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ABSTRACT 
 

 
Clarifier-Thickener equipment is used in a wide range of continuous sedimentation 

and sludge thickening processes where solid particles from continuous inflow 

mixtures are separated from the liquid. In this operation, the concentration of solids 

increases due to settling, so that the formation of a thicker bed is inevitable with time. 

Under optimal operating conditions, it is always possible to obtain two discharges 

from these vessels: a highly concentrated suspension at the bottom (underflow), and 

a clarified liquid stream at the top of the equipment (overflow or effluent).  

 

In the Bayer Process an insoluble sub-product is formed as a result of the digestion 

of the bauxite ore with caustic soda. This product is called “red mud” and it has to be 

continuously removed by settlers or thickeners/clarifiers.  

 

This project proposes the simulation of a continuous thickener/clarifier in order to 

predict the concentration profile and the height of the mud level (process controlled 

variable) as alternative to current measurement system, that contains long delay 

discrete sampling time(15 minutes each measurement). The simulation also, can 

provide an option of creating a knowledge base for off-line control. The project 

essentially involves two methods of simulation, namely mathematical modelling and 

neural networks. The model based applies a kinematic model to approximate the 

process behaviour using both, equipment and suspension characteristics. On the 

other hand, due to the large amount of historical data, neural network is proposed for 

system identification.   

 

The first method is based on the solution of a highly nonlinear model, based on 

kinematic modelling of sedimentation extended to flocculated suspensions. This 

approach uses a conservative finite difference scheme of the upwind type for solving 

an initial boundary value problem (IBVP). The successful simulation of the 

equipment and further validation of the mathematical model are then achieved once 

the properties of the suspensions have been determined. These properties are 

related to flux batch settling and solid stress functions, whose parameters can be 

obtained experimentally. 
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On-site testing of the characteristics of red mud was conducted at the Rio Tinto 

Yarwum Alumina Refinery in Queensland. The settling properties of the suspension 

were determined via batch settling. For measurement of the rheology properties, the 

vane technique was used employing a Haake VT 550 rheometer.  

 

The results of the simulation showed that the concentration profile and height of the 

heavy mud level can be determined via a steady state model for a given underflow 

concentration. These results, however, were not in good agreement with measured 

data.  

 

The second method of simulation involved the use of Rio Tinto Yarwun historical 

data to develop a neural model in order to obtain a relationship between process 

variables. This approach has the advantage that no mathematical model is needed.  

 

With this method, historical data (continuous data) are obtained and analysed, and 

daily averages of the variables involved in the process are calculated. Different 

network architectures are tested according to the washer process. Ultimately, two 

networks were developed to describe washer dynamics.  
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Chapter I 

INTRODUCTION 

 

Sedimentation is a unit operation involving the separation of solid and liquid phases 

of a dilute suspension by the action of gravity. The aim is to obtain a concentrated 

suspension and a clear fluid. 

 

This process is carried out in industries such as mining and waste-water treatment, 

in thickeners that produce a residue containing separate components due to addition 

of flocculants. 

 

In the alumina production process (the Bayer process), thickeners are used in order 

to clarify the alumina-rich liquor from insoluble red mud residue. Additional 

thickeners are used in the washing process for caustic liquor recovery, resulting in a 

more concentrated residue. 

 

During this process, a heavy mud level is maintained in the bottom of the washer in 

order to achieve design underflow densities. 

 

This project describes two methodologies for simulation of settling vessels. 

Essentially, it identifies how a settling system would respond to changes in the input 

variables and the effect of these changes on control variables such as heavy mud 

level. 

 

I.1. RESEARCH OBJECTIVES 

This work involves the dynamic simulation of a washer vessel in which sedimentation 

phenomena are involved. It examines two simulation techniques: finite difference 

and neural networks. 

 

The objectives of this work are: 

� To review fundamental theories of sedimentation 

� To identify mathematical methodologies to solve partial differential equations. 
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� To mathematically model the sedimentation process, extending it to flocculated 

suspensions. 

� To design and conduct on-site experiments on-site to obtain red mud settling 

and rheological characteristics. 

� To create a database with historical data obtained from Rio Tinto Yarwun for 

neural network application. 

�  To develop a neural network model able to simulate the dynamic behaviour of 

the red mud washing process. 

 

I.2. THESIS OUTLINE 

This thesis is oriented towards the understanding of the red mud washing process 

and the subsequent development of a tool to simulate this process. The simulation is 

focused on the prediction of the heavy mud level in the bottom of the vessel. 

 

The thesis content is structured in four sections. Section A contains an introduction 

and purpose of the study, along with a background review of the alumina refinery 

process, including the tailings and washing process. Section B presents the 

mathematical model of the washing process and the theory underlying neural 

networks. Section C provides an analysis of the research methodology and the 

results of the simulation. Finally, in section D, a summary of results, conclusions and 

suggestions for future work are developed. 

 

I.2.1.  SECTION A: INTRODUCTION AND THEORY 

Chapter I introduces the thesis, its objectives and an outline of the project. 

 

In chapter II, wastes produced in the mining industry are described, together with the 

background and explanation of the Bayer process and the tailings produced by this 

process. 

 

In chapter III, different theories and the phenomenon of sedimentation are 

presented. 
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I.2.2.  SECTION B:  SIMULATION PRINCIPLES 

In chapter IV, the mathematical approach to the sedimentation process is stated, 

followed by the methodology applied in solving the settling model. 

 

In chapter V, a second simulation approach is presented. This approach focuses on 

the development of a neural networks model for system identification. Some 

explanation follows regarding how this tool can be applied in the process industry. 

 

I.2.3.  SECTION C: MODELING AND SIMULATION RESULTS 

Chapter VI contains an explanation of the workings of the simulation model, along 

with the methodology employed for red mud characterization. 

 

Chapter VII presents the design of the neural network model and simulation. 

 

I.2.4. SECTION D: SUMMARY OF RESULTS, CONCLUSIONS, AND FURTHER 

WORK 

Finally, in chapter VIII an overall summary of results is provided, together with 

conclusions and recommendations for further work. 
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Chapter II 

 WASTES FROM MINERAL RESOURCES 

 

Wastes industries based on mineral resources – e.g., mining, milling and metallurgy 

– can be characterized as follows: 

 

Table 2.1: Wastes from mineral resources (Lottermoser, 2007; Bell & Donnelly, 2006) 

 

II.1. TAILINGS DISPOSAL 

Tailings are the solid waste products of milling and possible subsequent processing 

of ore; however, in some mineral industries tailings have some other name. Notable 

examples are the “slimes” produced by the phosphate industry and the “red mud” of 

the aluminium industry (Lottermoser, 2007). Considerable differences exist among 

tailings from different industries but considerable similarities also exist. Tailings may 

range from acidic to basic, but all are transported to their final resting place as slurry. 

Drop boxes are used all over to keep grades below one percent to minimize pipe 

abrasion. Final water content ranges from approximately 15 percent for oil shale 

tailings to as much as 85 percent for the red mud of the aluminium industry, but all 

contain some water at equilibrium with gravity. Some contain a percentage of 

Wastes Mining Industry Milling Industry Metallurgical Industry 

Solid  � Unwanted materials in 

the overburden (rocks) 

and gangue. 

� Minimize the effects by 

revegetation and 

landscaping. 

� Remaining host rock 

(tailings) after mineral 

remotion. 

� Vegetative stabilization 

� From relatively innocuous 

slag (blast furnaces) to 

unstable solids (washing of 

gaseous wastes and 

metallic products). 

 

Liquid � Acid mine drainage (coal 

mining industry). 

� Limited chemical 

stabilization, revegetation 

and landscaping. 

� Water decanted from 

tailings ponds (suspended 

solid, low concentration of 

Cyanide) 

� Remotion of suspended 

solids to 20-30 mg/L 

 

� From wash water to 

effluent from wet 

scrubbers. 

 

Gaseous � Insignificant production of 

dust. Production of 

methane (coal mines). 

� Negligible pollution 

problems. 

 

� Sulphur dioxide (copper 

and lead smelting). 

� Conversion into sulphuric 

acid. 
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material with respectable shear strength but most contain a percentage of material 

that is essentially liquid. All contain some chemically inert material but many contain 

sufficient pyrite to produce the equivalent of an acid mine drainage problem upon 

exposure to the atmosphere (Lottermoser, 2007). 

 

The most characteristic difference among tailings is particle-size distribution 

(Lottermoser, 2007). This factor is most significant because it ultimately determines 

the method that must be used for safe containment if the tailings are to be discarded 

terrestrially. If the tailings contain a sufficient percentage of coarse materials (usually 

called “sands”), the tailings can be segregated during disposal and the coarse sands 

used as a confining embankment. The finer materials can be separated by gravity in 

a method called “upstream construction” or they can be segregated by centrifuging 

(“cycloning”) in the method called downstream construction (Lottermoser, 2007). 

 

If the tailings do not contain sufficient sands to form a well-drained embankment of 

acceptable density, permeability, shear strength, and factor of safety, or if the sands 

are used to backfill underground openings (Wills, 1997), then the embankment must 

be constructed with imported materials, which may be either natural rock or mine 

waste rock.  

 

II.2. THE BAYER PROCESS 

II.2.1. BACKGROUND 

In 1889, the Austrian chemist Karl Bayer patented the process to obtain alumina 

from bauxite ore using a solution of sodium hydroxide. Karl was the son of Friedrich 

Bayer, founder of the Bayer chemical and pharmaceutical company. The first 

industrial plants for alumina production based on Bayer process were installed in 

France and Ireland in the 1890s (Williams, 1975). 

 

Previously, alumina was produced using the Le Chatelier process (1969). In this 

process, bauxite is mixed with sodium carbonate for further calcination in a kiln 

between 1000 -1100oC, which is called a pyrogenic process. The reaction product is 

sodium aluminate, which is then leached out at 80oC; an aluminium solution is 

obtained for further precipitation using carbon dioxide from the oven. These kinds of 
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installations were built in Europe and United States and provided great amounts of 

alumina. The Le Chatelier process lost competitiveness with the appearance of the 

Bayer process and practically disappeared in the 1940s. Since the 1960s, the entire 

alumina production worldwide has been obtained using the Bayer process. 

 

II.2.2. THE PROCESS 

As mentioned, the worldwide production of bauxite predominantly uses the Bayer 

process. The alumina produced is then processed by the Hall-Heroult electrolytic 

method to generate aluminium. From the Bayer process perspective, the chemical 

and mineral compositions of the bauxite are very important; in fact, the operation 

used will depend on these properties. Gibbsite bauxites, like surinam, trombets and 

worsley, are the most difficult to digest, followed by boehmitic bauxites (Pryor, 1965). 

The most difficult to digest are diasporic bauxites, which require higher caustic 

concentration, higher digestion temperatures (280-300oC) and the use of lime for co-

digestion for alumina extraction (Pryor, 1965). Fortunately, most of the commercial 

bauxites are the relatively easy to process gibbsite, boehmite or gibbsite-boehmite. 

 

Generally, aluminium refineries are suited to treat a particular form of bauxite, so 

bauxite exchange between different refineries is uncommon. Another limiting aspect 

is the amount of solid residue (red mud) produced during the Bayer process (Pryor, 

1965). If any refinery is designed to process high quality bauxite with a low “red mud 

factor”, the refinery should have a proper capacity to process that type of bauxite. 

 

The Bayer process consists of bauxite washing and pulverization, followed by high 

pressure and temperature caustic digestion (sodium hydroxide) (Hudson, 1987). The 

liquor obtained contains a solution of sodium aluminate and non-dissolved solid 

residue from the bauxite, which contains iron, silica and titanium. This residue is 

called “red mud”. The clear solution of sodium aluminate is pumped into a tank called 

a “precipitator”. In this tank, fine particles of alumina are added to promote 

precipitation of alumina particles. The settling particles in the bottom of the tank are 

extracted and go through a rotary kiln at 1100oC for water removal (Hudson, 1987). 

The product is a white powder which is pure alumina. The caustic soda is recovered 

and re-used in the process. This process, which is used to obtain pure alumina from 
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bauxite ore, has undergone few changes since the opening of the first refinery in 

1893. 

 

The Bayer process includes four stages (Hudson, 1987; Rio Tinto, 2008): digestion, 

liquor clarification, precipitation of the hydrate and calcination of the alumina (Figure 

(2.1)). 

 

 

Figure 2.1: The Bayer Process (Hudson, 1987; Rio Tinto 2008) 

 

II.2.2.1. DIGESTION 

The process of digestion of the bauxite includes several stages (Hudson, 1987): 

grinding, desilication and digestion. 

 

II.5.2.1.1. GRINDING 

In this stage, fragments of the washed bauxite of particle size of 20 mm are ground 

inside of a mill (ball or rolling mill) to improve the liquid-solid contact during digestion. 

A recycle solution of caustic is added to produce a slurry capable of being pumped; 

lime may also be added for phosphate control (Hudson, 1987). 
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II.2.2.1.2. DESILICATION 

The silica compounds in the bauxite are chemically attacked by caustic soda, 

causing alumina and soda losses by combination, to form a solid product called 

“desilication product (DSP)”. In order to remove this silica from the slurry, it is heated 

and maintained at atmospheric pressure in a pre-treatment area. The greater part of 

the desilication products then become part of the residual slurry as aluminium-silica 

compounds. The DSP is not a simple compound, but is composed of a series of 

compounds of the zeolite type. The reaction of kaolinite during the digestion process 

shows the desilication process, according with (Wills, 1997): 

 

OHSiONaNaAlOOHOHSiOOAl 232222232 522622 ++→+⋅⋅       (2.1) 

( ) NaOHOxHSiOOAlONaOHxNaAlOSiONa 42222 223222232 +⋅⋅⋅→+++     (2.2) 

 

II.2.2.1.3. DIGESTION 

The slurry containing OxHOAl 232 ⋅  is pumped by high pressure pumps to digesters 

operating in series, which are equipped with stirring systems. Once mixed with 

steam and caustic solution, the alumina from the bauxite forms a sodium aluminate 

solution (Hudson, 1987). A number of non-dissolved impurities remain, primarily iron, 

titanium and silica compounds.  

