
PLANNING IN BDI AGENT SYSTEMS

A thesis submitted in fulfilment of the requirements for

the degree of Doctor of Philosophy

Lavindra Priyalal de Silva
B.Sc. (Hons)

School of Computer Science and Information Technology,

College of Science, Engineering and Health,

RMIT University,

Melbourne, Victoria, Australia

September 11, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/18619466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other

academic award; the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program; any editorial work, paid or

unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have

been followed.

Lavindra de Silva,

School of Computer Science and Information Technology,

RMIT University.

ii

To Valérie, for being a silent helper and a patient endurer,

for being a candle flame in dark times . . . for being there.

To my parents, for teaching me endurance, determination,

and patience, which were pivotal in reaching this milestone.

Acknowledgements

It has been a long and sometimes difficult journey, but one which has nonetheless been worthwhile

and fruitful due to the guidance and support from many. I would first like to extend my gratitude to

my primary supervisor Professor Lin Padgham, and secondarysupervisor Dr. Sebastian Sardina.

Lin’s guidance and insight has been invaluable in shaping this thesis. She has been a great mentor

ever since I was an undergraduate student, and she has constantly looked out for and set up new

opportunities for me and other students, whether it be networking, scholarships, travel funding, or

job interviews. I am deeply grateful to Sebastian for his continuous guidance, for his critical and

detailed feedback, and for always taking the time to teach. Almost everything I know today about

formal methods is because of Sebastian. I admire both Lin andSebastian for settling for nothing

less than the highest standards.

Besides my PhD supervisors, I was fortunate to have met and worked with a number of other

staff members and researchers. I am grateful to Associate Professor James Harland for supervis-

ing my project with the DSTO (Defence Science and TechnologyOrganisation), and for giving

me many opportunities to teach over the years; Associate Professor Michael Winikoff, my hon-

ours supervisor, for introducing me to research, and for hishelpful feedback during initial stages

of my PhD; Dr. Anthony Dekker, for supervising my DSTO project, and for many interesting dis-

cussions over coffee in the months that followed; Dr. Santha Sumanasekara, forthe many teaching

opportunities over the years; Beti Stojkovska, for much needed help with administrative matters

over the years; and all members of the RMIT Agents Group, for their useful feedback on early

ideas and practice presentations throughout the course of my honours and PhD degrees. In addi-

tion to staff, there were many fellow students who made my time at RMIT memorable. I would

like to thank all of them, particularly Gaya (Buddhinath), Toan, Xiang, Simon, Binh, Dhirendra,

and David, for the great many chats, and for the unnecessary coffee breaks.

vi

vii

I thank Associate Professor Gal Kaminka, Associate Professor James Thom, and the anony-

mous reviewer for their useful feedback which helped improve this thesis. I thank RMIT Univer-

sity and DSTO for the opportunity to work on the RMIT-DSTO project on planning, and RMIT

also for my honours and PhD scholarships. This thesis was partially funded by the project “Plan-

ning and Learning in BDI Agents,” which was supported by the Australian Research Council under

grant LP0560702, and Agent Oriented Software (AOS). I thankAOS for providing a free license

to use JACK for educational purposes.

From thousands of miles away, I have received much support from my relatives in Sri Lanka,

Singapore, and Mauritius. For this, I would especially liketo thank the Rodrigo family, the (Shan-

tha) de Silva family, Bernard and Nadege Raffa, and Langanee Mendis. In Australia, a handful

of friends and family have continuously reminded me that there is a world outside the sometimes

apprehensive and melancholic PhD-student-shell. I am deeply grateful to my brother Lasantha in

particular, for making life a whole lot easier through the many good times, and also to Nuwan

and Ashan for being there through some difficult times. Thanks are also due to Gwenyth, Diane,

Benoit, Dronan, Sabrina, Thomas, Umesh, Chandaka, and to the Solomons family, for their help,

friendship, and words of encouragement. Although he is no longer with us, the pioneering work

on Buddhist-Christian dialogue by my grandfather, the lateRev. Dr. Lynn de Silva, inspired me

immensely during the writing of this thesis.

Finally, but most importantly, I would like to express my heartfelt gratitude to my parents

Lahan and Peace, for giving my brother and me the freedom to pursue our interests, for their

sacrifices over decades to provide us with a good life and education, and for their patience and

constant support. Most of all, I thank them for always understanding.

Credits

During the course of this research, a number of papers were published which are based on the

work presented in this thesis. They are listed here for reference.

• de Silva, L., Sardina, S., and Padgham, L. First Principles Planning in BDI systems. In

Proceedings of the International Conference on AutonomousAgents and Multiagent Systems

(AAMAS-09), pages 1105–1112, 2009.

• de Silva, L., and Dekker, A. Planning with Time Limits in BDI Agent Programming Lan-

guages. InProceedings of Computing: the Australasian Theory Symposium (CATS-07),

pages 131–139, 2007.

• Sardina, S., de Silva, L., and Padgham, L. Hierarchical planning in BDI agent programming

languages: a formal approach. InProceedings of the International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS-06), pages 1001–1008, 2006.

• Dekker, A., and de Silva, L. Investigating organisational structures with networks of plan-

ning agents. InProceedings of the International Conference on Intelligent Agents, Web

Technologies and Internet Commerce (IAWTIC-06), pages 25–30, 2006.

• de Silva, L. and Padgham, L. Planning on demand in BDI systems. In Proceedings of

the International Conference on Automated Planning and Scheduling (ICAPS-05) Poster

Session, pages 37–40, 2005.

• de Silva, L. and Padgham, L. A comparison of BDI based real-time reasoning and HTN

based planning. InProceedings of the Australian Joint Conference on Artificial Intelligence

(AI-04), pages 1167–1173, 2004.

viii

Contents

1 Introduction 1

2 Background 7

2.1 The BDI Agent Architecture 7

2.1.1 Practical Reasoning .. 8

2.1.2 The Abstract BDI Interpreter 10

2.1.3 BDI Agent-Oriented Programming Languages 11

2.1.4 JACK Intelligent Agents .. 15

2.2 Other Agent Architectures 18

2.3 Automated Planning .. 23

2.3.1 First Principles Planning 24

2.3.2 Hierarchical Task Network Planning 36

2.4 Combining Agents and Planning 43

2.4.1 First Principles Planning in Agents 44

2.4.2 HTN Planning in Agents . 48

3 A HTN Planning Framework for BDI Systems 51

3.1 Similarities Between the BDI and HTN Approaches 54

3.2 Adding HTN Planning into the CAN BDI Language 61

3.2.1 Presentation of CAN . 61

3.2.2 Preliminary Definitions .. . 65

3.2.3 Adding HTN Planning into CAN: the Plan Construct 68

3.2.4 Properties of the Plan Construct 74

x

CONTENTS xi

4 A First Principles Planning Framework for BDI Systems 83

4.1 Hybrid Planning .. 87

4.2 Creating Abstract Planning Operators 90

4.2.1 Assumptions and Preliminary Definitions 92

4.2.2 Preconditions and Postconditions 96

4.2.3 Algorithms . 100

4.2.4 An Exploration of Soundness and Completeness 109

4.3 Finding Hybrid-Plans 114

4.4 Validating Hybrid-Plans 117

5 Obtaining a Preferred First Principles Plan 121

5.1 Preliminary Definitions 125

5.2 MNRMA Hybrid-Plans .126

5.2.1 Non-Redundancy and Minimality 128

5.2.2 Maximal-Abstractness .. 130

5.3 MNRMA Specialisations of Hybrid-Plans 135

5.4 Preferred Specialisations of Hybrid-Plans 139

5.4.1 Formalisation . 141

5.5 Computing Preferred Specialisations 154

6 Implementation 161

6.1 Comparing the Formal Languages with their Implementations 162

6.1.1 CAN vs. JACK . 163

6.1.2 HTN vs. JSHOP . 167

6.2 Integrating JSHOP into JACK 171

6.2.1 Mapping JACK to JSHOP . 171

6.2.2 Implementation Issues .. 176

6.3 Integrating Metric-FF into JACK 181

6.4 Improving and Executing Hybrid-Solutions 187

7 Discussion and Conclusion 189

CONTENTS xii

A Lemmas and Proofs 195

A.1 Proofs for Chapter 3 .. . 195

A.2 Lemmas and Proofs for Chapter 4 195

A.3 Proofs for Chapter 5 .. . 199

B Graphs and Trees 205

List of Tables

3.1 Summary of the mapping from AgentSpeak to HTN 57

4.1 Must literals and may literals of atomic programs and plan-bodies of Figure 4.4.

Note that the rightmost column only shows the may literals that are not also must

literals. Abbreviations used in the table are as follows:CA = Calibrated, HSS=

HaveSoilSample, HMC = HaveMoistureContent, HPS= HaveParticleSize, CE =

ConnectionEstablished, andRT = ResultsTransmitted. EachPi is the plan-body

corresponding to plan-ruleRi in the figure. 107

6.1 Summary of the mapping from JACK to JSHOP 177

xiii

List of Figures

2.1 A JACK plan-rule for travelling by catching a bus 18

2.2 A simplified planning graph for a Blocks World planning problem. The abbrevia-

tion “Bi” (e.g., B2) is short for “Blocki.” Nodes are labelled with either the name

of an action or a proposition. Nodes with no labels are no-op actions. Solid arrows

represent add edges and precondition edges, and dashed arrows represent delete

edges. Delete edges have been left out of the second action level for readability.

Darker nodes represent the path to a solution for goal atomOn(B3, B2). 32

2.3 A simplified representation of a HTN domainD. An arrow below a method indi-

cates that its tasks are ordered from left to right. 39

3.1 A simple Mars Rover agent. An arrow below a plan-rule indicates that its steps

are ordered from left to right. The labels adjacent to plan-rules are the resources

that they consume:nB stands forn units of battery, andnM stands forn units of

memory. 52

3.2 CAN’s complete set of rules 63

3.3 CANPlan’s complete set of rules 75

4.1 The overall framework for first principles planning in BDI systems 84

4.2 A Mars Rover agent. An arrow below a plan-rule indicates that its steps are or-

dered from left to right. .. 87

4.3 An inconsistent plan-ruleGoToWorkFridaysPlan 99

xiv

LIST OF FIGURES xv

4.4 A slightly modified and extended version of the Mars Roveragent of Figure 4.2.

This version has options for navigating and transmitting results, and if the lander

is not within range, transmitting involves navigating to the lander and uploading

results. 106

5.1 (a) A redundant hybrid-solutionh; (b) a hybrid-solutionh′ with redundancy (ac-

tions in bold) removed; and (c) the execution trace ofh. 123

5.2 A simple totally-ordered HTN domain. An arrow below a method indicates that

its steps are ordered from left to right. The table shows the preconditions and

postconditions of the actions. 128

5.3 Refinements for hybrid-solution [{(1 : t0)}, true] (left) and hybrid-solution [{(2 :

t1), (3 : t2)}, (2 ≺ 3)] (right) depicted graphically. Dashed rectangles represent

constraints on adjacent labelled tasks. 132

5.4 The decomposition tree corresponding to decompositiontrace [{(1 : t1)}, true] ·

[{(2 : t2), (3 : t3)}, true] · [{(4 : a4), (5 : a5), (3 : t3)}, (4 ≺ 5)] · [{(4 : a4), (5 :

a5), (6 : a6), (7 : a7)}, (4 ≺ 5) ∧ (6 ≺ 7)]. Dotted rectangles stand for primitive

tasks/actions, and missing constraints stand fortrue. 140

5.5 A complete decomposition treeT of task networkd = [{(1 : t1), (4 : t2), (14 :

t6)}, (1 ≺ 4) ∧ (4 ≺ 14)]. Dotted rectangles stand for primitive tasks/actions or

empty reductions (node〈(17 : ǫ)〉). 145

5.6 The decomposition tree obtained from the tree in figure 5.5 by projecting on the

cut {(1 : t1), (4 : t2)}. 149

6.1 The architecture of our combined framework 163

6.2 JACK plans for theNavigateevent-goal and its corresponding actions in the Mars

Rover agent of Figure 4.2. .165

6.5 Mapping from a JACK plan in the Mars Rover agent of Figure 4.2 to a JSHOP

method . 176

6.8 Incorporating HTN planning into the Mars Rover agent of Figure 3.1 178

6.9 The JACKPlan specification of plan-ruleR6 in the Mars Rover agent of Figure 4.2 185

List of Algorithms

2.1 BDI-Interpreter() . 10

2.2 Linear-Greedy-Justification(σ,C) . 29

2.3 Forward-Search(C) . 30

4.1 Summarise(Π,Λ) . 102

4.2 Summarise-Plan-Body(P,Π,Λ,∆in) . 103

4.3 Summarise-Event(e(~x),Π,∆) . 108

5.1 Find-Preferred-Specialisation(h,H ,T τ) . 155

xvi

Abstract

Belief-Desire-Intention (BDI) agent systems are a popularapproach to developing agents for com-

plex and dynamic environments. These agents rely on contextsensitive expansion of plans, acting

as they go, and consequently, they do not incorporate a generic mechanism to do any kind of

“ look-ahead” or offline planning. This is useful when, for instance, important resources maybe

consumed by executing steps that are not necessary for a goal; steps are not reversible and may

lead to situations in which a goal cannot be solved; and side effects of steps are undesirable if they

are not useful for a goal. In this thesis, we incorporate planning techniques into BDI systems.

First, we provide a general mechanism for performing “look-ahead” planning, using Hier-

archical Task Network (HTN) planning techniques, so that anagent may guide its selection of

plans for the purpose of avoiding negative interactions between them. Unlike past work on adding

such planning into BDI agents, which do so only at the implementation level without any precise

semantics, we provide a solid theoretical basis for such planning.

Second, we incorporate first principles planning into BDI systems, so thatnewplans may be

created for achieving goals. Unlike past work, which focuses on creating low-level plans, losing

much of the domain knowledge encoded in BDI agents, we introduce a novel technique where

plans are created by respecting and reusing the procedural domain knowledge encoded in such

agents; ourabstract plans can be executed in the standard BDI engine using this knowledge.

Furthermore, we recognise an intrinsic tension between striving for abstract plans and, at the same

time, ensuring that unnecessary actions, unrelated to the specific goal to be achieved, are avoided.

To explore this tension, we characterise the set of “ideal” abstract plans that are non-redundant

while maximally abstract, and then develop a more limited but feasible account where an abstract

plan is “specialised” into a plan that is non-redundant and as abstract as possible. We present

theoretical properties of the planning frameworks, as wellas insights into their practical utility.

xviii

Chapter 1
Introduction

Recent years have seen an increasing need for delegating to computer software the day to day tasks

of humans. Intelligent agent systems are a popular paradigmfor building software that exhibit the

degree of autonomy and intelligence required to aid humans.By virtue of being autonomous and

intelligent by default, such systems eliminate the need fordevelopers to explicitly encode these

features into their software applications. This thesis explores adding planning – a particular kind

of intelligent reasoning – to a popular and widely used classof intelligent agent systems, namely,

Belief-Desire-Intention (BDI) systems.

Autonomy is the ability of an agent to act with little or no intervention from humans. In

particular, unlike objects, which are told what to do, intelligent agents have control over their

behaviour in that they can decide for themselves whether or not it is appropriate to perform tasks

requested from them by external entities (Wooldridge, 2002, p. 25). Tasks are performed in some

environment, such as a software environment (e.g., a flight booking agent) or the real world (e.g.,

a Mars Rover robot). Intelligence arises mainly out of agents being(i) autonomous entities;(ii)

active entities, i.e., having their own threads of execution; and(iii) proactive entities, i.e., able to

initiate tasks (Wooldridge, 2002, pp. 25, 26). Adding planning to agents adds an additional aspect

of intelligence, making for more robust systems.

The BDI agent model has been claimed to provide a more than 300% improvement in effi-

ciency when developing complex software applications (Benfield et al., 2006). While an object-

oriented software application is created by the specification of classes, a BDI agent is created by

the specification of a set of “recipes,” which define how the agent should attempt to solve the

1

CHAPTER 1. INTRODUCTION 2

various tasks (e.g., “Book-Flight” or “Schedule-Meeting”) it may encounter during its lifetime. A

recipe (e.g., “Book-Emirates-Flight” or “Book-Quantas-Flight”) is a collection of steps for achiev-

ing the associated task, combined with a specification of thesituations (preconditions) under which

the recipe is applicable (e.g., there must be $2000 in the credit card). Steps within a recipe can be

basic ones which are directly executable (e.g., invoking a function to make a credit card payment),

or more abstract entities – subtasks – that are solved via other recipes. Hence, recipes can be

considered hierarchical and partially specified – their details are filled in as execution progresses.

BDI agents are flexible and robust at handling failure. In particular, if it is not possible to

solve a task using some associated recipe, an alternative recipe is tried to solve the task, failing

only if all associated recipes have failed, or if none are currently applicable. Moreover, BDI

agents are well suited for complex and dynamic environments, in particular, those associated with

applications that require real-time reasoning and control, such as Unmanned Autonomous Vehicles

(UAVs) (Wallis et al., 2002) and Air Traffic Control (Ljungberg and Lucas, 1992). This is because

BDI agents multi-task the execution of steps in the real world together with the reasoning about

how to solve tasks (e.g., which recipe to choose), thereby lowering the chances of the reasoning

being outdated due to changes in the environment by the time execution happens. They also are

often able to recover from failure when a wrong decision is taken or something changes in the

environment.

One shortcoming of BDI systems is that they do not incorporate a generic mechanism to do

any kind of look-aheador planning (i.e., hypothetical reasoning). Planning is desirable, oreven

mandatory in situations where undesired outcomes need to beavoided. In general, planning is

useful when(i) important resources may be consumed by executing steps thatare not necessary

for a task; (ii) steps are not reversible and may lead to situations from which the task can no

longer be solved;(iii) executing steps in the real world takes more time than deliberating about

the outcome of steps (in a simulated world); and(iv) steps have side effects which are undesirable

if they are not useful for the task at hand. The three main issues that we address in this thesis for

adding planning into BDI agent systems are discussed in the following three sections.

Looking ahead on existing recipes

First, we extend the BDI model so that an agent is able to reason about the consequences of

choosing one recipe for solving a task over another. Such reasoning can be useful for guiding the

CHAPTER 1. INTRODUCTION 3

selection of recipes for the purpose of avoiding negative interactions between them. For example,

consider the task of arranging a domestic holiday, which involves the subtasks of booking a (do-

mestic) flight, ground transportation (e.g., airport shuttle) to a hotel, and hotel accommodation.

Although the task of booking a flight could be solved by selecting a recipe that books the cheapest

available flight, this will turn out to be a bad choice if the cheapest flight lands at a remote airport

from where it is an expensive taxi ride to the hotel, and consequently not enough money is left

over for accommodation. A better choice would be to book an expensive flight that lands at an

airport closer to the hotel, if ground transportation is then cheap, and there is enough money left

over for booking accommodation. By reasoning about the consequences of choosing one recipe

over another, the agent could guide its execution in order toavoid selecting the recipe that books

the cheapest flight.

Look-ahead can be performed on any chosen substructures of recipes; the exact substructures

on which it should be performed is determined by the programmer at design time. Look-ahead is

not performed on all recipes by default because, although using look-ahead for guiding BDI exe-

cution is in some cases more appropriate (e.g., results in a cleaner design) than using preconditions

for guiding BDI execution, carefully specified preconditions are often adequate for this purpose.

Planning to find new recipes

The second way in which we incorporate planning into the BDI model is by allowing agents to

come up with new recipes on the fly for handling tasks. This is useful when the agent finds itself in

a situation where no recipe has been provided to solve a task,but the building blocks for solving the

task are available. To find a new recipe, we perform first principles planning, that is, we anticipate

the expected outcomes of different steps so as to organise them in a manner that solves the task at

hand. To this end, we use the agent’s existing repertoire of steps and tasks, i.e., both basic steps

(e.g., deleting a file or making a credit card payment) as wellas the more complex ones (e.g., a task

for going on holiday). In order to anticipate the outcomes oftasks, we compute automatically their

intended outcomes and the situations under which they are applicable, using the available library

of recipes. Like we do for looking ahead within existing recipes, the programmer can choose the

points from which first principles planning should be performed. In addition, such planning could

also be done automatically on, for instance, the failure of an important task.

Using tasks for first principles planning, as opposed to using only the basic steps of an agent, is

CHAPTER 1. INTRODUCTION 4

desirable for two reasons. First, tasks are abstract entities that are well equipped with alternatives

(recipes) for handling failure. Second, since a task represents a state of affairs, its associated

recipes can be thought of as capturing theuser’s intent(or the user’s preferences) on how the

associated state of affairs should be brought about. Thus, by using, instead of arbitrary basic steps,

some combination of tasks for bringing about a given state ofaffairs, we are respecting the user’s

intent on how that state should be brought about, as tasks areeventually solved via associated

recipes.

Finding desirable recipes

It is desirable to build recipes using tasks that are as abstract as possible, because such steps are

more flexible and robust to failure than those that are less abstract — a higher level of abstraction

generally entails a larger collection of alternatives to try if failure occurs. At the same time,

however, it is also important to avoid including within recipes tasks that are abstract to the extent

that they lead to a mass of unnecessary or redundant basic steps. For example, it is undesirable

to have in a newly found recipe an abstract task that involvesarranging a holiday for the purpose

of booking a flight, when only the flight booking is required. Hence, in this thesis we attempt to

find the right balance between formulating recipes that do not lead to redundant basic steps, and

keeping steps within recipes as abstract as possible.

Research questions

The research questions we address in this thesis can be summarised as follows.

1. How can we formally describe the process of looking ahead within substructures of existing

BDI recipes and guiding recipe selection?

To this end, we extend the BDI model by incorporating look-ahead capabilities. In par-

ticular, we add a look-ahead module into the BDI model, and weprovide an operational

description of the new system’s behaviour.

2. What are the algorithms and data structures for creating new recipes, not already a part

of the agent’s recipe library, on demand using the agent’s existing repertoire of basic and

complex steps? In particular, what information is needed from such steps for this purpose,

and how can this information be used to create new recipes?

CHAPTER 1. INTRODUCTION 5

To this end, we define formally what information we need to extract from the existing build-

ing blocks of an agent, and we provide algorithms for extracting this information and using

it to create new recipes.

3. What are the different formal characterisations of desirability with respect to recipes? Do

such characterisations exist that can be realised with computationally feasible algorithms?

To this end, we define various notions including that of an “ideal” recipe, which is one that

does not lead to any redundant steps but is as abstract as possible, and a computationally

feasible notion of a “preferred” recipe, for which we provide algorithms and data structures.

4. What are the theoretical properties of the formal frameworks, and how can the frameworks

be implemented? What is their practical utility?

Our frameworks have resulted in significant theoretical andpractical benefits to the BDI

model. We provide insights into the practical utility of theframeworks by, for instance,

highlighting the gaps between the frameworks and their implementations, and showing how

some of these gaps can be reduced.

Thesis outline

This thesis is organised as follows. In Chapter 2, we discussthe background material needed to

understand this thesis. In Chapter 3, we incorporate look-ahead deliberation into the BDI model.

To this end, we make use of a planning technique called Hierarchical Task Network (HTN) plan-

ning. We first compare the syntax and semantics of HTN planning with the BDI model, and then

show how HTN planning can be incorporated into the BDI model for the purpose of performing

look-ahead within BDI recipes. In Chapter 4, we incorporatefirst principles planning into the BDI

model so that new BDI recipes may be obtained. This involves defining formally what information

we need to extract from existing recipes to be able to performfirst principles planning, providing

algorithms and data structures for both automatically extracting this information as well as for

obtaining new recipes using this information, and analysing the properties of the formalisms and

algorithms. In Chapter 5, we define formally an ideal notion of desirability with respect to recipes,

and also two other less than ideal, but still desirable notions of recipes. We provide practical algo-

rithms for one of these notions, and a formal analysis of the different notions and algorithms. In

Chapter 6, we discuss the implementation of the formal frameworks and algorithms discussed in

CHAPTER 1. INTRODUCTION 6

previous chapters, and we give insights into their practical utility. Finally, in Chapter 7, we discuss

the contributions and indicate some directions for future work.

Chapter 2
Background

This chapter introduces the background material required to understand this thesis. In particular,

it introduces the BDI agent architecture, automated planning, and past work on incorporating au-

tomated planning into agent systems. We will also review thedifferent systems we have chosen to

implement the research in this thesis, namely, JACK Intelligent Agents, the JSHOP HTN planner,

and the Metric-FF first principles planner.

2.1 The BDI Agent Architecture

The BDI (Belief Desire Intention) agent architecture is oneparticular model of an intelligent agent.

Agents developed using this model are calledBDI agents. To understand what a BDI agent is, we

must first define the termagent, and moreover, the termintelligent agent.

There are various definitions of the termagent(Wooldridge and Jennings, 1995; Russell and

Norvig, 2002; Müller, 1997; Kaelbling, 1987; Franklin andGraesser, 1997). One widely accepted

definition is that suggested by Wooldridge and Jennings (Wooldridge and Jennings, 1995). Ac-

cording to them, an agent is any software system that exhibits the properties ofautonomyand

situatedness. Autonomy is the ability of the system to operate with littleor no intervention from a

human, and situatedness is the ability of the system to inhabit some environment (e.g., a physical

or software environment), and to perceive and make changes to it by respectively sensing it and

executing actions in it. Not all agents can be consideredintelligent. For an agent to be classified

as an intelligent agent, it needs to, according to Wooldridge and Jennings, exhibit three further

properties in addition to the two discussed above. These aredescribed below.

7

CHAPTER 2. BACKGROUND 8

• Reactivity. The agent should be able to respond in a timely manner to changes in the

environment.

• Proactiveness.The agent should be able to behave in a goal-directed manner.

• Social ability. The agent should be able to interact with other agents, and possibly humans.

Numerous agent architectures have been built in order to realise some of the properties at-

tributed to intelligent agents. One such architecture is the BDI architecture, which is the focus of

this thesis. The BDI architecture is based on Bratman’s philosophical theory ofpractical reason-

ing (Bratman, 1987a; Bratman et al., 1991), which we discuss next.

2.1.1 Practical Reasoning

While theoretical reasoning is focused toward what the agent believes, practical reasoning is fo-

cused toward the agent’s actions (Wooldridge, 2002, p. 66).In (Bratman, 1987b), Bratman argues

that practical reasoning can be thought of as the act of weighing multiple, conflicting considera-

tions for and against conflicting choices, in the light of what the agent believes, desires, values and

cares about (Bratman, 1987a, p. 17). More precisely, in practical reasoning, the first step, known

asdeliberation, is to decidewhat state of affairs to bring about from the (possibly conflicting)

desires of the agent, and the second step, known asmeans-ends reasoning, is to decidehow to

bring about that state of affairs (Wooldridge, 2002, p. 66). All states of affairs that the agent wants

to bring about are calleddesires, the states of affairs that the agent decides to pursue from its set

of desires are calledgoals, and the states of affairs that the agent selects and commits to from its

set of goals are calledintentions. Means-ends reasoning is concerned with the adoption of some

plan (recipe) of action in order to bring about an “intended”state of affairs.

For example, consider a person who believes that she has five dollars, and who

has the following desires: to go shopping at 1:00, to clean the house at 1:00, and

to watch TV at 1:00. After deliberation, she may come to the realisation that she

does not have enough money to go shopping, and choose the desire to watch TV

instead of the conflicting desire to clean the house. The desire to watch TV is then

an intention (and goal) of the person – it is a desire that she has decided to pursue

and committed to.

CHAPTER 2. BACKGROUND 9

Bratman identifies two important properties related to goals. First, having a goal to bring about

some state of affairs, while at the same time having the belief that this stateof affairs cannot be

achieved, is not rational (Bratman, 1987a, pp. 37, 38). However, having a goal to bring about

some state of affairs, while at the same time not having the belief that this state of affairs can be

achieved, is rational (Bratman, 1987a, p. 38). Bratman refers to the distinction between these two

properties as theasymmetry thesis.

Bratman’s theory of practical reasoning was formalised by (Cohen and Levesque, 1990) and

(Rao and Georgeff, 1991, 1995), so that the relationship between the different mentalistic notions

such as beliefs, goals, plans, and intentions may be studiedin a formal setting. Both these for-

malisations give primary importance to intentions, in particular, to the role of intentions in the

interplay between the different mentalistic notions. For example, Cohen and Levesquehighlights

the following as some of the desirable properties of intentions: (i) intentions should be maintained

for only a finite amount of time;(ii) intentions should be dropped if they are believed to be im-

possible, or believed to have been satisfied; and(iii) an agent’s actions should be influenced by its

intentions, and not go against them.

While the formalisation of Cohen and Levesque describes intentions in terms of beliefs and

goals, the work of Rao and Georgeff gives intentions the same level of importance as beliefs and

goals. This allows Rao and Georgeff to define different commitment strategies for intentions, and

to thereby model different types of BDI agents (Rao and Georgeff, 1991). In particular, they define

axioms for capturing three commitment strategies. First, underblind commitment, an intention is

maintained until the agent believes that she has achieved the intention. Second, undersingle-

minded commitment, an intention is maintained until the agent believes that she has achieved the

intention, or that it is impossible to achieve. Finally, underopen-minded commitment, an intention

is maintained as long as it is believed to be possible.

The axioms of Rao and Georgeff can be used to capture commitments toends(i.e., future states

of affairs) as well as commitments to means (i.e., plans for achieving future states of affairs). By

analysing the properties of the different axioms, Rao and Georgeff, like Cohen and Levesque,

show formally some desirable properties of rational action. For instance, an agent that is blindly

committed to an intention will eventually believe that she has achieved it. Similarly, a single-

minded agent will reach the same conclusion only if she continues to believe, until the point at

which she believes she has achieved the intention, that the intention is achievable. Finally, an open-

CHAPTER 2. BACKGROUND 10

Algorithm 2.1 BDI-Interpreter()

1: Initialise-State()
2: while true do
3: options⇐ Option-Generator(event queue, B,G, I)
4: selectedoptions⇐ Deliberate(options, B,G, I)
5: Update-Intentions(selectedoptions, I)
6: Execute(I)
7: Get-New-External-Events()
8: Drop-Successful-Attitudes(B,G, I)
9: Drop-Impossible-Attitudes(B,G, I)

10: end while

minded agent will eventually believe that she has achieved an intention, provided she maintains

it as a goal (and continues to believe it is achievable) untilthe intention is believed to have been

achieved.

2.1.2 The Abstract BDI Interpreter

While the formalisations of Bratman’s theory of practical reasoning by Cohen and Levesque and

Rao and Georgeff are elegant and have a clear semantics, they are not efficiently computable, and

are therefore unsuitable for building practical BDI implementations (Rao and Georgeff, 1995). To

address this, an abstract BDI architecture is proposed in (Rao and Georgeff, 1995, 1992), by mak-

ing certain simplifying assumptions about the theoreticalframework, and by modelling beliefs,

goals and intentions as data structures (e.g., beliefs as database-like knowledge). The abstract ar-

chitecture is shown in Algorithm 2.1. Note that variablesevent queue, B, G and I are all global

variables.

The cycle begins with the agent checking its event queue to determine whether there are any

pending external event-goals (percepts) from the environment, and generating a set of options

(plans) to achieve these event-goals (line 3). From all available plans, the agent then selects a sub-

set to be adopted, and stores these inselectedoptions(line 4). These are then added to the agent’s

set ofintentions(line 5), where an intention is a plan that the agent has instantiated and commit-

ted to in order to achieve some event-goal. Next, the agent executes a step within any intention

in I , which may involve updating the event queue with new internal event-goals (non-primitive

actions), or executing a primitive action in the environment (line 6). Finally, any new pending

external event-goals are added into the event queue (line 7), and all successful event-goals and

CHAPTER 2. BACKGROUND 11

intentions, as well as impossible event-goals and intentions, are removed from the corresponding

structures.

This abstract interpreter explores the BDI architecture from more of a practical perspective

than the theoretical frameworks discussed earlier. However, because the abstract interpreter leaves

out certain details, such as those for the option generator,it is too difficult to investigate the in-

terpreter’s theoretical properties and to compare these with the theoretical frameworks discussed.

Consequently, the AgentSpeak(L) (Rao, 1996) framework wasproposed, which is an operational

semantics formalisation (Plotkin, 1981) based on two popular implemented BDI systems called

PRS (Procedural Reasoning System) (Georgeff and Ingrand, 1989) and dMARS (d’Inverno et al.,

1998).

2.1.3 BDI Agent-Oriented Programming Languages

AgentSpeak(L) belongs to a class of formal languages calledBDI agent-oriented programming

languages. In this section, we will give an overview of the operational semantics of some of

the popular BDI agent-oriented programming languages, namely, AgentSpeak(L) and its vari-

ants, 3APL (Hindriks et al., 1999), 2APL (Dastani, 2008), GOAL (Hindriks et al., 2000), CAN

(Winikoff et al., 2002), and the operational semantics of Wobcke (Wobcke, 2001). Unless other-

wise stated, all these approaches use Plotkin’s structuralsingle-step operational semantics (Plotkin,

1981).

AgentSpeak

An AgentSpeak(L) agent is created by the specification of a set of base beliefs, representing what

the agent believes, and a set of plan-rules called theplan-library. The set of base beliefs are en-

coded as a set of ground atoms. A plan-rule is associated withan event-goal (called anachievement

goal in AgentSpeak(L)) and contains procedural information on how to handle the corresponding

event-goal. This information is made up of entities such as primitive actions, which can be directly

executed in the environment, and internal event-goals (non-primitive actions), which require fur-

ther refinement before their corresponding primitive actions can be executed. The plan-rule can

only be used to solve its associated event-goal if the plan-rule’s context conditionis met in the

current set of base beliefs, in which case the body of the plan-rule is adopted as an intention. This

either amounts to instantiating and adding the body to a set of currently executing intentions (if

CHAPTER 2. BACKGROUND 12

the event-goal is external), or updating an existing intention in the set with the new one (if the

event-goal is internal).

More formally, an AgentSpeak(L) plan-rule is of the form+!g : ψ← P1; . . . ; Pn, where:+!g,

called thetriggering event, indicates that event-goal !g is handled by the plan-rule;ψ is the context

condition; and eachPi is either(i) an operation+b or −b for respectively adding belief atomb to

the agent’s set of base beliefs, or for removingb from the agent’s set of base beliefs,(ii) a primitive

actionact corresponding to any arbitrary operation,(iii) an event-goal !g′, or (iv) a test goal ?g′,

which is used to test whether atomg′ holds in the current set of base beliefs.

Because of errors and omissions in the semantics of AgentSpeak(L), many further BDI agent-

oriented programming languages were developed, such as (Moreira and Bordini, 2002; d’Inverno

and Luck, 1998; Moreira et al., 2003; Bordini et al., 2002; Hindriks et al., 1999; Winikoff et al.,

2002; Wobcke, 2001). These either extend AgentSpeak(L), improve it, or are influenced by it

in some way. In (d’Inverno and Luck, 1998), a complete syntaxand semantics is given for

AgentSpeak(L) using the Z specification language (Spivey, 1989). Z is chosen to make more

explicit how one could implement AgentSpeak(L) — e.g., to shed some light on the kinds of data

structures that could be used to represent an agent’s plan-rules. In addition, the authors also iden-

tify and address certain mistakes in AgentSpeak(L) and details that were left out, such as a mistake

regarding the situations under which the set of intentions can be executed, and details regarding

how variables should be bound during execution.

While Z is useful as a specification language that sheds some light onimplementation specific

details, it is not well suited as a language for proving properties of agent systems (Moreira and

Bordini, 2002). For this purpose, a complete operational semantics is proposed for AgentSpeak(L)

in (Moreira and Bordini, 2002). This semantics incorporates certain features that were left out

in AgentSpeak(L), such as semantics for how to execute belief operations+b and−b. Further

work on AgentSpeak(L) is done in (Hübner et al., 2006), where, like (Winikoff et al., 2002) had

done with the CAN language, the authors extend AgentSpeak(L) with the ability to handle failure

(i.e., the ability to try alternative plan-rules to achievean event-goal on the failure of its other

plan-rules) anddeclarative goals, which capture more closely some of the desirable properties

of goals put forth by Bratman, such as the requirement for goals to bepersistent, possibleand

unachieved. Failure handling is incorporated into AgentSpeak(L) via the triggering event-goal

−!g, which the programmer can use to specify an alternative plan-rule for handling event-goal !g

CHAPTER 2. BACKGROUND 13

if a standard plan-rule for handling it has failed; such failure handling plan-rules are of the form

−!g : ψ ← P1; . . . ; Pn. Declarative goals are added to AgentSpeak(L) without modifying the

syntax or semantics of AgentSpeak(L). Instead, the authorsidentify differentpatternsfor plan-

rules. These patterns are used by the programmer to encode different types of declarative goals.

In (Bordini and Moreira, 2004), the authors prove that the revised version of AgentSpeak(L)

proposed in (Moreira and Bordini, 2002) conforms to Bratman’s asymmetry thesisdiscussed ear-

lier (recall that this basically required goals to be consistent with beliefs). Finally, in (Bordini

et al., 2003), the authors introduce a restricted version ofAgentSpeak(L) — called AgentSpeak(F)

— and show how one can perform model checking (Clarke et al., 2000) on AgentSpeak(F). In

particular, the authors show how guarantees can be obtainedfor the behaviour of AgentSpeak(F)

agents, with respect to specifications expressed as logicalformulae.

For example, it could be determined whether a meeting scheduler agent written in

AgentSpeak(F), when given as input some personP and her available time slots

for the week, is guaranteed to eventually either schedule the meeting for the per-

son and notify her of success, or notify her of the failure to schedule the meet-

ing. More specifically, it could be determined whether condition (Scheduled(P) ∧

NotifiedOfSuccess(P))∨NotifyFailure(P) holds at the end of all possible executions

of the agent.

3APL and 2APL

Another popular BDI agent-oriented programming language is 3APL (Hindriks et al., 1999). Like

extended versions of AgentSpeak(L), 3APL also gives a cleanand complete account of the op-

erational semantics of a BDI agent-oriented programming language. In (Hindriks et al., 1998),

the authors show that 3APL is more expressive than AgentSpeak(L), i.e., that any AgentSpeak(L)

agent can be simulated by a corresponding 3APL agent, but that the converse does not hold. In

addition to capturing the functionality of AgentSpeak(L),3APL allows basic failure handling.

Specifically, failure plan-rules (calledfailure rules in 3APL) can be written to handle failure,

which have higher priority than standard plan-rules that handle event-goals. If both a failure plan-

rule and a standard plan-rule are applicable in some situation, the failure plan-rule is tried instead

of the standard plan-rule. 3APL also allows the specification of plan-rules which can be used

to revise and monitor the agent’s existing intentions. For example, a plan-rule can be specified

CHAPTER 2. BACKGROUND 14

which replaces all steps within a currently executing intention with the empty plan-body; such

plan-rules can be used to drop existing intentions, which isa feature hinted by, but not addressed

in AgentSpeak(L). In (van Riemsdijk et al., 2003; Dastani etal., 2003; van Riemsdijk et al., 2005),

the authors extend 3APL to handle declarative goals.

2APL (Dastani, 2008) extends 3APL for implementing multi-agent systems. To this end,

2APL includes many new programming constructs, e.g., for implementing external actions and

communication actions. Moreover, the semantics of failurerules is different in 2APL in that

2APL failure rules can be applied to revise only failed plan-rules, whereas in 3APL, failure rules

can be used to revise any arbitrary plan-rule.

GOAL

While AgentSpeak and 3APL agents do not by default have declarative goals, the main feature of

GOAL (Hindriks et al., 2000) agents is that they include declarative goals as part of the language,

in the sense that goals describe a state that the agent desires to reach, rather than a task that needs

to be performed. Moreover, while AgentSpeak and 3APL agentsselect predefined plans from a

library, GOAL agents only select individual actions from a library. Like other agent-programming

languages, actions are selected based on the agent’s current mental state. A GOAL agent, then, is

the triple 〈Π, σ0, γ0〉, whereΠ is a set of actions,σ0 is a set of initial beliefs, andγ0 is a set of

initial (declarative) goals.

In addition to declarative goals, another key feature in thesemantics of GOAL is the inclusion

of a default commitment strategy (see Section 2.1.1), namely, the blind commitment strategy.

Hence, a GOAL agent drops a goal if and only if it believes thatthe goal has been achieved. The

programmer has the flexibility to use a different strategy if desired.

Operational semantics of Wobcke

In (Wobcke, 2001), Wobcke provides an operational semantics for PRS-like BDI agents, by for-

malising the abstract BDI interpreter (Algorithm 2.1), rather than an implemented BDI system as

done in AgentSpeak(L). The motivation for starting from theinterpreter is to keep the seman-

tics as close as possible to the cognitive descriptions of BDI agents in terms of concepts such as

beliefs, desires, and goals. The operational semantics of (Wobcke, 2001) allows for convenient

constructs within plan-rules such asif statements andwhile loops, and moreover, the semantics

CHAPTER 2. BACKGROUND 15

makes more explicit the steps of the abstract interpreter. For example, theDeliberate function in

line 4 of Algorithm 2.1 is defined as a function that returns anarbitrary plan-rule from those that

have the highest priority amongst those inoptions, and theExecute function in line 6 is defined as

one that executes one step of an intention and returns the remaining intention along with the state

(beliefs) resulting from the execution. The semantics presented also allows basic failure handling,

by forcing a failed action to be retried repeatedly until it succeeds.

CAN

In (Winikoff et al., 2002), the CAN (Conceptual Agent Notation) BDI agent-oriented programming

language is introduced. CAN can be thought of as a superset ofAgentSpeak(L), providing addi-

tional features such as failure handling and declarative goals. To accommodate declarative goals,

the plan language of CAN includes the constructGoal(φs,P, φ f), which, intuitively, states that

(declarative) goalφs should be achieved using (procedural) plan-bodyP, failing if φ f becomes

true. The operational semantics provided in (Winikoff et al., 2002) for goal-programs captures

some of the desired properties of goals mentioned before, such as persistent, possible and un-

achieved. For example, if the programP within goal-programGoal(φs,P, φ f) has completed

execution, but conditionφs is still not true, thenP will be re-tried; moreover, ifφs becomes

true during the execution ofP, the goal-program will succeed immediately. While in variants of

AgentSpeak(L) and in different versions of 3APL failure has to be explicitly programmed by the

user via, respectively, the use of the triggering event-goal −!g and failure plan-rules, CAN has

sophisticated failure handling mechanismsbuilt into the framework. This allows CAN agents to

try alternative plan-rules to solve an event-goal when steps within a plan-body fail on execution,

or when a plan-rule’s context condition is not met. Finally,unlike the operational semantics dis-

cussed so far, CAN includes semantics for concurrency, allowing steps within intentions to be

interleaved. For example, an intention to go out for a movie can be interleaved with the intention

to buy bread, by buying bread on the way to (or on the way back from) the movie, as opposed to

buying bread before leaving for the movie or after reaching home from the movie.

2.1.4 JACK Intelligent Agents

Much of the operational semantics for BDI agent-oriented programming languages such as (Rao,

1996; Winikoff et al., 2002; Wobcke, 2001; Hübner et al., 2006) were largely influenced by practi-

CHAPTER 2. BACKGROUND 16

cal BDI implementations such as PRS (Georgeff and Ingrand, 1989; Ingrand et al., 1992), dMARS

(d’Inverno et al., 1998), Jason (Bordini et al., 2007) and JACK (Busetta et al., 1999). Besides these

implementations, there are numerous other agent development platforms based on the BDI agent

architecture, such as (Machado and Bordini, 2002; Huber, 2001; Pokahr et al., 2003; Bordini et al.,

2002; Morley and Myers, 2004). From the available options, we choose JACK Intelligent Agents

(Busetta et al., 1999) to implement the algorithms proposedin this thesis.

JACK is a leading edge, commercial BDI agent development platform, used for industrial

software development (Jarvis et al., 2003; Wallis et al., 2002). It has similar core functionality to

a collection of BDI systems, originating from the PRS (Georgeff and Ingrand, 1989) and dMARS

(d’Inverno et al., 1998) systems. JACK is built on top of Java, with the following additions:(i)

constructs to support BDI concepts such as event-goals and plans-rules (called respectively events

and plans in JACK);(ii) a compiler that converts JACK syntax into standard Java code; and(iii)

a kernel to manage things such as concurrent intentions, thedefault behaviour of an agent in the

event that a failure occurs, and the default behaviour of an agent when reacting to external event-

goals. Being based on Java, JACK inherits all the advantagesof Java, such as object oriented

programming, and strong typing, which helps reduce programming errors caused by mis-typing.

A JACK agent is created by identifying its plan-rules, event-goals that are external, event-

goals that are internal (i.e., those set by the agent for itself), beliefs, and finally, the elementary

Java classes that are required to manipulate the agent’s resources. Such Java classes could, for

example, have functions for querying an external database,or for performing internal mathemat-

ical calculations. Plan-rules are similar to plan-rules inthe BDI agent-oriented programming

languages discussed so far, in that they have a context condition, and their body consists of a col-

lection of primitive and non-primitive steps. In addition,since JACK is a practical BDI system,

JACK plan-rules provide a variety of features not supportedin BDI agent-oriented programming

languages, such asmeta-plansfor dynamic, programmed choice of the most appropriate plan-rule,

andmaintenance conditionsfor ensuring that solutions pursued are aborted if the worldchanges

in unspecified ways. The beliefs of a JACK agent are expressedusing a database, which allows

complex queries to be performed, as well as the encoding ofunknownfacts (e.g., the agent may

not know what the weather is outside) in addition to facts that are eithertrue or false. Encod-

ing unknown beliefs in this way is not possible in any of the BDI agent-oriented programming

languages discussed so far because they all follow theclosed world assumption(Reiter, 1987).

CHAPTER 2. BACKGROUND 17

An example of a JACK plan-rule is shown in Figure 2.1. This plan-rule could be

one of many plan-rules used to handle an event-goal for travelling from some initial

location to a destination. The#uses datadeclarations specify which belief databases

this plan-rule accesses – each of these databases are specified in a separate JACK

file. The logical declarations are used to specify that this plan-rule uses the logical

variables calledloc, locBus, tktCost, andbalance. ThemaxWalkingDistvariable is a

standard Java integer specifying that the maximum walking distance is 500 metres.

The context condition (i.e., the code within thecontext()function) specifies that this

plan-rule is only applicable if there is a bus stop within 500metres from the agent’s

current location, and if the agent has enough money to pay forthe bus ticket. (Note

that as int() andas string() are simply used to extract respectively a Java integer

instance and Java string instance from the corresponding logical variables.) Observe

that the context condition invokes the Java functiondistance, in order to obtain the

distance between two locations (the code for this function has been omitted).

The body of the plan-rule specifies that the agent should firstwalk to the bus

stop (line 30), then buy a ticket at the bus stop (line 32), andfinally, that the agent

should catch the bus (line 36). Walking to the bus stop and catching the bus are non-

primitive steps, involving the posting of event-goalsWalk and CatchBus, respec-

tively. Buying a bus ticket, on the other hand, is a primitivestep that can be directly

executed in the world, by instantiating the standard Java classBuyBusTicketwith

appropriate arguments. Since buying a bus ticket results inthe bank balance de-

creasing (we assume that buying a ticket always succeeds), the belief regarding the

bank balance is modified in lines 33 and 34.

The JACK execution engine works in a similar way to the abstract BDI interpreter shown in

Algorithm 2.1. The JACK engine repeatedly monitors the event queue for external event-goals

from the environment, and converts event-goals into intentions, by selecting and instantiating as-

sociated plan-rules whose context conditions are met with respect to the agent’s current beliefs.

Intentions are executed by giving each of them a programmer controllable time slice. Executing a

primitive step may involve, for example, querying an external database for information, or physi-

cally moving the wheels of a robot. If an event-goal within anintention fails during execution, an

alternative plan-rule for achieving the event-goal is found (if available) and added to the intention

CHAPTER 2. BACKGROUND 18

1
2 plan CatchBusextendsPlan
3 {
4 #handles eventTravel travel;
5
6 #posts eventWalk walk;
7 #posts eventCatchBus catchBus;
8
9 #uses dataBusStopLocations busLocs;

10 #uses dataBankBalance bankBal;
11 #uses dataBusTicketPrices busPrices;
12 #uses dataCurrentLocation myLoc;
13
14 private int maxWalkingDist= 500;
15 logical string $loc, $locBus;
16 logical int $tktCost, $balance;
17
18 context()
19 {
20 myLoc.query($loc) &&
21 busLoc.query($locBus) &&
22 maxWalkingDist<= distance($loc.asstring(), $locBus.asstring()) &&
23 busPrices($loc.asstring(), $locBus.asstring(), $tktCost) &&
24 bankBal.query($balance) &&
25 $tktCost.asint() <= $balance.asint();
26 }
27
28 body()
29 {
30 @subtask(walk.post($loc.asstring(), $locBus.asstring()));
31
32 @action(new BuyBusTicket($locBus.asstring()));
33 bankBal.remove($balance.asint());
34 bankBal.add($balance.asint() − $tktCost.asint());
35
36 @subtask(catchBus.post($locBus.asstring()));
37 }
38
39 private int distance(int loc1, int loc2)
40 {
41 ...
42 }
43 }

Figure 2.1: A JACK plan-rule for travelling by catching a bus

structure. If no such alternative exists, the event-goal fails, causing the plan-rule/intention con-

taining the event-goal to also fail. This causes the agent tolook for a new plan-rule to achieve the

event-goal handled by the failed plan-rule, creating a formof “backtracking.” Such sophisticated

failure handling by “backtracking” is also captured by the CAN language discussed before.

2.2 Other Agent Architectures

There are many agent architectures besides the BDI architecture. In this section, we give an

overview of some of the well known agent architectures. In what follows, we will give examples

using the popularBlocks World(Gupta and Nau, 1992) domain. In this domain, there are blocks

CHAPTER 2. BACKGROUND 19

placed on a table with enough space to hold all the blocks, andthe arm of a robot for doing tasks

such as picking up a block from the table, stacking a block on top of another block, and placing a

block on the table.

Logic based agent architectures

Traditional agent architectures, such as Agent Oriented Programming (Shoham, 1993), ConGolog

(Lespérance et al., 1995), and Concurrent MetateM (Fisher, 1994; Barringer et al., 1989) use sym-

bolic representations and reasoning in order to define the beliefs and the behaviour of an agent. In

these architectures, an agent’s beliefs are represented aslogical formulae, and an agent’s behaviour

arises out of deductions performed on the formulae. Specifically, deductions are performed by

applying a supplied set ofdeduction rulesto the belief formulae, and these deductions lead to

predicates corresponding to executable actions.

The ConGolog (Concurrent Golog) architecture is based on the Situation Calculus (Mccarthy

and Hayes, 1969), which is an adapted version of the Predicate Calculus to cater for dynam-

ically changing worlds (Lespérance et al., 1995). In ConGolog, the world is represented as a

situation, which changes only when an agent performs an action in it. The act of perform-

ing an action in a situation is represented by the termdo(act, s), whereact is the action per-

formed on situations. For example,Open(Door1, do(open(Door1), s)) is the situation result-

ing from performing actionopen(Door1) in situations. Actions have preconditions and effects,

which are specified using axioms. For example, the precondition axiomPoss(open(Door1), s) ≡

Closed(Door1, s) states that it is only possible to openDoor1 if it is closed in situations; and effect

axiomPoss(open(Door1), s) ⊃ Open(Door1, do(open(Door1), s)) states that the effect of opening

Door1 in situations is that the door is open in the situation resulting from performing the action.

It is also possible to define complex actions in ConGolog by making use of standard programming

constructs such as procedures,if statements, andwhile loops. For example, the following could

be a complex action for the Blocks World domain:

proc unstackall

[while [(∃block1, block2) on(block1, block2)]

do unstack(block1, block2)

endWhile]

CHAPTER 2. BACKGROUND 20

endProc.

This procedure, namedunstackall, repeatedly unstacks blocks until all blocks are on the table.

Given the set of all the axiomsA of the domain, such as the precondition and effect axioms des-

cribed above, running the above ConGolog procedure amountsto theorem proving in order to

determine the following:

A |= (∃s)Do(unstackall,S0, s).

In words, running the procedure involves obtaining a binding for the situations that results from

performing procedureunstackall in the initial situationS0. For example, assuming that the

Blocks World domain has only the three blocksblock1, block2 andblock3, where initiallyblock1 is

on the table,block2 is stacked on top ofblock1, andblock3 is stacked on top ofblock2, a possible

binding for s is s = do(unstack(block2, block1), do(unstack(block3, block2),S0)). This binding

states that, first,block3 should be unstacked fromblock2, and thenblock2 should be unstacked

from block1. The sequence of actions encoded in bindings are executed in the real world.

Like ConGolog, the Concurrent MetateM architecture is a logical agent architecture based on

theorem proving, which is used for, among other things, the concise specification and prototyping

of reactive agent systems (Fisher, 1994). In this architecture, an agent is given a specification in

temporal logic capturing the behaviour that the agent should exhibit. The specification is encoded

as a set of rules of the formantecedent⇒ consequent, where the antecedent is a temporal logic

formula relating to the past, and the consequent is a temporal logic formula relating to the present

and future. Intuitively, such a rule reads: “if the antecedent holds in the past, do the consequent

in the present and/or future.” Hence, if the antecedent of a rule is met with respect to the agent’s

history, the rule can ‘fire’, causing the consequent to be executed in the world. If the consequent

allows more than one option, for example, to go by bus or to go by train, the agent performs

deductive reasoning in order to choose an option that will eventually lead to a successful execution.

Like Concurrent MetateM the Agent Oriented Programming paradigm (Shoham, 1993) uses

a temporal language for specifying agents in terms of notions such as beliefs, decisions and capa-

bilities. For example, beliefB3
aOpen(Door1)5 means that at time 3, agenta believes thatDoor1

will be open at time 5. Actions in this framework are treated as facts, and thereby considered in-

CHAPTER 2. BACKGROUND 21

stantaneous. An agent commits to actions by performing deduction on its belief base after taking

into consideration new percepts (messages) from the environment.

Although logic based agent architectures are elegant and have a clear semantics, they are not

always practical due to the complexity of theorem proving (Wooldridge, 2002, p. 54). Moreover,

such architectures do not model accurately human decision making – humans do not use purely

logical techniques when making decisions (Wooldridge, 2002, p. 65). Consequently, thepractical

reasoningmodel of agency was developed, which we discussed in Section2.1.1.

Reactive agent architectures

Although less complex than logic based agent architectures, practical reasoning still relies on

symbolic representations and reasoning. As a result, the control system of a practical reasoning

agent can still be quite complex. In order to discard the needfor symbolic reasoning altogether, an

entirely different agent architecture was proposed, called (among otherthings) thereactiveagent

architecture. This architecture does not rely on symbolic reasoning, but instead, it is based on

the idea that intelligence emerges from an agent’s interaction with its environment. Consequently,

agents are provided with simple interacting behaviours, and a mechanism for evolving intelligent

behaviour from the interaction between the simpler behaviours.

From the early reactive agent architectures such as PENGI (Agre and Chapman, 1987), the

subsumption architecture(Brooks, 1986), theagent network architecture(Maes, 1989), anduni-

versal plans(Schoppers, 1987), perhaps the most popular architecture has been the subsumption

architecture. In this architecture, agents are built in layers, with the lowest layer having the most

generic behaviours, and higher layers having more specific behaviours. For example, when build-

ing a mobile robot, the first (lowest) layer may be to avoid contact with objects; the second layer

may be to wander around without hitting any objects; the third layer may be to explore the world

by observing distant, reachable places and heading toward them; and the fourth layer may be

to build a map of the environment, and to plan routes from one place to another (Brooks, 1986).

Higher layers have lower priority than the lower layers, which allows lower layers to inhibit higher

level behaviours. More concretely, an agent constructed using the subsumption architecture has a

set of behaviours of the formcond→ act, wherecond is a set of percepts andact is an action. A

behaviourb is selected for execution if any percept in its condition is visible in the current environ-

ment, and if there is no other behaviour with higher prioritythanb. The subsumption architecture

CHAPTER 2. BACKGROUND 22

has been used successfully for building numerous robots such as Mars Rovers (Steels, 1990) and

indoor office robots (Brooks, 1990).

Like the subsumption architecture, agents are constructedin the agent network architecture

(Maes, 1989) by the specification of a set of modules with preconditions and effects. However,

unlike the subsumption architecture, in addition to the precondition of a module, there is also an

“activation level” for determining whether a module can be fired. The higher the activation level

of a module, the better are its chances of being fired. The modules are linked to each other to form

a network, by connecting together modules whose preconditions and postconditions match. Exe-

cuting a module within a network may either result in an action being executed in the world, or in

the activation level of another module being increased. Like the agent network architecture (Maes,

1989), PENGI (Agre and Chapman, 1987) also uses a network structure for generating complex

behaviours. In particular, based on the percepts fed into the network, actions are suggested by the

network. Actions in PENGI are generated by simple, low levelstructures, capturing the routine

activities of the agent.

In (Schoppers, 1987), a structure called auniversal planis built offline using the most basic

behaviours of the agent, such as stacking a block on top of another block. A universal plan is a

decision tree encoding, as options and as the root node, the predicates that the agent may come

across during execution, and as leaf level nodes, the executable actions. The actions within such a

tree are typically generic – i.e., they typically only mention variables. For example, the root node

of such a tree could beOn(block1, block2), with one option beingClear(block2), another being

¬Clear(block2), and with theClear(block2) option leading to optionHolding(block1) and then to

leaf level node (action)stack(block1, block2). The decision tree structure defines the behaviour of

the agent at runtime. Specifically, the architecture works by traversing the decision tree until an

executable action is reached. This action is then executed,and the process is repeatedly continu-

ously. Such decision trees are called “universal plans” because they are always “applicable,” i.e.,

there is always a path through a decision tree irrespective of the state of the world.

