along with operators to handle

these actions.

plan ObtainResultsPlaaxtendsPlan
{

#handles eventObtainSoilResults obtain;
#posts eventAnalyseSoil analyse;
#uses dataSoilCompartment compartment;

#uses dataHaveSoilSample haveSample;
#uses dataAt at;

at.query(obtain.dst) &&
compartment.query(“Empty”);

1
2
3
4
5
6
7
8
9
10
11 context()
12
13
14
15
16

} 1 (:method (ObtainResultsPlan ?dst)
2
17 body() 3
18 { 4 (At 2dst)
19 @actionfew PickSoilSample(obtain.dst)); 5 (SoilCompartment Empty)
20 haveSample.add(obtain.dst); 6
21 7
22 @subtask(analyse.post(obtain.dst)); 8
23 9 ('ADD _HaveSoilSample ?dst)
24 @actionfew DropSoilSample(obtain.dst)); 10 (AnalyseSoil ?dst)
25 haveSample.remove(obtain.dst); 11 (IDEL_HaveSoilSample ?dst)
26 } 12)
27) 13)
(a) JACK code for ObtainResultsPlan (b) Translation of ObtainResultsPlan

Figure 6.5: Mapping from a JACK plan in the Mars Rover agerfkigtire 4.2 to a JSHOP method

6.2.2 Implementation Issues

In this section, we discuss our implementation of the opmrat semantics presented in Chap-
ter 3. The implementation is in the form of a Java packagdeddACKPlan which can be
imported from JACK when building planning agents. Althougk implementation does not pre-

cisely realise the operational semantics, it does incatpahe most important concepts from it.

CHAPTER 6. IMPLEMENTATION

177

JACK Entities

JSHOP Entities

beliefset

beliefset operationadd() andremove()
effects (withinbeginEFFandendEFFtags)
action (i.e., event and associated plan)
posting of an event (Gubtask

beliefset query

context condition

parallelism @paralle)

plan-body

Java function

plan

plan preference

plan-library

State
primitive task

primitive task

compound taskssutiated method

compound task

method precondition

method precondition
no mapping

tail

Java function accepting and returdigerm
method

method preference

set of methods

Table 6.1: Summary of the mapping from JACK to JSHOP

In particular, the implementation allows the programmesgecify from within a JACK plan the

points at which JSHOP should be called. This is done withptaeHTN function, which takes

as an argument a sequence of ground JACK event f/peésch, as discussed before (p. 164),

can also represent actions. On invoking functmanHTN, the agent’s current set of beliefs is

automatically sent to JSHOP, which JSHOP uses as the isiititd for HTN planning.

As one example of the use of the JACKPIlan package, considéi#ns Rover agemt

in Figure 3.1 of Chapter 3. Recall that HTN planning is neefdeglan-ruleRy in

this figure in order to avoid failure, in certain initial sat due to a wrong choi¢

between plan-ruleR, andR3. Figure 6.8(a) shows the implementation of plan-

Ry of Figure 3.1, and Figure 6.8(b) shows how HTN planning caimberporated

into the plan-body of Figure 6.8(a). In particular, this e by replacing the three

@subtaslkstatements of Figure 6.8(a) with functiplanHTN, and passing in as an

argument the sequence of three ground event types corgiagdn the thre€@ sub-

taskstatements. Observe, further, from Figure 6.8(b), that&@KPIlan.Planning

class has been imported and inherited; this class provigesiTN planning funct

tionality. Finally, observe that th&posts eventleclarations have been remoy

because events are no longer posted from the plan-bodgugtihsuch removal

e

ule

ed

5A ground JACK event type is a JACK event class name, followed bonstant for each argument in the first Java
method for posting an instance of the event. Note that viasatan occur in functioplanHTN provided the
bound before the function is invoked.

y will be

e el ol
ORWNROOONOUIAWNR

16

NNNNR R
WNPFRPOWOWOON

N NN
[e2 N N

27

N
oo

29
30
31
32
33

CHAPTER 6. IMPLEMENTATION 178

not strictly necessary.

1 import JACKPIlan.Planning;
plan ExplorePlarextendsPlan 2
{ 3 plan ExplorePlarextendsPlanning
#handles eventExploreSoilLocation expl; 4 |
5 #handles eventExploreSoilLocation expl;
#iposts eventNavigate navigate; 6
#iposts eventAnalyseSoil analyse; 7 #uses dataAvailableBattery battery;
#posts eventlransmitData transmit; 8 #uses dataAvailableMemory memory;
9 #uses dataAt at;
#uses dataAvailableBattery battery; 10
#uses dataAvailableMemory memory; 11 logical int $bat;
#uses dataAt at; 12 logical int $mem;
13
logical int $bat; 14 context()
logical int $mem; 15 {
16 at.query(expl.src) &&
context() 17 battery.query($bat) &&
{ 18 memory.query($mem) &&
at.query(expl.src) && 19
battery.query($bat) && 20 ($bat.asnt() >= 6 && $mem.asint() >=5) ||
Enemory.query($mem) && 21 ($bat.asnt() >= 7 && $mem.asint() >= 4)
22 ;
($bat.asnt() >= 6 && $mem.asint() >=5)|| 23 })
($bat.asnt() >= 7 && $mem.asint() >=4) 24
); 25 body()
} 26 |
27 planHTN
body() 28
29 “(Navigate "+expl.sre-" ” +expl.dst")" +
@subtask(navigate.post(expl.src, expl.dst)); 30 “(AnalyseSoil "+expl.dst")" +
@subtask(analyse.post(expl.dst)); 31 “(TransmitData "+expl.dst")"
@subtask(transmit.post(expl.dst)); 32);
} 33}
} 34 |}
(a) JACK code for ExplorePlan (b) JACKPIan code for ExplorePlan

Figure 6.8: Incorporating HTN planning into the Mars Rovegeast of Figure 3.1

Consistent with the semantics, JSHOP uses the same dorpagseatation as JACK, that is,
the plan-library and belief base. To this end, we provide mpitation procedure in JACKPlan
that can be usedflbine in order to build the JSHOP domain representation fraendibmain rep-
resentation of JACK. Specifically, JACK entities are cotwerinto JSHOP entities according to
the mapping discussed before.

Unlike the semantics, however, the implementation doesaiptan at every step, as indicated
by thePlan derivation rule in the semantics. This would be unnecdgsasfficient, since in some
cases, HTN planning would need to be performed numerousstimg., as many times as the
number of steps in the first plan returned. Instead, we hawdfied JISHOP to return the methods
(JACK plans) that should be chosen at th&atent choice points, as well as the bindings that

should be given to variables occurring in preconditionsQRAcontext conditions). On invoking

CHAPTER 6. IMPLEMENTATION 179

functionplanHTN, the BDI execution engine calls JSHOP once, and then folkies-by-step the
decomposition suggested by JISHOP. If by the time executippéns, decomposition information
returned by JSHOP has become invalid due to a change in tiremement, JACK will detect this
change when a step in the returned decomposition is no lapgdicable within the BDI execution
cycle. At that point, failure will occur in the BDI system, égithe planner can be called again to
provide an updated plan.

Although storing the plan has its benefits, executing a dtptean also makes the implemen-
tation incapable of predicting failure due to a change ingh@ronment, until the failure occurs
during execution. On the contrary, the semantics can dé&éate early, as replanning is done
after executing every action, which ensures that actioase&ecuted only when a solution ex-
ists with respect to the current state of the world. Howetves, drawback in the implementation
is offset by the much greateffiziency in what can be expected to be the majority of cases. If
early detection is required, some form of plan monitoringy.(e(Veloso et al., 1998)) could be

developed.

Let us illustrate how failure is detected in the semantias iarplementation. Cor

sider the plan-library shown below. Observe that eventnde; are each handlgd
using two plan-rules. Suppose that, initially, the envinemt is such thag; can be

successfully decomposed irrespective of the plan-rulesern and that actioay

brings about the precondition of actiag.

Next, consider the execution of evastusing thePlan construct of the seman-
tics, and theplanHTN function of the implementation (for simplicity, we assume

that HTN planning takes the same amount of time as executstgpa) The figurg

1%

below shows how thElan construct performs full look-ahead (represented by small
circles) on event-goad;, executes the first step ef (which results in the selectian

of plan-ruleR;), performs full look-ahead oR;, executes the first step Bf (which

CHAPTER 6. IMPLEMENTATION 180

checks whether the context condition Rf is met in the initial state), and so gn.
I

On the other hand, thelanHTN function of the implementation first performs fu

look-ahead on evert, and then executes the resulting decomposition stepdpytst

panHTNE::: & R & Ry & & & R & &7
Plan €2 & Rpe Ry €2: €& Ry Rg do:o d3 dse-
L l l l l l l l l l l l time
0o 1 2 3‘ 4 5 6 7 8 9 10 11

change in environment

Now, suppose that a change occurs in the environment betiiveersteps 3 and 4,
which results in the precondition of actiag being no longer applicable. Obserye,

then, that thePlan construct realises this change between time steps 4 andib, an
that it pursues an alternative decomposition, which ineslselectindzsz in order to
makeag applicable once more. Th@anHTN function, on the other hand, does not
realise this change in the environment, until it fails whefing to execute action

as at time step 10. However, as hinted by the above figure, if suchange in th

D

environment does not occyslanHTN would most likely complete the successful

execution ofe; beforePlan does.

Since the HTN planner is called only at specific points in tti&l Brogram where planning
is deemed necessary, we expect the runtime performance dftdgrated system consisting of
JACK and JSHOP to be fiiciently dficient for many applications. In fact, when we tested the
combined system on simple domains such as variations of #re Rover domain in Figure 4.2,
and a “meeting scheduler” domain where the agent’s tasksshedule new meeting requests into
a user’'s diary, JSHOP returned solutions within a matter fefaaseconds, even for solving the
top level tasks. Specifically, in the latter domain, whena neeeting request arrives along with
a set of suitable time slots for the meeting, the agent tadst an empty slot in the diary that
is suitable for the new meeting, and if no such slot is fouhd,dgent tries to clear a slot that is

suitable for the new meeting by moving an already scheduleetimgy into one of its alternative

CHAPTER 6. IMPLEMENTATION 181

suitable slots, failing if no such alternative can be fodntihis domain consisted of a goal-plan
hierarchy of three levels, with two actions (“insert” andefete”), five event-goals, and seven
plan-rules.

We also expect the runtime performance of the combined rsy&idbe dficient in many ap-
plications because HTN planners have been shown to be gabictimany real-world, non-trivial
problems that are veryiicult for humans to solve (Ghallab et al., 2004, p. 257)(N&0,72. The
user base of HTN planners includes government laboratanesistries, and universities, with
projects such as fighting forest fires, controlling multipl&Vs, and statistical goal recognition —
i.e., inferring the goals of other agents (Nau et al., 2008)e reason for the practicality of the
HTN approach is that it relies on user-supplied “recipesiiol provide control knowledge to the
planner, resulting in a substantial reduction in the seapzate (Ghallab et al., 2004, pp. 229,
259).

6.3 Integrating Metric-FF into JACK

In Chapter 4, we presented algorithms for first principleanpling in the CAN BDI agent pro-
gramming language. Specifically, these were algorithmsfionmarising ffects and precondi-
tions of CAN programs, for creating abstract planning ofmesafrom summary information, and
finally, for obtaining hybrid-solutions using such operatdn this section, we discuss our imple-
mentation of these algorithms in the JACKPIlan Java package.