 

Modern refineries work with temperatures between 200 and 240oC and with 

pressures of approximately 30 atm. The conditions used in the digesters 

(concentration, temperature and pressure) may vary depending on the bauxite 

properties (Hudson, 1987). Theoretically, higher temperatures are more favourable 

for this process, but other disadvantages such as corrosion and dissolution of other 

oxides may be presented (Hudson, 1987). 

 

Due to the high pressure and temperatures, the follow reactions are produced 

quickly (Hudson, 1987; Rio Tinto 2008): 

 

OHNaAlOOHOAlNaOH 22232 4232 +→⋅+           (2.3) 

OHNaAlOOHOAlNaOH 22232 222 +→⋅+           (2.4) 
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Depending of the treatment times in the digester, recovery percentage as high as 

97% of total alumina can be achieved. 

 

After digestion, approximately 30% (by weight) of the bauxite remains in suspension, 

forming a reddish slurry containing red mud (a mixture of iron and titanium oxides 

and silica). The red mud is extracted from the digesters and cooled in a series of 

reactors with successively lower pressures. The generated heat is used to ore-heat 

the caustic liquor (Hudson, 1987). 

 

II.2.2.2. CLARIFICATION 

After the extraction stage, the liquor (which contains dissolved alumina) is separated 

from insoluble residue, and then is purified and filtered. The red mud is washed in 

order to extract as much caustic as possible and recycled (Hudson, 1987; Rio Tinto, 

2008).  

 

The clarification stage includes the following operations: sedimentation, washing and 

filtration. 

 

The majority of the residual solids of the red mud are removed from the liquor by 

sedimentation using 40 meter diameter settling tanks (Hudson, 1987; Rio Tinto, 

2008). Flocculants are added to improve settling velocity and to obtain a clearer 

supernatant (Hudson, 1987; Rio Tinto, 2008).   

 

Washing process 

Red mud is washed with water in a counter-current washer train to allow recovery of 

the caustic soda and any residual alumina that may have remained in the slurry, 

before pumping it to a storage area. The washing process involves several washers 

(between four and seven) operating in series (Figure (2.2)) (Hudson, 1987; Rio Tinto, 

2008). The inputs at each stage involve the underflow of the previous thickener and 

the overflow of the next one (Rio Tinto, 2008). The outputs of the process include a 

concentrated product from the first washer (overflow) and a high solids concentration 

from the last thickener (underflow). 
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Figure 2.2: Washer train (Rio Tinto, 2008) 

 

Lime is added to the caustic liquor to remove carbonates (Na2CO3), which are 

formed due to reaction with bauxite compounds and with other compounds from the 

air (Hudson, 1987). These carbonates reduce the effectiveness of the caustic liquor 

to dissolve the alumina. Lime regenerates the caustic soda, and the calcium 

carbonate that forms is removed with the red mud (Hudson, 1987): 

  

( ) NaOHCaCOOHCaCONa 23232 +→+         (2.5) 

 

The supernatant preceding the sedimentation stage contains small particles of fine 

slurry, so it is filtered using constant pressure filters with polypropylene membranes 

(Hudson, 1987). 

 

Once all solids have been removed, the liquor that comes from this area contains a 

supersaturated alumina solution, which is cooled (Hudson, 1987). The heat 

produced in this process is used to heat the liquor in the digestion stage.  

 

II.2.2.3. PRECIPITATION OF THE HYDRATE 

At this stage, the alumina is recovered from the liquor by crystal precipitation. The 

alumina precipitates as OHOAl 232 3⋅  due to the inverse reaction of the extraction 

process (Hudson, 1987), but in this case, the product can be controlled according to 

the operational condition of the refinery (temperature of precipitation, cooling rate, 

etc.) (Rio Tinto, 2008): 

 

NaOHOHOAlOHNaAlO 2342 23222 +⋅→+         (2.6) 
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The alumina liquor is carried to precipitation tanks, and crystals of trihydrate alumina 

are added, generally with a fine particle size, to promote crystal growth (Hudson, 

1987; Rio Tinto, 2008). The mixture is agitated inside the tanks for approximately 3 

hours. During this process, several crystals of different sizes are formed. The inlet 

temperature, rate of alumina crystal addition and the caustic concentration are 

control variables used to regulate the particle size of the product. The particle size is 

an important parameter during the smelting process, so control of this variable is 

important (Hudson, 1987; Rio Tinto, 2008). 

 

The mixture of crystals of different particle sizes is separated from the liquor and 

classified by size inside so-called gravity classification tanks (Hudson, 1987). The 

primary classifiers are used for coarse particles, which is the hydrate product. The 

crystals of intermediate and fine size from secondary and tertiary classifiers are 

washed and returned to the precipitation tanks to act as promoters for this operation 

(Hudson, 1987). 

 

The solids-free caustic liquor (supernatant) from the tertiary classifier is recovered by 

evaporation and is concentrated, heated and recycled in order to dissolve the 

alumina in the digesters (Hudson, 1987). Finally, fresh caustic soda is added to 

compensate for losses during the process (Hudson, 1987). 

 

II.2.2.4. CALCINATION 

The washed hydrate is dried and heated to temperatures around 900-1200oC 

(Hudson, 1987; Rio Tinto, 2008). This heating process, or calcination, is carried out 

in a rotary kiln. During this process, the alumina is obtained as follows (Hudson, 

1987): 

 

( ) OHOAlOHAl 2323 32 +→          (2.7) 

 

II.3. RED MUD 

The red mud is a residue from the Bayer process of alumina refining (Hudson, 1987). 

The amount of residue obtained (per ton of alumina produced) varies, according with 

the type of bauxite used, from 0.5 ton for high quality bauxites to 2.5 ton for low 
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quality bauxites. Worldwide, the annual production of red mud exceeds 60 millions of 

tons (Paradis, 1992). 

 

The physical and chemical properties depend of the bauxite used, and how the ore is 

processed. In general, bauxite is mainly composed of aluminium oxide (monohydrate 

and trihydrate alumina, in different proportions). The main impurities are iron, silica 

and titanium oxide, as well as zinc, phosphorus, nickel or chrome, but in small traces 

(Lottermoser, 2007). The residue remaining after alumina production contains 

undissolved impurities, as well as any alumina not extracted during the process. 

 

The Table (2.2) below shows the variability in the chemical composition that red mud 

may present: 

Table 2.2: Variation in red mud chemical composition (IAI, 2002) 

Compound Amount (%) 

Fe2O3 30-60 

Al2O3 10-20 

SiO2 3-50 

Na2O 2-10 

CaO 2-8 

TiO2 Trace-10 

 

Worldwide, the aluminium industry has been under considerable pressure to 

minimize the environmental impact of its activities. However, it has been recognized 

that practical solutions should be applied. As a consequence, pond storage has been 

accepted by governments as “the best available technology”.  The key focus of 

legislation is on preventing the release of the alkali, contained in the red mud, to the 

environment, as well as restoration of sites after mine closures. However, in the near 

future, policies like “taxes for waste” and “enduring responsibility”, which affect the 

treatment and final destination of the red mud, will be considered (Lottermoser, 

2007). 

 

In addition, while most of the minerals in red mud are not hazardous, special 

attention is needed due to its high alkalinity. The aluminium industry has recognized 
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the need to develop economically viable solutions in order to have a minimum impact 

on the environment by the wastes produced by the process and the sub-products 

obtained during the operation of the refinery (IAI, 2002). As a consequence, recently 

research has been conducted to obtain alternative treatments for neutralization of 

the alkali released by the red mud, for alkali recovery or for red mud neutralization 

(Menzies, Fulton, Morrell, 2004). Some of these treatments are shown in the table 

below: 

 

Table 2.3: Possible treatments for red mud (Parekh & Goldberger, 1976; Whittaker et al., 1955) 

Disposal Neutralization 

Sea disposal 
Wet storage in ponds 
Dry Storage 

Usage 

Dye brick 
Cement additive 
Road construction 
Iron process 
Steal production 
 

Mineral acids 
Gases produced by storage 
Biological activity 
Sea water 
Alkali recovery 
Washing 
Lime addition 

 

Nevertheless, in the industry, besides the use of sea water to decrease the alkalinity 

(Menzies et al, 2004), chemical processes are not generally used. Most effort is 

focused on improving the waste storage area (e.g. drainage control, stability studies 

of ponds, dry storage, etc) and recovery of the area after mine closure. 

 

For these reasons, the high content of sodium, as a pollutant, is one of the most 

important issues concerning disposal of red mud. The sodium in red mud may be 

present in different forms such as sodium (Na) – an excess of alkali from the 

digestion stage – and sodium aluminium-silicates (sodalite), which are related 

structurally to zeolites (Williams, 1975). 

 

The high concentration of sodium in red mud has several consequences as follows 

(Bell & Donnelly, 2006): 
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� Red mud drying: sodium (a small cation) attracts water molecules by ionic 

force. The sodium presence also increases water electric conductivity and 

inhibits the possibility of electric-drying of red mud. 

� Handling and storage: sodium affects rheological properties of the red mud, 

which makes handling and storage more difficult. 

� Superficial runoff:  the alkalinity of the runoff (pH ~12) is due to the sodium 

present in the red mud, which needs to be controlled over large periods of 

time. 

� Groundwater pollution 

� Red mud usage: the sodium content in the red mud is one of the most serious 

problems when considering material reuse.  

 

The alkalinity of the red mud causes many difficulties, not only because of the 

handling, but also because it represents caustic losses in the production process. 

The alkalinity, which is added by digestion liquor, may be recovered by separation 

and recycling of the liquor. Part of the alkalinity associated with solids of the red mud 

may be recovered by chemical interaction between solids and the liquor during 

storage. 

 

The amount of caustic consumed during production of each ton of alumina is a 

fundamental issue from a production cost point of view. The majority of the caustic 

product goes to the residue. If those residues are use in agricultural activities, for 

example, a neutralization process is first required. This leads to additional expense 

as additional products are needed for neutralization, such as, mineral acids or 

exchange resins (Bell & Donnelly, 2006).   

  

 

 

 

 

 

 

 



16 

 

Chapter III 

SEDIMENTATION 

 

III.1. INTRODUCTION 

The process of sedimentation can be defined as partial separation or concentration 

of suspended particles from a liquid by gravity settling (Perry, 1997). The process 

involves functional operations of thickening and clarification. The primary purpose of 

thickening is to increase the concentration of suspended solids in a feed stream, 

while that of clarification is to remove a relatively small quantity of suspended 

particles, thus producing a clear effluent (Foust, 1960). These two functions are 

similar and occur simultaneously. The name of the process depends on the desired 

result. Generally, a thickening operation is designed for the heavier-duty 

requirements imposed by a large quantity of relatively concentrated pulp, while 

clarifiers usually will include features that ensure essentially complete suspended 

solids removal, such as greater depth, special provision for coagulation or 

flocculation of the feed suspension, and greater overflow-weir length (Perry, 1976). 

 

The problems of interest for concentration in processes such as mine tailings and 

ceramic suspensions are the selection, design and operation of the consolidation 

equipment. To achieve high concentrations, the equipment must compress the 

suspensions (Pryor, 1965).  

 

Mine tailings are typically concentrated in large thickeners, as filtration or 

centrifugation is usually impractical due to the large treatment volumes. The most 

common thickener is the circular basin type (McCabe & Smith, 2005). The flocculant-

treated feed slurry enters through the central feed well, which disperses the feed 

gently into the thickener. The feed suspension falls until it reaches a height where its 

density matches the density of the surrounding suspension and it spreads at that 

level. Solids concentration increases in the downward direction and this gives 

stability to the thickening process. The overflow is collected in a trough around the 

periphery of the basin. Raking mechanisms, slowly turning around the centre 

column, promote solids consolidation in the compression zone and aid solids 

discharge through the bottom central opening (Perry, 1976). 
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The settling operation is affected by several factors including size and shape of 

particles, size distribution, density differences (solid and liquid), slurry concentration 

and surface properties such as chemical content, chemical additives and the 

suspension medium (Perry, 1976). Because of these features, the solids experience 

particulate or hindered (aggregate moving) settling. 

 

The ratio of water to solids in a slurry usually has a significant impact on the 

techniques and economics of the transport operations. Dilute slurries tend to behave 

in a fashion that is closer to that of Newtonian fluids, while concentrated slurries can 

exhibit strong non-Newtonian behaviour, which consequently affect the energy that is 

required to pump the material at the required rate. Generally speaking, there are 

usually advantages in reducing the amount of carrier fluid relative to the amount of 

solids to improve the energy efficiency as measured by the energy required to 

transport 1 kg of solids. Thus dewatering slurries must always be considered in 

practice (Pryor, 1965). 

 

The natural tendency of the solids to settle under the influence of gravity is exploited 

to remove some of the water of the slurry. When the particles that make up the slurry 

are small, the settling is quite slow and special techniques are required to achieve a 

separation. Because of slow rates of settling that are commonly encountered, 

comparatively large equipment is required (Pryor, 1965).  

 

III.2. THEORY OF SEDIMENTATION 

The separation of a dilute slurry by gravity settling into a clear fluid and slurry of 

higher solids content is called sedimentation. The mechanism of sedimentation may 

be best described by observation of what occurs during a batch settling test as solids 

settle from slurry in a glass cylinder. Figure (3.1.a) shows newly prepared slurry of a 

uniform concentration of uniform solid particles through out the cylinder. As soon as 

the process starts, all particles begin to settle and are assumed to rapidly approach 

the terminal velocities under hindered-settling conditions. Several zones of 

concentration will be established (Figure (3.1.b)). Zone D of settled solids will 

predominantly include the heavier faster-settling particles. A poorly defined transition 

zone above the settled material contains channels through which fluid must rise. This 
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fluid is forced from zone D as it compresses. Zone C is a region of variable size 

distribution and non-uniform concentration. Zone B is a uniform-concentration zone, 

of approximately the same concentration and distribution as initially. At the top of 

region B is a boundary above which is clear liquid, region A. If the original slurry is 

closely sized with respect to smallest particles, the line between A and B will be 

sharp (Foust, 1960). 