There are many advantages of reactive architectures, such as simplicity, low computational

complexity, and robustness against failure (Wooldridge, 2002, p. 96). However, these architectures

are not without their shortcomings. According to Wooldridge (Wooldridge, 2002, p. 97), some

of the shortcomings of reactive agent architectures are as follows. First, since such architectures

make decisions only based on the current state of the world, it is not clear how agents can make

CHAPTER 2. BACKGROUND 23

decisions that take into account future states. One such decision could be to travel by bus today

in order to have enough money left over to take public transport tomorrow. Second, there is

no principled approach for building reactive agents, sincesuch agents are constructed based on

experimentation. Finally, in the layered reactive architectures, where complex behaviour arises

from interactions between the behaviours of different layers, it is not always straightforward to

understand the dynamics of the interactions between these behaviours.

Hybrid agent architectures

In an effort to combine purely reactive architectures with those that use symbolic reasoning,hybrid

agent architecturesemerged. In these architectures, the lowest layer exhibitsreactive behaviour,

and higher layers exhibit more proactive behaviour. For example, in the InteRRaP (Müller, 1997)

hybrid architecture, the lowest layer contains low-level behaviours similar to those in the sub-

sumption architecture, allowing the agent to respond quickly to changes in its environment; the

intermediate layer deals with the planning of typical tasks, and has access to a hierarchical BDI-

like plan-library which allows the agent to perform more sophisticated, goal-directed reasoning

than the lowest layer; and the highest layer allows the agentto reason about and cooperate with

other agents. Percepts from the environment arrive at the lowest layer, which either handles them

or passes them on to higher layers. The higher layers may makeuse of the functionalities provided

by the lower layers in order to handle the percept. Likewise,in the TouringMachines (Ferguson,

1992) hybrid architecture, the lowest layer is composed of aset of low-level behaviours such as

obstacle avoidance, the intermediate layer captures the agent’s proactive behaviour with a BDI-

like plan-library, and the highest layer captures the agent’s social aspects, by modelling itself and

other agents, as well as detecting and avoiding conflicts between the goals of multiple agents.

2.3 Automated Planning

In Section 2.1.1, we introducedmeans-ends reasoning, that is, decidinghow to achieve a goal

of the agent. In the BDI architecture, this decision is made by the programmer — the agent is

supplied with a library of plan-rules for achieving the different goals that the agent may come

across. However, it is also possible for the agent to construct such plan-rules from scratch, when

necessary, using its primitive building blocks – actions.Automated Planningis the deliberation

CHAPTER 2. BACKGROUND 24

process that involves choosing and organising an agent’s actions, by anticipating their expected

outcomes (Ghallab et al., 2004, p. 1).

Automated planning can be broadly classified intodomain independent planning(also called

classical planningandfirst principles planning) anddomain dependentplanning. In domain inde-

pendent planning, the planner takes as input a description of the initial state of the world, models

of all the actions available to the agent, and a goal to achieve – i.e., a state of affairs. The planner

then attempts to put the actions into an order such that when they are executed in that order from

the initial state, the goal is achieved. Domain dependent planning takes as input additional domain

control knowledge specifying which actions should be selected and how they should be ordered

at different stages of the planning process. In this way, the planning process is more focused,

resulting in plans being found faster in general than first principles planning. However, using such

control knowledge also restricts the space of possible plans.

In this section, we discuss first principles planning, and one approach to domain dependent

planning calledHierarchical Task Network(HTN) planning.

2.3.1 First Principles Planning

The first classical planner was STRIPS (Fikes and Nilsson, 1971). The input for STRIPS is an

initial state and agoal state— which are both specified as sets of facts — and a set ofopera-

tors.1 An operator has apreconditionencoding the conditions under which the operator can be

used, and apostconditionencoding the outcome of applying the operator. We will now bemore

precise. Astate is a set of ground atoms, and aninitial state and agoal stateare states. An

operatoro is a 4-tuple〈name(o), pre(o), del(o), add(o)〉, where(i) name(o) = act(~x), the name of

the operator, is a symbol followed by a vector of distinct variables such that all free variables in

pre(o), del(o), andadd(o) also occur inact(~x); and (ii) pre(o), del(o) andadd(o), called respec-

tively the precondition,delete-listandadd-list, are sets of atoms. The delete-list specifies which

atoms should be removed from the state of the world when the operator is applied, and the add-list

specifies which atoms should be added to the state of the worldwhen the operator is applied. An

operator〈name(o), pre(o), del(o), add(o)〉 is sometimes, for convenience, represented as a 3-tuple

〈name(o), pre(o), post(o)〉, wherepost(o) = add(o) ∪ {¬l | l ∈ del(o)} is a set of literals that com-

bines the add-list and delete-list by treating atoms to be removed/deleted from the belief base as

1The following definitions are mainly from (Ghallab et al., 2004).

CHAPTER 2. BACKGROUND 25

negative literals. We make use of this definition extensively in Chapter 4. Finally, anaction is a

ground instance of the name of an operator, and aprimitive planσ is a sequence of actions.

Given an initial stateI, a goal stateG and a set of operatorsOp, aclassical planning problem

C is the tuple〈I,G,Op〉. The planner’s task is to find a primitive plan that achieves the goal state

G when executed from the initial stateI, with respect to the given set of operatorsOp. Such

plans are calledprimitive solutions(or correct primitive plans) for the given planning problem.

Before we define the notion of a primitive solution, we will illustrate with an example the notions

presented so far.

Suppose we have the following initial state in a Blocks Worlddomain:

{OnTable(Block1),On(Block2, Block1),Clear(Block2),ArmEmpty}.

This initial state specifies thatBlock1 is on the table,Block2 is on top of

Block1, Block2 is clear (i.e., there is no other block on top of it), and thatthe robot’s

arm is empty. An operator for picking up any blockblock1 from the table could be

the following:

〈pickup(block1),

{Clear(block1),OnTable(block1),ArmEmpty},

{OnTable(block1),ArmEmpty},

{Holding(block1)}

〉.

The operator states thatblock1 can be picked up if there are no blocks on

top of it, if it is on the table, and if the robot’s arm is empty.The delete-list specifies

thatblock1 is no longer on the table, and that the arm is no longer empty.Finally,

the add-list specifies the arm is holdingblock1.

Similarly, the followingunstack(block1, block2) operator is used for unstacking

a blockblock1 that is on top of some other blockblock2:

〈unstack(block1, block2),

CHAPTER 2. BACKGROUND 26

{On(block1, block2),Clear(block1),ArmEmpty},

{On(block1, block2),ArmEmpty},

{Holding(block1),Clear(block2)}

〉.

This operator states that to unstack a blockblock1 from some other block

block2, block1 must be on top ofblock2, block1 must be clear, and the robot’s arm

has to be empty. The delete-list specifies thatblock1 is no longer onblock2 and

that the arm is no longer empty. Finally, the add-list statesthat the arm is holding

block1 and thatblock2 is now clear. Other operators such asputdown(block1) and

stack(block1, block2) can be specified in a similar manner.

When an action is applied to a state, the atoms in its delete-list are removed from the state,

and the atoms in its add-list are added to the state. For example, the result of applying action

unstack(Block2, Block1) to state{OnTable(Block1),On(Block2, Block1),Clear(Block2),ArmEmpty}

is the state{OnTable(Block1),Clear(Block1),Clear(Block2),Holding(Block2)}. Then, formally,

given a set of operatorsOp, a stateS, and an actionact, theresultof applyingact toS relative to

Op, denotedRes(act,S,Op), is defined as follows (recallact is ground):

Res(act,S,Op) =


(S \ del(o)θ) ∪ add(o)θ if o ∈ Opandact = name(o)θ andS |= pre(o)θ;

undefined otherwise.

Similarly, we can define the result of applying a sequence of actions to a state as follows. Given

a set of operatorsOp, a stateS and a sequence of actionsact1 · . . . · actn, the result of applying

thesequenceact1 · . . . · actn to S relative toOp, denotedRes∗(act1 · . . . · actn,S,Op), is defined

inductively as follows:

Res∗(act1 · . . . · actn,S,Op) =



Res(act1,S,Op) if n = 1;

Res∗(act2 · . . . · actn,Res(act1,S,Op),Op) if n > 1;

S otherwise.

Intuitively, Res∗ states that the result of applying a sequence of actions to a stateS0 is the result

of applying the first action of the sequence toS0 to obtain stateS1, followed by the result of

CHAPTER 2. BACKGROUND 27

applying the second action of the sequence to obtain stateS2, and so on, until stateSn is obtained

by applying the last action of the sequence to stateSn−1. StateSn is called thefinal state.

Now we can define what a primitive solution is. Recall that, intuitively, a primitive solution is

a primitive plan that achieves a goal state, from an initial state, with respect to a set of operators.

Formally, aprimitive solutionfor a classical planning problemC = 〈I,G,Op〉 is a primitive plan

σ such thatRes∗(σ,I,Op) |= G, i.e., the preconditions of actions inσ are satisfied, and the final

state entails the goal state.

For example, consider the following initial state:

{OnTable(Block1),On(Block2, Block1),Clear(Block2),ArmEmpty}.

Next, consider the following goal state to swap the two blocks, i.e., to place

Block1 on to ofBlock2:

{OnTable(Block2),On(Block1, Block2),Clear(Block1),ArmEmpty}.

Then, a possible primitive solution is the following, with respect to the set of

operators mentioned so far in previous examples:

σ = unstack(Block2, Block1) · putdown(Block2) · pickup(Block1) ·

stack(Block1, Block2).

The solution states that the goal state is achieved by unstacking Block2 from

Block1, puttingBlock2 on the table, picking upBlock1, and finally, stackingBlock1

on Block2.

Non-redundant solutions

In addition to correctness, many domains require that plansadhere to certain other properties.

This is because correct plans can still have shortcomings, such asnon-minimalityandredundancy.

A primitive solution of lengthn for a classical planning problem is said to benon-minimalif a

primitive solution of length less thann exists for the problem. A primitive solution for a planning

CHAPTER 2. BACKGROUND 28

problem is said to beredundantif one or more actions can be removed from the solution and still

have a solution. Of particular relevance to this thesis is the notion of non-redundancy (also called

perfect justification). According to (Knoblock et al., 1991) and (Fink and Yang, 1992), the notion

of non-redundancy is defined as follows.

Definition 1. (Perfect Justification (Fink and Yang, 1992)) A primitive solution σ for a classical

planning problemC = 〈I,G,Op〉 is a perfect justificationfor C if there does not exist a proper

subsequenceσ′ of σ such thatσ′ is a primitive solution forC. �

For example, consider the initial state and goal state in theprevious example.

Suppose that the primitive solution for this problem is the following:

σ = unstack(Block2, Block1) · stack(Block2, Block1) · unstack(Block2, Block1) ·

putdown(Block2) · pickup(Block1) · stack(Block1, Block2).

Observe that the second and third actions – stackingBlock2 on Block1, and

then unstackingBlock2 from Block1 – are redundant actions. (Alternatively, the

first two actions can also be considered redundant.) The removal of these two

actions will not cause the resulting primitive plan to be incorrect.

Unfortunately, finding perfectly justified primitive solutions is NP-hard (Fink and Yang, 1992).

Consequently, Fink and Yang propose a greedy algorithm thatfinds an “almost” perfectly justified

primitive solution in polynomial time. An adapted version of this algorithm is shown in Algorithm

2.2. The algorithm works by determining whether an actionact in a primitive solutionσ is nec-

essary. To this end, the action is removed fromσ (line 2) to obtainσ′, and then it is determined

whether there is any other actionact′ in σ′ whose precondition is no longer satisfied as a result

of removingact from σ. If so, actionact′ is removed fromσ′ (line 8). This process continues

until all actions are removed fromσ′ whose preconditions are not satisfied as a result of removing

action act from σ. If the final value ofσ′ achieves the goal state from the initial state (i.e., it

is correct), then the initially removed actionact is considered unnecessary, and the algorithm is

called recursively with the new primitive solutionσ′. On the other hand, if the final value ofσ′ is

not correct, then the algorithm tries to remove a different action fromσ.

CHAPTER 2. BACKGROUND 29

Algorithm 2.2 Linear-Greedy-Justification(σ,C)

Input: Solutionσ for classical planning problemC = 〈I,G,Op〉.
Output: A primitive solution that is an “almost” perfect justification.

1: for eachact ∈ σ do
2: σ′ ⇐ σ with act removed
3: S ⇐ I
4: for act′ ⇐ first action inσ′ to last action inσ′ do
5: if S |= pre(o)θ, whereo ∈ Opandact′ = name(o)θ then
6: S ⇐ Res(act′,S,Op)
7: else
8: removeact′ from σ′

9: end if
10: if S |= G then
11: return Linear-Greedy-Justification(σ′,C)
12: end if
13: end for
14: end for
15: return σ

To illustrate how the algorithm works, consider the following redundant primitive

solution from the previous example.

σ = unstack(Block2, Block1) · stack(Block2, Block1) · unstack(Block2, Block1) ·

putdown(Block2) · pickup(Block1) · stack(Block1, Block2).

Suppose the algorithm removes actionstack(Block2, Block1) from σ. This

will result in the following primitive planσ′:

σ′ = unstack(Block2, Block1) · unstack(Block2, Block1) · putdown(Block2) ·

pickup(Block1) · stack(Block1, Block2).

However, the precondition of the second action inσ′ does not hold in the

state that results from applying the first action in the initial state – onceBlock2 is

unstacked, it cannot be unstacked once more. Consequently,the algorithm removes

the second action fromσ′ to obtain the following primitive plan:

CHAPTER 2. BACKGROUND 30

σ′ = unstack(Block2, Block1) · putdown(Block2) · pickup(Block1) ·

stack(Block1, Block2).

Sinceσ′ is a primitive solution for the given planning problem, the algorithm

is called recursively withσ′ as an argument. However, no more actions can be

removed fromσ′, resulting in it being returned as a greedily justified primitive

solution (which, in this example, is also a perfectly justified solution).

Algorithms for planning from first principles

So far, we have discussed different notions related to first principles planning, such as the notion

of an operator, a primitive solution, and a perfectly justified primitive solution. Next, we discuss

some of the algorithms for finding primitive solutions for a given classical planning problem.

Algorithm 2.3 Forward-Search(C)

Input: Classical planning problemC = 〈I,G,Op〉.
Output: A primitive solution forC, or failure if no such solution exists.

1: if I |= G then
2: return the empty plan
3: end if
4: applicable⇐ {name(o)θ | o ∈ Op, name(o)θ is a ground instance ofname(o),I |= pre(o)θ}
5: if applicable= ∅ then
6: return failure
7: end if
8: for eachact ∈ applicabledo
9: I′ ⇐ Res(act,I,Op)

10: σ⇐ Forward-Search(〈I′,G,Op〉)
11: if σ , failure then
12: return act · σ
13: end if
14: end for
15: return failure

The most basic planning algorithm is theforward searchalgorithm. An adapted version of

the forward search algorithm in (Ghallab et al., 2004, p. 70)is shown in Algorithm 2.3. The

input for this algorithm is a classical planning problem, and the output is a primitive solution for

the problem. First, the algorithm finds all actions that are applicable in initial stateI, and saves

these in the setapplicable(line 4). From this set, an action is picked arbitrarily, andthe result of

CHAPTER 2. BACKGROUND 31

applying this action in stateI is obtained asI′ (line 9). Next, the algorithm is recursively called

with the new stateI′. If the recursive call returns a primitive solution for problem 〈I′,G,Op〉—

i.e., the goal state is eventually reached after applying some sequence of actions toI′ (line 1) —

then the result of the forward search is attached to the end ofactionact, and the resulting plan

returned as a primitive solution forC. Otherwise, a different action is picked fromapplicableand

the process is repeated. If none of the actions inapplicablecan be used as the first action of a

sequence of actions that leads to the goal state, thenfailure is returned.

There are many state of the art planners based on forward search (e.g., (Bonet and Geffner,

1999; Hoffmann and Nebel, 2001; Refanidis and Vlahavas, 2002; Do and Kambhampati, 2001;

Hoffmann and Brafman, 2006)). Of particular relevance to our work is the FF (Hoffmann and

Nebel, 2001) planning system. The main idea behind FF is thatdelete-lists of operators inOpare

ignored. More specifically, given a planning problemC = 〈I,G,Op〉, a relaxed planning problem

C′ = 〈I,G,Op′〉 is obtained whereOp′ = {〈name(o), pre(o), ∅, add(o)〉 | o ∈ Op}. In addition,

FF, like its predecessor HSP (Bonet and Geffner, 1999), also uses an efficient heuristic function

in order to determine what the most promising actions are in the set of applicable actions (line 8

of Algorithm 2.3). The search can then be biased toward the more promising actions, allowing

solutions to be found faster in general than would be possible by selecting actions arbitrarily. The

heuristic function is based on the Graphplan algorithm (Blum and Furst, 1995), which we discuss

in detail next.

The Graphplan algorithm is based on the concept of aplanning graph. A planning graph is

a directed, levelled graph, that is, a graph in which nodes are split into levels, and an edge only

connects two nodes from adjacent levels. There are two typesof nodes:proposition nodesand

action nodes. There are three types of edges:precondition edges, add edgesanddelete edges,

representing the preconditions, add-lists and delete-lists of operators, respectively. The levels of a

planning graph alternate betweenproposition levels, i.e., those containing only proposition nodes,

andaction levels, i.e., those containing only action nodes, with the first level being a proposition

level. Any node at an action leveli in the planning graph is connected by a precondition edge to

each of the atoms in its precondition, which occur at proposition level i in the graph. Similarly,

the action node is connected by an add edge to each of the atomsin its add-list, which occur at

proposition leveli +1 in the graph. The same is true for atoms in the delete-list ofthe action node.

An example of such a planning graph for a particular planningproblem from a Blocks World

CHAPTER 2. BACKGROUND 32

domain is shown in Figure 2.2.

OnTable(B1)

OnTable(B3)

On(B2,B1)

Clear(B2)

Clear(B3)

ArmEmpty

unstack(B2,B1)

pickup(B3)

OnTable(B1)

OnTable(B3)

On(B2,B1)

Clear(B2)

Clear(B3)

ArmEmpty

Holding(B2)

Clear(B1)

Holding(B3)

unstack(B2,B1)

pickup(B3)

putdown(B2)

putdown(B3)

stack(B2,B1)

stack(B3,B2)

stack(B2,B3)

OnTable(B1)

OnTable(B3)

On(B2,B1)

Clear(B2)

Clear(B3)

ArmEmpty

Holding(B2)

Clear(B1)

Holding(B3)

OnTable(B2)

On(B3,B2)

On(B2,B3)

Proposition
level 1

Action
level 1

Proposition
level 2

Action
level 2

Proposition
level 3

Figure 2.2: A simplified planning graph for a Blocks World planning problem. The abbreviation
“ Bi” (e.g., B2) is short for “Blocki.” Nodes are labelled with either the name of an action or
a proposition. Nodes with no labels are no-op actions. Solidarrows represent add edges and
precondition edges, and dashed arrows represent delete edges. Delete edges have been left out of
the second action level for readability. Darker nodes represent the path to a solution for goal atom
On(B3, B2).

Next, we describe how a planning graph is built, and how it is used as a heuristic, given a

classical planning problem. First, all propositions (ground atoms) in the initial state are added

to the first proposition level of the (initially empty) planning graph. Second, actions are created,

with respect to the set of operatorsOp, whose preconditions are met with respect to the first

CHAPTER 2. BACKGROUND 33

proposition level. Third, all such actions are added to the first action level of the graph, and the

precondition edges corresponding to those actions are added to the graph. Any action leveli also

contains oneno-op (dummy) action for each proposition at proposition leveli. No-op actions

are simply used for “carrying forward” propositions to the next proposition level. Fourth, the

propositions in the add lists and delete lists of all actionsin the first action level are added to the

second proposition level of the graph, and the corresponding add edges and delete edges created.

This process continues until either(i) all propositions in the goal state are present in the current

proposition level, none of them are mutually exclusive (e.g., p and¬p), and a correct plan can be

extracted from the graph, or(ii) the planning graphlevels off, that is a proposition level is reached

that is identical to the previous proposition level, which indicates that no solution exists. Note that,

while a planning graph can be created in polynomial time, theextraction of a correct plan from

the graph cannot be done in polynomial time.

To determine whether a correct plan can be extracted from theplanning graph at some proposi-

tion leveln, the algorithm performs recursivebackward search. Unlike forward search, backward

search starts from the goal state and works backward toward the initial state. In Graphplan, back-

ward search is performed using the planning graph to guide the search, as follows. The search

begins from propositionsGn = G in the goal state, which occur at proposition leveln. First, the

algorithm obtains a set of actions∆n−1 occurring in action leveln − 1 that are connected by add

edges to propositions inGn. Next, the algorithm finds the corresponding set of propositionsGn−1

at proposition leveln− 1 that are connected by precondition edges to actions in∆n−1. The algor-

ithm continues in this manner until the first proposition level – the initial state – is reached. Note

that at any given action leveli, there may be many possible sets of actions∆i that could be created.

This is because a proposition in a setGi+1 could be brought about by many actions at action leveli,

and set∆i only includes one action per proposition. The algorithm also takes into account actions

that are mutually exclusive. For example, if one action requires propositionp to hold, and another

requires¬p to hold, only one of them is included in∆i . Information about mutually exclusive

actions is added to the graph when it is constructed. At any given action leveli, the algorithm may

have to try backward search with multiple values for∆i before it finds one that eventually leads to

the initial state.

To illustrate how a planning graph is built, and how backwardsearch can be

performed on such a graph, consider the planning graph in Figure 2.2. Suppose that

CHAPTER 2. BACKGROUND 34

we have the following initial state:

I = {OnTable(Block1),OnTable(Block3),On(Block2, Block1),Clear(Block2),

Clear(Block3),ArmEmpty},

and the following goal state:

G = {On(Block3, Block2)}.

To build the graph, the initial state is added as the first proposition level of

the graph, as shown in the figure. To create the first action level, all actions that

are applicable with respect to the first proposition level are obtained. These are

actionspickup(Block3) andunstack(Block2, Block1), whose preconditions are met

in the first proposition level. Next, propositions that appear in the first level (carried

forward by no-ops), as well as those that are brought about bythe two applicable

actions are added to the second proposition level. (A dashedarrow incident on a

proposition node indicates that the proposition is removedby the corresponding

action’s delete-list.) The rest of the graph is built in a similar manner.

When the third proposition level is reached, all propositions in the goal stateG –

i.e.,On(Block3, Block2) – occur at this level. Consequently, the algorithm startsthe

backward search process. The search starts from proposition On(Block3, Block2),

and then moves one step backward in the graph, finding (non-conflicting) actions

that bring about the proposition, i.e., actionstack(B3, B2). The propositions at the

second proposition level, which correspond to the preconditions of this action, are

then selected, i.e., propositionsHolding(B3) andClear(B2). At the next step, ac-

tion pickup(B3) and a no-op action are selected, since they bring about propositions

Holding(B3) andClear(B2). Finally, the search process ends when the first propo-

sition level is reached. The primitive solutionpickup(B3) · stack(B3, B2) is then

extracted from the path traversed.

In the FF planner, the Graphplan algorithm is used as a heuristic to guide forward search. In

particular, a planning graph is built for a relaxed classical planning problem by using a modified

CHAPTER 2. BACKGROUND 35

Graphplan algorithm in order to:(i) estimate the most promising actions from the set of applicable

actions (line 8 of Algorithm 2.3); and(ii) estimate the distance to the goal state from the current

state. Given a stateS at some point in the planning process, and a goal stateG, the most promising

actions are considered to be the ones that appear in the first action level of a planning graph

built for S andG, and moreover, those that are “connected” by some path to atoms inG; the

distance to the goal is the number of actions occurring in this path. Such a path is obtained

in polynomial time by basically starting from the proposition level i in the graph containing all

atoms inG, collecting actions that bring about those atoms, obtaining the preconditions of those

actions, collecting actions that bring about those preconditions, and so on, until the first action

level is reached. Note that, unlike the backward search process for extracting a correct plan from

a planning graph, finding actions in a graph that are connected to the goal state does not involve

recursion.

For example, suppose forward search begins from the planning problem

given in the previous example. Then, although actionspickup(Block3) and

unstack(Block2, Block1) will both be included in the setapplicableat line 8 of Al-

gorithm 2.3, actionunstack(B2, B1) will not be considered to be a promising action,

because in the planning graph shown in Figure 2.2, actionunstack(B2, B1) is not

connected to the goal atomOn(Block3, Block2). Moreover, the distance to the goal

at this point in the forward search is 2 – at least two actions are needed to achieve

the goal state.

The FF planning system has been used as the basis for many subsequent planners. Some

examples relevant to this thesis are (Hoffmann, 2003; Botea et al., 2005). Metric-FF is the planner

we have chosen for incorporating first principles planning into the JACK BDI agent platform. In

Metric-FF, the FF algorithm is extended to handle more expressive preconditions and effects. In

particular, numerical calculations are allowed in preconditions and effects, which are useful when

using the planner in conjunction with real world BDI applications. For example, a precondition

such as the following is possible: (and (At Robot1 loc1) (At Robot2 loc2) (< (− loc1 loc2) 10)),

which requiresRobot1 andRobot2 to be less than ten distance units apart.

In Macro-FF (Botea et al., 2005), the FF planner is extended with the ability to use macro

actions, that is, sequences of (standard) actions. Macro actions are automatically learnt from

primitive solutions for sample planning problems. These actions are then used in the planning

CHAPTER 2. BACKGROUND 36

process, by treating them as standard actions. The authors show that macro actions speed up

forward search because it is possible to select a single macro action to achieve some state (e.g., the

goal state), instead of selecting multiple standard actions to achieve the same state. Moreover, the

authors argue that macro actions are useful when performingbackward search within a planning

graph: since standard actions within a macro action are always compatible, there is no need to take

into account the possibility of those standard actions being mutually exclusive.

2.3.2 Hierarchical Task Network Planning

Unlike first principles planners, which focus on bringing about states of affairs or “goals-to-be,”

Hierarchical Task Network (HTN) planners, like BDI systems, focus on solvingabstract/com-

pound tasksor “goals-to-do.” Abstract tasks are solved by decomposing(refining) them repeat-

edly into less abstract tasks, by appealing to a given library of methods, until only primitive tasks

(actions) remain. Methods contain procedural control knowledge for constraining the exploration

required to solve abstract tasks – an abstract taskt is solved by using only the tasks specified in a

method associated witht. In this thesis, we mostly follow the definitions of HTN planning from

(Erol et al., 1996).

We will now be more precise about the notions associated withHTN planning. In the previous

section, we defined a classical planning problem as a tuple〈I,G,Op〉. A HTN planning problem

P, on the other hand, is a 3-tuple〈d,I,D〉, whered is a task network, I is an initial state, and

D is a HTNplanning domain. In turn, a HTNplanning domainD is a tuple〈Ophtn,Me〉, where

Ophtn is a set of HTN operators andMe is a set of methods. The objective of the HTN planner is

to solve task networkd by starting from stateI, and by making use of the set of methodsMe and

set of operatorsOphtn.

Intuitively, a task network is a partially ordered collection of tasks. Before we formally define

a task network, we define a (compound or primitive)taskas a syntactic construct of the formα(~t),

where~t is a vector of function-free terms. Then, atask networkis a syntactic construct of the form:

[{(n1 : α1), . . . , (nm : αm)}, φ],

where the first component is a set of labelled tasks, and the second component is atask network for-

mula— informally, a formula of constraints. Labels are used to distinguish between multiple non-

CHAPTER 2. BACKGROUND 37

unique tasks occurring in the task network. The task networkis solved by solving each task in its

first component, while conforming to the task network formula. Formally, atask network formula

is a boolean formula constructed from negation, disjunction and the following entities:(i) variable

binding constraintsof the form (t = t′), wheret andt′ are variables or constants;(ii) ordering con-

straintsof the form (n ≺ n′) with task labelsn andn′; andstate constraintsof the form (l, n), (n, l)

and (n, l, n′) with task labelsn andn′, and with literall. A variable binding constraint (t = t′) indi-

cates that variable or constantt must be equivalent to variable or constantt′, e.g., (name= John).

An ordering constraint (n ≺ n′) indicates that task with labeln should precede the task with label

n′. State constraints (l, n) and (n, l) indicate that literall should hold immediately before the task

with label n, and that literall should hold immediately after the task with labeln, respectively.

Finally, state constraint (n, l, n′) indicates that literall should hold between tasks with labelsn and

n′. Task labels can also be of the formfirst[n1, . . . , nm] and last[n1, . . . , nm], so that we can refer

respectively to the task that starts first and to the task thatends last among the set{n1, . . . , nm}.

Next, we define the structures that are used to solve tasks occurring in a task network. Prim-

itive tasks occurring in a task network are handled by operators. Like a STRIPS operator, a

HTN operatoris a syntactic construct of the form:

[operator act(~x) (pre : {l1, . . . , lm}) (post: {l′1, . . . , l′n})],

where: act(~x), a primitive task, is the name of the operator (~x is a vector of distinct variables);

l1, . . . , lm is a set of literals corresponding to the operator’s precondition; and l′1, . . . , l
′
n is a set

of literals corresponding to the operator’s postcondition. Like STRIPS operators, all variables

occurring in the precondition and postcondition of a HTN operator also occur in~x. A primitive

taskact will have exactly one corresponding operator in the setOphtn, i.e., exactly one operator in

Ophtn with a name that unifies withact. Compound tasks occurring in a task network are handled

by methods. Amethodis a syntactic construct of the form (α, d), whereα is a compound task

andd is a task network. A compound task can have more than one associated method inMe. A

method indicates that one way to solve compound taskα is to decompose it into task networkd

and to solved.

For example, consider the HTN domainD = 〈Ophtn,Me〉 illustrated graphically in

Figure 2.3. (Note that this Blocks World encoding is slightly different to that used

CHAPTER 2. BACKGROUND 38

in the previous section in that a block can be picked up from the table as well as

from on top of another block). The top-level task in this domain is the compound

taskunstack(b1, b2), which is used for moving a blockb1 that is on top of a block

b2 to the table. The set of methods in this domain isMe = {m1,m2}. Observe that

methodm1 = (unstack(b1, b2), d′), where task networkd′ is the following:

d′ = [{(n1 : pickup(b1, b2)), (n2 : putdown(b1))}, (n1 ≺ n2) ∧ φ],

and whereφ = (Clear(b1), n1) ∧ (On(b1, b2), n1) ∧ (ArmEmpty, n1). Tasks

pickup(b1, b2) and putdown(b1) are primitive tasks for, respectively, picking

up a blockb1 that is on top of a blockb2, and for placing a blockb1 that is

currently in the robot’s arm onto the table. The task networkformula of d′ states

that pickup(b1, b2) must precedeputdown(b1), and that initially (i.e., before task

pickup(b1, b2)): b1 should be clear,b1 should be on top ofb2, and that the robot’s

arm should be empty. Hence, methodm1 can move blockb1 only if there are no

other blocks onb1. Otherwise, methodm2 must be used.

Observe from the figure that methodm2 = (unstack(b1, b2), d′′), where task

networkd′′ is the following:

d′′ = [{(n1 : unstack(b3, b1)), (n2 : pickup(b1, b2)), (n3 : putdown(b1))}, (n1 ≺

n2) ∧ (n2 ≺ n3) ∧ φ′],

and whereφ′ = (On(b1, b2), n1) ∧ (On(b3, b1), n1) ∧ (ArmEmpty, n1). Ob-

serve that this task network can handle the case where there are one or more blocks

stacked on top ofb1, by first clearingb1 — i.e., recursively moving each block on

top of b1 to the table — and then movingb1 from b2 to the table.

Intuitively, given a HTN planning problemP = 〈d,I,D〉 (whereD = 〈Ophtn,Me〉), the HTN

planning process works as follows. First, an applicable reduction method (i.e., one whose precon-

dition is met in the current state) is selected fromMe and applied to some compound task ind.

This will result in a new, and typically “more primitive” task networkd′. Then, another reduction

method is applied to some task ind′, and this process is repeated until a task network is obtained

CHAPTER 2. BACKGROUND 39

unstack(b1, b2)

OR

m1ψ1

−→

pickup(b1, b2) putdown(b1)

m2ψ2

−→

unstack(b3, b1) pickup(b1, b2) putdown(b1)

ψ1 = Clear(b1)∧On(b1, b2)∧ ArmEmpty

ψ2 = On(b1, b2)∧On(b3, b1)∧ ArmEmpty

Primitive Task Precondition Postcondition
putdown(b1) Holding(b1) ¬Holding(b1)∧ ArmEmpty∧On(b1,Table)

pickup(b1, b2) On(b1, b2)∧Clear(b1)∧ ArmEmpty Holding(b1)∧ ¬ArmEmpty∧
¬On(b1, b2)∧ Clear(b2)

compound task

method

primitive task

Figure 2.3: A simplified representation of a HTN domainD. An arrow below a method indicates
that its tasks are ordered from left to right.

containing only primitive tasks (actions). At any stage during the planning process, if no appli-

cable method can be found for a compound task, the planner “backtracks” and tries an alternative

reduction for a compound task previously reduced.

To be more precise about the HTN planning process, we first define what a reduction is. Sup-

pose thatd = [s, φ] is a task network, (n : α) ∈ s is a labelled compound task occurring ind,

and thatm = (α′, d′) ∈ Me is a method that may be used to decomposeα (i.e.,α andα′ unify).

Then,reduce(d, n,m) denotes the task network that results from decomposing labelled task (n : α)

in task networkd using methodm. Informally, such decomposition involves updating both the set

s in d, by replacing labelled task (n : α) with the tasks ind′ (by arbitrarily renaming task labels),

and the constraintsφ in s to take into account constraints ind′. The set of all possible reductions

of task networkd is then defined as follows:2

red(d,D) = {d′ | d′ = reduce(d, n,m), (n : α) ∈ s,m∈ Me}.
2Note that in the original formalisation of functionred in (Erol et al., 1996), there is a third argument, namely, a

state. We have omitted this argument because it is not needed.

CHAPTER 2. BACKGROUND 40

If all compound tasks in a given initial task network can eventually be replaced by primitive

tasks via reductions, the resulting final primitive task network is used to find acompletionof the

task network, that is, an ordering and grounding of the primitive tasks in the final task network

such that the ordering conforms with the constraints imposed on those tasks by the network. More

precisely, a planσ is a completion of a primitive task networkd (i.e., one containing only primitive

tasks) at stateI, denotedσ ∈ comp(d,I,D), if σ is a total ordering of the primitive tasks in a

ground instance ofd, such thatσ is executable inI (i.e., all preconditions of actions inσ are

satisfied), andσ satisfies the constraint formula ind. We refer the reader to (Erol et al., 1996) for

more detail about reductions and completions.

Finally, by using setsred(d,D) and comp(d,I,D), one can easily define the set of plans

sol(d,I,D) that solves a HTN planning problemP = 〈d,I,D〉 assol(d,I,D) =
⋃

n<ω soln(d,I,D),

wheresoln(d,I,D) is, in turn, defined as follows:

sol1(d,I,D) = comp(d,I,D),

soln+1(d,I,D) = soln(d,I,D) ∪
⋃

d′∈red(d,I,D)

soln(d′,I,D).

Intuitively, the set of primitive plans that solves a HTN planning problem〈d,I,D〉 is the set of all

completions of all primitive task networks that can be obtained from zero or more reductions ofd.

We call such primitive plansprimitive plan solutionsto distinguish them from primitive solutions,

which achieve some goal state, and from primitive plans, which are arbitrary sequences of actions.

As one example of how the HTN planning process works, consider the HTN

domainD depicted in Figure 2.3. Suppose task networkd1 = [s1, φ1] from Figure

2.3, wheres1 = {(n : unstack(Block1, Block2))} andφ1 = true. Moreover, suppose

we have the HTN planning problemP = 〈d,I,D〉, where:

I = {On(Block2,Table),On(Block1, Block2),On(Block3, Block1),Clear(Block3),

ArmEmpty}.

Then, observe that the reduction of the labelled compound task (n :

unstack(Block1, Block2)) ∈ s1 using methodm1 — that is, reduce(d1, n,m1)

— results in the following primitive task network:

CHAPTER 2. BACKGROUND 41

d2 = [{(n1 : pickup(Block1, Block2)), (n2 : putdown(Block1))}, (n1 ≺ n2) ∧ φ2],

where φ2 = (Clear(Block1), n1) ∧ (On(Block1, Block2), n1) ∧ (ArmEmpty, n1).

However, observe that the completion ofd2 is comp(d2,I,D) = ∅, because

constraint (Clear(Block1), n1) does not hold with respect to initial stateI —

Clear(Block1) is not true inI.

Next, consider, instead, the reduction of labelled compound task

(n : unstack(Block1, Block2)) ∈ s1 using methodm2. Observe that the result

of this decomposition is the following task network:

d3 = [{(n1 : unstack(Block3, Block1)), (n2 : pickup(Block1, Block2)),

(n3 : putdown(Block1))}, (n1 ≺ n2) ∧ (n2 ≺ n3) ∧ φ3],

whereφ3 = (On(Block1, Block2), n1) ∧ (On(Block3, Block1), n1) ∧ (ArmEmpty, n1).

Since there is a compound taskunstackoccurring ind3, it needs to be reduced

further before a primitive task network can be obtained. Suppose methodm1 is

used for this reduction. The resulting primitive task network d4 is then the following:

d4 = [{(n4 : pickup(Block3, Block1)), (n5 : putdown(Block3)), (n2 :

pickup(Block1, Block2)), (n3 : putdown(Block1))}, (n4 ≺ n2) ∧ (n5 ≺ n2) ∧ (n2 ≺

n3) ∧ (n4 ≺ n5) ∧ φ4],

whereφ4 = (Clear(Block3), n4) ∧ (On(Block3, Block1), n4) ∧ (ArmEmpty, n4) ∧

(On(Block1, Block2), n4). Observe that the contents of the task network in method

m1 is incorporated into task networkd4. In particular: (i) the constraint formula of

methodm1 is added as a conjunction to the constraint formula of task network d4;

(ii) labelled tasks ofm1 are added, after the renaming of task labels, to the set of

labelled tasks ofd4; and(iii) old constraints ofd4 — e.g., (n1 ≺ n2) — are updated

to accommodate the new task labels.

The final step is to obtain the completioncomp(d4,I,D) of task networkd4.

CHAPTER 2. BACKGROUND 42

The completion is composed of the following primitive plan solution:

σ = pickup(Block3, Block1) · putdown(Block3) · pickup(Block1, Block2) ·

putdown(Block1).

Observe that planσ is a primitive plan solution — it is executable inI, and

φ4 can be satisfied with respect to the initial stateI.

The style of HTN planning we have described so far is calledpartially-orderedHTN planning.

This is because it is not necessary for tasks in a task networkto be ordered in any way. In fact, it is

legal for the constraint formula to not have any constraintsat all. This allows tasks to be executed

in parallel with other tasks, by overlapping their subtasks.

For example, consider a Blocks World domain in which there are two robot arms.

Suppose we have the following initial task network:

d = [{(n1 : unstack(Block1, Block2)), (n2 : unstack(Block3, Block4))}, true].

This task network specifies that the two unstack operators can be performed

in parallel, that is, their decompositions can be interleaved. One example of such an

interleaving is the following primitive plan solution:

σ = pickup(Block1, Block2) · pickup(Block3, Block4) · putdown(Block3) ·

putdown(Block1).

In the example in Figure 2.3, however, all tasks within task networks aretotally-ordered, that

is, all tasks occurring in a task network have a (possibly implicit) ordering enforced relative to

all other tasks occurring in the network. While partial-order HTN planning is more expressive

than total-order HTN planning (Nau et al., 1998), and it has the advantage of preventing excessive

backtracking by not committing to the ordering of steps prematurely, total-order HTN planning

also has its advantages. First, since the ordering of tasks is known in advance, total-order HTN

planners know the complete state of the world at each step in the planning process. Consequently,

powerful preconditions can be written such as those that do numerical computations or interact

CHAPTER 2. BACKGROUND 43

with external information sources. Second, the complexityof total-order HTN planning is signifi-

cantly less than that of partial-order HTN planning (Nau et al., 1998). This is because, without the

need to interleave subtasks belonging to compound tasks, total-order HTN planners do not have

the additional complexity of handling interactions between subtasks.

JSHOP total-order HTN planner

One of the most popular implementations of a total-order HTNplanner is JSHOP, which we have

chosen for incorporating HTN planning into the JACK agent development platform. JSHOP is a

Java version of the Lisp based SHOP (Nau et al., 1999) (SimpleHierarchical Ordered Planner)

total-order HTN planner, whose successor, SHOP2 (Nau et al., 2003), won one of the top four

prizes at the 2002 International Planning Competition.3 Both JSHOP and SHOP have been inte-

grated into many different types of applications (Muñoz-Avila et al., 2001; Dixet al., 2003; Nau

et al., 2005).

A JSHOP planning problem, like a HTN planning problem, is a 3-tuple 〈~α,I,D〉, where~α

is a sequence of (primitive and compound) tasks,I is the initial state, andD = 〈Ophtn,Me〉 as

before. Unlike a HTN method, a JSHOP method is of the form (:methodα [h] ψ T), whereα

is a compound task,ψ is a conjunction of literals representing the preconditionof the method,T,

called thetail, is a sequence of (primitive and compound) tasks, andh is an optional name for

the method. Note that the precondition of a JSHOP method corresponds to a constraint formula

of a HTN method, and that the precondition needs to be satisfied for the corresponding method

to be applicable. Task decomposition in JSHOP works like that in HTN, except that tasks are

decomposed in the same order in which they are specified in theinput sequence of tasks~α and in

the tails of methods.

2.4 Combining Agents and Planning

A number of studies have focused on combining automated planning with agent architectures.

Both HTN-style planning as well as first principles planningtechniques have been incorporated.

With first principles planning, an agent can obtain new plansthat are not already a part of the

programmer supplied plan-library, whereas HTN-style planning allows an agent to look-ahead

3http://ipc.icaps-conference.org/

CHAPTER 2. BACKGROUND 44

on its existing plans in order to obtain a viable decomposition of the plan. In this section, we

review the works that combine agents and planning, and compare them, when appropriate, with

the research questions we address in this thesis.

2.4.1 First Principles Planning in Agents

The Propice-Plan (Despouys and Ingrand, 1999) framework isthe combination of the IPP (Koehler

et al., 1997) first principles planner and an extended version of the PRS (Ingrand et al., 1992) BDI

system. In Propice-Plan, the IPP planner is used to obtain new PRS plan-rules at runtime when

none of the existing plan-rules are applicable for an event-goal that the agent wants to achieve.

To formulate plans, IPP uses the plan-rules of PRS, by treating these plan-rules as operators. In

particular, the precondition of an operator is taken as the context condition of the corresponding

plan-rule, and the postcondition of the operator is taken asthe effects of the corresponding plan-

rule, which are supplied for each plan-rule by the programmer. The goal state to plan for is the

primary effect of the event-goal that failed, which is also supplied by the programmer. Solutions

found by IPP are returned to PRS, which executes them by mapping their actions back into ground

plan-rules.

The issues addressed by the Propice-Plan system are similarto the research questions we

address in this thesis. In particular, we are also interested in planning from first principles in

order to obtain new plan-rules not already in the agent’s library. However, there are also important

differences between our work and that of (Despouys and Ingrand, 1999). First, we are interested in

planning with the event-goals of the agent, as opposed to planning with the plan-rules of the agent.

This is because we want plans found to beflexible like typical BDI plans. BDI plans are flexible

in that they are built from high-level abstract goals, for which different alternatives may be tried

if necessary. In the work of (Despouys and Ingrand, 1999), onthe other hand, a plan returned by

the planner will have committed to a sequence of ground plan-rules. The second difference is that

we are interested in finding plans that are non-redundant, i.e., those that can be decomposed into

primitive steps that are necessary for achieving the goal state at hand. Plans found in the work of

(Despouys and Ingrand, 1999), however, do not address this issue of redundancy: their plans may

be decomposed into steps that are not necessary for achieving the goal state.

With the experience gained from the Propice-Plan system, (Lemai and Ingrand, 2004) propose

the IxTeT-eXeC system, which is built specifically with robotic architectures in mind, such as

CHAPTER 2. BACKGROUND 45

Mars Rovers. IxTeT-eXeC is a combination of PRS and the IxTeT(Laborie and Ghallab, 1995)

planner, which allows an expressive temporal specificationof operators. Unlike Propice-Plan,

IxTeT-eXeC gives more control to the planner than the BDI system. Initially, IxTeT-eXeC is

given a top-level goal state to achieve by the user. IxTeT-eXeC then uses the IxTeT planner to

formulate a complete solution for the goal state in terms of the operators in the domain, which

correspond to, essentially, leaf-level event-goals in PRS(i.e., those handled only by plan-bodies

that do not mention any event-goals). The solution is then executed by IxTeT-eXeC by sending

each individual operator in the solution to PRS, one at a time. PRS executes a given operator

by mapping it into the corresponding event-goal, and then executing it using the BDI execution

mechanisms, which may involve (local) failure recovery by trying alternative leaf-level plan-rules.

The plan-rules are composed of primitive steps that can be directly executed by the robot. Finally,

PRS sends a report back to the planner indicating the result (e.g., success or failure) of executing

the event-goal. If during the execution of a plan found by IxTeT a new goal arrives from the user,

the old plan is repaired (if necessary) to take into account this new goal.

The focus of our research is different from (Lemai and Ingrand, 2004) in that we want the

BDI system to maintain full control on when to use the planner, rather than using the BDI system

only to execute plans found by the planner. Moreover, we are interested in using BDI systems

in a manner that exploits their full potential by having flexible plan-libraries with different levels

of abstraction. In the work of (Lemai and Ingrand, 2004), theBDI system is only used for basic

execution, that is, for the decomposition of event-goals directly into primitive actions.

In (Meneguzzi et al., 2004a,b), the X-BDI (da Costa Móra et al., 1998) model is extended

with first principles planning capabilities. The X-BDI model is a traditional cognitive BDI agent

architecture based on notions such as beliefs, desires and intentions. The reasoning process of

X-BDI involves the following steps. First, a set ofeligible desiresis obtained from the agent’s

set of desires, where an eligible desire is one that meets certain rationality constraints put forth by

Bratman, such as being unachieved. Second, the set of eligible desires is refined further to obtain a

set ofcandidate desires, which are desires that are both possible (i.e., a plan exists to handle them)

and consistent as described in Section 2.1.1. Finally, the set of candidate desires are used to obtain

a set ofprimary intentions, which are plans corresponding to the agent’s commitment toachieve

its candidate desires. First principles planning is introduced into the X-BDI model to replace the

algorithm which selects the set of candidate desires from the set of eligible desires. In particular,

CHAPTER 2. BACKGROUND 46

candidate desires are essentially eligible desires for which plans can be found.

While X-BDI allows a logical and declarative specification of BDI agents, it does not lend

itself well to practical and efficient implementations (Meneguzzi and Luck, 2007). On the other

hand, we use a practical BDI agent-oriented programming language. More importantly, however,

unlike their work, our work focuses on:(i) finding plans that re-use and respect the hierarchical

domain information inherent in the agent’s plan-library, whereas in their work planning is per-

formed with basic, primitive actions of the agent, thereby not making use of, and possibly not

conforming to the domain information inherent in the library; and(ii) using first principles plan-

ning solely for the purpose of means-ends reasoning — i.e., decidinghowto bring about a state of

affairs (see Section 2.1.1) — whereas in their work, first principles planning is used primarily to

aid in deliberation — i.e., decidingwhatstate of affairs to bring about.

Another approach that incorporates first principles planning into a BDI system is (Meneguzzi

and Luck, 2008, 2007). In this work, planning is added into the AgentSpeak BDI agent pro-

gramming language. Like our work, (Meneguzzi and Luck, 2007) allows calls to the planner to

be made at any programmer specified point in the agent’s plan-library, and moreover, the planning

is performed for a goal state that is supplied by the programmer. The domain information used

by the planner is automatically extracted (at runtime) fromthe primitive actions belonging to the

agent, which are encoded as leaf-level AgentSpeak event-goals. A plan found is executed by the

agent by mapping actions in the plan back into their corresponding event-goals. Like the previ-

ous work described, the work of (Meneguzzi and Luck, 2008, 2007) also performs first principles

planning with the primitive actions of the agent, rather than with higher level entities like we do

in this thesis.

The intermediate layer of the InteRRaP hybrid architecturediscussed in Section 2.2 can also

plan from first principles in case a plan-rule is not available in its library. However, like some of

the systems described above, the solutions generated seem to be composed entirely of primitive

actions.

Apart from the systems that combine first principles planning and BDI-like systems, there are

also systems that add planning into other agent architectures. Of particular relevance to our work

are systems that combine first principles planning with the Golog (Levesque et al., 1997) action

language, which has been successfully used for robot control. In (Claßen et al., 2007), IndiGolog

(Sardina et al., 2004) – an implementation of Golog – is extended with the FF (Hoffmann and

CHAPTER 2. BACKGROUND 47

Nebel, 2001) classical planning system. IndiGolog alreadysupports planning from first principles

via its achieve(G) procedure, whereG is a goal state formula to achieve. In (Claßen et al., 2007),

another similar construct is added to the language, which amounts to calling the FF planner. The

returned plan (if any) – a sequence of primitive actions – is executed within the IndiGolog engine.

The objective of this work is twofold:(i) to provide a translation from IndiGolog actions into a

version of PDDL (Planning Domain Definition Language); and(ii) to show that by using the FF

planner for planning, as opposed to the built-in IndiGolog procedure, an efficiency improvement

can be gained.

Compared to our work, the work of (Claßen et al., 2007) uses a more expressive language to

describe primitive actions, which has the ability to specify things such as quantification within

preconditions. Still, since the plans found by FF are a sequence of the agent’s primitive actions, as

opposed to the more abstract entities that make up our plans,the procedural information inherent

in Golog procedures are not exploited, and the plans are not flexible.

On the other hand, (Baier et al., 2007; Fritz et al., 2008) addresses the issue of planning from

first principles in ConGolog – Golog with support for specifying concurrency – in a way that re-

spects and exploits the domain control knowledge inherent in ConGolog programs. To this end,

they provide a translation from a subset of the language of ConGolog into PDDL operators. The

translation takes into account the domain control knowledge inherent ConGolog programs. Specif-

ically, these operators ensure that primitive solutions resulting from the planning process conform

to the ConGolog programs given. Moreover, (Baier et al., 2007) provides different heuristics for

planning, which show how planning speed can be improved whenthe domain control knowledge

encoded in the operators is effectively used.

The issue we address in this thesis of conforming to the procedural information inherent in BDI

programs is similar to the issue addressed in (Baier et al., 2007; Fritz et al., 2008) of conforming

to the domain control knowledge inherent in ConGolog programs. However, while the solutions

found by the first principles planner in this thesis can contain abstract (and hence flexible) BDI

entities corresponding to event-goals, solutions found inthe work of (Baier et al., 2007; Fritz

et al., 2008) are composed entirely of primitive actions. Furthermore, although these primitive

solutions do conform to the given ConGolog programs, they may still have redundant steps, which

is undesirable in our work.

In addition to the above differences with Golog based languages, our work is also different

CHAPTER 2. BACKGROUND 48

to such languages because they are cognitive agent languages, with no explicit notions of entities

such as event-goals, plan-rules, plan selection and failure, whereas our approach is linked to a

family of (practical) BDI agent-oriented programming languages and systems.

Finally, work such as (Clement et al., 2007; Tambe and Zhang,2000) deal with planning in

order to coordinate actions/plans belonging to multiple agents. In (Tambe and Zhang, 2000), a

state in the state space is an agent’s model of the overall state of the team to which the agent

belongs, and actions used for planning are team actions, i.e., those that typically affect the entire

team. Unlike the works mentioned, this thesis deals with single-agent planning. However, we

discuss in detail the work of (Clement et al., 2007) in Chapter 4, where we extend their algorithms

for the purpose of adding first principles planning into the CAN language.

2.4.2 HTN Planning in Agents

Perhaps some of the first systems to incorporate HTN-style look-ahead into agents are (Lyons

et al., 1991; Mcdermott, 1991). In these systems, the task ofthe planner is to continuously revise

the plan-rules of the agent in order to make the agent behave in a more goal directed manner.

For example, the XFRM (Mcdermott, 1992) system incorporates HTN-style look-ahead into RPL

(Mcdermott, 1991) (Reactive Plan Language), a BDI-like language which has many similarities

with its ancestors PRS and RAP (Firby, 1987). Execution in XFRM begins when the agent is

given a set of top-level event-goals to achieve. While the agent tries to achieve these event-goals

via decomposition, the planning component continuously looks ahead on the agent’s currently

executing plan-rule in order to assist the agent in avoidingfuture failures. To this end, the planning

component revises the agent’s plan-rule(s), e.g., by adding constraints on the ordering of steps, or

forcing the agent to follow a particular decomposition.

Although these works have certain similarities with the research questions we address in this

thesis, we are only interested in performing HTN look-aheadat programmer specified points in

an agent’s library. In this way, HTN-style look-ahead is only used when it is needed. Moreover,

although we are also interested in guiding the agent along successful (virtual) decompositions, we

do not do this by revising the agent’s currently executing plan-rules. This is because conforming

to the user’s intent is important in our work, and such modifications may result in plan-rules that

no longer conform to the user’s intent.

In the Cypress system (Wilkins and Myers, 1995; Wilkins et al., 1995), the SIPE-2 (Wilkins,

CHAPTER 2. BACKGROUND 49

1990) HTN planning system is combined with an extended version – PRS-CL – of the PRS BDI

system. After identifying similarities between the syntaxand semantics of PRS-CL and SIPE-2,

the authors combine the two systems via theAct language, which is a superset of the languages of

PRS-CL and SIPE-2. The programmer writes the domain specification in the Act language, which

is converted, at runtime, into the languages of PRS-CL and SIPE-2 as and when needed.

The system works by using the SIPE-2 HTN planner to look-ahead on PRS-CL event-goals up

to a level of abstraction decided by the programmer for the given domain. Once an abstract plan is

returned by SIPE-2, the PRS-CL execution engine fills in the remaining details, by decomposing

the event-goals in the plan completely, down to the level of primitive actions. For this to work,

certain plan-rules are only allowed to be used by SIPE-2, andthe others are only allowed to be

used by PRS-CL. In this way, the planner does not decompose a given event-goal beyond a certain

level of abstraction, and PRS-CL does not execute event-goals that are above a certain level of

abstraction. The rationale behind this is that it is often not feasible (e.g., due to time constraints)

for the planner to look-ahead up to the smallest level of detail, and that the executor should not

execute very abstract event-goals without performing any look-ahead. Therefore, in some sense,

solutions returned by SIPE-2 are flexible – they are composedof abstract entities whose exact

refinements are handled by PRS-CL. In addition to using look-ahead for solving very abstract

event-goals, the SIPE-2 planner is also used by PRS-CL when certain types of failures occur

during execution, such as when no plan-rules exist to handlean event-goal.

In comparison with Cypress, our system always focuses on decomposing event-goals com-

pletely, i.e., up to the level of primitive actions, becausewe are interested in getting a guarantee

that a given event-goal has some successful (virtual) decomposition. While it is also possible to

get such guarantees in Cypress by forcing both PRS-CL and SIPE-2 to use the same set of plan-

rules, this will result in solutions found by SIPE-2 being composed entirely of primitive actions.

Consequently, while failure will only be detected in Cypress on the failure of a primitive action,

in our system, failure may be detected earlier due to a plan-rule being inapplicable, as the HTN

planner is used only as a means for guiding the BDI system in choosing appropriate plan-rules at

choice points.

In the RETSINA (Paolucci et al., 1999) system, agents solve their top-level event-goals by per-

forming HTN decomposition. If the information required to decompose some lower level event-

goal is not available at the time of planning, the agent then suspends the decomposition, locates the

CHAPTER 2. BACKGROUND 50

relevant information gathering actions in the plan being developed that would obtain the necessary

information, and then executes these actions. Once the information is obtained, the decomposition

of the top-level event-goal continues. RETSINA also makes use of Rationale Based Monitoring

(Veloso et al., 1998) in order to monitor conditions that arerelated to the plan being developed. If

while a plan is being developed a change in the environment makes a monitored conditions false,

the planning process is abandoned.

In comparison with our work, RETSINA agents always perform HTN look-ahead, unless in-

formation needs to be gathered from the environment. In our work, on the other hand, the agent

typically follows standard BDI execution, and uses the HTN planner only at points during the

execution where the programmer has deemed it necessary to perform HTN look-ahead. However,

we assume that all the information necessary for HTN planning is available before the planner is

called, whereas they do not make this assumption.

Finally, none of the systems mentioned above provide a formal integration of a HTN semantics

into a BDI agent-oriented programming language, and an analysis of the properties of such an

integration, which we do in this thesis.

Chapter 3
A HTN Planning Framework for BDI

Systems†

In this chapter, we incorporate look-ahead deliberation inthe style of Hierarchical Task Networks

(HTN) into BDI agents. Such look-ahead is desirable, or evenmandatory in situations where

undesired outcomes need to be avoided. For instance, an agent may want to reason about the

consequences of choosing one expansion of a task over another, for guiding the selection of recipes

to avoid negative interactions between them.

We choose HTN planning because of the similarities it shareswith BDI systems in problem

representation and in reasoning, but also because HTN semantics and implementations are well un-

derstood in the planning community (Nau et al., 2005; Erol etal., 1996). We first explore in detail

the similarities mentioned in past work (e.g., (Wilkins et al., 1995)) between the two approaches,

and then exploit these similarities. To this end, we incorporate HTN planning into the semantics

and infrastructure of a BDI agent programming language, in aprecise and formal manner. Our

new BDI infrastructure includes HTN planning as a built-in feature that the agent programmer

can use when required. We show that the new infrastructure isprovably more expressive than

HTN systems alone, and that it allows the programmer to, under certain restrictions, rule out BDI

executions that are bound to fail.
†The updated version of CAN in Section 3.2 was developed primarily by Sebastian Sardina (co-supervisor of the

author of this thesis), with some participation from the author of this thesis, from Lin Padgham (supervisor of the
author of this thesis and co-author of (Winikoff et al., 2002)), and in discussion with Michael Winikoff (first author
of (Winikoff et al., 2002)). Part of the work presented in this chapter hasbeen previously published in (de Silva and
Padgham, 2004, 2005; Sardina et al., 2006).