In the implementation, we translate JACK plan-librariem iMetric-FF operators using the
summary algorithms of Chapter 4. The subset of the JACK fanatities that we account for
in the translation is the subset that is common between JA@GKGAN as described in Section
6.1.1, that is, closed world beliefset@subtaskeasoning statements, belief operations, context
conditions, sequential plan-bodies, and actions. Résimngin Section 6.2, which were introduced
in the context of JSHOP, also apply to this section, namlegrestrictions on negation and belief
operations in JACK.

The functionality of JACK that is not translated into MetR€ is as follows. First, we do
not translate certain features of JACK that were used with@B, namely, preferences on JACK

plans and arbitrary function calls within JACK plans. Althyh such preference information is

"Note that the purpose of these experiments was not to metikkatneed for HTN planning (as done in Chapter 3),
but merely to check how long JSHOP takes to find solutionsdal-world (albeit simple) BDI programs.

CHAPTER 6. IMPLEMENTATION 182

useful for JISHOP, it is not useful for first principles plamgi because a first principles planning
operator encodes information regardineets that are brought about irrespective of the JACK
plans chosen to achieve a JACK event.

Next, since function symbols cannot occutiterals according to the summary algorithms of
Chapter 4, nor in literals within Metric-FF operators, sat arbitrary functions cannot occur in
beliefset queries or beliefset operations within JACK plémat need to be summarised. For ex-
ample, the following JACK belief operation cannot be sumisem: atadd”Raoerl”,
getClosestLandé$x)), which specifies thaRaerl, whose location is represented by variable
$x, is at the same location as that of the lander which is cldedst However, such belief opera-
tions can sometimes be rewritten in a way that makes theingnmmsation possible, as illustrated

by the following example.

Consider belief operatiorat.add“Raerl”, getClosestLand€$x)). We could
rewrite this as follows. First, we calculaté¢ilme the closest lander location for
all locations that the rover may travel to. Next, we inclullis information in the

agent’s initial belief base. This information could be eed using a JACK beg

liefset calledClosestLanderwith two attributes representing locations, and with

the second attribute of each tuple in the beliefset reptiegeithe closest lan

der location from the location represented by the firstlaite of the tuple. Fi
nally, the belief additiorat.add“Raverl”, getClosestLandé$x)) can be rewritten

asatadd“Rawerl”, $y), where the value of variabley$s obtained from a beliefset

guery such aslosestLandeguery($x, $y).

Rewriting beliefset queries or beliefset operations is thanner may not always be feasible,
since it requires all possible inputs into a function to beopead to one or more outputs, and for
all such mappings to be encoded in the agent’s initial bekeke. It is important to note, however,
that it is still possible to specify arbitrary function aallvithin JACK plans, provided the values
returned by these function calls are not used by beliefsetiegl or beliefset operations. For
example, it is still possible to call a function from withirdJACK plan as shown in Figure 6.2.

Finally, while JACK (and CAN) allow parallelism and recuwosiin plans, we do not allow
these features within first principles planning, as disedsa Chapter 4. However, by using first
principles planning, we can, to a certain extent, emulath sacursion. This is illustrated in the

following example.

CHAPTER 6. IMPLEMENTATION 183

For example, consider the recursive JACK plan-library welo

Move(src, ds)

OR
-At(ds) A Adjacengsrc, nxt) A Closenxt dst src) At(d s
%
| TakeStegsrc, nxi) | | Move(nxt ds |

At(src) A Adjacen(src, nxt)

! DoStep:

The context condition oP3 is At(ds;),_ Er;e_ _context condition P, is At(src) A
Adjacen(src, nxt), and the context condition &f; is —At(dsi A Adjacen{src, nxt) A
Closer(nxt, dst src), whereClosernxt, dst, src) is true if nxt is closer todstthan
src.

Observe that the JACK eveNMovdgsrc, dsi) is handled by two JACK planB;
and Pz (where the latter has the empty plan-body), that the firgt sféP;, which
corresponds to an action, takes one step closer to the astirby executing sorje
Java code represented BpStep and that the second step Bf recursively calls
the Moveevent.

Instead of using the recursive plan-library above to solkentMovegsrc, dsi),
we can use first principles planning, by calling functanFP(At(ds)) (provided
dst will be bound before this function is called at runtime), \At(dsf) is the
primary dfect of theMovegsrc, dsf) event. More specifically, we can replace each
call to aMovgsrc, dst) event in the plan-library with a call golanFP(At(dsf). The
planner will return hybrid-solutions (if any) consistirigeally, of multiple instancels

of the TakeStefsrc, nxt) event, each taking the agent one step closer to the dejstina-

tion.

The disadvantage of this approach, however, is that, wiedcursive everitlove will intu-
itively conform to the user intent property (p. 87) — i.e.witl find a solution that includes only
multiple instances of th@akeStepevent, the first principles planner may find hybrid-plang tha
involve moving by some other means, i.e., without usingThleeStegvent.

Although we only translate a limited subset of JACK into fpsinciples planning operators,

we note that planning with operators of limited expresgitias been shown to be useful for real-

CHAPTER 6. IMPLEMENTATION 184

world problems. In particular, planning from the PRS BDIteys using operators of limited
expressivity was shown to be useful for controlling the agien of a furnace (Despouys and In-
grand, 1999), and similarly, planning with the overlappsupset between the language of the
PRS-CL BDI system and the SIPE-2 planner was shown to beldsefpianning military opera-
tions (Wilkins et al., 1995).

Consistent with the formalisms presented in Chapter 4,nttpdeémentation lets the program-
mer specify in JACK plans the points at which Metric-FF shidug invoked® This is done with the
planFP function, which takes as the argument the goal state to bewath described in terms of
JACK beliefset types. Like thplanHTN function, on invoking functiorplanFP, the agent’s cur-
rent set of beliefs is automatically sent to Metric-FF, whicuses as the initial state for planning.
Consistent with the summary algorithms of Chapter 4, a ctangupplied with the JACKPIlan
package can be usediine to translate JACK events into Metric-FF operators, Wwhace then

accessed by Metric-FF at runtime.

As one example of the use of the JACKPlan package for firstyples planning
consider the Mars Rover agent in Figure 4.2 of Chapter 4. IR&ed plan-ruleRg
in this figure is used to perform first principles planning e event that a failure
occurs during exploration.

One possible encoding of plan-ruks using JACK is shown in Figure 6.9.

Observe that functioplanFP takes as an argument the goal state, which, in| this

case, is the state in which results have been transmittetidatestination.

There are also certainftierences between the formalisms of Chapter 4 and the imptamen
tion. Unlike the summary algorithms of Chapter 4, the impdatation allows the programmer to
choose what JACK events need to be summarised. This isyarticuseful when certain events
cannot be summarised due to an associated JACK plan caorgaaniecursive call, or due to an
associated JACK plan using some other a feature not suplpiorigur translation such as paral-
lelism. By letting the programmer choose the JACK eventtsriead to be summarised, we allow
the full functionality of JACK to be exploited when developipractical BDI applications, and for
first principles planning to be used only with a selected subEJACK events. Finally, unlike the

formalisms, where the domain for first principles plannisiguilt by combining abstract operators

8Since Metric-FF is implemented in C, it is called via the Jhlagive Interface.

PRRERRERRPRE
OCONOUIRWNROOONOUITAWNE

CHAPTER 6. IMPLEMENTATION 185

import JACKPIan.Planning;

plan ExplorePlanViaFRextendsPlanning

{
#handles eventExploreSoilLocation expl;

#uses dataResultsTransmitted transmitted;
#uses dataAt at;

context()
{
lat.query(expl.src) && 'transmitted.query(expl.dst)
}
body()

planFP(“(ResultsTransmitted+expl.dst")");

Figure 6.9: The JACKPIlan specification of plan-riRgin the Mars Rover agent of Figure 4.2

(event-goals) with the primitive actions of the agent, thendin for first principles planning in the
implementation is built entirely from JACK events, becapsgeitive actions of the agent are also
encoded as events.

At runtime, if Metric-FF fails to find a hybrid-plan, then tistep which invoked the planner
also fails. If a hybrid-plan is found, then the system vakdait. As discussed in Chapter 4, this
validation is necessary because abstract operators oobderthe must literals of JACK events,
and it could happen that when an action within a hybrid-pamapped back into an event and
executed, othem@ay) literals brought about by the execution of the event craatituation where
later JACK events (abstract actions in the plan) are unab$riccessfully execute. To determine
whether all such conflicts (if any) within a hybrid-plan candvoided, we check to see if there is a
complete HTN decomposition of the hybrid-plan, using JSHSiAce JSHOP needs to also take
into account the goal state sent to Metric-FF, iyeencode the goal state into the precondition of
a JSHOP methodji) add the corresponding compound task to the hybrid-plan{ianarder the
compound task to occur after all other compound tasks in yeidiplan. Note that we do not
perform the polynomial time validation discussed in Chagtbecause we choose to always im-
prove the hybrid-plan, which requires calling JSHOP anywgwever, the implementation could
be easily extended to allow the programmer to choose whatherprove the hybrid-plan, or to
simply obtain a correct (but possibly redundant) hybridrplising the polynomial-time validation.

If the hybrid-plan returned by Metric-FF is found to be valicc., JSHOP is able to find a

complete decomposition of the hybrid-plan, then this rgdmlain is improved using the algorithms

CHAPTER 6. IMPLEMENTATION 186

discussed in Chapter 5. If JISHOP is not able to find a compésterdposition of the hybrid-plan,
i.e., a conflict exists in the hybrid-plan that cannot be dedi a new hybrid-plan is requested
from Metric-FF. Since, if the world has not changed, Mefle-will most likely return the same
hybrid-plan that it returned the first time it was called, \madomly rearrange the operators in the
Metric-FF domain file, as well as atoms in the initial statefdoe calling Metric-FF for the second
and consequent times. This is done in order to influence BAEffito make dferent choices
regarding actions and variable bindings, compared to tbeceh made the previous time(s) it was
called. However, a better approach could be to extend MEFito accept an “exclusion set” of
plans, so that it only looks for plans that are not in this set.

We performed experiments with a Mars Rover domain, and wéhnteeting scheduler domain
mentioned in Section 6.2.2, to get insights on whether plenfrom first principles is practical
in real-world applications. The Mars Rover experiment ¢stesl of simple setups such as that
denoted by Figure 4.2, and in the meeting scheduler domainsed the planner to reschedule
multiple meetings in order to incorporate a new meetingestt i.e., clearing a slot to accommo-
date a new meeting sometimes involved rescheduling meiltifiler meetings into their alternative
suitable slots. In both domains, in general, the first pples planner returned solutions within a
few seconds. However, it was also possible, in the meetingdider domain, to create initial and
goal states for which the planner took in the order of mintwe®turn solutions.