 

 

Figure 3.1: Batch sedimentation (Foust, 1960) 

 

As sedimentation continues, the heights of each zone vary, as indicated in Figure 

(3.1.b,c,d). Note that both A and D grow larger at the expense of B. Eventually, a 

point is reached where B and C disappear and all the solids appear in D; this is 

referred to as the critical settling point (Figure (3.1.e)) – that is, the point at which a 

single distinct interface forms between clear liquid and sediment. The sedimentation 

process from this point on consists of a slow compression of the solids, with liquid 

from the boundary layer of each particle being forced upward through the solids into 

the clear zone. Settling rates are very slow in this dense slurry. The final phase is an 

extreme case of hindered settling (Foust, 1960).  

 

In a batch settling test, the position of the zones varies with time. The same zones 

will be present in continuously operating equipment. However, once steady state has 

been reached (i.e., the slurry fed per unit time to the thickener is equal to the rate of 

sludge and clear liquor removal), the heights of each zone will be constant.  

 

The zones are shown in Figure (3.2) for a continuous sedimentation (Foust, 1960). 
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Figure 3.2: Settling zones in continuous thickeners (Foust, 1960) 

 

The method used to obtain information from a simple batch settling curve is known 

as the Kynch construction. The Kynch construction is applied to the batch settling 

curve and this establishes the relationship between the rate of settling of a slurry and 

the local solid content (Foust, 1960). 

 

III.2.1. THEORIES FOR THICKENER DESIGN 

The main methods for thickener design can be represented by three categories  

based on macroscopic, kinematic and dynamic balance equations. 

 

Macroscopic balances: 

The first equation based on macroscopic balances was established by Mishler in 

1912, who performed a simple mass balance on the equipment. 

 

The method consists of experimental measurements of initial sedimentation velocity 

of a particular suspension using the feed concentration of a specific thickener. The 

area of the thickener is then calculated (Mishler, 1912).  

 

The Coe and Clevenger (1916) design method determines the initial settling velocity 

of a suspension between feed and critical concentration, then solids handling rate is 

calculated. These scientists were the first to use the data obtained from a batch 

settling experiment using a laboratory column to design an industrial thickener. They 

assumed that solids settling velocity is a function of concentration only. However, in 
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the compression zone, this assumption does not hold because the solid volume 

fraction also varies with depth.  

 

Kinematics models: 

The Kynch theory of sedimentation (Kynch, 1952) allowed a new approach that was 

fast and reliable. A single batch test was developed to measure flux-concentration 

relationships and the settling behaviour could then be predicted. However, the theory 

assumes that wall effects and interactions between particles are not present. 

Therefore, settling velocity is only a function of local slurry concentration. The theory 

is also only applicable to the hindered settling zone, because it does not consider the 

compression zone. Both of these assumptions limit the accuracy if applied to the 

Bayer process.  

 

Several research studies, such as those by Talmage and Fitch (1955), Wilhelm and 

Nadie (1979) and Oltmann, Hasset and Yoshioka (1957) have extended the Kynch 

method. Talmage and Fitch (1955), for example, proposed an extension to the 

Kynch theory. They used settling plots to provide data for thickener design. Data 

derived included solid flux, initial slurry height and concentration at the liquid-slurry 

interface. The slope of the height versus time plot provided the settling rate of the 

suspension. The slope at different times represented the settling velocity at different 

concentrations. 

 

Fitch and Stevenson (1976) further developed the Talmage and Fitch method. They 

indentified the critical concentration, which could then be used to calculate the unit 

area (AU), that is, the thickener area needed to treat a certain daily flow rate of dry 

solids. 

 

Dynamic models: 

The main proponent of the dynamic methods is Adorjan (1975, 1976). However, this 

method is not often used in the mining industry. Other researchers also further 

developed these methods (Damasceno et al, 1992). 
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The main limitation of the dynamic methods is the experimental identification of the 

parameters of the suspension. Adorjan used compression cells for slurry 

compressibility determination. However, compression cells require a pressure that is 

significantly higher than currently present inside thickeners. 

 

This case provides a more convenient measurement of different variables to 

calculate the effective stress of solids. For example, a concentration gradient can be 

obtained using batch or continuous test modelling, by gamma ray absorption, X ray 

absorption, ultrasound absorption while the pressure gradient can be measured 

using a manometer. Based on this information, effective solid stress can be 

calculated as well as suspension permeability (Huang, 1989). 

 

III.2.2. KYNCH THEORY OF SEDIMENTATION 

In 1952, the mathematician G.J. Kynch from Birmingham University (Great Britain) 

presented his article: “A theory of sedimentation”, a kinematic theory of 

sedimentation based on the propagation of concentration waves in a suspension. 

The suspension is considered to be continuous, i.e., an ideal suspension, and the 

sedimentation process is represented by a continuous equation of the solid phase: 
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where ϕ is the volumetric fraction of solids, t is time and z is the height of the 

interface, bkf  is the flux density function which satisfies: ( ) ( ) 0max == ϕϕ bkbk ff  and 

( ) 0<ϕbkf  for max0 ϕϕ << . 

 

The main limitation of an ideal suspension, as defined by the Kynch theory, is that 

the solid phase is neglected. 

 

Kynch made the following assumptions (Kynch, 1952): 

 

a. Differential settling due to differences in shape, size or composition of 

mineral particles does not take place, 



22 

 

b. Both solid and liquid are incompressible, 

c. There is no mass transfer between components, 

d. The sedimentation velocity is a function of concentration and tends to zero at 

a concentration equivalent to the sediment layer at the bottom of the 

container, 

e. The concentration of particles in any horizontal plane is uniform, 

f. The wall effects are negligible. 

 

The ideal suspension concept is very useful for modelling purposes and is similar to 

the concept of the ideal gas used in thermodynamics. The theory of mixtures is used 

to obtain a mathematical model that predicts that an ideal suspension behaves 

similar to a glass sphere suspension (Shannon and Tory, 1996; Davies et al., 1988). 

 

In reality, the volumetric concentration of solids ϕ depends on three dimensions of 

the vessel, as well as space and time. However, Kynch assumes that the 

concentration is uniform, making this a one-dimensional phenomenon that can be 

simply described by ( )tz,ϕϕ =  (Kynch, 1952). 

 

The single batch test involves the suspension of a slurry in a transparent cylinder. 

The height of the clear liquor interface with the slurry is measured over time until the 

level falls to a minimum height; that is, until particles settle at the bottom as sludge. 

Where the sedimentation rate is very slow or the supernatant liquid remains turbid 

and unclear, flocculants are added (Foust, 1960). 
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SIMULATION PRINCIPLES 
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Chapter IV 

BASICS AND MATHEMATICAL APPROACH 

 

IV.1. INTRODUCTION 

Mathematical models are an essential element for process simulation. A chemical 

process is modelled with mathematical relations based on conservation and 

thermodynamic laws, as well as control and design restrictions. These models are 

represented by a system of algebraic and differential equations which describe 

specific equipment in a process.  

 

Thus, a model can be defined as the mathematical representation of a system or 

phenomenon by application of fundamental principles. The principles of a 

mathematical model are physical and chemical laws (mass, energy and momentum 

conservation laws) and the transport equations. 

 

In this chapter, a conservation law that describes the behaviour of the sedimentation 

process in industrial thickeners will be presented, as well as a numerical method that 

can be used to solve this model. 

 

IV.2. CONTINUOUS THICKENER/CLARIFIER 

A thickener can be defined as an industrial unit in which the concentration of a 

suspension is increased by sedimentation, with the formation of a clear liquid 

(Coulson and Richardson, 2002).  

 

The operation of this type of equipment may be carried out batchwise or 

continuously (Foust, 1976). The equipment is typically a cylindrical tank with 

openings for a slurry feed and product draw-off. When steady-state is achieved, the 

solids are withdrawn continuously in the underflow at the rate they are supplied in 

the feed. 

 

Normally, an inventory of pulp is maintained in order to achieve the desired 

concentration. This volume will vary somewhat as operating conditions change; 



25 

 

sometimes this inventory can be used for storage of solids when feed and underflow 

rates are reduced or temporarily suspended (McCabe & Smith, 2005). 

Thickeners are usually constituted by some components: a tank to contain the slurry, 

feed piping and a feedwell to allow the feed stream to enter the tank, a rake 

mechanism to assist in moving the concentrated solids to the withdrawal points, an 

underflow solids-withdrawal system, and an overflow launder (McCabe & Smith, 

2005). A schematic of a cylinder thickener that operates at steady-state is shown in 

Figure (4.1).  

 

 

Figure 4.1: Schematic representation of an ideal thickener operating at steady-state (Foust, 1960) 

 

The suspension is fed in at the centre, at depth of from 0.3 to 1 m below the surface 

of the liquid, with as little disturbance as possible. The thickened liquor is 

continuously removed through an outlet at the bottom, and any solids which are 

deposited on the floor of the tank may be directed towards the outlet by means of a 

slowly rotating rake mechanism that incorporates scrapers. The rakes are often 

hinged so that the arms fold up automatically if the torque exceeds a certain value; 

this prevents it from being damaged if it is overloaded. The raking action can 

increase the degree of thickening achieved in a thickener of given size. The clarified 

liquid is continuously removed from an overflow which runs round the whole of the 

upper edge of the tank. The solids are therefore moving continuously downwards, 

and then inwards towards the thickened liquor outlet; the liquid is moving upwards 

and radially outwards (Perry, 1976).  
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In order to maximize throughput, the rate of settling is increased by adding small 

amounts of an electrolyte, which causes precipitation of particles and the formation 

of flocs. This practice has resulted in thickener classification as either conventional 

or high-rate (Perry, 1976). 

 

Conventional thickeners are characterized by having the feed-well at the top of the 

equipment and, once entering the thickener, the feed flow is mixed with part of the 

recovery liquor and diluted to a conjugate concentration. The diluted suspension 

settles at constant rate, forming a blanket of variable height, to become sediment in 

the bottom of the vessel. 

 

On the other hand, high rate thickeners are characterized by a very deep feed-well 

that discharges the feed flow below the sediment. When the feed and sediment are 

mixed, it forms a suspension greater than the feed and greater or equal to the critical 

concentration. For this reason, no sediment zone is found in high rate thickeners. 

Part of the discharge flow is usually recycled to increase the feed concentration 

before being mixed with the sediment. Generally, these thickeners have greater 

capacity than do conventional ones. However, high rate thickeners, whose residence 

time is by the order of minutes, instead of hours for conventional, have been found to 

be unstable and, therefore difficult to operate and control (Perry, 1976). 

 

IV.2.1. MATHEMATICAL MODEL 

The description of the physical phenomenon of sedimentation can be represented by 

a strongly degenerate conservation law (Bürger, 1999). The compression effects can 

be described by a strongly degenerate diffusion term, while flux discontinuity is 

represented by a convection term of the partial differential equation (see Equation 

(4.1)).  

 

Consider the case of a flocculated suspension in an ICT (Ideal Continuous 

Thickener), as shown in Figure (4.2). An ICT is a thickener in which the Kynch 

assumptions are present; for instance, where there are no wall effects and variables 

(concentration) depend only on the height of the vessel (z) and time (t). In z=L, feed 

enters to the vessel and in z=0 a discharge surface is presented which indicates a 
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continuous operation of the process. This model is appropriate to indicate, in a 

simple manner, the behaviour of the sedimentation process. The left side of Figure 

(4.2) shows the case of batch sedimentation which differs from the continuous 

process because of the closed vessel. 

 

 

Figure 4.2: Left: Batch settling column. Right: ICT (Ideal Continuous Thickener) (Burger et al, 2000) 

 

Concerning the one-dimensional case, the sedimentation theory presents equilibrium 

equations of mass and linear momentum which can be manipulated until a strongly 

degenerate parabolic equation is obtained (Bustos et al, 1999): 
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with ( ) ] [ [ [Ttz ,01,0, ×∈  and the integrated diffusive coefficient is defined as (Bürger, 

1999): 
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adssaA               (4.2) 

 

In general, the diffusive coefficient is equal to zero (0) in intervals of ϕ . In such 

cases, Equation (4.1) becomes a hyperbolic equation (Bustos et al, 1999).  

 

Solutions of (4.1) have discontinuities because of nonlinearities of the flux density 

function ( )ϕf  and because of the degenerate form of the diffusion coefficient. For 

this reason, entropic solutions are taken into account to obtain a well-posed problem. 

When Equation (4.1) is entirely hyperbolic, the values of the solution are propagated 
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through characteristics that may intercept the boundaries of the space-time domain 

from the interior; consequently, Dirichlet conditions should be treated as entropic 

conditions (Burger et al, 2000). 

 

The constitutive equations for this process imply that ( )ϕa  has a degenerate 

behaviour, which means ( ) 0=ϕa  for Cϕϕ ≤  and ( ) 0>ϕa  for Cϕϕ = , where Cϕ  is a 

constant called the critical concentration. Therefore, due to the degenerate nature of 

the diffusion coefficient ( )ϕa , Equation (4.1) is a partial differential equation of the 

hyperbolic-parabolic type (Burger et al, 2000). 