51

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 52

ExploreSoilLocation(src, dst)

R0

−→
6B,5M or 7B,4M

Navigate(src, dst)

R1 3B,1M

Move(src, dst)

GatherData(dst)

OR

R2 2B,3M
−→

GetOpticalImage(dst) GetMoisture(dst)

R3

−→
3B,2M

GetElectronImage(dst) GetMoisture(dst)

TransmitData(dst)

R4 1B,1M

SendData(dst)

event-goal

plan-rule

action

Figure 3.1: A simple Mars Rover agent. An arrow below a plan-rule indicates that its steps are
ordered from left to right. The labels adjacent to plan-rules are the resources that they consume:
nB stands forn units of battery, andnM stands forn units of memory.

Although frameworks do exist that incorporate some type of look-ahead planning as a built-in

feature of BDI-style systems (e.g., (Ambros-Ingerson, 1987; Wilkins and Myers, 1998; Despouys

and Ingrand, 1999; Graham et al., 2003; Paolucci et al., 1999; Knoblock, 1995)), these are mostly

implemented systems with no precise semantics, and with little or no programmer control over

when to plan. It is worth noting that, in fact, look-ahead procedures can sometimes be explicitly

programmed into existing BDI systems. However, such procedures would in general be domain

dependent, fairly complex, and would not be tightly integrated with the infrastructure support pro-

vided by the BDI agent platform. It is sometimes also possible to avoid look-ahead altogether,

by carefully specifying context conditions of plan-rules.The types of BDI applications that re-

quire look-ahead are those in which there are potentially negative interactions between different

branches of an event-goal, and these interactions need to bepredicted and avoided during execu-

tion.

As one example of the value of the kind of look-ahead planningwe propose, con-

sider Figure 3.1, which shows a simple Mars Rover agent. The rover’s top-level

event-goal is to carry out a soil experiment at some destination dst from its current

location src, which involves navigating to the destination, gathering data from the

destination, and then transmitting the data to the lander. Suppose that the actions

shown in the figure require the following resources (whereGetOpticalImagegets a

coloured image using an optical microscope, andGetElectronImagegets a greyscale

image using an electron microscope, which has a higher magnification than the op-

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 53

tical microscope):

1. Move: three units of battery and one unit of memory;

2. GetOpticalImage: one unit of battery and two units of memory;

3. GetElectronImage: two units of battery and one unit of memory; and

4. GetMoisture,SendData: one unit of battery and one unit of memory.

Since each microscope has one advantage and one disadvantage compared with

the other (i.e., colour versus greyscale, and high magnification versus low magnifi-

cation), we assume that it does not matter which microscope is used if there are at

least two units of battery and two units of memory.

Next, suppose plan-rules have the following context conditions: (i) R1 is appli-

cable only if the rover is at locationsrc, and there are at least three units of battery

and there is at least one unit of memory for moving to the destination; (ii) R4 is

applicable only if the rover has data for the destination, and there is at least one unit

of memory and battery for sending the data to the lander;(iii) R2 is applicable only

if the rover is at the destination, and there are at least two units of battery and three

units of memory for both getting an image with the optical microscope and extract-

ing moisture content from the soil;(iv) R3 is applicable only if the rover is at the

destination, and there are at least three units of battery and two units of memory for

both getting an image with the electron microscope and extracting moisture content

from the soil; and finally,(v) R0 is applicable only if the rover is atsrc, and one or

both of the following conditions hold:(a) there are at least six units of battery and

five units of memory (for navigating, gathering data by getting an image with the

optical microscope, and sending data); or(b) there are at least seven units of battery

and four units of memory (for navigating, gathering data by getting an image with

the electron microscope, and sending data).

Now, observe that if the rover initially has seven units of battery and four units

of memory, the rover will successfully navigate to the destination, but it may then

selectR2 instead ofR3 (since both are applicable) and not have enough memory to

transmit data. Similarly, if the rover initially has six units of battery and five units

of memory, the rover will successfully navigate to the destination, but it may then

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 54

selectR3 instead ofR2 and not have enough battery to transmit data.1However, if the

agent were able to perform look-ahead onR0 from the initial state in which there are

seven (respectively six) units of battery and four (respectively five) units of memory,

the agent would realise that plan-ruleR3 (respectivelyR2) is the one that leads to a

successful (virtual) decomposition ofR0, and it would selectR3 (respectivelyR2)

during execution.

This chapter is organised as follows. In Section 3.1, we compare a typical BDI agent pro-

gramming language, namely AgentSpeak (Rao, 1996), with theHTN language of (Erol et al.,

1996), in order to identify their similarities and differences, which involves mapping from BDI

entities to HTN entities. Then, in Section 3.2, we create a new language, namely CANPlan, by

incorporating HTN planning into the CAN BDI agent programming language (Winikoff et al.,

2002), which is based on AgentSpeak. Incorporating HTN planning into CAN involves(i) adding

a planning module into the CAN semantics, and providing an operational semantics that defines

the behaviour of the new module (Section 3.2.3); and(ii) exploring the theoretical properties of

the new framework (Section 3.2.4).

3.1 Similarities Between the BDI and HTN Approaches

While BDI agent systems are focused on theexecutionof agent programs in dynamic environ-

ments, HTN systems are concerned withhypothetical reasoningabout actions and their potential

interactions within a whole plan for achieving a task. Despite their different purposes, however,

BDI systems and HTN planners share many similarities. Theseinclude how knowledge is repre-

sented, as well as how this knowledge is manipulated to solveproblems. Despite integrated sys-

tems such as (Wilkins et al., 1995; Paolucci et al., 1999) which incorporate some of the strengths

of each approach, and despite there being past work that mentions similarities between the two ap-

proaches (e.g., (Clement and Durfee, 1999, 2000; Firby, 1989; Wilkins et al., 1995; Paolucci et al.,

1999)), there does not appear to be any work which formally maps between the domain represen-

tations of the two approaches. In Sections 2.1.3 and 2.3.2, we described the conceptual entities of

the BDI and HTN approaches. In this section, we compare and contrast the two approaches, and

1Note that, although such failure can be avoided by writing a context condition forR0 that requires at least seven
units of battery and five units of memory, such a context condition is too restrictive, as it will rule out the possibility of
exploring a soil location with fewer resources (e.g., six units of battery and five units of memory).

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 55

provide a mapping from BDI entities to HTN entities.

In terms of syntax, both BDI and HTN approaches assume an explicit representation of the

agent’s knowledge, namely, the belief base and state, respectively. Moreover, the domain informa-

tion of each approach is described procedurally, in the formof plan-rules and reduction methods,

respectively.

Let us once again consider Figure 3.1. In addition to representing a BDI plan-library,

this structure also represents a HTN method-library. In particular, the rectangles

represent both BDI event-goals (or achievement goals) and HTN compound (or non-

primitive) tasks; the rounded rectangles represent both BDI plan-rules and HTN

methods; and the dotted rectangles represent both BDI actions and test conditions,

as well as HTN primitive tasks and state constraints, respectively.

In terms of semantics, the two approaches formulate solutions in a similar manner. Both ap-

proaches decompose higher-level tasks into lower-level tasks, by appealing to a given library of

recipes. While a BDI system decomposes an event-goal into a plan-body program using a relevant

and applicable plan-rule from the plan-library, a HTN system decomposes a compound task into a

task network using a relevant and applicable reduction method from the method-library. If the path

of decompositions pursued for solving a particular task ends up not working, both systems back-

track, i.e., return to a higher-level task, to pursue an alternative path of decompositions. However,

due to a difference in the meaning of anaction in the two approaches, the reasons for backtracking

are different.

While actions in the BDI approach are executed in the real world, actions (primitive tasks) in

the HTN approach only make changes to its internal model of the world. As a result, while the

intended outcome of executing a BDI action can only be confirmed by (external) events from the

environment, the intended outcome (i.e., postcondition) of a HTN primitive task is guaranteed on

its (virtual) execution.

PR
−→

Move(src,mid) Move(mid, dst)

Consider the above plan-rule of a Mars Rover agent, which is used for navigating

from the current locationsrc to a locationdst via an intermediate locationmid.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 56

Suppose the precondition of the action on the left isAt(src), the precondition of the

action on the right isAt(mid), the plan-rule’s context condition always succeeds, and

that the rover is atsrc.

Now, observe that if actionMove(src,mid) does not move the rover fromsrc

to mid (e.g., the action fails), then actionMove(mid, dst) will not be applicable,

resulting in the plan-rule failing.2 In HTN planning, on the other hand, action

Move(mid, dst) will always be applicable, because actionMove(src,mid) will al-

ways bring about its intended effect At(mid) ∧ ¬At(src) within the context of the

planner.

Due to the difference in the meaning of an action, the following differences also arise in the

semantics of backtracking in the two approaches. In the HTN approach, backtracking is performed

when it is predicted via complete look-ahead, that a solution being pursued will not work due to

unavoidable conflicts between tasks. Consequently, backtracking involves “ignoring” the solution

pursued so far, from the point at which backtracking begins,up to the point at which an alternative

decomposition is tried. On the other hand, backtracking is performed in a BDI system due to its

inability to predict the consequences of actions. More specifically, a BDI agent backtracks when

an action executed (in the real world) does not bring about its intended outcome. Backtracking

in BDI does not, however, involve “ignoring” the solution pursued so far, because actions have

already been executed in the real world. Rather, backtracking is done to try and achieve the failed

event-goal using a different plan-rule in a potentially new world state.

Mapping the AgentSpeak BDI Language to the HTN Language

We will now give a precise account of how BDI entities can be mapped to HTN entities. Such

a mapping is essential to be able to use BDI entities for HTN planning, which we do in the next

section. The BDI agent programming language we have chosen for this mapping is AgentSpeak

(Rao, 1996; Moreira and Bordini, 2002; Bordini et al., 2002;d’Inverno and Luck, 1998), in par-

ticular, the original formalisation in (Rao, 1996).3 AgentSpeak is a high-level plan language that

attempts to extract the essence of a class of implementable agent platforms, such as PRS (Georgeff

2Of course, if the rover is somehow moved tomid by some other means, then the second action will indeed be
applicable.

3Note that a formal mapping from CAN entities to HTN entities can be found in the proof of Theorem 2.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 57

and Ingrand, 1989) and dMars (d’Inverno et al., 1998). More importantly, AgentSpeak forms

the basis for later BDI agent programming languages such as CAN (Winikoff et al., 2002) and

3APL(Hindriks et al., 1999). The HTN language we have chosenis that of (Erol et al., 1996),

which is one of the most widely used HTN formalisations in theliterature. Table 3.1 provides a

summary of the conceptual mapping from AgentSpeak entitiesto HTN entities.

AgentSpeak Entities HTN Entities

set of base beliefs state
belief operations (+b and−b) primitive task
action (act) dummy primitive task
achievement goal (!g) compound task
test goal (?g) state constraint
plan-context state constraints
sequencing (;) ordering constraints
plan-body task network
plan-rule method
plan-library set of methods

Table 3.1: Summary of the mapping from AgentSpeak to HTN

Set of base beliefs to state

As mentioned before, aset of base beliefsand astateare both representations of knowledge about

the world in AgentSpeak and HTN, respectively. Moreover, a set of base beliefs and a state have

the same form: they are both sets of ground atoms. An explicitmapping is therefore not needed.

Belief operation to primitive task

An AgentSpeak agent updates its knowledge about the world using belief operations+b and−b.4

Similarly, a HTN planner updates its knowledge about the world usingprimitive tasks.

The mapping is done as follows. First, a unique primitive task is assigned to each unique belief

operation of the agent (recall from Section 2.3.2 that a primitive task is simply a symbol followed

by a vector of terms). Second, for each such primitive task, an operator is created to handle it, with

4Actually, in AgentSpeak, the agent programmer is not allowed to specify belief operations in plan-bodies — up-
dates to the set of base beliefs are only performed internally by AgentSpeak, when belief-update events arrive from
the environment. However, we do provide a mapping for beliefoperations in the style of CAN, because they are an
important BDI feature that has been included in improvements and extensions of AgentSpeak (Moreira and Bordini,
2002; Bordini and Moreira, 2004; Bordini et al., 2002).

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 58

preconditiontrue, and with postcondition{b} if the corresponding belief operation is+b, or {¬b}

if the corresponding belief operation is−b.

Action to dummy primitive task

In AgentSpeak, anaction is used to make changes to the real world. Although AgentSpeak (and

CAN) actions do have intended outcomes, such actions represent arbitrary operations, and their

intended outcomes are not explicitly specified. For this reason, we provide a model of actions in

the next section. For now, however, we will simply assume that the intended outcomes of actions

are specified as belief operations, and map actions todummyHTN primitive tasks, i.e., primitive

tasks with the preconditiontrue and with the empty postcondition.

Achievement goal to compound task

An achievement goalin AgentSpeak and acompound taskin HTN both correspond to a task that

the agent wants to solve. Moreover, as mentioned before, both achievement goals and compound

tasks are solved in a similar manner, by appealing to a given set of recipes. Mapping an achieve-

ment goal to a compound task is straightforward since they are both essentially just names (i.e., a

symbol followed by a vector of terms) representing the relevant plan-rules and reduction methods,

respectively.

Plan-body to task network

An AgentSpeakplan-bodyand a HTNtask networkis respectively one possible way of solving an

achievement goal and a compound task. While a plan-body selected is added to the agent’s set of

intentions and executed, a task network selected is added tothe solution being pursued. In terms of

syntax: a plan-body is of the formP1; . . . ; Pk, where eachPi is an (achievement or test) goal, action

or belief operation; and a HTN task network is a tuple of the form [{(n1 : t1), . . . , (nm : tm)}, φ],

where the element on the left is a set of labelled (compound orprimitive) tasks, and the element

on the right is a task network formula.

Mapping from a plan-body to a task network consists of two parts: (i) mapping all entities

within the plan-body, excluding test goals, to a set of labelled tasks; and(ii) mapping test goals

within the plan-body to state constraints – testing for conditions can only be specified in HTN as

state constraints within a task network formula.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 59

For the first part of the mapping, we create a setS of labelled tasks from plan-bodyP1; . . . ; Pk,

by adding toS the labelled task (i : ti) for every elementPi in the plan-body that is not a test goal,

whereti is the HTN entity corresponding to (i.e., HTN mapping of)Pi.

For the second part of the mapping, we create a formula of HTN constraintsφ from the plan-

body by(a) adding state constraint (i, g) as a conjunction for every test goalP j =?g mentioned

in the plan-body, wherei < j is the largest task label occurring inS; and(b) adding an ordering

constraint (i ≺ j) as a conjunction for every task labeli, j occurring inS such thati < j. Recall

from Section 2.3.2 that (i, g) entails thatg must hold immediately after task labeli, and that (i ≺ j)

entails that the task labelledi must precede the task labelledj.

In order to cater for situations in which the first program mentioned in the plan-body is a test

goal (in which case state constraint (i, g) cannot be specified since there are no elementsS), we

initially add toS the labelled dummy task (0 :dummy).

For example, consider plan-bodyP =?p;+q;−r, which first tests for conditionp,

then performs the belief operation+q, and finally performs belief operation−r.

Initially, the set of labelled tasks is

S = {(0 : dummy)}.

In the first part of the mapping, the setS is populated with the HTN entities corre-

sponding to the BDI entities within plan-bodyP. A possible result of this first step

is the set

S = {(0 : dummy), (2 : addQ), (3 : delR)},

whereaddQ is the primitive task corresponding to belief operation+q, anddelR is

the primitive task corresponding to belief operation−r. Observe that the labels of

tasks added toS are the positions withinP of the corresponding BDI entities; there-

fore, since the first program ofP is a test condition, taskaddQ, which corresponds to

the second program ofP, is given label 2. In the second part of the mapping, since

program ?p is the only test condition withinP, the initial value of the constraint

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 60

formula is simply

φ = (0, p),

which states that conditionp must hold right at the beginning, i.e., immediately after

the dummy task. Finally, formulaφ is updated with ordering constraints to obtain

formula

φ = (0, p) ∧ (0 ≺ 2)∧ (0 ≺ 3)∧ (2 ≺ 3),

which additionally states that the dummy task precedes the other two tasks, and

that primitive taskaddQ precedes primitive taskdelR. Therefore, the final HTN

mapping of plan-bodyP =?p;+q;−r is task network [S, φ].

Plan-context to state constraints

In AgentSpeak, a plan-rule’scontextspecifies the conditions under which the plan-rule is ap-

plicable for an achievement goal, with respect to the set of base beliefs. Similarly, HTNstate

constraintswithin the constraint formula of a method are used (among other things) to specify the

conditions under which the method is applicable for a compound task, with respect to the state.

Mapping a plan-context to state constraints is straightforward. Since a plan-rule’s context is

simply a conjunction of literals of the forml1 ∧ . . . ∧ ln, the corresponding formula of state con-

straints isφ = (l1, 0)∧ . . . ∧ (ln, 0), where 0, as shown in the previous mapping, is the label of the

first (dummy) task in a task network.

Plan-rule to method

A plan-rule (or plan) in AgentSpeak is of the form+!g : l1 ∧ . . . ∧ lm ← P1; . . . ; Pn, where

+!g is the triggering event,5 l1 ∧ . . . ∧ lm is the plan-context, andP1; . . . ; Pn is the plan-body. In

5Actually, a triggering event is of the form+b, −b, +!g, +?g, −?g, or −!g, where !g is an achievement goal, ?g is
a test goal andb is a base belief. There are two things to note regarding triggering events. First, like (Hindriks et al.,
1998), we do not consider triggering events of the form+?g, −?g, and−!g in our mapping because the operational
semantics of such triggering events are neither provided nor clear in (Rao, 1996). In (Hübner et al., 2006), an informal
semantics for−!g is given where this is used as a means to facilitate “backtracking,” i.e., the trying of alternative plans
on the failure of a plan to solve an achievement goal. We will compare the “backtracking” mechanisms of HTN and
BDI systems later in this chapter. Second, since+b and−b triggering events areexternalevents from theenvironment
notifying the agent of a change that occurred (Bordini and Moreira, 2004), we do not need to consider these in our
mapping.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 61

HTN, a methodis of the form (α, [{(n1 : t1), . . . , (nm : tm)}, φ]), whereα is a compound task and

[{(n1 : t1) . . . (nm : tm)}, φ] is a task network. The mapping from a plan-rule to a method relies on

the following mappings discussed previously:(i) achievement goal to compound task,(ii) plan-

body to task network, and(iii) plan-context to state constraints. In particular, the onlyadditional

step required is to add the state constraints correspondingto the plan-context as a conjunction to

the task network formula corresponding to the plan-body.

3.2 Adding HTN Planning into the CAN BDI Language

In (Winikoff et al., 2002), the CAN (Conceptual Agent Notation) BDI agentprogramming lan-

guage is introduced. CAN is a high-level plan language which, like AgentSpeak, attempts to

extract the essence of a class of implementable agent platforms. We choose CAN from the nu-

merous available options (e.g., AgentSpeak (Rao, 1996) and3APL (Hindriks et al., 1999; van

Riemsdijk et al., 2003)) because it includes semantics for sophisticated BDI failure handling.

In this section, we present first an updated version of CAN, which (i) is cleaner than the

version in (Winikoff et al., 2002), and(ii) incorporates variable binding details that were omitted

in (Winikoff et al., 2002). We then incorporate HTN planning into this newlanguage.

3.2.1 Presentation of CAN

A CAN BDI agent is created by the specification of abelief baseB, i.e., a set of formulas from

some logical language, and aplan-library Π, i.e., a set of plan-rules. However, since in practice

the belief base is a set of ground atoms, and since we need to map belief bases tostatesin the

planning literature (which are sets of ground atoms), we assume that a CAN belief base is a set

of ground atoms. The language of the plan-library is the language of first-order logic with equal-

ity, excluding functions and universal quantification (therefore, all free variables are existentially

quantified). A plan-rule is of the forme : ψ ← P, wheree is anevent-goalandψ is thecontext

condition. The componentP within a plan-rule is called aplan-bodyor program, which is built

using the following components: primitive actions (act) that the agent can execute directly; oper-

ations to add (+b) and remove (−b) beliefs; tests for conditions (?φ); and event-goal programs or

(internal) achievement goals (!e). Complex programs can be specified using sequencing (P1; P2)

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 62

and parallelism (P1‖P2). Theuser languageof CAN, then, is described by the following grammar:

P ::= act | +b | −b |?φ | !e | P1; P2 | P1‖P2.

In the original version of CAN in (Winikoff et al., 2002), the user language also includes the

declarative goal-program constructGoal(φs,P, φ f), which, intuitively, states that (declarative) goal

φs should be achieved using (procedural) programP, failing if φ f becomes true. The operational

semantics provided in (Winikoff et al., 2002) for goal-programs captures some of the desired

properties of declarative goals, such aspersistent, possible, andunachieved. For example, if the

programP within goal-programGoal(φs,P, φ f) has completed execution, but conditionφs is still

not true, thenP will be re-tried; moreover, ifφs becomes true during the execution ofP, the

goal-program will succeed immediately. However, we do not deal with declarative goals in our

work, because we are only interested in adding planning to a typical BDI agent programming

language. We refer the reader to (Sardina and Padgham, 2007;Sardina et al., 2006) for details on

how declarative goals can be incorporated into CANPlan.

In addition to the user language, there are also auxiliary plan forms which are used by CAN

internally, when assigning semantics to constructs. Theseare the programsnil, P1 ⊲ P2, and

Lψ1 : P1, . . . , ψn : PnM. Intuitively, nil is the empty program—there is nothing left to execute,

programLψ1 : P1, . . . , ψn : PnM is a set of relevant plan-rules for some event-goal, and program

P1 ⊲P2 means that programP1 should be executed first, and that programP2 should be executed if

and only ifP1 fails. Thefull languageof CAN is therefore described by the following grammar:

P ::= nil | act | ?φ | +b | −b | !e | P1; P2 | P1 ⊲ P2 | P1‖P2 | Lψ1 : P1, . . . , ψn : PnM.

Since the language of CAN allows variables in certain programs, we frequently make use of

notions associated with variable bindings orsubstitutions.

Definition 2. (Substitution) Asubstitutionθ is a finite set of the form{x1/t1, . . . , xn/tn}, where

x1, . . . , xn are distinct variables, and eachti is a term such thatti , xi . We say thatθ is a

ground substitutionif t1, . . . , tn are ground terms. Finally,θ is a variable renaming substitution

for some expressionE if each variable occuring inE is in {x1, . . . , xn} and t1, . . . , tn are distinct

variables. �

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 63

As usual,θθ′ denotes the composition of substitutionsθ and θ′, and given an expressionE

and a substitutionθ = {x1/t1, . . . , xn/tn}, we useEθ to denote the expression obtained fromE by

simultaneously replacing each occurrence ofxi in E with ti , for all i ∈ {1, . . . , n}.

The operational semantics of CAN is given by a set of transition rules in the style of Plotkin’s

structural single-step operational semantics (Plotkin, 1981). A transition C −→ C′ denotes that

configuration Cyields configurationC′ in a single execution step. Similarly,C −→ denotes that

there is some configurationC′ that can be reached by performing a single execution step from

C. The relation
∗−→ denotes the reflexive transitive closure of−→. The transition relationon a

configuration is defined using one or more derivation rules. Derivation rules have anantecedent

and aconclusion: the antecedent can either be empty, or it can consist of transitions and auxiliary

conditions; the conclusion is a single transition.

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B,A, !e〉 −→ 〈B,A, L∆M〉 Event

ψi : Pi ∈ ∆ B |= ψiθ

〈B,A, L∆M〉 −→ 〈B,A,Piθ ⊲ L∆ \ {ψi : Pi}M〉
Sel

〈B,A, act〉 −→ 〈B,A, nil〉 actt
B |= φθ

〈B,A, ?φ〉 −→ 〈B,A, nil〉 ?

〈B,A,+b〉 −→ 〈B ∪ {b},A, nil〉 +b 〈B,A,−b〉 −→ 〈B \ {b},A, nil〉 −b

〈B,A, (nil ; P)〉 −→ 〈B,A,P〉 Seqt
〈B,A,P1〉 −→ 〈B′, A′,P′〉

〈B,A, (P1; P2)〉 −→ 〈B′, A′, (P′; P2)〉 Seq

〈B,A,P1〉 −→ 〈B′,A′,P′〉
〈B,A, (P1 ⊲ P2)〉 −→ 〈B′,A′, (P′ ⊲ P2)〉 ⊲

〈B,A, (nil ⊲ P′)〉 −→ 〈B,A, nil〉 ⊲t
P1 , nil 〈B,A,P1〉 6−→

〈B,A, (P1 ⊲ P2)〉 −→ 〈B,A,P2〉
⊲ f

〈B,A, (nil ‖ P)〉 −→ 〈B,A,P〉 ‖t1 〈B,A, (P ‖ nil)〉 −→ 〈B,A,P〉 ‖t2

〈B,A,P1〉 −→ 〈B′,A′,P′〉
〈B,A, (P1 ‖ P2)〉 −→ 〈B′,A′, (P′ ‖ P2)〉 ‖1

〈B,A,P2〉 −→ 〈B′,A′,P′〉
〈B,A, (P1 ‖ P2)〉 −→ 〈B′,A′, (P1 ‖ P′)〉 ‖2

Figure 3.2: CAN’s complete set of rules

The derivation rules of CAN are shown in Figure 3.2. In these rules, a configuration, called

a basic configuration, is the tuple〈B,A,P〉, whereB is a belief base,P is a plan-body, and

componentA is a sequence of actions, which is used to keep track of the actions executed so far.

This component will be used in a derivation rule introduced later in this chapter.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 64

The Event rule collects all the relevant plan-bodies for the corresponding event-goal, along

with their associated context conditions, and stores them in L∆M. TheSelrule selects an applicable

plan-body fromL∆M, i.e., one whose corresponding context condition is met in the current belief

base, and schedules the plan-body for execution. The+b rule adds belief atomb to the belief base,

and similarly, rule−b removes belief atomb from the belief base. RulesSeqandSeqt handle the

execution of two programs in a sequence in the usual way: the former rule takes a single step on

the program on the left, and the latter rule replaces programnil with the program on the right. Like

theSeqrule, the⊲ rule takes a single step on the program on the left. The⊲ f rule handles the case

where the executing programP1 has failed – i.e., whereP1 cannot make a transition – by selecting

and scheduling the alternative programP2 for execution. The⊲t rule handles the case where the

program on the left has successfully executed, by replacingthe entire program withnil. Theactt

rule states that the execution of any action trivially succeeds.

Rule ? handles the execution of a test condition ?φ: the test condition succeeds if formulaφ

holds in the current belief base, and it fails otherwise, that is, it cannot make a transition. Observe

from the antecedent of this rule that a substitutionθ is applied toφ. There are two things to note

regarding substitutions. First, although not shown in our semantics, configurations must include

a substitution to keep track of bindings obtained so far for variables during the execution of a

plan-body, so that the stored bindings can be applied to variables that occur again in the remaining

plan-body. Second, observe that variables may be shared among programs occurring in a larger

program, and that programs may fail during execution. For example, in programP1 ⊲ P2, the

same variable, sayx, may occur in bothP1 andP2, andP1 may eventually fail. Therefore, the

semantics should be able to handle the “removal” of bindingsgiven to variables occurring in failed

programs, so that variables may be bound once again by the other programs. For example, if a

binding is given to variablex whenP1 is tried, andP1 then fails,P2 should be allowed to obtain a

different binding forx. However, for legibility, and because reassigning bindings to variables is not

necessary for the semantics of our planning framework, we keep substitutions implicit in places

where they need to be carried across multiple rules. We referthe reader to (Hindriks et al., 1999;

Sardina and Padgham, 2010) for an account of how substitutions can be carried across derivation

rules.

Finally, the‖1 and‖2 rules handle the execution of two programs in parallel by nondeterminis-

tically selecting either the program on the left, or the one on the right, and then performing a single

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 65

step on the selected program, and rules‖t1 and‖t2 remove the programnil from parallel programs.

3.2.2 Preliminary Definitions

In this section, we present some preliminary background material from (Sardina et al., 2006). In

particular, we focus on two things: first, how an agent evolves from one state to another, that is,

rules foragent configurations, which work at a level above those defined so far forbasic configura-

tions; and second, what it means for a plan-body program to (weakly) simulateanother plan-body

program. This notion is needed in the next section to show that if the expressivity of a BDI agent is

limited in a certain way, then HTN planning is no more than a look-ahead mechanism on standard

BDI execution.

Note that in the original operational semantics of CAN, an agent includes agoal baseG that

keeps track of the declarative goals that the agent has already committed to via goal-programs.

Although this goal base is not utilised in the original CAN semantics, it can potentially be used

at the agent level execution for reasoning about goals, e.g., for conflict detection and resolution as

done in (Thangarajah et al., 2003b). Since we do not deal herewith theGoal(φs,P, φ f) construct,

we exclude the goal baseG from our agents.

An agent configuration, or just an agent, is a tuple of the form〈N ,Λ,Π,B,A, Γ〉, whereN

is the name of the agent,Λ is an action-library,Π is a plan-library,B is a belief base,A is

the sequence of actions that the agent has executed so far, and Γ is the set of current intentions

(that is, plan-body programs). Observe, therefore, that a basic configuration is simply an agent

configuration that(i) focuses on a single intention, and(ii) does not contain the static components

N ,Λ, andΠ. Transitions between agent configurations are dictated by the following three rules:

P ∈ Γ 〈B,A,P〉 −→ 〈B′,A′,P′〉
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B′,A′, (Γ \ {P}) ∪ {P′}〉

Astep

e is an external event-goal
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B,A, Γ ∪ {!e}〉 Aevent

P ∈ Γ 〈B,A,P〉 6−→
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B,A, Γ \ {P}〉 Aclean

RuleAstepperforms a single step in one intention. More specifically, if it is possible to perform

a single step in one of the intentions inΓ, rule Astep replaces that intention with the result of

performing a single step in it. RuleAevent creates a new intention from a new external event-

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 66

goal. Note that we assume that the agent is made known of relevant changes in the environment

via external event-goals. Such event-goals could arrive from some external source or from the

agent’s own sensors. Finally, ruleAclean removes from the intention base a top-level intention

that has(i) successfully completed, i.e., the intentionnil; or (ii) failed, i.e., one that cannot make

a transition. Intuitively, this is in accordance with the BDI theory of (Rao and Georgeff, 1991),

where an intention is dropped if it has been achieved, or it isimpossible to achieve (see Section

2.1.1).

Next, we move on to the technical definitions. First, we definethe meaning of anagent execu-

tion. Intuitively, an agent execution is a sequence of agent configurations, where each configura-

tion in the sequence is obtained by performing a single transition on the previous configuration.

Definition 3. (BDI Execution) A BDIexecutionE of an agentC0 = 〈N ,Λ,Π,B0,A0, Γ0〉 is a,

possibly infinite, sequence of agent configurationsC0·C1·. . .·Cn·. . . such thatCi =⇒ Ci+1, for every

i ≥ 0. A terminatingexecution is a finite executionC0 · . . . ·Cn whereCn = 〈N ,Λ,Π,Bn,An, {}〉.6

An environment-freeexecution is one in which ruleAevent has not been used — that is, there have

been no changes in the environment. �

To be able to define what it means for a program to simulate another program, we need to

first define what it means for two executions to beequivalent. For this notion, given an execution,

we only take into account configurations within the execution in which changes occur in either

the executed actionsA or the belief baseB – i.e., configurations that do not change with respect

to either of these entities are disregarded. The rationale behind this is that we are sometimes not

interested in what the agent executes, unless the executionchanges it’s internal beliefs, or updates

its sequence of executed actions. An execution with unchanged configurations removed is called

a derived execution. Before we define this notion, given any basic configuration〈B,A,P〉, we

define theprojectionof the first component of the tuple asC|B, the second component of the tuple

asC|A, and the third component of the tuple asC|P. Then, formally, ifE = C0 · . . . · Cn is a

finite execution, thederived executionE of E is the sequence of configurations obtained fromE

by removing all configurationsC j in the sequence such thatC j |B = C j−1|B andC j |A = C j−1|A.

In addition to the notion of a derived execution, we also use the following notation to track

the evolution of an intention within an execution. SupposeC0 · . . . · Cn is a normal or derived

6Note thatΓn = {} is possible if, for example, an external event-goal is addedvia ruleAevent, the event-goal turns out
to have no associated plan-rules, and consequently, the event-goal is removed via ruleAclean.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 67

execution andP is an intention inC0 (i.e.,P ∈ Γ0). Then, the sequenceP0 = P,P1, . . . ,Pn denotes

P’s evolution within the execution, where for anyi ∈ {0, . . . , n}, Pi ∈ Γi ∪ {ǫ}, whereǫ is used to

denote that the intention had been removed from the intention base at someC j , for j ≤ i. Observe

thatǫ is not a program itself, but just an auxiliary meta-level notation.

For example, consider agent configurationC = 〈N ,Λ,Π, {q}, act, {(+p;+q),+r}〉.

Observe that(i) intention baseΓ contains the two intentions+p;+q and+r; (ii) the

sequence of executed actionsA contains one actionact; and that(iii) the belief

baseB of the agent is{q}. Now, consider the following agent level execution of

configurationC:7

〈N ,Λ,Π, {q}, act, {(+p;+q),+r}〉 ·

〈N ,Λ,Π, {p, q}, act, {+q,+r}〉 ·

〈N ,Λ,Π, {p, q}, act, {nil,+r}〉 ·

〈N ,Λ,Π, {p, q}, act, {+r}〉 ·

〈N ,Λ,Π, {p, q, r}, act, {nil}〉 ·

〈N ,Λ,Π, {p, q, r}, act, ∅〉.

Observe that the third, fourth and sixth configurations in the execution are un-

changed configurations, because each of these configurations have the same be-

lief bases and action sequences as the configurations immediately before them.

Observe, further, that the evolution of intention+p;+q within this execution is

(+p;+q),+q, nil , ǫ, ǫ, ǫ, and that the evolution of intention+r within this execution

is +r,+r,+r,+r, nil, ǫ.

Based on the notions of a derived execution and the evolutionof an intention, we can now

define what it means for two agent executions to be equivalent. Specifically, we are interested

in agent executions that are equivalent modulo particular intentions. This is because, in order to

define what it means for a programP′ to simulate another programP, relative to an execution of

P, we need to know whetherP′ can produce the same execution, modulo the (possibly different)

programsP andP′.

7Note that the transition to the last configuration happens via ruleAclean.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 68

Definition 4. (Equivalent Executions) Two, possibly derived, agent executionsC0 · . . . · Cn and

C′0 · . . . · C′n are said to beequivalent modulo intentionsiff for every 0≤ i ≤ n, the configuration

C′i = 〈N i ,Λi ,Πi ,Bi ,Ai , Γ
′
i 〉, whereCi = 〈N i ,Λi ,Πi ,Bi ,Ai , Γi〉. Also, the two executions are

equivalent modulo intentions P0 ∈ Γ0 and P′0 ∈ Γ′0 if they are equivalent modulo intentions and for

every 0≤ i ≤ n, (Γ′i \ {P′i }) = (Γi \ {Pi}), wherePi (P′i) is P0’s (P′0’s) evolution within execution

C0 · . . . ·Ci (C′0 · . . . ·C′i). �

Finally, we define some basic terms associated with the execution of an intention, and we

define what we mean by a program simulating another program.

Definition 5. (Intention Execution) LetE be a BDI executionC0 · C1 · . . . · Cn for an agent

C0 = 〈N ,Λ,Π,B0,A0, Γ0〉, whereP0 ∈ Γ0, and P0,P1, . . . ,Pn is the evolution ofP0 within

the execution. Then, intentionP0 in C0 has beenfully executed inE if Pn = ǫ; otherwiseP0 is

currentlyexecutingin E. In addition, intentionP0 in C0 has beensuccessfullyexecuted inE if

Pi = nil, for somei ≤ n; intention P0 hasfailed in E if it has been fully but not successfully

executed inE. �

We say that a programP′ simulates another programP, relative to an executionE of P, if P′

has an executionE′ that is equivalent toE modulo (respectively)P′ andP, andE′ is successful if

E is successful.

Definition 6. (Program Simulation) LetP,P′ be programs and letE be an execution of a configu-

rationC = 〈N ,Λ,Π,B,A, Γ∪{P}〉, whereP,P′ < Γ. ProgramP′ simulatesprogramP in execution

E iff there is an executionE′ of configurationC′ = 〈N ,Λ,Π,B,A, Γ∪{P′}〉 such that(a) E andE′

are equivalent modulo respectivelyP andP′; and(b) if P has been successfully executed inE, so

hasP′ in E′. We say thatP′ simulatesP iff P′ simulatesP in every execution of any configuration.

�

3.2.3 Adding HTN Planning into CAN: the Plan Construct

In order to integrate HTN planning into the revised CAN language described in Section 3.2.1, we

need to address several issues. First, we need to provide a model of actions. Second, we need to

keep the full language as uniform as possible. Third, we needto give the BDI programmer control

over when to perform HTN planning. Fourth, we need to determine what BDI domain knowledge

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 69

the HTN planner will use – we want the planner to re-use as muchinformation as possible from

the existing BDI domain. Finally, we need to determine how toexecute a HTN solution from

within the BDI execution cycle, while at the same time monitoring the execution if possible.

We address the last four issues by introducing a new program construct into the CAN language,

namely, Plan(P), whereP is a plan-body program. Intuitively, this construct means “execute

program P only if there is a complete hierarchical decomposition for P.” In this way, an agent

executing a program within thePlan construct performs a complete HTN look-ahead search before

committing to even the first step in the program. Before providing an operational semantics to

define the behaviour of thePlan construct, we first discuss our representation and semantics of

actions.

Actions

In the BDI languages proposed by (Rao, 1996; Winikoff et al., 2002), actions are not modelled – an

action is defined as any arbitrary operation that is always applicable, and one that always succeeds.

In contrast, we consider actions to be the usual basic means of an agent to make changes to its

environment. This view of actions is especially important in our work because we are interested in

adding planning (HTN and classical) to BDI agents, and planners require an explicit representation

of the preconditions and postconditions of actions.

In order to incorporate actions into CAN, we add to the definition of an agent a STRIPS-like

action-library Λ, containing rules of the formact : ψact ← Φ−act;Φ
+
act, one for each action type

in the domain. Like CAN actions, the action nameact can correspond to any arbitrary operation

(e.g., a low-level function in C that activates a robot’s actuators). All that we are interested in

capturing is the action’s preconditionψact and its postcondition, i.e., its add list of atomsΦ+act and

delete list of atomsΦ−act. The language of the action-library is the same as that of theplan-library.

Moreover, like the definition of a classical planning operator (Ghallab et al., 2004, p. 28), the

following conditions hold for our action-rules:(i) free variables inψact,Φ
−
act andΦ+act are also free

in act; (ii) ψact is a conjunction of literals; and(iii) act is a symbol followed by a vector of distinct

variables.

For example, actionmove(x, y, z), which moves objectx from y to z, could be repre-

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 70

sented in the action-libraryΛ as follows:

move(x, y, z) : Free(z) ∧ At(x, y)←−

{Free(z),At(x, y)}; {Free(y),At(x, z)}.

An alternative, more involved approach for modelling actions would be to follow (Hindriks

et al., 1999) and to assume that a partial functionT , specifying the update semantics of basic

actions, is given. More precisely, ifT (act,B) is defined, it yields the new updated belief base

B′; otherwise, the action’s precondition is not met inB. However, for simplicity, we stick to the

STRIPS-like action library described.

The rule that defines the behaviour of an action is shown next.This rule states that an action

is executed by(i) selecting an applicable action-rule (if any) from the action-libraryΛ; (ii) adding

the action to the sequence of actionsA; and(iii) updating belief baseB with the add and delete

lists of the action.
act′ : ψ← Φ−;Φ+ ∈ Λ act′θ = act B |= ψθ
〈B,A, act〉 −→ 〈(B \Φ−θ) ∪ Φ+θ,A · act, nil〉 act

Finally, we add another reasonable restriction to the definition of an action: we require the post-

conditions of actions to beconsistent. This restriction ensures, to a certain extent, that actions are

written with appropriate care.

Definition 7. (Consistent Actions) LetΛ be an action-library and letact : ψ ← Φ−;Φ+ ∈ Λ be

an action-rule. Then,act : ψ← Φ−;Φ+ is consistentrelative toΛ iff for all ground instancesactθ

of act and belief basesB, if B |= ψθ, thenΦ+θ ∪ {¬b | b ∈ Φ−θ} is consistent. �

Plan construct

We now provide operational semantics to define the behaviourof thePlan construct. To do this,

we first introduce two types of (labelled) transitions on basic configurations:bdi-type transitions

andplan-type transitions. Intuitively,bdi-type transitions are used for the standard BDI execution

cycle, andplan-type transitions are used for (internal) deliberation steps within aplanningcontext.

By distinguishing between these two types of transitions, we are able to disallow certain rules, such

as those dealing with failure handling, from being used in a planning context. We writeC
t−→ C′

to specify a single step transition of typet, wheret is eitherbdi or plan. When no label is specified

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 71

on a transition, both types apply.

Next, we show the main operational rule for thePlan construct. This rule, which is influ-

enced by theΣ construct of (De Giacomo and Levesque, 1999), states that a basic configuration

〈B,A,Plan(P)〉 can evolve into a configuration〈B′,A′,Plan(P′)〉 if the following two conditions

are met:(i) configuration〈B,A,P〉 can evolve into configuration〈B′,A′,P′〉, and(ii) it is possible

to reach afinal configuration from〈B′,A′,P′〉 in a finite number of planning steps.

〈B,A,P〉
plan
−→ 〈B′,A′,P′〉 〈B′,A′,P′〉

plan∗−→ 〈B′′,A′′, nil〉

〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P′)〉
Plan

There are also two simpler rules associated with thePlan construct. These are shown below.

〈B,A,Plan(nil)〉 −→ 〈B,A, nil〉 Plant

〈B,A,P〉
plan
−→ 〈B′,A′,P′〉

〈B,A,Plan(P)〉
plan
−→ 〈B′,A′,Plan(P′)〉

PlanP

Rule Plant deals with the trivial case of planning on programnil, by simply removing thePlan

construct from the program. RulePlanP handles thePlan construct within a planning context: if

a Plan(P) program is encountered during an execution that is alreadywithin a planning context,

rule PlanP, unlike rulePlan, avoids looking ahead onP, and performs instead a single (arbitrary)

plan-step onP. The reason for performing a single step onP is that it is not clear what it means to

perform planning when already within a planning context. Therefore, any (nested)Plan construct

encountered from within a planning context is essentially ignored.

Certain transition rules only make sense in the context of BDI execution, in particular, the rules

that deal with failure handling. As mentioned before, the concept of BDI-style failure handling,

where on the failure of a step in some state an alternative is tried from that state, does not exist

in HTN planning – HTN solutions do not include such failures.The rule that handles BDI-style

failure is⊲ f from Section 3.2.1. We make this rule unavailable during planning by making it abdi-

type transition, and we refer to the new version of the rule as⊲
bdi
f . In addition to this modification,

we also need to modify slightly the agent level rulesAstep andAclean from Section 3.2.2, so that

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 72

they are defined in terms ofbdi-type transitions. The three updated rules are shown below:

P1 , nil 〈B,A,P1〉 6
bdi−→

〈B,A, (P1 ⊲ P2)〉 bdi−→ 〈B,A,P2〉
⊲

bdi
f

P ∈ Γ 〈B,A,P〉 bdi−→ 〈B′,A′,P′〉
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B′,A′, (Γ \ {P}) ∪ {P′}〉

Astep

P ∈ Γ 〈B,A,P〉 6 bdi−→
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B,A, Γ \ {P}〉 Aclean

Observe that, with the alternative rule⊲bdi
f , only the BDI execution cycle would be allowed to

try alternative plans from∆ for an event-goal upon the failure of some plan previously tried from

∆. Therefore, although a program of the form (?false⊲ L∆M) has no transition within a planning

context, this program does have a transition within a BDI context – programL∆M will be tried.

Since the above rules are not available in the planning context, planning does not merely amount

to looking ahead on the BDI execution cycle.

Let us explain how thePlan construct works with an example. Consider an agent

with the following four plan-rules (whereP2 is some plan-body):

e0 : true← Plan(!e1)

e1 : p← +u; !e2

e1 : ¬u← +r

e2 : q← P2

Suppose the initial belief base of the agent isB0 = {p}. To understand how

programPlan(!e) works, let us first consider the execution of program !e1 alone.

In the first execution step, ruleEvent is applied to obtain the set of relevant

plans∆ for event-goale1:

∆ = {(p : +u; !e2), (¬u : +r)}
〈B0,A, !e1〉 −→ 〈B0,A, L∆M〉

Event

In the next step, an applicable plan-body is selected from∆ and scheduled for

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 73

execution. Since both plan-bodies in∆ are applicable in this case, suppose the plan-

body selected is+u; !e2:

(p : +u; !e2) ∈ ∆ B0 |= p
〈B0,A, L∆M〉 −→ 〈B0,A, (+u; !e2) ⊲ L{¬u : +r}M〉 Sel

In the next step, the belief operation in program+u; !e2 is performed; in partic-

ular, belief atomu is added to belief baseB0 to obtain belief baseB1 = {p, u}:

〈B0,A,+u; !e2〉 −→ 〈B1,A, nil; !e2〉 +b

〈B0,A, (+u; !e2) ⊲ L{¬u : +r}M〉 −→ 〈B1,A, nil; !e2 ⊲ L{¬u : +r}M〉 ⊲

Two steps later, the set of relevant plans∆ for event-goal !e2 is obtained:

∆ = {q : P2}
〈B1,A, !e2〉 −→ 〈B1,A, L∆M〉

Event

〈B1,A, !e2 ⊲ L{¬u : +r}M〉 −→ 〈B1,A, L∆M ⊲ L{¬u : +r}M〉 ⊲

Now, observe that the only plan in∆ is not applicable for event-goale2, because

B1 6|= q. Consequently, a transition is not possible from configuration 〈B1,A, L∆M〉.

Moreover, the alternative plan-body+r in L{¬u : +r}M cannot be successfully exe-

cuted either, because the belief base isB1 = {p, u} and the context condition of

plan-body+r requires¬u to hold. Consequently, the top-level event-goal program

!e fails.

Let us now consider the execution of programPlan(!e). In the first step of the

execution, rulePlan will be applicable, resulting in the set of relevant plans being

selected as before:

∆ = {(p : +u; !e2), (¬u : +r)}

〈B0,A, !e1〉
plan
−→ 〈B0,A, L∆M〉

Event

〈B0,A,Plan(!e1)〉 bdi−→ 〈B0,A,Plan(L∆M)〉
Plan

In the next step, rulePlan will be applicable again. However, unlike before,

from the relevant set of plans∆, plan-body+u; !e2 will not be selected, because it

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 74

is not possible to successfully execute (decompose) this plan-body, for the reasons

shown before. More specifically, condition〈B0,A, (+u; !e2) ⊲ L{¬u : +r}M〉
plan∗−→

〈B′,A′, nil〉 required by the antecedent of rulePlan is not met. However, condition

〈B0,A,+r ⊲ L{p : +u; !e2}M〉
plan∗−→ 〈B′,A′, nil〉 is indeed met, resulting in plan-body

+r being selected for execution, and programPlan(!e) succeeding. It is important

to note that, of course, the first execution step of programPlan(!e) would not have

happened at all, if the successful execution of thePlan(!e) program were not possi-

ble.

The full set of CANPlan rules is shown in Figure 3.3.

3.2.4 Properties of the Plan Construct

So far, we have provided a framework for planning from withinthe CAN BDI language, namely,

thePlan(P) program construct. Next, we discuss properties of thePlan(P) construct. In particular,

we show thatPlan(P) does indeed amount to HTN planning on programP.

It was shown in the previous example that an agent will not make a BDI step on a program

Plan(P) unless that step leads to a successful execution ofP. It can then be expected that, if there

is a successful HTN execution for a programP, then there is also a successful BDI execution for

the program, provided there is no intervention from the outside environment.

Lemma 1. For every belief baseB sequence of actionsA and program P, if〈B,A,P〉
plan∗−→

〈B f ,A f , nil〉, then〈B,A,Plan(P)〉 bdi∗−→ 〈B f ,A f , nil〉.

Proof. See Appendix A.1. �

Similarly, but more importantly, if an agent containsPlan(P) as its only intention, and the

intention is able to start executing, then there is at least one successful BDI execution for the

intention, provided there is no intervention from the outside environment.

Theorem 1. Let C= 〈N ,Λ,Π,B,A, {Plan(P)}〉 such that〈B,A,Plan(P)〉 bdi−→. For any environ-

ment-free agent execution E of C, intentionPlan(P) is either executing or has been successfully

executed in E. Moreover, there is an execution Es of C in which intentionPlan(P) has been

successfully executed in Es.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 75

P ∈ Γ 〈B,A,P〉 bdi−→ 〈B′,A′,P′〉
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B′,A′, (Γ \ {P}) ∪ {P′}〉

Astep

e is a new external event
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B,A, Γ ∪ {!e}〉 Aevent

P ∈ Γ 〈B,A,P〉 6 bdi−→
〈N ,Λ,Π,B,A, Γ〉 =⇒ 〈N ,Λ,Π,B,A, Γ \ {P}〉 Aclean

∆ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B,A, !e〉 −→ 〈B,A, L∆M〉 Event

ψi : Pi ∈ ∆ B |= ψiθ

〈B,A, L∆M〉 −→ 〈B,A,Piθ ⊲ L∆ \ {ψi : Pi}M〉
Sel

B |= φθ
〈B,A, ?φ〉 −→ 〈B,A, nil〉 ?

〈B,A,+b〉 −→ 〈B ∪ {b},A, nil〉 +b 〈B,A,−b〉 −→ 〈B \ {b},A, nil〉 −b

act′ : ψ← Φ−;Φ+ ∈ Λ act′θ = act B |= ψθ
〈B,A, act〉 −→ 〈(B \Φ−θ) ∪ Φ+θ,A · act, nil〉 act

〈B,A, (nil ; P)〉 −→ 〈B,A,P〉 Seqt
〈B,A,P1〉 −→ 〈B′, A′,P′〉

〈B,A, (P1; P2)〉 −→ 〈B′, A′, (P′; P2)〉 Seq

〈B,A,P1〉 −→ 〈B′,A′,P′〉
〈B,A, (P1 ⊲ P2)〉 −→ 〈B′,A′, (P′ ⊲ P2)〉 ⊲ 〈B,A, (nil ⊲ P′)〉 −→ 〈B,A, nil〉 ⊲t

P1 , nil 〈B,A,P1〉 6
bdi−→

〈B,A, (P1 ⊲ P2)〉 bdi−→ 〈B,A,P2〉
⊲

bdi
f

〈B,A, (nil ‖ P)〉 −→ 〈B,A,P〉 ‖t1 〈B,A, (P ‖ nil)〉 −→ 〈B,A,P〉 ‖t2

〈B,A,P1〉 −→ 〈B′,A′,P′〉
〈B,A, (P1 ‖ P2)〉 −→ 〈B′,A′, (P′ ‖ P2)〉 ‖1

〈B,A,P2〉 −→ 〈B′,A′,P′〉
〈B,A, (P1 ‖ P2)〉 −→ 〈B′,A′, (P1 ‖ P′)〉 ‖2

〈B,A,P〉
plan
−→ 〈B′,A′,P′〉 〈B′,A′,P′〉

plan∗−→ 〈B′′,A′′, nil〉

〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P′)〉
Plan

〈B,A,Plan(nil)〉 −→ 〈B,A, nil〉 Plant

〈B,A,P〉
plan
−→ 〈B′,A′,P′〉

〈B,A,Plan(P)〉
plan
−→ 〈B′,A′,Plan(P′)〉

PlanP

Figure 3.3: CANPlan’s complete set of rules

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 76

Proof. Suppose the contrary, i.e., thatPlan(P) is neither executing nor has been successfully ex-

ecuted in the environment-free executionE. Observe from Definition 5 that this can only be true

if E is of the formC0 = C · . . . · Ck such that〈Bk,Ak,Plan(Pk)〉 6
bdi−→, wherePlan(Pk) = Ck|P.

Observe, then, that〈B,A,Plan(P)〉 bdik−→ 〈Bk,Ak,Plan(Pk)〉. By the antecedent of rulePlan and

from the fact thatE is an environment-free execution, we know that〈B,A,P〉
plank−→ 〈Bk,Ak,Pk〉

plan∗−→ 〈B f ,A f , nil〉, and therefore, that〈Bk,Ak,Pk〉
plan∗−→ 〈B f ,A f , nil〉 holds. Then, from Lemma

1, we get that〈Bk,Ak,Plan(Pk)〉
bdi∗−→ 〈B f ,A f , nil〉. Consequently, there existsB′′,A′′,P′′ such

that 〈Bk,Ak,Plan(Pk)〉
bdi−→ 〈B′′,A′′,P′′〉 bdi∗−→ 〈B f ,A f , nil〉. Therefore, it cannot be the case that

〈Bk,Ak,Plan(Pk)〉 6
bdi−→ holds.

The second part follows easily from the fact that
plan∗−→ stands for afinite chain of transitions: if

the agent follows those exact transitions,P will eventually terminate successfully. �

The above theorem is important, as it implies that the programmer can use the new look-ahead

constructPlan(P) in order to avoid – to some extent – failing executions of program P. This is

in contrast to the standard BDI execution ofP, which may lead to the failure ofP due to wrong

decisions at choice points. It is important to note, however, that the deliberation constructPlan(P)

is only local in the sense that it does not take into account the potential interactions ofP with other

concurrent intentions and the environment.

Next, we make clear the relationship between existing HTN semantics and ourPlan construct.

To do this, we first require that our agents bebounded. We say that a CANPlan agent isbounded

if (i) +b and−b programs do not occur in the agent, i.e., the agent only changes its belief base

via primitive actions; and(ii) all entities belonging to the agent conform to the same constraints

and logical language as those of the corresponding entitiesbelonging to the HTN domain. Note

that, although+b and−b programs cannot occur in a CANPlan agent, this restriction does not

in any way decrease the expressive power of the agent, as+b and−b operations can always be

represented using special actions.

Using the definition of a bounded agent, we can now state, formally, the link between thePlan

construct of CANPlan and HTN planning of (Erol et al., 1996).First, we show thatPlan(P)

does indeed amount to HTN planning on programP. Second, we show that executions of a

programPlan(P) encode HTN plan solutions. Finally, we show that any HTN plan solution can

be successfully executed by the BDI execution cycle.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 77

Theorem 2. For any bounded agent,

1. 〈B,A,Plan(P)〉 bdi−→ iff sol(P,B,Π ∪ Λ) , ∅.

2. 〈B,A,Plan(P)〉 bdi∗−→ 〈B′,A · act1 · . . . · actk,Plan(P′)〉 with k ≥ 1 iff there exists a plan

σ ∈ sol(P,B,Π ∪ Λ), such thatσ = act1 · . . . · actk · . . . · actn, for some n≥ k.

3. If there exists a planσ = act1 · . . . ·actn ∈ sol(P,B,Π∪Λ), then〈B,A, (act1; . . . ; actn)〉 bdi∗−→

〈B′,A · σ, nil〉.

Proof. This is an involved proof showing thatplan-type transitions perform no more than the task

decomposition done by HTN planners. The proof is based on thetranslation between BDI domain

knowledge (i.e., librariesΠ andΛ) and HTN domain knowledge (i.e., the method-library and

operator-library), as discussed in Section 3.1. We refer the reader to (Sardina and Padgham, 2010)

for the complete proof. �

Therefore, provided we conform to the language of HTN, our deliberator constructPlan pro-

vides a built-in HTN planner within the BDI framework. The above theorem is an important

practical result as it provides a rationale for using existing HTN systems, such asUMCP, SHOP

and SHOP2, within existing BDI implementations such as Jason, Jade and JACK.

Planning versus BDI execution

We conclude this chapter by exploring the differences between the execution of a planning program

Plan(P) and the standard BDI execution ofP. In particular, we present two results: first, we show

that if the expressivity of a BDI agent is limited in a certainway, thenPlan(P) is nothing more than

look-ahead on the standard BDI execution ofP; and second, we show that in some BDI program

structures, the standard BDI execution ofP can find solutions thatPlan(P) cannot find.

To show the first result, we define a CANPlan− agent as a CANPlan agent whose plan language

does not include the‖ construct. This restriction corresponds to classical BDI agent programming

languages such as AgentSpeak, and tototal-order HTN planners such as SHOP– neither system

includes concurrency. Under such restricted, AgentSpeak-like CANPlan agents, any step that can

be taken using the planning construct can also be taken usingstandard BDI execution. This is

stated by the following lemma.

Lemma 2. For every CANPlan− agent, if〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P′)〉, then〈B,A,P〉
bdi−→ 〈B′,A′,P′〉.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 78

Proof. The only possible rule that could have been used for transition 〈B,A,Plan(P)〉 bdi−→

〈B′,A′,Plan(P′)〉 is rule Plan. Moreover, from the antecedent of thePlan rule, we know that

the following two conditions must hold:(a) 〈B,A,P〉
plan
−→ 〈B′,A′,P′〉; and(b) 〈B′,A′,P′〉

plan∗−→

〈B f ,A f , nil〉. Let L(n) be the statement〈B,A,P〉 bdi−→ 〈B′,A′,P′〉. Using (a) and (b), we will

prove by induction on the numbern of plan-type derivation rules involved in(a), thatL(n) holds.

[Base Case:n = 1.] If only one derivation rule is involved in(a), then one of the following cases

must hold:

1. P = act |?φ | +b | −b. In this case,P′ = nil, and〈B,A,P〉 bdi−→ 〈B′,A′, nil〉 follows

trivially.

2. P = (nil; Pa). In this case,P′ = Pa and〈B,A,P〉 bdi−→ 〈B′,A′,Pa〉 follows trivially.

3. P = (nil ⊲ Pa). In this case,P′ = nil and〈B,A,P〉 bdi−→ 〈B′,A′, nil〉 follows trivially.

4. P =!e. In this case,P′ = L∆M, and〈B,A,P〉 bdi−→ 〈B′,A′, L∆M〉 follows trivially.

5. P = L∆M. In this case,P′ = Piθ⊲L∆ \ PiM due to ruleSel, and〈B,A,P〉 bdi−→ 〈B′,A′,Piθ⊲

L∆ \ PiM〉 also holds.