Hence, we acknowledge that, while like JSHOP, Metric-FHde ased only at specific points
in the BDI program rather than at every step of BDI executmanning from first principles may
still turn out to be too slow for some applications. Howeves,note that modern classical planners
are very fast in general, returning solutions within a fewosals for very large combinatorial
problems with hundreds of actions in the plan solutions.{eag (H&fmann and Edelkamp, 2005,
p. 553)), and that even for situations in which planning sageme time, it may still be possible
to use techniques such d8:time-outs, to obtain solutions within a given time linii) planning
while idle (e.g., in a Mars rover domain the rover could plamleswaiting for a command from
earth); or(iii) planning while acting, in a way that will not interfere withet planning process.
For example, a rover could, while moving from one locatiommother, plan for a goal related to
the analysis of previously acquired soil samples. Finallynote that the ability to plan from first

principles has a practical benefit as shown in Chapter 4, gévissioes take some time.

CHAPTER 6. IMPLEMENTATION 187

6.4 Improving and Executing Hybrid-Solutions

After obtaining a valid hybrid-plan, i.e., a hybrid-solui, we focus on improving it, by ex-
tracting its most abstract and non-redundant part. To thiés &e mainly follow Algorithm
Find-Preferred-Specialisation (Algorithm 5.1) of Chapter 5. This involves obtaining a deco
position tree from the successful decomposition found ByQB when validating the hybrid-plan
returned by Metric-FF, and abstracting out JACK events endbcomposition tree, starting from
the primitive actions, i.e., leaf-level JACK events.

Like Algorithm Find-Preferred-Specialisation, the implementation finds a preferred speciali-
sation of a complete decomposition tree, which is a decoitipodree combined with one of its
primitive solutions for the goal state at hand. To build sadhee, we modify the JISHOP domain
file to return, in addition to a primitive solution for the imptask network and goal state, also the
choices that led to the solution.

In particular, this is information regarding what grounasngmund and primitive tasks were se-
lected to reduce other ground compound tasks, and what giqo@conditions were encountered
during the decomposition, which, as mentioned before, @andmsidered restricted HTN con-
straint formulas. With this information we straightforwardly build a deconsjtion tree, which
is then used along with the associated primitive solutioitjal state, and goal state to find a
preferred specialisation in the manner described in AlgoriFind-Preferred-Specialisation.

In order to obtain a non-redundant primitive solution frame teaf-level primitive solution
associated with the decomposition tree, we usé.ifear-Greedy-Justification algorithm of Fink
et. al (Fink and Yang, 1992f. This is diferent to what we do in Algorithm 5.1, which obtains a
perfect justification (Fink and Yang, 1992) from the priwetisolution associated with the decom-
position tree. The reason for thisfiidirence is that, although the notion of a perfect justificatio
has an intuitive definition that is useful for formalisatiofie., that a primitive solution is perfectly
justified if it does not have a subsequence that is still aigixiensolution), it is not feasible to find
perfect justifications in practice, as it is NP-hard to cotegrink and Yang, 1992). On the other

hand, although theinear-Greedy-Justification algorithm does not have an intuitive definition, it

9Note that this information is slightly fierent to the information required by tipanHTN function — the latter
requires information about methods (JACK plans) chosehediferent choice points, and substitutions applied to
variables.

1%Note that step nine in functioinear-Greedy-Justification of (Fink and Yang, 1992) should recursively call func-
tion Linear-Greedy-Justification, instead of calling functiohinear_Well_Justification.

CHAPTER 6. IMPLEMENTATION 188

is able to find, in polynomial-time, primitive solutions tlae “almost” perfect justifications (Fink
and Yang, 1992).

It is important to note that non-redundancy is only one motd what constitutes a “good”
primitive solution. One may want to define other notions addd” primitive solutions, and al-
gorithms for obtaining such solutions, given any primitsaution as input. Such algorithms can
be easily incorporated into the implementation by repléimctionLinear-Greedy-Justification
with the new function. Then, a preferred specialisatiorawigtd from a decomposition tree will
be with respect to the new algorithm for finding a “good” ptine solution.

Once a preferred specialisation is obtained for the hykoidtion found by Metric-FF, the
specialisation is then executed. Since the specialisaistill a totally-ordered hybrid-plan, ex-
ecution simply involves posting, via JAC&subtaskstatements, the events contained in the spe-
cialisation, in the same order in which they are specifiechandpecialisation, while also taking
into account binding information for variables of eventscg such an execution does not guaran-
tee that the non-redundant primitive solution will evetitube reached, it is not dicult to extend
the implementation to execute the hybrid-plan by followthg choices and bindings specified in
an associated decomposition tree. It is worth noting thhtlena hybrid-plan may be valid with
respect to the initial state, goal state, and expected (anushty) dfects of its events, it could still
be the case that while the hybrid-plan is being executedytrl changes in a way which makes
the plan no longer valid, i.e., makes one or more contextitiond of associated plan-rules false
when they would otherwise have been true. In such a situatienBDI engine will detect this
“discrepancy” between expected beliefs (initial state arpected ffects of events) and actual
beliefs (state of the world) as a failure, in the manner dised in Section 6.2.2, and continue

execution to recover from the failure by trying alternatplan-rules.

Chapter

Discussion and Conclusion

BDI systems are extremely flexible and responsive to the@mwient, and thereby able to work
effectively in complex and dynamic environments. An importaspect of such systems is that
they execute as they reason. In particular, they executehiext dependent expansion of sub-
goals, acting as they go. However, BDI systems do not ingatp@ generic mechanism to do any
kind of planning. In this thesis, we have incorporated twaety of planning techniques into BDI

agents, namely, HTN planning and first principles planning.

Incorporating HTN planning into CAN

In Chapter 3, we incorporated look-ahead deliberation énstigle of HTN planning into the BDI
model. We first compared the syntax and semantics of the Sgeak BDI agent-oriented pro-
gramming language with that of HTN planning, and we thentipoated HTN planning into the
CAN BDI agent-oriented programming language via Een(P) construct. This construct was
added in a precise and formal manner, and in a way that alloveggant to perform look-ahead
at programmer specified points in the plan-library. We shibitat the combined architecture is
more expressive than HTN planning alone, and that the aathite allows agents to detect and
avoid executions that are bound to lead to certain typesilafég, such as those that result from
negative interactions between plan-rules.

An interesting avenue for future work would be to investigatresource-bounded account
of our HTN planning module. For example, one could inveséidaoking ahead up to a given

number of decompositions, in order to cater for domains irckvkhere is limited time for plan-

189

CHAPTER 7. DISCUSSION AND CONCLUSION 190

ning. We have already begun work in this direction by extagdhe planning modulBlan(P) to

take into account an additional parameter correspondirijetanaximum number of steps (e.qg.,
decompositions) up to which look-ahead should be perforrBedhe of the theoretical and empir-
ical results from this approach can be found in (de Silva aaklkier, 2007; Dekker and de Silva,

2006).

First Principles Planning

While look-ahead is useful for reasoning about the consszpsge of choosing one expansion of
an event-goal over another, look-ahead cannot be used &atecnew plan-rules not already a
part of the agent’s plan-library. Creating new plan-rulesdemand is desirable, for instance,
when all plan-rules associated with an event-goal havedailTo this end, in Chapter 4, we
incorporated first principles planning into the BDI architee. Unlike previous work on adding
first principles planning into BDI systems, which focusespsaducing low-level plans, losing
much of the domain knowledge inherent in BDI systems, wegmiesl a novel technique where
first principles planning is used to creditgbrid-plans namely, those that can contain, in addition
to primitive actions, also event-goals. Since event-goajsture the agent’s procedural domain
knowledge, our approach allows such knowledge to be reusddespected when formulating
solutions.

It is worth noting that, while we have provided a formal framoek for first principles planning
in BDI systems, we have not provided an operational semsatftat defines the behaviour of a BDI
system with an in-built first principles planner. To this eade would need to add modutéan(¢)
into a language such as CAN, whefés a goal state to achieve, and provide derivation rules for

this module that reuse and respect the procedural domaiml&dge in the plan-library.

Summarisation algorithms

To use event-goals for first principles planning, we progtideechanisms for translating them into
abstract planning operators. To this end, we first definediggly what information we need
to extract from event-goals, in particular, the notions gfracondition and postcondition of an
event-goal, and we then provided algorithms and data stestfor obtaining this information.
Our algorithms are based on the summary algorithms of (Qkemteal., 2007), which are used

to calculate dline the summary information of HTN-like hierarchical stures (task-networks)

CHAPTER 7. DISCUSSION AND CONCLUSION 191

belonging to multiple agents, so that this information carubed at runtime to coordinate those
agents. There are, however, importarffatences between their summary algorithms and ours.
First, the precondition of an event-goal in our work is a d&ad classical precondition (with
disjunction), whereas in their work, a precondition of tieeresponding entity — a compound task
— is essentially two sets of literals: those that must holthatstart of any successful execution
of the task, and those that must hold at the start of one or maceessful executions of the
task. Second, as discussed in Chapter 4, our algorithm&euhkirs, allow for the specification

of a wider range of BDI plan-libraries, as well as variablediterals, event-goals and actions.
However, our summary algorithms do not allow parallelismplan-bodies — plan-bodies can only
contain steps specified in a sequence — whereas their dlgasrido allow such parallelism.

Our summary algorithms are also related to the summary itiges of Thangarajah et al.
(Thangarajah et al., 2003a,b). In their work, the summadigrination obtained from event-goals
is used for detecting and avoiding potential interfereretvben event-goals executing simultane-
ously, and for facilitating the merging at runtime of plandies belonging to multiple event-goals.
Like our algorithms, calculating the summary informatidran event-goal in their work involves
merging the summary information belonging to all assodigtian-rules, and classifying literals
in the combined summary information dsfiniteor potential similar to how we classify literals
asmustor mentioned However, there are also importanffdrences between the two approaches.
Most importantly, the summary postcondition of a plan-iinléheir work contains every interme-
diate literal that will (definitely or possibly) be broughi@ut during the execution of the plan-rule.
In contrast, the must literals of a plan-rule in our work @n$ only literals that will be brought
about at theendof the plan-rule’s execution. Moreover, like the algorithiwf Clement and Dur-
fee, the work of Thangarajah et al. does not allow variabiddarals, event-goals and operators,
whereas we do allow variables in those entities. Howeveitevaur work only allows plan-bodies
to contain steps specified in a sequence, the work of Thajagaetal. allows parallelism within
plan-bodies.

In addition to not allowing parallelism, our summary algloms, like those of Clement and
Durfee and Thangarajah et al., do not allow recursion wittém-bodies (i.e., calling from within
a plan-body the event-goal that the plan-body handles, avent-goal that is an ancestor of
the one that the plan-body handles). Parallelism could berprorated into our algorithms by

borrowing ideas from the algorithms of Clement and Durfeel, i@ecursion could be incorporated

CHAPTER 7. DISCUSSION AND CONCLUSION 192

into our algorithms by following (Fritz et al., 2008), whok&a limited form of recursion into

account when translating from a subset of the language 0G0ty into planning operators.