 

The phenomenological problem of sedimentation-consolidation model can be 

represented as an initial-boundary value problem (IBVP) for a strongly degenerate 

hyperbolic-parabolic differential equation, as follows (Bustos et al, 1999): 
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This problem can have an alternative representation (Bustos et al, 1999): 
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For both problems, f is continuous and differentiable for traces: 

( ) [ ] ( ) 0,',,0,0 max ≥∞≤⊂≤
∞

ϕϕ affsopf , ( ) ( ) ( ) 0, =⊂ ϕafsopasop for Cϕϕ ≤ , 

max0 ϕϕ << C , ( ) 0≤tq , [ ] ( ) ∞<∈∀ qTVTt ,,0 , ( ) ∞<'qTV  
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In sedimentation-consolidation models for flocculated suspensions, the z value 

increases vertically; ( )tz,ϕϕ =  represents the solids volumetric concentration, 

( ) 0. ≤ϕtq  is the convective flux, ( )ϕf  is a function that relates the local relative 

velocity solid-liquid with local solids concentration which, in this model, is denoted by 

Kynch batch flux density, and: 

( )
( ) ( )
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⋅
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where 0>∆ρ  denotes the difference of density between solid and liquid, g is the 

acceleration of gravity, and 0' ≥eσ  is the derivative of the effective stress function 

(Bustos et al, 1999). 

 

The effective stress function ( )ϕσ e  can be represented by this behaviour (Bustos et 

al, 1999): 
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Note that the degenerate property of the partial differential Equation (4.1) is due to 

this behaviour (Bürger, 1999). 

 

The properties of the suspension are described by ( )ϕf  and ( )ϕσ e . This requires that 

a suitable model be available for the settling velocity and effective solid stress, which 

can be obtained from a batch settling test and rheology test, respectively. The 

Richardson-Zaki model for the sedimentation velocity can be used to build a simple, 

but self-consistent, model for the ideal thickener.  Models for effective solid stress 

can be represented by empirical equations that describe some compressible 

sediment. Burger et al (1999) have used the following equation: 
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where Cϕ  is the critical concentration and βα ,  are empirical variables. 
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The conditions given by (4.3) and (4.7) correspond to an initial distribution of a given 

concentration; the conditions of (4.4) and (4.8) are a prescribed value of 

concentration in z=L; the conditions in (4.5) and (4.9) are the reduction of the flux 

density in the bottom of the vessel to a convective part ( ) ( )ttq ,0.ϕ  and the condition 

(4.8) is a flux condition at z=L (Bustos et al, 1999). 

 

IV.3. FINITE DIFFERENCE 

The resolution of differential equations is a mathematical problem consisting of 

evaluation of any function that satisfies a differential equation. This can be achieved 

by transforming the differential equation or by applying a specific method of 

resolution (Toro, 1997). As an example of the transforming method, a numerical 

method like finite differences  is used, which permits solving of partial differential 

equations by finding an approximation of the equation in finite spaces (Toro, 1997). 

Thus, the partial differential equation is transformed in an algebraic equation which 

can be solved using numerical methods. This process is termed discretization (Toro, 

1997). 

 

In order to achieve discretization, a specific point in space and time is chosen to 

develop the PDE (Toro, 1997). Due to this, a non-linear (in most cases) system of 

algebraic equations is obtained. 

 

As an example, a linear advection equation is used for method description: 

0=
∂

∂
+

∂

∂

x

q
u

t

q
                  (4.12) 

 

where u is a constant. 

 

The special dimension, x, can be represented in a net or point mesh (Toro, 1997). It 

is easier to consider that the point distance is constant, which means that thee points 

are equally spaced with a distance of xh ∆=  between adjacent points (Toro, 1997). 

For example, the interval Xx ≤≤0  can be divided in i points equally spaced. 
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Figure 4.3: Discretization nomenclature in space and time (Toro, 1997) 

 

The other independent variable, time t, also has to be discretized, and its step can 

be represented as tk ∆= . In some cases, the time step is not uniform. 

 

The values of the dependant variable, Q , in a spatial point with subscript i, and in a 

time step with superscript n, give a numerical solution for the partial differential 

equation at ixx =  and at ntt =  as (Toro, 1997): 

( )ni

n

i txqQ ,≈                   (4.13) 

 

and in the next time step, the solution takes the form: 

( )1,1 +≈+
ni

n

i txqQ                 (4.14) 

 

Using the finite difference method, the derivatives in the partial differential equation 

are discretized to obtain a system of algebraic relations among the values 

(approximations) in each point of the mesh. 

 

In the example of the linear advection equation (Equation (4.12)) described above, 

the numerical solution n

iQ  in each point of the mesh i  at time step n is used to 

advance to the next time step at 1+= ntt . 
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The solution in the point ix  at 1+= ntt  can be obtained developing a Taylor series 

around of n

iQ  (Toro, 1997): 
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where nn ttt −=∆ +1 . Hence, the temporal derivative can be defined as a forward 

difference plus a truncation error (Toro, 1997), since the Taylor series is truncated 

after the first derivative: 
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In the case of the spatial derivative, there are several possibilities (Toro, 1997): 

� Forward difference: the first derivative in the Taylor series is considered for 

n

iQ 1+  around n

iQ . 
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� Backward difference: first derivative in the Taylor series is considered for 

n

iQ 1− around n

iQ . 
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� Central difference: the second derivative in the Taylor series is considered for 

n

iQ 1+  and n

iQ 1−  around n

iQ , and then subtracted them: 
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The terms ( )tO ∆ , ( )xO ∆  and ( )2xO ∆ , represent discards terms during the 

development of the series and are known as truncation errors (Toro, 1997), i.e., the 

error introduced by the series truncation after first derivative (or second). The 

meaning of these terms is that the finite difference forms are accurate only at t∆ , 
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x∆ order. It can be seen that central differences form has a truncation error of 2
x∆  

order, while forward and backward difference forms have an order of x∆ .  This means 

that central differences are more accurate while 0→∆x  (Toro, 1997). 

 

The advection equation (4.12) now can be constructed using three different types of 

finite difference, based on the way of approximation of the spatial derivative. These 

forms of expression are known as explicit (Toro, 1997), because they use the actual 

values to calculate the values in the next time step. 

 

Using forward difference, the advection equation acquires the form (Toro, 1997): 
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which can be rewritten as: 
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This last form of the equation is known as forward time centred space (FTCS) (Toro, 

1997). 

 

In theory, the forms of centred difference give more precise results due to the order 

of O ( t∆ ,
2

x∆ ), while other schemes are O ( t∆ , x∆ ) (Toro, 1997). Scheme stability 

and convergence are required for the correct solution. Stable means that the errors 

in the approximated solution decrease with time, i.e., errors do not increase in the 

next time steps (Toro, 1997). 

 

IV.3.1. UPWIND DIFFERENCE 

In order to represent a partial differential equation using upwind difference, the 

central difference approximation to spatial derivative 
x

Q
∂

∂  is replaced by a first-

order one-side approximation (Toro, 1997). The upwind scheme to be used can be 

chosen among the following relations (Toro, 1997): 
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The correct choice of either (4.22) or (4.23) will depend of the sign of the wave of 

propagation speed u  of the differential Equation (4.12) (Toro, 1997).  In the case of a 

positiveu , the scheme takes the form of: 
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where c is: 
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which is known as the Courant number, or the Courant-Friedrichs-Lewy number 

(CFL) (Toro, 1997). It can be regarded as the ratio of two speeds, namely the wave 

propagation speed u and the grid speed 
x

t
∆

∆   (Toro, 1997). 

 

This scheme is stable under Von-Neumann criteria which can be denoted by the 

stability condition (Toro, 1997): 

10 ≤≤ c                    (4.26) 

 

This scheme in accordance with Equation (4.24) is called first-order upwind method 

(Toro, 1997), because the spatial differencing is performed using mesh point on the 

side from which information (wind) flows (Toro, 1997). 
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Chapter V 

NEURAL NETWORKS 

 

V.1. INTRODUCTION 

Computational techniques and their applications vary from the computer industry to 

company production chains. To this end, multiple techniques related to artificial 

intelligence have been developed. The best known are fuzzy logic, genetic 

algorithms and neural networks. 

 

In the 1950s, there were great expectations for research related to artificial 

intelligence and, above all, for research related to artificial neural networks (ANN). 

The studies, Principles of neurodynamic and the perceptron: A probabilistic model 

for information storage and organization in the brain, developed by Rosenblat 

(1958), gave a new perspective on the subject. However, these theories were 

challenged by Minsky and Papert (1969) in their work: Perceptrons, who showed that 

such networks cannot classify input patterns that are not linearly separable. 

 

Twenty years later, the 1970s saw a renewed interest in these theories and their 

applications. Neural networks are currently employed in various fields (Deboeck, 

2000): 

� Financial and economical models 

� Market profiling and clients 

� Medical applications 

� Knowledge management and “data discovery” 

� Optimization and identification of industrial processes and quality control 

� Scientific research. 

 

The use of neural networks for system identification may provide relatively simple 

models from complex models. Neural networks can handle multiple parameters, 

such as a number of hidden layers, the number of neurons in each layer, number of 

inputs, outputs and some learning parameters. One of biggest difficulties, however, 

is the determination of the topological network configuration, that provides the best 
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approximation of the real system, since these criteria are not predetermined. This 

may be solved by trial and error (Haykin, 1999). 

 

V.2. BIOLOGICAL NEURONS 

The brain consists of a large number (approximately 1011) of highly interconnected 

elements (approximately 104 connections per element), called neurons. These 

neurons have three main components, the dendrites, the cell body or soma, and the 

axon (Haykin, 1999). The dendrites, the receptors of the network, are the nerve 

fibres that carry electrical signals from the body of the cell. The cell body sums those 

input signals. The axon is a long fibre that carries the signal from the soma to other 

neurons. The contact point between an axon of a cell and a dendrite of another cell 

is called a synapse; the length of the synapse is determined by the complexity of the 

chemical process that stabilizes the function of the neural network (Haykin, 1999). A 

scheme of a biological neural network and the interconnection between its 

component is shown in the Figure (5.1): 

 

 

 

Figure 5.1: Biological neural network (Schmidt, 2000) 

 

 

 



37 

 

Some of the neural structures are determined at birth, another part is developed 

through learning, a process in which neural connections are made and others are 

completely lost (Schmidt, 2000). Neurological development is critical during the first 

years of life; for instance, it is shown that if a kitten is prevented from using one eye 

for a short period of time, it will never develop normal vision in that eye (Schmidt, 

2000). 

 

The neural structures change throughout life; these changes include the 

strengthening or weakening of synaptic connections. For example, new memories 

are believed to form by changing the intensity between synapses. Thus, the process 

of remembering a new friend’s face is due to alteration of several synapses. 

 

Based on the first studies on the neural basis of mnemic systems (related to 

memory), the storage of associative memory, both implicit and explicit, was believed 

to require a very complex neural circuit (Schmidt, 2000). Among those who began to 

disagree with this approach was Donald O. Hebb, a professor at Milner University. 

Hebb suggested that associative learning could be produced by a single cellular 

mechanism and indicated that partnerships could be formed by a coincident 

neuronal activity: “When an axon of a cell A excites cell B and participates in its 

activation, there is a developmental process or metabolic change in one or both 

cells, so that the effectiveness of A, as excitatory cell of B, intensifies (Haykin, 1999). 

According to the Hebbian learning rule, the fact that pre-synaptic neuron activity 

(providing the input pulse) matches with post-synaptic (receiving the pulse) is very 

important for strengthening of the connections between them; this mechanism is 

called pre-post associative (Schmidt, 2000).  

 

All neurons convey information in a similar way: it travels along axons in brief 

electrical impulses, called action potentials (Schmidt, 2000). The action potentials, 

which reach a maximum amplitude of 100 mV and lasting 1 sµ , are the result of 

displacement through the cell membrane of sodium ions endowed with positive 

charge, which pass from the extracellular fluid to the intracellular cytoplasm, as the 

extracellular concentration of sodium far exceeds the intracellular concentration 

(Schmidt, 2000). 
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The resting membrane maintains an electrical potential gradient of –70mV; the 

negative sign appears because the intracellular cytoplasm is negatively charged with 

respect to the outside (Schmidt, 2000). The sodium ions do not easily cross the 

resting membrane, and physical or chemical stimuli that reduce the potential 

gradient, or depolarize the membrane, increase its permeability to sodium. The flow 

of this ion increases the outward membrane depolarization, thus further increasing 

the permeability to sodium (Schmidt, 2000). 

 

Although axons may seem similar to insulated conductor wire, electrical impulses are 

not propagated in the same way. An axon would not be very valuable as an electrical 

wire because its strength along the axis is too large and the membrane resistance is 

too low (Haykin, 1999); the injected positive charge to the axon during the action 

potential is dissipated one or two millimetres below. In order for the signals to travel 

several centimetres, it is often necessary to repeatedly regenerate the action 

potential along the way (Schmidt, 2000). The need to strengthen the electric is 

current limited to approximately 100 meters per second, the maximum travel speed 

of the impulses. This speed is less than a millionth of the speed of an electrical 

signal through a copper wire (Schmidt, 2000). 

 

When an action potential reaches an axon terminal, transmitters housed in tiny 

vesicles are released into a gap slit of about 20 nanometres wide that separates the 

pre-synaptic of the post-synaptic membrane (Schmidt, 2000). During the climax of 

the action potential, calcium ions penetrate into the nerve terminal, this ion flow is the 

determining signal of the synchronized exocytosis; that is, the coordinated release of 

neurotransmitter molecules (Schmidt, 2000). As they are released, the 

neurotransmitters bind to postsynaptic receptors, invoking a change in membrane 

permeability (Schmidt, 2000). 

 

When the load displacement at the membrane approaches the threshold for 

generating action potentials, an excitatory effect is produced and when the 

membrane is stabilized in the vicinity, an inhibitory effect is produced (Schmidt, 

2000). Each synapse produces only a small effect; to determine the intensity 
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(frequency of action potentials) of each neuron's response is to seamlessly integrate 

synaptic signals until about 1000, adding in the soma or cell body (Schmidt, 2000). 