6. P = Plan(nil). In this case,P′ = nil and〈B,A,P〉 bdi−→ 〈B′,A′, nil〉 follow directly from

derivation rulePlant.

[Induction Hypothesis] Assume thatL(n) holds forn < k.

[Inductive Step] Supposen = k, that is,k derivation rules are involved in(a). Then, one of the

following cases must hold:

1. P = (P1; P2). In this case,P , nil andP′ = (P′1; P2), where〈B,A,P1〉
plan
−→ 〈B′,A′,P′1〉

plan∗−→ 〈B′′,A′′, nil〉. By the induction hypothesis, we know that〈B,A,P1〉
bdi−→ 〈B′,A′,P′1〉

holds; therefore,〈B,A,P〉 bdi−→ 〈B′,A′,P′〉 must also hold due to ruleSeq.

2. P = (P1 ⊲ P2). In this case,P , nil and P′ = (P′1 ⊲ P2), where 〈B,A,P1〉
plan
−→

〈B′,A′,P′1〉
plan∗−→ 〈B′′,A′′, nil〉. By the induction hypothesis, we know that〈B,A,P1〉

bdi−→

〈B′,A′,P′1〉 holds; therefore,〈B,A,P〉 bdi−→ 〈B′,A′,P′〉must also hold due to rule⊲.

3. P = Plan(P1). In this case,P′ = Plan(P′1), where〈B,A,P1〉
plan
−→ 〈B′,A′,P′1〉

plan∗−→

〈B′′,A′′, nil〉. By the induction hypothesis, we know that〈B,A,P1〉
plan
−→ 〈B′,A′,P′1〉 holds;

therefore,〈B,A,P〉 bdi−→ 〈B′,A′,P′〉 must also hold due to rulePlan.

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 79

�

Then, it follows that the planning construct is no more than alook-ahead mechanism on top of

the BDI execution cycle.

Theorem 3. Program P simulates programPlan(P) in every CANPlan− agent.

Proof. Follows directly from Lemma 2. �

On the other hand, when concurrency is allowed in the language, performing planning on a

programP may result in more executions than the standard BDI execution of P. It can be shown

that executingPlan(Plan(P1)‖P2), which is equivalent to executingPlan(P1‖P2), is very different

from executing (Plan(P1)‖P2). The reason, informally, is that aPlan construct is ignored within

the context of anotherPlan construct—there is no notion of planning within planning.

To understand why a programP does not necessarily simulate programPlan(P)

when concurrency is involved, consider the following example.

Suppose programP = Plan(P1)‖P2, where plan-bodyP1 = +r; ?p and

P2 = +p, and the initial belief base isB = {q}. Let us now consider the execu-

tion of programP. In the first step, the only applicable rule‖2 (see Figure 3.3)

will be used to execute program+p. Observe that rule‖1 cannot be used because

programPlan(P1), i.e., Plan(+r; ?p), does not have a full HTN decomposition –

test condition ?p will not succeed in belief baseB = {q}. Nonetheless, after belief

atomp is added toB in the first step, programPlan(+r; ?p)‖nil can be successfully

executed in the next few execution steps, resulting in programP succeeding.

Let us now consider the execution of programPlan(P), i.e., program

Plan(Plan(P1)‖P2). Unlike we saw earlier, in the first execution step here, both

concurrency rules‖1 and ‖2 are applicable. Now, suppose rule‖1 is applied first.

This will result in programPlan(Plan(nil; ?p)‖ + p) and belief baseB1 = {q, r}.

Suppose rule‖2 is applied two steps later (i.e., after the removal of program nil).

This will result in programPlan(Plan(?p)‖nil) and belief baseB2 = {p, q, r}. As

one can observe, this will eventually lead to the top-level programPlan(P) suc-

ceeding, because test condition ?p within P1 will succeed in the new belief base

B2 = {p, q, r}. Observe, then, that it is not possible to execute programP such that

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 80

the resulting evolution of the belief base is identical to the evolution of the belief

base resulting from the above execution of programPlan(P). This is because the

first belief addition toB by the execution of programP is the belief atomp, whereas

the first belief addition toB by the above execution of programPlan(P) is the belief

atomq. Consequently, although bothP andPlan(P) execute successfully, there is a

successful execution ofPlan(P) that cannot be obtained by executingP.

Lemma 3. There exists a program P such that P does not simulate programPlan(P).

Proof. Refer to the above example. �

Finally, we show how the BDI execution engine may find successful executions that the plan-

ner cannot find. To see why this is the case, let us consider thefollowing example.

e
OR

R1

→
act1 ?q act2

R2

→
act3 act2

Action/Plan-rule Prec. Post.

R1 true −

R2 p −

act1 true p

act2 true Any

act3 true Any

The above figure shows two plan-rules for handling event-goal e, that is, rule

e : true← act1; ?q; act2 and rulee : p ← act3; act2. Observe from the figure that

all actions are possible, and that actionact1 makesp true. Now, supposep andq

are both false initially. Then, observe that there is no BDI execution for program

Plan(!e). However, a successful BDI execution for program !e does exist, if action

act1 in the first plan-rule is executed first, and then, upon failure of the test condition

?q, the second plan-rule is fully executed.

The following theorem states this result formally.

Theorem 4. There exists an agent configuration C of the form〈N ,Λ,Π,B,A, Γ ∪ {P}〉 for which

there is an execution where P is successfully executed, but such that no execution of C′ =

〈N ,Λ,Π,B,A, Γ ∪ {Plan(P)}〉 can successfully executePlan(P).

Proof. Refer to the above example. �

CHAPTER 3. A HTN PLANNING FRAMEWORK FOR BDI SYSTEMS 81

As one can observe, the proof relies on the failure handling mechanism built into the BDI

execution cycle, as well as on the programmer specifying only a partial BDI plan-library. In

fact, if the plan-library in the above example had included the additional plan-rulee : true ←

act1; ?p; act3; act2, then the planner would also have found a successful execution. However,

since agent programs—that is, plan-libraries—are often developed incrementally and in modules,

the above situation could well arise.

It can then be seen that the combined framework, which includes both standard BDI execution

as well as local HTN planning, is strictly more general than local HTN planning alone. Moreover,

as discussed after Theorem 1, by using the new local planningmodule, the programmer can, to a

certain extent, rule out BDI executions that are bound to fail.

Chapter 4
A First Principles Planning Framework for

BDI Systems†

In the previous chapter, we provided a principled approach to incorporating HTN planning into

the BDI framework, using the domain knowledge contained in the BDI plan-library. However,

this approach only allows look-ahead planning to assist in choosing appropriate plans in a given

context. It is not possible to construct new BDI plan structures using this approach. In this chapter,

we provide an approach which uses first principles planning to find BDI plans that do not currently

exist in the plan-library. Such an approach is useful when, for instance, none of the existing plans

are applicable for an event-goal, or all applicable plans have failed during execution.

In earlier work on adding first principles planning to BDI-like systems, the focus has been on

constructing plans composed of low level steps (e.g., (Despouys and Ingrand, 1999)) or primitive

actions (e.g., (Wilkins et al., 1995; Meneguzzi et al., 2004b; Claßen et al., 2007)). In contrast,

we are concerned here with the problem of constructing planscomposed of hierarchical struc-

tures capturing the typical “standard operational procedures” of a BDI agent. We call such plans

abstract-plans. In more precise terms, abstract-plans are plans in which actions are not primitive

but abstract, representing BDI event-goals.

Abstract-plans are particularly appealing in the context of BDI systems because they respect

and re-use the procedural domain knowledge that is already available in the system. According

to (Kambhampati et al., 1998), the primitive plans that abstract-plans produce preserve a property

†Part of the work presented in this chapter has been previously published in (de Silva et al., 2009).

83

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 84

calleduser intent, which according to (Kambhampati et al., 1998) is the property where a primitive

plan can be “parsed” in terms of event-goals whose primary effects support the goal state. Another

feature of abstract-plans is that they are, like typical BDIplans, flexible and robust: if a primitive

step of an abstract-plan happens to fail, another option maybe tried to achieve the step.

In order to include event-goals as (abstract) actions in ourplanning domain, we need to ax-

iomatise event-goals with precondition and postconditioninformation. We obtain this information

offline using an adaptation and extension of the “summary” algorithms of (Clement et al., 2007).

In particular, we take as the precondition of an event-goal the disjunction of the context conditions

of the associated plans in the plan-library, and we compute the postcondition of an event-goal

based on the structure of the event-goal’s hierarchy, combined with existing knowledge about the

effects of primitive actions. After abstract actions are obtained, we use them at runtime as input

for a first principles planner, and we validate abstract-plans found by checking if there is a viable

decomposition, which may involve calling the HTN planner. This validation step is necessary

due to the representation we use when transforming event-goals into abstract actions. Our overall

framework for first principles planning is depicted in Figure 4.1.

Figure 4.1: The overall framework for first principles planning in BDI systems

As one example of the value of first principles planning in BDIagents, consider

Figure 4.2, which shows a Mars Rover agent. The top-level event-goal of the agent

is to explore a soil location, and one way of doing this is to navigate to the location

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 85

and perform a soil experiment at the location. Observe the following:

1. navigating involves the primitive stepsCalibrateViaGPSandMove;

2. performing a soil experiment involves the non-primitivesteps

ObtainSoilResultsandTransmitSoilResults;

3. transmitting results to the lander involves the primitive stepSendResults;

4. obtaining soil results involves the following primitiveand non-primitive steps:

PickSoilSample(primitive), AnalyseSoil(non-primitive), andDropSoilSample

(primitive); and

5. analysing soil involves the primitive stepsGetMoistureContent and

GetSurfaceImage.

Note that in order to get an image of the surface of the soil at some loca-

tion (GetSurfaceImage), the rover needs to be at the location. Next, suppose that

PickSoilSample(dst) places a soil sample in the soil compartment, and that the ac-

tion’s precondition is met only if there is no soil in the compartment. Moreover,

suppose the following:

1. R0 is applicable only if the rover is atsrcand the soil compartment is empty;

2. R1 is applicable only if the rover is atsrc;

3. R2 andR3 are applicable only if the rover is atdstand the soil compartment is

empty;

4. R4 is applicable only if the rover is atdstand there is a soil sample fromdst in

the soil compartment;

5. R5 is applicable only if the soil results (i.e., moisture content and surface im-

age) fordstare available; and finally,

6. R6 is applicable only if the rover is not atsrc and if it has not transmitted

results fordst, andR6 involves calling a first principles planner in order to find

a solution that can take the agent from its current state, to the goal state where

soil results fordsthave been transmitted.

Hence, note thatR6 is used for dealing with failed explorations in which the rover

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 86

has successfully navigated fromsrc, but has not managed to, for whatever reason,

transmit soil results fordst.

Now, suppose that the agent starts exploring some soil location Waypoint2

from its initial locationWaypoint1, and that soon after navigating and picking a soil

sample fromWaypoint2, the rover’s location (unexpectedly) changes to some other

locationWaypoint3. (This could happen, for instance, ifWaypoint2 is at the top of

a sandy slope; the rover successfully navigates toWaypoint2; and then soon after

picking a soil sample the rover slips, perhaps due to strong wind, and moves down

the slope toWaypoint3.) Observe, then, that the second step ofR3 will also fail,

as this step requires the rover to be atWaypoint2. Consequently,R0 will fail, and

the agent will select the alternative plan-ruleR6, which will call a first principles

planner in order to find an abstract-plan for reaching the goal state from the current

locationWaypoint3. One such abstract-plan is shown below.

1. Navigate(Waypoint3,Waypoint2)

2. AnalyseSoil(Waypoint2)

3. TransmitSoilResults(Waypoint2)

Observe that this abstract-plan does not involve picking a soil sample after

navigating toWaypoint2 as the soil compartment already contains a soil sample

from Waypoint2.

It is important to note that, while in this chapter we providea framework for planning from first

principles using BDI knowledge, we do not, unlike the previous chapter, integrate the framework

into a BDI agent-programming language itself, i.e., we do not provide an operational semantics

for first principles planning in a BDI agent-programming language. Such a semantics may re-

quire the inclusion of new operational rules into the language, along with a new construct such as

PlanFP(φ), whereφ is a goal state to achieve. We briefly discuss such a semanticsin Chapter 7.

This chapter is organised as follows. First, in Section 4.1,we introduce some preliminary

notions, in particular, the notionshybrid planning problemandhybrid solution. Second, in Section

4.2, we(i) define precisely the precondition and postcondition information we want to extract

from BDI event-goals for use in first principles planning;(ii) provide algorithms for extracting

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 87

ExploreSoilLocation(src,dst)

OR

R0

−→

Navigate(src,dst)

R1

−→

CalibrateViaGPS Move(src,dst)

PerformSoilExperiment(dst)

R2

−→

ObtainSoilResults(dst)

R3

−→

PickSoilSample(dst) AnalyseSoil(dst)

R4

−→

GetMoistureContent(dst) GetSurfaceImage(dst)

DropSoilSample(dst)

TransmitSoilResults(dst)

R5

SendResults(dst)

R6

event-goal

plan-rule

action

Figure 4.2: A Mars Rover agent. An arrow below a plan-rule indicates that its steps are ordered
from left to right.

this information; and(iii) discuss the properties of the proposed algorithms. Third, in Section

4.3, we describe how to create abstract actions from the information gathered, and how to obtain

an abstract-plan by using these actions for first principlesplanning. Finally, in Section 4.4, we

provide algorithms for validating an abstract-plan found.

4.1 Hybrid Planning

In this section, we introduce some preliminary notions related tohybrid-plans, which are more

generic than abstract-plans in that they allow the inclusion of primitive actions where necessary.

The main notions we introduce arehybrid planning problemandhybrid-solution.

As mentioned earlier, using event-goals as abstract operators intuitively ensures that resulting

hybrid-plans preserve the user intent property (Kambhampati et al., 1998), which is the property

where a primitive plan can be “parsed” in terms of event-goals whoseprimary (or intended) effects

support the goal state. The primary effects of event-goals (in (Kambhampati et al., 1998)) are

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 88

supplied by the programmer. We will start by illustrating the user intent property with an example.

Consider the Mars Rover agent of Figure 4.2. Suppose that theagent, for some

reason, invokes the planner from locationWaypoint2, in order to find a solution for

the goal state where the soil compartment is empty, and results fromWaypoint2for

moisture content and surface image are available. Furthermore, suppose that the

planner returns the following primitive solution:

1. PickSoilSample(Waypoint2)

2. GetMoistureContent(Waypoint2)

3. GetSurfaceImage(Waypoint2)

4. DropSoilSample(Waypoint2)

Observe that the action sequenceGetMoistureContent(Waypoint2) ·

GetSurfaceImage(Waypoint2) can be parsed by plan-ruleR4, and hence

by event-goal AnalyseSoil(Waypoint2). Observe, further, that the re-

sulting sequence PickSoilSample(Waypoint2) · AnalyseSoil(Waypoint2) ·

DropSoilSample(Waypoint2) can be parsed by plan-ruleR3, and hence by

event-goalObtainSoilResults(Waypoint2), whose primary effect — i.e., to have

soil results fromWaypoint2 — supports the goal. Therefore, the primitive solution

preserves user intent, as all of its actions can be parsed in terms of event-goals

whose primary effects support the goal state. On the contrary, suppose the planner

finds the following primitive solution instead, for the sameinitial state and goal state:

1. PickSoilSample(Waypoint2)

2. GetSurfaceImage(Waypoint2)

3. GetMoistureContent(Waypoint2)

4. DropSoilSample(Waypoint2)

Notice that, compared with the previous primitive solution, the second and

third (independent) actions are in a different order. In this case, action sequence

GetSurfaceImage(Waypoint2) · GetMoistureContent(Waypoint2) cannot be parsed

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 89

by R4 (and hence event-goalAnalyseSoil(Waypoint2)) because the ordering of the

two actions in the solution does not conform to the preferredordering of those ac-

tions, i.e., the ordering imposed byR4.1Consequently, the primitive solution does

not preserve user intent.

Next, we move on to the definitions. Since we have already shown in the previous chapter

the relationship between CAN entities and HTN entities, from now on, we will use CAN entities

and HTN entities interchangeably for convenience (e.g., wewill sometimes refer to event-goals as

compound tasks, to plan-rules as methods, and to plan-bodies as task networks).

Intuitively, a hybrid-plan is a collection of operators, where each operator has a precondi-

tion and postcondition, but if the operator is abstract, then it is also associated with one or more

plan-rules. More specifically, a hybrid-plan is a partiallyordered set of primitive tasks and com-

pound tasks; the partial ordering allows tasks in the hybrid-plan to be performed in parallel with

other tasks in the plan. Thus, hybrid-plans are what is oftenreferred to aspartially-orderedplans

(Minton et al., 1994). Formally, ahybrid-planh = [s, φ] is a task network, whereφ stands for a

conjunction of HTN ordering constraints.

In this chapter, we investigate what we refer to ashybrid planning, which deals with formulat-

ing hybrid-plans that can bring about a certain state of affairs (as in classical planning) by making

use of available domain knowledge (as in HTN planning). Hybrid planning is used to find solu-

tions forhybrid planning problems. Formally, ahybrid planning problemis a tupleH = 〈I,G,D〉,

whereI is the initial state,G is the goal state, andD is a HTN domain. Hybrid-plans that solve

hybrid planning problems are calledhybrid-solutions. More specifically, a hybrid-solution is a

hybrid-plan that can be decomposed using the domain knowledge into a primitive plan that brings

about the goal state.

Definition 8. (Hybrid-Solution) A hybrid-planh is ahybrid-solutionfor a hybrid planning prob-

lemH = 〈I,G,D〉 iff sol(h,I,D)∩ sol(I,G,Op) , ∅, that is, if there is a HTN solution forh—a

primitive plan—that achieves the goal. A hybrid-planh is astrong hybrid-solutionfor hybrid plan-

ning problemH iff sol(h,I,D) ⊆ sol(I,G,Op), that is, if all HTN solutions forh achieves the

goal. �

In this thesis, we will only deal with (weak) hybrid-solutions.

1The preference for obtaining moisture content before an image of the soil surface could, for instance, be for
mechanical reasons.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 90

Let us illustrate the notions hybrid-plan and hybrid-solution with an example. Con-

sider the Mars Rover agent of Figure 4.2. Suppose that the agent is initially at

location Waypoint3 with an empty soil container and no soil results, and that the

agent wants to find a solution for the following goal:(i) results have been transmit-

ted for Waypoint3, and(ii) the rover is at locationWaypoint1. Now, consider the

hybrid-plan [s, φ], where:

s = {(1 : ObtainSoilResults(Waypoint3)), (2 : Navigate(Waypoint3,Waypoint1)),

(3 : TransmitSoilResults(Waypoint3))};

φ = 1 ≺ 2∧ 1 ≺ 3.

Observe that this hybrid-plan is a hybrid-solution, because, according to Figure

4.2, the hybrid-plan can be decomposed into a primitive planthat achieves the goal

at hand. Observe, further, that the constraint formulaφ requires soil results for

Waypoint3 to be obtained first, and that it does not enforce an orderingbetween

navigating and transmitting results. Therefore, these twotasks can be performed in

parallel by executing primitive actions in the following order: (i) CalibrateViaGPS,

(ii) SendResults(Waypoint3), and(iii) Move(Waypoint3,Waypoint1).

To obtain hybrid-solutions, we need to first transform event-goals in the BDI domain into

a format that is understood by classical planners, that is, into (abstract) planning operators. In

the next section, we show how the precondition and postcondition information that is required to

create abstract operators is extracted from event-goals.

4.2 Creating Abstract Planning Operators

In this section, we define precisely the meaning of the precondition and postcondition of an event-

goal, we present algorithms for computing such information, and finally, we discuss the properties

of the algorithms presented.

Intuitively, the precondition of an event-goal encodes theconditions under which the event-

goal will successfully execute. Since, typically, preconditions are specified on plan-rules as con-

text conditions, obtaining the precondition of an event-goal involves taking the disjunction of the

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 91

context conditions of the associated plan-rules. Althoughpostconditions can be manually specified

for plan-rules in some BDI systems such as (Despouys and Ingrand, 1999), in most BDI systems

and BDI agent programming languages (e.g., (Bordini et al.,2007; Busetta et al., 1999; Hindriks

et al., 1999; Rao, 1996; Winikoff et al., 2002)), postconditions cannot be specified for plan-rules

or event-goals. More importantly, manually calculating postconditions of event-goals can be trou-

blesome for the programmer, and could lead to erroneous postconditions, which may eventually

lead to the planner finding incorrect hybrid-plans. Consequently, we automatically derive the post-

condition of an event-goal based on the structure of its hierarchy, combined with knowledge about

the effects of primitive actions. To this end, we adapt and extend the “summary” algorithms of

(Clement et al., 2007), to allow for the specification of a wider range of BDI plan-libraries, and to

allow for variables in literals, event-goals and actions.

Specifically, what we derive from an event-goal’s hierarchyare itsdefinite effectsandpossible

effects. Intuitively, definite effects are those things that are always true after successfully executing

any decomposition of plan-rules to achieve the event-goal,and possible effects are those things

that are possibly true after executing some decomposition of plan-rules to achieve the event-goal.

However, for use as postconditions of abstract operators, we only use the definite effects of the

corresponding event-goals. The reason for this is twofold.First, we want an abstract operator to

encode, to the extent possible, only the primary effects of the corresponding event-goal, which

are supplied by the programmer in the work of (Kambhampati etal., 1998). Our definite effects

include all such primary effects (provided the programmer has specified primary effects with care),

but they will also include any necessary side effects. Second, we want to avoid an exponential

blow-up (with respect to the height of the given plan-library) in the number of abstract operators

created. Such a blow-up could happen because possible effects of an event-goal correspond to the

different ways in which the event-goal could be decomposed, as shown in the following example.

e1

OR

R1

→
e2

OR

R2

a1

R3

a2

e3

OR

R4

a3

R5

a4

R6

→
e4

OR

R7

a5

R8

a6

e5

OR

R9

a7

R10

a8

event-goal

plan-rule

action

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 92

Consider the BDI hierarchy above. Suppose we want to construct abstract op-

erators from the top-level event-goale1, using the possible effects ofe1. Observe,

then, that we need to create an abstract operator for the eight possible decomposi-

tions of e1, that is: one operator containing the effects brought about by selecting

plan-rulesR1, R2 andR4; another containing the effects brought about by selecting

plan-rulesR1, R2 andR5; another containing the effects brought about by selecting

plan-rulesR1, R3 andR4; and so on.

It is worth noting that, although it would be possible to create a single operator

for e1 with a disjunctive precondition (i.e.,φR1∧ (φR2∨φR3)∧ (φR4∨φR5)∨φR6∧ . . .,

where eachφRi is the context condition of plan-ruleRi), or a single operator for

e1 with conditional effects (i.e., where subsets of the postcondition are associated

with separate preconditions), such an operator would stillbe “syntactic sugar,” and

it would eventually be compiled away into separate operators (Nebel, 2000; Ghallab

et al., 2004, pp. 64, 101) as described above.

On the other hand, by taking into account only definite effects, we only need

two operators fore1 (or a single operator with a precondition containing two dis-

juncts); the postcondition of both operators is the set of definite effects ofe1, and

the preconditions of the operators are the context conditions ofR1 andR6.

Although we do not include the possible effects of event-goals in their corresponding post-

conditions, we do need to compute them in order to compute thedefinite effects of event-goals.

Moreover, we use the possible effects of event-goals in order to validate hybrid-plans obtained

via classical planning, that is, to determine whether a viable decomposition of the plan exists.

This validation step is necessary because we only take the definite effects of event-goals as their

postconditions, which can potentially lead to situations in which conflicts occur in a hybrid-plan

between preconditions of event-goals (abstract operators) and possible effects brought about by

decompositions of other event-goals.

4.2.1 Assumptions and Preliminary Definitions

Before we move on to the technical sections, which define precisely the meaning of preconditions,

definite effects and possible effects of event-goals, we will present in this section some preliminary

notions and state the assumptions we make in this chapter.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 93

As usual, we use~x, ~y, and~z to denote vectors of distinct variables. Moreover, we use~t and

~c to denote vectors of (not necessarily distinct) terms and constants, respectively. A subscript

n on a vector (e.g.,~xn) denotes a vector ofn elements. In this chapter, we assume that, like in

AgentSpeak(L) (Rao, 1996; Moreira and Bordini, 2002), the plan-library does not mention any

parallel programsP1 ‖ P2. Since, without parallelism, we would not need to avoid ambiguity

in plan-body programs with the use of parenthesis — e.g., given programP1; (P2; P3), program

(P1; P2); P3, and programP1; P2; P3, the BDI execution engine will executeP1 first, P2 second

andP3 third in all cases — we assume that parenthesis are not mentioned in plan-bodies.2

Second, we assume that the plan-library does not have recursion. Although this may seem

limiting, we can overcome this restriction to a certain extent by using first principles planning to

emulate recursion, as we will show in Section 6.3. To be more precise regarding our assumption,

we define the two notions:children and ranking. Intuitively, the children of an event-goale are

event-goals mentioned in the plan-rules associated withe.

Definition 9. (Children) Thechildren of an event-goal ˆe relative to a plan-libraryΠ, denoted

children(ê,Π), is defined as follows:3

children(ê,Π) = {e | e′ : ψ← P ∈ Π, êande′ have the same type, and !e is mentioned inP}. �

Intuitively, the ranking of an event-goal is the height of the event-goal in the given hierarchy

(plan-library).

Definition 10. (Ranking) Aranking for a plan-libraryΠ is a functionRΠ : EΠ 7→ N0 from event-

goal types mentioned inΠ to natural numbers, such that the following condition holds: for each

event-goalse1, e2 ∈ EΠ such thate2 is the same type as some event-goale3 ∈ children(e1,Π), it is

the case thatRΠ(e1) > RΠ(e2). �

Then, we assume that a ranking exists for the plan-library. We say thatRΠ(e) is therank of e

in Π, and moreover, given any event-goale(~t) mentioned inΠ, we defineRΠ(e(~t)) = RΠ(e(~x)), that

is, the rank of an event-goal is equivalent to the rank of its type.

For example, consider the plan-library in Figure 4.2. Possible rank functions of

2On the other hand, observe that due to the use of parenthesis in programsP1; (P2 ‖ P3) and (P1; P2) ‖ P3, there are
executions of the latter program that cannot be obtained by executing the former, because the former program requires
P1 to be (completely) executed first.

3Two event-goalse ande′ have the sametypeif they have the same predicate symbol and arity.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 94

event-goals mentioned in this plan-library are shown below:

RΠ(Navigate(src, dst)) = 1

RΠ(AnalyseSoilSample(dst)) = 1

RΠ(TransmitSoilResults(dst)) = 1

RΠ(ObtainSoilResults(dst)) = 2

RΠ(PerformSoilExperiment(dst)) = 3

RΠ(ExploreSoilLocation(dst)) = 4

Our third assumption is that plan-libraries aresafe, i.e., all plan-rules in them are written so

that whenever the context condition of a plan-rule is met in some belief base, there is at least one

successful HTN execution of the corresponding plan-body. Note that this does not imply that the

plan-body should be successfully executed by the BDI execution cycle – the BDI execution of the

plan-body may still fail if the agent makes a wrong choice.

We define asuccessful HTN executionof a programP (relative to a plan-library and an action-

library) as a finite sequence of configurations of the formC1 = 〈B1,A1,P〉· . . .·Cn = 〈Bn,An, nil〉,

such thatCi
plan
−→ Ci+1, for everyi ∈ {1, . . . , n− 1}. We say that a plan-libraryΠ is safe(relative to

an action-library) if for all plan-rulese : ψ← P ∈ Π, ground instanceseθ of e, and belief basesB1,

if B1 |= ψθθ′, then there exists a successful HTN executionC1 · . . . ·Cn of Pθθ′, whereC1|B = B1

(recallC|B denotes the projection of the belief base in configurationC). This definition is in terms

of HTN executions rather than BDI executions because we are not interested in solutions that

include BDI-style failure and recovery.

Similarly, we assume that belief operations in plan-libraries are written with appropriate care.

For example, a situation should never be reached in which an unground atom is added to the belief

base. Specifically, for any finite sequence of configurationsof the formC1 = 〈B1,A1,P〉· . . .·Cn =

〈Bn,An,P′〉, whereP,P′ are programs andCi −→ Ci+1 for everyi ∈ {1, . . . , n−1}, we require that

for eachi ∈ {1, . . . , n}, Bi is a set of ground atoms (and hence consistent).

Recall from theEvent rule of the CAN operational semantics in Figure 3.2 (p. 63) that in

order to select a plan-rulee′(~t′) : ψ← P to achieve a given event-goal program !e(~t), the plan-rule

must berelevant for !e(~t), that is,e(~t) must unify withe′(~t′). This entails, for instance, that if

the argument (term) at some indexi in ~t′ and the argument at the same index in~t are constants,

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 95

then the two arguments must be equivalent. We assume that such requirements on the bindings

of arguments in event-goals are encoded in context conditions of associated plan-rules. More

precisely, we assume, without loss of generality, that all plan-rulese(~t) : ψ ← P in a given plan-

libraryΠ are such that~t is a vector of distinct variables.

Let us illustrate this assumption with an example. Suppose we have the following

three plan-rules for travelling to three different destinations from Melbourne:

Travel(Melb,Syd) : ψ1← P1;

Travel(Melb,Perth) : ψ2← P2;

Travel(src, src) : ψ3← P3.

Observe that the third plan-rule handles the situation where the agent is already

at the destination (hence,P3 may be the empty plan-body). Our assumption requires

that the above three plan-rules be encoded as follows:

Travel(x1, y1) : ψ1 ∧ =(x1,Melb) ∧ =(y1,Syd)← P1;

Travel(x2, y2) : ψ2 ∧ =(x2,Melb) ∧ =(y2,Perth)← P2;

Travel(x3, y3) : ψ3 ∧ =(x3, y3)← P3.

Observe that the event-goals no longer mention constants, and that the context

condition of each plan-rule includes equality predicates.Such predicates within a

plan-rule encode the conditions under which arguments of the original associated

event-goal (e.g.,Travel(Melb,Syd)) will unify successfully with those of a given

event-goal program for travelling (i.e., an event-goal program with symbolTravel

and two arguments).

Observe that the encoding of such binding details into the context conditions of plan-rules can

be easily automated.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 96

4.2.2 Preconditions and Postconditions

Next, we present the main notions of this chapter, namely, the precondition,must literals(definite

effects), andmentioned literals(possible effects) of a program. We start by defining some basic

notions, namely,atomic program, primitive programandpostconditionof a primitive program.

Formally, given a programP, we say thatP is anatomic programif P =!e | act | +b | −b |?φ,

and thatP is a primitive programif P is an atomic program that is not an event-goal program.

Like the postcondition of a STRIPS action, thepostconditionof a primitive program consists of

the atoms added to and removed from the belief base due to the program’s execution. Formally,

thepostconditionof a primitive programP relative to an action-libraryΛ, denotedpost(P,Λ), is

the set of literals defined as follows:4

post(P,Λ) =



∅ if P =?φ;

{b} if P = +b;

{¬b} if P = −b;

Φ+θ ∪ {¬b | b ∈ Φ−θ} if P = act andact′ : ψ← Φ+;Φ− ∈ Λ s.t. act = act′θ.

Observe that test conditions have the empty postcondition since executing them does not result in

an update to the belief base. The last condition in the definition states that the postcondition of

an action program is the combination of the add list and delete list of the associated action-rule,

after applying the appropriate substitution. Note thatθ may not be a ground substitution – it may

simply be a variable renaming substitution.

We will now move on to the notions precondition, must literaland mentioned literal. Intu-

itively, the precondition of an event-goal program encodesthe conditions under which the pro-

gram will execute successfully. More specifically, the precondition of an event-goal program is a

formula, such that the formula is met in some state if and onlyif there is at least one successful

HTN execution of the program from that state.

Definition 11. (Precondition) A formulaφ is apreconditionof an event-goal program !e (relative

to a plan-library and an action-library) if for all ground instances !eθ of !e and belief basesB1, it

is the case thatB1 |= φθ holds if and only if there exists a successful HTN executionC1 · . . . ·Cn

4Recall that any action program mentioned in a plan-library has exactly one corresponding action-rule in the action-
library, and that an action-ruleact : ψ ← Φ+;Φ− is such that(i) act is a symbol followed by a vector of distinct
variables, and(ii) all variables free inψ,Φ+ andΦ− are also free inact.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 97

of !eθ such thatC1|B = B1. �

In the above definition and in those that follow, we blur the distinction between event-goals

and event-goalprograms– that is, the definitions in this chapter that apply to event-goal programs

also apply to event-goals. Next, we define a must literal of a program as a literal that holds at the

end of every successful HTN execution of the program.

Definition 12. (Must Literal) A literal l is amust literalof a programP (relative to a plan-library

and an action-library) if and only if(i) free variables inl are also free inP; and(ii) for all ground

instancesPθ of P and successful HTN executionsC1 · . . . ·Cn of Pθ, it is the case thatCn|B |= lθ.

�

Note that we require free variables inl to also be free inP so that we can know, given some

ground instance ofP, exactly which ground instance ofl holds inCn|B. Recall from Definition

7 (p. 70) that all action-rules in any action-libraryΛ must be consistent. Similarly, because we

eventually convert event-goals into abstract planning operators, we need to show that the operators

we create will beconsistent, i.e., that whenever the precondition of an event-goal holds, the set of

must literals of the event-goal does not contain conflictingliterals. This is stated in the following

theorem.

Theorem 5. Let e be an event-goal, letφ be the precondition of e (relative to a plan-libraryΠ and

an action-libraryΛ), and let Lmu be a set of must literals of e (relative toΠ andΛ). Then, for all

ground instances eθ of e and belief basesB, if B |= φθ, then Lmuθ is consistent.

Proof. SinceLmuθ is a set of ground literals, observe that ifLmuθ is consistent, then for all literals

l, l′ ∈ Lmu it is the case thatlθ , l′θ (i.e., lθ is not the complement ofl′θ).

We prove the theorem by contradiction. Suppose the theorem does not hold. Then the follow-

ing conditions must hold: there exists a belief baseB1 and a ground instanceeθ of e, such that

B1 |= φθ but such thatlθ = l′θ for somel, l′ ∈ Lmu.

First, notice from the first condition of Definition 12 (Must Literal) that bothlθ and l′θ are

ground. Next, observe from Definition 11 (Precondition) that sinceB1 |= φθ holds, it must also

be the case that there exists a successful HTN executionC1 · . . . · Cn of eθ such thatC1|B = B1.

Therefore, sincel is a must literal ofe, we know from Definition 12 (Must Literal) thatCn|B |= lθ.

Moreover, sincel′ is also a must literal ofe, it must also be the case thatCn|B |= l′θ. However,

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 98

since we know from our assumption thatlθ = l′θ (i.e., thatlθ is the complement ofl′θ), both

Cn|B |= lθ andCn|B |= l′θ cannot hold (recall thatCn|B is consistent according to our assumption

in Section 4.2.1). Therefore, our assumption does not hold. �

Intuitively, a mentioned literal is a literal that is mentioned in the program or in one of its

decompositions. Formally, the set ofmentioned literalsof a programP (relative to a plan-library

Π and an action-libraryΛ) is defined as follows:

mnt(P) =



mnt(P1) ∪mnt(P2) if P = P1; P2,

{l | l ∈ mnt(P′), e′ : ψ← P′ ∈ Π ande= e′θ} if P =!e,

post(P,Λ) if P = +b | −b | act |?φ.

Although our notion of a mentioned literal is based on that ofa may summary conditionin

(Clement et al., 2007), the latter notion is stronger in thatit corresponds to a literal that is met

at the end of at least one successful HTN execution of the program in question. Our rationale for

using a weaker notion is explained next.

In (Clement et al., 2007), there is a requirement that all possible traces through a goal-plan

tree resulting from a plan-body are able to successfully execute. If this is not the case, then the

plan-body is said to be inconsistent. However, this requirement is too strong, since it is natural

for an event-goal to be used in a plan-body with the expectation that only certain plan-rules of

that event-goal will be applicable. This is particularly true if event-goals, and their associated

plan-rules, are to be re-usable components. In (Clement et al., 2007), if an event-goal (saye1) in

a plan-body (sayP1) has some plan-rule whose precondition could be clobbered by a plan-rule of

some earlier event-goal inP1, thenP1 is said to be inconsistent, even though there may always

be other suitable plan-rules for handlinge1. Thus for a plan-body to be consistent, according to

(Clement et al., 2007) every event-goal mentioned in it mustbe handled only by plan-rules whose

preconditions are not made false by effects brought about by plan-rules of other event-goals in the

plan-body in question.

For example, consider Figure 4.3, which shows a subset of theplan-library belong-

ing to a simple personal assistant agent. The library shown is for going to work on

Fridays, which involves travelling to work, doing work, having after-work drinks,

and then travelling home from work. (Note that all details left out in the figure —

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 99

e.g., for travelling to work — are not important for this example.) Observe that the

TravelHomeevent-goal is a separate “module” — it can be used from withinany

plan-body. Suppose that the postcondition of having drinksis HadDrinks. Suppose,

further, that the context condition of the plan-rule for driving home isHaveCar

(i.e., the car is at the same location as the person) and¬HadDrinks; that the con-

text condition of the plan-rule for travelling home by taxi is HaveMoneyForTaxi;

and that the context condition of the plan-rule for travelling home by train is

HaveMoneyForTicket.

Then, observe that plan-ruleGoToWorkFridaysPlanis inconsistent (according

to (Clement et al., 2007)), because literal¬HadDrinks in the context condition of

plan-rule DriveHmPlan is clobbered by literalHadDrinks brought about by ac-

tion HaveDrinks. This is despite the fact that plan-rulesTravelHmByTaxiPlanand

TravelHmByTrainPlanmay be applicable for event-goalTravelHome.

GoToWorkFridays

GoToWorkFridaysPlan

−→

TravelToWork Work HaveDrinks HadDrinks TravelHome
OR

DriveHmPlanHaveCar∧ ¬HadDrinks

TravelHmByTaxiPlanHaveMoneyForTaxi

TravelHmByTrainPlanHaveMoneyForTicket

event-goal

plan-rule

action

Figure 4.3: An inconsistent plan-ruleGoToWorkFridaysPlan

We avoid constraining our plan-bodies in this way, althoughthis leads to a weaker notion –

mentioned literals– than the corresponding definition of a may summary condition in (Clement

et al., 2007). In our definition, there can be literals which are mentioned in some plan-body but

in fact can never be asserted, due to interactions which ensure that the particular plan-body which

asserts that literal can never be applied. For example, while the postconditions of actions in the

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 100

plan-body for driving home are mentioned literals of the plan-body, these literals will never be

asserted, as the plan-rule for driving home will never be applicable (with respect to the hierarchy

shown). We do not define a notion of possible effects that does not take into account literals

that will never be asserted because, in practice, recognising such a literal requires reasoning about

whether a context condition is definitely clobbered by another plan-rule(s), which, in turn, requires

propagating the effects of appropriate plan-rules as a formula (in a similar manner to how we

propagate must literals in the algorithms), and then determining whether the context condition is

met with respect to the formula. Since this last step amountsto first order entailment, the problem

is semi-decidable (Gabbay et al., 1994).

In the next section, we will provide algorithms to obtain preconditions, must literals and men-

tioned literals of event-goals, given a plan-library and anaction-library.

4.2.3 Algorithms

For use in the algorithms that follow, we define asummary informationof a program as follows.

Definition 13. (Summary Information) Asummary informationof a programP (relative to a plan-

library and an action-library) is a tuple〈P, φ, Lmt, Lmn〉, whereφ is a precondition ofP if P is an

event-goal program, andφ = ǫ otherwise;Lmt is a set of must literals ofP; andLmn is a set of

mentioned literals ofP. �

In order to compute the must literals of a program, we need to take into account the possibility

of literals brought about by the program’s executionconflictingwith other literals brought about

by the execution. More specifically, we need to take into account situations in which literals are

definitely undone(or must undone) andpossibly undone(or may undone) within a program. Since,

unlike the work of (Clement et al., 2007), we do allow variables in literals, event-goals and actions,

finding such conflicts involves reasoning about values assigned at runtime to variables in literals.

For example, take the following plan-body:

. . . ;

+Colour(Block1, Blue);

?(Block(b) ∧ Colour(b, Blue));

−Colour(b, Blue);

+Colour(b,Red).

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 101

This plan adds a belief thatBlock1 is blue, then binds the variableb to some blue

block (possiblyBlock1), removes the belief thatb is blue and adds the belief thatb

is red. The literalsColour(Block1, Blue) andColour(b,Red) are both asserted in the

body of this plan. However, onlyColour(b,Red) can be considered a definite effect,

asColour(Block1, Blue) will be true only if b is not bound toBlock1. Therefore,

Colour(Block1, Blue) is only a possible effect.

We say that a literall is must undonein some programP if the negation of the literal is a must

literal of some atomic program mentioned inP. Note that, althoughl can beany literal andP

can beanyprogram (i.e., sequence of atomic programs), we will only need to use this definition to

determine whether a literal belonging to some atomic program P′ in a plan-body is must undone in

the sequence of atomic programsafter P′. Formally, given a programP and the set∆ of summary

information of all atomic programs mentioned inP, a literal l is must undonein P relative to∆,

denotedMust-Undone(l,P,∆), if there exists an atomic programP′ mentioned inP and a literal

l′ ∈ Lmt, with 〈P′, φ, Lmt, Lmn〉 ∈ ∆, such thatl = l′, i.e., l is the complement ofl′.5 Similarly,

we say that a literall is may undonein a programP if there is a literall′ that is a mentioned

(or must) literal of some atomic program inP such thatl′ may become the negation ofl due to

variable substitutions at runtime. More precisely, given aprogramP and the set∆ of summary

information of all atomic programs mentioned inP, a literal l is may undonein P relative to∆,

denotedMay-Undone(l,P,∆), if there exists an atomic programP′ mentioned inP, substitutions

θ, θ′, and a literall′ ∈ Lmn, with 〈P′, φ, Lmt, Lmn〉 ∈ ∆, such thatlθ = l′θ′.

Next, we move on to the main algorithms for computing the summary information of pro-

grams, that is, algorithms 4.1, 4.2 and 4.3. We will use Figure 4.4 and Table 4.1 as a running

example.

Algorithm 4.1: Given a plan-library and an action-library, Algorithm 4.1 computes the sum-

mary information of each event-goal mentioned in the plan-library. In a nutshell, the algorithm

works bottom up, by summarising first the leaf-level entities of the plan-library, that is, primi-

tive programs (line 1), and then repetitively summarising plan-bodies using Algorithm 4.2, and

event-goals using Algorithm 4.3, in increasing order of their levels of abstraction (lines 3-8). The

algorithm terminates after all top level event-goals (i.e., those with the highest rank) have been

5Thecomplementof a literal l ∈ {a,¬a} is a if l = ¬a, and¬a otherwise.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 102

Algorithm 4.1 Summarise(Π,Λ)

Input: Plan-libraryΠ and action-libraryΛ, where a ranking exists forΠ.
Output: Set∆ of summary information of event types mentioned inΠ.

1: ∆⇐ {〈P, ǫ, post(P,Λ), post(P,Λ)〉 | P is a primitive program mentioned inΠ}
// Summarising primitive programs; recall post(P,Λ) is a set of literals

2: E⇐ {e(~x) | e is an event-goal mentioned inΠ} // Construct the set of event types in Π
3: for i ⇐ min({RΠ(e) | e∈ E}) to max({RΠ(e) | e ∈ E}) do // Recall RΠ(e) is the rank of e
4: for eache ∈ E such thatRΠ(e) = i do
5: ∆⇐ ∆ ∪ {Summarise-Plan-Body(P,Π,Λ,∆) | e′ : ψ← P ∈ Π, e′ = eθ}

// Summary information of event-goals mentioned in P is available due to ranking
6: ∆⇐ ∆ ∪ {Summarise-Event(e,Π,∆)}
7: end for
8: end for
9: return ∆ \ {u | u ∈ ∆, u is not the summary information of an event-goal}

summarised.

In lines 2-8, all event-goal types mentioned in the plan-library are obtained and then sum-

marised in increasing order of their rank. This way, there isa guarantee that whenever the summary

information of an event-goal or plan-body needs to be computed, all the summary information of

associated less abstract entities has already been computed. Finally, before returning the computed

set∆ in line 9, we remove all the summary information tuples of entities other than event-goals,

since we are only interested in the summary information of event-goals.

Observe that, although according to Definition 12 (Must Literal), any literal that holds at the

end of all successful executions of a program is considered amust literal of the program (i.e.,

even if a literal holds at the end of such an execution only dueto preconditions that require it to

hold), the algorithm only classifies as must literals those that are actuallybrought aboutduring the

program’s execution, i.e., literals in postconditions of primitive programs. This is because our aim

is to create operators from event-goals, and consequently,literals that are required to hold due to

preconditions do not need to be added to postconditions of operators.

For example, consider an event-goale that is handled by one plan-rulee : p ←

act, where the operator associated with actionact does not mention propositionp.

Observe thatp is a must literal ofe because it holds at the end of all successful

executions ofe. However, sincep is not actually brought about by the execution

of e — i.e., p is only required by some precondition — we do not includep in the

postcondition of the operator corresponding toe.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 103

Algorithm 4.2 Summarise-Plan-Body(P,Π,Λ,∆in)

Input: Plan-bodyP; plan-libraryΠ, where a ranking exists forΠ; action-libraryΛ; and the set
∆in of summary information of(i) primitive programs mentioned inP, and(ii) event types
mentioned inP.

Output: The summary information ofP.
1: ∆⇐ ∆in ∪ {〈!e(~x), φ, Lmt, Lmn〉θ | !e(~t) occurs inP, 〈e(~x), φ, Lmt, Lmn〉 ∈ ∆in, e(~t) = e(~x)θ}

// Variables in Lmn must be renamed appropriately
2: SupposeP = P1; P2; . . . ; Pn

3: Lmt
P ⇐ {l | l ∈ Lmt, 〈Pi , φ, Lmt, Lmn〉 ∈ ∆, i ∈ {1, . . . , n},¬May-Undone(l,Pi+1; . . . ; Pn,∆)}

4: Lmn
P ⇐
{l | l ∈ Lmt ∪ Lmn, 〈Pi , φ, Lmt, Lmn〉 ∈ ∆, i ∈ {1, . . . , n},¬Must-Undone(l,Pi+1; . . . ; Pn,∆)}

5: return 〈P, ǫ, Lmt
P , L

mn
P 〉

Algorithm 4.2: This algorithm summarises the given plan-body with respectto the given plan-

library, action-library, and set∆in of summary information. The algorithm first obtains the sum-

mary information of each event-goal program mentioned in the plan-body, from the already avail-

able summary information in∆in of the corresponding event-goal types (line 1). Next, the algor-

ithm computes the set of must literals (Lmt
P) and the set of mentioned literals (Lmn

P) of the given

plan-bodyP, by determining, from the must and mentioned literals of atomic programs mentioned

in P, which literals will definitely be met and which literals will possibly be met on the successful

executions ofP (lines 3 and 4). More specifically, a must literall of an atomic programPi men-

tioned inP = P1; . . . ; Pn is considered a must literal ofP only if l is not may (or must) undone in

Pi+1; . . . ; Pn (line 3). If this is not the case, thenl is considered a mentioned literal ofP, provided

l is not must undone inPi+1; . . . ; Pn (line 4). The reason we do not summarise mentioned literals

that are must undone is to avoid losing completeness. This isshown in the following example.

Suppose the algorithm does summarise mentioned literals that are must undone.

Next, consider the plan-library below. Observe the following: the postcondition of

a0 anda2 is p; the postcondition ofa1 is ¬p; and the postcondition ofa3 is q.
e0

R0

→
a0 p e1

OR
R1

→
a1 ¬p a2 p

R2

a3 q

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 104

Furthermore, observe that:

1. p is a must literal ofR1;

2. q is a must literal ofR2;

3. e1 has no must literals—there are no literals that are guaranteed to hold irre-

spective of the plan-rule selected to achievee1;

4. ¬p (brought about bya1) is a mentioned literal ofR1; and

5. ¬p is also mentioned literal ofe1.

Observe, further, that, according to the algorithm, the literal p brought about bya0

is not a must literal ofR0 because it may be undone by mentioned literal¬p of

e1. However, in reality, althoughR1 does bring about literal¬p, actiona2 of R1

later addsp. This means thatp is indeed a must literal ofR0. The algorithm will

recognise this (i.e., it will be more complete) if(i) the algorithm recognises that

mentioned literal¬p is must undone inR1, and(ii) the algorithm excludes¬p from

the set of mentioned literals ofR1.

Then, the literals added to setLmn
P by the algorithm are not just mentioned literals, but what we

call may literals, that is, mentioned literals of atomic programs occurring in the given plan-body

that are not must undone later in the plan-body. It is important to note, however, that our may

literals are still a weaker notion than the corresponding notion of a may summary condition in

(Clement et al., 2007), because it is still possible that ourmay literals are never asserted, due to

interactions which ensure that the particular plan-body which asserts a may literal can never be

applied.

To illustrate how Algorithm 4.2 works, consider Figure 4.4 and Table 4.1. Ob-

serve that literalsHaveMoistureContent(dst) and HaveParticleSize(dst) are must

literals of plan-bodyP5 because(i) they are must literals of primitive actions

GetMoistureContent(dst) andGetSoilParticleSize(dst), and(ii) they are neither must

undone nor may undone inP5.

Next, consider plan-body P4. Observe that, although literal

HaveSoilSample(dst) is a must literal of primitive actionPickSoilSample(dst),

the literal is must undone by the last primitive actionDropSoilSample(dst) of P4.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 105

Therefore,HaveSoilSample(dst) is neither a may nor must literal of the plan-body.

Literal ¬HaveSoilSample(dst) is a must literal ofP4, along with the must literals

HaveMoistureContent(dst) and HaveParticleSize(dst) belonging to event-goal

AnalyseSoilSample(dst).

Finally, consider plan-bodyP0. Observe that literalCalibrated is a may literal

of the plan-body because the literal is a may literal of event-goalNavigate(src, dst),

and the literal is not must undone inPerformSoilExperiment(dst). On the

other hand, observe that although literalAt(dst) (respectively¬At(src)) is a

must literal of event-goalNavigate(src, dst), this literal is only a may literal

of P0, because¬At(dst) (respectively At(ldr)) is a may literal of event-goal

PerformSoilExperiment(dst), and consequently,At(dst) (respectively¬At(src)) is

may undone inPerformSoilExperiment(dst).

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 106

ExploreSoilLocation(src,dst)

R0

−→

Navigate(src,dst)

OR

R1

−→

CalibrateViaGPS Move(src,dst)

R2

Move(src,dst)

PerformSoilExperiment(dst)

R3

−→

ObtainSoilResults(dst)

R4

−→

PickSoilSample(dst) AnalyseSoilSample(dst)

R5

−→

GetMoistureContent(dst) GetSoilParticleSize(dst)

DropSoilSample(dst)

TransmitSoilResults(dst)

OR

R6

−→

EstablishConnection SendResults(dst) BreakConnection

R7

−→

Navigate(dst, ldr) UploadResults(dst)

event-goal

plan-rule

action

Figure 4.4: A slightly modified and extended version of the Mars Rover agent of Figure 4.2. This
version has options for navigating and transmitting results, and if the lander is not within range,
transmitting involves navigating to the lander and uploading results.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 107

Program Must Literals May Literals

CalibrateViaGPS CA -
Move(src, dst) ¬At(src),At(dst) -
PickSoilSample(dst) HSS(dst) -
DropSoilSample(dst) ¬HSS(dst) -
GetMoistureContent(dst) HMC(dst) -
GetSoilParticleSize(dst) HPS(dst) -
EstablishConnection CE -
SendResults(dst) RT(dst) -
BreakConnection ¬CE -
UploadResults(dst) RT(dst) -
P1 ¬At(src),At(dst),CA -
P2 ¬At(src),At(dst) -
P5 HMC(dst),HPS(dst) -
P4 HMC(dst),HPS(dst),¬HSS(dst) -
P6 RT(dst),¬CE -
P7 ¬At(dst),At(ldr),RT(dst) CA
P3 RT(dst),HMC(dst),HPS(dst), ¬CE,¬At(dst),

¬HSS(dst) At(ldr),CA
P0 RT(dst),HMC(dst),HPS(dst), ¬CE,At(dst),¬At(dst),

¬HSS(dst) At(ldr),CA,¬At(src)
Navigate(src, dst) ¬At(src),At(dst) CA
AnalyseSoilSample(dst) Same asP5 -
ObtainSoilResults(dst) Same asP4 -
TransmitSoilResults(dst) RT(dst) ¬CE,¬At(dst)

At(ldr),CA
PerformSoilExperiment(dst) Same asP3 Same asP3

ExploreSoilLocation(src, dst) Same asP0 Same asP0

Table 4.1: Must literals and may literals of atomic programsand plan-bodies of Figure 4.4.
Note that the rightmost column only shows the may literals that are not also must literals.
Abbreviations used in the table are as follows:CA = Calibrated, HSS = HaveSoilSample,
HMC = HaveMoistureContent, HPS = HaveParticleSize, CE = ConnectionEstablished, and
RT= ResultsTransmitted. EachPi is the plan-body corresponding to plan-ruleRi in the figure.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 108

Algorithm 4.3: This algorithm summarises the given event-goal with respect to the given plan-

library and set∆ of summary information. In a nutshell, in lines 3-8, the algorithm computes the

mentioned literals of the event-goal, and the algorithm obtains the precondition of the event-goal as

the disjunction of the context conditions of all associatedplan-rules. Next, the algorithm obtains

the must and may literals of the event-goal by respectively taking the intersection of the must

literals of associated plan-rules (lines 6 and 10), and the union of the may literals of associated

plan-rules (line 7).

More specifically, in line 5, the current plan-rule’s context condition is added as a disjunction

to the current value of the event-goal’s precondition, after performing the appropriate variable

renamings. In line 10, the must literals of the event-goal are taken as the must literals that are

common across the plan-bodies of all plan-rules handling the event-goal, since such literals are

guaranteed to be true after any successful execution of the event-goal, irrespective of the plan-rule

chosen to achieve it.

Algorithm 4.3 Summarise-Event(e(~x),Π,∆)

Input: Event-goal typee(~x); plan-libraryΠ, where a ranking exists forΠ; and the set∆ of sum-
mary information of plan-bodies of plan-rulese′ : ψ← P ∈ Π such thate′ = e(~x)θ.

Output: The summary information ofe(~x).
1: φ⇐ false
2: Lmt, Lmn,S⇐ ∅ // Lmt, Lmn are sets of literals and S is a set of sets of literals
3: for eache(~y) : ψ← P ∈ Π such thate(~x) = e(~y)θ do
4: // Variables in ψ and tuple 〈P, ǫ, Lmt

P , L
mn
P 〉 ∈ ∆ need to be renamed appropriately

5: φ⇐ φ ∨ ψθ
6: S⇐ S ∪ {Lmt

P θ}, where〈P, ǫ, Lmt
P , L

mn
P 〉 ∈ ∆

7: Lmn⇐ Lmn∪ Lmn
P θ

8: end for
9: if S , ∅ then // Obtain the must literals of e(~x)

10: Lmt⇐ ⋂S
11: Lmt⇐ {l | l ∈ Lmt, variables occurring inl also occur ine(~x)}
12: end if
13: return 〈e(~x), φ, Lmt, Lmn〉

For example, consider Figure 4.4 and Table 4.1. Observe thatthe only must lit-

eral in common between plan-bodiesP6 and P7 is RT(dst). This literal is also

a must literal of event-goalTransmitSoilResults(dst), because there is a guarantee

that a ground instance of this literal will be true on the successful execution of

TransmitSoilResults(dst), irrespective of whetherP6 or P7 is chosen to achieve the

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 109

event-goal. Observe that all other (must or may) literals ofthe two plan-bodies are

may literals of the event-goal.

4.2.4 An Exploration of Soundness and Completeness

In this section, we will explore the properties of the algorithms presented in the previous section.

In particular, we will show that(i) whenever Algorithm 4.1 (Summarise) classifies a literal as

a must literal, this is indeed the case;(ii) the algorithm correctly computes the preconditions of

event-goals; and that(iii) the algorithm terminates. Moreover, we will give some insight into the

situations in which the algorithm is not complete. In what follows, we assume that any given

plan-libraryΠ is such that a ranking exists forΠ.

Soundness and termination

The lemmas that follow rely on the following definition of what it means for a set of literals to

capturea program. Intuitively, a set of literals captures a programif any literal resulting from any

successful execution of the program is in the set.

Definition 14. (Capturing a Program) LetP be a program andL be a set of literals. SetL captures

P if and only if for any ground instancePg of P, successful HTN executionC1 · . . . ·Cn of Pg, and

ground literall such thatC1|B 6|= l andCn|B |= l, it is the case that there is a literall′ ∈ L such that

l = l′θ, for some substitutionθ. �

Observe, then, that the (full) set of mentioned literals of aprogram captures the program. We

start by showing that the computation in Algorithm 4.1 of themust literals of primitive programs

is sound. The proofs for the lemmas in this section can be found in Appendix A.2.

Lemma 4. Let P be a primitive program (i.e., P=?φ | +b | −b | act) mentioned in a plan-library

Π, and letΛ be an action-library. GivenΠ andΛ as input for Algorithm 4.1, at the end of line 1 of

the algorithm, there exists exactly one tuple〈P, ǫ, Lmt, Lmn〉 ∈ ∆ such that the tuple is the summary

information of P, and Lmn captures P.

The following lemma states that Algorithm 4.2 (Summarise-Plan-Body) is sound, that is,

whenever it classifies a literal as a must literal this is indeed the case.

Lemma 5. Let P be a plan-body mentioned in a plan-libraryΠ, and letΛ be an action-library.

Let∆in be a set of tuples such that:

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 110

1. for each primitive program P′ mentioned in P, there is exactly one tuple〈P′, ǫ, Lmt, Lmn〉 ∈

∆in such that the tuple is the summary information of P′, and Lmn captures P′; and

2. for each event-goal program!e mentioned in P, there exists exactly one tuple〈e′, φ, Lmt, Lmn〉

∈ ∆in such that the tuple is the summary information of e′, event-goal e′ is the event type of

e, and Lmn captures e′.