Finding hybrid-plans

After providing algorithms and data structures for sumsiag plan-libraries, we explored the
soundness and completeness properties of the algoritmuhsyefinally provided mechanisms for
obtaining correct hybrid-plans using information colittvia summarisation. One shortcoming
of this approach is the following. If a hybrid-plan is fourl ke potentially incorrect, standard
HTN decomposition is used to verify whether the hybrid-pgkdefinitely incorrect, in which case
a new hybrid-plan is obtained. However, since such verifioatequires determining whether
there is a complete decomposition of the hybrid-plan thhiexes some goal state, and HTN
planners do not, unlike first principles planners, make dssng heuristics to guide the process
of decomposition toward the goal state, our verificatiom $senot always fiicient. One could
improve it by extending theeMCP HTN planning algorithm of (Erol et al., 1996) with heurisjc
so that the process of decomposition is biased toward metthad take the search closer to the
goal state, as done in (Lotem et al., 1999). Alternativehg could investigate extenditgMCP to
perform HTN decomposition by working backward from the getake, as opposed to the default

HTN planning process of working forward from the initial teta

Abstraction and redundancy

While obtaining correct hybrid-plans is essential, it iscaimportant to obtain desirable hybrid-
plans. To this end, in Chapter 5, we recognised an intrirgsision between striving for hybrid-
plans and, at the same time, ensuring that unnecessarpsatiarelated to the specific goal state
to be reached, are avoided. To explore this tension, we fiesbcterised the set of “ideal” hybrid-
plans, which are non-redundant while maximally-abstraééxt, we developed a more limited
but feasible account of “preferred” hybrid-plans in whichigbrid-plan is “specialised” into a
new hybrid-plan that is non-redundant while preservingtrabbion as much as possible. We
also presented an intermediate notion which is conceptuaddiser to the feasible notion of a
preferred hybrid-plan. We analysed the properties of tfferint notions presented, and showed,
for instance, that an ideal hybrid-plan always exists tedithe planning problem can be solved,

and that an ideal hybrid-plan is also one that is preferredally, we described algorithms for

CHAPTER 7. DISCUSSION AND CONCLUSION 193

computing preferred hybrid-plans.

The work of (Kambhampati et al., 1998) is similar to our workhybrid-planning and is in-
deed motivated by the desire to combine HTN and first priesiplanning. Our work is fierent
in that we construct abstract operators from a BDI plaralifar and then execute the resulting
hybrid-plan within our framework, whereas in their workeetgoals are decomposed during the
process of first principles planning. There are aldtedénces in the details of the approach. Most
importantly, they require the programmer to providisets, whereas we compute these automati-
cally, and they do not address the issue of the balance betsetraction and redundancy, which
we explore in depth.

Perhaps the most interesting direction for future work &sitivestigation of a more general
framework for finding good (e.g., “ideal” or “preferred”) bsid-solutions. In our current frame-
work, we consider redundancy as one of the underlying fadtwat determine whether a hybrid-
solution is good. While removing redundant steps is reddernia some domains (e.g., the Mars
Rover domain of Figure 4.4, p. 106), it may be inappropriatether domains, in particular, be-
cause HTN structures sometimes encode strong preferemnredte user. For example, consider
a hybrid-solution containing the following sequence oktsafKambhampati et al., 1998): get in
the bus, buy a ticket, get out of the bus. Although it may besitds to travel by bus without
buying a ticket, if we remove this task when it is redundard,may go against a strong preference
of the user which requires that task to be performed aftdingeinto the bus and before getting
out of it. To cater for strong preferences, one could usesifi@an (Sohrabi et al., 2009) and gen-
eralise our framework with a more flexible account in whiabr, ihstance, all HTN preferences
are assumed to be strong, and a redundant task is only rerfickrediser has separately specified
that the task is not strongly preferred. For example, wihigetask of buying a bus ticket may be
redundant, it is not removed from a hybrid-solution unléssuser has specified that the task is not
strongly preferred. Such specifications could be encodddhakconstraints or soft preferences,
and included either within an extended version of HTN methad as global constraints outside

of methods as done in (Sohrabi et al., 2009).

Implementation

In Chapter 6, we discussed the implementation of the alyostpresented in previous chapters,

using the JACK BDI development platform, JSHOP total-ord@N planner, and the Metric-FF

CHAPTER 7. DISCUSSION AND CONCLUSION 194

first principles planner. We also gave insights into the ficatutility of the formal frameworks,
by, for instance, highlighting the gaps between the frammksvand their implementations, and
showing how some of these gaps can be reduced. Moreover,ameedhow certain dierences

in the semantics and implementation, such as replanningeay step as indicated by tH&an
derivation rule of Chapter 3, versus planning once and dxera stored solution, are necessary
in order to develop practical BDI systems.

As discussed in Chapter 6, extensions to the implementat®nequired before it can be used
as an industrial strength system, such as extensions to B$¢1&low the selection of a subset of
an atom’s arguments as its primary key, similarly to how piiyrkeys can be specified in a JACK
beliefset. Another avenue to consider would be to actuahy the proposed planning facilities
in applications, and to evaluate and validate tieativeness and applicability of the proposed
facilities in practice. For example, the types of domainsvirich planning from first principles
is worthwhile could be explored, or we could investigate tbasibility of planning from first
principles as a part of the standard BDI execution cycle, eigenever an applicable plan is not
available, instead of letting the event-goal fail. Intgdly, this approach is likely to be more robust
in some applications since it tries to prevent the failurexant-goals at every opportunity, rather
than only at user specified points in the BDI hierarchy. Havethis approach is also likely to
be very computationally expensive, as the planner mayddihtl a solution each time it is called
from one level higher in the BDI hierarchy. The work presdnite this thesis provides a firm

foundation for further work on planning in BDI systems, btitkoretical and practical.

Appendix

Lemmas and Proofs

A.1 Proofs for Chapter 3

Proof of Lemma 1 (p. 74). We prove this by induction on the lengtlof the plan-type deriva-
tion. For the base case, let us take= 0. Then,P = nil, 8 = B, andA; = A. By using
derivation rulePlan;, we obtairKB, A, Plan(P)) L (B¢, As, nil). Next, assume that the theorem
holds forn < k. Finally, supposen = k+ 1. Then, there exist€’ = (8, A’, P’) such that(a)
(B, A, P) @ C’, and(b) C’ pﬂk (Bi, A, nil). Using (a) and (b), we can use derivation rule
Plan to obtain(8, A, Plan(P)) b (B, A’,Plan(P’)). Moreover, from(b) and the induction hy-
pothesis{B’, A’, Plan(P")) ﬂ (B;, As, nily holds. Therefore(B, A, Plan(P)) ﬂ (B¢, Ag, nily

follows. O

A.2 Lemmas and Proofs for Chapter 4

Proof of Lemma 4 (p. 109). First, suppose =?¢. Then,pos(P) = 0 (p. 96), and there is exactly
one tupleP, €,0,0) € A. Since no literal is added to the belief base upon the exatuati P, and
0 is a valid set of must literals (Definition 12), the theorenfdso

Next, supposé = +b. Let bg be any ground instance bf Then, there is exactly one tuple
(P, €, {b}, {b}) € A, and for all belief base® and action sequence’, the following two conditions
hold: (8B, A, +bg) @ (B = BU {bb), A, nil), i.e., there is a successful HTN execution+di;
and®B’ E bd. Thereforebis a must literal ofP. Similarly, since the addition of belief atoh# to

belief baseB is the only modification that can happen#oon the successful HTN execution of

195

APPENDIX A. LEMMAS AND PROOFS 196

+be, it follows that set{b} capturesP (Definition 14), and the theorem holds. The c&se —-b
can be proved analogously.

Finally, supposé® = act Letd* = @*g and letd~ = @6, whereact : y « O*; 0™ € A
andact = acté. Finally, let the set of literald ot = ®* U {=b | b € ®~}. Observe, then, that
there exists exactly one tupl®, €, Lact, Lac) € A. Letl be any literal inLae.. We will now prove
that| is a must literal ofact Since, from the definition of an action-rule (Section 3)2fBee
variables inl will also be free inact, the first condition in Definition 12 is satisfied foandP.
Next, letactt’ be any ground instanaect. Suppose there is a successful HTN executioact?
ie., that(B, 7, acty’y 3 (B = (B\ &-¢’) U &*¢, A - act’, nil) holds. Then®’ | 1¢ also
holds. Hence, the second condition of Definition 12 is satisfor| andP, andl is a must literal
of P. The fact thal ,¢; captures follows trivially from the fact that for any ground literéll such

that8’ E I’ and8B I~ I’ hold, it is also the case thHtis a ground instance of some literallig;. O

Proof of Lemma 5 (p. 109). Consider line 1 of proceduBummarise-Plan-Body. From the
assumption of the theorem (condition 2.), it is clear thatl@completion of this line, for each
event-goal programe!mentioned inP, there is exactly one tuplge, ¢e, LT, L™ € A such that
the tuple is the summary information @ andL" capturesé. Then, from the assumption of the
theorem (condition 1.), we can conclude that on the congsieif line 1, for each atomic program
P2 mentioned inP, there is exactly one tupléP?, ¢pa, L’F‘,“at, Lp) € A such that the tuple is the
summary information oP?, andL{y' capturesP?,

To prove that(P,e, L™ L™ is the summary information d®, we will first prove that each
literal in L™ (where L™ is a set of must literals oP) is a must literal ofP. Let program
P = Py1;Py;...;Pn, where each; is an atomic program. Observe from line 3 of procedure
Summarise-Plan-Body that the only literals included in the sef" of must literals ofP are the
literals that are must literalsof atomic program$; mentioned inP, wherel is not may-undone
(i.e., =May-Undone(l, Pi;1; ...; Pn, A)) in Pjy1;...;Pnh. Letl be such a literal. Next, we prove
thatl is a must literal ofP.

Let us assume the contrary, i.e., thé& not a must literal oP. Then, informally, it must be
the case that the complementlas true at the end of a successful HTN execution of program
Pii1;...; Py — in particular, the complement éfmust be true at the end of a successful HTN

execution of some atomic program mentionedPiry; . .. ; P,. Formally, observe from Definition

APPENDIX A. LEMMAS AND PROOFS 197

12 (Must Literal) that there exists an atomic progrBmentioned inP;,1;...:; P,, a ground in-
stanceP’ of P, and some successful HTN executity, Ay, P?) - ... - (Bm, Am, nil), such that
(@) By B I"; (b) B = I’; and(c) 16 = I, for some ground literal and set of substitutiong.
Let (P, &, Lg‘t, LQ”) € A. We know from before thaIL’FI,‘” capturesl5. Then, from Definition 14
(Capturing a Program), it is also the case that there is mlitec Lg‘” such that’ = {6, for
some set of substitutiorés Then, usingc) above, we can conclude that= 6. However, since
—May-Undone(l, Pi41;...; Pn,A) holds according to the algorithm, observe from the de@niti
of May-Undone (Section 4.2.3) thaly = i6 cannot hold. This contradicts our assumption, and
therefore, literal is indeed a must literal d®.

Next, we will prove that the set of mentioned liter&l$" of programP capturesP. To this
end, all we need to show is that any must or mentioned litdrah@atomic program occurring in
P that is not included i7" (line 4) is not needed fac" to captureP.