 

In some neurons, impulses are initiated in the junction between the axon and soma, 

and then transmitted along the axon to other nerve cells. When the axon is close to 

its target cells, it is divided into many branches that form synapses with the soma or 

axons of other cells (Schmidt, 2000). Synapses can be excitatory or inhibitory 

according to the neurotransmitter released. Each neuron receives from 10000 to 

100000 synapses and its axon makes a similar number of synapses (Schmidt, 

2000). 

 

V.3. ARTIFICIAL NEURAL NETWORKS (ANN) 

According to Freeman and Skapura (1993), a neural network is a system of 

interconnected parallel processors in the form of a directed graph. Schematically, 

each processing element (neuron) of the network is represented as a node. These 

connections provide a hierarchical structure which emulates the physiology of the 

brain, seeking new processing models to solve specific problems in the real world. 

What is important in developing the technique of ANN is its ability to learn, recognize 

and apply relationships between objects and patterns of objects in the real world. In 

this regard, an ANN is a tool that may be used to solve difficult problems. The ability 

to solve difficult problems is feasible because of the principles of neural networks. 

The five most important, listed by Hilera and Martinez (1995), are as follow: 

 

� Adaptative learning: 

This is perhaps the most important feature of neural networks; they can be 

trained using a series of illustrative examples. Thus, it is not necessary to 

model a priori, or to establish probabilistic functions. An artificial neural 

network can be considered as adaptive because it can be modified constantly 

in order to adapt to new working conditions. 

� Self-organization: 

While learning is a process that modifies the internal information of the 

artificial neural network, self-organization is the modification of the entire 

network in order to carry out a specific goal. 
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Self-organization means generalization, so that a network can respond to data 

or situations not experienced before, but which can be inferred on the basis of 

their training. This feature is very useful when the input information is unclear 

or is incomplete. 

 

� Fault tolerance: 

In traditional computing, the loss of a small piece of information can often lead 

to deactivation of the system. Artificial neural networks possess a high 

capacity for fault tolerance. This means that networks can recognize patterns 

of information with noise or distortion or that is incomplete, but also can keep 

working even if part of the network (with some degradation) is destroyed. The 

explanation for this phenomenon is that while a traditional computer stores 

information in unique spaces, localized and addressable, neural networks do 

it in a distributed way and with a high degree of redundancy. 

 

� Operating in real time: 

Artificial neural networks, of all existing methods, are the best suited for 

pattern recognition in real time, because they work in parallel to update all 

instances simultaneously. It is important to point out that this feature is seen 

only when networks are implemented with hardware specifically designed for 

parallel processing. 

 

� Easy integration with existing technologies: 

It is relative easy to obtain specialized chips for neural networks that improve 

their ability in certain tasks. This facilitates the modular integration into 

existing systems. 

 

In elaborating on the principles of artificial neural network and continuously 

observing the term neuron, it is not surprising that the analogy with the brain 

is analysed. This may be because the artificial neural networks are based on 

biological inspiration. The human has about 1010 massively interconnected 

neurons; the neuron is a specialized cell that can propagate an 

electrochemical signal. As mentioned before, neurons have a branching 
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structure input (dendrites) and branching structure of outputs (axons). The 

axons of one cell are connected to the dendrites of another; by way of the 

synapse, neuron is activated and an electrochemical signal is relayed through 

the axon. This signal transfers from the synapses to other neurons, which in 

turn can excite. The neurons are excited only if the total signal received at the 

cell body through the dendrites exceeds a certain level (threshold of 

excitation). 

 

Artificial neural networks try to mimic this principle of brain functioning. 

 

 

V.3.1. NEURAL NETWORKS STRUCTURE 

The three concepts for emulating nervous systems are: parallel computing, 

distributed memory, and adaptability to the environment (Haykin, 1999). 

 

Parallel processing is essential in this type of task, in order to perform many 

calculations in a time interval as short as possible. 

 

Another important concept that appears in the brain is the distributed memory 

(Haykin, 1999). While the information in a computer occupies well defined memory 

positions, in neuronal systems, this is distributed by network synapses. Therefore, if 

a synapse is damage, just a very small part of the information is lost (Haykin, 1999). 

 

The last key concept is adaptability (Haykin, 1999). The artificial neural networks 

readily adapt to the environment by modifying their synapses, and learn from 

experience, being able to generalize concepts from particular cases (Haykin, 1999). 

 

From the three previous properties, we conclude that in pursuit of an artificial neural 

system, a similar hierarchical structure can be established. The key starting point is 

the artificial neuron, which is organized in layers; several layers will form a neural 

network, and finally, a neural network (or set of these), along with input and output 

interfaces, plus the requirements of additional conventional modules, constitute the 
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overall system process. The hierarchical structure can be seen in Figure (5.2) 

(Haykin, 1999): 

 

 

Figure 5.2: Hierarchical structure of an artificial neural system (Haykin, 1999) 

  

V.3.2. ARTIFICIAL NEURON MODEL 

A neuron is an elementary processor that, from an input vector from outside or from 

other neurons, provides a single response or output (Figure (5.3)). 

 

 

Figure 5.3: Single model of an artificial neuron (Beale, 1990) 

 

The constitutive elements of a single neuron are (Engelbrecht, 2008): 

� Inputs: xj(t) 

The inputs and output variables can be binary (digital) or continuous (analog) 

depending on the type of application. 
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� Weights: wij 

Represent the intensity of interaction between each pre-synaptic neuron j and 

post-synaptic neuron i. 

 

� Propagation Rules: ( )( )txw jij ,σ  

Provide the value of the post-synaptic potential (PSP), ( )thi  of the neuron i as 

a function of their weights and input: 

( )( )txwh jiji ,σ=                (5.1) 

 

The most common function is linear, and is based on a weighted sum of the 

inputs and synaptic weights: 

∑ ⋅=
j

jiji xwh                (5.2) 

 

The synaptic weight ijw  is defined in this case as the intensity of interaction 

between the pre-synaptic neuron j and post-synaptic neuron i . Given a 

positive input, if the weight is positive, it tends to excite the postsynaptic 

neuron; if the weight is negative, it will tend to inhibit it. Thus, excitatory 

synapses (positive weight) and inhibitory synapses (negative weight) can be 

found. 

 

� Activation or transfer functions: ( ) ( )( )thtaf iii ,1−  

Provides the status of current activation, ( )tai  of the neuron i  as a function of 

its previous state, ( )1−tai  and its current postsynaptic potential: 

        ( ) ( ) ( )( )thtafta iiii ,1−=             (5.3) 

 

In many models of artificial neural networks (ANN), the current state of the 

neuron does not depend on its previous state but only the current state:  
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          ( ) ( )( )thfta iii =                (5.4) 

 

The activation function ( )⋅f  is usually considered deterministic and, in most of 

the models, is monotone increasing and continuous. The form ( )xfy =  of the 

most used activation functions in the ANN is shown in the Table (5.1), which 

represents the postsynaptic potential and the activation status.  

 

Table 5.1: Activation functions (Haykin, 1999) 

 

 

 

� Outputs: ( )( )taF ii  

Provides current output, ( )tyi  of neuron i  in terms of its current activation 

state, ( )tai . Very often the output function is simply the identity ( ) xxF = , so 

that the activation state of the neuron is considered as the actual output: 

( ) ( )( ) ( )tataFty iiii ==              (5.5) 
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Therefore, the operation of the neuron i  can be expressed as follows: 

( ) ( ) ( )( )( )( )txwtafFty jijiiiii ,,1 σ−=         (5.6) 

 

Figure 5.4 shows the interconnection between various neurons: 

 

 

 

Figure 5.4: Interconnection between a pre-synaptic and a postsynaptic neuron (Haykin, 1999) 

 

 

V.3.2.1.  STANDARD MODEL OF AN ARTIFICIAL NEURON 

Whereas the rule of propagation is the weighted sum and the output function is the 

identity function, the standard neuron is (Engelbrecht, 2008): 

� Inputs: ( )tx j  

� Synaptic weights: ijw  - related to the inputs 

� Propagation rules: ( ) ( )( )txwth jiji ,σ=  - the most common is ( ) ∑ ⋅= jiji xwth  

� Activation function: ( ) ( )( )thfty iii =  – this simultaneously represents the output 

of the neuron and its activation state. 

 

Figure 5.5 shows a graphical representation of these elements: 
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Figure 5.5: Standard neuron (Haykin, 1999) 

 

A parameter that is often added to the set of weights of the neuron is the threshold 

iθ . This is subtracted from the postsynaptic potential, so the argument of the 

activation function is (Haykin, 1999): 

∑ −⋅
j

ijij xw θ                (5.7) 

 

Correspondingly, if the indices i  and j  at 0 and setting iiw θ=0  and 10 −=x  

(constant), the behaviour of the neuron can be described by (Haykin, 1999): 

( ) 









⋅= ∑

=

n

j

jiji xwfty
0

             (5.8) 

 

V.3.3. NEURAL NETWORK ARCHITECTURE 

The topology or structure in which different constituent neurons of the neural network 

are associated is called an architecture (Haykin, 1999). In an ANN, the nodes are 

connected by synapses; the synaptic structure determines the behaviour of the 

network. Synaptic connections are directional; i.e., information can only flow in one 

direction (from pre-synaptic neuron to postsynaptic neuron) (Haykin, 1999). 

In general, neurons are grouped into structural units called layers (Haykin, 1999). 

Within a layer, neurons can be grouped to form neuronal groups. Within a layer or 
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group, neurons are often the same type. The set of one or more layers is called a 

neural network (Haykin, 1999). Normally, all neurons receive signals from one layer 

and send signals to the next layer. 

 

There are three types of layers (Engelbrecht, 2008) (see Figure (5.6)): 

� Input layer: 

The input layer is composed of neurons that receive data or signals from the 

environment. 

� Hidden layer: 

This layer has no direct connection with the environment. The function of the 

hidden neurons is to intervene between the external input and the network 

output. 

� Output layer: 

The neurons in this layer provide the response of the neural network. 

 

Typically, the inputs in each layer of the network are the output signals of the 

preceding layer only. 

 

Figure 5.6: Layers of a network (Haykin, 1990) 
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The connections between neurons can be excitatory or inhibitory, depending on the 

sign of synaptic weight associated with the connection. If the synaptic weight is 

negative, an inhibitory connection is obtained; if on contrary the sign is positive, an 

excitatory connection is found. This distinction is not frequently used, as the weight 

and its size will be determined at each instant by the training algorithm (Haykin, 

1999). 

 

The connections may also be classified into interlayer connections which correspond 

to the connections between neurons in different layers, and connections between 

neurons in a single layer (Haykin, 1999). 

 

V.3.3.1.  DEFINITION OF NEURAL NETWORK 

In order to find a definition of neural network, a mathematical concept of a graph will 

be used. Through this term, a neural network can be defined as follows: 

A neural network is a directed graph with the following properties (Freeman & 

Skapura, 1993): 

� For each node i , a variable ix  is associated. 

� Each connection ),( ji  of nodes i  and j  have a weight associated ℜ∈ijw . 

� Each node i has associated a threshold iθ . 

� For each node i  a function ( )iijji wxf θ,,  is defined, which depends on the 

weights of their connections, the threshold and the states of j nodes 

connected to it. This feature provides the new state of the node. 

 

V.3.3.2.  TYPES OF NEURAL NETWORK 

As previously specified, the topology or architecture of a neural network consists of 

the organization and arrangement of neurons in the net, forming layers or clusters of 

neurons more or less distant from the entrance and exit of the network. In this sense, 

one of the basic parameters of the network is the number of layers (Haykin, 1999).  

 

V.3.3.2.1. SINGLE LAYER NETWORKS 

In single layer networks, there are connections between elements or neurons of the 

same layer. Single layer networks are used generally in tasks related to what is 
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known as self-association (regenerate input information that is incomplete or 

distorted). 

 

This network corresponds to the simplest neural network (Figure (5.7)) since it has a 

layer of input neurons that project them to a layer of output neurons which perform 

various calculations.  

 

 

Figure 5.7: Single layer Network (Haykin, 1999) 

 

V.3.3.2.2. MULTILAYER NETWORKS 

Multilayer networks are those that have a set of neurons grouped in several (2, 3, 

etc.) levels or layers (see Figure (5.8)). In these cases, one way to distinguish the 

layer where a neuron belongs would be to focus on the origin and destination of the 

signals (Haykin, 1999). Usually, all neurons of a layer receive input signals from 

other previous layers (which are closer to the entrance of the network), and send 

output signals to the next layer (which is closer to the output of the network). These 

connections are called forward or feedforward connections (Haykin, 1999). 
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Figure 5.8: Multilayer Network (Haykin, 1999) 

 

 

However, in many of these networks, it is also possible to connect the output of 

neurons in layers after the entry of previous layers; these connections are called 

back or feedback connections (Haykin, 1999). 

 

These two possibilities allow two types of networks with multiple layers to be 

distinguished: forward network connections or feedforward networks, and networks 

that have connections to both forward and backward or feedforward/feedback 

networks (Haykin, 1999). 

 

V.3.3.2.3. RECURRENT NEURAL NETWORKS 

The connectivity between nodes in a neural network is related to how the outputs of 

neurons are channelled to become inputs of other neurons. The output signal of a 

node can be an input to another processing element (as shown in Figure (5.9)), or 

even be an entry of itself (recurrent connection) (Haykin, 1999). 
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Figure 5.9: Recurrent neural network (Haykin, 1999) 

 

V.3.4. LEARNING MECHANISM 

The input data are processed through the neural network in order to achieve an 

output. A neural network is also able to draw generalizations from a specific set of 

historical examples of these types of decision problems (Haykin, 1999). A neural 

network must learn to calculate the correct output for each constellation (array or 

vector) of input from the set of examples. This learning process is called the training 

process or upgrading (Engelbrecht, 2008). 

 

If the network topology and the different functions of each neuron (input, output, and 

activation) do not change during learning while the weights on each of the 

connections do, the learning of the network is called weight adaptation (Engelbrecht, 

2008). 