Finally, let tuple〈P′, ǫ, Lmt, Lmn〉 = Summarise-Plan-Body(P,Π,Λ,∆in). Then, it is the case that

the tuple is the summary information of P, and Lmn captures P.

Next, we move on to Algorithm 4.3 (Summarise-Event). The following two lemmas state that

this algorithm is sound, that is, whenever it classifies a literal as a must literal this is indeed the

case, and that the algorithm correctly computes summary preconditions of event-goals.

Lemma 6. Let e be the event type of some event-goal mentioned in a plan-library Π. Let∆ be a

set of tuples such that for each plan-rule e′ : ψ← P ∈ Π, where e and e′ have the same type, there

exists exactly one tuple〈P, ǫ, Lmt, Lmn〉 ∈ ∆ such that the tuple is the summary information of P,

and Lmn captures P. Finally, let tuple〈e′, φ, Lmt, Lmn〉 = Summarise-Event(e,Π,∆). Then, it is

the case that e= e′, Lmt is a set of must literals of e, and that Lmn captures e.

Lemma 7. Let e be the event type of some event-goal mentioned in a plan-library Π, and let

〈e′, φ, Lmt, Lmn〉 = Summarise-Event(e,Π,∆), for some∆. Then,φ is the precondition of e.

Finally, the following two theorems state that the main algorithm – Algorithm 4.1 – is sound,

and always terminating. They rely on the two lemmas given below.

Lemma 8. Algorithm 4.2 always terminates.

Lemma 9. Algorithm 4.3 always terminates.

Theorem 6. Algorithm 4.1 always terminates.

Proof. Follows trivially from the fact that, from Lemmas 9 and 8, lines 6 and 5 (respectively)

always terminates. �

Theorem 7. LetΠ be a plan-library,Λ be an action-library, e be an event type mentioned inΠ,

and let∆out = Summarise(Π,Λ). Then, there is exactly one tuple〈e, φ, Lmt, Lmn〉 ∈ ∆out such that

the tuple is the summary information of e, and Lmn captures e.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 111

Proof. We prove this by induction on the rank ofe in Π.

[Base Case]Let ebe an event of rank 0 inΠ, that is,RΠ(e) = 0. Observe from the definition of a

ranking for a plan-library (Definition 10) that ifRΠ(e) = 0, thenchildren(e,Π) = ∅. This entails

that for all plan-rulese′ : ψ ← P ∈ Π such thate = e′, no event-goals are mentioned inP. If e

has no associated plan-rules, then observe that the call to procedureSummarise-Event(e,Π,∆) in

line 6 of procedureSummarise(Π,Λ) returns tuple〈e, false, ∅, ∅〉, which is indeed the summary

information of !e, and∅ captures !e (see that !ehas no successful executions).

Consider the case where there are one or more plan-rulese′ : ψ ← P ∈ Π such thate and

e′ have the same type, but such that no event-goals are mentioned in the corresponding plan-

bodies. LetPall denote the (non-empty) set of plan-bodies corresponding toall such plan-rules.

Then, we know from Lemma 4 that, due to line 1 in the algorithm,there is exactly one tuple

〈P′, ǫ, Lmt
P′ , L

mn
P′ 〉 ∈ ∆ for each primitive programP′ mentioned in each plan-bodyP ∈ Pall , such

that the tuple is the summary information ofP′, andLmn
P′ capturesP′.

Next, observe that before reaching line 6 of procedureSummarise-Event(Π,Λ), procedure

Summarise-Plan-Body(P,Π,Λ,∆) is called in line 5 for each plan-bodyP ∈ Pall . Then, from

Lemma 5, we know that, on the completion of line 5, there is exactly one tuple〈P, ǫ, Lmt
P , L

mn
P 〉 ∈ ∆

for each plan-bodyP ∈ Pall such that the tuple is the summary information ofP, andLmn
P captures

P. Finally, from Lemmas 6 and 7, we can conclude that on the completion of line 6 of proce-

dureSummarise-Event(Π,Λ) (i.e., after calling procedureSummarise-Event(e,Π,∆)), there is

exactly one tuple〈e, φe, Lmt
e , L

mn
e 〉 ∈ ∆ such that the tuple is the summary information ofe, and that

Lmn
e capturese. Therefore, the theorem holds.

[Induction Hypothesis] Assume that the theorem holds ifRΠ(e) ≤ k, for somek ∈ N0.

[Inductive Step] SupposeRΠ(e) = k+1. LetPall = {P | e′ : ψ← P ∈ Π, eande′ have the same type}.

There are three cases to consider. First, there is no plan-body P ∈ Pall such that there is an

event-goal mentioned inP (i.e., all plan-bodies inPall mention only primitive programs). Thus,

children(e,Π) = ∅ (Definition 9). The proof for this case is the same as the prooffor the Base

Case above. The second case is thatPall = ∅ (i.e., there is no plan-rulee′ : ψ← P ∈ Π such thate

ande′ have the same type). The proof for this case is also the same asthe proof for the Base Case

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 112

above. The third case is thatPall , ∅ and there exists a plan-bodyP ∈ Pall such that an event-goal

is mentioned inP. This final case is discussed next.

Let Eall denote the (non-empty) set of event-goal types of all event-goals mentioned in all

plan-bodiesP ∈ Pall . From Definition 10 (Ranking), for all event-goalse′ ∈ Eall , RΠ(e′) <

RΠ(e) ≤ k. Then, from the induction hypothesis, for eache′ ∈ Eall , there is exactly one tuple

〈e′, φe′ , Lmt
e′ , L

mn
e′ 〉 ∈ ∆out such that the tuple is the summary information ofe′, andLmn

e′ capturese′.

In particular, it is not difficult to see from procedureSummarise that all such tuples exist in∆out

because the value returned by procedureSummarise-Event(e′,Π,∆) is added to set∆ in line 6,

for each event-goale′ ∈ Eall . Moreover, since all event-goals inEall have lower ranks thane, it is

easy to see from procedureSummarise(Π,Λ) that procedureSummarise-Event(e,Π,∆) is called

only afterprocedureSummarise-Plan-Body(P,Π,Λ,∆) is called for each plan-bodyP ∈ Pall , and

in turn, that the latter procedure calls only take place after procedureSummarise-Event(e′,Π,∆)

is called for each event-goale′ ∈ Eall .

Then, from Lemma 4, the induction hypothesis, and from Lemma5, it follows that on the

completion of the call toSummarise-Plan-Body(P,Π,Λ,∆) in line 5 for eachP ∈ Pall , there is

exactly one tuple〈P, ǫ, Lmt
P , L

mn
P 〉 ∈ ∆ such that the tuple is the summary information ofP, and such

thatLmn
P capturesP. Finally, from Lemmas 6 and 7, we can conclude that after calling procedure

Summarise-Event(e,Π,∆) in line 6, there is exactly one tuple〈e, φe, Lmt
e , L

mn
e 〉 ∈ ∆ such that the

tuple is the summary information ofeandLmn
e capturese. Therefore, the theorem holds. �

Completeness

So far, we have shown that Algorithm 4.1 (Summarise) is sound, that is, whenever it determines

that a literal is a must literal of some program, this is guaranteed to be the case. However, the

algorithm is not complete, that is, there may exist a must literal of some program that the algorithm

determines to be (only) a may literal of the program. Next, wewill give some insight into the

situations in which the algorithm is not complete, which, asdiscussed before, arise because the

algorithm does not reason about context conditions of plan-rules.

It is important to note that, although the summary algorithmin the work of (Clement et al.,

2007) is both sound and complete, they only deal with propositions, whereas we deal with first

order atoms, and moreover, as discussed earlier, they make use of an assumption which requires

plan-bodies to be consistent, whereas we do not have this assumption. In particular, because of

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 113

their assumption, one of the situations (shown below) in which our algorithm loses completeness

is not handled by their algorithm.

Next, we give three scenarios in which our algorithm classifies a literal as only a may literal,

while according to Definition 12 (Must Literal), the literalis also a must literal. First, given some

plan-libraryΠ, suppose there is an event-goal mentioned inΠ that is associated with a single

plan-rule having a context condition which entails¬=(b, Block1), and the plan-body shown below

(from Section 4.2.3):

. . . ;

+Colour(Block1, Blue);

?(Block(b) ∧ Colour(b, Blue));

−Colour(b, Blue);

+Colour(b,Red).

Then, observe that, according to Definition 12, literalColour(Block1, Blue) is a must literal of the

event-goal, since the literal will be true at the end of everysuccessful execution of the event-goal,

due to the context condition disallowing variableb from binding toBlock1. However, since the al-

gorithm does not reason about context conditions, according to the algorithmColour(Block1, Blue)

is only a may literal of the event-goal, as the literal is may undone by belief operation−Colour(b, Blue).

Note that, although it is obvious from the given context condition that variableb will not bind to

Block1, in practice, such a constraint can be enforced in various obscure ways. For example, there

could be an event-goal program !e(b) occurring immediately before step+Colour(Block1, Blue)

in the plan-body that is associated with a single plan-rule having test condition ?(=(b, Block2)).

Second, suppose that there is an event-goal mentioned inΠ with two associated plan-rules,

and that one of the plan-rules has context conditionColour(Block1, c) along with the following

plan-body:

. . . ;

−Colour(Block1, c);

+Colour(Block1, Blue).

Furthermore, suppose that the second plan-rule has contextconditionColour(b, c)∧=(b, Block1),

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 114

along with the following plan-body:

. . . ;

−Colour(b, c);

+Colour(b, Blue).

Then, observe that, according to Definition 12, literalColour(Block1, Blue) is a must literal of the

event-goal, because the literal will be true in the final state resulting from any successful execution

of the event-goal (i.e., irrespective of the plan-rule chosen to achieve it). However, according to the

algorithm, literalColour(Block1, Blue) is only a may literal of the event-goal, because the literal

is not a must literal of all plan-bodies associated with the event-goal.

e0

R0

→
a0 p e1

OR
R1¬p

→
a1 a2

R2q

a3 r

Finally, consider the plan-ruleR0 in the above figure. Suppose the following: the postcondition

of actiona0 is p; the postcondition of actiona3 is r; propositionr is not mentioned anywhere else;

the context condition of plan-ruleR1 is¬p; the context condition ofR2 is q; and that all remaining

context conditions and preconditions aretrue. Then, note that since literal¬p in the context

condition ofR1 is clobbered by literalp brought about bya0, plan-ruleR1 is never applicable.

Consequently, according to Definition 12, literalr is a must literal ofR0 ande0. However, since

the algorithm will not realise thatR1 is never applicable,r is classified as only a may literal ofR0

ande0.

4.3 Finding Hybrid-Plans

So far, we have shown how to compute summary information of event-goals mentioned in the

plan-library. In this section, we show how the domain information for classical planning is con-

structed, in particular, how abstract actions are constructed using event-goals and their summary

information. Moreover, we show how hybrid-plans are obtained using this domain information.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 115

In what follows, we assume, without loss of generality, thatno two event-goal types mentioned

in a given plan-libraryΠ have the same predicate symbol, and that no event-goal type mentioned in

Π has the same symbol as an action mentioned inΛ.6 In order to create the domain information for

classical planning given a plan-library and an action-library, we first obtain using Algorithm 4.1

(Summarise) the set∆ of summary information of event-goal types mentioned in theplan-library.

We then create an operator for each event-goal type in∆ as follows. First, we obtain the name

of the operator by adding to the name of the event-goal variables occurring in its precondition.

This is necessary because an operator nameact needs to contain all free variables occurring in its

preconditionψ (Ghallab et al., 2004, p. 28). Next, we take as the precondition of the operator the

precondition associated with the event-goal. Finally, we take as the postcondition of the operator

the set of must literals of the event-goal.7

Formally, given the set∆ = Summarise(Π,Λ) for some plan-libraryΠ and action-libraryΛ,

we extract the set of abstract operators as follows:

A(∆) = {e(~x, ~y) : ψ← Φ+;Φ− | 〈e(~x), ψ, Lmt, Lmn〉 ∈ ∆,Φ− = {l | ¬l ∈ Lmt},

Φ+ = {l | l ∈ Lmt, l is positive}, ~y are the variables occurring inψ

but not in~x}.

The domain information used as input for our classical planner is the setΛ ∪ A(∆), that is,

the set of newly created abstract operators together with the agent’s existing action-library. We

include the existing action-library in the domain information in order to not unnecessarily miss

existing solutions.

At runtime, wherever it is desirable to apply classical planning to achieve some goal stateG

(e.g., at a programmer specified point in a plan-body), the domain information, the belief baseI of

the agent, and the goal state can be used with any classical planner to obtain a solution.8 The only

requirement on the classical planner is, of course, that it should be able to handle the expressivity

of our operators. Specifically, the planner should be able tohandle negative goals; preconditions

and postconditions containing restricted first order atoms, in particular, atoms with variables and

6Recall that two event-goalseande′ have the same type if they have the same predicate symbol and arity. Moreover,
as usual, given any event-goale(~t), we usee(~x) to denote its type, where|~x| = |~t| and~x is a vector of distinct variables.

7Recall from Definition 12 that variables occurring in the must literals of an event-goal will also occur in the event-
goal.

8We use Metric-FF(Hoffmann, 2003).

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 116

constants but no function symbols; and preconditions with disjunction, negation, and equality.

From the classical planner’s point of view, the domain information and solutions are composed

entirely of primitive actions, despite the fact that some ofthem may represent event-goals.

Once a solution is found, abstract actions present in the solution (if any) need to be mapped

back into their corresponding ground event-goals. More precisely, given a primitive solutionσ ∈

sol(I,G,Λ ∪ A(∆)), we obtain the hybrid-plan (i.e., a partially-ordered set of primitive actions

and event-goals) corresponding toσ with respect toΠ, denoted bŷσΠ, as follows:

σ̂Π = [s, φ], where

s = {(i : acti) | acti ∈ σ, there is no event-goal mentioned inΠ having as its symbol

the symbol ofacti } ∪ {(i : e(t1, . . . , tm)) | e(t1, . . . , tn)i ∈ σ, e(~t′m) is an event-goal

mentioned inΠ,m≤ n};

φ =
∧{i ≺ j | i, j ∈ {1, . . . , |σ|}, i < j}.

For example, supposeσ = act1 ·act2 ·act3, whereact1 andact3 are primitive actions,

and the symbol ofact2 matches the symbol of event-goale(x, y) mentioned inΠ.

Moreover, supposeact2 = e(P,Q,R). Then,σ̂Π = [s, φ], where

s = {(1 : act1), (3 : act3)} ∪ {(2 : e(P,Q)}, and

φ = 1 ≺ 2∧ 1 ≺ 3∧ 2 ≺ 3.

In particular, the third argument of abstract actione(P,Q,R) ∈ σ is removed. The

reason an extra third argument is included in the name of the abstract operator

e(x, y, z) is because, although variables (e.g.,z) occurring in plan-rules associated

with event-goale(x, y) do not have to also occur in the event-goal, by the definition

of an operator (Ghallab et al., 2004, p. 28), any variable occurring in the precondi-

tion or postcondition of operatore(x, y, z) must also occur in the operator name.

Unfortunately, hybrid-plans obtained in this manner are not necessarily correct, that is, there

might not exist a viable decomposition of the hybrid-plan with respect to the planning problem.

This is because of potential conflicts between effects brought about by event-goals and the pre-

conditions of other event-goals in the hybrid-plan. In the next section, we will show why such

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 117

conflicts occur, and provide techniques for detecting such conflicts.

4.4 Validating Hybrid-Plans

Since abstract operators do not encode the may literals of their corresponding event-goals, this en-

tails that, although the classical planner will find correctplans for the given planning problem with

respect to the given encoding of the abstract and primitive operators, the corresponding hybrid-

plan will not necessarily have a decomposition that solves the planning problem. This is because,

when a hybrid-plan is decomposed, it is possible that a may literal brought about by the decom-

position of an event-goal conflicts with a precondition encountered during the decomposition of

some other event-goal, as shown in the following example.

Suppose hybrid-plan [{(1 : e1), (2 : e2)}, 1 ≺ 2] is obtained for initial state{p, r} and

goal state{s} via classical planning as described in the previous section, wheree1

ande2 have following summary information:

• the precondition ofe1 ande2 is respectivelyp andq∧ r;

• the set of must literals ofe1 ande2 is respectively is{q} and{s}; and

• the set of may literals ofe1 ande2 is respectively{¬r} and∅.

Now, observe that if the decomposition ofe1 brings about may literal¬r, then

the state resulting from the execution ofe1 is {p, q,¬r}. Consequently, it is not

possible to decomposee2, because its precondition (i.e., all of its decompositions)

requirer to hold.

Because of this potential complication due to may literals,it is necessary to validate the hybrid-

plan that is obtained, to ensure that it is viable. To this end, we perform two checks. We first

perform a simple polynomial-time check to ascertain whether the hybrid-plan is potentially incor-

rect. If this is the case, we perform a second check using HTN planning to determine whether the

hybrid-plan is actually incorrect.

The first check involves determining whether there is any literal mentioned in the precondition

of an event-goal in the hybrid-plan such that this literal ispossibly clobbered by a may literal of

some other event-goal in the hybrid-plan. This process is shown next. For convenience, given a

set of summary information∆, with 〈P, φ, Lmt, Lmn〉 ∈ ∆, we use functionpre[P,∆] = φ, function

must[P,∆] = Lmt, and functionmen[P,∆] = Lmn. Moreover, given a totally-ordered hybrid-plan

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 118

h = [s, φ] and a goal stateG, we usehG to denote a modified version ofh that incorporates

the goal state, that is,hG = [s ∪ {(nG : actG)}, φ ∧ (nlast ≺ nG)], where: (i) actG is an action

whose corresponding operator’s precondition is the goal state, and whose corresponding operator’s

postcondition is the empty set;(ii) nG is a task label not occurring inh; and(iii) n last is the task

label of the labelled task ordered to occur after all other labelled tasks inh. This modification toh

ensures that the check for correctness takes into account the fact that, as highlighted in Definition

8, hybrid-planh must bring about the given goal state.

Then, letH be a hybrid planning problem; let∆in = Summarise(Π,Λ); let σ ∈ sol(I,G,Λ ∪

A(∆in)); let hybrid-planh = [s, φ] = σ̂Π; and let∆ =

{〈e, φ, Lmt, Lmn〉θ | 〈e, φ, Lmt, Lmn〉 ∈ ∆in, (n : e′) ∈ s, e′ = eθ} ∪

{〈act, ψ, L, L〉θ | (n : act′) ∈ s, act : ψ← Φ+;Φ− ∈ Λ, act′ = actθ,

L = Φ+ ∪ {¬b | b ∈ Φ−}}.

We say that hybrid-planh is correct with respect toH if for each (n1 : e1), (n2 : e2) ∈ sG,

with n1 , n2 and hG = [sG, φG], literal l2 mentioned inpre[e2,∆], and literal l1 ∈ men[e1,∆]

such that(i) l2θ2 = l1θ1, for someθ1, θ2, wherel2θ2 is ground;(ii) l 1θ1, l1θ1 < must[e1,∆]; and

(iii) φG |= (n1 ≺ n2): there exists (n′ : e′) ∈ sG such thatφG |= (n1 ≺ n′) ∧ (n′ ≺ n2), and

l1θ1 ∈ must[e′,∆] or l1θ1 ∈ must[e′,∆]. Otherwise, we say thath is potentially incorrectwith

respect toH .

In words, for a hybrid-planh to be considered correct, there should not be a literall2 in the

precondition of some event-goale2 in h such that a may literal of some earlier event-goale1 in

h can potentially become the negation ofl2, unlessl2 or its negation is also a must literal of an

event-goale′ that occurs betweene1 ande2.9 Note that, although this condition issufficient to

determine whether a hybrid-plan is correct, the condition is notnecessaryto determine whether a

hybrid-plan is correct. Therefore, given a correct hybrid-plan, the algorithm will not necessarily

infer that it is correct; however, whenever the algorithm does infer that the hybrid-plan is correct,

this is guaranteed to be the case.

Theorem 8. If a hybrid-plan h is correct with respect to a hybrid planning problemH , then h is

9Note that because the negation ofl2 is a must literal ofe′, this guaranteedclobbering ofl2 by e′ does not makeh
invalid — the planner has already accounted for this clobbering. Hence, anypotentialclobbering ofl2 by event-goals
occurringbefore e′ cannot makeh invalid either.

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 119

a hybrid-solution forH .

Proof. Let us assume the contrary, i.e., thath is correct, but thatsol(hG,I,D) = ∅, wherehG =

[sG, φG] is h modified to take the goal state into account. Suppose that~e = e1 · . . . · em is the

sequence of (ground) tasks corresponding to the (totally-ordered) hybrid-planhG — i.e., there is a

permutation (n1 : e1) · . . . · (nm : em) of sG such that for eachni , n j , with i < j andi, j ∈ {1, . . . ,m}, it

is the case thatφG |= (ni ≺ n j). Informally, sincesol(hG,I,D) = ∅, there must be at least one task

ei ∈ ~e that cannot be successfully decomposed. Formally, the following condition must hold: there

is a taskei ∈ ~esuch that for all primitive plan solutionsσ ∈ sol([{(1 : e1), . . . , (i−1 : ei−1)},∧{(j ≺

k) | j, k ∈ {1, . . . , i − 1}, j < k}],I,D), it is the case thatsol([{(1 : ei)}, true],I′,D) = ∅, where

I′ = Res∗(σ,I,Op) is the result of applyingσ in I. Consequently, there does not exist a successful

HTN executionC1 · . . . · Ck of ei with C1|B = I
′ (Theorem 2, p. 76), and we can infer from the

definition of a Precondition (Definition 11, p. 96) thatI′ 6|= pre[ei ,∆]. Then, informally, it is not

difficult to see that there must exist a literall mentioned inpre[ei ,∆] and a taskex, with 1≤ x < i,

such that some “hidden” mentioned literal ofex conflicts with l, that is,(i) there is a successful

HTN executionC1 · . . . ·Ck of ex, with Ck|B |= lθ, C1|B 6|= lθ, andlθ, lθ < must[ex,∆]; and(ii) there

is no taskey, with x < y < i, such thatlθ ∈ must[ey,∆] or lθ ∈ must[ey,∆]. From condition(i), it

follows that literall is in the set of literals captured by taskex (Definition 14), and from Theorem

7, it follows thatl ∈ men[ex,∆] (up to variable substitutions). Finally, combined with condition

(ii) , it follows thath is not a correct hybrid-plan — a contradiction. �

If a hybrid-plan is found to be correct, then it can either be executed, or as we will show in

the next chapter, improved. However, if a hybrid-plan is found to be potentially incorrect, then we

determine whether it is (actually) incorrect. To this end, given a hybrid planning problemH, we

use HTN planning to determine whetherh is a hybrid-solution forH.

It is worth noting that it may be possible torepair an incorrect (totally-ordered) hybrid-plan

in order to make it correct, by adding actions to it, removingactions from it and/or removing

constraints from its constraint formula. Let us illustratethis with an example.

Suppose we have the total-order hybrid-planh = [{(1 : e1), (2 : e2), (3 : e3)}, 1 ≺

2∧ 2 ≺ 3], where the preconditions ofe1, e2 ande3 are respectivelyp, q andr; the

set of must literals ofe1, e2 ande3 are respectively{r}, {w} and{s}; the set of may

literals ofe1, e2 ande3 are respectively∅, {¬r} and∅; the initial state is{p, q}; and

CHAPTER 4. A FIRST PRINCIPLES PLANNING FRAMEWORK FOR BDI SYSTEMS 120

the goal state is{w, s}. Moreover, suppose that may literal¬r of e2 is unavoidable,

that is, literal¬r is true at the end of every successful decomposition ofe2.

Then, observe that hybrid-planh is incorrect, as may literal¬r of e2 clobbers

the preconditionr of e3. However, we can repairh by removing ordering constraint

2 ≺ 3 from its constraint formula, which then allowse3 to precedee2; in this way,

may literal¬r of e2 is brought about only aftere3 is executed, and the clobbering of

e3’s precondition can be avoided.

Alternatively, if there is an actionact in the action-library that brings about

literal r and whose precondition is applicable in state{p,q}, we could repair the

original hybrid-planh by placingact betweene2 ande3 to obtain hybrid-plan [{(1 :

e1), (2 : e2), (4 : act), (3 : e3)}, 1 ≺ 2 ∧ 2 ≺ 3 ∧ 2 ≺ 4 ∧ 4 ≺ 3]. In this way, the

clobbering ofe3’s precondition can be avoided.

It is not difficult to see that, in some situations, we can only repair hybrid-plans by adding

and/or removing actions – i.e., removing constraints will not work. However, in general, repairing

a (sequential or partially-ordered) plan in this manner is as hard as generating a new plan from

scratch (Nebel and Koehler, 1995). Therefore, if a hybrid-plan is found to be incorrect, we obtain

a new hybrid-plan via classical planning, using the techniques discussed in Section 4.3.

Chapter 5
Obtaining a Preferred First Principles

Plan†

In the previous chapter, we provided the means for obtainingcorrect hybrid-plans, i.e., hybrid-

solutions, for a given planning problem. In particular, we showed how to summarise the plan-

library, how to create operators using summary informationof event-goals, and how to obtain

hybrid-plans that are correct, via first principles planning. In this chapter, we investigate how to

obtainpreferredhybrid-solutions. We will present different notions of preferred hybrid-solutions,

properties of such hybrid-solutions, and data structures and algorithms for realising one of these

notions.

In first principles planning, a plan is said to be a solution for a planning problem if the plan

is correct relative to the planning problem, i.e., if executing the plan from the initial state will

result in the goal state being met. Correctness is an important property that all plans must meet. In

addition to correctness, many domains require that plans adhere to certain other properties. This

is because correct plans can still have shortcomings, such as redundancyandnon-minimality. A

solution for a planning problem is said to beredundantif one or more actions can be removed

from the solution to obtain a plan that is still a solution forthe problem. A solution of lengthn

for a planning problem is said to benon-minimalif a solution of length less thann exists for the

problem.

Similarly, correct hybrid-plans, i.e., hybrid-solutions, can also have shortcomings. A signifi-

†Part of the work presented in this chapter has been previously published in (de Silva et al., 2009).

121

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 122

cant shortcoming is that a hybrid-solution can be redundant, i.e., every primitive solution produced

by the hybrid-solution, for the given planning problem, canbe redundant. This means that the

agent cannot avoid executing one or more redundant actions during its execution of the hybrid-

solution. Intuitively, redundancy occurs as a result of tasks existing in the hybrid-solution that are

unnecessary and/or overly abstract. Since tasks can be thought of as a collection of other tasks,

a higher level of abstraction implies a larger collection oftasks. Consequently, having overly

abstract tasks in a hybrid-solution results in the hybrid-solution producing, in addition to the nec-

essary actions, also unnecessary (redundant) actions.

Let us illustrate our overall framework with an example. Consider the Mars Rover

agent of Figure 4.4 (p. 106), excluding the optional plan-rulesR2 andR7. Suppose

that at some point, the agent invokes a planner, which returns the hybrid-solution

h shown in Figure 5.1(a). Consider next the actual execution of hybrid-solutionh

shown in Figure 5.1(c). Now, notice that breaking the connection after sending the

results forRock2, and then re-establishing it before sending the results for Rock3 are

unwarranted, or redundant steps. Such redundancy is brought about by the overly

abstract taskPerformSoilExperiment. What we would prefer to have is thenon-

redundanthybrid-solutionh′ shown in Figure 5.1(b). This solution avoids the re-

dundancy inherent in the initial solution, yet still retains much of the structure of

the abstract plans provided by the programmer. In particular, we retain the abstract

tasksNavigateandObtainSoilResults, which would allow us to achieve these tasks

in an alternative manner to that shown here, if such existed and was warranted by

the situation during execution. The replacement of each ofPerformSoilExperiment

andTransmitSoilResultswith a subset of their components is clearly motivated in

order to remove redundancy.

It is important to note that, while our framework does retainas much as possible the structure

of the abstract plans provided by the user, it may be the case that the user does not want certain

important tasks to be removed at all from plans, even if thosetasks are redundant. For example, as

illustrated in (Kambhampati et al., 1998), although the task of buying a ticket when travelling by

bus may not be necessary for achieving the goal of getting to the destination, one may still want to

always perform this task when travelling by bus. Here, for simplicity, we have used “redundancy”

as the sole criteria for classifying a task as unnecessary for the required goal. However, a more

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 123

1. Navigate(Rock1,Rock2)
2. PerformSoilExperiment(Rock2)
3. Navigate(Rock2,Rock3)
4. PerformSoilExperiment(Rock3)

(a) Hybrid-solutionh

1. Navigate(Rock1,Rock2)
2. ObtainSoilResults(Rock2)
3. EstablishConnection
4. SendResults(Rock2)
5. Navigate(Rock2,Rock3)
6. ObtainSoilResults(Rock3)
7. SendResults(Rock3)
8. BreakConnection

(b) Hybrid-solutionh′

1. Navigate(Rock1,Rock2)
(A) CalibrateViaGPS
(B) Move(Rock1,Rock2)

2. PerformSoilExperiment(Rock2)
(A) ObtainSoilResults(Rock2)

(i) PickSoilSample(Rock2)
(ii) AnalyseSoilSample(Rock2)

(a) GetMoistureContent(Rock2)
(b) GetSoilParticleSize(Rock2)

(iii) DropSoilSample
(B) TransmitSoilResults(Rock2)

(i) EstablishConnection
(ii) SendResults(Rock2)
(iii) BreakConnection

3. Navigate(Rock2,Rock3)
(A) CalibrateViaGPS
(B) Move(Rock2,Rock3)

4. PerformSoilExperiment(Rock3)
(A) ObtainSoilResults(Rock3)

(i) PickSoilSample(Rock3)
(ii) AnalyseSoilSample(Rock3)

(a) GetMoistureContent(Rock3)
(b) GetSoilParticleSize(Rock3)

(iii) DropSoilSample
(B) TransmitSoilResults(Rock3)

(i) EstablishConnection
(ii) SendResults(Rock3)
(iii) BreakConnection

(c) Execution trace of hybrid-solutionh

Figure 5.1: (a) A redundant hybrid-solutionh; (b) a hybrid-solutionh′ with redundancy (actions
in bold) removed; and (c) the execution trace ofh.

flexible approach could be used for classifying a task as unnecessary for the required goal. We

give insights into such an approach in Chapter 7.

As we can see from the above example, non-redundant hybrid-solutions favour specific tasks

over abstract tasks. On the other hand, theuser intentnotion discussed in the previous chapter

(Section 4.1, p. 87) favours abstract tasks over specific tasks. Recall that, intuitively, a hybrid-

solution conforms to user intent if it can beparsedin terms of the method-library; therefore, any

hybrid-solution composed entirely of arbitrary abstract tasks will conform to user intent, whereas

only certain hybrid-solutions containing primitive tasks(actions) will conform to user intent. In

this chapter, we make the preference for abstract tasks evenstronger by requiring that hybrid-plans

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 124

are as abstract as possible, ormaximally-abstract. Intuitively, a maximally-abstract hybrid-plan is

one which does not contain a collection of abstract tasks which could potentially be combined into

a single (more) abstract task, thus improving the abstraction level of the hybrid-plan. Therefore,

maximal-abstractness ensures that hybrid-plans only contain the most abstract tasks possible. The

advantage of such hybrid-plans is that, in addition to intuitively capturing the user intent property,

they support flexibility and robustness in execution, i.e.,they are better able to deal with failure

during execution, by trying alternative reductions on the failure of less abstract tasks.

As one can observe, while non-redundancy favours specific tasks, the need for flexibility and

robustness favours abstract tasks. Consequently, the mainaim of this chapter is to investigate

what the desired level of abstraction is for hybrid-plans. In particular, we focus on finding non-

redundant hybrid-solutions that are maximally-abstract,but alsominimal, where a minimal hybrid-

solution is one that is a non-redundant hybrid-solution from which no tasks can be removed to

obtain another non-redundant hybrid-solution. To this end, we define three compound notions of

hybrid-plans, based on the notions of minimality, non-redundancy and maximal-abstraction. The

strongest notion is called aminimal non-redundant maximal-abstraction (MNRMA) hybrid-plan,

the second strongest notion is called aMNRMA specialisation of a hybrid-plan, and the weakest

notion is called apreferred specialisation of a hybrid-plan.

A MNRMA hybrid-plan is one that is at the ideal level of abstraction. This notion is defined

relative to all other conceivable hybrid-plans for the given hybrid planning problem. Consequently,

finding a MNRMA hybrid-plan is very computationally expensive. The intermediate notion –

MNRMA specialisations of a hybrid-plan – defines the desiredlevel of abstraction for agiven

hybrid-plan relative to the space ofdecompositionsof the hybrid-plan. Although still computa-

tionally expensive, this notion is conceptually closer to the final notion – MNRMA specialisation

of a hybrid-plan, which defines the desired level of abstraction for a given hybrid-plan relative to

a singledecomposition of the hybrid-plan. A preferred specialisation for a given hybrid-plan can

be computed in polynomial time.

This chapter is organised as follows. First, in Section 5.1,we give some definitions, conven-

tions and preliminary notions. Second, in Section 5.2, we investigate the three desired proper-

ties of hybrid-plans, that is, non-redundancy, minimalityand maximal-abstractness, and we then

formulate our ideal (MNRMA) notion of a hybrid-plan. Third,in Section 5.3, we discuss the in-

termediate notion: MNRMA specialisations of a hybrid-plan, and in Section 5.4, we discuss the

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 125

weakest notion: preferred specialisation of a hybrid-plan. Finally, in Section 5.5, we provide data

structures and algorithms for obtaining preferred specialisations of a given hybrid-plan.

5.1 Preliminary Definitions

In this chapter, we make use of the notion of alabelled primitive plan, i.e., a primitive plan

constructed from labelled tasks rather than un-labelled tasks. More precisely, alabelledprimitive

plan τ = (n1 : t1) · . . . · (nm : tm) is a sequence of labelled tasks. We will useτ to denote

labelled primitive plans, andσ to denote (un-labelled) primitive plans. We will sometimesblur

the distinction between primitive plansσ and labelled primitive plansτ – in particular, we will

use labelled primitive plans in place of (un-labelled) primitive plans with the obvious meaning.

The other conventions we use in this chapter are the following: (i) h for hybrid-plans or hybrid-

solutions,(ii) d for task networks, and(iii) λ for decomposition traces (introduced in Section 5.4).

In HTN planning, it is sometimes convenient to specify a method which, given a particular

condition, amounts to “doing nothing.” However, in HTN syntax, conditions cannot be specified

inside methods that have no tasks. Moreover, the semantics of HTN does not allow conditions

to be specified on compound tasks that are eventually reducedinto the empty set. For specifying

conditions in such situations,dummyprimitive tasks, which we callǫ tasks in this chapter, are

used. Althoughǫ tasks are still primitive tasks, they have no precondition or effect; therefore,

executing them amounts to “doing nothing.”

To illustrate whyǫ tasks are necessary in HTN planning, consider an elevator

domain consisting of the following two methods for handlingthe compound task

go-to-bottom, which keeps moving down one floor until the ground floor (floor0)

is reached:

(go-to-bottom, [{(1 : move-down), (2 : go-to-bottom)}, (1 ≺ 2)∧ (¬Floor(0), 1)])

(go-to-bottom, [{(1 : ǫ)}, (Floor(0), 1)]).

Observe that without theǫ task in the second method, there is no way of

specifying that the elevator should stop moving down once the ground floor is

reached.1

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 126

We make two reasonable assumptions regardingǫ tasks. First, sinceǫ tasks are used solely

for the purpose of specifying conditions in the two situations mentioned above, we assume in this

chapter, without loss of generality, that allǫ tasks mentioned in primitive plans in setsol(d,I,D)

of HTN primitive plan solutions have been removed. Second, we assume that given any method,

its task network is such that the set of labelled tasks is non-empty (even if its constraint formula is

true), i.e., that the set of labelled tasks contains at least one labelledǫ task.

Finally, we assume, without loss of generality, that labelswithin a HTN task network are

unique, and that its constraint formula does not mention anytask labels that do not occur in the

task network’s set of labelled tasks.

5.2 MNRMA Hybrid-Plans

In this section, we consider three inter-related concepts,and define these precisely in order to

obtain an unambiguous description of an “ideal” hybrid-plan. These concepts we callmaximal-

abstractness, minimalityandnon-redundancy. Intuitively, given a hybrid planning problemH , a

non-redundanthybrid-solution forH is one which can produce (via one or more HTN reductions)

a primitive plan that is a non-redundant solution forH ; aminimalhybrid-solution forH is a non-

redundant hybrid-solution forH from which no (primitive or non-primitive) tasks can be removed

to obtain a hybrid-solution that is still non-redundant forH; and a maximally-abstract hybrid-plan

is one which does not contain a collection of abstract tasks which could potentially be combined

into a single (more) abstract task.

More precisely, a maximally-abstract hybrid-plan is one that is not a “refinement” of any other

hybrid-plan. Intuitively, the refinements of a task network(or hybrid-plan) are all the “interme-

diate” or “partially reduced” task networks encountered, during the HTN search for primitive

plan solutions of the given task network. The notions refinement, maximal-abstractness, non-

redundancy and minimality are illustrated in the followingexample.

Consider the HTN domain in Figure 5.2. Observe that the refinements of hybrid-

1One may wonder whether the following encoding works:
(go-to-bottom, [{(1 : move-down), (2 : go-to-bottom)}, (1 ≺ 2)∧ (¬Floor(1), 1)∧ (¬Floor(0), 1)])
(go-to-bottom, [{(1 : move-down)}, (Floor(1), 1)]).
This encoding will not work when the initial state is such that the elevator is at floor 0. In this case, no methods of
go-to-bottomcan be applied and the search fails.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 127

solutiont0 in the figure is basically the following set:

{t0, t1 · t2, t1 · t3 · t4,

t1 · t3 · a3, t1 · a2 · t4, t1 · a1 · a2 · t4,

t1 · a2 · a3, t1 · a1 · a2 · a3, a1 · t2,

a1 · t3 · t4, a1 · t3 · a3, a1 · a2 · t4,

a1 · a1 · a2 · t4, a1 · a2 · a3, a1 · a1 · a2 · a3}.

Refinementt1 · a1 · a2 · t4 is obtained by reducingt0 three times: first,t0 is reduced

using methodm0 to obtain task networkt1 · t2; second,t1 · t2 is reduced using method

m2 to obtain task networkt1 · t3 · t4; and third,t1 · t3 · t4 is reduced using methodm4 to

obtain task networkt1 · a1 · a2 · t4. Similarly, refinementa1 · a2 · t4 is obtained using

methodsm0, m1, m2, andm3; refinementa1 · a1 · a2 · t4 is obtained using methods

m0, m1, m2, andm4; refinementa1 · a2 · a3 is obtained using methodsm0, m1, m2,

m3, andm5; and refinementa1 · a1 · a2 · a3 is obtained using methodsm0, m1, m2,

m4, andm5. The rest of the refinements are obtained in a similar manner.

Next, consider the table below, which shows some of the different hybrid-

solutions possible, for the hybrid planning problem consisting of initial state{p},

goal state{s}, and the HTN domain in Figure 5.2. Based on the above refinements,

we can see that hybrid-solutiont2 is maximally-abstract because it is not a refine-

ment of any other hybrid-solution (t0 does not have a refinement that matchest2

alone). On the other hand, hybrid-solutiont1 · t2 is not maximally-abstract because

it is a refinement oft0.

Hybrid-solutiont0 is non-redundant because it can produce the non-redundant

primitive solutiona1 · a2 · a3, by selecting methods in the following sequence:m0,

m1, m2, m3, andm5. Hybrid-solutiont5 · t2 is redundant because all of its primitive

solutions –a4 ·a5 ·a2 ·a3 anda4 ·a5 ·a1 ·a2 ·a3 – are redundant; solutiona4 ·a5 ·a2 ·a3

is redundant because actiona5 or a2 can be removed from the solution and still have

a solution, and solutiona4 · a5 · a1 · a2 · a3 is redundant because actionsa4 anda5

(or other combinations of actions) can be removed from the solution and still have a

solution.

Hybrid-solution t5 · t4 is minimal because(i) it is a non-redundant hybrid-

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 128

solution, and(ii) none of its proper subsequences (t5 and t4) are non-redundant

hybrid-solutions. Finally, althought1 · t2 is non-redundant, it is not minimal, be-

cause a proper subsequence of it –t2 – is a non-redundant hybrid-solution.

H-S. N- M M-A MNRMA

t0
√ √ √ √

t2
√ √ √ √

t5 · t4
√ √ √ √

t3 · t4
√ √ × ×

t5 · t2 × × √ ×

t1 · t2
√ × × ×

t1 · t3 · t4
√ × × ×

t5 · t3 · t4 × × × ×

t0

m0

→
t1

m1

a1

t2

m2

→
t3

OR
m3

a2

m4

→
a1 a2

t4

m5

a3

t5

m6

→
a4 a5

t6

m7

→
a3 a6

Action Prec. Post.
a1 p q
a2 q r
a3 r s
a4 p q
a5 q r
a6 s t

compound task

method

action

Figure 5.2: A simple totally-ordered HTN domain. An arrow below a method indicates that its
steps are ordered from left to right. The table shows the preconditions and postconditions of the
actions.

5.2.1 Non-Redundancy and Minimality

In what follows, we shall make precise the notions of non-redundancy and minimality for hybrid-

solutions. To define non-redundancy, we extend from Fink et al. (Fink and Yang, 1992) the notion

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 129

perfect justificationdefined for primitive solutions.

Definition 15. (Perfect Justification (Fink and Yang, 1992)) A primitive solutionσ for a classical

planning problemC = 〈I,G,Op〉 is a perfect justificationfor C if there does not exist a proper

subsequenceσ′ of σ such thatσ′ is a primitive solution forC. �

It is easy to see from this definition that a perfect justification can be obtained from any given

primitive solution. We say that a hybrid-solution isnon-redundantif it can produce at least one

perfect justification.

Definition 16. (Non-redundant Hybrid-Solutions) LetH = 〈I,G,D〉 be a hybrid planning prob-

lem. Then,h is aweakly non-redundanthybrid-solution forH if there existsσ ∈ sol(h,I,D) ∩

sol(I,G,Op) such thatσ is a perfect justification for problem〈I,G,Op〉. Also, d is strongly

non-redundantif every σ ∈ sol(d,I,D) ∩ sol(I,G,Op) is a perfect justification for problem

〈I,G,Op〉. �

In the rest of this chapter, when we refer to non-redundancy,we are referring to the weak

notion. Next, we define the notionminimality. Intuitively, we say that a non-redundant hybrid-

solutionh is minimal, if there is no substructure ofh which gives the same result. More precisely, a

non-redundant hybrid-solutionh = [s, φ] for a hybrid planning problemH is aminimal non-redundant

hybrid-solutionfor H if there does not exist a non-redundant hybrid-solutionh′ = [s′, φ′] for H

such thats′ ⊂ s, whereφ′ is obtained fromφ by replacing withtrue every (ordering) constraint

that mentions some task label occurring in the sets\ s′.

Note that minimality is a stronger notion than non-redundancy. This is illustrated in the table

of the previous example, with hybrid-solutionst1 · t2 andt1 · t3 · t4, which are non-redundant but not

minimal. We do not define minimality and non-redundancy as independent concepts because this

can lead to a situation in which there is a hybrid-solution that is non-redundant and non-minimal,

but all minimal hybrid-solutions that can be obtained from it are redundant.

Let us illustrate with an example how such a situation can arise. But first, let us

assume that minimality is defined relative to hybrid-solutions, rather than relative to

non-redundant hybrid-solutions, i.e., a minimal hybrid-solution is a hybrid-solution

from which no tasks can be removed to obtain a hybrid-plan that is still a hybrid-

solution.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 130

Now, let us consider hybrid-solutiont0 · t1 for the hybrid planning problem con-

sisting of initial state{p, u}, goal state{s}, and the HTN domain below. Observe that

this hybrid-solution is non-redundant and not minimal; it is non-redundant because

it can produce the non-redundant primitive solutiona1 ·a2 ·a3, by selecting methods

m0 andm2, and it is not minimal because its proper subsequencet0 is also a hybrid-

solution –t0 can produce the primitive solutiona1 · a2 · a3 · a4, by selecting method

m1. However, although hybrid-solutiont0 is minimal, it is redundant, because its

(only) primitive solutiona1 · a2 · a3 · a4 contains the redundant actiona4.

t0

OR
m0

→
a1 a2

m1

→
a1 a2 a3 a4

t1

m2

a3

Action Prec. Post.

a1 p q

a2 q r

a3 r s

a4 u v

Consequently, although it may be possible to extract a hybrid-solution that is non-redundant

(alone), and one that is minimal (alone) from a given hybrid-solution, it may not be possible to

extract from the given hybrid-solution one that is both non-redundant and minimal. To avoid such

situations, we define minimality as a strengthening of non-redundancy.

5.2.2 Maximal-Abstractness

Next, after building the necessary foundations, we will define the third desirable property of

hybrid-plans:maximal-abstractness. As mentioned earlier, a hybrid-plan is maximally-abstract

if it does not match a refinement of any other hybrid-plan, where the refinements of a given task

network are all the “intermediate” task networks encountered, during the HTN search for primitive

plan solutions of the task network. Although the HTN semantics of Erol et al. (Erol et al., 1996)

provides constructsol(d,I,D) for representing the primitive plan solutions of a task network d

(see Section 2.3.2), there is no construct in the semantics for representing such “intermediate” task

networks. Therefore, in this section we extend the HTN semantics of (Erol et al., 1996) with such

a construct.

Technically, therefinementsof a task networkd is the set of all task networks obtained by

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 131

reducingd zero or more times; arefinementis a member of this set. We define refinements of

a task networkd as the reflexive transitive closure of the set of HTN reductions red(d,D) (see

Appendix A.3). In the definition below,refn(d,D)n is the set of task networks obtained fromn

reductions ofd, andrefnω(d,D) is the set of task networks obtained from all finite reductions of

d.

Definition 17. (Refinements) Letd andD be a task network and an HTN domain, respectively.

The set ofrefinementsof d relative toD, denoted byrefn(d,D), is defined asrefn(d,D) =

refnω(d,D), where

refn0(d,D) = {d};

refnn+1(d,D) =
⋃

d′∈refnn
(d,D)

red(d′,D);

refnω(d,D) =
⋃

n∈N0

refnn(d,D).

�

Notice that since a refinement of a task network isany“intermediate” task networkd encoun-

tered during the decomposition of the given task network, there is no guarantee that a refinement

will produce a primitive plan solution, i.e., it is possiblethatsol(d,I,D) = ∅, for all statesI and

for the HTN domainD in question.

To determine whether a given hybrid-planmatchesa given refinement, we need to determine

whether: (i) tasks in the hybrid-plan are also present in the refinement;(ii) ordering constraints

specified on tasks in the hybrid-plan are compatible with (i.e., do not conflict with) those specified

on tasks in the refinement; and(iii) the refinement produces any of the primitive plan solutions of

interest produced by the hybrid-plan.

The final check is necessary for the following reason. Even ifa refinement and hybrid-plan

contain the same labelled tasks and the same ordering constraints specified on them, the refinement

may still contain state and variable binding constraints, whereas the hybrid-plan (by definition) will

only contain ordering constraints. Consequently, the refinement may be more constrained than the

hybrid-plan, and possibly unable to produce any of the primitive plans that the hybrid-plan can

produce.

For example, let us consider Figure 5.3. The figure shows graphically the reduction

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 132

of hybrid-solutionh = [{(2 : t1), (3 : t2)}, (2 ≺ 3)] on the right, and the reductions

of hybrid-solutionh′ = [{(1 : t0)}, true] on the left. Observe that task networkd =

[{(2 : t1), (3 : t2)}, (p, 2)] in the figure is a refinement ofh′ – the former is obtained

from a single reduction of the latter. Observe, also, that the ordering constraint

(2 ≺ 3) of hybrid-solutionh is compatible with the ordering constraints ofd.

Now, supposeh andh′ are hybrid-solutions for initial state{¬p} and some goal

state. Suppose, further, that we wish to determine whetherh is maximally-abstract

relative to the set{(4 : a3) · (5 : a4) · (6 : a5) · (7 : t6)} of primitive plan solutions for

h. Although ordering constraints of hybrid-solutionh are compatible with those of

refinementd, and they both have the same tasks, the refinement cannot produce the

primitive plan solution (4 :a3) · (5 : a4) · (6 : a5) · (7 : a6) because the state constraint

of d – (p,2) – conflicts with initial state{¬p}. Sinceh′ does not have a refinement

that matchesh, we say thath is maximally-abstract.

On the other hand, suppose we have initial state{p} instead of{¬p}. In this case,

h is not maximally-abstract, because refinementd of hybrid-solutionh′ matchesh,

i.e., d andh have the same tasks, their ordering constraints are compatible, andd

can produce the primitive plan solution (4 :a3) · (5 : a4) · (6 : a5) · (7 : a6).

1 : t0

2 : t1

4 : a3 5 : a4

3 : t2

6 : a5 7 : a6

2 : t1

4 : a3 5 : a4

3 : t2

6 : a5 7 : a6(p, 2)

(4 ≺ 5)

(4 ≺ 5)

(6 ≺ 7)

(6 ≺ 7)

(2 ≺ 3)

Figure 5.3: Refinements for hybrid-solution [{(1 : t0)}, true] (left) and hybrid-solution [{(2 :
t1), (3 : t2)}, (2 ≺ 3)] (right) depicted graphically. Dashed rectangles represent constraints on
adjacent labelled tasks.

We can now define the notion maximally-abstract. We say that ahybrid-planh is maximally-

abstract if there is no other hybrid-plan such that one of itsrefinements matchh.

Definition 18. (Maximally-Abstract) LetD be an HTN domain andI be a state. Let∆ be a set of

hybrid-plans andh = [sh, φh] ∈ ∆ be a hybrid-plan in it. LetΣh ⊆ sol(h,I,D) be a set of primitive

plan solutions.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 133

Hybrid-planh is (strongly)maximally-abstractamong set∆ for Σh if there is no hybrid-plan

h′ = [sh′ , φh′] ∈ ∆ with |sh′ | < |sh| such that:

1. d1 ∈ refn(h′,D),

2. d2 = [sd2, φd2] is a ground instance and task label renaming ofd1 such thatsd2 ⊇ sh,

3. d3 = [sd2, φd2 ∧ φh], and

4. Σh ∩ sol(d3,I,D) , ∅;

moreover, ifΣh ⊆ sol(d3,I,D) also holds,h is weakly maximally-abstractamong∆ for Σh. �

In words, a hybrid-planh is (strongly) maximally-abstract among hybrid-plans in∆ for a

set of primitive plan solutionsΣh, if there is no shorter hybrid-planh′ in ∆ that can produceh

by refinements, without losingall of the primitive plan solutions inΣh. Similarly, h is weakly

maximally abstract among∆ for Σh if there is no shorter hybrid-planh′ in ∆ that can produceh by

refinements, without losinganyof the primitive plan solutions inΣh. In the rest of the chapter we

use the weaker notion of maximal-abstraction.

So far, we have defined the three desirable properties of hybrid-solutions: non-redundancy,

minimality, andmaximal-abstractness. Since ideally,2 a hybrid-solution should satisfy all three

properties, we will now define what “ideal” hybrid-solutions are, by combining the notions maximal-

abstractness and minimal non-redundancy. More precisely,to conform to this “ideal” notion,

a hybrid-solution must be minimal, and maximally-abstractrelative to the set of perfect justifica-

tions of the hybrid-solution. We call such “ideal” hybrid-plansminimal non-redundant maximally-

abstract(MNRMA) hybrid-plans.

Definition 19. (MNRMA Hybrid-Plans) A hybrid-planh is a minimal non-redundant maximal

-abstraction(MNRMA) for a hybrid planning problemH = 〈I,G,D〉 if and only if

1. h is a minimal non-redundant hybrid-solution forH ; and

2. h is a (strongly) maximally-abstract hybrid-plan amongall possible hybrid-plans for the set

Σ ∩ sol(h,I,D), whereΣ is the set of all perfect justifications for〈I,G,Op〉.

The set of all MNRMA plans forH is denoted MNRMA(H). �

2Although there may be other desirable properties of hybrid-solutions, we are only interested in the three mentioned.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 134

The definition states that a hybrid-plan is considered a MNRMA hybrid-plan if it is (i) a

maximally-abstract hybrid-plan with respect to all possible hybrid-plans, and the set of all perfect

justifications the hybrid-plan is able to produce, and(ii) a minimal (and hence non-redundant)

hybrid-plan.

The following theorem states that, whenever a hybrid planning problem can be solved, there

is, at least, one (ideal) MNRMA hybrid-plan.

Theorem 9. LetH = 〈I,G,D〉 be a hybrid planning problem. If sol(I,G,Op) , ∅, then there

exists an MNRMA forH .

Proof. Let Σnr be the set of all perfect justifications for〈I,G,Op〉, let σ ∈ sol(I,G,Op) be a

primitive solution, and letσ′ be a subsequence ofσ such thatσ′ ∈ Σnr. Moreover, leth1 = [{(i :

acti) | acti ∈ σ′},
∧{(i ≺ j) | i, j ∈ {1, . . . , |σ′|}, i < j}] be the hybrid-plan representingσ′. First,

supposeI |= G. Then, the theorem holds trivially, as|σ′| = 0 andh1 = [∅, true] is a MNRMA for

H . Next, supposeI 6|= G. Then, observe that hybrid-planh1 is a minimal non-redundant hybrid-

solution forH . If h1 is not a maximally-abstract hybrid-plan among all possiblehybrid-plans for

the set{σ′}, then according to Definition 18 (Maximally-Abstract), a more abstract hybrid-plan

exists, that is,MA(h2, h1, {σ′}) holds for some hybrid-planh2, whereMA(h′, h,Σ) (for any hybrid-

plansh = [sh, φh] and h′ = [sh′ , φh′], and set of primitive plansΣ ⊆ sol(h,I,D)) stands for the

conditions in Definition 18 (i.e.,|sh′ | < |sh|, d1 ∈ refn(h′,D), etc.).

Next, letmin(h) denote the set of minimal non-redundant hybrid-solutionshmin = [smin, φmin]

for H that can be obtained from a hybrid-planh = [sh, φh] (that is smin ⊆ sh, andφmin is obtained

from φh by replacing withtrue every constraint that mentions some task label occurring inthe

set sh \ smin). Now, if there is a hybrid-planh3 ∈ min(h2) such thath3 is a maximally-abstract

hybrid-plan among all possible hybrid-plans for the setΣnr ∩ sol(h3,I,D), thenh3 is a MNRMA

for H , and the theorem holds. Otherwise, for each hybrid-planh3 = [s3, φ3] ∈ min(h2), there

must exist a hybrid-planh4 such thatMA(h4, h3,Σ3) holds, whereΣ3 = Σnr ∩ sol(h3,I,D). This

reasoning can be continued forh4 = [s4, φ4] like we did before for hybrid-planh2. However,

observe that since|s4| < |s3| holds according toMA(h4, h3,Σ3), this reasoning can only be applied

a finite number of times until some hybrid-planhn, with hn = [{(n : t)}, true] (recall hybrid-plans

cannot mention state constraints) is reached for some compound taskt. Hybrid-planhn is then a

minimal non-redundant hybrid-solution forH , and also a maximally-abstract hybrid-plan among

all possible hybrid-plans for the setΣnr ∩ sol(hn,I,D). �

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 135

Unfortunately, it is not clear how one could compute an MNRMAfor a hybrid planning prob-

lem, without considering all possible hybrid-plans.3 Before we can develop, and show how to

implement, a weaker notion than MNRMA that looks for the most“preferred” specialisation of a

fixed hybrid-solution, in the next section we will develop anintermediate notion which, although

still not implementable, is conceptually closer to our finalimplementable notion.

5.3 MNRMA Specialisations of Hybrid-Plans

Rather than exploring the set of all conceivable hybrid-plans to find one that is an ideal MNRMA

hybrid-plan, we focus in this section on improving agiven hybrid-plan, within the confines of

its refinements, into one that contains no redundancy, while keeping it as abstract as possible.

While such improved hybrid-plans are not necessarily (globally) ideal MNRMA hybrid-plans,

they will still be ideal with respect to the space of hybrid-plans inherent in the refinements of the

given hybrid-plan. A hybrid-plan found by improving a givenhybrid-plan in this manner is called

anMNRMA specialisationof the given hybrid-plan. MNRMA specialisations of a hybrid-plan are

conceptually closer to the final implementable notion we will discuss in the next section, compared

with the ideal MNRMA notion discussed in the previous section.

Intuitively, a specialisationis a non-redundant hybrid-plan inherent in a refinement, with the

ordering enforced on tasks compatible with, but possibly more constrained than the ordering en-

forced on tasks in the refinement. More precisely, a specialisation of a refinement is asubsetof

the refinement, where the constraint formula of the subset has the following properties:(i) it does

not contain state constraints, and(ii) it is anextensionof the partially ordered constraint formula

in the refinement, i.e., the constraint formula of the subsetmay contain additional ordering con-

straints compatible with those of the refinement. Therefore, a specialisation can be totally ordered

even if its corresponding refinement is not. Observe that, byvirtue of the specialisation being a

subset of the refinement, all ordering constraints entailedby the refinement (on tasks in the subset)

are also entailed by the specialisation. We do not include inthe specialisation state constraints of

the refinement because specialisations represent hybrid-plans, which do not account for state con-

straints. Nonetheless, by conforming to ordering constraints of the refinement, we ensure that the

user’s intent with respect to the ordering of tasks in the refinement is maintained in any extracted

specialisation.

3Technically, one would consider only shorter plans than theone at hand.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 136

It is worth noting the reason why specialisations aresubsetsof refinements. In situations

where the given hybrid-solution is redundant, any refinement of the hybrid-solution will also be

redundant in general.4 By allowing specialisations to be subsets of refinements, itwill be possible

to remove any redundant tasks in refinements. Note, however,that removing redundant tasks in

refinements is at the expense of user intent, which requires all tasks appearing in refinements to be

intact.