Let P; be an atomic program mentioned) with (P;, ¢;, Lfg,‘it, LE,‘P) € A, such that a must
or mentioned literal of P; is not added to the set constructed in line 4 of the algoritthat is,
Must-Undone(l, Pi,1;...; Pn, A) holds. Then, according to the definition fist-Undone (Sec-
tion 4.2.3), it is the case that= | holds, wherd ¢ LTt is a must literal of an atomic program
P mentioned inP;1; ... Py, With <|S,¢|—3, LfFI,“, LQ”} € A. Next, letPg be any ground instance of
P. Suppose a successful HTN executid@ A, Pi6) - ... - (B;, Aj, nil) of Pi6 exists, such that
B; E 16 holds. Then, sincéis a must literal of, it is the case thas;, k= i6 holds for any suc-
cessful HTN executiod8’, A’, Po) - ... - (B, Ay, nily of Po. However, sincdd = (6, literal 16
is guaranteed to be removed from the belief bas@byuring any successful HTN execution of
Po. Therefore, a set of literals that captufegloes not need to include literabf P;. (Note, how-
ever, that it is still possible that the same litdrixbm the set of must or mentioned literals of some

other atomic prograr®; (j # i) occurring inP is included in the set of literals that captufe$ O

Proof of Lemma 6 (p. 110). First, we will prove that™ is a set of must literals of. Let
R={e0:y0 < Po|€ .y« Pelle= €0, 0is arenaming substitution f& : y « P}.
Let literal | € L™, and let &9 be any ground instance of.! Suppose a successful HTN execution
of leg exists. Then, from th&eltransition rule (p. 63), there is a plan-ride ¢ «— P € Rsuch
that (B, A, ed) @ (B, A, ({vo: Po,..3)) @ (B, A, PoY > (A)) pﬂ (B, A, nily holds (up

to variable renaming of plan-libraif). Moreover, from line 11 of procedui®ummarise-Event,

APPENDIX A. LEMMAS AND PROOFS 198

all variables occurring i also occur ine. Therefore, sincéB, A, P9’ > (A)) pﬂ (B, A, nil)
holds, and sinckis a must literal o from the assumption of the theorem, it must be the case that
B’ E 16 holds, and thak is a must literal ofe. The fact that.™" capturese follows trivially from

the fact thal.™" includes all literals (up to variable renaming) in the sdtmentioned literals of
plan-bodies occurring iR, and each such set captures the corresponding plan-bodsdaay the

assumption of the theorem. m]

Proof of Lemma 7 (p. 110). LetR={€0: y0 «— PO | € : y « P Il,e= €0, 0is arenaming
substitution fore’ : y « P}. Then,¢’ =y V...V ¥y according to procedurBummarise-Event,
whereR = {e1 : y1 <« P1,...,e,: ¥y « Py}, and¢’ is some variable renaming ¢f We will now
show thaip’ is the precondition oé. Let !eg be any ground instance of,!and letB be any belief

base. Observe from Definition 11 (Precondition) that theeeh&o cases to consider.

[Case=]: SupposeB = ¢'0 holds. ThenB E 60, wherey is some disjunct off’. Let

e « P e Rbe the plan-rule correspondingio SinceB = ¢66’, we know from rule€ventand
Sel(p. 63) that the following transitions are possib{&, A, !ef) m (B, A, ({y0: Po,..) @

(B, A, PYY’ > (A)) (up to variable renaming of plan-libraiyf). Moreover, from our assumption
in Section 4.2.1 (p. 92) which states tlat y « P is safe there is a successful HTN execution
Ci-...-Cqof P¢" such thatCy|g = B. Therefore, it follows that there is also a successful HTN

executionC; - ... - C, of led such thaCl|g = 8.

[Case«<]: Suppose there is a successful HTN execun ... - C, of lef such thatCy|g = B.
Then, according to thEventandSelrules, there must exist a plan-ruide ¢ «— P € R, with 8
Y00, such that the following transitions are possibl8; A, 'ed) @ (B, A, ({y0:P0,...})) @
(B, A, P69’ > (A)) (up to variable renaming df). Therefore B ¢’ holds. O

Proof of Lemma 8 (p. 110). Termination of the loops in lines 3 and 5 followsitily from the
fact that there is a finite number of atomic programs mentianghe plan-bodyP, and from the

fact that the summary postcondition of any atomic programfigite set of elements. m]

Proof of Lemma 9 (p. 110). Termination of the loop in line 3 follows triviallyom the fact that

APPENDIX A. LEMMAS AND PROOFS 199

there is a finite number of plan-rules in the plan-librakry m]

A.3 Proofs for Chapter 5

The following two definitions from (Erol et al., 1996) are dsby some of the proofs in this
section. The first definition is that of a completion of a taskwork. Intuitively, a completion of
a primitive task network is an ordering and grounding of thienjtive tasks in the task network,

such that the ordering conforms with the constraints imgasethose tasks by the network.

Definition 30. (Completion of a Task Network (Erol et al., 1996)) Let= act; - ... - act, be
a plan,Op be an operator-librarySg be the initial state, an®&; = Regact, Si_1,0p) for i €
{1,...,m} be the intermediate states, which are all defined (i.e., theonditions of eachct are
satisfied inSj_; and thus actions in the plan are executable). d.et [{(n; : act)),...,("m :
act))}, ¢] be a ground primitive task network, apde a permutation such that whenepé) = |,
act = actj. Then,o € comd, So, D), if the constraint formula of d is satisfied. The constraint

formula is evaluated as follows:
e (¢ = cj)istrue, ifc, cj are the same constant symbols;
o (N < ny)istrue ifp(i) < p(j);
e (I,n)is true ifl holds inS,j)-1;

e (m, 1) is true if| holds inS,;

(ni,1,n;) is true ifl holds for allS, p(i) < k < p(j);

first[nj, nj, .. .] evaluates tanin({p(i), o(j), .. .});

lasn;, nj, .. .] evaluates tanax{p(i), o(j), - - .});

logical connectives-, A, v are evaluated as in propositional logic.

If dis a primitive task network containing variables, then

compd, Sp, D) = {o | o € comfd’, Sg, D), d’ is a ground instance of.

If d contains compound tasks, theomgd, So, D) = 0.]

APPENDIX A. LEMMAS AND PROOFS 200

Next, we define what a HTN reduction means. Supposedhat[s, ¢] is a task network,
(n:t) € sis alabelled compound task occurringdnand thatm = (t’,d’) € Meis a method that
may be used to decomposé.e.,t andt’ unify). Then,reducdd, n, m) denotes the task network
that results from decomposing labelled task €) in task networkd using methodn. Informally,
such decomposition involves updating both thessetd, by replacing labelled task(: @) with
the tasks ird’ (by arbitrarily renaming task labels), and the constragnits sto take into account

constraints ird’.

Definition 31. (HTN Reduction (Erol et al., 1996)) Let = [{(n: t),(ny : t1),..., (Nm : tm)}, &]
be a task network containing a non-primitive tasketme= (t',[{(n] : t}),....(n :)}, ¢']) be

a method; ande be the most general unifier bandt’. Then,

reducéd, n,me) = [{(n} : t7)6,..., (N :)0, (N1 1 t1)6, ..., (Nm = tm)6}, ¢"0 A Y],

wherey is obtained frompé with the following modifications:

e replace < nj) with (last{n’, ..., n] < nj), asnj must come after every task in the decom-

position ofn;
e replace f; < n) with (n; < first[ny, ..., n(]);

e replace [, n) with (I, first[n}, ..., n]), asl must be true immediately before the first task in

the decomposition af;;

e replace §,1) with (last{n’, ..., n]. 1), asl must be true immediately after the last task in the

decomposition of;
e replace §, 1, nj) with (last[n’, ..., n 1.1, nj);
e replace §j, I, n) with (n, |, first[ny, ..., n]);

e everywhere thab appears i in afirst[] or a lastf] expression, replace it withy, ..., n.

1All variables and task labels in the method must be renamél wairiables and task labels that do not appear
anywhere else.

APPENDIX A. LEMMAS AND PROOFS 201
The set of reductions af, denoteded(d, 7, D), is defined as

redd,7,D) = {d |d ereducdd, n,mé, nis the label for a non-primitive task th andme

is a method inD for that task}

Proof of Lemma 10 (p. 144). First we will prove that the induced decompositicee 7, of

A is a decomposition tree af relative toD. To this end, we will show that all conditions of
Definition 23 (Decomposition Tree) are met for trég = (V, E, {v). Since task labels occurring
in d; are unique, and since according to conditfdy{b) of Definition 22 (Decomposition Trace),
for eachi € {1,...,n - 1}, no task label occurring ig,1 \ § (with d;,di;1 € 4, d =[S, ¢i] and
diz1 = [S+1,9i+1]) also occurs ird; - ... - di, it follows that for eachif : t) € V, nis a unique task
label in the tree¢/,. Moreover, due to Definition 24 (Induced Decomposition Jreed from the
fact thata is ground, the first condition of Definition 23 holds. The set@and fourth conditions
of Definition 23 hold trivially due to Definition 24. Finallyve will show that the third condition
of Definition 23 holds.

Observe from Definition 24 that for any internal non-rootead- (n : t) € V, children(u, 7-,) =
S+1\ S, andgi1 = ¢ A ¢’ (after appropriate modifications #y, as described in Definition 31)
for some constraint formul@’, whereu € s, u ¢ s,1, andi € {1,...,n - 1}. Since task network
di.1 = reducdd;, n, m) for some task labat and methodn, it follows that there exists a task net-
work [8, ¢] € red([{(n : 1)}, trug], D) such thaish = s,1 \ § andéy(u) = ¢ = ¢’. Hence, the third
condition of Definition 23 holds, and, is indeed a decomposition tree @felative toD.

Next, we will prove the second part of the theorem —i.e., that (V', E’, &) is the induced
decomposition tree of some decomposition tracd ef by induction on the number of non-leaf
nodeskin V.

Letrt = (root : €). There are two base cases to consider. First, let uskaked. In this
case,V’ = {rt}, E' = 0, and{, = {(rt,true)}, which is the induced decomposition tree of de-
composition trace(, true]. Second, let us takk = 1. Then,V’ = {rt,(ny : t1),...,(Nm : tm)};
m> 0; E" = {(rt,(ny : t1)),...,(rt, (nm © tm))}; &, (rt) = ¢ for some constraint formula; and
&,((ni - t)) = truefor alli € {1,..., m}. Hence,7 is the induced decomposition tree of decompo-

sition trace {(ny : t1),..., ("m : tm)}, #]. Next, assume that the second part of the theorem holds if

APPENDIX A. LEMMAS AND PROOFS 202

k < x, for somex € N7. Finally, supposé& = x + 1. From the induction hypothesis, we know that
there is a decomposition tr&g,_, with k — 1 non-leaf nodes, such th@_1 is the induced de-
composition tree of some trace [¢1] - .. .- [Sj, ¢j], with j > 0, and such thal x_; is equivalent to
7~ modulo the children i~ of some leaf node ifi «_1. More specifically, according to Definition
23 there must exist a node (t) € leave$7 k_1), such that the following conditions hol) there
exists a non-empty set of ground labelled tagi#dren((n : t),7) = {(n : t1)0, ..., (Nn : tm)6};
(ii) &,((n: 1)) = ¢’6 for some constraint formulg’; and (iii) there exists a reductiors|¢’] €
red([{(n : t)}, true], D) of t wheres' = {(ny : t1),..., ("m : tm)}. Sinceleave$7 «-1) = sj according
to Definition 24, it follows that §;, ¢1] - ... - [sj,¢;] - [(sj \ {(n:)}) U S'6, q)] A ¢'d] is a decom-
position trace ofl relative toMe(Wheregb’j is obtained fromp; as in Definition 31). Finallyy is
the induced decomposition tree of this trace according finidien 24, and the second part of the

theorem holds. O

Proof of Lemma 11 (p. 147). We will prove this by induction on the lendth> 0 of the (com-
plete) decomposition track=d; - ... - dk. Let7 =V, E, &v).