 

In other words, learning is the process by which a neural network modifies its 

weights in response to input information (Haykin, 1999). The changes that occur 

during this process are reduced to the destruction, modification and creation of 

connections between neurons. In biological systems, there is a continual destruction 

and creation of connections between neurons (Beale, 2000). In models of artificial 

neural networks, creating new connections implies that the weight of this connection 

varies to a nonzero value. Similarly, a connection is destroyed when their weight 

becomes zero (Beale, 2000). 
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During the learning process, the weights of the network connections are modified; 

therefore, this process can be considered complete (the network has learned) when 

the weight values remain stable ( 0=
dt

d ijω
) (Haykin, 1999). 

 

An important aspect in the learning of neural networks is understanding how to 

modify the weight value, i.e., to know the criteria used to change the assigned value 

to the connections when the network has to learn new information (Engelbrecht, 

2008). 

 

There are two major learning methods that can be distinguished (Engelbrecht, 2008): 

� Supervised learning 

� Unsupervised learning 

 

Another criterion that can be used to differentiate the learning rules is to consider 

whether the network can learn during its normal operations or if learning involves 

disconnecting from the network, i.e., disabling until the process ends. In the first 

case, this would be an on-line learning, while the second is what is known as off line 

(Haykin, 1999). 

 

When learning is off line, it can be distinguished as either a learning or training 

phase and or an operation or functioning phase (Haykin, 1999), where a set of 

training data and a set of test data will be used in the corresponding phase. In 

addition, the weights of the connections remain fixed after ending the training stage 

of the network (Haykin, 1999). Precisely because of their static nature, these 

systems do not have functioning stability problems (Engelbrecht, 2008). 

 

A generalization of the formula or rule to decide changes in the weights is as follows 

(Haykin, 1999): 

( ) ( ) ( )ttt ijijij ωωω ∆+=+1            (5.9) 

 

where t is the learning stage. 
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V.3.4.1.  SUPERVISED LEARNING 

Supervised learning is characterized as a learning process that is done through a 

controlled training by an external agent (supervisor, teacher) that determines the 

desired response from a given input (Haykin, 1999). The supervisor controls the 

output of the networks, so in case of mismatch with the desired output, a 

modification of the weights will be made in order to approximate the results (Haykin, 

1999). 

 

This type of learning can be done using one of the three following methods (Haykin, 

1999; Beale, 2000): 

� Learning by error correction 

� Learning by reinforcement 

� Stochastic learning 

�  

V.3.4.1.1.  LEARNING BY ERROR CORRECTION 

This method consists of adjusting the connection weights of the network based on 

the difference between the desired values and those obtained at the output of the 

network, i.e., as a function of the output error (Haykin, 1999). 

 

An example of this type of algorithm is the Perceptron learning rule used in the 

training of the network of the same name, which was developed by Rosenblatt 

(1958). According with this rule for each neuron in the output layer, an output 

deviation error,δ , is calculated. This error is then used to change the weights for the 

connection of the previous neuron. The change in weights through the Perceptron 

learning rule is performed according to the following rule (Rosenblatt, 1958): 

( ) ( )( )
iqijij outaoutw −⋅⋅=∆ σ           (5.10) 

 

where qia is the desired output (target) of the output neuron iN , ( )( )iqii outa −=δ  is 

the deviation of the neuron iN  and σ is the learning (Rosenblatt, 1958). 
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The output of the neuron jN  (out j) is used because this value influences the overall 

input as well as the activation and the output of the neuron iN . This can be 

represented as “the domino effect”. See Figure (5.10): 

 

Figure 5.10: Influence of the output neuron Nj over neuron Ni (Beale, 2000)  

 

Another well-know algorithm that belongs to this classification is the Delta learning 

rule or rule of minimum square error (LMS error: Least Mean Square Error), which 

uses the deviation of the output but takes into consideration all the previous neurons 

of the output neuron (Haykin, 1999). This allows quantifying the global error at any 

time during the network training process, which is important because the more error 

information the faster the learning. The error δ is then divided between previous 

neurons (Haykin, 1999). 

 

Finally, the backpropagation learning rule, also known as multilayer LMS rule, should 

be mentioned. This is a generalization of the Delta learning rule and is the first 

learning rule that allows changes in the weights of the neurons of the hidden layer 

(Haykin, 1999). This learning algorithm will be explained later on. 

 

V.3.4.1.2.  LEARNING BY REINFORCEMENT 

This learning process is slower than learning by error correction. This process is 

based on lack of example of the desired behaviour, i.e., there is no indication of the 

desired output for a given input during training (Haykin, 1999). 

 

In this rule, the role of the supervisor is to indicate through a reinforcement signal if 

the output from the network follows that desired (success = +1, failure =-1), and 

according to this, the weights are adjusted based on a mechanism of probabilities 

(Engelbrecht, 2008). This type of learning is a case where the supervisor role is 

more like a critic (who judges about network response) than a teacher (who indicates 

the response that should be generated), as in the case of supervision by error 

correction (Haykin, 1999). 
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V.3.4.1.3.  STOCHASTIC LEARNING 

Stochastic learning essentially consists of random changes in the values of the 

connection weights of the network and it assesses the effect on the desired target 

and probability distributions (Beale, 2000). 

 

In stochastic learning, an analogy is often made in terms of thermodynamics, 

associating the neural network with a solid with energy (Beale, 2000). In the case of 

the network, the energy would represent the degree of stability, so that the minimum 

energy state corresponds to a situation in which the weights of the connections meet 

the desired target (Beale, 2000). 

 

As before, learning is affected through random changes in the values of the weights 

and then determining the network energy (usually the energy function is of Liapunov 

type). If energy is lower after change, i.e., if the behaviour of the network approaches 

the desired change, this is accepted (Beale, 2000). Conversely, if the energy is not 

lower, the change is accepted as a function of a given and preset probability 

distribution (Haykin, 1999). 

 

V.3.4.2.  UNSUPERVISED LEARNING 

Networks with unsupervised learning (also known as self-supervising) require no 

external influence to adjust the weights of the connections between its neurons 

(Haykin, 1999). The network does not receive any information from the environment 

to indicate whether the output generated in response to a given input is correct or not 

(Haykin, 1999). 

 

These networks have to find the features, regularities, correlations or categories that 

can be established among input data (Haykin, 1999). There are several possibilities 

as to the interpretation of the output of these networks, which depend on their 

structure and learning algorithm used (Haykin, 1999). 

 

In some cases, the output represents the degree of familiarity or similarity between 

the information that is presented at the input and information that have been shown 

before (in the past) (Haykin, 1999). In another case, a clustering could be performed 
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or categories established, indicating to which category the input information belongs. 

In this case, the network itself must find the appropriate categories from the 

correlations between information provided (Haykin, 1999). 

 

In general, two types of unsupervised learning algorithms are often considered, 

which give rise to the following (Haykin, 1999): 

� Hebbian learning 

� Competitive and comparative learning 

V.3.4.2.1.  HEBBIAN LEARNING 

This learning rule is the basis for many others, which aims to measure the familiarity 

or to extract features from input data. The foundation is a fairly simple assumption: if 

two neurons Ni and Nj take the same state simultaneously (both active or inactive), 

the weight of the connection between them increases (Beale, 2000). 

 

The inputs and outputs allowed to the neuron are: { }1,1− or { }1,0 (binary neurons). 

This can be explained by the Hebb’s learning rule, which was originated from the 

classical biological neuron, that can only have two states: active or inactive (Beale, 

2000). 

 

V.3.4.2.2.  COMPETITIVE AND COMPARATIVE LEARNING 

In competitive learning, neurons “fight” each other to represent a class or standard 

input (Engelbrecht, 2008). The selected neuron is one whose incident weights are 

more similar to the entry pattern. The learning consists in strengthening the winning 

connections and weakening the others, so that the weights of the winning unit 

resemble the input pattern (Engelbrecht, 2008). 

 

The reconstruction of an input pattern from a winning neuron takes the weight of that 

neuron because these values have the most resemblance (Engelbrecht, 2008). 

 

V.3.5. THE PERCEPTRON 

One of the most significant features of neural networks is their ability to learn from 

some source of information interacting with their environment. In 1958, psychologist 

Frank Ronsenblant developed a simple model of a neuron based on the model of 
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McCulloch and Pitts and a learning rule based on error correction. This model was 

called the Perceptron. One feature of paricular interest in this model was its ability to 

learn to recognize patterns. The Perceptron consists of input sensors that receive 

the input patterns for recognizing or classification and an output neuron which 

classifies input patterns into two classes according to the output, 1 (activated) or 0 

(off) (Haykin, 1999). However, this model had many limitations; for example, it is not 

capable of learning the XOR logic function. Some years later, the error back-

propagation learning rule was proposed for the Multilayer Perceptron, which 

demonstrated that it can be considered as a universal approximate (Engelbrecht, 

2008). 

 

Figure (5.12) illustrates a monolayer or simply perceptron with a single neuron, 

which has a limited use in pattern classification. 

 

 

Figure 5.11: Single neuron (Ronsenblant, 1958) 

 

A single perceptron has many limitations; the most important is that it cannot 

distinguish classes that are not linearly separable. If a group of these are organized 

in layers, this limitation is exceeded (Haykin, 1999). Each layer consists of multiple 

neurons whose input comes from the units of the previous layer and whose output 

goes to the units of the posterior layer, without any contact with any other layers, or 

between neurons in a single layer. The first layer, called the input layer, receives the 
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input signal but does not perform any type of processing. The result of the network is 

given by the state of neurons in the last layer, called the output layer. The 

intermediate layers are called hidden (Engelbrecht, 2008). 

 

Learning is done by submitting to the network at each step the value of the input and 

desired output. Following the rule of Rosenblat, minimizing the least square error 

(LSE) between the output obtained and the desired output is obtained by the 

generalized delta rule or backpropagation of error algorithm; i.e., once the output and 

further comparison with the desired output is made, an error in each neuron of the 

last layer is obtained, and thus their synaptic weights are changed (Haykin, 1999). 

However, that error is transmitted to the layers above, and corrects their weights for 

all the neurons in these layers. Although this algorithm can be applied to networks 

with any number of layers, a single hidden layer (Homik, 1989) is sufficient to 

approximate, with a given precision, any function with a finite number of 

discontinuities, using nonlinear activation functions for neurons of the hidden layer. 

This network can also be achieved in a finite number of learning steps (Homik, 

1989). 

 

In general, multilayer neural networks are used with error backpropagation learning 

to simulate an unknown function from pairs of input and output signals obtained from 

learning examples (Haykin, 1999). In these cases, the network is expected to be 

able to generalize properly, so that even with input signals which have not been 

previously presented as patterns of learning, the proper output is obtained 

(Engelbrecht, 2008). 

 

Each hidden or output neuron of a multilayer perceptron is thus designed to do two 

calculations: the signal propagation forward (forward pass) calculation of the gradient 

vector required for the retro-propagation (backward pass) (Haykin, 1999). 
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Figure 5.12: Multilayer perceptron with two hidden layers (Haykin, 1999) 

 

The typical structure of a multilayer perceptron can be seen in Figure (5.12), where 

two types of signals can be identified (Figure (5.13)): 

 

 

Figure 5.13: Signals propagation in a multilayer perceptron (Haykin,1999) 

 

 

� Function signal: is the signal that is propagated from the input (left) to the 

output layer (right). 

� Error signals: are those generated by the output neurons and are back-

propagated in the form of adjustment of the synaptic connections to the input in 

order to adjust the obtained output as closely to the desired output.  

 



60 

 

V.3.6. BACKPROPAGATION ALGORITHM 

The main idea of this rule or algorithm is to calculate the errors for the units of the 

hidden layers from the error of the units in the output layer being propagated, layer 

by layer, toward the entrance (Haykin, 1999). 

 

The error signal at the output neuron j at iteration n (presentation of the nth training 

pattern) is defined as (Haykin, 1999): 

( ) ( ) ( )nyndne jjj −=            (5.11) 

 

where ( )ne j  is the output error of the neuron j, ( )nd j  is the desired response of the 

node j, ( )ny j  is output signal of the neuron j which is the output node. 

 

The sum of the square errors of the network can be defined as (Haykin, 1999): 

( ) ( )∑
∈

=
Cj

j nenE
2

2

1
            (5.12) 

 

where set C includes all nodes in the output layer of the network. 

 

Figure (5.14) shows the neuron j fed by a set of signals from one layer of neurons on 

the left. 

 

The number of patterns or examples is known as the Training set and is denoted by 

N. Thus, the mean square error (Eav) is obtained by summing ( )nE for all iterations 

and normalizing for N (Haykin, 1999): 

( )∑
=

=
N

n

av nE
N

E
1

1
             (5.13) 
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Figure 5.14: Signals in an output neuron (Haykin, 1999) 

 

For a given training set, Eav is a measure of learning of RNA called cost function 

(Haykin, 1999). The objective of this learning process is to minimize this error 

function by adjusting the free parameters (weights, adaptation constant, etc) (Haykin, 

1999). 

 

V.4. NEURAL NETWORKS IN THE PROCESS INDUSTRIES 

In recent times, historical databases with real time capture and large storage 

capacity have been set up to capture data for industrial processes. In refineries and 

petrochemical industries, these types of databases collect process data in real time 

using distributed control systems (DCS), with a typical sampling rate of 1 minute 

(Fogelman-Soulie & Gallinari, 1998). 

 

In general, these databases are available online for many years and also include the 

results of routine laboratory analysis. In a typical refinery, it is normal to collect 

thousands of variables (tags), including process variables and set points, valve 

outputs and controller modes (e.g., automatic, manual, local, remote, etc.) (Fausset, 

1994). These real-time histories produce very large databases from which very rich 

information, although not always easy to find, can be drawn regarding the process 
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(Fausset, 1994). Due to special compression techniques, these databases have 

tremendous storage capacity. 