For example, consider the (totally ordered) hybrid-solution t2 · t6 for initial state

{p} and goal state{s, t}, created using tasks in the method-library of Figure 5.2.

Observe thatt2·t6 is a redundant hybrid-solution because its (only) primitive solution

a1·a2·a3·a3·a6 is redundant. Observe, also, that the redundancy cannot be eliminated

by removing either of the taskst2 or t6 – if t2 is removed, the necessary actionsa1

anda2 will also be removed; and ift6 is removed, the necessary actiona6 will also

be removed. However, if we consider a hybrid-solution (specialisation) at one level

of abstraction belowt2 · t6, sayt3 · t4 · t6, we can now remove redundant taskt4 to

obtain the minimal non-redundant hybrid-solutiont3 · t6. Moreover, observe that

this hybrid-solution is maximally-abstract relative to all hybrid-plans that can be

extracted from refinements oft2 · t6.

Next, we define a specialisation of a given hybrid-plan as thecombination of a subset of the

tasks in a refinement of the hybrid-plan, with(i) all the constraints entailed on tasks in the subset by

the refinement (φ1
2), and(ii) possibly additional constraints that do not conflict with the constraint

formula of the refinement (φ2
2).

Definition 20. (Plan Specialisation) LetD be an HTN domain and leth1 be a hybrid-plan. A

hybrid-planh2 = [s2, φ2] is a plan specialisationof h1 with respect toD if there exists formulas

φ1
2 andφ2

2 with φ2 ⇔ φ1
2 ∧ φ2

2, and a ground instance and task label renamingd = [sd, φd] of a

refinementd′ ∈ refn(h1,D) such that:

1. s2 ⊆ sd;

4Since a specialisation, being a hybrid-plan, will not contain any state constraints, a specialisation containing all
tasks of the refinement may actually be less constrained thanthe refinement. In particular, the specialisation may
be capable of producing a non-redundant solution that the refinement cannot produce. Therefore, in such cases, the
specialisation may be non-redundant, even though its corresponding refinement is redundant.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 137

2. φ1
2 is the largest formula with unique constraints such that forall statesI, sol(d,I,D) =

sol([sd, φd ∧ φ1
2],I,D); and

3. if there exists a stateI such thatsol(d,I,D) , ∅, then there also exists a stateI′ such that

sol([sd, φd ∧ φ2
2],I′,D) , ∅.

The set of all plan specialisations ofh1 with respect toD is denotedspec(h1,D). �

In words: φ1
2 is the formula of implicit and explicit constraints entailed by φd, i.e., those that

can be added toφd without losing any of the primitive plan solutions thatd can already produce in

any initial state; andφ2
2 is any formula of constraints that does not contradictφd, i.e., any formula

that can be added toφd without losing all of the primitive plan solutions thatd can already produce

in some initial state.

Finally, a MNRMA specialisation is any specialisation of a given hybrid-solution that is(i) a

minimal non-redundant hybrid-solution, and(ii) maximally-abstract among allspecialisationsof

the given hybrid-solution.

Definition 21. (MNRMA Specialisation) LetH = 〈I,G,D〉 be a hybrid planning problem and

let h be a hybrid-solution forH . Then,h′ is aMNRMA specialisationof h forH if and only if

1. h′ ∈ spec(h,D);

2. h′ is a minimal non-redundant hybrid-solution forH ; and

3. h′ is a maximally-abstract hybrid-plan among the setspec(h,D), for the setΣ∩sol(h′ ,I,D),

whereΣ is the set of all perfect justifications for〈I,G,Op〉. �

The following theorem states that, given any hybrid-solution, there is, at least, one MNRMA

specialisation for it.

Theorem 10. LetH be a hybrid planning problem, and let h be a hybrid-solution for H . Then,

there exists an MNRMA specialisation of h forH.

Proof. Let Σnr be the set of all perfect justifications for〈I,G,Op〉, let σ ∈ sol(I,G,Op) be a

primitive solution, and letσ′ be a subsequence ofσ such thatσ′ ∈ Σnr. Moreover, leth1 = [{(i :

acti) | acti ∈ σ′},
∧{(i ≺ j) | i, j ∈ {1, . . . , |σ′|}, i < j}] be the hybrid-plan representingσ′. First,

supposeI |= G. Then, the theorem holds trivially, as|σ′| = 0 andh1 = [∅, true] is a MNRMA

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 138

specialisation ofh forH . Next, supposeI 6|= G. We will now show thath1 ∈ spec(h,D), i.e., that

h1 = [sh1, φh1] is a plan specialisation ofh with respect toD (Definition 20).

Since there is a ground instance and task label renamingd = [sd, φd] of some primitive task

networkd′ ∈ refn(h,D) such thatsh1 ⊆ sd, the first condition of Definition 20 holds for hybrid-

planh1. The second condition of the definition is also satisfied becauseh1 is totally ordered, and

consequently, we can always take asφ1
2 in Definition 20 some formula constructed from constraints

in φh1. Finally, sinceσ′ is a subsequence ofσ, it follows that sol([sd, φd ∧ φh1],I,D) , ∅ holds

— the constraints inφh1 are in agreement with planσ. Therefore, the third condition of Definition

20 holds, andh1 is indeed a plan specialisation ofh with respect toD.

Next, observe thath1 is a minimal non-redundant hybrid-solution forH . If h1 is not a

maximally-abstract hybrid-plan amongspec(h,D) for the set{σ′}, then according to Definition

18 (Maximally-Abstract), a more abstract hybrid-plan exists, that is,MA(h2, h1, {σ′}) holds for

some hybrid-planh2 ∈ spec(h,D), whereMA(h′, h,Σ) (for any hybrid-plansh = [sh, φh] and

h′ = [sh′ , φh′], and set of primitive plansΣ ⊆ sol(h,I,D)) stands for the conditions in Definition

18 (i.e.,|sh′ | < |sh|, d1 ∈ refn(h′,D), etc.).

Let min(h) denote the set of minimal non-redundant hybrid-solutionshmin = [smin, φmin] for

H that can be obtained from a hybrid-planh = [sh, φh] (that is smin ⊆ sh, andφmin is obtained

from φh by replacing withtrue every constraint that mentions some task label occurring inthe

set sh \ smin). Observe from Definition 20 that if a hybrid-planh′ is a plan specialisation ofh

with respect toD, then each hybrid-plan inmin(h′) is also a plan specialisation ofh with respect

to D. Then, if there is a hybrid-planh3 such thath3 ∈ min(h2), h3 ∈ spec(h,D), and h3 is

a maximally-abstract hybrid-plan amongspec(h,D) for the setΣnr ∩ sol(h3,I,D), hybrid-plan

h3 is a MNRMA specialisation forH , and the theorem holds. Otherwise, for each hybrid-plan

h3 such thath3 ∈ min(h2) andh3 ∈ spec(h,D), there must exist a hybrid-planh4 ∈ spec(h,D)

such thatMA(h4, h3,Σ3) holds, whereΣ3 = Σnr ∩ sol(h3,I,D). This reasoning can be continued

for h4 = [s4, φ4] like we did before for hybrid-planh2. However, observe that since|s4| < |s3|

holds according toMA(h4, h3,Σ3), this reasoning can only be applied a finite number of times

until some hybrid-planhn, with hn = [{(n : t)}, true] (recall hybrid-plans cannot mention state

constraints) is reached for some compound taskt. Hybrid-planhn is then a minimal non-redundant

hybrid-solution forH , and also a maximally-abstract hybrid-plan amongspec(h,D) for the set

Σnr ∩ sol(hn,I,D). �

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 139

The next theorem shows the relationship between an ideal MNRMA hybrid-plan and an MNRMA

specialisation of a hybrid-plan. It states that, whenever aspecialisation of a hybrid-solutionh is an

ideal MNRMA hybrid-plan, it is also the case that the specialisation is a MNRMA specialisation

of h.

Theorem 11. Let h be a MNRMA hybrid-plan for a hybrid planning problemH = 〈I,G,D〉.

Let h′ be a hybrid-solution, where h is a plan specialisation of h′ with respect toD. Then, h is a

MNRMA specialisation of h′ forH .

Proof. Sinceh is a MNRMA hybrid-plan forH , we know thath is a minimal non-redundant

hybrid-solution forH , and thath is a maximally-abstract hybrid-plan amongall possible minimal

non-redundant hybrid-solutions∆ for the setΣ ∩ sol(h,I,D), whereΣ is the set of all perfect

justifications for〈I,G,Op〉. Since the set of plan specialisationsspec(h′,D) ⊆ ∆, hybrid-planh

must be a maximally-abstract hybrid-plan amongspec(h′,D) for Σ ∩ sol(h,I,D). Hence,h is a

MNRMA specialisation ofh′ forH . �

Like the ideal MNRMA notion, it is not clear how one could compute an MNRMA speciali-

sation of a hybrid-plan, without considering all refinements of the given hybrid-plan. Therefore,

in the next section we will present an even weaker, but implementable notion calledpreferred spe-

cialisationsof a given hybrid-plan. This notion finds a preferred specialisation by exploring not

the full set of refinements of a given hybrid-plan, but only the set of refinements captured within a

singledecompositionof the hybrid-plan.

5.4 Preferred Specialisations of Hybrid-Plans

Instead of improving a hybrid-solution by exploringall of its specialisations, in this section we

focus on improving a hybrid-solution by exploring only the limited set of specialisations inherent

in one of its “decompositions,” and extracting a most abstract and non-redundant specialisation

of the hybrid-solution from the limited set. Like we saw in the previous section, the particular

hybrid-solution that we start from may have been produced bya first principles planner operating

in the BDI domain.

We state the problem we are interested in solving as follows:given a, possibly redundant,

hybrid-solution for a hybrid planning problem, together with one of its successful decompositions,

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 140

find a specialisation of the hybrid-solution that is both non-redundant and as abstract as possible,

within the confines of the decomposition. We call such specialisationspreferred specialisations.

It is important to note that a preferred specialisation is not always one that is an (ideal)

MNRMA hybrid-plan as defined in Section 5.2. However, whenever a MNRMA hybrid-plan

occurs in a decomposition of some given hybrid-planh, then this MNRMA hybrid-plan will also

be a preferred specialisation ofh.

Intuitively, a decomposition(or decomposition trace) is a trace of the reductions performed

on a hybrid-plan. Therefore, any hybrid-plan that producesa primitive plan solution will have a

decomposition trace, which starts from the hybrid-plan andends with the primitive task network

corresponding to the primitive plan solution. Such decomposition traces that produce primitive

plan solutions are calledsuccessfuldecomposition traces.

For example, suppose we are given a method library containing the following reduc-

tions: (i) taskt1 is reduced into labelled tasks (2 :t2) and (3 :t3) with constrainttrue,

(ii) taskt2 is reduced into labelled tasks (actions) (4 :a4) and (5 :a5) with constraint

4 ≺ 5, and(iii) taskt3 is reduced into labelled tasks (6 :a6) and (7 :a7) with con-

straint 6≺ 7. Then, a possible decomposition trace of hybrid-plan [{(1 : t1)}, true]

is the following:

[{(1 : t1)}, true] · [{(2 : t2), (3 : t3)}, true] · [{(4 : a4), (5 : a5), (3 : t3)}, (4 ≺ 5)] · [{(4 :

a4), (5 : a5), (6 : a6), (7 : a7)}, (4 ≺ 5)∧ (6 ≺ 7)].

(root : ǫ)

(1 : t1)

(2 : t2) 4 ≺ 5

(4 : a4) (5 : a5)

(3 : t3) 6 ≺ 7

(6 : a6) (7 : a7)

Figure 5.4: The decomposition tree corresponding to decomposition trace [{(1 : t1)}, true] · [{(2 :
t2), (3 : t3)}, true] · [{(4 : a4), (5 : a5), (3 : t3)}, (4 ≺ 5)] · [{(4 : a4), (5 : a5), (6 : a6), (7 : a7)}, (4 ≺
5)∧ (6 ≺ 7)]. Dotted rectangles stand for primitive tasks/actions, and missing constraints stand for
true.

It is easy to see that a decomposition trace induces adecomposition tree, i.e., intuitively, a

tree depicting how compound tasks are reduced into other tasks and constraints. For example, the

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 141

decomposition tree induced by the decomposition trace above is shown in Figure 5.4. Observe

that each node in the tree is a labelled task, and that each node is labelled with the constraints for

its child nodes. Observe, further, that the children of the root node are the labelled tasks in the

given hybrid-plan.

We can now be more specific about the aim of this section. Givena hybrid-planh for a hybrid

planning problemH and a decomposition treeT induced by a successful decomposition trace of

h, we want to find a subtreeT ′ of T that yields a perfect justification, but one that is not subsumed

by some other subtree ofT that yields the leaf-level nodes ofT ′. We can then take the hybrid-plan

at the top level (below root) ofT ′ as the preferred specialisation ofh forH .

For example, suppose the decomposition trace shown earlieris a successful trace of

hybrid-planh = [{(1 : t1)}, true], and that (4 :a4) · (5 : a5) · (7 : a7) is a perfect

justification for some hybrid planning problemH – i.e., labelled task (6 :a6) is

redundant. Then, the preferred specialisation ofh forH and the decomposition tree

in Figure 5.4 is hybrid-plan [{(2 : t2), (7 : a7)}, true] in the subtree of Figure 5.4

shown below. This is because(i) the subtree yields a perfect justification, and(ii)

there is no other subtree of Figure 5.4 that is more abstract than the one below. Note

that the subtree of Figure 5.4 with top-level hybrid-plan [{(2 : t2), (3 : t3)}, true] is

not more abstract than the one below, because the former treedoes not yield exactly

the same leaf level nodes as the tree below.
(root : ǫ)

(2 : t2) 4 ≺ 5

(4 : a4) (5 : a5)

(7 : a7)

A subtree of the decomposition tree in Figure 5.4.

5.4.1 Formalisation

In order to develop an account of what a preferred specialisation for a hybrid-plan is, we will

define three basic notions:(i) decomposition trace, (ii) decomposition tree, and (iii) a cut in a

decomposition tree. Intuitively, a cut in a decomposition tree corresponds to a hybrid-plan – in

particular, a cut is a subset of the nodes in the decomposition tree. Our aim is to find a most

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 142

abstract cut whose decomposition tree yields a perfect justification.

A decomposition traceof a task network is a sequence of ground task networks, whereeach

task networkdi of the trace is a reduction of some task in the preceding task networkdi−1.

Definition 22. (Decomposition Trace) LetD be a HTN domain and letd be a task network. A

decomposition traceof d relative toMe is a, possibly infinite, sequence of ground task networks

λd = d1 · . . . · dn · . . ., such that(i) d1 = dθ, and (ii) for eachdi , i > 0, it is the case that(a)

di+1 = reduce(di , n,m), and(b) there is no common task label occurring insi+1 \ si andd1 · . . . · di ,

wheren is a task label occurring indi andm is a ground instance of a method inMe. A finite

decomposition traceλd = d1 · . . . · dn of d relative toMe is acomplete decomposition traceif dn is

a primitive task network. A complete decomposition traceλd = d1 · . . . · dn of d relative toMe is a

successful decomposition traceif sol(dn,I,D) , ∅. �

Observe that we force new labelled tasks added to a trace by a reduction, i.e., the setsi+1 \ si,

to have different labels to those already occurring in the trace. This isdone to ensure that task

labels uniquely identify tasks in the decomposition trace.Observe, further, that a decomposition

trace encodes a specific order on the reduction of tasks.

For example, consider again the following decomposition trace from the introduc-

tion:

[{(1 : t1)}, true] · [{(2 : t2), (3 : t3)}, true] · [{(4 : a4), (5 : a5), (3 : t3)}, (4 ≺ 5)] · [{(4 :

a4), (5 : a5), (6 : a6), (7 : a7)}, (4 ≺ 5)∧ (6 ≺ 7)].

In this trace, taskt1 is reduced first, taskt2 is reduced second, and taskt3 is

reduced last. Reducing taskt3 before t2 will result in a different decomposition

trace, namely, the one shown below:

[{(1 : t1)}, true] · [{(2 : t2), (3 : t3)}, true] · [{(2 : t2), (6 : a6), (7 : a7)}, (6 ≺ 7)] · [{(4 :

a4), (5 : a5), (6 : a6), (7 : a7)}, (4 ≺ 5)∧ (6 ≺ 7)].

Finally, observe that the last task network of a complete decomposition trace can contain tasks

for which no ordering is specified. This can be seen with tasksa5 anda6 in the above decom-

position traces. Consequently, the last task network of a decomposition trace may be capable of

producing more than one primitive plan solution.

A decomposition treerepresents the structure of a decomposition trace, by depicting how

compound tasks are reduced using methods, to other (child) tasks, and to constraints on child

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 143

tasks. In particular, a node of a decomposition tree is a labelled (compound or primitive) task, and

each node is labelled with the constraints on its child tasks. We useǫ-nodes to account for root

nodes, and for (dummy)ǫ tasks, i.e., those having no precondition or effect. Recall from Section

5.1 that it is sometimes useful to have a method consisting ofa singleǫ task – such a method,

given a particular condition, amounts to “doing nothing.” The following definition uses the notion

of avertex-labelled treeand other related notions given in Appendix B.

Definition 23. (Decomposition Tree) Adecomposition treeT = 〈V,E, ℓV〉 of a task networkd =

[sd, φd] relative to a HTN domainD is a vertex-labelled tree, where

1. for each nodeu ∈ V: (i) u = (n : t), wheren is a unique task label in the tree andt is a

ground domain task orǫ, and(ii) ℓV(u) is a ground constraint formula;

2. root(T) is nodeu = (root : ǫ), ℓV(u) = φdθ, andchildren(u,T) = sdθ;

3. if u = (n : t) is a non-root node inT such thatchildren(u,T) = {u1θ
′, . . . , umθ

′}, with

ℓV(u) = φθ′, then there exists a reduction [s, φ] ∈ red([{(n : t)}, true],D) of t wheres =

{u1, . . . , um};

4. if u ∈ leaves(T), thenℓV(u) = true. �

Note that, like decomposition traces, decomposition treesare also ground. Moreover, by the

definition of a reduction, decomposition trees can always beconstructed with arbitrary labels for

the tasks (except for the root’s children, specified ind). Moreover, note that, unlike decomposition

traces, which encode a specific order on the reduction of tasks, decomposition trees are agnostic

on whentasks are reduced. Therefore, different decomposition traces may induce the same de-

composition tree, up to renaming of task labels. For example, both decomposition traces shown

previously induce the decomposition tree in Figure 5.4.

Next, we define what it means for a decomposition tree to beinducedfrom a decomposition

trace. Basically, an induced decomposition tree of a decomposition trace is a vertex-labelled tree,

where the vertices of the tree correspond to labelled tasks occurring in the trace, edges correspond

to tasks introduced by reductions, and labels of nodes correspond to constraints introduced by

reductions.

Definition 24. (Induced Decomposition Tree) Letλ = [s1, φ1] · . . . · [sk, φk] be a decomposition

trace of some task network relative to a method-libraryMe. SupposeVλ is the set of labelled tasks

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 144

mentioned inλ, andrt = (root : ǫ). Then, aninduced decomposition treeof λ is the vertex-labelled

tree〈Vλ ∪ {rt},E, ℓV〉, where

E =
⋃

u∈s1

(
{(rt , u)} ∪ edges∗(u)

)
;

edges∗(u) = edges(u) ∪
⋃

(u,u′)∈edges(u)

edges∗(u′);

edges(u) = {(u, u′) | 0 < i < k, u′ ∈ (si+1 \ si), u ∈ si , u < si+1}; and

ℓV = {(rt , φ1)} ∪
⋃

u∈Vλ
{(u, φ) | 0 < i < k, u ∈ si , u < si+1, φi+1 = φi ∧ φ} ∪

⋃

u∈Vλ
{(u, true) | (u, u′) < E}.5

�

Note that, like in Definition 22, setsi+1 \ si is the set of new labelled tasks introduced by the

reduction of labelled tasku. Note, further, that the label of the root node is the constraint formula

φ1 of the first task network inλ, and that leaf nodes are assigned the labeltrue.

It is not difficult to see that any induced decomposition tree of a decomposition trace is indeed

a (valid) decomposition tree.

Lemma 10. Let d be a task network,D be a HTN domain,λ = d1 · . . . · dn be a decomposition

trace of d relative to Me, andT be a decomposition tree of d relative toD. Then, the induced

decomposition treeT λ of λ is a decomposition tree of d relative toD, and moreover,T is the

induced decomposition tree of some decomposition trace of drelative to Me.

Proof. See Appendix A.3. �

So far, decomposition trees are merelysyntacticobjects and therefore independent of any (ini-

tial) state—they describe legal syntactic ways of transforming tasks into other tasks with respect

to the method library. We will now associate decomposition trees with an initial stateI; in partic-

ular, we will define what it means for a decomposition tree to be executablein I, with respect to

5Actually, φi will have to be modified so that all occurrences of the task label in u are replaced appropriately with
expressions of the formfirst[] or last[], as done in Definition 31 (p. 200). Also, sinceℓV is a mapping from task labels
to constraint formulas,ℓV is treated as a set of ordered pairs for convenience.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 145

(root : ǫ) 1 ≺ 4∧ 4 ≺ 14

(1 : t1) 2 ≺ 3

(2 : a1) (3 : a2)

(4 : t2) 5 ≺ 8∧ 5 ≺ 11

(5 : t3) 6 ≺ 7

(6 : a3) (7 : a4)

(8 : t4) 9 ≺ 12

(9 : a5) (12 : a7)

(11 : t5) 10≺ 13

(10 : a6) (13 : a8)

(14 : t6) 15≺ 16

(15 : a9) (16 : t0)

(17 : ǫ)

Figure 5.5: A complete decomposition treeT of task networkd = [{(1 : t1), (4 : t2), (14 :
t6)}, (1 ≺ 4) ∧ (4 ≺ 14)]. Dotted rectangles stand for primitive tasks/actions or empty reductions
(node〈(17 : ǫ)〉).

a primitive plan yielded by the tree. To do this, we first definethe following preliminary notions:

complete decomposition tree, linearisation, andfull decomposition tree.

We say that a decomposition tree iscompleteif no leaf node represents a compound task.

Notice, therefore, that in a complete decomposition tree, aleaf node can be a primitive task, or a

node of the form (n : ǫ) corresponding to anǫ task. We extract from a complete decomposition

tree the set of non-ǫ nodes that are primitive as follows:

actions(T) = {(n : t) | (n : t) ∈ leaves(T), t , ǫ}.

We say that alinearisation τ of a complete decomposition treeT is a permutation of the

elements inleaves(T) \ {(root : ǫ)}, i.e., a labelled primitive plan built from exactly the non-root

elements inleaves(T). For example, a linearisation of the decomposition tree inFigure 5.5 is

(2 : a1) · (3 : a2) · (6 : a3) · (7 : a4) · (9 : a5) · (12 : a7) · (10 : a6) · (13 : a8) · (15 : a9) · (17 : ǫ).

Note that the ordering of elements in a linearisation is independent of any ordering constraints

enforced on those elements inT , and that a linearisation is independent of any (initial) state.

Therefore, although a linearisation of a hybrid-plan’s complete decomposition tree is a labelled

primitive plan, the linearisation may not be a labelled primitive plansolution for the hybrid-plan

at any initial state.

A full decomposition treeis the combination of a complete decomposition tree and one of its

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 146

linearisations. Formally, afull decomposition tree, denoted byT τ, is a tuple〈T , τ〉, whereT is a

complete decomposition tree, andτ is a linearisation ofT . Therefore, a full decomposition tree

encodes not only how tasks are fully reduced to primitive tasks, but also how these may be ordered

to form a labelled primitive plan.

Next, we define the final notion related to decomposition trees. We say that a full decom-

position treeT τ is executablein an initial stateI if (i) the tree is legal inI, i.e., all constraints

occurring in the decomposition tree are satisfied inI; and(ii) the labelled primitive planτ is exe-

cutable inI. Recall from Section 2.3.1 thatRes∗(act1 · . . . · actn,I,Op) is the state resulting from

applying actionsact1 · . . . ·actn to the initial stateI, if it is possible to do so, and that it is undefined

otherwise.

Definition 25. (Executable Decomposition Tree) LetT τ be a full decomposition tree,I be an

initial state, and letOpbe an operator-library. Then,T τ is executablein I relative toOp if (i) for

all u ∈ V(T), constraint formulaℓV(u) is satisfiedin T τ relative toI; and (ii) Res∗(τ,I,Op) is

defined. �

To determine whether a constraint formula is satisfied, eachconstraint occurring in it needs to

be evaluated based on the given initial stateI and linearisationτ. More specifically, a constraint

is evaluated by determining whether the primitives corresponding to task labels mentioned in the

constraint are in the correct order inτ (in the case of ordering constraints), or whether certain

conditions hold for the primitives corresponding to task labels mentioned in the constraint (in the

case of state constraints), relative toI andτ.

Definition 26. (Satisfying a Constraint Formula) LetT τ, with τ = u1 · . . . ·um andT = 〈V,E, ℓV〉,

be a full decomposition tree, letI be a state, and letOpbe an operator library. Finally, for anyn ∈

N0, the set of indexesidx(n) = {i | u = (n : t) ∈ V(T), u′ ∈ leaves(u,T), i ∈ {1, . . . ,m}, u′ = ui}.

Then, a ground constraint formulaφ is satisfiedin T τ relative toI and Op, denoted by

〈T τ,I,Op〉 |= φ (or simply as〈T τ,I〉 |= φ), if φ is satisfied, where the constraint formula is

evaluated as follows:6

• (c1 = c2) is true if c1 andc2 are the same constant symbols;

• (n1 ≺ n2) is true ifmax(idx(n1)) < min(idx(n2));

6Expressions of the formf irst[n1, . . . ,nk] and last[n1, . . . ,nk] appearing in any constraint, e.g., (last[n1, . . . ,nk] ≺
n), evaluates tomin(

⋃
i∈{1,...,k} idx(ni)) andmax(

⋃
i∈{1,...,k} idx(ni)), respectively.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 147

• (l, n1) is true if Res∗(u1 · . . . · umin(idx(n1))−1,I,Op) |= l, i.e., (ground) literall is true in the

state that results from applying toI the actions inτ up to the action immediately beforen1;

• (n1, l) is true ifRes∗(u1 · . . . · umax(idx(n1)),I,Op) |= l;

• (n1, l, n2) is true ifRes∗(u1 · . . . · uk,I,Op) |= l, for all max(idx(n1)) ≤ k < min(idx(n2)); and

• logical connectives¬,∧,∨ are evaluated as in propositional logic. �

For example, consider the full decomposition treeT τ, whereT is the complete

decomposition tree in Figure 5.5, andτ = (2 : a1) · (3 : a2) · (6 : a3) · (10 : a6) · (7 :

a4) · (9 : a5) · (12 : a7) · (13 : a8) · (15 : a9) · (17 : ǫ). Suppose we want to

determine whether the constraint formula of node (4 :t2), i.e., (5≺ 8)∧ (5 ≺ 11),

is satisfied relative toτ (the initial state is not necessary in this example as we only

deal here with ordering constraints). Observe that (5≺ 8) is satisfied inτ because

all primitives corresponding to task label 5, i.e., (6 :a3) and (7 :a4), precede all

primitives corresponding to task label 8, i.e., (9 :a5) (12 : a7). However, observe

that constraint (5≺ 11) is not satisfied because one of the primitives corresponding

to task label 11, i.e., (10 :a6), does not precede all primitives corresponding to task

label 5. Consequently, formula (5≺ 8)∧ (5 ≺ 11) is also not satisfied.

On the other hand, ifτ = (2 : a1) · (3 : a2) · (6 : a3) · (7 : a4) · (9 : a5) · (12 :

a7) · (10 : a6) · (13 : a8) · (15 : a9) · (17 : ǫ), then constraint (5≺ 8) and formula

(5 ≺ 8)∧ (5 ≺ 11) are satisfied.

As shown in the example, the initial state is not necessary todetermine whether a constraint

formula is satisfied, provided the constraint formula has nostate constraints. Hence, we sometimes

writeT τ |= φ, instead of〈T τ,I〉 |= φ, if there are no state constraints inφ.7

It is useful to note the relationship between complete decomposition traces and complete de-

composition trees, in particular, that a complete decomposition trace corresponds to a set of (in-

duced) full decomposition trees.

Lemma 11. LetD be a HTN domain,λ = d1 · . . . · dk be a complete decomposition trace of some

task network relative to Me, andT be an induced (complete) decomposition tree ofλ. Then, there

7Notice that the truth value of any constraint in a full decomposition tree can be determined given the initial state.
However, this is not necessarily the case for (non-full) decomposition trees, as the satisfaction of the constraints gener-
ally depends on a total-ordering of the primitive tasks.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 148

exists a plan act1 · . . . · actm ∈ comp(dk,I,D) if and only if there exists a full decomposition tree

T τ that is executable inI relative to Op, whereτ = (n1 : act1) · . . . · (nm : actm).

Proof. See Appendix A.3. �

Now we can define the third and final basic notion of this section, namely, acut in a decom-

position tree. Informally, a cut in a decomposition tree is asubset of the nodes in the tree which,

together with the necessary constraints, can form a hybrid-plan. In particular, the set of nodes

forming a cut does not contain any node that is a descendant ofany other node in the set. For

example,{(1 : t1), (4 : t2)} in Figure 5.5 is a legal cut, but{(4 : t2), (5 : t3)} is not because (5 :t3)

is a descendant of (4 :t2).

Definition 27. (Cut) A cut in a decomposition treeT is a set of nodesπ ⊆ V(T), with π ,

{(root : ǫ)}, such that for allu, u′ ∈ π, with u , u′, it is the case that (descendants(u,T) ∪ {u}) ∩

(descendants(u′,T) ∪ {u′}) = ∅. �

Given a cutπ in a decomposition treeT , we can form a new decomposition treeT ′ by pro-

jecting only on those nodes inπ, trivially adding a node (root : ǫ) as root withπ as its chil-

dren, and adding a labelℓV((root : ǫ)) = true. Figure 5.6 shows the projected tree for the cut

{(1 : t1), (4 : t2)}. Formally, the decomposition tree obtained byprojectingon a cutπ ⊆ V(T) in a

decomposition treeT , denoted byT |π, is defined as follows:

T |π = 〈V′,E′, ℓ′V〉,where:

T = 〈V,E, ℓV〉;

rt = (root : ǫ);

V′ = {rt} ∪ π ∪ {u′ | u′ ∈ descendants(u,T), u ∈ π};

E′ = {(rt , u) | u ∈ π} ∪ {(u, u′) | (u, u′) ∈ E andu, u′ ∈ V′}; and

ℓ′V = {(rt , true)} ∪ {(u, φ) | (u, φ) ∈ ℓV andu ∈ V′, u , rt}.

The notion of projection trivially generalises to full decomposition trees, denoted byT τ|π, by

projecting inτ only the primitive tasks that are leaf nodes inT τ|π; in particularT τ|π = T ′τ′ , where

T ′ = T |π, andτ′ = τ|leaves(T ′). For any set of labelled tasksπ and sequence of labelled primitive

tasksτ, τ|π is defined as the largest subsequenceτ′ of τ such that for each tasku ∈ τ′, u ∈ π.

We have now provided most of the notions necessary for our final definition of apreferred

specialisationof a hybrid-plan. Recall that a preferred specialisation ofa hybrid-plan is one that is

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 149

(root : ǫ) true

(1 : t1) 2 ≺ 3

(2 : a1) (3 : a2)

(4 : t2) 5 ≺ 8∧ 5 ≺ 11

(5 : t3) 6 ≺ 7

(6 : a3) (7 : a4)

(8 : t4) 9 ≺ 12

(9 : a5) (12 : a7)

(11 : t5) 10≺ 13

(10 : a6) (13 : a8)

Figure 5.6: The decomposition tree obtained from the tree infigure 5.5 by projecting on the cut
{(1 : t1), (4 : t2)}.

both non-redundant and as abstract as possible within the confines of the decomposition. Guided

by the notion of maximal-abstraction in Section 5.2.2, we first define the notion ofdominance

which, intuitively, states that some cuts are more abstractthan others. More specifically, a cutπ′

dominates a cutπ if π′, together with its descendants, containsπ, andπ′ produces exactly the same

non-ǫ primitive tasks as those produced byπ.

Definition 28. (Dominance) Given two cutsπ′ andπ in a decomposition treeT , cutπ′ dominates

π in T if π ⊆ ⋃u∈π′ descendants(u,T) ∪ π′, andactions(T |π′) = actions(T |π). �

For example, cutπ1 = {(4 : t2)} dominates cutπ2 = {(5 : t3), (8 : t4), (11 : t5)} in Figure

5.5 because the latter occurs in the descendants of the former, and they both yield the same non-ǫ

primitive tasks. Observe that whenever a cutπ′ dominates a cutπ, any compound task that is a

descendant ofπ′, but not inπ nor its descendants, only yieldsǫ tasks.

We can now use cuts and the associated notions to define what the preferred specialisations of

hybrid-plans are. For convenience, we usedecsol(h,H) to denote the set of full decomposition

treesT τ of a hybrid-planh relative to a domainD, where(i) T τ is executable inI relative toOp,

and(ii) τ ∈ sol(I,G,Op), i.e., the linearisationτ achieves the goal stateG. Moreover, given a cut

π in a full decomposition treeT τ, we define the ordering constraints implied byT τ onπ astrue if

π = ∅, and otherwise as follows:

Φ[T τ, π] =
∧
{n1≺n2| (n1:t1),(n2:t2)∈π,T τ |=n1≺n2} .

For example, suppose we are given the cutπ = {(5 : t3), (8 : t4), (11 : t5)} and

full decomposition treeT τ, whereT is the decomposition tree in Figure 5.5, and

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 150

τ = (2 : a1) · (3 : a2) · (6 : a3) · (7 : a4) · (9 : a5) · (10 : a6) · (12 : a7) · (13 : a8) · (15 :

a9) · (17 : ǫ). Now, since all primitives corresponding to labelled task(5 : t3),

i.e., (6 : a3) and (7 : a4), occur before all primitives corresponding to labelled

task (8 : t4), i.e., (9 : a5) and (12 :a7), we can conclude that ordering constraint

5 ≺ 8 holds. Similarly, we can conclude that 5≺ 11 also holds. However, ordering

constraint 8≺ 11 does not hold, because the primitive (12 :a7) corresponding

to (8 : t4) does not precede the primitive (10 :a6) corresponding to (11 :t5),

i.e., the primitives corresponding to (8 :t4) and (11 :t5) overlap inτ. Therefore,

we can conclude that the formula of ordering constraints implied by T τ on π is

Φ[T τ, π] = 5 ≺ 8∧ 5 ≺ 11.

A preferred specialisation corresponds to a cutπ in the given full decomposition tree, where

the cut yields a perfect justification, and the cut is not dominated by any other cut in the tree – i.e.,

the cut is as abstract as possible in the tree.

Definition 29. (Preferred Specialisation) LetH be hybrid planning problem,hbe a hybrid-solution

forH , and letT τ ∈ decsol(h,H). Then, a hybrid-planhπ is apreferred specialisationof h within

T τ forH if hπ = [π,Φ[T τ, π]] for some cutπ in T τ such that

1. the projected linearisationτ|actions(T |π) is a perfect justification for〈I,G,Op〉;

2. the projected full decomposition treeT τ|π is executable inI relative toOp;

3. there is no cutπ′ in T , with |π′| < |π|, that dominatesπ in T and such thatT τ|π′ is executable

in I relative toOp. �

The third condition ensures that a cutπ′ that containsπ, but also contains other compound

tasks that lead toǫ tasks, is not preferred overπ. However, observe that it may be the case

thatπ′ is also a preferred specialisation, even if it contains tasks that lead toǫ tasks. Therefore,

preferred specialisations that do not contain any compoundtasks leading toǫ tasks are called

minimalpreferred specialisations.

Let us illustrate minimality with an example. Observe that hybrid-planh = [{(1 :

t1), (4 : t2), (16 : t0)}, (1 ≺ 4)∧ (4 ≺ 16)] may be a preferred specialisation for a full

decomposition tree corresponding to the tree in Figure 5.5,provided the hybrid-plan

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 151

can yield a perfect justification within the full decomposition tree. However, notice

that hybrid-planh is not minimal – compound task (16 :t0) is reduced into anǫ task,

thereby allowing a subset of the hybrid-plan, namely, [{(1 : t1), (4 : t2)}, (1 ≺ 4)] to

also be a preferred specialisation.

Formally, a preferred specialisation [s, φ] of a hybrid-planh within a full decomposition tree

T τ for a hybrid planning problemH is aminimalpreferred specialisation ofh within T τ for H

if there does not exist a preferred specialisation [s′ ⊂ s, φ′] of h within T τ for H , whereφ′ is

obtained fromφ by replacing all (ordering) constraints that mention some task label in (s\ s′) with

true.

The following result guarantees that there is always a preferred specialisation of a hybrid-

solution. In particular, whenever a full decomposition tree that achieves a given goal state exists

for a hybrid-planh, a preferred specialisation will also exist forh.

Theorem 12.LetH be a hybrid planning problem, and let h be a hybrid-plan. IfT τ ∈ decsol(h,H),

then there exists at least one preferred specialisation of hwithinT τ forH.

Proof. TakeT τ ∈ decsol(h,H), that is,τ ∈ sol(I,G,Op) is a primitive solution forH . Then,

it follows from Lemmas 10 and 11 thatτ ∈ sol(h,I,D) is also a primitive plan solution forh.

Takeτ′ to be a subsequence ofτ that is a perfect justification forC = 〈I,G,Op〉. Let π be the

“low-level” cut corresponding toτ′, i.e., π = {(n : t) | (n : t) ∈ τ′}. If I |= G, thenπ = ∅ and

hybrid-planhπ = [∅, true] is a preferred specialisation ofh within T τ forH .

Suppose, however, thatI 6|= G, and consider hybrid-planhπ = [π,Φ[T τ, π]]. Sinceτ|actions(T |π) =

τ′ is a perfect justification forC, the first condition of Definition 29 (Preferred Specialisation) is

met for hybrid-planhπ to be considered a preferred specialisation (of hybrid-plan h within T τ

for H). Moreover, since the label (i.e., constraint formula) of the root node inT τ|π is true, and

Res∗(τ′,I,Op) is defined (i.e., the state resulting from applyingτ′ in I), it follows thatT τ|π is

executable inI relative toOp (Definition 25). Therefore, the second condition of Definition 29 is

also met for hybrid-planhπ.

Suppose thathπ does not meet the third condition of Definition 29, that is, there exists a cutπ′

in T , with |π′| < |π|, that dominatesπ in T and such thatT τ|π′ is executable inI relative toOp.

Sinceπ′ dominatesπ in T , it is the case, from Definition 28 (Dominance), thatactions(T |π′) =

actions(T |π), and therefore, thatτ|actions(T |π′) = τ
′ is a perfect justification forC. If hybrid-plan

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 152

[π′,Φ[T τ, π
′]] is not a preferred specialisation ofh within T τ for H , then there must exist yet

another cutπ′′ in T , with |π′′| < |π′|, that dominatesπ′ in T and such thatT τ|π′′ is executable in

I relative toOp. This reasoning can be continued forπ′′ like we did before for cutπ′. However,

since |π′′| < |π′|, this reasoning can only be applied afinite number of times, until some cut

πtop ⊆ children((root : ǫ),T) is reached. In such a case, since no strict subset ofπtop can dominate

πtop, hybrid-plan [πtop,Φ[T τ, π
top]] is then the preferred specialisation ofh within T τ forH. �

Note that, since the dominance relation among cuts is not total, and there may exist more than

one perfect justification that can be extracted from a linearisation, there may actually be more than

one preferred specialisation for a hybrid-plan within a given full decomposition tree.

Recall that our (ideal) MNRMA hybrid-plan (Definition 19) essentially defined a non-redundant

hybrid-plan that is as abstract as possibleamong all conceivable hybrid-plans. A preferred special-

isation, however, is one that is non-redundant and as abstract as possible among only the hybrid-

plans that occur in a decomposition tree of a given hybrid-plan. One would expect, then, that

whenever a MNRMA hybrid-plan occurs in a decomposition treeof a given hybrid-plan, then the

MNRMA hybrid-plan is also a preferred specialisation of thegiven hybrid-plan. This is what the

next theorem states. For convenience, we usedecsolnr(h,H) ⊆ decsol(h,H) to denote the set of

full decomposition treesT τ whereτ|actions(T) is a perfect justification for〈I,G,Op〉.

Theorem 13.Let h be a hybrid-solution for hybrid planning problemH , and letT τ ∈ decsol(h,H).

Suppose that there exists a cutπ in T τ such that hπ = [π,Φ[T τ, π]] ∈ MNRMA(H) and such that

there is a decomposition in decsolnr(hπ,H) that is equivalent toT τ|π, modulo their root nodes.

Then, hybrid-plan hπ is a preferred specialisation of h withinT τ forH .

Proof. Letσ = τ|actions(T |π) be the projected linearisation of actions representing cutπ. Observe

that (i) σ is a perfect justification for〈I,G,Op〉; (ii) σ ∈ sol(hπ,I,D) follows from Lemmas 10

and 11; and(iii) the projected full decomposition treeT τ|π is executable inI relative toOp.

Due to(i) and(iii) , the first two conditions in the definition of a preferred specialisation (Def-

inition 29) are met by hybrid-planhπ. Next, we will prove that the third condition in Definition

29 is also met by hybrid-planhπ. On the contrary, suppose that there does exist a cutπ′ in T ,

with |π′| < |π|, that dominatesπ in T and such thatT ′τ′ is executable inI relative toOp, where

T ′ = T |π′ andτ′ = τ|leaves(T ′).

Informally, we shall prove below that sinceπ′ dominatesπ, a more abstract hybrid-plan than

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 153

π exists, namely, the one corresponding toπ′. Consequently,π is not maximally abstract, which

contradicts our assumption thathπ ∈ MNRMA(H). We will now show this contradiction in more

detail. Observe from Definition 18 (Maximally-Abstract), that to showhπ < MNRMA(H), it is

sufficient to show that the following four conditions hold forhπ′ = [π′, true] (we takeh′ = hπ′ for

Definition 18):

d̂1 ∈ refn(hπ′ ,D); (5.1)

d̂2 = [sd̂2
, φd̂2

] is a ground instance of̂d1 such thatsd̂2
⊇ π; (5.2)

d̂3 = [sd̂2
, φd̂2
∧ Φ[T τ, π]]; and (5.3)

σ ∈ sol(d̂3,I,D). (5.4)

We start by showing that Equations 5.1 and 5.2 hold. First, from Lemma 10, there must exist

a (complete) decomposition traced′1 · . . . · d′k of hπ′ relative toMe such thatT ′ is the induced

(complete) decomposition tree of the trace, withd′1 = hπ′ . Second, as illustrated in (Erol et al.,

1994), observe from the definition of a reduction (Definition31, p. 200) that it does not matter in

which order reductions are performed on a task network. Finally, sinceπ′ dominatesπ, it is not

difficult to see that there is a decomposition trace that, informally, “goes through”π, namely

d′1 = [s1, φ1] · . . . · [sj , φ j] · . . . · d′k = [sk, φk],

where (a) s1 = π′; (b) π ⊆ sj; and (c) j ∈ {2, . . . , k} (note that j , 1 because|π| > |s1|).

Then, since task network [sj , φ j] is a ground instance of some refinement (Definition 17, p. 131)

d̂1 ∈ refn(hπ′ = [s1, φ1],D) such thatπ ⊆ sj holds, Equations 5.1 and 5.2 also hold.

Finally, let us show that Equations 5.3 and 5.4 hold. Letσ′ = τ′|actions(T ′). Sinceπ′ domi-

natesπ in T , we know thatσ = σ′. Then, it follows from Lemma 11 thatσ ∈ sol([sj , φ j],I,D).

Next, due to condition(ii) at the start of the proof, and sinceΦ[T τ, π] is the conjunction of order-

ing constraints entailed byσ on elements inπ, it follows thatσ ∈ sol([sj , φ j ∧ Φ[T ′τ′ , π]) holds.

Therefore, Equations 5.3 and 5.4 also hold, and consequently, hπ is not a maximally-abstract

hybrid-plan, andhπ < MNRMA(H), which is a contradiction. �

In the next section, we will show how a preferred specialisation can be obtained, given a hybrid

planning problem and hybrid-solution. In particular, we will first show how a full decomposition

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 154

tree can be obtained from the hybrid-solution, and then we will provide a bottom-up algorithm

that obtains a preferred specialisation from the decomposition tree.

5.5 Computing Preferred Specialisations

As mentioned before, a preferred specialisation of a hybrid-plan h, relative to a hybrid planning

problem, is a most abstract non-redundant hybrid-plan thatcan be extracted from a givenfull

decomposition treeT τ of h; in particular,τ is a labelledprimitive plan that achieves a givengoal

state.

We obtain such a full decomposition tree by inducing (as in Definition 24) a decomposition tree

from a decomposition trace ofh, where the trace produces a labelled primitive plan that achieves a

given goal state, in addition to solvingh. To do this, we need to address three issues. First, we need

to extend theUMCP HTN algorithm of (Erol et al., 1996) so that it returns alabelled primitive

plan solution, rather than a (un-labelled) primitive plan solution. This extension is trivial, as all

we need to do is ensure that the procedure which computes thecompletion(comp(d,I,D)) of the

final primitive task network returns primitive plan solutions with the labels of primitive tasks left

intact. Second, we need to ensure that any primitive plan solution found, for a given initial task

network and initial state, also achieves a givengoal state. Finally, we need to extend theUMCP

algorithm so that, in addition to returning a primitive plansolution, it returns thedecomposition

trace that produces the primitive plan solution.

The second issue can be addressed by adding a constraint to the constraint formula of a given

initial task networkd, requiring the given goal stateG to hold in the state immediately after the

last action in any primitive plan solution ford. In particular, we obtain a task networkd′ by adding

a conjunct to the constraint formula of the given task network d = [s, φ], as follows:

d′ = [s, φ ∧
∧

l∈G
(last[n1, . . . , nk], l)], where{n1, . . . , nk} is the set of task labels occurring ins.

Recall thatlast[n1, . . . , nk] is the task that occurs last among the tasks in{n1, . . . , nk}, relative to a

primitive plan solution ford.

To address the third issue, we extendUMCP in the following manner:(i) we keep track of the

sequence of reductions performed during the HTN planning process (recall that the HTN planning

process involves reducing compound tasks in the initial task network repeatedly, until only primi-

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 155

tive tasks remain);(ii) we make the resulting sequence into a decomposition trace, by replacing all

variables occurring in the sequence in a consistent manner;and(iii) we return the decomposition

trace together with the (labelled) primitive plan solution.

After a decomposition trace and labelled primitive plan solution are obtained, the trace and

solution are simply combined to obtain a full decompositiontree.

Next, we will show how a preferred specialisation can be computed from a full decomposi-

tion tree, given a hybrid-solutionh and hybrid planning problemH . Algorithm 5.1 computes a

preferred specialisation. Basically, the algorithm worksbottom-up, starting at the leaf-level with a

labelled primitive perfect justification planτ′ (line 1), and repetitively abstracting out one or more

steps into a higher-level more abstract step (lines 3-9). Once no more abstractions are possible,

the corresponding constraints entailed by the decomposition tree for the final steps are calculated

(step 11) and the final hybrid-plan returned.

For example, a possible value for the perfect justificationτ′ (line 1), relative to

some hybrid planning problem and the decomposition tree in Figure 5.5, could be

(2 : a1) · (9 : a5) · (10 : a6) · (12 : a7) · (13 : a8) · (15 : a9)—that is, actions (3 :a2),

(6 : a3), (7 : a4), and (17 :ǫ) are redundant for achieving the goal.

Algorithm 5.1 Find-Preferred-Specialisation(h,H ,T τ)

Input: Hybrid-solutionh, hybrid planning problemH , T τ ∈ decsol(h,H), whereT = 〈V,E, ℓV〉.
Output: A preferred specialisation ofh within T τ forH .

1: τ′ ⇐ Get-Perfect-Justification(τ,H) // As in (Fink and Yang, 1992); ignore ǫ tasks
2: π⇐ {(n : t) | (n : t) ∈ τ′}
3: for ℓ⇐ 1 to height(T τ) − 1 do // Leaves are at level 0
4: for each nodeu at levelℓ in treeT do
5: if children(u,T) ⊆ π and〈T τ|π,I〉 |= ℓV(u) then // ℓV(u) is satisfied in T τ|π relative to I
6: π⇐ (π \ children(u,T)) ∪ {u} // Replace u’s children with u
7: end if
8: end for
9: end for

10: π⇐ π \ ∆⇐ {u | u ∈ π, all leaves ofT |{u} areǫ nodes}
11: φ⇐ Φ[T τ, π] // As defined just before Definition 29
12: return [π, φ]

At any point in time, the algorithm maintains a “current”cutπ (initially, a perfect justification).

In line 4, a nodeu in the tree is selected for abstraction. If all the children of uare part of the current

cut and the constraints required to decomposeu into its children are indeed satisfied (line 5), then

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 156

all the children ofu are abstracted out into nodeu itself (line 6). Therefore, the abstraction process

relies not only on the children of a node being present in the current cut, but also on it being

possible to satisfy the parent’s constraint formula with respect to the current cut.

For example, if, as before,τ′ = (2 : a1) · (9 : a5) · (10 : a6) · (12 : a7) · (13 : a8) · (15 :

a9), then at the end of the first iteration of the inner loop, a possible value forπ is

{(2 : a1), (8 : t4), (10 : a6), (13 : a8), (15 : a9)}, that is, (9 :a5) and (12 :a7) have

been replaced with their parent (8 :t4). However, for the same initial value ofτ′,

observe that it will not be possible forπ to have the value{(1 : t1), (9 : a5), (10 :

a6), (12 : a7), (13 : a8), (15 : a9)} at the end of the first iteration of the inner loop,

because one of the children of (1 :t1), namely (3 :a2), does not exist inτ′.

We will now explain the rationale behind ignoringǫ tasks in line 1. In this line, function

Get-Perfect-Justification will consider allǫ nodes inτ as redundant, becauseǫ tasks have no ef-

fects. However, as explained before (Section 5.1),ǫ tasks are dummy tasks with no precondition

or postcondition, which use up negligible resources duringexecution. Consequently, considering

them as redundant tasks is unnecessary. More importantly, although ǫ tasks are technically re-

dundant, they are special tasks which are necessary in orderto maintain “links” to, for example,

recursive compound tasks. This is illustrated by the following example.

Consider again the elevator domain example from Section 5.1. The example con-

sists of the following two methods for handling the compoundtaskgo-to-bottom,

which keeps moving down one floor until the ground floor (floor 0) is reached:

(go-to-bottom, [{(1 : move-down), (2 : go-to-bottom)}, (1 ≺ 2)∧ (¬Floor(0), 1)])

(go-to-bottom, [{(1 : ǫ)}, (Floor(0), 1)]).

Now, suppose the elevator is initially at the second floor. The decomposition

tree for hybrid-plan [{go-to-bottom}, true] is shown in the figure below.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 157

(root : ǫ)

(0 : go-to-bottom) 1 ≺ 2∧ (¬Floor(0),1)

(1 : move-down) (2 : go-to-bottom) 3 ≺ 4∧ (¬Floor(0),3)

(3 : move-down) (4 : go-to-bottom) (Floor(0),5)

(5 : ǫ)

The preferred specialisation for this decomposition tree,given the primitive

plan solutionτ = (1 : move-down) · (3 : move-down) · (5 : ǫ), is [{(0 :

go-to-bottom)}, true]. This preferred specialisation cannot be obtained if the ini-

tial cut π does not contain node (5 :ǫ) — state constraint (Floor(0), 5) will not

hold without node (5 :ǫ), resulting in it being impossible to abstract out into higher

nodes.

Consequently, HTNǫ tasks should not be removed fromτ when finding a perfect justification

of τ.

It is not difficult to see that the abstraction process can be carried on bottom-up, by performing

the abstraction of all nodes at levelk before abstracting to nodes at levelk + 1. Eventually, the

hybrid-plan computed as a preferred specialisation for ourexample based on Figure 5.5 would be

h = [s, φ], where:

s= {(2 : a1), (8 : t4), (11 : t5), (14 : t6)};

φ = 2 ≺ 8∧ 2 ≺ 11∧ 8 ≺ 14∧ 11≺ 14∧ 2 ≺ 14.

Notice that this is a partial-order plan, as the execution ofcompound tasks 8 and 11 may be

interleaved (and, in fact, they are inT τ).

Finally, we will explain the rationale behind line 10. Sincenodes reduced intoǫ tasks (e.g.,

(16 : t0)) may be abstracted, that is, added to the current cutπ, we need to remove such trivially

abstracted nodes from the final cut, if they are still presentthere (i.e., if they were not abstracted

out). We do this because we are interested in findingminimal hybrid-plans, i.e., those that only

include compound tasks that contribute to the perfect justification.

The algorithm can be proved correct with respect to Definition 29. In fact, it computes not any

preferred specialisation, butminimalones.

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 158

Theorem 14. Algorithm 5.1 always terminates and returns a minimal preferred specialisation of

hybrid-solution h withinT τ forH .

Proof. Termination (of loops in lines 3 and 4) follows trivially by the fact that the tree (and its

height) is finite. We will now prove that the algorithm returns a preferred specialisation of hybrid-

solutionh within T τ forH . We will first claim that any value of cutπ, after line 2 and before line

10, conforms to the first two conditions of Definition 29 (withrespect toT τ andH). Since the

only line in the algorithm whereπ is modified after it is constructed is line 6, we will prove this

claim by induction on the numberk of times line 6 of the algorithm is executed.

For the base case, we takek = 0. Then,π = {(n : t) | (n : t) ∈ τ′} is the “low-level” cut of

labelled primitive tasks. Since the projected linearisation τ|actions(T |π) is a perfect justification

for 〈I,G,Op〉, and since the projected full decomposition treeT τ|π — in which all constraint

formulas aretrue — is executable inI relative toOp, the first two conditions of Definition 29

hold forπ.

Assume that the claim holds ifk ≤ x, for somex ∈ N0. Finally, let us takek = x + 1.

Let πk−1 be the value of cutπ after line 6 is executedk − 1 times, and letπk be the value of

cut π after line 6 is executedk times. Then, from the induction hypothesis, we know thatπk =

(πk−1\children(u,T))∪{u}, for some nodeu in the decomposition tree, and that cutπk−1 conforms

to the first two conditions of Definition 29. Since the only newtask inπk (compared withπk−1)

is u, and〈T τ|πk−1,I〉 |= ℓV(u) holds according to line 5, it follows that the first two conditions of

Definition 29 also hold forπk. Therefore, our claim holds.

Next, letπ be any value of cutπ immediately before line 10 in the algorithm. We will next

show that the third and final condition of Definition 29 holds for cutπ. Let S denote the following

statement: there does not exist a nodeu ∈ V(T), with u , (root : ǫ), such thatchildren(u,T) ⊆ π

and 〈T τ|π,I〉 |= ℓV(u). Observe from the algorithm thatS holds. Then, to show that the third

condition of the definition holds forπ, it is sufficient to prove thatS entails that there does not

exist a cutπ′ in T , with |π′| < |π|, that dominatesπ in T and such thatT τ|π′ is executable inI

relative toOp.

Let us assume the contrary (i.e., thatS holds but that the third condition of the definition does

not). LetT̂ = T |π′ andτ̂ = τ|leaves(T̂)
. Sinceπ′ dominatesπ, and sinceπ containsall ǫ tasks in

linearisationτ or their abstracted out nodes (i.e., those in which onlyǫ tasks occur in leaves), it is

not difficult to see that there must exist a sequence of cutsπ′1 · . . . · π′k, such that:(i) π′1 = π
′; (ii)

CHAPTER 5. OBTAINING A PREFERRED FIRST PRINCIPLES PLAN 159

π′k = π; (iii) for eachi ∈ {2, . . . , k}, π′i = (π′i−1 \ {u}) ∪ children(u, T̂) for someu ∈ π′i−1; and(iv)

k > 1 (because|π′| < |π|). Therefore, it follows that there is a nodeu ∈ V(T̂), with u , (root : ǫ),

such thatchildren(u, T̂) ⊆ π. Moreover, sincêT τ̂ is executable inI relative toOp, we know that

〈T̂ τ̂,I〉 |= ℓV(u), and therefore, that〈T τ|π,I〉 |= ℓV(u). Consequently,S cannot hold, and our

assumption is incorrect. Hence, hybrid-planhπ = [π,Φ[T τ, π]] is indeed a preferred specialisation

of hybrid-solutionh within T τ forH .

Finally, the fact that hybrid-plan returned by the algorithm is a minimal preferred specialisation

of h within T τ follows trivially due to line 10, which removes fromπ labelled tasks that are either

labelledǫ tasks, or those for which only labelledǫ tasks occur in leaves. �

It is important to note that the computational complexity offinding a perfect justification of

a primitive solution, relative to a given planning problem,is NP-hard (Fink and Yang, 1992).

Although we obtain a perfect justification fromτ in line 1, it is possible to replace function

Get-Perfect-Justification with any other function that finds a “preferred” primitive solution from

τ. For example, we could obtain a so-calledwell justification(Fink and Yang, 1992), which can be

found in polynomial time on the length of the given primitivesolution. Intuitively, a plan is said

to be well justified if all its actions are well justified, where an action is well justified if it brings

about a literal not brought about by some earlier action, andwhich is required by the precondition

of some action in the plan. While well justified plans, like perfectly justified plans, cannot contain

unnecessary actions, they still may, unlike perfectly justified plans, contain unnecessarygroupsof

actions. Hence, although no single action can be eliminatedfrom a well justified plan, it may be

possible to eliminate several actions together. We refer the reader to (Fink and Yang, 1992) for

further details on the notion of well justification.

By replacing functionGet-Perfect-Justification with a function that finds some other kind

of preferred primitive solution, our algorithm would then return a preferred specialisation that is

sound with respect to the corresponding definition of the preferred primitive solution obtained in

line 1. It is not difficult to see that Algorithm 5.1, once a perfect justification or preferred primitive

plan is obtained, runs in polynomial time on the size of the decomposition treeT .