[Base Casek = 1] In this casegy is a primitive task network (i.e., one that does not mention a
compound tasks). ik = [0, true], then the theorem holds trivially, @®@mgdy, 7, D) consists of
the empty plan; tre@ = ({(root : €)},0, {((root : €),true)}); and the full tree7,, wherer is the
empty plan, is executable inrelative toOp. If dx = [, ¢k], wheres, is a non-empty set, there
are two cases to consider. For casesupposect; -...-acty, € comfdy, 7, D). We will now show
that7 ; is executable i relative toOp (Definition 25), wherer = (n; : act)-...-(nhy : acty). By
taking permutatiop = 1-...-m, andr as the permutation & for Definition 30, it is not dificult to
see that constraint formudg evaluates to true according to Definition 30 if and only if thenula
evaluates to true according to Definition 26. Moreover, esiatt; - ... - act, € comfdy, 7, D),
Res(act; - ... - acty, Z, Op) also holds according to Definition 30. Therefoye, is executable in

I relative toOp. The proof for case= is similar.

[Induction Hypothesis] Assume that the theorem holdskik X, for somex € Nj.

[Inductive Step] Supposé = x+ 1. Observe from Definition 22 (Decomposition Trace) that

APPENDIX A. LEMMAS AND PROOFS 203

reducdd;, n,me (with d; = [s, ¢i] for all i € {1,...,k}) for some task labat occurring ins; and
ground methodne= (t, [Sne #md]). Moreover, observe from Definition 31 (HTN Reduction)ttha
¢2 = 97 A ¢me (Whereg] is ¢1 after appropriate modifications), and thgat= (s1 \ {(n : t)}) U Sme
Then, there are two cases to consider.

For case=, supposect; - .. .- act, € comgdk, 7, D). From the induction hypothesis, there is
a full decomposition tre@, with 7 = (n; : acty) - ... - (hy : acty), that is executable id relative
to Op, such that™” = (V’, E’, ;) is the induced decomposition treedf- . .. - di. Next, we prove
that7 ; is also executable i relative toOp, by showing that all constraint formulas of labelled
tasks in7~ are satisfied.

Letrt = (root : €). Observe from Definition 24 tha(i) V = V' U {(n : t)} (recall (: t) is
the task that was reducedji) children((n : t),7") = sme (iii) children(rt,7") = (children(rt,‘f’)\
Sme)U{(n : B)}; and that(iv) &y = (£, \{(1t, 2)}) U{(rt, ¢1). (1 : 1), éma)}. Since, from the induction
hypothesis, constraint formuld,(rt) = ¢» = ¢] A ¢me (for some formulag!) is satisfied in7;
relative toZ andOp, it follows thatéy((n : t)) = ¢meis also satisfied iff; relative toZ andOp.
Then, all we need to show is th&g(rt) = ¢, is satisfied in7; relative toZ andOp. To this end,
since constraints i represent the updated versions of thosejimue to the reduction of task
n using methodne we only need to consider the possible structuriedences between the two
formulas.

Consider the case where a constraiast{n’,...,nf] < nj) occurring in¢] has the form
(n < nj) in ¢1. According to Definition 26, I&sn;,...,n] < n;) evaluates tanaxU,e1, i
idx(n;)) < min(idx(n;)), which holds in7~; due to the induction hypothesis. From the same defi-
nition, we know thatif < n;) is evaluated amaxidx(n)) < min(idx(n;)). Since{(n; : ty),...,(n :
ti)} = children((n : t),7") according to Definition 31, it follows thatx(n) = U,e,...iy idXx(n))
holds, and therefore, that & n;) is satisfied i/, relative toZ andOp. The remaining cases —
e.g., where a constrainbj(< lasfny, ..., n{]) occurring in¢,(rt) has the formig; < n) in £y(rt)

— can be proved similarly. The proof for caseis similar to that of cases. m]

Proof of Lemma 12 (p. 159). The only lines in the algorithm that are non-tiidee lines 5 and
11. Line 5 runs in polynomial time becau®¢7 ., 7] can be computed by first finding all the 2-
permutations of set using a nestetbr loop, and then determining for each paig ¢ t1), (N, : to)

whether all leaves afi; in 7~ occur before all leaves of, in 7, with respect tar. Line 11 runs

APPENDIX A. LEMMAS AND PROOFS 204

in polynomial for the following reason. Observe from Defimit 26 that a constraint formula is
evaluated by assigning truth values to each of its indididaastraints, and then checking whether
the resulting constraint formula is satisfied, which can tweedin polynomial time. When assign-
ing truth values to constraints, the only non-trivial partn computing the state that results from
applying a labelled primitive plan’ to a statel — i.e., Res(’, 7, 0p) (see Section 2.3.1) —
which simply requires checking if the ground preconditieat (of literals) of each primitive action

in 7’ is met in some state, and then updating the state with theratldedete lists of the action.o

Appendix

Graphs and Trees

In this appendix, we define some notions to do with Graphs aedsTthat are used in Chapter 5.

We begin with the definition of a directed graph.

Definition 32. (Directed Graph) Adirected graphG is the tuple(V(G), E(G)), whereV(G) is a
set of vertices an&(G) € V(G) x V(G) is a set of edges. For any edge, (») € E(G), we callv;
the parentvertex and, thechild vertex; moreover, we say that the edge is directed frpio v,.

]
Next, we provide an overview of some of the basic terms aatextiwith directed graphs.
Definition 33. (Basic Graph Terminology) L&b = (V, E) be a directed graph.

e GraphG is cyclicif there exists a sequence of vertiagsy,-. . .-vn € V", such that:

—Vie{l,...,n=1}, (v,vi+1) € E, i.e. for each pair of adjacent vertices in the sequence,
there is an edge directed from the left vertex of the pair ¢orihht vertex of the pair;

and

— (vn,v1) € E, i.e., there is an edge directed from the last vertex in tlygiesece to the

first.
e GraphG is acyclicif it is not cyclic.

e GraphG is rootedif |{v | v e V, Yv'eV ((v',v) ¢ E)}| = 1, i.e., there is exactly one vertex
without a parent vertex. Given a rooted, directed gr@pk (V’, E’), theroot of G’, denoted

root(G’), is the vertex € V’ such that for eactheV’, (v',v) ¢ E’.

205

APPENDIX B. GRAPHS AND TREES 206

e Atreeis a rooted and acyclic directed graph. n
Next, we provide an overview of some of the basic terms aasamtiwith trees.
Definition 34. (Basic Tree Terminology) Le&b = (V, E) be a tree.

e Thechildrenof a vertexv € V in G, denotecchildren(v, G), is the setv’ | (v,v’) € E}.

e Thedescendantsf a vertexv € V in G, denoteddescendan(s, G), is defined inductively

as follows:

descendants,G) = children(v, G) U U descendants’, G).
vechildrenw,G)

e Theleavesof G, denotedeavegG), is the setfv | v € V, (v,v') ¢ E}. Moreover, thdeaves

of avertexv € V in G, denotedeavesv, G), is the setdescendan(s, G) U {v}) N leavegG).
[]

Finally, we define a vertex-labelled tree as follows.

Definition 35. (Vertex-labelled Tree) Ldty be a finite set of labels. Rertex-labelled treés the

tuple(V, E, &v), where:
e (V,E)is atree; and

e {y:V b Ly is afunction that assigns each vertex with a label — givenrtexe € V, we

say thatty (v) is thelabel of v. n

Bibliography

Agre, P. E. and Chapman, D. (1987). Pengi: an implementatientheory of activity. InPro-
ceedings of the National Conference on Artificial Intellige (AAAI-87)pages 268-272.

Ambros-Ingerson, J. (1987)PEM: Integrated Planning, Execution, and MonitoringhD thesis,

Department of Computer Science, University of Essex, U.K.

Baier, J. A., Fritz, C., and Mcllraith, S. A. (2007). Expioiy procedural domain control knowl-
edge in state-of-the-art planners.Rroceedings of the International Conference on Automated

Planning and Scheduling (ICAPS-Q0pages 26—-33.

Barringer, H., Fisher, M., Gabbay, D., Gough, G., and Oweng1989). METATEM: A frame-
work for programming in temporal logic. IREX Workshop on Stepwise Refinement of Dis-

tributed Systems: Models, Formalisms, Correctngskime 430, pages 94—129. Springer.

Benfield, S. S., Hendrickson, J., and Galanti, D. (2006). izl strong business case for multi-
agent technology. IRroceedings of the International Joint Conference on Aoileous Agents

and Multiagent Systems (AAMAS-0pages 10-15.

Blum, A. and Furst, M. (1995). Fast planning through plagrinaph analysis. IRroceedings of
the International Joint Conference on Atrtificial Intelligee (IJCAI-95) pages 1636-1642.

Bonet, B. and Gner, H. (1999). Planning as heuristic search: New resuitBrdceedings of the

European Conference on Planning (ECP-98ages 360-372.

Bordini, R. H., Bazzan, A. L. C., de O. Jannone, R., Basso, DMéari, R. M., and Lesser, V. R.
(2002). AgentSpeak(XL): ficient intention selection in BDI agents via decision-tlediortask

207

BIBLIOGRAPHY 208
scheduling. InProceedings of the International Joint Conference on Aotoous Agents and
Multiagent Systems (AAMAS-0ppges 1294-1302.

Bordini, R. H., Fisher, M., Pardavila, C., and Wooldridge, (24003). Model checking AgentS-
peak. InProceedings of the International Joint Conference on Aatoous agents and Multia-

gent Systems (AAMAS-QBnges 409-416.

Bordini, R. H. and MoreiraA. F. (2004). Proving BDI properties of agent-oriented pesgming
languagesAnnals of Mathematics and Artificial Intelligencé2(1-3):197-226.

Bordini, R. H., Wooldridge, M., and Hubner, J. F. (200Programming Multi-Agent Systems in
AgentSpeak using Jasodohn Wiley & Sons.

Botea, A., Enzenberger, M., Muller, M., and Schiae J. (2005). Macro-FF: Improving Al plan-
ning with automatically learned macro-operatot®urnal of Artificial Intelligence Research
(JAIR), 24:581-621.

Bratman, M. E. (1987a)lntention, Plans and Practical ReasoHarvard University Press.

Bratman, M. E. (1987b). What is intention? Iimentions in Communicatigmpages 15-32. MIT

Press.

Bratman, M. E., Israel, D., and Pollack, M. (1991). Plans mesburce-bounded practical reason-

ing. In Philosophy and Al: Essays at the Interfapages 1-22. MIT Press.

Brooks, R. A. (1986). A robust layered control system for abileorobot. IEEE Journal of
Robotics and AutomatiQi2(1):14-23.

Brooks, R. A. (1990). Elephants don't play cheBabotics and Autonomous Systef18—15.

Busetta, P., Ronnquist, R., Hodgson, A., and Lucas, A.9L99ACK Intelligent Agents - com-
ponents for Intelligent Agents in Java, AgentLink News kgtiAgent Oriented Software Pty.

Ltd., Melbourne, Australia.
Clark, K. L. (1978). Negation as failure. lrogic and Data Basegages 293-322.

Clarke, E. M., Grumberg, O., and Peled, D. A. (2000odel CheckingMIT Press.