 

As example: if 40,000 tags from DCS are sampled every minute (a modest number 

of an oil refinery average size), 57.6 million data points are collected every day, 

totalling about 21 billion points of data annually (Fausset, 1994). It is not unusual to 

have on-line data collected over several years, easily accessible using standard PC 

tools such as an Excel spreadsheet. 

 

The term "data mining" (also known as Knowledge Discovery in Databases - KDD) 

has been defined as “the nontrivial extraction of implicit information, previously 

unknown and potentially useful” from data (Frawley et al., 1999). It uses machine 

learning, as well as statistical and visualization techniques, to discover and present 

information in a form that is easily understandable by humans. The metaphor of the 

mine is truly powerful: there are rich veins of material (i.e., useful data from the point 

of view of economy, security and operation of the process) hidden in a vast amount 

of raw stored data, much of which can be considered as scum (Fausset, 1994). The 

effort to extract the precious from the dross material is based on multiple 

mathematical and IT skills that help in the task. One such methodology is the Neural 

Network (NN) (Fausset, 1994). 

 

However, for the NNs to successfully exploit the rich veins of material found in large 

databases, they not only need to be fed with the appropriate data input and output, 

but also must complete the following 2 important requirements (Fausset, 1994): 

� The NN should have a structure capable of adequately representing the 

problem. 

� The NN should be trained with robust and reliable algorithm that is able to 

converge to an acceptable solution. 

 

Not surprisingly, many of the items available in this area are rare in industrial 

applications of NNs. Many times, much effort can be spent fighting with the best NN 

topology, while losing many CPU hours trying to get a fit and reasonable 

convergence (Fausset, 1994). 
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Neural networks allow the engineer to create process models using historical data 

for the same process. The models predict how the process will respond to changes 

of inputs and different working conditions. The optimum operating conditions, subject 

to restrictions, may also be determined with the NNs correctly stated. The models 

identified using NNs can be used in studies of off-line processes or be installed on-

line to provide early detection of process problems and to determine the set-point for 

continuous optimization of the process, to maximize profits (Fogelman-Soulie & 

Gallinari, 1998). 

 

The NNs bring to life the historical data, revealing the most important factors 

affecting the quality and performance of products. This knowledge can often detect 

improvements without any capital investment. The general areas of potential use of 

NNs are (Fogelman-Soulie & Gallinari, 1998): 

� Quality Control, Inferential Sensors and Model Reduction: In the actual 

globalized economy, the management of quality in real time is a critical 

application, but the quality tests are rarely available without delay and are 

usually expensive. The neural network-based models provide "virtual" 

measures in real time, allowing fast control actions to maintain quality in the 

desired goal. Models can be obtained not only from plant data and laboratory 

data but also from runs generated with rigorous simulation models (developed, 

for example, in HYSYS). This last procedure is known as "model reduction". 

 

� Process Optimization: The value of model-based optimization is well 

established but, in general, the analytical models of a process can be very 

difficult to obtain. When using neural networks in conjunction with their ability to 

optimize online and in real time, it may be possible to obtain the best economic 

potential of a process. 

 

� Predictive Maintenance and Security: Models based on neural networks can be 

used to monitor the performance of machinery and equipment. Errors in 

operational models or sensors can be detected with these shifts, allowing 

engineers to correct problems before they result in major incidents. The 

availability of the plant and equipment can thus be improved. Continuous 
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monitoring of the content of emissions (CEM Continuous Emissions Monitoring) 

of NOx, CO2, SO2 in the exhaust gases of furnaces and boilers is a typical 

application in this area. 

 

� Sensor Validation: The gradual drift and / or abrupt failure of sensor signals are 

the major source of unplanned plant stops in production and off-specification 

products. With models based on neural networks it is possible to follow the 

sensor values and generate alarms when the measurements from physical 

sensors disagree with the values inferred for them. The inferred value also can 

be used as a baseline where the instrument is recalibrated or repaired. 

 

� Prediction and Estimation: The future can be predicted within the accuracy 

given by models based on behaviours. Neural networks can learn the best 

models, continuously adapted to the use of the latest measured data. 

Engineers can use these predictions to estimate the demand for short-term 

markets, predict future states of the process or even weather conditions that 

affect emissions and impact the vicinity of the plant. 
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SECTION C: 

MODELLING AND SIMULATION RESULTS 
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Chapter VI 

MODEL BASED SIMULATION 

 

VI.1. INTRODUCTION 

The Kynch theory provides a good starting point for understanding the sedimentation 

phenomenon based on the propagation of concentration waves in a suspension 

(Kynch, 1952). However, Kynch settling behaviour occurs only in zones where no 

consolidation effects are involved. This theory was discussed in detail in section 

III.2.2. 

 

Ideal Kynch settling is sometimes referred to as free settling behaviour. However, it 

does not describe the entire thickening process because it is not applicable when the 

sediment is under compression at the bottom of the thickener. In this lower region, a 

different model is required to describe the behaviour of the sediment. In particular, 

the settling velocity of the flocs in the sediment depends not only on the local 

concentration of the solids (Kynch, 1952), but on the gradient of the concentration as 

well. Thus, the dynamic differential equation that describes the behaviour of the 

entire process in a thickener is obtained from differential mass and momentum 

balances. The result is a hyperbolic conservation law which degenerates in a non-

linear partial differential equation that can be solved numerically using proper initial 

and boundary conditions as well as appropriate parameters of the constitutive 

function related to the slurry used for the study. 

 

The aim of this work is to present a simulation of the sedimentation process based 

on the phenomenological theory of sedimentation of flocculated suspensions 

(Concha et al. 1996), in order to predict the behaviour of the washer used in 

aluminium industries. 

 

VI.2. RED MUD CONSTITUTIVE EQUATIONS: 

The specific material properties of the suspension are described by ( )ϕf  and ( )ϕσ e , 

which can be stated as Kynch solid flux function and effective solid stress, 

respectively. 
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In the case of the Kynch solid flux function, a function of the Richardson-Zaki type 

can be used to describe the settling behaviour. On the other hand, for the effective 

solid stress function, an empirical equation (Bürger et al, 1999) will be used, as well 

as the Herschel-Bulkley model. The methods to construct these models will be 

explained below. 

 

VI.2.1. SETTLING BEHAVIOUR: 

The behaviour of settling particles in a slurry can be conveniently studied in small 

batch experiments. In these tests, settling velocity can be found as a function of a 

concentration. 

 

Settling of noncolloidal suspension has been investigated by Kynch (1952), who 

obtained a relation for sedimentation velocity, as follows: 

( )ϕhuuC ⋅= 0                (6.1) 

where 0u is the settling velocity of a single particle which can be determined by 

Stokes’ law, ϕ is the volumetric fraction, and ( )ϕh  is a settling function which is 

defined as a concentration-dependent function. 

 

In the case of low concentration regimes the concentration-dependent function is 

readily resolved, and has a reasonable agreement between theory and experiments 

(Davis et al 1988). On the other hand, for higher concentration regimes, several 

experimental investigations have found a relative agreement with the empirical 

relation of Richardson-Zaki (1954), which can be written as: 

( ) ( )n
h ϕϕ −= 1               (6.2) 

 

where n is an index that depends on the Reynolds number ( 5.5≈n at low Re) which 

can be found experimentally. 

 

The relationship described above is acceptable in most applications, even if it does 

not completely match low concentration data. 
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The sedimentation velocity Cu  in the case of settling of suspensions can be 

expressed as a function of volumetric concentration ϕ , while the volumetric rate of 

sedimentation per unit area, or flux, can be represented by the product of the 

sedimentation velocity and volumetric concentration. 

 

According to this, the flux can be written as follows: 

( ) ϕϕ ⋅= Cuf              (6.3) 

 

Using (6.1) and (6.2) in (6.3), a new relationship for sedimentation flux is obtained: 

( ) ( )n
uf ϕϕϕ −⋅⋅= 10           (6.4) 

 

Thus, for the sedimentation of a suspension of uniform particles in a liquid, the 

relation between observed sedimentation velocity Cu and fractional volumetric 

concentration ϕ is given by the Richardson-Zaki equation which takes the form: 

( )n

C uu ϕ−⋅= 10             (6.5) 

 

In order to determine the settling properties of bauxite residue and to fit the results 

according to Equation (6.5), a series of batch settling tests were made at the Rio 

Tinto Alcan Alumina refinery. 

 

VI.2.1.1. EXPERIMENTAL: BATCH SETTLING TEST 

The equipment used for the batch settling test was a series of settling cylinders of 1 

litre of volume and a stopwatch. In these vessels, different concentrations of red mud 

from the washer’s underflow were allowed to settle in order to find out the settling 

characteristics of the alumina residue. The layout of a settling vessel is shown in 

Figure (6.1). 

 

The list of materials used for the settling test was as follows: 

� Graduated settling cylinders (1L).  

� Underflow suspension (washers 20, 50, 70) 

� Overflow liquor for dilution (washers 30, 60 and water for washer 70) 



69 

 

� Flocculant (the dosage was varied according to the washer used for 

testing ) 

�  Stopwatch 

 

 

Figure 6.1: Experimental settling vessel 

 

The samples for the characterization of the residue were collected from three 

different washers, -first operational washer (20), last washer (70) and an 

intermediate washer (50). Together with the samples taken from the underflow of the 

washer mentioned, enough overflow liquor was collected in order to enable dilution, 

which was helpful to obtain different suspensions of variable concentrations. The 

dilutions used for experiments were 50 g/L, 70 g/L and 90 g/L.  

 

Considering the countercurrent character of the operation, the overflow liquor used 

to dilute the washer’s underflow came from the next washer, i.e., the liquor used to 

dilute the underflow of the washer 50 came from the overflow of washer 60. 

 

The flocculant used in the experiments varied depending on the characteristic of the 

underflow and the dosage could be calculated based on the concentration of the 

slurry. 
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As indicated above, once the washer underflow and overflow are collected, dilution 

has to be made in order to obtain different suspension concentration. To obtain the 

volume of liquor needed for dilution, a simple calculation is made according to the 

following relation: 

2211 VCVC ⋅=⋅             (6.6) 

 

where 1C and 1V are the initial concentration and volume respectively (original slurry 

concentration), and 2C , 2V  are the target concentration and volume. 

 

Several cylinders of different slurry concentration were prepared in order to obtain 

representative and repetitive data for this study. Thus, for each washer, 12 samples 

were prepared in order to have enough cylinders to study different effects. For 

example, three columns of 50 g/L were allowed to settle using different flocculant 

dosages to observe the effects on sedimentation velocity. 

 

The procedure carried out for batch settling test was as follows: 

Note: all settling experiments were carried out under a controlled temperature 

environment using a water bath. The temperature was the same used in the process 

vessel.  

a. Prepare underflow thickener suspensions with known initial concentration. 

b. Add homogenised suspension sample to settling cylinders. 

c. Record the initial height. 

d. Homogenise, once again, the suspension using a flocculation test plunger. 

e. Add flocculant to each cylinder (one at a time) under the same conditions. 

f. Use a flocculation test plunger to gently homogenise the suspension. It is very 

important to be consistent, to allow a valid comparison of results. 

g. Allow the contents of the vessel to settle. During this process, record the height 

of the interface regularly until a constant height is obtained. 

 

As mentioned above, this procedure was made for each settling column and for each 

sample collected from the washers 20 (the first washer in operation was 20, washer 

10 was on duty by the time of the experiments), 50 and 70. 
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As an example of the results obtained, the graph below shows the suspension 

settling rate (height of interface versus time) for washer 70 using a concentration of 

50 grams per litre and with different flocculant dosages. 

 

 

Figure 6.2: Settling rates at different flocculant dosage 

 

In this case, settling tests were made in duplicate in order to improve data 

accuracies. The settling rates (indicated by the slope of the graph for each 

concentration) can be seen to increase when more flocculent is added. 

 

Once the different data of height of interface against time are obtained, it necessary 

to fit those data according to the Richardson-Zaki equation (Equation (6.5)). 

 

In order to do so, Equation (6.5) can be rewritten in logarithmic terms: 

( )ϕ−⋅+= 1logloglog 0 nuuC           (6.7) 

 

According to this equation and for a given suspension, a plot of Culog versus 

( )ϕ−1log  can be made in order to find the Richardson-Zaki index n . In most cases, 

the graph of the Equation (6.7) is a straight line with slope n  and intercept Oulog .  
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In order to illustrate this procedure, washer 20 settling data is used below to find the 

index n , with the help of the Kynch theory of sedimentation. The specifications of the 

underflow are shown in the table below: 

 

 

Table 6.1: Washer 20 specification for batch settling test 

Washer No. 20     

Samples Origin U/F Clarifier 30 Density (g/mL) 1.5 

Solids Concentration (g/L) 50     

Dilution Origin O/F Washer 30 Density (g/mL) 1.1 

Flocculant   Nalco 85252 RRA     

 

In this case, the slurry for testing came from clarifier 30 because washer 10 was on 

duty. 

 

First, a typical sedimentation curve (Figure (6.3)) showing the height of the interface 

as a function of time, is plotted using the settling data: 
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Figure 6.3: Height of the interface as a function of time for washer 20 

 

 
The initial height is given by OR (35 cm) and the initial constant slope of the curve 

gives the sedimentation velocity ( )
OCu  for a concentration of 50 g/L ( OC ). For some 

other heights, such as OP (30 cm), the slope of the tangent gives the sedimentation 

velocity Cu  for a given concentration (Kynch, 1952): 
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OP

OR
CC O ⋅=                 (6.8) 

 

Thus, for each height, the corresponding concentration may be calculated and the 

slope of the tangent measured to give the sedimentation velocity. These values are 

tabulated in Table (6.2):  

Table 6.2: Settling velocities 

L (ml) H(cm) t (s) C (g/L) Cu  (cm/s)  

1000 35 0 50.00 0.1250 

900 31.5 33.26 55.56 0.0980 

850 29.75 45.73 58.82 0.0840 

800 28 58.45 62.50 0.0710 

750 26.25 70.86 66.67 0.0610 

700 24.5 83.57 71.43 0.0500 

650 22.75 96.73 76.92 0.0400 

600 21 110.51 83.33 0.0280 

550 19.25 126.02 90.91 0.0208 

500 17.5 144.73 100.00 0.0150 

450 15.75 177.39 111.11 0.0080 

400 14 248.29 125.00 0.0030 

 

From Figure (6.3), the critical concentration can be found graphically by drawing 

tangents in sectors of nearly constant velocity in Figure (6.3). Then, an angle 

bisection is constructed; the bisector intersects the settling curve at Zc = 17.8 cm. 