Lemma 12. Algorithm 5.1, after completion of line 1, runs in polynomial time on the size of the

decomposition treeT .

Proof. See Appendix A.3. �

Chapter 6
Implementation†

So far, we have provided three formal frameworks. First, we provided a framework for HTN

planning in BDI systems, which allows an agent to look-aheadwithin the context of its existing

plan structures in order to make the right choices during decomposition. Since look-ahead does

not allow the creation of new plan structures, we provided a framework for first principles planning

in BDI systems, which uses the agent’s existing domain knowledge so as to construct new hybrid-

plan structures not already in the agent’s library. Finally, we provided a framework for improving

a hybrid-plan obtained, in order to extract its most abstract and non-redundant part.

In this chapter, we implement the three frameworks into a combined system using the JACK

Intelligent Agents (Busetta et al., 1999) BDI implementation. The combined system is a prototype

that implements the algorithms described in Chapters 3, 4, and 5. Although JACK provides certain

features — such asmeta-plansfor dynamic, programmed choice of the most appropriate plan—

that are not supported by the HTN language we use in Chapter 3 or the restricted CAN language

we use in Chapter 4, we still allow the programmer to exploit the full functionality of JACK when

developing real-world applications, and to use planning with only a selected subset of the plan-

library. Moreover, by highlighting gaps between the formalframeworks and their implementations

— such as differences in how they handle negation — and showing how some of these gaps can

be reduced, we give insights into how certain features of JACK that are not supported by the

formal frameworks can be specified in formats that are supported by the frameworks. Finally, we

shed some light on the practical utility of our implemented systems by, for instance, showing how

†Part of the work presented in this chapter has been previously published in (de Silva and Padgham, 2004, 2005;
Sardina et al., 2006).

161

CHAPTER 6. IMPLEMENTATION 162

certain differences between them and the formal semantics, such as replanning at every step as

indicated by thePlan derivation rule of Chapter 3, versus planning once and executing a stored

solution, are necessary in order to develop practical BDI systems.

JACK is a leading edge, commercial BDI agent development platform, used for industrial soft-

ware development (Jarvis et al., 2003; Wallis et al., 2002).It has similar core functionality to a

collection of BDI systems, originating from the PRS (Georgeff and Ingrand, 1989) system. For

the HTN planning system we use JSHOP, which is a Java version of the Lisp based SHOP (Sim-

ple Hierarchical Ordered Planner) (Nau et al., 1999) total-order HTN planner, whose successor,

SHOP2 (Nau et al., 2003), won one of the top four prizes at the 2002 International Planning Com-

petition.1 Both JSHOP and SHOP have been integrated into many different types of applications

(Muñoz-Avila et al., 2001; Dix et al., 2003; Nau et al., 2005). For first principles planning, we

use the C based Metric-FF (Hoffmann, 2003) planning system, which was a top performer in the

Numeric Track of third International Planning Competition. Metric-FF is largely based on the FF

(Hoffmann and Nebel, 2001) planning system, which was awarded forOutstanding Performance at

the second International Planning Competition, and awarded Top Performer in the STRIPS Track

of the third International Planning Competition. An overview of the architecture of our combined

framework is shown in Figure 6.1.

This chapter is organised as follows. First, in Section 6.1,we show the relationship between

the formal languages – CAN and HTN – and their respective implementations – JACK and JSHOP.

In particular, we show what gaps exist between the formal languages and their implementations,

and how some of these gaps can be overcome. Next, in Section 6.2 and 6.3, we discuss our

integrations of respectively JSHOP and Metric-FF into JACK. This includes highlighting the

differences between the semantics of previous chapters and our implemented system, and showing

why these differences are necessary in order to have a practical BDI system. Finally, in Section

6.4, we discuss our implementation of the Algorithms in Chapter 5, in particular, how we obtain a

decomposition tree from JSHOP, and how a preferred specialisation is extracted from the tree.

6.1 Comparing the Formal Languages with their Implementations

In Section 3.1, we provided a mapping from AgentSpeak (Rao, 1996) BDI entities to HTN (Erol

et al., 1996) entities. In this section, we will focus on showing the relationship between CAN

1http://ipc.icaps-conference.org/

CHAPTER 6. IMPLEMENTATION 163

Figure 6.1: The architecture of our combined framework

entities and JACK entities, and between HTN entities and JSHOP entities. An understanding of

these relationships is important in order to map from JACK entities to JSHOP entities, and for

translating JACK plan-libraries into Metric-FF planning operators.

6.1.1 CAN vs. JACK

Most CAN entities have a corresponding entity within JACK. However, JACK provides a variety

of features not supported in CAN, such asmeta-plansfor dynamic, programmed choice of the

most appropriate plan, andmaintenance conditionsfor ensuring that solutions pursued are aborted

if the world changes in unspecified ways. An overview of JACK syntax can be found in Section

2.1.4.

CHAPTER 6. IMPLEMENTATION 164

Beliefs and belief operations

The belief base of a CAN agent corresponds to a JACKbeliefset. A JACK beliefset is a database

consisting of multiple relations, each representing a different characteristic of the environment.

However, while the belief base of CAN isclosed world, where any atom not present in the belief

base is assumed to be false, JACK additionally allows the useof open worldrelations, where

a tuple not present in a relation can either be false or unknown. The belief addition+b and

belief removal−b operations of CAN correspond respectively to theadd()andremove()beliefset

methods of JACK.

For example, the CAN belief operation+At(rover, rock3) can be encoded in JACK

asat.add(“Rover” , “Rock3”), whereat is an instance of the beliefset relationAt.

Actions

Like AgentSpeak, JACK does not have a model of actions; actions in JACK correspond to arbitrary

Java functions. However, like CAN and AgentSpeak actions, which are non-interruptible, JACK

has an@actionreasoning statement that allows steps requiring lengthy execution (e.g., physically

moving a robot to a new location) to be executed until completion before the JACK engine moves

on to other intentions. Therefore, we can represent the actions of our revised version of CAN

using events and@actionreasoning statements in JACK. This is done as follows. First, a new

JACK event is created along with a new JACK plan for it, and theJava function corresponding to

the action is specified as an@actionreasoning statement within the body of the plan. Second, the

precondition of the Java function (if any) is encoded withinthe context condition of the new JACK

plan, and the effects brought about when the function is invoked are specifiedin the body of the

plan, either as JACK beliefset operations, or withinbeginEFFandendEFFtags. We have intro-

duced these tags into the system so that the effects of actions can be specified within them. Effects

specified within these tags are later extracted during the translation to JSHOP and Metric-FF.

For example, consider the JACK plan on the right in Figure 6.2. The body of this

plan contains actions for calibrating and moving. The code for calibrating, which is

encapsulated within eventCalibrateEvent, calls some Java function for calibrating

the rover’s instruments via GPS. The code for moving, which is encapsulated within

eventMoveEvent, calls a Java function which moves the rover to the destination.

CHAPTER 6. IMPLEMENTATION 165

The effects of executing the two pieces of code are specified immediately after them

within beginEFFandendEFFtags. The@wait for statement in the plan for navi-

gating makes the intention wait, for a maximum oftimeoutseconds, until an event

is received from the environment confirming the rover’s new location.

1
2 plan CalibratePlanextendsPlan
3 {
4 #handles eventCalibrateEvent calibrate;
5
6 context()
7 {
8 true;
9 }

10
11 body()
12 {
13 @action(new CalibrateViaGPS());
14 /∗∗ beginEFF
15 (Status Calibrated)
16 endEFF∗∗/
17 }
18 }

1
2 plan MovePlanextendsPlan
3 {
4 #handles eventMoveEvent move;
5
6 #uses dataAt at;
7
8 context()
9 {

10 at.query(move.src);
11 }
12
13 body()
14 {
15 @action(new Move(move.src, move.dst));
16 /∗∗ beginEFF
17 (not (At ?nav.src))
18 (At ?nav.dst)
19 endEFF∗∗/
20 }
21 }

1
2 plan NavigatePlanextendsPlan
3 {
4 #handles eventNavigate nav;
5
6 #uses dataAt at;
7
8 #posts eventCalibrateEvent calibrate;
9 #posts eventMoveEvent move;

10
11 context()
12 {
13 at.query(nav.src);
14 }
15
16 private int timeout= 5;
17
18 body()
19 {
20 @subtask(calibrate.post());
21 @subtask(move.post(nav.src, nav.dst));
22
23 @waitfor(at.query(nav.dst), timeout);
24 }
25 }

Figure 6.2: JACK plans for theNavigateevent-goal and its corresponding actions in the Mars
Rover agent of Figure 4.2.

Achievement and test goals

Event-goal programs (!e) of CAN correspond to the posting of JACK events of typeBDIGoalEvent,

via the@subtaskreasoning statement. However, unlike CAN, JACK provides a variety of event

types with different behaviours (e.g.,BDIFactEventandInferenceGoalEvent), as well as attributes

CHAPTER 6. IMPLEMENTATION 166

for customising the behaviour of events. Moreover, there are different options for posting events,

via reasoning statements such as@achieveand@insist: statement@achieveposts an event only

if a given condition does not hold, and trivially succeeds otherwise; and@insistposts an event

repeatedly until a given success condition is met.

For example, a CAN event-goal program !Move(Rock1,Rock2) mentioned

within some plan-body can be specified within a JACK plan-body as

@subtask(move.post(“Rock1”, “Rock2”)), wheremoveis an instance of the event

type Move.

The test for a condition (?φ) of CAN has a straightforward mapping to a JACKbeliefset query,

modulo a discrepancy in how the two systems handle negation,which we will discuss in Section

6.2.

A CAN test condition ?On(b, Block1) mentioned within some plan-body can be

specified within a JACK plan-body as the beliefset queryon.query($b, “ Block1”),

whereon is an instance of a beliefset relation, methodquery is a Java method which

queries the relation, and $b is a logical variable.

Plan-rules

A CAN plan-rule corresponds to a JACK plan: the context condition of a plan-rule maps to a

JACK context condition, modulo the discrepancy mentioned above regarding negation, and the

plan-body of a plan-rule maps to a JACK plan-body.

For example, the CAN context condition On(block,Table) ∧

Clear(block) can be encoded as the JACK context condition

on.query($block, “Table”) && clear.query($block). Moreover, the CAN par-

allel program !Move(Block1,Table) || !Move(Block2,Table) can be written in

CHAPTER 6. IMPLEMENTATION 167

JACK as follows:

@parallel(. . .)

{

@subtask(move.post(“ Block1”, “Table”));

@subtask(move.post(“ Block2”, “Table”));

}.

6.1.2 HTN vs. JSHOP

The HTN language allows partial ordering of tasks, and the ability to specify conditions that must

hold before, after or between tasks in a task network. Although JSHOP does not have either

of these features, it has features not supported in the HTN language, such as axioms (derived

predicates) and the ability to call functions from within methods. Next, we will show how certain

features of the two systems can be mapped, and we will identify the entities that do not have a

mapping. An overview of JSHOP syntax can be found in Section 2.3.2.

Task networks and methods

The representation of a method in JSHOP is similar to the representation of a method in HTN.

Recall from Section 2.3.2 that a HTN method is of the form (α, [{(n1 : t1), . . . , (nm : tm)}, φ]),

where the first componentα is a compound task, and the second component is a task network.

In the task network, the first component is a set of labelled tasks, and the second component is

a constraint formula. Similarly, a JSHOP method is of the form (: methodα [h] C T), whereα

is a compound task,C is a conjunction of literals representing the preconditionof the method,T,

called thetail, is a sequence of (primitive and compound) tasks, andh is an optional name for the

method.2 Note that, while the tasks in a tailT must be totally ordered, the labelled tasks in a HTN

task network can be partially ordered. Therefore, a HTN tasknetwork is more expressive than a

JSHOP tail, and a mapping cannot be performed from a partially-ordered HTN task network to a

single JSHOP tail.3 Moreover, note that, although a HTN method does not have a precondition per

2Note that in JSHOP, a question mark before a symbol indicatesthat the symbol is a variable, and an exclamation
before a symbol indicates that the symbol is a primitive task/action.

3Although it is sometimes (Nau et al., 1998) possible to create a JSHOP tail for every possible (viable) total-ordering
of a given partially ordered HTN task network, this will leadto an exponential number of JSHOP tails in the worst case.

CHAPTER 6. IMPLEMENTATION 168

se, the preconditionC of a JSHOP method can be encoded as state constraints within the constraint

formulaφ of a HTN method.

For example, the following HTN method:

(move(b1, b2, b3), [{(1 : pickup(b1)), (2 : stack(b1, b3))}, φ]),

where

φ = (1 ≺ 2)∧ (Clear(b1), 1) ∧ (On(b1, b2), 1) ∧ (Clear(b3), 1),

can be represented in JSHOP with the following method:

(: method(move?b1 ?b2 ?b3)

((Clear ?b1)(On ?b1 ?b2)(Clear ?b3))

((!pickup?b1)(!stack?b1 ?b3))

),

wherepickupandstackare primitive tasks andmove is a compound task.

Initial states, compound tasks, and primitive tasks

The initial state in both HTN and JSHOP is a set of ground atoms. Moreover, primitive tasks and

compound tasks in both frameworks have an identical representation. However, there is a sub-

tle difference between a JSHOP operator and HTN operator in that the precondition of a JSHOP

operator can only contain atoms, whereas the precondition of a HTN operator can contain liter-

als.4 This restriction in JSHOP can be overcome by using JSHOP methods as “wrappers” around

operators that require literals within their preconditions. In this way, the expressivity of the pre-

conditions of methods can be exploited.

4Note that, although, according to some JSHOP related publications, preconditions cannot be specified for operators,
the implementation does, in fact, allow such preconditions.

CHAPTER 6. IMPLEMENTATION 169

For example, the HTN operator

[operator pickup(b)

(pre : On(b, b2),Clear(b),¬ArmOccupied)

(post: ¬On(b, b2),ArmOccupied,Clear(b2))

],

can be represented in JSHOP with the following method and operator:

(: method(pickup?b)

((On ?b ?b2)(Clear ?b)(¬ArmOccupied))

((!pickup2 ?b ?b2))

),

and

(: operator(!pickup2 ?b ?b2)

()

((On?b ?b2))

((ArmOccupied)(Clear ?b2))

).

State constraints

It is not, in general, possible to specify in JSHOP that a condition must hold before a task — if

a condition needs to hold before the first task in a HTN task network, then this can be specified

within the precondition of a JSHOP method. Moreover, it is not possible to specify in JSHOP that

a condition must hold after a task or between two tasks.

These restrictions in JSHOP can be overcome, to a certain extent, by using compound tasks

and methods. To specify that a condition must hold between two taskst1 andt2 within a JSHOP

tail, (i) a new compound task is created along with a method that is always relevant, with the

precondition of the method containing the condition in question; and(ii) a call to the compound

task is placed in the tail of the JSHOP method, between the twotaskst1 and t2. Other state

constraints can be handled in a similar way.

CHAPTER 6. IMPLEMENTATION 170

For example, to specify that literalOn(b, Block1) should hold immediately before

some taskti in the tailT = t1 · . . . · tn of a JSHOP method, we first create the new

method:

(: method(test?block)

((On?block Block1))

()

),

and we then place JSHOP compound task (test ?b) immediately before taskti in

the tail. Similarly, if literalOn(b, Block1) needs to hold between two tasksti andt j

(wherei < j) in T, task (test?b) is placed after all taskstk in T such thati ≤ k < j.

The limitation of this approach, however, is that JSHOP doesnot allow the substitutions ap-

plied to variables within the precondition of a method to also be applied (or propagated) to cor-

responding variables within the tail that calls the method.Therefore, substitutions applied to a

precondition within a tail cannot be applied to the remaining steps in the tail.

Consider once again the previous example. Suppose compoundtask (test?b) occurs

twice in tail T. Moreover, suppose variableb does not occur anywhere else in the

tail except in these two compound tasks. Finally, suppose that some valueBlock2 is

assigned to variableblockwhen precondition (On?block Block1) is evaluated.

Now, when precondition (On ?block Block1) is evaluated for the second time

to solve the second occurence of compound task (test?b) in T, the value assigned

to variableblock may not beBlock2. This is because, when the precondition is

evaluated for the first time, the substitution applied to variable block is not applied

to variableb occurring in tailT.

This limitation can be overcome by obtaining a binding forb from within the precondition

corresponding to tailT in the above examples. In this way, all occurences of variable b in T will

be bound beforeT is solved. For example, JSHOP literal (Block ?b) could be included in the

precondition corresponding toT, which would allow variableb to be bound toany block in the

domain. Of course, alternative bindings can be tried forb until a binding is found (if one exists)

that allowsT to be solved.

CHAPTER 6. IMPLEMENTATION 171

6.2 Integrating JSHOP into JACK

So far, we have shown the relationship between CAN and JACK, and the relationship between

HTN and JSHOP. In this section, we show the mapping from JACK entities to JSHOP entities by

incorporating the mappings discussed in the previous sections, and we discuss our implementation

of the operational semantics in Chapter 3.

6.2.1 Mapping JACK to JSHOP

Our mapping from JACK to JSHOP includes mapping between certain features of JACK and

JSHOP that do not conform exactly to their respective formalisations, but are nonetheless useful

in practice. We point out discrepancies between certain basic functionalities of the two systems,

and show how these can be addressed.

Belief operations

Since a JACK beliefset is a database, a subset of the attributes of a relation can be chosen to form

theprimary keyof the relation. Consequently, adding to a relation a tuple with the same value for

the primary key as a tuple that already exists in the relationwill cause the old tuple to be replaced

with the new tuple. On the other hand, since a JSHOP (as well asa HTN and CAN) belief base is

simply a set of ground atoms, all arguments of atoms (relations) are treated as their primary keys.

Hence, the removal of an existing belief atom, on the addition of a new one, has to be explicitly

handled by the programmer.

For example, consider the initial CAN belief base{At(Rover,Rock1),

At(Lander,Rock3)}. Observe that the corresponding JACK agent hasAt as a

beliefset relation. If in JACK the first attribute in relation At is a primary key of

this relation, then performing belief additionat.add(“Rover” , “Rock3”) (where at

is an instance of beliefset relationAt) will result in the previous locationRock1 of

the rover being removed from the beliefset. However, performing belief operation

+At(Rover,Rock3) in CAN will only result in this new belief atom being added

to the set of base beliefs – the previous location of the roveris not automatically

removed from the set of base beliefs.

CHAPTER 6. IMPLEMENTATION 172

While JSHOP could be modified to allow the programmer to choose a subset of an atom’s argu-

ments as its primary key, we have not implemented this for simplicity. However, for an industrial

strength system, this should be implemented, and it could beimplemented straightforwardly. In

the current system, the JACK programmer must select all attributes of relations to be their primary

keys, and handle the deletion of existing tuples explictly.

Preferences

Although not directly supported in agent programming languages such as CAN, AgentSpeak, and

3APL, JACK allows plans to have preferences. Preferences can be specified for JACK plans by

declaring within a JACK agent the order in which plans shouldbe tested for applicability. Such

preferences are useful to specify the order in which plans should be tried, if more than one plan is

applicable.

Similarly, it is also possible to specify within a JSHOP domain file the order in which methods

should be tried when decomposing compound tasks. It is therefore straightforward for JSHOP to

use and respect the preference information available for JACK plans.

Negation

The negation of a beliefset query in JACK isnegation as failure(Clark, 1978), while negation in

JSHOP (as well as CAN and HTN) is standard logical negation. Consequently, while the negation

of a beliefset query in JACK succeeds only if no appropriate bindings exist for variables occurring

in the query, the negation of an atom in JSHOP succeeds if bindings exist for variables occurring

in the atom such that the resulting ground atom is false in theworld state.

For example, suppose we have the JACK or CAN initial state{Person(John),-

Person(Mark),Person(David),Person(James),Married(John),Married(David)}.

In JACK, the beliefset query !married.query($x),5where $x is a logical variable,

returns false, since there is a binding for $x such thatmarried.query($x) holds. In

JSHOP, on the other hand, literal¬Married(?x) (i.e., (not (Married ?x)) in JSHOP

syntax) will hold, with a binding of eitherJamesor Mark for variablex.

5Note that the exclamation symbol ! in JACK means negation, whereas the same symbol is used in CAN in order to
distinguish between event-goals and event-goal programs.

CHAPTER 6. IMPLEMENTATION 173

To address this difference, we disallow the use of negation on a JACK beliefset query if vari-

ables occurring in the beliefset query will not already be bound by the time the query is evaluated.

Such bindings can be obtained from elsewhere in the JACK plan(e.g., if the query occurs in a

context condition, bindings for all of its variables can be obtained from a previous conjunct in the

context condition). In this way, negation as failure and logical negation are evaluated in the same

manner.

For example, we can add beliefset queryperson.query($x) as a conjunct

to the beliefset query !married.query($x) in the previous example, such that

person.query($x) occurs before !married.query($x) in the formula. This results

in the formulaperson.query($x) && ! married.query($x). This formula will en-

sure that variable $x is bound by the time !married.query($x) is evaluated, because

JACK evaluates formulas from left to right.

Calling arbitrary Java functions

JSHOP allows arbitrary Java functions (e.g.,getShortestDistance) to be called from within the

precondition and tail of a method, and for values returned tobe compared with variables, constants,

or the values returned by other such function calls. In HTN methods, on the other hand, functions

cannot be mentioned within a task network – only first order literals are allowed. Like JSHOP,

JACK context conditions and plan-bodies also allow arbitrary functions to be called.

JSHOP functions only accept arguments of a single generic type calledJSTerm, and they only

return the same type. Consequently, the main step that is required to be able to use a JACK function

from within JSHOP is to modify the JACK function so that it accepts and returns objects of type

JSTerm. All JACK functions that need to be translated into JSHOP functions are specified in a

separate Java Class file, and the translation is done automatically at compile time.

For example, a JSHOP method can have a precondition that calls a user de-

fined function to obtain the shortest distance between two locations ?x and ?y,

and then compares the value returned with the amount of remaining fuel ?f ,

as follows: (call <= (call getShortestDistance?x ?y) ?f), where call de-

notes a procedure call. In JACK the same requirement could bewritten as

getShortestDistance($x.as int(), $y.as int()) <= $ f .as int(), where $x, $y and $f

CHAPTER 6. IMPLEMENTATION 174

are logical variables. If the JACK code for functiongetShortestDistanceis encoded

as follows:

public static double getShortestDistance(double x, doubley)

{

double shortestDist= calculateShortestDist(x, y);

return shortestDist;

},

then the corresponding JSHOP function would look as follows:

public static JSTerm getShortestDistance(JSTerm x, JSTermy)

{

double x2 = numericValue(x);

doubley2 = numericValue(y);

JSTerm t= new JSTerm();

t.makeConstant();

double shortestDist= calculateShortestDist(x2, y2);

t.addElement(new Double(shortestDist));

return t;

}.

Axioms

JSHOP supports the use ofaxioms, or derived predicates(Thiébaux et al., 2005) within precondi-

tions of methods, which can be used to define new predicates interms of predicates that already

exist in the domain. This allows preconditions to be writtenthat are more elegant and concise than

those that do not make use of axioms (Thiébaux et al., 2005),as single predicates can be used in

place of their constituent predicates.

For example, the following JSHOP axiom states that a location is within walking

distance if(i) the weather is good and the location is within two kilometresfrom

CHAPTER 6. IMPLEMENTATION 175

home, or(ii) if the location is within one kilometre from home:

((WalkingDistance?x)

((Weather Good)(Distance Home?x ?d)(call <= ?d 2))

((Distance Home?x ?d)(call <= ?d 1))

)

When writing a precondition, axiom (WalkingDistance?x) can be used as a predi-

cate.

It is not difficult to see that such axioms can easily be specified as Java functions in JACK, which

can then be called from within JSHOP preconditions. Therefore, we do not deal separately with

translating parts of JACK context conditions into JSHOP axioms.

Summary of the mapping from JACK to JSHOP

Table 6.1 shows a summary of the mapping from JACK to JSHOP. Note that, for simplicity, we

do not automatically translate JACK beliefset queries to JSHOP compound tasks and methods

— the programmer needs to encode beliefset queries as context conditions of JACK plans, as

we described for JSHOP and state constraints earlier (p. 169). Finally, since a JSHOP context

condition is a conjunction of literals, we assume that JACK context conditions do not contain

disjunction; no generality is lost here, as any plan with a disjunctive context condition can be split

into multiple plans, each containing one of the disjuncts. In the example below, we illustrate some

of the mappings highlighted in the Table 6.1.

Figure 6.5 shows a possible encoding of a JACK plan that handles the

ObtainSoilResultsevent of the Mars Rover agent in Figure 4.2, along with the cor-

responding JSHOP method. Note that the actions of picking and dropping a soil

sample have not been encapsulated within separate JACK events (as done in Figure

6.2) for simplicity. Observe that the context condition is translated into a JSHOP

precondition which uses the JACK event types as predicate symbols. Similarly, the

body of the JACK plan is translated into a JSHOP tail which uses JACK event types

as compound tasks, and JACK beliefset types for naming primitive actions.

CHAPTER 6. IMPLEMENTATION 176

The JACK belief addition and removal associated with the two@actionstate-

ments are translated respectively into JSHOP actions(!ADD HaveSoilSample ?dst)

and(!DEL HaveSoilSample ?dst), along with operators to handle these actions (not

shown).

Statements withinbeginEFFandendEFFtags are translated to JSHOP actions,

similarly to the translation of JACK beliefset operations.For example, the effects

(not (At ?src))and (At ?dst) in Figure 6.2 are translated into the JSHOP actions

(!DEL At ?src) and (!ADD At ?src), respectively, along with operators to handle

these actions.

1 plan ObtainResultsPlanextendsPlan
2 {
3 #handles eventObtainSoilResults obtain;
4
5 #posts eventAnalyseSoil analyse;
6
7 #uses dataSoilCompartment compartment;
8 #uses dataHaveSoilSample haveSample;
9 #uses dataAt at;

10
11 context()
12 {
13 at.query(obtain.dst) &&
14 compartment.query(‘‘Empty’’);
15 }
16
17 body()
18 {
19 @action(new PickSoilSample(obtain.dst));
20 haveSample.add(obtain.dst);
21
22 @subtask(analyse.post(obtain.dst));
23
24 @action(new DropSoilSample(obtain.dst));
25 haveSample.remove(obtain.dst);
26 }
27 }

(a) JACK code for ObtainResultsPlan

1 (:method (ObtainResultsPlan ?dst)
2
3 (
4 (At ?dst)
5 (SoilCompartment Empty)
6)
7
8 (
9 (!ADD HaveSoilSample ?dst)

10 (AnalyseSoil ?dst)
11 (!DEL HaveSoilSample ?dst)
12)
13)

(b) Translation of ObtainResultsPlan

Figure 6.5: Mapping from a JACK plan in the Mars Rover agent ofFigure 4.2 to a JSHOP method

6.2.2 Implementation Issues

In this section, we discuss our implementation of the operational semantics presented in Chap-

ter 3. The implementation is in the form of a Java package, called JACKPlan, which can be

imported from JACK when building planning agents. Althoughthe implementation does not pre-

cisely realise the operational semantics, it does incorporate the most important concepts from it.

CHAPTER 6. IMPLEMENTATION 177

JACK Entities JSHOP Entities

beliefset state
beliefset operation (add()andremove()) primitive task
effects (withinbeginEFFandendEFFtags) primitive task
action (i.e., event and associated plan) compound task and associated method
posting of an event (@subtask) compound task
beliefset query method precondition
context condition method precondition
parallelism (@parallel) no mapping
plan-body tail
Java function Java function accepting and returningJSTerm
plan method
plan preference method preference
plan-library set of methods

Table 6.1: Summary of the mapping from JACK to JSHOP

In particular, the implementation allows the programmer tospecify from within a JACK plan the

points at which JSHOP should be called. This is done with theplanHTN function, which takes

as an argument a sequence of ground JACK event types,6 which, as discussed before (p. 164),

can also represent actions. On invoking functionplanHTN, the agent’s current set of beliefs is

automatically sent to JSHOP, which JSHOP uses as the initialstate for HTN planning.

As one example of the use of the JACKPlan package, consider the Mars Rover agent

in Figure 3.1 of Chapter 3. Recall that HTN planning is neededfor plan-ruleR0 in

this figure in order to avoid failure, in certain initial states, due to a wrong choice

between plan-rulesR2 andR3. Figure 6.8(a) shows the implementation of plan-rule

R0 of Figure 3.1, and Figure 6.8(b) shows how HTN planning can beincorporated

into the plan-body of Figure 6.8(a). In particular, this is done by replacing the three

@subtaskstatements of Figure 6.8(a) with functionplanHTN, and passing in as an

argument the sequence of three ground event types corresponding to the three@sub-

taskstatements. Observe, further, from Figure 6.8(b), that theJACKPlan.Planning

class has been imported and inherited; this class provides the HTN planning func-

tionality. Finally, observe that the#posts eventdeclarations have been removed

because events are no longer posted from the plan-body, although such removal is

6A ground JACK event type is a JACK event class name, followed by a constant for each argument in the first Java
method for posting an instance of the event. Note that variables can occur in functionplanHTN provided they will be
bound before the function is invoked.

CHAPTER 6. IMPLEMENTATION 178

not strictly necessary.

1 plan ExplorePlanextendsPlan
2 {
3 #handles eventExploreSoilLocation expl;
4
5 #posts eventNavigate navigate;
6 #posts eventAnalyseSoil analyse;
7 #posts eventTransmitData transmit;
8
9 #uses dataAvailableBattery battery;

10 #uses dataAvailableMemory memory;
11 #uses dataAt at;
12
13 logical int $bat;
14 logical int $mem;
15
16 context()
17 {
18 at.query(expl.src) &&
19 battery.query($bat) &&
20 memory.query($mem) &&
21 (
22 ($bat.asint() >= 6 && $mem.asint() >= 5) ||
23 ($bat.asint() >= 7 && $mem.asint() >= 4)
24);
25 }
26
27 body()
28 {
29 @subtask(navigate.post(expl.src, expl.dst));
30 @subtask(analyse.post(expl.dst));
31 @subtask(transmit.post(expl.dst));
32 }
33 }

(a) JACK code for ExplorePlan

1 import JACKPlan.Planning;
2
3 plan ExplorePlanextendsPlanning
4 {
5 #handles eventExploreSoilLocation expl;
6
7 #uses dataAvailableBattery battery;
8 #uses dataAvailableMemory memory;
9 #uses dataAt at;

10
11 logical int $bat;
12 logical int $mem;
13
14 context()
15 {
16 at.query(expl.src) &&
17 battery.query($bat) &&
18 memory.query($mem) &&
19 (
20 ($bat.asint() >= 6 && $mem.asint() >= 5) ||
21 ($bat.asint() >= 7 && $mem.asint() >= 4)
22);
23 }
24
25 body()
26 {
27 planHTN
28 (
29 ‘‘(Navigate ’’+expl.src+‘‘ ’’ +expl.dst+‘‘)’’ +
30 ‘‘(AnalyseSoil ’’+expl.dst+‘‘)’’ +
31 ‘‘(TransmitData ’’+expl.dst+‘‘)’’
32);
33 }
34 }

(b) JACKPlan code for ExplorePlan

Figure 6.8: Incorporating HTN planning into the Mars Rover agent of Figure 3.1

Consistent with the semantics, JSHOP uses the same domain representation as JACK, that is,

the plan-library and belief base. To this end, we provide a compilation procedure in JACKPlan

that can be used offline in order to build the JSHOP domain representation from the domain rep-

resentation of JACK. Specifically, JACK entities are converted into JSHOP entities according to

the mapping discussed before.

Unlike the semantics, however, the implementation does notre-plan at every step, as indicated

by thePlan derivation rule in the semantics. This would be unnecessarily inefficient, since in some

cases, HTN planning would need to be performed numerous times, e.g., as many times as the

number of steps in the first plan returned. Instead, we have modified JSHOP to return the methods

(JACK plans) that should be chosen at the different choice points, as well as the bindings that

should be given to variables occurring in preconditions (JACK context conditions). On invoking

CHAPTER 6. IMPLEMENTATION 179

functionplanHTN, the BDI execution engine calls JSHOP once, and then followsstep-by-step the

decomposition suggested by JSHOP. If by the time execution happens, decomposition information

returned by JSHOP has become invalid due to a change in the environment, JACK will detect this

change when a step in the returned decomposition is no longerapplicable within the BDI execution

cycle. At that point, failure will occur in the BDI system, and the planner can be called again to

provide an updated plan.

Although storing the plan has its benefits, executing a stored plan also makes the implemen-

tation incapable of predicting failure due to a change in theenvironment, until the failure occurs

during execution. On the contrary, the semantics can detectfailure early, as replanning is done

after executing every action, which ensures that actions are executed only when a solution ex-

ists with respect to the current state of the world. However,this drawback in the implementation

is offset by the much greater efficiency in what can be expected to be the majority of cases. If

early detection is required, some form of plan monitoring (e.g., (Veloso et al., 1998)) could be

developed.

Let us illustrate how failure is detected in the semantics and implementation. Con-

sider the plan-library shown below. Observe that eventse2 ande3 are each handled

using two plan-rules. Suppose that, initially, the environment is such thate1 can be

successfully decomposed irrespective of the plan-rules chosen, and that actiona4

brings about the precondition of actiona6.
e1

R1

−→
e2

OR

R2

→
a1 a2

R3

→
a3 a4

e3

OR

R4

→
a5 a6

R5

→
a7 a8

Next, consider the execution of evente1 using thePlan construct of the seman-

tics, and theplanHTN function of the implementation (for simplicity, we assume

that HTN planning takes the same amount of time as executing astep.) The figure

below shows how thePlan construct performs full look-ahead (represented by small

circles) on event-goale1, executes the first step ofe1 (which results in the selection

of plan-ruleR1), performs full look-ahead onR1, executes the first step ofR1 (which

CHAPTER 6. IMPLEMENTATION 180

checks whether the context condition ofR1 is met in the initial state), and so on.

On the other hand, theplanHTN function of the implementation first performs full

look-ahead on evente1, and then executes the resulting decomposition step-by-step.

time
0 1 2 3 4 5 6 7 8 9 10 11

change in environment

e1 R1 e2 R3 a3 a4e1 R1 e2 R3 a3 a4Plan

planHTN e1 e1 R1 e2 R2 a1 a2 e3 R4 a5 a6 6−→

Now, suppose that a change occurs in the environment betweentime steps 3 and 4,

which results in the precondition of actiona6 being no longer applicable. Observe,

then, that thePlan construct realises this change between time steps 4 and 5, and

that it pursues an alternative decomposition, which involves selectingR3 in order to

makea6 applicable once more. TheplanHTN function, on the other hand, does not

realise this change in the environment, until it fails when trying to execute action

a6 at time step 10. However, as hinted by the above figure, if sucha change in the

environment does not occur,planHTN would most likely complete the successful

execution ofe1 beforePlan does.

Since the HTN planner is called only at specific points in the BDI program where planning

is deemed necessary, we expect the runtime performance of the integrated system consisting of

JACK and JSHOP to be sufficiently efficient for many applications. In fact, when we tested the

combined system on simple domains such as variations of the Mars Rover domain in Figure 4.2,

and a “meeting scheduler” domain where the agent’s task is toschedule new meeting requests into

a user’s diary, JSHOP returned solutions within a matter of afew seconds, even for solving the

top level tasks. Specifically, in the latter domain, when a new meeting request arrives along with

a set of suitable time slots for the meeting, the agent tries to find an empty slot in the diary that

is suitable for the new meeting, and if no such slot is found, the agent tries to clear a slot that is

suitable for the new meeting by moving an already scheduled meeting into one of its alternative

CHAPTER 6. IMPLEMENTATION 181

suitable slots, failing if no such alternative can be found.7 This domain consisted of a goal-plan

hierarchy of three levels, with two actions (“insert” and “delete”), five event-goals, and seven

plan-rules.

We also expect the runtime performance of the combined system to be efficient in many ap-

plications because HTN planners have been shown to be practical in many real-world, non-trivial

problems that are very difficult for humans to solve (Ghallab et al., 2004, p. 257)(Nau, 2007). The

user base of HTN planners includes government laboratories, industries, and universities, with

projects such as fighting forest fires, controlling multipleUAVs, and statistical goal recognition –

i.e., inferring the goals of other agents (Nau et al., 2005).The reason for the practicality of the

HTN approach is that it relies on user-supplied “recipes,” which provide control knowledge to the

planner, resulting in a substantial reduction in the searchspace (Ghallab et al., 2004, pp. 229,

259).

6.3 Integrating Metric-FF into JACK

In Chapter 4, we presented algorithms for first principles planning in the CAN BDI agent pro-

gramming language. Specifically, these were algorithms forsummarising effects and precondi-

tions of CAN programs, for creating abstract planning operators from summary information, and

finally, for obtaining hybrid-solutions using such operators. In this section, we discuss our imple-

mentation of these algorithms in the JACKPlan Java package.

In the implementation, we translate JACK plan-libraries into Metric-FF operators using the

summary algorithms of Chapter 4. The subset of the JACK functionalities that we account for

in the translation is the subset that is common between JACK and CAN as described in Section

6.1.1, that is, closed world beliefsets,@subtaskreasoning statements, belief operations, context

conditions, sequential plan-bodies, and actions. Restrictions in Section 6.2, which were introduced

in the context of JSHOP, also apply to this section, namely, the restrictions on negation and belief

operations in JACK.

The functionality of JACK that is not translated into Metric-FF is as follows. First, we do

not translate certain features of JACK that were used with JSHOP, namely, preferences on JACK

plans and arbitrary function calls within JACK plans. Although such preference information is

7Note that the purpose of these experiments was not to motivate the need for HTN planning (as done in Chapter 3),
but merely to check how long JSHOP takes to find solutions for real-world (albeit simple) BDI programs.

CHAPTER 6. IMPLEMENTATION 182

useful for JSHOP, it is not useful for first principles planning, because a first principles planning

operator encodes information regarding effects that are brought about irrespective of the JACK

plans chosen to achieve a JACK event.

Next, since function symbols cannot occur inliterals according to the summary algorithms of

Chapter 4, nor in literals within Metric-FF operators, calls to arbitrary functions cannot occur in

beliefset queries or beliefset operations within JACK plans that need to be summarised. For ex-

ample, the following JACK belief operation cannot be summarised: at.add(“Rover1”,

getClosestLander($x)), which specifies thatRover1, whose location is represented by variable

$x, is at the same location as that of the lander which is closestto it. However, such belief opera-

tions can sometimes be rewritten in a way that makes their summarisation possible, as illustrated

by the following example.

Consider belief operationat.add(“Rover1”, getClosestLander($x)). We could

rewrite this as follows. First, we calculate offline the closest lander location for

all locations that the rover may travel to. Next, we include this information in the

agent’s initial belief base. This information could be encoded using a JACK be-

liefset calledClosestLander, with two attributes representing locations, and with

the second attribute of each tuple in the beliefset representing the closest lan-

der location from the location represented by the first attribute of the tuple. Fi-

nally, the belief additionat.add(“Rover1”, getClosestLander($x)) can be rewritten

asat.add(“Rover1”, $y), where the value of variable $y is obtained from a beliefset

query such asclosestLander.query($x, $y).

Rewriting beliefset queries or beliefset operations in this manner may not always be feasible,

since it requires all possible inputs into a function to be mapped to one or more outputs, and for

all such mappings to be encoded in the agent’s initial beliefbase. It is important to note, however,

that it is still possible to specify arbitrary function calls within JACK plans, provided the values

returned by these function calls are not used by beliefset queries or beliefset operations. For

example, it is still possible to call a function from within aJACK plan as shown in Figure 6.2.

Finally, while JACK (and CAN) allow parallelism and recursion in plans, we do not allow

these features within first principles planning, as discussed in Chapter 4. However, by using first

principles planning, we can, to a certain extent, emulate such recursion. This is illustrated in the

following example.

CHAPTER 6. IMPLEMENTATION 183

For example, consider the recursive JACK plan-library below.
Move(src, dst)

OR
P1¬At(dst) ∧ Adjacent(src, nxt) ∧Closer(nxt, dst, src)
−→

TakeStep(src, nxt)

P2At(src) ∧ Adjacent(src, nxt)

DoStep

Move(nxt, dst)

P3At(dst)

The context condition ofP3 is At(dst), the context condition ofP2 is At(src) ∧

Adjacent(src, nxt), and the context condition ofP1 is¬At(dst)∧Adjacent(src, nxt)∧

Closer(nxt, dst, src), whereCloser(nxt, dst, src) is true if nxt is closer todst than

src.

Observe that the JACK eventMove(src, dst) is handled by two JACK plansP1

andP3 (where the latter has the empty plan-body), that the first step of P1, which

corresponds to an action, takes one step closer to the destination by executing some

Java code represented byDoStep, and that the second step ofP1 recursively calls

theMoveevent.

Instead of using the recursive plan-library above to solve eventMove(src, dst),

we can use first principles planning, by calling functionplanFP(At(dst)) (provided

dst will be bound before this function is called at runtime), where At(dst) is the

primary effect of theMove(src, dst) event. More specifically, we can replace each

call to aMove(src, dst) event in the plan-library with a call toplanFP(At(dst)). The

planner will return hybrid-solutions (if any) consisting,ideally, of multiple instances

of theTakeStep(src, nxt) event, each taking the agent one step closer to the destina-

tion.

The disadvantage of this approach, however, is that, while the recursive eventMovewill intu-

itively conform to the user intent property (p. 87) – i.e., itwill find a solution that includes only

multiple instances of theTakeStepevent, the first principles planner may find hybrid-plans that

involve moving by some other means, i.e., without using theTakeStepevent.

Although we only translate a limited subset of JACK into firstprinciples planning operators,

we note that planning with operators of limited expressivity has been shown to be useful for real-

CHAPTER 6. IMPLEMENTATION 184

world problems. In particular, planning from the PRS BDI system using operators of limited

expressivity was shown to be useful for controlling the operation of a furnace (Despouys and In-

grand, 1999), and similarly, planning with the overlappingsubset between the language of the

PRS-CL BDI system and the SIPE-2 planner was shown to be useful for planning military opera-

tions (Wilkins et al., 1995).

Consistent with the formalisms presented in Chapter 4, the implementation lets the program-

mer specify in JACK plans the points at which Metric-FF should be invoked.8 This is done with the

planFP function, which takes as the argument the goal state to be achieved, described in terms of

JACK beliefset types. Like theplanHTN function, on invoking functionplanFP, the agent’s cur-

rent set of beliefs is automatically sent to Metric-FF, which it uses as the initial state for planning.

Consistent with the summary algorithms of Chapter 4, a compiler supplied with the JACKPlan

package can be used offline to translate JACK events into Metric-FF operators, which are then

accessed by Metric-FF at runtime.

As one example of the use of the JACKPlan package for first principles planning,

consider the Mars Rover agent in Figure 4.2 of Chapter 4. Recall that plan-ruleR6

in this figure is used to perform first principles planning in the event that a failure

occurs during exploration.

One possible encoding of plan-ruleR6 using JACK is shown in Figure 6.9.

Observe that functionplanFP takes as an argument the goal state, which, in this

case, is the state in which results have been transmitted forthe destination.

There are also certain differences between the formalisms of Chapter 4 and the implementa-

tion. Unlike the summary algorithms of Chapter 4, the implementation allows the programmer to

choose what JACK events need to be summarised. This is particularly useful when certain events

cannot be summarised due to an associated JACK plan containing a recursive call, or due to an

associated JACK plan using some other a feature not supported in our translation such as paral-

lelism. By letting the programmer choose the JACK events that need to be summarised, we allow

the full functionality of JACK to be exploited when developing practical BDI applications, and for

first principles planning to be used only with a selected subset of JACK events. Finally, unlike the

formalisms, where the domain for first principles planning is built by combining abstract operators

8Since Metric-FF is implemented in C, it is called via the JavaNative Interface.

CHAPTER 6. IMPLEMENTATION 185

1 import JACKPlan.Planning;
2
3 plan ExplorePlanViaFPextendsPlanning
4 {
5 #handles eventExploreSoilLocation expl;
6
7 #uses dataResultsTransmitted transmitted;
8 #uses dataAt at;
9

10 context()
11 {
12 !at.query(expl.src) && !transmitted.query(expl.dst);
13 }
14
15 body()
16 {
17 planFP(‘‘(ResultsTransmitted ’’+expl.dst+‘‘)’’);
18 }
19 }

Figure 6.9: The JACKPlan specification of plan-ruleR6 in the Mars Rover agent of Figure 4.2

(event-goals) with the primitive actions of the agent, the domain for first principles planning in the

implementation is built entirely from JACK events, becauseprimitive actions of the agent are also

encoded as events.

At runtime, if Metric-FF fails to find a hybrid-plan, then thestep which invoked the planner

also fails. If a hybrid-plan is found, then the system validates it. As discussed in Chapter 4, this

validation is necessary because abstract operators only encode the must literals of JACK events,

and it could happen that when an action within a hybrid-plan is mapped back into an event and

executed, other (may) literals brought about by the execution of the event createa situation where

later JACK events (abstract actions in the plan) are unable to successfully execute. To determine

whether all such conflicts (if any) within a hybrid-plan can be avoided, we check to see if there is a

complete HTN decomposition of the hybrid-plan, using JSHOP. Since JSHOP needs to also take

into account the goal state sent to Metric-FF, we(i) encode the goal state into the precondition of

a JSHOP method;(ii) add the corresponding compound task to the hybrid-plan; and(iii) order the

compound task to occur after all other compound tasks in the hybrid-plan. Note that we do not

perform the polynomial time validation discussed in Chapter 4 because we choose to always im-

prove the hybrid-plan, which requires calling JSHOP anyway. However, the implementation could

be easily extended to allow the programmer to choose whetherto improve the hybrid-plan, or to

simply obtain a correct (but possibly redundant) hybrid-plan using the polynomial-time validation.

If the hybrid-plan returned by Metric-FF is found to be valid, i.e., JSHOP is able to find a

complete decomposition of the hybrid-plan, then this hybrid-plan is improved using the algorithms

CHAPTER 6. IMPLEMENTATION 186

discussed in Chapter 5. If JSHOP is not able to find a complete decomposition of the hybrid-plan,

i.e., a conflict exists in the hybrid-plan that cannot be avoided, a new hybrid-plan is requested

from Metric-FF. Since, if the world has not changed, Metric-FF will most likely return the same

hybrid-plan that it returned the first time it was called, we randomly rearrange the operators in the

Metric-FF domain file, as well as atoms in the initial state, before calling Metric-FF for the second

and consequent times. This is done in order to influence Metric-FF to make different choices

regarding actions and variable bindings, compared to the choices made the previous time(s) it was

called. However, a better approach could be to extend Metric-FF to accept an “exclusion set” of

plans, so that it only looks for plans that are not in this set.

We performed experiments with a Mars Rover domain, and with the meeting scheduler domain

mentioned in Section 6.2.2, to get insights on whether planning from first principles is practical

in real-world applications. The Mars Rover experiment consisted of simple setups such as that

denoted by Figure 4.2, and in the meeting scheduler domain weused the planner to reschedule

multiple meetings in order to incorporate a new meeting request – i.e., clearing a slot to accommo-

date a new meeting sometimes involved rescheduling multiple other meetings into their alternative

suitable slots. In both domains, in general, the first principles planner returned solutions within a

few seconds. However, it was also possible, in the meeting scheduler domain, to create initial and

goal states for which the planner took in the order of minutesto return solutions.

Hence, we acknowledge that, while like JSHOP, Metric-FF is also used only at specific points

in the BDI program rather than at every step of BDI execution,planning from first principles may

still turn out to be too slow for some applications. However,we note that modern classical planners

are very fast in general, returning solutions within a few seconds for very large combinatorial

problems with hundreds of actions in the plan solutions (e.g., see (Hoffmann and Edelkamp, 2005,

p. 553)), and that even for situations in which planning takes some time, it may still be possible

to use techniques such as:(i) time-outs, to obtain solutions within a given time limit;(ii) planning

while idle (e.g., in a Mars rover domain the rover could plan while waiting for a command from

earth); or(iii) planning while acting, in a way that will not interfere with the planning process.

For example, a rover could, while moving from one location toanother, plan for a goal related to

the analysis of previously acquired soil samples. Finally,we note that the ability to plan from first

principles has a practical benefit as shown in Chapter 4, evenif it does take some time.

CHAPTER 6. IMPLEMENTATION 187

6.4 Improving and Executing Hybrid-Solutions

After obtaining a valid hybrid-plan, i.e., a hybrid-solution, we focus on improving it, by ex-

tracting its most abstract and non-redundant part. To this end, we mainly follow Algorithm

Find-Preferred-Specialisation (Algorithm 5.1) of Chapter 5. This involves obtaining a decom-

position tree from the successful decomposition found by JSHOP when validating the hybrid-plan

returned by Metric-FF, and abstracting out JACK events in the decomposition tree, starting from

the primitive actions, i.e., leaf-level JACK events.

Like Algorithm Find-Preferred-Specialisation, the implementation finds a preferred speciali-

sation of a complete decomposition tree, which is a decomposition tree combined with one of its

primitive solutions for the goal state at hand. To build sucha tree, we modify the JSHOP domain

file to return, in addition to a primitive solution for the input task network and goal state, also the

choices that led to the solution.

In particular, this is information regarding what ground compound and primitive tasks were se-

lected to reduce other ground compound tasks, and what ground preconditions were encountered

during the decomposition, which, as mentioned before, can be considered restricted HTN con-

straint formulas.9 With this information we straightforwardly build a decomposition tree, which

is then used along with the associated primitive solution, initial state, and goal state to find a

preferred specialisation in the manner described in Algorithm Find-Preferred-Specialisation.

In order to obtain a non-redundant primitive solution from the leaf-level primitive solution

associated with the decomposition tree, we use theLinear-Greedy-Justification algorithm of Fink

et. al (Fink and Yang, 1992).10 This is different to what we do in Algorithm 5.1, which obtains a

perfect justification (Fink and Yang, 1992) from the primitive solution associated with the decom-

position tree. The reason for this difference is that, although the notion of a perfect justification

has an intuitive definition that is useful for formalisations (i.e., that a primitive solution is perfectly

justified if it does not have a subsequence that is still a primitive solution), it is not feasible to find

perfect justifications in practice, as it is NP-hard to compute (Fink and Yang, 1992). On the other

hand, although theLinear-Greedy-Justification algorithm does not have an intuitive definition, it

9Note that this information is slightly different to the information required by theplanHTN function – the latter
requires information about methods (JACK plans) chosen at the different choice points, and substitutions applied to
variables.

10Note that step nine in functionLinear-Greedy-Justification of (Fink and Yang, 1992) should recursively call func-
tion Linear-Greedy-Justification, instead of calling functionLinear Well Justification.

CHAPTER 6. IMPLEMENTATION 188

is able to find, in polynomial-time, primitive solutions that are “almost” perfect justifications (Fink

and Yang, 1992).

It is important to note that non-redundancy is only one notion of what constitutes a “good”

primitive solution. One may want to define other notions of “good” primitive solutions, and al-

gorithms for obtaining such solutions, given any primitivesolution as input. Such algorithms can

be easily incorporated into the implementation by replacing functionLinear-Greedy-Justification

with the new function. Then, a preferred specialisation obtained from a decomposition tree will

be with respect to the new algorithm for finding a “good” primitive solution.

Once a preferred specialisation is obtained for the hybrid-solution found by Metric-FF, the

specialisation is then executed. Since the specialisationis still a totally-ordered hybrid-plan, ex-

ecution simply involves posting, via JACK@subtaskstatements, the events contained in the spe-

cialisation, in the same order in which they are specified in the specialisation, while also taking

into account binding information for variables of events. Since such an execution does not guaran-

tee that the non-redundant primitive solution will eventually be reached, it is not difficult to extend

the implementation to execute the hybrid-plan by followingthe choices and bindings specified in

an associated decomposition tree. It is worth noting that, while a hybrid-plan may be valid with

respect to the initial state, goal state, and expected (mustor may) effects of its events, it could still

be the case that while the hybrid-plan is being executed, theworld changes in a way which makes

the plan no longer valid, i.e., makes one or more context conditions of associated plan-rules false

when they would otherwise have been true. In such a situation, the BDI engine will detect this

“discrepancy” between expected beliefs (initial state andexpected effects of events) and actual

beliefs (state of the world) as a failure, in the manner discussed in Section 6.2.2, and continue

execution to recover from the failure by trying alternativeplan-rules.

Chapter 7
Discussion and Conclusion

BDI systems are extremely flexible and responsive to the environment, and thereby able to work

effectively in complex and dynamic environments. An importantaspect of such systems is that

they execute as they reason. In particular, they execute by context dependent expansion of sub-

goals, acting as they go. However, BDI systems do not incorporate a generic mechanism to do any

kind of planning. In this thesis, we have incorporated two types of planning techniques into BDI

agents, namely, HTN planning and first principles planning.

Incorporating HTN planning into CAN

In Chapter 3, we incorporated look-ahead deliberation in the style of HTN planning into the BDI

model. We first compared the syntax and semantics of the AgentSpeak BDI agent-oriented pro-

gramming language with that of HTN planning, and we then incorporated HTN planning into the

CAN BDI agent-oriented programming language via thePlan(P) construct. This construct was

added in a precise and formal manner, and in a way that allows an agent to perform look-ahead

at programmer specified points in the plan-library. We showed that the combined architecture is

more expressive than HTN planning alone, and that the architecture allows agents to detect and

avoid executions that are bound to lead to certain types of failures, such as those that result from

negative interactions between plan-rules.

An interesting avenue for future work would be to investigate a resource-bounded account

of our HTN planning module. For example, one could investigate looking ahead up to a given

number of decompositions, in order to cater for domains in which there is limited time for plan-

189

CHAPTER 7. DISCUSSION AND CONCLUSION 190

ning. We have already begun work in this direction by extending the planning modulePlan(P) to

take into account an additional parameter corresponding tothe maximum number of steps (e.g.,

decompositions) up to which look-ahead should be performed. Some of the theoretical and empir-

ical results from this approach can be found in (de Silva and Dekker, 2007; Dekker and de Silva,

2006).

First Principles Planning

While look-ahead is useful for reasoning about the consequences of choosing one expansion of

an event-goal over another, look-ahead cannot be used to create new plan-rules not already a

part of the agent’s plan-library. Creating new plan-rules on demand is desirable, for instance,

when all plan-rules associated with an event-goal have failed. To this end, in Chapter 4, we

incorporated first principles planning into the BDI architecture. Unlike previous work on adding

first principles planning into BDI systems, which focuses onproducing low-level plans, losing

much of the domain knowledge inherent in BDI systems, we presented a novel technique where

first principles planning is used to createhybrid-plans, namely, those that can contain, in addition

to primitive actions, also event-goals. Since event-goalscapture the agent’s procedural domain

knowledge, our approach allows such knowledge to be reused and respected when formulating

solutions.

It is worth noting that, while we have provided a formal framework for first principles planning

in BDI systems, we have not provided an operational semantics that defines the behaviour of a BDI

system with an in-built first principles planner. To this end, one would need to add modulePlan(φ)

into a language such as CAN, whereφ is a goal state to achieve, and provide derivation rules for

this module that reuse and respect the procedural domain knowledge in the plan-library.

Summarisation algorithms

To use event-goals for first principles planning, we provided mechanisms for translating them into

abstract planning operators. To this end, we first defined precisely what information we need

to extract from event-goals, in particular, the notions of aprecondition and postcondition of an

event-goal, and we then provided algorithms and data structures for obtaining this information.

Our algorithms are based on the summary algorithms of (Clement et al., 2007), which are used

to calculate offline the summary information of HTN-like hierarchical structures (task-networks)

CHAPTER 7. DISCUSSION AND CONCLUSION 191

belonging to multiple agents, so that this information can be used at runtime to coordinate those

agents. There are, however, important differences between their summary algorithms and ours.

First, the precondition of an event-goal in our work is a standard classical precondition (with

disjunction), whereas in their work, a precondition of the corresponding entity – a compound task

– is essentially two sets of literals: those that must hold atthe start of any successful execution

of the task, and those that must hold at the start of one or moresuccessful executions of the

task. Second, as discussed in Chapter 4, our algorithms, unlike theirs, allow for the specification

of a wider range of BDI plan-libraries, as well as variables in literals, event-goals and actions.

However, our summary algorithms do not allow parallelism inplan-bodies – plan-bodies can only

contain steps specified in a sequence – whereas their algorithms do allow such parallelism.

Our summary algorithms are also related to the summary algorithms of Thangarajah et al.

(Thangarajah et al., 2003a,b). In their work, the summary information obtained from event-goals

is used for detecting and avoiding potential interference between event-goals executing simultane-

ously, and for facilitating the merging at runtime of plan-bodies belonging to multiple event-goals.

Like our algorithms, calculating the summary information of an event-goal in their work involves

merging the summary information belonging to all associated plan-rules, and classifying literals

in the combined summary information asdefiniteor potential, similar to how we classify literals

asmustor mentioned. However, there are also important differences between the two approaches.

Most importantly, the summary postcondition of a plan-rulein their work contains every interme-

diate literal that will (definitely or possibly) be brought about during the execution of the plan-rule.

In contrast, the must literals of a plan-rule in our work contains only literals that will be brought

about at theendof the plan-rule’s execution. Moreover, like the algorithms of Clement and Dur-

fee, the work of Thangarajah et al. does not allow variables in literals, event-goals and operators,

whereas we do allow variables in those entities. However, while our work only allows plan-bodies

to contain steps specified in a sequence, the work of Thangarajah et al. allows parallelism within

plan-bodies.

In addition to not allowing parallelism, our summary algorithms, like those of Clement and

Durfee and Thangarajah et al., do not allow recursion withinplan-bodies (i.e., calling from within

a plan-body the event-goal that the plan-body handles, or anevent-goal that is an ancestor of

the one that the plan-body handles). Parallelism could be incorporated into our algorithms by

borrowing ideas from the algorithms of Clement and Durfee, and recursion could be incorporated

CHAPTER 7. DISCUSSION AND CONCLUSION 192

into our algorithms by following (Fritz et al., 2008), who take a limited form of recursion into

account when translating from a subset of the language of ConGolog into planning operators.