BIBLIOGRAPHY 209

ClaRRen, J., Eyerich, P., Lakemeyer, G., and Nebel, B. (200@yvards an integration of Golog
and planning. InProceedings of the International Joint Conference on Ai#filntelligence

(IJCAI-07), pages 1846-1851.

Clement, B. J. and Durfee, E. H. (1999). Theory for coorditgatoncurrent hierarchical planning
agents using summary information. Rroceedings of the National Conference on Atrtificial

Intelligence (AAAI-99)pages 495-502.

Clement, B. J. and Durfee, E. H. (2000). Exploiting domainwledge with a concurrent hierar-
chical planner. IrfProceedings of the Workshop on Analysing and Exploiting &inrKnowl-

edge for HEficient Planning, Working Notepages 57—-62.

Clement, B. J., Durfee, E. H., and Barrett, A. C. (2007). Adust reasoning for planning and
coordination.Journal of Artificial Intelligence Research (JAIR28:453-515.

Cohen, P. R. and Levesque, H. J. (1990). Intention is choitea@mmitment.Artificial Intelli-

gence 42:213-261.

da Costa Mora, M., Lopes, J. G. P., Vicari, R. M., and CoelHo(1998). BDI models and
systems: Bridging the gap. Iroceedings of the International Workshop on Agent Theprie

Architectures, and Languages (ATAL-98ages 11-27. Springer.

Dastani, M. (2008). 2APL.: A practical agent programminggiaage. Autonomous Agents and
Multi-Agent Systems (JAAMAS)(3):214-248.

Dastani, M., van Riemsdijk, M. B., Dignum, F., and MeyerJJC. (2003). A programming lan-
guage for cognitive agents: Goal directed 3APLPhoceedings of the International Workshop

on Programming Multi-Agent Systems (ProMAS;@Z)ges 111-130. Springer.

De Giacomo, G. and Levesque, H. (1999). An incremental pnéger for high-level programs
with sensing. InLogical Foundation for Cognitive Agents: contributionshianor of Ray Reiter

pages 86—102. Springetr.

de Silva, L. and Dekker, A. (2007). Planning with time limitsBDI agent programming lan-
guages. IrProceedings of Computing: the Australasian Theory Sympo$CATS-07)pages
131-139.

BIBLIOGRAPHY 210

de Silva, L. and Padgham, L. (2004). A comparison of BDI basadttime reasoning and HTN

based planning. IfProceedings of the Australian Joint Conference on Artifitieelligence

(Al-04), pages 1167-1173.

de Silva, L. and Padgham, L. (2005). Planning on demand ingBtems. IrProceedings of the
International Conference on Automated Planning and Sclivegl{l CAPS-05) Poster Session

pages 37-40.

de Silva, L., Sardina, S., and Padgham, L. (2009). Firstciplies Planning in BDI systems.

In Proceedings of the International Joint Conference on Aoioous Agents and Multiagent

Systems (AAMAS-Q9ages 1105-1112.

Dekker, A. and de Silva, L. (2006). Investigating orgar@a! structures with networks of plan-
ning agents. IrProceedings of the International Conference on Intelligggents, Web Tech-

nologies and Internet Commerce (IAWTIC-0gages 25-30.

Despouys, O. and Ingrand, F. F. (1999). Propice-Plan: Tdwawamified framework for planning
and execution. IfProceedings of the European Conference on Planning (EQPg2@es 278—

293.

d’'Inverno, M., Kinny, D., Luck, M., and Wooldridge, M. (1988 A formal specification of
dMARS. InProceedings of the International Workshop on Agent Thep#echitectures, and

Languages (ATAL-98pages 155-176. Springer.

d’'Inverno, M. and Luck, M. (1998). Engineering AgentSpe&gk@ formal computational model.
Journal of Logic and ComputatiQig(3):233—-260.

Dix, J., Mufioz-Avila, H., Nau, D. S., and Zhang, L. (2003)MRACTing SHOP: Putting an

Al planner into a multi-agent environmenfinnals of Mathematics and Artificial Intelligence
37(4):381-407.
Do, M. B. and Kambhampati, S. (2001). Sapa: A domain-inddpetheuristic metric temporal

planner. InProceedings of the European Conference on Planning (EQPp@bes 109-120.

Erol, K., Hendler, J., and Nau, D. S. (1994). Semantics feradichical task-network planning.
Technical Report UMIACS-TR-94-31, Institute for Advandedmputer Studies, University of
Maryland, College Park, MD, U.S.A.

BIBLIOGRAPHY 211

Erol, K., Hendler, J. A., and Nau, D. S. (1996). Complexitguis for HTN planning.Annals of
Mathematics and Artificial Intelligencd.8(1):69-93.

Ferguson, I. A. (1992). Touring machines: Autonomous ageith attitudes.|EEE Computer
25(5):51-55.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new apprdacdhe application of theorem
proving to problem solvingAtrtificial Intelligence 2(3-4):189-208.

Fink, E. and Yang, Q. (1992). Formalizing plan justificatorin Proceedings of the Conference
of the Canadian Society for Computational Studies of ligietice (CSCSI-92pages 9-14.

Firby, R. J. (1987). An investigation into reactive plarmin complex domains. IRroceedings

of the National Conference on Artificial Intelligence (AAZM), pages 202—-206.

Firby, R. J. (1989). Adaptive Execution in Complex Dynamic WorldBhD thesis, Computer

Science Department, Yale University, U.S.A.

Fisher, M. (1994). A survey of concurrent METATEM - the laage and its applications. In
Proceedings of the International Conference on Temporgid. {CTL-94) pages 480-505.

Franklin, S. and Graesser, A. (1997). Is it an agent, or justogram?: A taxonomy for au-
tonomous agents. IAroceedings of the International Workshop on Intelligegeits Ill, Agent

Theories, Architectures, and Languages (ATAL-pdpes 21-35. Springer.

Fritz, C., Baier, J. A., and Mcllraith, S. A. (2008). ConGg|®&in Trans: Compiling ConGolog
into Basic Action Theories for planning and beyond.Pirmceedings of the International Con-

ference on Principles of Knowledge Representation and dtéag (KR-08) pages 600-610.

Gabbay, D. M., Hogger, C. J., and Robinson, J. A., editor841Handbook of Logic in Artificial

Intelligence and Logic Programmingdxford University Press.

Georgéf, M. and Ingrand, F. (1989). Decision making in an embeddegaming system. In
Proceedings of the International Joint Conference on Aitfilntelligence (IJCAI-89) pages

972-978.

Ghallab, M., Nau, D., and Traverso, P. (200Automated Planning: Theor§ Practice Morgan

Kaufmann Publishers Inc.

BIBLIOGRAPHY 212

Graham, J. R., Decker, K. S., and Mersic, M. (2003). DECAF <azilile multi agent system
architecture Autonomous Agents and Multiagent Systems (JAAMASR):7-27.

Gupta, N. and Nau, D. S. (1992). On the complexity of blockstevplanning. Artificial Intelli-
gence 56(2-3):223-254.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyet].JC. (1998). A formal embed-
ding of AgentSpeak(L) in 3APL. Iiselected papers from the Australian Joint Conference on
Artificial Intelligence pages 155-166. Springer.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyet].IC. (1999). Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems (JAANMXS):357—-401.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyet].IC. (2000). Agent programming
with declarative goals. IRroceedings of the International Workshop on Intelligegeits VII,

Agent Theories, Architectures, and Languages (ATAL{es 228-243. Springer.

Hoffmann, J. (2003). The Metric-FF planning system: Trangiatignoring delete lists” to nu-

meric state variableslournal of Artificial Intelligence Research (JAIR0:291-341.

Hoffmann, J. and Brafman, R. I. (2006). Conformant planning @aristic forward search: A

new approachArtificial Intelligence 170(6-7):507-541.

Hoffmann, J. and Edelkamp, S. (2005). The deterministic pag®#i an overviewJournal of

Artificial Intelligence Research (JAIR24(1):519-579.

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fastg#neration through heuris-
tic search.Journal of Artificial Intelligence Research (JAIRW:253-302.

Huber, M. J. (2001). JAM agents in a nutshell, version @®I9i.

http//www.marcush.ndirs/jam/jam-man-01nov01-draft.htm.

Hubner, J. F., Bordini, R. H., and Wooldridge, M. (2006).ogiamming declarative goals using
plan patterns. IfProceedings of the International Workshop on Declaratigeit Languages

and Technologies (DALT-08)ages 123—-140. Springetr.

Ingrand, F. F., Geordg M. P., and Rao, A. S. (1992). An architecture for real-timasoning and
system controllEEE Expert Magaziner7(6):33—44.

BIBLIOGRAPHY 213

Jarvis, J., Jarvis, D., and McFarlane, D. (2003). Achiesintpnic control: an incremental app-

roach.Computers in Industryb1(2):211-223.

Kaelbling, L. P. (1987). An architecture for intelligentative systems. IfProceedings of the
Workshop on Reasoning about Actions and Pl@ages 395-410. Morgan Kaufmann.

Kambhampati, S., Mali, A. D., and Srivastava, B. (1998). Hylplanning for partially hierarchi-
cal domains. IrfProceedings of the National Conference on Artificial Ingglhce (AAAI-98)

pages 882—-888.

Knoblock, C. (1995). Planning, executing, sensing, anthrepng for information gathering. In
Proceedings of the International Joint Conference on Aitfilntelligence (IJCAI-95)pages

1686-1693.

Knoblock, C., Tenenberg, J. D., and Yang, Q. (1991). Chari&ing abstraction hierarchies for
planning. InProceedings of the National Conference on Artificial Ingglhce (AAAI-91)pages

692-697.

Koehler, J., Nebel, B., Htmann, J., and Dimopoulos, Y. (1997). Extending planninglsa
to an ADL subset. IProceedings of the European Conference on Planning (EQPgiges

273-285.

Laborie, P. and Ghallab, M. (1995). Planning with sharabsource constraints. FRroceedings

of the International Joint Conference on Artificial Intgince (IJCAI-95)pages 1643-1651.

Lemai, S. and Ingrand, F. F. (2004). Interleaving tempotahping and execution in robotics
domains. IrProceedings of the National Conference on Artificial Ingglhce (AAAI-04)pages
617-622.

Lespérance, Y., Levesque, H. J., Lin, F., Marcu, D., ReRerand Scherl, R. B. (1995). Founda-
tions of a logical approach to agent programmingPtaceedings of the International Workshop
on Intelligent Agents Il, Agent Theories, Architecturas] danguages (ATAL-95pages 331—
346. Springer.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., arlieB¢cR. B. (1997). Golog: A logic

programming language for dynamic domaidsurnal of Logic Programming31(1-3):59-83.

BIBLIOGRAPHY 214

Ljungberg, M. and Lucas, A. (1992). The OASIS airfimmanagement system. Bmoceedings of
the Pacific Rim International Conference on Artificial Itigtnce (PRICAI-92)pages 15-18.

Lotem, A., Nau, D. S., and Hendler, J. (1999). Using plangraphs for solving HTN problems.
In Proceedings of the National Conference on Artificial Ingedhce (AAAI-99)pages 534-540.

Lyons, D. M., Hendriks, A., and Mehta, S. (1991). Achievimdpustness by casting planning as
adaptation of a reactive system.IEEE International Conference on Robotics and Automation

(ICRA-91) pages 198-203.