Finding hybrid-plans

After providing algorithms and data structures for summarising plan-libraries, we explored the

soundness and completeness properties of the algorithms, and we finally provided mechanisms for

obtaining correct hybrid-plans using information collected via summarisation. One shortcoming

of this approach is the following. If a hybrid-plan is found to be potentially incorrect, standard

HTN decomposition is used to verify whether the hybrid-planis definitely incorrect, in which case

a new hybrid-plan is obtained. However, since such verification requires determining whether

there is a complete decomposition of the hybrid-plan that achieves some goal state, and HTN

planners do not, unlike first principles planners, make use of any heuristics to guide the process

of decomposition toward the goal state, our verification step is not always efficient. One could

improve it by extending theUMCP HTN planning algorithm of (Erol et al., 1996) with heuristics,

so that the process of decomposition is biased toward methods that take the search closer to the

goal state, as done in (Lotem et al., 1999). Alternatively, one could investigate extendingUMCP to

perform HTN decomposition by working backward from the goalstate, as opposed to the default

HTN planning process of working forward from the initial state.

Abstraction and redundancy

While obtaining correct hybrid-plans is essential, it is also important to obtain desirable hybrid-

plans. To this end, in Chapter 5, we recognised an intrinsic tension between striving for hybrid-

plans and, at the same time, ensuring that unnecessary actions, unrelated to the specific goal state

to be reached, are avoided. To explore this tension, we first characterised the set of “ideal” hybrid-

plans, which are non-redundant while maximally-abstract.Next, we developed a more limited

but feasible account of “preferred” hybrid-plans in which ahybrid-plan is “specialised” into a

new hybrid-plan that is non-redundant while preserving abstraction as much as possible. We

also presented an intermediate notion which is conceptually closer to the feasible notion of a

preferred hybrid-plan. We analysed the properties of the different notions presented, and showed,

for instance, that an ideal hybrid-plan always exists provided the planning problem can be solved,

and that an ideal hybrid-plan is also one that is preferred. Finally, we described algorithms for

CHAPTER 7. DISCUSSION AND CONCLUSION 193

computing preferred hybrid-plans.

The work of (Kambhampati et al., 1998) is similar to our work on hybrid-planning and is in-

deed motivated by the desire to combine HTN and first principles planning. Our work is different

in that we construct abstract operators from a BDI plan-library, and then execute the resulting

hybrid-plan within our framework, whereas in their work, event-goals are decomposed during the

process of first principles planning. There are also differences in the details of the approach. Most

importantly, they require the programmer to provide effects, whereas we compute these automati-

cally, and they do not address the issue of the balance between abstraction and redundancy, which

we explore in depth.

Perhaps the most interesting direction for future work is the investigation of a more general

framework for finding good (e.g., “ideal” or “preferred”) hybrid-solutions. In our current frame-

work, we consider redundancy as one of the underlying factors that determine whether a hybrid-

solution is good. While removing redundant steps is reasonable in some domains (e.g., the Mars

Rover domain of Figure 4.4, p. 106), it may be inappropriate in other domains, in particular, be-

cause HTN structures sometimes encode strong preferences from the user. For example, consider

a hybrid-solution containing the following sequence of tasks (Kambhampati et al., 1998): get in

the bus, buy a ticket, get out of the bus. Although it may be possible to travel by bus without

buying a ticket, if we remove this task when it is redundant, we may go against a strong preference

of the user which requires that task to be performed after getting into the bus and before getting

out of it. To cater for strong preferences, one could use ideas from (Sohrabi et al., 2009) and gen-

eralise our framework with a more flexible account in which, for instance, all HTN preferences

are assumed to be strong, and a redundant task is only removedif the user has separately specified

that the task is not strongly preferred. For example, while the task of buying a bus ticket may be

redundant, it is not removed from a hybrid-solution unless the user has specified that the task is not

strongly preferred. Such specifications could be encoded ashard constraints or soft preferences,

and included either within an extended version of HTN methods, or as global constraints outside

of methods as done in (Sohrabi et al., 2009).

Implementation

In Chapter 6, we discussed the implementation of the algorithms presented in previous chapters,

using the JACK BDI development platform, JSHOP total-orderHTN planner, and the Metric-FF

CHAPTER 7. DISCUSSION AND CONCLUSION 194

first principles planner. We also gave insights into the practical utility of the formal frameworks,

by, for instance, highlighting the gaps between the frameworks and their implementations, and

showing how some of these gaps can be reduced. Moreover, we showed how certain differences

in the semantics and implementation, such as replanning at every step as indicated by thePlan

derivation rule of Chapter 3, versus planning once and executing a stored solution, are necessary

in order to develop practical BDI systems.

As discussed in Chapter 6, extensions to the implementationare required before it can be used

as an industrial strength system, such as extensions to JSHOP to allow the selection of a subset of

an atom’s arguments as its primary key, similarly to how primary keys can be specified in a JACK

beliefset. Another avenue to consider would be to actually use the proposed planning facilities

in applications, and to evaluate and validate the effectiveness and applicability of the proposed

facilities in practice. For example, the types of domains inwhich planning from first principles

is worthwhile could be explored, or we could investigate thefeasibility of planning from first

principles as a part of the standard BDI execution cycle, e.g., whenever an applicable plan is not

available, instead of letting the event-goal fail. Intuitively, this approach is likely to be more robust

in some applications since it tries to prevent the failure ofevent-goals at every opportunity, rather

than only at user specified points in the BDI hierarchy. However, this approach is also likely to

be very computationally expensive, as the planner may fail to find a solution each time it is called

from one level higher in the BDI hierarchy. The work presented in this thesis provides a firm

foundation for further work on planning in BDI systems, boththeoretical and practical.

Appendix A
Lemmas and Proofs

A.1 Proofs for Chapter 3

Proof of Lemma 1 (p. 74). We prove this by induction on the lengthn of theplan-type deriva-

tion. For the base case, let us taken = 0. Then,P = nil, B f = B, andA f = A. By using

derivation rulePlant, we obtain〈B,A,Plan(P)〉 bdi−→ 〈B f ,A f , nil〉. Next, assume that the theorem

holds forn ≤ k. Finally, supposen = k + 1. Then, there existsC′ = 〈B′,A′,P′〉 such that(a)

〈B,A,P〉
plan
−→ C′, and(b) C′

plank−→ 〈B f ,A f , nil〉. Using (a) and (b), we can use derivation rule

Plan to obtain〈B,A,Plan(P)〉 bdi−→ 〈B′,A′,Plan(P′)〉. Moreover, from(b) and the induction hy-

pothesis,〈B′,A′,Plan(P′)〉 bdi∗−→ 〈B f ,A f , nil〉 holds. Therefore,〈B,A,Plan(P)〉 bdi∗−→ 〈B f ,A f , nil〉

follows. �

A.2 Lemmas and Proofs for Chapter 4

Proof of Lemma 4 (p. 109). First, supposeP =?φ. Then,post(P) = ∅ (p. 96), and there is exactly

one tuple〈P, ǫ, ∅, ∅〉 ∈ ∆. Since no literal is added to the belief base upon the execution of P, and

∅ is a valid set of must literals (Definition 12), the theorem holds.

Next, supposeP = +b. Let bθ be any ground instance ofb. Then, there is exactly one tuple

〈P, ǫ, {b}, {b}〉 ∈ ∆, and for all belief basesB and action sequencesA, the following two conditions

hold: 〈B,A,+bθ〉
plan
−→ 〈B′ = B ∪ {bθ},A, nil〉, i.e., there is a successful HTN execution of+bθ;

andB′ |= bθ. Therefore,b is a must literal ofP. Similarly, since the addition of belief atombθ to

belief baseB is the only modification that can happen toB on the successful HTN execution of

195

APPENDIX A. LEMMAS AND PROOFS 196

+bθ, it follows that set{b} capturesP (Definition 14), and the theorem holds. The caseP = −b

can be proved analogously.

Finally, supposeP = act. Let Φ̂+ = Φ+θ and letΦ̂− = Φ−θ, whereact′ : ψ ← Φ+;Φ− ∈ Λ

andact = act′θ. Finally, let the set of literalsLact = Φ̂
+ ∪ {¬b | b ∈ Φ̂−}. Observe, then, that

there exists exactly one tuple〈P, ǫ, Lact, Lact〉 ∈ ∆. Let l be any literal inLact. We will now prove

that l is a must literal ofact. Since, from the definition of an action-rule (Section 3.2.3), free

variables inl will also be free inact, the first condition in Definition 12 is satisfied forl andP.

Next, letactθ′ be any ground instanceact. Suppose there is a successful HTN execution ofactθ′,

i.e., that〈B,A, actθ′〉
plan
−→ 〈B′ = (B \ Φ̂−θ′) ∪ Φ̂+θ′,A · actθ′, nil〉 holds. Then,B′ |= lθ′ also

holds. Hence, the second condition of Definition 12 is satisfied for l andP, andl is a must literal

of P. The fact thatLact capturesP follows trivially from the fact that for any ground literall′ such

thatB′ |= l′ andB 6|= l′ hold, it is also the case thatl′ is a ground instance of some literal inLact. �

Proof of Lemma 5 (p. 109). Consider line 1 of procedureSummarise-Plan-Body. From the

assumption of the theorem (condition 2.), it is clear that onthe completion of this line, for each

event-goal program !e mentioned inP, there is exactly one tuple〈!e, φe, Lmt
e , L

mn
e 〉 ∈ ∆ such that

the tuple is the summary information of !e, andLmn
e captures !e. Then, from the assumption of the

theorem (condition 1.), we can conclude that on the completion of line 1, for each atomic program

Pa mentioned inP, there is exactly one tuple〈Pa, φPa, Lmt
Pa, Lmn

Pa 〉 ∈ ∆ such that the tuple is the

summary information ofPa, andLmn
Pa capturesPa.

To prove that〈P, ǫ, Lmt, Lmn〉 is the summary information ofP, we will first prove that each

literal in Lmt (where Lmt is a set of must literals ofP) is a must literal ofP. Let program

P = P1; P2; . . . ; Pn, where eachPi is an atomic program. Observe from line 3 of procedure

Summarise-Plan-Body that the only literals included in the setLmt
P of must literals ofP are the

literals that are must literalsl of atomic programsPi mentioned inP, wherel is not may-undone

(i.e., ¬May-Undone(l,Pi+1; . . . ; Pn, ∆)) in Pi+1; . . . ; Pn. Let l be such a literal. Next, we prove

that l is a must literal ofP.

Let us assume the contrary, i.e., thatl is not a must literal ofP. Then, informally, it must be

the case that the complement ofl is true at the end of a successful HTN execution of program

Pi+1; . . . ; Pn – in particular, the complement ofl must be true at the end of a successful HTN

execution of some atomic program mentioned inPi+1; . . . ; Pn. Formally, observe from Definition

APPENDIX A. LEMMAS AND PROOFS 197

12 (Must Literal) that there exists an atomic programP̂ mentioned inPi+1; . . . ; Pn, a ground in-

stanceP̂g of P̂, and some successful HTN execution〈B1,A1, P̂g〉 · . . . · 〈Bm,Am, nil〉, such that

(a) B1 6|= l′; (b) Bm |= l′; and (c) lθ = l′, for some ground literall′ and set of substitutionsθ.

Let 〈P̂, φ̂, Lmt
P̂
, Lmn

P̂
〉 ∈ ∆. We know from before thatLmn

P̂
capturesP̂. Then, from Definition 14

(Capturing a Program), it is also the case that there is a literal l̂ ∈ Lmn
P̂

such thatl′ = l̂θ̂, for

some set of substitutionŝθ. Then, using(c) above, we can conclude thatlθ = l̂θ̂. However, since

¬May-Undone(l,Pi+1; . . . ; Pn,∆) holds according to the algorithm, observe from the definition

of May-Undone (Section 4.2.3) thatlθ = l̂θ̂ cannot hold. This contradicts our assumption, and

therefore, literall is indeed a must literal ofP.

Next, we will prove that the set of mentioned literalsLmn of programP capturesP. To this

end, all we need to show is that any must or mentioned literal of an atomic program occurring in

P that is not included inLmn
P (line 4) is not needed forLmn

P to captureP.

Let Pi be an atomic program mentioned inP, with 〈Pi , φi , Lmt
Pi
, Lmn

Pi
〉 ∈ ∆, such that a must

or mentioned literall of Pi is not added to the set constructed in line 4 of the algorithm,that is,

Must-Undone(l,Pi+1; . . . ; Pn,∆) holds. Then, according to the definition ofMust-Undone (Sec-

tion 4.2.3), it is the case thatl = l̂ holds, wherêl ∈ Lmt
P̂

is a must literal of an atomic program

P̂ mentioned inPi+1; . . . ; Pn, with 〈P̂, φP̂, L
mt
P̂
, Lmn

P̂
〉 ∈ ∆. Next, letPθ be any ground instance of

P. Suppose a successful HTN execution〈B,A,Piθ〉 · . . . · 〈B j ,A j , nil〉 of Piθ exists, such that

B j |= lθ holds. Then, sincêl is a must literal ofP̂, it is the case thatB′k |= l̂θ holds for any suc-

cessful HTN execution〈B′,A′, P̂θ〉 · . . . · 〈B′k,A′k, nil〉 of P̂θ. However, sincelθ = l̂θ, literal lθ

is guaranteed to be removed from the belief base byP̂θ during any successful HTN execution of

Pθ. Therefore, a set of literals that capturesP does not need to include literall of Pi . (Note, how-

ever, that it is still possible that the same literall from the set of must or mentioned literals of some

other atomic programP j (j , i) occurring inP is included in the set of literals that capturesP.) �

Proof of Lemma 6 (p. 110). First, we will prove thatLmt is a set of must literals ofe. Let

R = {e′θ : ψθ ← Pθ | e′ : ψ ← P ∈ Π, e = e′θ, θ is a renaming substitution fore′ : ψ← P}.

Let literal l ∈ Lmt, and let !eθ be any ground instance of !e. Suppose a successful HTN execution

of !eθ exists. Then, from theSeltransition rule (p. 63), there is a plan-rulee : ψ ← P ∈ R such

that 〈B,A, !eθ〉
plan
−→ 〈B,A, L{ψθ : Pθ, . . .}M〉

plan
−→ 〈B,A,Pθθ′ ⊲ L∆M〉

plan∗−→ 〈B′,A′, nil〉 holds (up

to variable renaming of plan-libraryΠ). Moreover, from line 11 of procedureSummarise-Event,

APPENDIX A. LEMMAS AND PROOFS 198

all variables occurring inl also occur ine. Therefore, since〈B,A,Pθθ′ ⊲ L∆M〉
plan∗−→ 〈B′,A′, nil〉

holds, and sincel is a must literal ofP from the assumption of the theorem, it must be the case that

B′ |= lθ holds, and thatl is a must literal ofe. The fact thatLmn capturese follows trivially from

the fact thatLmn includes all literals (up to variable renaming) in the sets of mentioned literals of

plan-bodies occurring inR, and each such set captures the corresponding plan-body according the

assumption of the theorem. �

Proof of Lemma 7 (p. 110). LetR = {e′θ : ψθ ← Pθ | e′ : ψ ← P ∈ Π, e = e′θ, θ is a renaming

substitution fore′ : ψ← P}. Then,φ′ = ψ1 ∨ . . . ∨ ψn according to procedureSummarise-Event,

whereR= {e1 : ψ1← P1, . . . , en : ψn← Pn}, andφ′ is some variable renaming ofφ. We will now

show thatφ′ is the precondition ofe. Let !eθ be any ground instance of !e, and letB be any belief

base. Observe from Definition 11 (Precondition) that there are two cases to consider.

[Case⇒]: SupposeB |= φ′θ holds. Then,B |= ψθθ′, whereψ is some disjunct ofφ′. Let

e : ψ← P ∈ Rbe the plan-rule corresponding toψ. SinceB |= ψθθ′, we know from rulesEventand

Sel(p. 63) that the following transitions are possible:〈B,A, !eθ〉
plan
−→ 〈B,A, L{ψθ : Pθ, . . .}M〉

plan
−→

〈B,A,Pθθ′ ⊲ L∆M〉 (up to variable renaming of plan-libraryΠ). Moreover, from our assumption

in Section 4.2.1 (p. 92) which states thate : ψ ← P is safe, there is a successful HTN execution

C1 · . . . ·Cn of Pθθ′ such thatC1|B = B. Therefore, it follows that there is also a successful HTN

executionC′1 · . . . ·C′m of !eθ such thatC′1|B = B.

[Case⇐]: Suppose there is a successful HTN executionC1 · . . . · Cm of !eθ such thatC1|B = B.

Then, according to theEventandSelrules, there must exist a plan-rulee : ψ ← P ∈ R, with B |=

ψθθ′, such that the following transitions are possible:〈B,A, !eθ〉
plan
−→ 〈B,A, L{ψθ : Pθ, . . .}M〉

plan
−→

〈B,A,Pθθ′ ⊲ L∆M〉 (up to variable renaming ofΠ). Therefore,B |= φ′θ holds. �

Proof of Lemma 8 (p. 110). Termination of the loops in lines 3 and 5 follows trivially from the

fact that there is a finite number of atomic programs mentioned in the plan-bodyP, and from the

fact that the summary postcondition of any atomic program isa finite set of elements. �

Proof of Lemma 9 (p. 110). Termination of the loop in line 3 follows triviallyfrom the fact that

APPENDIX A. LEMMAS AND PROOFS 199

there is a finite number of plan-rules in the plan-libraryΠ. �

A.3 Proofs for Chapter 5

The following two definitions from (Erol et al., 1996) are used by some of the proofs in this

section. The first definition is that of a completion of a task network. Intuitively, a completion of

a primitive task network is an ordering and grounding of the primitive tasks in the task network,

such that the ordering conforms with the constraints imposed on those tasks by the network.

Definition 30. (Completion of a Task Network (Erol et al., 1996)) Letσ = act1 · . . . · actm be

a plan,Op be an operator-library,S0 be the initial state, andSi = Res(acti ,Si−1,Op) for i ∈

{1, . . . ,m} be the intermediate states, which are all defined (i.e., the preconditions of eachacti are

satisfied inSi−1 and thus actions in the plan are executable). Letd = [{(n1 : act′1), . . . , (nm :

act′m)}, φ] be a ground primitive task network, andρ be a permutation such that wheneverρ(i) = j,

act′i = actj . Then,σ ∈ comp(d,S0,D), if the constraint formulaφ of d is satisfied. The constraint

formula is evaluated as follows:

• (ci = c j) is true, ifci , c j are the same constant symbols;

• (ni ≺ n j) is true ifρ(i) < ρ(j);

• (l, ni) is true if l holds inSρ(i)−1;

• (ni , l) is true if l holds inSρ(i);

• (ni , l, n j) is true if l holds for allSk, ρ(i) ≤ k < ρ(j);

• first[ni , n j , . . .] evaluates tomin({ρ(i), ρ(j), . . .});

• last[ni , n j , . . .] evaluates tomax({ρ(i), ρ(j), . . .});

• logical connectives¬,∧,∨ are evaluated as in propositional logic.

If d is a primitive task network containing variables, then

comp(d,S0,D) = {σ | σ ∈ comp(d′,S0,D), d′ is a ground instance ofd}.

If d contains compound tasks, thencomp(d,S0,D) = ∅. �

APPENDIX A. LEMMAS AND PROOFS 200

Next, we define what a HTN reduction means. Suppose thatd = [s, φ] is a task network,

(n : t) ∈ s is a labelled compound task occurring ind, and thatm = (t′, d′) ∈ Me is a method that

may be used to decomposet (i.e., t andt′ unify). Then,reduce(d, n,m) denotes the task network

that results from decomposing labelled task (n : t) in task networkd using methodm. Informally,

such decomposition involves updating both the sets in d, by replacing labelled task (n : α) with

the tasks ind′ (by arbitrarily renaming task labels), and the constraintsφ in s to take into account

constraints ind′.

Definition 31. (HTN Reduction (Erol et al., 1996)) Letd = [{(n : t), (n1 : t1), . . . , (nm : tm)}, φ]

be a task network containing a non-primitive taskt. Let me= (t′, [{(n′1 : t′1), . . . , (n′k : t′k)}, φ′]) be

a method,1 andθ be the most general unifier oft andt′. Then,

reduce(d, n,me) = [{(n′1 : t′1)θ, . . . , (n′k : t′k)θ, (n1 : t1)θ, . . . , (nm : tm)θ}, φ′θ ∧ ψ],

whereψ is obtained fromφθ with the following modifications:

• replace (n ≺ n j) with (last[n′1, . . . , n
′
k] ≺ n j), asn j must come after every task in the decom-

position ofn;

• replace (n j ≺ n) with (n j ≺ first[n′1, . . . , n
′
k]);

• replace (l, n) with (l, first[n′1, . . . , n
′
k]), as l must be true immediately before the first task in

the decomposition ofn;

• replace (n, l) with (last[n′1, . . . , n
′
k], l), asl must be true immediately after the last task in the

decomposition ofn;

• replace (n, l, n j) with (last[n′1, . . . , n
′
k], l, n j);

• replace (n j , l, n) with (n j , l, first[n′1, . . . , n
′
k]);

• everywhere thatn appears inφ in a first[] or a last[] expression, replace it withn′1, . . . , n
′
k.

1All variables and task labels in the method must be renamed with variables and task labels that do not appear
anywhere else.

APPENDIX A. LEMMAS AND PROOFS 201

The set of reductions ofd, denotedred(d,I,D), is defined as

red(d,I,D) = {d′ | d′ ∈ reduce(d, n,me), n is the label for a non-primitive task ind, andme

is a method inD for that task.}

�

Proof of Lemma 10 (p. 144). First we will prove that the induced decompositiontreeT λ of

λ is a decomposition tree ofd relative toD. To this end, we will show that all conditions of

Definition 23 (Decomposition Tree) are met for treeT λ = 〈V,E, ℓV〉. Since task labels occurring

in d1 are unique, and since according to condition(ii)(b) of Definition 22 (Decomposition Trace),

for eachi ∈ {1, . . . , n − 1}, no task label occurring insi+1 \ si (with di , di+1 ∈ λ, di = [si , φi] and

di+1 = [si+1, φi+1]) also occurs ind1 · . . . · di , it follows that for each (n : t) ∈ V, n is a unique task

label in the treeT λ. Moreover, due to Definition 24 (Induced Decomposition Tree), and from the

fact thatλ is ground, the first condition of Definition 23 holds. The second and fourth conditions

of Definition 23 hold trivially due to Definition 24. Finally,we will show that the third condition

of Definition 23 holds.

Observe from Definition 24 that for any internal non-root nodeu = (n : t) ∈ V, children(u,T λ) =

si+1 \ si, andφi+1 = φi ∧ φ′ (after appropriate modifications toφi , as described in Definition 31)

for some constraint formulaφ′, whereu ∈ si , u < si+1, andi ∈ {1, . . . , n− 1}. Since task network

di+1 = reduce(di , n,m) for some task labeln and methodm, it follows that there exists a task net-

work [ŝ, φ̂] ∈ red([{(n : t)}, true],D) such that ˆsθ = si+1 \ si andℓV(u) = φ̂θ = φ′. Hence, the third

condition of Definition 23 holds, andT λ is indeed a decomposition tree ofd relative toD.

Next, we will prove the second part of the theorem — i.e., thatT = 〈V′,E′, ℓ′V〉 is the induced

decomposition tree of some decomposition trace ofd — by induction on the number of non-leaf

nodesk in V′.

Let rt = (root : ǫ). There are two base cases to consider. First, let us takek = 0. In this

case,V′ = {rt}, E′ = ∅, andℓ′V = {(rt , true)}, which is the induced decomposition tree of de-

composition trace [∅, true]. Second, let us takek = 1. Then,V′ = {rt , (n1 : t1), . . . , (nm : tm)};

m > 0; E′ = {(rt , (n1 : t1)), . . . , (rt , (nm : tm))}; ℓ′V(rt) = φ for some constraint formulaφ; and

ℓ′V((ni : ti)) = true for all i ∈ {1, . . . ,m}. Hence,T is the induced decomposition tree of decompo-

sition trace [{(n1 : t1), . . . , (nm : tm)}, φ]. Next, assume that the second part of the theorem holds if

APPENDIX A. LEMMAS AND PROOFS 202

k ≤ x, for somex ∈ N1. Finally, supposek = x+ 1. From the induction hypothesis, we know that

there is a decomposition treeT k−1 with k − 1 non-leaf nodes, such thatT k−1 is the induced de-

composition tree of some trace [s1, φ1] · . . . · [sj , φ j], with j > 0, and such thatT k−1 is equivalent to

T modulo the children inT of some leaf node inT k−1. More specifically, according to Definition

23 there must exist a node (n : t) ∈ leaves(T k−1), such that the following conditions hold:(i) there

exists a non-empty set of ground labelled taskschildren((n : t),T) = {(n1 : t1)θ, . . . , (nm : tm)θ};

(ii) ℓ′V((n : t)) = φ′θ for some constraint formulaφ′; and (iii) there exists a reduction [s′, φ′] ∈

red([{(n : t)}, true],D) of t wheres′ = {(n1 : t1), . . . , (nm : tm)}. Sinceleaves(T k−1) = sj according

to Definition 24, it follows that [s1, φ1] · . . . · [sj , φ j] · [(sj \ {(n : t)}) ∪ s′θ, φ′j ∧ φ′θ] is a decom-

position trace ofd relative toMe (whereφ′j is obtained fromφ j as in Definition 31). Finally,T is

the induced decomposition tree of this trace according to Definition 24, and the second part of the

theorem holds. �

Proof of Lemma 11 (p. 147). We will prove this by induction on the lengthk > 0 of the (com-

plete) decomposition traceλ = d1 · . . . · dk. LetT = 〈V,E, ℓV〉.

[Base Case:k = 1.] In this case,dk is a primitive task network (i.e., one that does not mention any

compound tasks). Ifdk = [∅, true], then the theorem holds trivially, ascomp(dk,I,D) consists of

the empty plan; treeT = 〈{(root : ǫ)}, ∅, {((root : ǫ), true)}〉; and the full treeT τ, whereτ is the

empty plan, is executable inI relative toOp. If dk = [sk, φk], wheresk is a non-empty set, there

are two cases to consider. For case⇒, supposeact1 ·. . .·actm ∈ comp(dk,I,D). We will now show

thatT τ is executable inI relative toOp (Definition 25), whereτ = (n1 : act1) · . . . · (nm : actm). By

taking permutationρ = 1·. . .·m, andτ as the permutation ofsk for Definition 30, it is not difficult to

see that constraint formulaφk evaluates to true according to Definition 30 if and only if theformula

evaluates to true according to Definition 26. Moreover, since act1 · . . . · actm ∈ comp(dk,I,D),

Res∗(act1 · . . . · actm,I,Op) also holds according to Definition 30. Therefore,T τ is executable in

I relative toOp. The proof for case⇐ is similar.

[Induction Hypothesis] Assume that the theorem holds ifk ≤ x, for somex ∈ N1.

[Inductive Step] Supposek = x+1. Observe from Definition 22 (Decomposition Trace) thatd2 =

APPENDIX A. LEMMAS AND PROOFS 203

reduce(d1, n,me) (with di = [si , φi] for all i ∈ {1, . . . , k}) for some task labeln occurring ins1 and

ground methodme= (t, [sme, φme]). Moreover, observe from Definition 31 (HTN Reduction) that

φ2 = φ
′
1 ∧ φme, (whereφ′1 is φ1 after appropriate modifications), and thats2 = (s1 \ {(n : t)})∪ sme.

Then, there are two cases to consider.

For case⇒, supposeact1 · . . . · actm ∈ comp(dk,I,D). From the induction hypothesis, there is

a full decomposition treeT ′τ, with τ = (n1 : act1) · . . . · (nm : actm), that is executable inI relative

to Op, such thatT ′ = 〈V′,E′, ℓ′V〉 is the induced decomposition tree ofd2 · . . . · dk. Next, we prove

thatT τ is also executable inI relative toOp, by showing that all constraint formulas of labelled

tasks inT are satisfied.

Let rt = (root : ǫ). Observe from Definition 24 that:(i) V = V′ ∪ {(n : t)} (recall (n : t) is

the task that was reduced);(ii) children((n : t),T) = sme; (iii) children(rt ,T) =
(
children(rt ,T ′) \

sme

)
∪{(n : t)}; and that(iv) ℓV =

(
ℓ′V \{(rt , φ2)}

)
∪{(rt , φ1), ((n : t), φme)}. Since, from the induction

hypothesis, constraint formulaℓ′V(rt) = φ2 = φ′1 ∧ φme (for some formulaφ′1) is satisfied inT ′τ
relative toI andOp, it follows thatℓV((n : t)) = φme is also satisfied inT τ relative toI andOp.

Then, all we need to show is thatℓV(rt) = φ1 is satisfied inT τ relative toI andOp. To this end,

since constraints inφ′1 represent the updated versions of those inφ1 due to the reduction of task

n using methodme, we only need to consider the possible structural differences between the two

formulas.

Consider the case where a constraint (last[n′1, . . . , n
′
i] ≺ n j) occurring inφ′1 has the form

(n ≺ n j) in φ1. According to Definition 26, (last[n′1, . . . , n
′
i] ≺ n j) evaluates tomax(

⋃
y∈{1,...,i}

idx(n′y)) < min(idx(n j)), which holds inT ′τ due to the induction hypothesis. From the same defi-

nition, we know that (n ≺ n j) is evaluated asmax(idx(n)) < min(idx(n j)). Since{(n′1 : t1), . . . , (n′i :

ti)} = children((n : t),T) according to Definition 31, it follows thatidx(n) =
⋃
y∈{1,...,i} idx(n′y)

holds, and therefore, that (n ≺ n j) is satisfied inT τ relative toI andOp. The remaining cases —

e.g., where a constraint (n j ≺ last[n′1, . . . , n
′
i]) occurring inℓ′V(rt) has the form (n j ≺ n) in ℓV(rt)

— can be proved similarly. The proof for case⇐ is similar to that of case⇒. �

Proof of Lemma 12 (p. 159). The only lines in the algorithm that are non-trivial are lines 5 and

11. Line 5 runs in polynomial time becauseΦ[T τ, π] can be computed by first finding all the 2-

permutations of setπ using a nestedfor loop, and then determining for each pair (n1 : t1), (n2 : t2)

whether all leaves ofn1 in T occur before all leaves ofn2 in T , with respect toτ. Line 11 runs

APPENDIX A. LEMMAS AND PROOFS 204

in polynomial for the following reason. Observe from Definition 26 that a constraint formula is

evaluated by assigning truth values to each of its individual constraints, and then checking whether

the resulting constraint formula is satisfied, which can be done in polynomial time. When assign-

ing truth values to constraints, the only non-trivial part is in computing the state that results from

applying a labelled primitive planτ′ to a stateI — i.e., Res∗(τ′,I,Op) (see Section 2.3.1) —

which simply requires checking if the ground precondition (set of literals) of each primitive action

in τ′ is met in some state, and then updating the state with the add and delete lists of the action.�

Appendix B
Graphs and Trees

In this appendix, we define some notions to do with Graphs and Trees that are used in Chapter 5.

We begin with the definition of a directed graph.

Definition 32. (Directed Graph) Adirected graphG is the tuple〈V(G),E(G)〉, whereV(G) is a

set of vertices andE(G) ⊆ V(G) × V(G) is a set of edges. For any edge (v1, v2) ∈ E(G), we callv1

theparentvertex andv2 thechild vertex; moreover, we say that the edge is directed fromv1 to v2.

�

Next, we provide an overview of some of the basic terms associated with directed graphs.

Definition 33. (Basic Graph Terminology) LetG = 〈V,E〉 be a directed graph.

• GraphG is cyclic if there exists a sequence of verticesv1·v2·. . .·vn ∈ Vn, such that:

– ∀i ∈ {1, . . . , n− 1}, (vi , vi+1) ∈ E, i.e. for each pair of adjacent vertices in the sequence,

there is an edge directed from the left vertex of the pair to the right vertex of the pair;

and

– (vn, v1) ∈ E, i.e., there is an edge directed from the last vertex in the sequence to the

first.

• GraphG is acyclic if it is not cyclic.

• GraphG is rooted if |{v | v ∈ V, ∀v′∈V ((v′, v) < E)}| = 1, i.e., there is exactly one vertex

without a parent vertex. Given a rooted, directed graphG′ = 〈V′,E′〉, theroot of G′, denoted

root(G′), is the vertexv ∈ V′ such that for eachv′∈V′, (v′, v) < E′.

205

APPENDIX B. GRAPHS AND TREES 206

• A tree is a rooted and acyclic directed graph. �

Next, we provide an overview of some of the basic terms associated with trees.

Definition 34. (Basic Tree Terminology) LetG = 〈V,E〉 be a tree.

• Thechildrenof a vertexv ∈ V in G, denotedchildren(v,G), is the set{v′ | (v, v′) ∈ E}.

• Thedescendantsof a vertexv ∈ V in G, denoteddescendants(v,G), is defined inductively

as follows:

descendants(v,G) = children(v,G) ∪
⋃

v′∈children(v,G)

descendants(v′,G).

• The leavesof G, denotedleaves(G), is the set{v | v ∈ V, (v, v′) < E}. Moreover, theleaves

of a vertexv ∈ V in G, denotedleaves(v,G), is the set (descendants(v,G)∪ {v})∩ leaves(G).

�

Finally, we define a vertex-labelled tree as follows.

Definition 35. (Vertex-labelled Tree) LetLV be a finite set of labels. Avertex-labelled treeis the

tuple〈V,E, ℓV〉, where:

• 〈V,E〉 is a tree; and

• ℓV : V 7→ LV is a function that assigns each vertex with a label — given a vertex v ∈ V, we

say thatℓV(v) is thelabel of v. �

Bibliography

Agre, P. E. and Chapman, D. (1987). Pengi: an implementationof a theory of activity. InPro-

ceedings of the National Conference on Artificial Intelligence (AAAI-87), pages 268–272.

Ambros-Ingerson, J. (1987).IPEM: Integrated Planning, Execution, and Monitoring. PhD thesis,

Department of Computer Science, University of Essex, U.K.

Baier, J. A., Fritz, C., and McIlraith, S. A. (2007). Exploiting procedural domain control knowl-

edge in state-of-the-art planners. InProceedings of the International Conference on Automated

Planning and Scheduling (ICAPS-07), pages 26–33.

Barringer, H., Fisher, M., Gabbay, D., Gough, G., and Owens,R. (1989). METATEM: A frame-

work for programming in temporal logic. InREX Workshop on Stepwise Refinement of Dis-

tributed Systems: Models, Formalisms, Correctness, volume 430, pages 94–129. Springer.

Benfield, S. S., Hendrickson, J., and Galanti, D. (2006). Making a strong business case for multi-

agent technology. InProceedings of the International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS-06), pages 10–15.

Blum, A. and Furst, M. (1995). Fast planning through planning graph analysis. InProceedings of

the International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1636–1642.

Bonet, B. and Geffner, H. (1999). Planning as heuristic search: New results. In Proceedings of the

European Conference on Planning (ECP-99), pages 360–372.

Bordini, R. H., Bazzan, A. L. C., de O. Jannone, R., Basso, D. M., Vicari, R. M., and Lesser, V. R.

(2002). AgentSpeak(XL): Efficient intention selection in BDI agents via decision-theoretic task

207

BIBLIOGRAPHY 208

scheduling. InProceedings of the International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS-02), pages 1294–1302.

Bordini, R. H., Fisher, M., Pardavila, C., and Wooldridge, M. (2003). Model checking AgentS-

peak. InProceedings of the International Joint Conference on Autonomous agents and Multia-

gent Systems (AAMAS-03), pages 409–416.

Bordini, R. H. and Moreira,́A. F. (2004). Proving BDI properties of agent-oriented programming

languages.Annals of Mathematics and Artificial Intelligence, 42(1-3):197–226.

Bordini, R. H., Wooldridge, M., and Hübner, J. F. (2007).Programming Multi-Agent Systems in

AgentSpeak using Jason. John Wiley & Sons.

Botea, A., Enzenberger, M., Müller, M., and Schaeffer, J. (2005). Macro-FF: Improving AI plan-

ning with automatically learned macro-operators.Journal of Artificial Intelligence Research

(JAIR), 24:581–621.

Bratman, M. E. (1987a).Intention, Plans and Practical Reason. Harvard University Press.

Bratman, M. E. (1987b). What is intention? InIntentions in Communication, pages 15–32. MIT

Press.

Bratman, M. E., Israel, D., and Pollack, M. (1991). Plans andresource-bounded practical reason-

ing. In Philosophy and AI: Essays at the Interface, pages 1–22. MIT Press.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(1):14–23.

Brooks, R. A. (1990). Elephants don’t play chess.Robotics and Autonomous Systems, 6:3–15.

Busetta, P., Rönnquist, R., Hodgson, A., and Lucas, A. (1999). JACK Intelligent Agents - com-

ponents for Intelligent Agents in Java, AgentLink News Letter, Agent Oriented Software Pty.

Ltd., Melbourne, Australia.

Clark, K. L. (1978). Negation as failure. InLogic and Data Bases, pages 293–322.

Clarke, E. M., Grumberg, O., and Peled, D. A. (2000).Model Checking. MIT Press.

BIBLIOGRAPHY 209

Claßen, J., Eyerich, P., Lakemeyer, G., and Nebel, B. (2007). Towards an integration of Golog

and planning. InProceedings of the International Joint Conference on Artificial Intelligence

(IJCAI-07), pages 1846–1851.

Clement, B. J. and Durfee, E. H. (1999). Theory for coordinating concurrent hierarchical planning

agents using summary information. InProceedings of the National Conference on Artificial

Intelligence (AAAI-99), pages 495–502.

Clement, B. J. and Durfee, E. H. (2000). Exploiting domain knowledge with a concurrent hierar-

chical planner. InProceedings of the Workshop on Analysing and Exploiting Domain Knowl-

edge for Efficient Planning, Working Notes, pages 57–62.

Clement, B. J., Durfee, E. H., and Barrett, A. C. (2007). Abstract reasoning for planning and

coordination.Journal of Artificial Intelligence Research (JAIR), 28:453–515.

Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment.Artificial Intelli-

gence, 42:213–261.

da Costa Móra, M., Lopes, J. G. P., Vicari, R. M., and Coelho,H. (1998). BDI models and

systems: Bridging the gap. InProceedings of the International Workshop on Agent Theories,

Architectures, and Languages (ATAL-98), pages 11–27. Springer.

Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and

Multi-Agent Systems (JAAMAS), 16(3):214–248.

Dastani, M., van Riemsdijk, M. B., Dignum, F., and Meyer, J.-J. C. (2003). A programming lan-

guage for cognitive agents: Goal directed 3APL. InProceedings of the International Workshop

on Programming Multi-Agent Systems (ProMAS-03), pages 111–130. Springer.

De Giacomo, G. and Levesque, H. (1999). An incremental interpreter for high-level programs

with sensing. InLogical Foundation for Cognitive Agents: contributions inhonor of Ray Reiter,

pages 86–102. Springer.

de Silva, L. and Dekker, A. (2007). Planning with time limitsin BDI agent programming lan-

guages. InProceedings of Computing: the Australasian Theory Symposium (CATS-07), pages

131–139.

BIBLIOGRAPHY 210

de Silva, L. and Padgham, L. (2004). A comparison of BDI basedreal-time reasoning and HTN

based planning. InProceedings of the Australian Joint Conference on Artificial Intelligence

(AI-04), pages 1167–1173.

de Silva, L. and Padgham, L. (2005). Planning on demand in BDIsystems. InProceedings of the

International Conference on Automated Planning and Scheduling (ICAPS-05) Poster Session,

pages 37–40.

de Silva, L., Sardina, S., and Padgham, L. (2009). First Principles Planning in BDI systems.

In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-09), pages 1105–1112.

Dekker, A. and de Silva, L. (2006). Investigating organisational structures with networks of plan-

ning agents. InProceedings of the International Conference on Intelligent Agents, Web Tech-

nologies and Internet Commerce (IAWTIC-06), pages 25–30.

Despouys, O. and Ingrand, F. F. (1999). Propice-Plan: Toward a unified framework for planning

and execution. InProceedings of the European Conference on Planning (ECP-99), pages 278–

293.

d’Inverno, M., Kinny, D., Luck, M., and Wooldridge, M. (1998). A formal specification of

dMARS. In Proceedings of the International Workshop on Agent Theories, Architectures, and

Languages (ATAL-98), pages 155–176. Springer.

d’Inverno, M. and Luck, M. (1998). Engineering AgentSpeak(L): A formal computational model.

Journal of Logic and Computation, 8(3):233–260.

Dix, J., Muñoz-Avila, H., Nau, D. S., and Zhang, L. (2003). IMPACTing SHOP: Putting an

AI planner into a multi-agent environment.Annals of Mathematics and Artificial Intelligence,

37(4):381–407.

Do, M. B. and Kambhampati, S. (2001). Sapa: A domain-independent heuristic metric temporal

planner. InProceedings of the European Conference on Planning (ECP-01), pages 109–120.

Erol, K., Hendler, J., and Nau, D. S. (1994). Semantics for hierarchical task-network planning.

Technical Report UMIACS-TR-94-31, Institute for AdvancedComputer Studies, University of

Maryland, College Park, MD, U.S.A.

BIBLIOGRAPHY 211

Erol, K., Hendler, J. A., and Nau, D. S. (1996). Complexity results for HTN planning.Annals of

Mathematics and Artificial Intelligence, 18(1):69–93.

Ferguson, I. A. (1992). Touring machines: Autonomous agents with attitudes.IEEE Computer,

25(5):51–55.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approachto the application of theorem

proving to problem solving.Artificial Intelligence, 2(3-4):189–208.

Fink, E. and Yang, Q. (1992). Formalizing plan justifications. In Proceedings of the Conference

of the Canadian Society for Computational Studies of Intelligence (CSCSI-92), pages 9–14.

Firby, R. J. (1987). An investigation into reactive planning in complex domains. InProceedings

of the National Conference on Artificial Intelligence (AAAI-87), pages 202–206.

Firby, R. J. (1989). Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Computer

Science Department, Yale University, U.S.A.

Fisher, M. (1994). A survey of concurrent METATEM - the language and its applications. In

Proceedings of the International Conference on Temporal Logic (ICTL-94), pages 480–505.

Franklin, S. and Graesser, A. (1997). Is it an agent, or just aprogram?: A taxonomy for au-

tonomous agents. InProceedings of the International Workshop on Intelligent Agents III, Agent

Theories, Architectures, and Languages (ATAL-97), pages 21–35. Springer.

Fritz, C., Baier, J. A., and McIlraith, S. A. (2008). ConGolog, Sin Trans: Compiling ConGolog

into Basic Action Theories for planning and beyond. InProceedings of the International Con-

ference on Principles of Knowledge Representation and Reasoning (KR-08), pages 600–610.

Gabbay, D. M., Hogger, C. J., and Robinson, J. A., editors (1994). Handbook of Logic in Artificial

Intelligence and Logic Programming. Oxford University Press.

Georgeff, M. and Ingrand, F. (1989). Decision making in an embedded reasoning system. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-89), pages

972–978.

Ghallab, M., Nau, D., and Traverso, P. (2004).Automated Planning: Theory& Practice. Morgan

Kaufmann Publishers Inc.

BIBLIOGRAPHY 212

Graham, J. R., Decker, K. S., and Mersic, M. (2003). DECAF - a flexible multi agent system

architecture.Autonomous Agents and Multiagent Systems (JAAMAS), 7(1-2):7–27.

Gupta, N. and Nau, D. S. (1992). On the complexity of blocks-world planning.Artificial Intelli-

gence, 56(2-3):223–254.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C. (1998). A formal embed-

ding of AgentSpeak(L) in 3APL. InSelected papers from the Australian Joint Conference on

Artificial Intelligence, pages 155–166. Springer.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C. (1999). Agent programming

in 3APL. Autonomous Agents and Multi-Agent Systems (JAAMAS), 2(4):357–401.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C. (2000). Agent programming

with declarative goals. InProceedings of the International Workshop on Intelligent Agents VII,

Agent Theories, Architectures, and Languages (ATAL-00), pages 228–243. Springer.

Hoffmann, J. (2003). The Metric-FF planning system: Translating “ignoring delete lists” to nu-

meric state variables.Journal of Artificial Intelligence Research (JAIR), 20:291–341.

Hoffmann, J. and Brafman, R. I. (2006). Conformant planning via heuristic forward search: A

new approach.Artificial Intelligence, 170(6-7):507–541.

Hoffmann, J. and Edelkamp, S. (2005). The deterministic part of ipc-4: an overview.Journal of

Artificial Intelligence Research (JAIR), 24(1):519–579.

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation through heuris-

tic search.Journal of Artificial Intelligence Research (JAIR), 14:253–302.

Huber, M. J. (2001). JAM agents in a nutshell, version 0.61+0.79i.

http://www.marcush.net/irs/jam/jam-man-01nov01-draft.htm.

Hübner, J. F., Bordini, R. H., and Wooldridge, M. (2006). Programming declarative goals using

plan patterns. InProceedings of the International Workshop on Declarative Agent Languages

and Technologies (DALT-06), pages 123–140. Springer.

Ingrand, F. F., Georgeff, M. P., and Rao, A. S. (1992). An architecture for real-time reasoning and

system control.IEEE Expert Magazine, 7(6):33–44.

BIBLIOGRAPHY 213

Jarvis, J., Jarvis, D., and McFarlane, D. (2003). Achievingholonic control: an incremental app-

roach.Computers in Industry, 51(2):211–223.

Kaelbling, L. P. (1987). An architecture for intelligent reactive systems. InProceedings of the

Workshop on Reasoning about Actions and Plans, pages 395–410. Morgan Kaufmann.

Kambhampati, S., Mali, A. D., and Srivastava, B. (1998). Hybrid planning for partially hierarchi-

cal domains. InProceedings of the National Conference on Artificial Intelligence (AAAI-98),

pages 882–888.

Knoblock, C. (1995). Planning, executing, sensing, and replanning for information gathering. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-95), pages

1686–1693.

Knoblock, C., Tenenberg, J. D., and Yang, Q. (1991). Characterizing abstraction hierarchies for

planning. InProceedings of the National Conference on Artificial Intelligence (AAAI-91), pages

692–697.

Koehler, J., Nebel, B., Hoffmann, J., and Dimopoulos, Y. (1997). Extending planning graphs

to an ADL subset. InProceedings of the European Conference on Planning (ECP-97), pages

273–285.

Laborie, P. and Ghallab, M. (1995). Planning with sharable resource constraints. InProceedings

of the International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1643–1651.

Lemai, S. and Ingrand, F. F. (2004). Interleaving temporal planning and execution in robotics

domains. InProceedings of the National Conference on Artificial Intelligence (AAAI-04), pages

617–622.

Lespérance, Y., Levesque, H. J., Lin, F., Marcu, D., Reiter, R., and Scherl, R. B. (1995). Founda-

tions of a logical approach to agent programming. InProceedings of the International Workshop

on Intelligent Agents II, Agent Theories, Architectures, and Languages (ATAL-95), pages 331–

346. Springer.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. B. (1997). Golog: A logic

programming language for dynamic domains.Journal of Logic Programming, 31(1-3):59–83.

BIBLIOGRAPHY 214

Ljungberg, M. and Lucas, A. (1992). The OASIS air-traffic management system. InProceedings of

the Pacific Rim International Conference on Artificial Intelligence (PRICAI-92), pages 15–18.

Lotem, A., Nau, D. S., and Hendler, J. (1999). Using planninggraphs for solving HTN problems.

In Proceedings of the National Conference on Artificial Intelligence (AAAI-99), pages 534–540.

Lyons, D. M., Hendriks, A., and Mehta, S. (1991). Achieving robustness by casting planning as

adaptation of a reactive system. InIEEE International Conference on Robotics and Automation

(ICRA-91), pages 198–203.

Machado, R. and Bordini, R. H. (2002). Running AgentSpeak(L) agents on SIMAGENT. In

Revised Papers from the International Workshop on Intelligent Agents VIII, Agent Theories,

Architectures, and Languages (ATAL-02), pages 158–174. Springer.

Maes, P. (1989). The dynamics of action selection. InProceedings of the International Joint

Conference on Artificial Intelligence (IJCAI-89), pages 991–997.

Mccarthy, J. and Hayes, P. J. (1969). Some philosophical problems from the standpoint of Artifi-

cial Intelligence.Machine Intelligence, 4:463–502.

Mcdermott, D. (1991). A reactive plan language. Technical Report CSD-RR-864, Computer

Science Department, Yale University, U.S.A.

Mcdermott, D. (1992). Transformational planning of reactive behavior. Technical Report

YALEU /DCS/RR-941, Computer Science Department, Yale University, U.S.A.

Meneguzzi, F. and Luck, M. (2007). Composing high-level plans for declarative agent pro-

gramming. InProceedings of the International Workshop on Declarative Agent Languages

and Technologies (DALT-07), pages 69–85. Springer.

Meneguzzi, F. and Luck, M. (2008). Leveraging new plans in AgentSpeak(PL). InProceedings

of the International Workshop on Declarative Agent Languages and Technologies (DALT-08),

pages 111–127. Springer.

Meneguzzi, F., Zorzo, A. F., and da Costa Móra, M. (2004a). Mapping mental states into propo-

sitional planning. InProceedings of the International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS-04), pages 1514–1515.

BIBLIOGRAPHY 215

Meneguzzi, F., Zorzo, A. F., and da Costa Móra, M. (2004b). Propositional planning in BDI

agents. InProceedings of the ACM Symposium on Applied Computing (SAC-04), pages 58–63.

Minton, S., Bresina, J., and Drummond, M. (1994). Total-order and partial-order planning: A

comparative analysis.Journal of Artificial Intelligence Research (JAIR), 2:227–262.

Moreira, Á. and Bordini, R. (2002). An operational semantics for a BDIagent-oriented pro-

gramming language. InProceedings of the Workshop on Logics for Agent-Based Systems

(LABS-02), pages 45–59.

Moreira, Á. F., Vieira, R., and Bordini, R. H. (2003). Extending the operational semantics of a

BDI agent-oriented programming language for introducing speech-act based communication. In

Proceedings of the International Workshop on Declarative Agent Languages and Technologies

(DALT-03), pages 135–154. Springer.

Morley, D. and Myers, K. (2004). The SPARK agent framework. In Proceedings of the Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-04), pages

714–721.

Müller, J. P. (1997). A cooperation model for autonomous agents. InProceedings of the In-

ternational Workshop on Intelligent Agents III, Agent Theories, Architectures, and Languages

(ATAL-97), pages 245–260. Springer.

Muñoz-Avila, H., Aha, D. W., Nau, D. S., Weber, R., Breslow,L., and Yaman, F. (2001). SiN:

Integrating case-based reasoning with task decomposition. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI-01), pages 999–1004.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Muñoz-Avila, H., Murdock, J. W., Wu, D., and Yaman,

F. (2005). Applications of SHOP and SHOP2.IEEE Intelligent Systems, 20(2):34–41.

Nau, D., Cao, Y., Lotem, A., and Muñoz-Avila, H. (1999). SHOP: Simple Hierarchical Ordered

Planner. InProceedings of the International Joint Conference on Artificial Intelligence (IJCAI-

99), pages 968–973.

Nau, D. S. (2007). Current trends in automated planning.AI Magazine, 28(4):43–58.

BIBLIOGRAPHY 216

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W.,Wu, D., and Yaman, F. (2003).

SHOP2: An HTN planning system.Journal of Artificial Intelligence Research (JAIR), 20:379–

404.

Nau, D. S., Smith, S. J. J., and Erol, K. (1998). Control strategies in HTN planning: Theory versus

practice. InProceedings of the National Conference on Artificial Intelligence (AAAI-98), pages

1127–1133.

Nebel, B. (2000). What is the expressive power of disjunctive preconditions? InProceedings of

the European Conference on Planning (ECP-99), pages 294–307.

Nebel, B. and Koehler, J. (1995). Plan reuse versus plan generation: A theoretical and empirical

analysis.Artificial Intelligence, 76:427–454.

Paolucci, M., Kalp, D., Pannu, A., Shehory, O., and Sycara, K. (1999). A planning component for

RETSINA agents. InProceedings of the International Workshop on Agent Theories, Architec-

tures, and Languages (ATAL-99), pages 147–161.

Plotkin, G. D. (1981). A structural approach to operationalsemantics. Technical Report DAIMI

FN-19, Computer Science Department, University of Aarhus,Denmark.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2003). Jadex:Implementing a BDI-infrastructure

for JADE agents.EXP - in search of innovation, 3(3):76–85.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In

Proceedings of the European workshop on Modelling Autonomous Agents in a Multi-Agent

World : agents breaking away (MAAMAW-96), pages 42–55. Springer.

Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In

Proceedings of the International Conference on Principlesof Knowledge Representation and

Reasoning (KR-91), pages 473–484.

Rao, A. S. and Georgeff, M. P. (1992). An abstract architecture for rational agents. In Proceed-

ings of the International Conference on Principles of Knowledge Representation and Reasoning

(KR-92), pages 439–449.

BIBLIOGRAPHY 217

Rao, A. S. and Georgeff, M. P. (1995). BDI-agents: from theory to practice. InProceedings of the

International Conference on Multiagent Systems (ICMAS-95), pages 312–319.

Refanidis, I. and Vlahavas, I. (2002). The MO-GRT system: Heuristic planning with multiple

criteria. InProceedings of the Workshop on Planning and Scheduling withMultiple Criteria.

Reiter, R. (1987). On closed world data bases. InReadings in Nonmonotonic Reasoning, pages

300–310. Morgan Kaufmann Publishers Inc.

Russell, S. J. and Norvig, P. (2002).Artificial Intelligence: A Modern Approach (2nd Edition).

Prentice Hall.

Sardina, S., De Giacomo, G., Lespérance, Y., and Levesque,H. J. (2004). On the semantics of de-

liberation in IndiGolog—from theory to implementation.Annals of Mathematics and Artificial

Intelligence, 41(2-4):259–299.

Sardina, S., de Silva, L., and Padgham, L. (2006). Hierarchical planning in BDI agent pro-

gramming languages: A formal approach. InProceedings of the International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS-06), pages 1001–1008.

Sardina, S. and Padgham, L. (2007). Goals in the context of BDI plan failure and planning.

In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-07), pages 16–23.

Sardina, S. and Padgham, L. (2010). A BDI agent progarmming language with failure recov-

ery, declarative goals, and planning.Autonomous Agents and Multi-Agent Systems. In Press;

accepted for publication 16/3/2010.

Schoppers, M. (1987). Universal plans for reactive robots in unpredictable environments. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-87), pages

1039–1046.

Shoham, Y. (1993). Agent-oriented programming.Artificial Intelligence, 60(1):51–92.

Sohrabi, S., Baier, J. A., and McIlraith, S. A. (2009). HTN planning with preferences. InProceed-

ings of the International Joint Conference on Artificial Intelligence (IJCAI-09). (to appear).

Spivey, J. M. (1989).The Z notation: A Reference Manual. Prentice Hall.

BIBLIOGRAPHY 218

Steels, L. (1990). Cooperation between distributed agentsthrough self-organisation. InDecen-

tralized A.I. : Proceedings of the European Workshop on Modelling Autonomous Agents in a

Multi-Agent World, pages 175–196. North-Holland.

Tambe, M. and Zhang, W. (2000). Towards flexible teamwork in persistent teams: Extended

report.Autonomous Agents and Multi-Agent Systems, 3(2):159–183.

Thangarajah, J., Padgham, L., and Winikoff, M. (2003a). Detecting and avoiding interference

between goals in intelligent agents. InProceedings of the International Joint Conference on

Artificial Intelligence (IJCAI-03), pages 721–726.

Thangarajah, J., Padgham, L., and Winikoff, M. (2003b). Detecting and exploiting positive goal

interaction in intelligent agents. InProceedings of the International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS-03), pages 401–408.

Thiébaux, S., Hoffmann, J., and Nebel, B. (2005). In defense of PDDL axioms.Artificial Intelli-

gence, 168(1):38–69.

van Riemsdijk, B., van der Hoek, W., and Meyer, J.-J. C. (2003). Agent programming in dribble:

from beliefs to goals using plans. InProceedings of the International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS-03), pages 393–400.

van Riemsdijk, M. B., Dastani, M., and Meyer, J.-J. C. (2005). Semantics of declarative goals

in agent programming. InProceedings of the International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS-05), pages 133–140.

Veloso, M. M., Pollack, M. E., and Cox, M. T. (1998). Rationale-based monitoring for planning in

dynamic environments. InProceedings of the International Conference on Artificial Intelligence

Planning Systems (AIPS-98), pages 171–180.

Wallis, P., Rönnquist, R., Jarvis, D., and Lucas, A. (2002). The automated wingman - using JACK

Intelligent Agents for unmanned autonomous vehicles. InProceedings of the IEEE Aerospace

Conference, pages 2615–2622.

Wilkins, D. E. (1990). Can AI planners solve practical problems? Computational Intelligence,

6(4):232–246.

BIBLIOGRAPHY 219

Wilkins, D. E. and Myers, K. L. (1995). A common knowledge representation for plan generation

and reactive execution.Journal of Logic and Computation, 5(6):731–761.

Wilkins, D. E. and Myers, K. L. (1998). A multiagent planningarchitecture. InProceedings

of the International Conference on Artificial IntelligencePlanning Systems (AIPS-98), pages

154–162.

Wilkins, D. E., Myers, K. L., Lowrance, J. D., and Wesley, L. P. (1995). Planning and reacting

in uncertain and dynamic environments.Journal of Experimental and Theoretical Artificial

Intelligence, 7(1):197–227.

Winikoff, M., Padgham, L., Harland, J., and Thangarajah, J. (2002). Declarative and procedural

goals in intelligent agent systems. InProceedings of the International Conference on Principles

of Knowledge Representation and Reasoning (KR-02), pages 470–481.

Wobcke, W. (2001). An operational semantics for a PRS-like agent architecture. InProceedings

of the Australian Joint Conference on Artificial Intelligence (AI-01), pages 569–580.

Wooldridge, M. (2002).An Introduction to Multiagent Systems. John Wiley & Sons.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice.The Knowl-

edge Engineering Review, 10:115–152.