Machado, R. and Bordini, R. H. (2002). Running AgentSpegaladents on SIMAGENT. In
Revised Papers from the International Workshop on IntetligAgents VIII, Agent Theories,

Architectures, and Languages (ATAL-O@ages 158—-174. Springetr.

Maes, P. (1989). The dynamics of action selection.Ptaceedings of the International Joint

Conference on Artificial Intelligence (IJCAI-8§9ages 991-997.

Mccarthy, J. and Hayes, P. J. (1969). Some philosophicdllgmms from the standpoint of Artifi-
cial Intelligence.Machine Intelligence4:463-502.

Mcdermott, D. (1991). A reactive plan language. Technicapdtt CSD-RR-864, Computer

Science Department, Yale University, U.S.A.

Mcdermott, D. (1992). Transformational planning of reaetbehavior. Technical Report

YALEU/DCSRR-941, Computer Science Department, Yale University,Al.S

Meneguzzi, F. and Luck, M. (2007). Composing high-levelnpldor declarative agent pro-
gramming. InProceedings of the International Workshop on Declaratigert Languages

and Technologies (DALT-0,pages 69—-85. Springer.

Meneguzzi, F. and Luck, M. (2008). Leveraging new plans ir#t&peak(PL). IfProceedings
of the International Workshop on Declarative Agent Langsagnd Technologies (DALT-08)
pages 111-127. Springer.

Meneguzzi, F., Zorzo, A. F., and da Costa Méra, M. (2004aapMng mental states into propo-
sitional planning. IrProceedings of the International Joint Conference on Aoious Agents

and Multiagent Systems (AAMAS-0Ogages 1514-1515.

BIBLIOGRAPHY 215

Meneguzzi, F., Zorzo, A. F., and da Costa Méra, M. (2004bjopBsitional planning in BDI
agents. IrProceedings of the ACM Symposium on Applied Computing (BA(®ages 58—63.

Minton, S., Bresina, J., and Drummond, M. (1994). Totaleordnd partial-order planning: A

comparative analysislournal of Artificial Intelligence Research (JAIR227-262.

Moreira, A. and Bordini, R. (2002). An operational semantics for a Bigent-oriented pro-
gramming language. liProceedings of the Workshop on Logics for Agent-Based 18gste

(LABS-02) pages 45-59.

Moreira, A. F., Vieira, R., and Bordini, R. H. (2003). Extending theeomtional semantics of a
BDI agent-oriented programming language for introducipgesh-act based communication. In
Proceedings of the International Workshop on Declaratigedt Languages and Technologies

(DALT-03) pages 135-154. Springetr.

Morley, D. and Myers, K. (2004). The SPARK agent framework. Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Mdtia@ystems (AAMAS-04rages
714-721.

Muller, J. P. (1997). A cooperation model for autonomousrdg} InProceedings of the In-
ternational Workshop on Intelligent Agents Ill, Agent Ties Architectures, and Languages

(ATAL-97) pages 245-260. Springer.

Mufoz-Avila, H., Aha, D. W,, Nau, D. S., Weber, R., Bresldw, and Yaman, F. (2001). SiN:
Integrating case-based reasoning with task decompaositibRroceedings of the International

Joint Conference on Atrtificial Intelligence (IJCAI-QPages 999-1004.

Nau, D., Au, T.-C., lighami, O., Kuter, U., Mufioz-Avila, HMurdock, J. W., Wu, D., and Yaman,
F. (2005). Applications of SHOP and SHOREEE Intelligent System&0(2):34—41.

Nau, D., Cao, Y., Lotem, A., and Mufioz-Avila, H. (1999). SACSimple Hierarchical Ordered
Planner. InProceedings of the International Joint Conference on Aitfilntelligence (IJCAI-

99), pages 968—-973.

Nau, D. S. (2007). Current trends in automated plannikiglagazine 28(4):43-58.

BIBLIOGRAPHY 216

Nau, D. S., Au, T.-C., llghami, O., Kuter, U., Murdock, J. WWu, D., and Yaman, F. (2003).
SHOP2: An HTN planning systendournal of Artificial Intelligence Research (JALR20:379—
404.

Nau, D. S., Smith, S. J. J., and Erol, K. (1998). Control eggegs in HTN planning: Theory versus
practice. InProceedings of the National Conference on Artificial Ingglhce (AAAI-98)pages

1127-1133.

Nebel, B. (2000). What is the expressive power of disjurecpveconditions? liProceedings of

the European Conference on Planning (ECP;3#ges 294-307.

Nebel, B. and Koehler, J. (1995). Plan reuse versus plarrg@me A theoretical and empirical
analysis.Artificial Intelligence 76:427-454.

Paolucci, M., Kalp, D., Pannu, A., Shehory, O., and Sycarg1B99). A planning component for
RETSINA agents. IrProceedings of the International Workshop on Agent ThepAechitec-
tures, and Languages (ATAL-99ages 147-161.

Plotkin, G. D. (1981). A structural approach to operatios&inantics. Technical Report DAIMI
FN-19, Computer Science Department, University of Aarienmark.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2003). Jatleplementing a BDI-infrastructure
for JADE agentsEXP - in search of innovatiqr8(3):76—85.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out igecéd computable language. In
Proceedings of the European workshop on Modelling Autonmmfgents in a Multi-Agent
World : agents breaking away (MAAMAW-96anges 42-55. Springer.

Rao, A. S. and Geordie M. P. (1991). Modeling rational agents within a BDI-areloiture. In
Proceedings of the International Conference on Principdé&nowledge Representation and

Reasoning (KR-91pages 473—-484.

Rao, A. S. and Georgie M. P. (1992). An abstract architecture for rational ageihtsProceed-
ings of the International Conference on Principles of Knedge Representation and Reasoning

(KR-92) pages 439-449.

BIBLIOGRAPHY 217

Rao, A. S. and Georgie M. P. (1995). BDI-agents: from theory to practice.Rroceedings of the
International Conference on Multiagent Systems (ICMAB{8ages 312—-319.

Refanidis, I. and Vlahavas, I. (2002). The MO-GRT systemuttitic planning with multiple

criteria. InProceedings of the Workshop on Planning and SchedulingMutitiple Criteria.

Reiter, R. (1987). On closed world data basesRé&adings in Nonmonotonic Reasonipages

300-310. Morgan Kaufmann Publishers Inc.

Russell, S. J. and Norvig, P. (2002Artificial Intelligence: A Modern Approach (2nd Editian)

Prentice Hall.

Sardina, S., De Giacomo, G., Lespérance, Y., and Levestjuk,(2004). On the semantics of de-
liberation in IndiGolog—from theory to implementatioAnnals of Mathematics and Atrtificial

Intelligence 41(2-4):259-299.

Sardina, S., de Silva, L., and Padgham, L. (2006). Hieraatlplanning in BDI agent pro-
gramming languages: A formal approach Froceedings of the International Joint Conference

on Autonomous Agents and Multiagent Systems (A AMAS$86¢s 1001-1008.

Sardina, S. and Padgham, L. (2007). Goals in the context dfdh failure and planning.
In Proceedings of the International Joint Conference on Aotoous Agents and Multiagent

Systems (AAMAS-Qf)ages 16-23.

Sardina, S. and Padgham, L. (2010). A BDI agent progarmné@nguage with failure recov-
ery, declarative goals, and planningutonomous Agents and Multi-Agent SystemmsPress;

accepted for publication 182010.

Schoppers, M. (1987). Universal plans for reactive robotsiripredictable environments. In
Proceedings of the International Joint Conference on Aitfilntelligence (IJCAI-87)pages

1039-1046.
Shoham, Y. (1993). Agent-oriented programmitgtificial Intelligence 60(1):51-92.

Sohrabi, S., Baier, J. A., and Mcllraith, S. A. (2009). HTiphing with preferences. Proceed-

ings of the International Joint Conference on Artificialéigence (IJCAI-09)(to appear).

Spivey, J. M. (1989)The Z notation: A Reference Manu#&rentice Hall.

BIBLIOGRAPHY 218

Steels, L. (1990). Cooperation between distributed aglntsigh self-organisation. IBecen-
tralized A.l. : Proceedings of the European Workshop on MimdeAutonomous Agents in a

Multi-Agent World pages 175-196. North-Holland.

Tambe, M. and Zhang, W. (2000). Towards flexible teamwork émsistent teams: Extended

report. Autonomous Agents and Multi-Agent Syste3(®):159-183.

Thangarajah, J., Padgham, L., and WirikdV. (2003a). Detecting and avoiding interference
between goals in intelligent agents. Pmoceedings of the International Joint Conference on

Artificial Intelligence (IJCAI-03)pages 721-726.

Thangarajah, J., Padgham, L., and Witikd/1. (2003b). Detecting and exploiting positive goal
interaction in intelligent agents. IRroceedings of the International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMASpa8es 401-408.

Thiébaux, S., Hfimann, J., and Nebel, B. (2005). In defense of PDDL axioArsificial Intelli-
gence 168(1):38-69.

van Riemsdijk, B., van der Hoek, W., and Meyer, J.-J. C. (2088&ent programming in dribble:
from beliefs to goals using plans. Froceedings of the International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMA$88gs 393—-400.

van Riemsdijk, M. B., Dastani, M., and Meyer, J.-J. C. (2005Semantics of declarative goals
in agent programming. IRroceedings of the International Joint Conference on Aoitoous

Agents and Multiagent Systems (AAMAS:-papes 133-140.

Veloso, M. M., Pollack, M. E., and Cox, M. T. (1998). Ratiogdlased monitoring for planning in
dynamic environments. IRroceedings of the International Conference on Artificrdélligence

Planning Systems (AIPS-9§jages 171-180.

Wallis, P., Ronnquist, R., Jarvis, D., and Lucas, A. (2002)e automated wingman - using JACK
Intelligent Agents for unmanned autonomous vehiclesPrrceedings of the IEEE Aerospace

Conferencepages 2615-2622.

Wilkins, D. E. (1990). Can Al planners solve practical pehk? Computational Intelligenge
6(4):232-246.

BIBLIOGRAPHY 219

Wilkins, D. E. and Myers, K. L. (1995). A common knowledge megentation for plan generation

and reactive executionlournal of Logic and Computatioin(6):731-761.

Wilkins, D. E. and Myers, K. L. (1998). A multiagent plannigchitecture. InProceedings
of the International Conference on Atrtificial IntelligenBdanning Systems (AIPS-98)ages

154-162.

Wilkins, D. E., Myers, K. L., Lowrance, J. D., and Wesley, L.(P995). Planning and reacting
in uncertain and dynamic environmentdournal of Experimental and Theoretical Atrtificial

Intelligence 7(1):197-227.

Winikoft, M., Padgham, L., Harland, J., and Thangarajah, J. (2002ldbative and procedural
goals in intelligent agent systems. Pmoceedings of the International Conference on Principles

of Knowledge Representation and Reasoning (KR i)es 470-481.

Wobcke, W. (2001). An operational semantics for a PRS-lgen& architecture. IRroceedings
of the Australian Joint Conference on Artificial Intelligen(Al-01) pages 569-580.

Wooldridge, M. (2002) An Introduction to Multiagent System3ohn Wiley & Sons.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent @geffheory and practiceThe Knowl-
edge Engineering Review0:115-152.