These results can be seen in Figure (6.4). 
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Figure 6.4: Critical point graphic determination 
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From Table (6.2), a plot (Figure (6.5)) of Culog  versus ( )ϕ−1log , an experimental 

value for Richardson-Zaki index n can be found. 
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Figure 6.5: Voidage (e) versus Culog  

 

According to the graph the value for the index (slope of the line) is 0.0065 and the 

intercept is -0.0173, which corresponds to sedimentation velocity for a single particle 

( 0u ). Therefore, applying the inverse logarithm scmu /96.00 = ; this can be replaced in 

the Equation (6.4) to obtain the sediment flux function. 

 

The same procedure is used for each settling test obtained in the experiments. 

 

VI.2.1.2. RHEOLOGY TESTS: 

The rheological behaviour of concentrated mud residues is affected strongly not only 

by solids loading, particle morphology and particle size distribution but also by 

particle interactions. These interactions are influenced by chemical factors such as 

the presence of flocculant agents. 

 

In order to determine the rheology of red mud slurry, samples of the washer 

underflows for 20, 50 and 70 were taken and different concentrations were prepared 

using caustic liquor for dilution for washer 20 and 50, while in the case of washer 70, 

water was used. 
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The samples, once collected, were stored in screw top containers and the 

rheological measurements were carried out with a Haake VT 550 rheometer. 

 

The measured shear stress and shear rate data for the residue samples can be 

analysed according to the Herschel-Bulkley model (Green, 1997), which combines 

the Power law model with a yield stress variable. The model equation is expressed in 

the following form: 

n

y K γττ ⋅+=              (6.9) 

where τ  is the shear rate (Pa), yτ  is the yield stress , γ  is the shear rate (sec-1), K is 

the power law constant (consistency index), and n is a constant (flow behaviour 

index). 

 

In addition, fundamental models for the relationship between effective solid stress in 

the compressible sediment as a function of concentration have not yet developed but 

the Burger et al (1999) empirical equation has been found to describe some typical 

compressible sediments: 

( )




<

≥⋅
=

⋅

C

C

for

fore

ϕϕ

ϕϕα
ϕτ

ϕβ

0
        (6.10) 

where Cϕ  is the critical volume concentration, α and β  are constants. 

 

The rheological measurement of shear stress as a function of shear rate were 

conducted using the vane technique (Nguyen, 1983; Nguyen and Boger, 1983, 

1985) which allows direct and accurate determination of the yield stress for red mud. 

 

This technique involves a vane attached to a torsion measuring head, which is slowly 

rotated and immersed into a fluid material, where the torque as a function of time is 

measured. 

 

The vane is four (or more depending on the tested material) thin blades set up at 

equal angles around a small cylindrical shaft. Figure (6.5) illustrates a four blade 

vane and a torsion blade. 
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Figure 6.6: Vane technique for suspension rheology characterization (Boger, 1983)  

 

The maximum torque can be related to the yield stress and the vane dimensions 

according to the Equation (6.11) (Boger, 1983): 

y

v

vm
D

H
DT τ

π
⋅







+=

3

1

2
        (6.11) 

 

 

As mentioned above, once samples from washers 20, 50 and 70 were collected, a 

methodology for rheology test was implemented which can be described as follows: 

 

Note: all rheology experiments were carried out in a controlled temperature 

environment using a water bath. Thus, for washer 20, the controlled temperature 

was 50oC, which corresponds to the process temperature inside the process vessel. 

 

a. Collect the samples from washers 20, 50 and 70. Prepare slurry of different 

concentrations (200, 300, 400 and 450 g/L). 

b. Store the suspensions in screw top containers and keep them in a controlled 

temperature environment (water bath). 

c. Select the desired vane and connect it to the rheometer. 
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d. Equilibrate the slurry of known concentration at the test temperature and 

homogenise it in order to eliminate the solids concentration distribution which 

can occur due to particle settling. 

e. Use a cup to place the test sample (approx. 600 ml) and put it on a stand 

under the rheometer. 

f. Raise the stand slowly so the vane penetrates the surface of the suspension. 

g. Start the motor rotating at a constant rate and watch the build up of torque, 

which will rise until maximum reading is reached, followed by stabilisation to a 

slightly lower value over time. 

h. These measurements were made in triplicate to assure accuracy. 

 

Figure (6.7) shows typical torque as a function of time for washer 20 with a 

concentration of 300 grams per litre: 
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Figure 6.7: Torque versus time for washer 20 at 300 g/L 

 

 

As shown in Figure (6.7), the maximum torque for a concentration of 300 g/L in 

washer 20 was approximately 10.5 Pa. 
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Once maximum torque is found, the suspension yield stress can be obtained using 

the vane dimension and the Equation (6.11). 

 

Thus, in this case the yield stress is: 

Pa

D

H
D

T

v

v

m

y 4.2

3

1

2

=









+

=
π

τ  

 

According to this, a relation between suspension yield stress as a function of 

concentration can be made in order to obtain Equation (6.10). 

 

Table (6.3) below shows the results for red mud from washer 20 at different 

concentrations: 

 

Table 6.3: Yield stress for washer 20 at different concentrations 

Conc. (g/L) Conc. (v/v)  Yield Stress(Pa) 

200 0.0606  0.87 

300 0.0909  2.4 

400 0.1212  6.23 

 

Considering the results obtained in Table (6.3), a fitting curve correlating the 

suspension concentrations with yield stress (Equation (6.10)) can be obtained by 

plotting yield stress ( yτ ) versus concentration, v/v (ϕ ) (Fig 6.7): 

 
Figure 6.8: fitting graph Equation (6.10) 
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This graph allows the parameters of Equation (6.10) to be obtained, in which the 

slope of the line is β  and the intercept is related with αlog .Equation (6.10) then 

takes the form: 

ϕτ ⋅⋅= 55.3212.0 ey         (6.12) 

 

The procedure described above is repeated for each washer in this study and the 

remaining results are tabulated in Table (6.4): 

 

Table 6.4: Settling and rheology parameters 

   Experimental Bürger Settling parameters 

  parameters (eq. 6.10)         (eq. 6.5) 

Washer α (Pa) β  n uo (cm/s) 

20 0.12 32.55 0.0065 0.96 

50 0.0054 50.797 0.0062 0.93 

70 0.0882 29.158 0.0024 0.82 

 

VI.3. MATHEMATICAL MODEL SOLUTION: 

For the solution of the convection-diffusion law (4.2), a finite difference method of the 

upwind type is used for the discretization of the PDE: 
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The so-called Engquist-Osher numerical flux (1981): 

( ) ( ) ( )n

j

n

j

n

j

n

j

EO
fff 11, +

−+
+ += ϕϕϕϕ         (6.14) 

 

is determined by: 

( ) ( ) ( )( ) ( ) ( )( )dssffdssfff 0,min;0,max0 '

0

'

0

∫∫ =+= −+

ϕϕ

ϕϕ     (6.15) 

 

The upwind explicit discretization is stable under the following stability condition 

(CFL: Courant-Friedrichs-Lewy condition): 

( ) ( )
( )

1max2max:
2

' ≤
∆

∆
+

∆

∆
=

z

t
a

z

t
fCFL ϕϕ      (6.16) 
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This solving method is of first order and can present problems in smooth regions. As 

an alternative, an upgrade of the Engquist-Osher scheme using the generalized 

MUSCL extrapolation (Monotonic Scheme for Conservation Laws) to extend the 

accuracy to second order is used (Toro, 1997; Evje & Karlsen, 2000). To this end, a 

linear function )(znϕ  is introduced and defined by: 

( ) ( ) ] [
2/12/1 ,, +−∈−+= jjj

n

j

n

j

n
zzzzzsz ϕϕ      (6.17) 

 

Where n

js  is a slope at n
u . At 1=n

js the reconstruction is linear and the error 

is 2)( zO ∆ . At 0=n

js  the reconstruction is in constant parts and the error is )( zO ∆ . 

Slope limiters have to be used in order to force monotony of the reconstruction. In 

this case, a −Lθ limiter is used (Sweby, 1984; Toro, 1997). 
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Where MM is a Min-Mod function defined by: 
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The values to the borders are now extrapolated: 
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The second order upwind takes the form: 
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(6.21) 

 

The border condition (4.8) is expressed as: 
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And the condition (4.9) can be discretized: 
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The method described above can be summarized using the following algorithm: 

i. Initial conditions: 

0ϕ   : Initial concentration 

Cϕ   : Critical concentration 

fS ρρ ,  : Solid and liquor density 

ii.  Parameter for functions bkf  (Equation (6.4)) and τ  (Equation (6.10)) 

iii.  Domain length (height of the vessel L) 

iv.  Number of mesh points in order to determine z∆  

v.  Time step from CFL condition (Equation (6.16)) 

( ) ( )ϕϕ afz

zCFL
t

max2max
'

2

+⋅∆

∆⋅
=∆  

vi. Discretization of the boundary condition using Equation (6.22) and (6.23) 

vii. Application of upwind scheme for interior cells using Equation (6.21) with slope 

limiters (6.18). 
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Figure (6.9) shows the concentration profile obtained using the previous algorithm: 

 

Figure 6.9: height of interface as a function of concentration (W20)  

 

VI.3.1. STEADY STATE SOLUTION: 

A particularly important solution of Equation (4.2) is the steady state condition, which 

describes the behaviour of operating industrial thickeners. At steady state, Equation 

(4.2) can be expressed as: 
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and it can be integrated to obtain the solution: 
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The constant  K can be evaluated using Equation (9) at the bottom of the vessel, 

where the total flux must be referred to the convective part Dq ϕ⋅ . The concentration 

profile in the consolidation zone acquires the following form: 

( ) 0,)(
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⋅⋅∆
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ϕϕϕ
ϕϕσ
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     (6.26) 
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According to hydrodynamics stability, for sedimentation to take place, 

0/ ≤dzdu throughout the compression zone where DC uuu ≤≤  and the inequality: 

fbk ffq ≤+⋅ )(ϕϕ ,             (6.27) 

must be attained (Bustos et al. 1999). In the previous condition ff is the feed flux and, 

in a continuous thickener, this value can be expressed as: 

A

Q
f

ff

f

ϕ⋅
=                (6.28)  

 

Several steady-state stages can be obtained by properly manipulating q and ff in 

Equation (6.27). 

 

An alternative form of the Equation (6.26) is: 
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Equation (6.27) is evaluated until critical concentration is reached, at which the 

height of the consolidation zone is encountered. 

In order to test the model obtained above (Equation (6.29)), red mud samples were 

collected from different washers (20, 50 and 70). The red mud was a typical 

underflow sample from the washers. 

 

The suspension (underflow washer 20) characteristic equations identified by 

Equations (6.4) and (6.12), whose parameters were obtained according to the 

method stated in sections VI.2.1.1 and VI.2.1.2, are then introduced into the model. 

 

This model can be solved using the following algorithm developed in Matlab: 

i. Determine input variables and parameter of Equations (6.4) and (6.12): density of 

solid and liquid, washer dimensions, underflow concentration, gel point or critical 

concentration, which can be found either by bisection or by approximation using: 

 
f

C
z

z00 ⋅
≈

ϕ
ϕ               (6.30)  
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where 0ϕ , 0z , fz , are the initial concentration, initial and final height of the 

suspension (batch test). 

ii. Find the concentration in the hindered settling zone using Equation (6.27), 

locating the root of the equation. 

iii. In order to solve the differential equation, a Runge Kutta of fourth order is applied, 

selecting the step size of the independent variableϕ . 

iv.  The function is evaluated at every step from the bottom concentration until critical 

concentration is reached. 

The results showing the concentration profile inside the thickener are illustrated in 

Figure (6.10): 

 

Figure 6.10: height of interface as a function of concentration (W20) – Steady State 

 

The height of the heavy mud level for different underflow concentrations can be 

observed in Table (6.5) and Figure (6.11): 
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Table 6.5: Mud level at different underflow concentrations 

 

 

 

Figure 6.11: Mud level data comparison between measured data and extended Kynch data 

 

The results predicted by the simulation can be seen to be a poor fit to the measured 

data. For instance, in the case of an underflow concentration of 177.0=Dϕ , the 

measured value of the mud level is 0.29 m, whereas the predicted value is 2.13 m. 

 

After considering the difference between measured and predicted data, other 

methods for measurement of the suspension properties were used. These are based 

on the dewaterability theory (Landman et al, 1988) and further treatment (Usher, 

2002). These models for compressive yield stress and hindered settling function 

have the following form: 



86 

 

 ( )




















−= +⋅ db

a

C

y

c

eP
ϕ

ϕ

ϕ
ϕ 1          (6.31) 

 ( ) CAR B +⋅= ϕϕ             (6.32) 

 

where a, b, c, d and A, B, C are parameters which can be found experimentally.  

The dewaterability theory describes the sediment height in terms of shape of the 

bottom section of the thickener. This can be described as a differential equation 

between height of the heavy mud level and concentration as independent variable: 
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11
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'
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Again, this equation is solved from the bottom ( Dϕϕ = ) until critical concentration is 

reached. 

The solution to differential Equation (6.31) is showed in Figure (6.12), where a 

concentration profile is plotted: 

 

Figure 6.12: Concentration profile – dewaterability model (Landman, 1988) 
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Once more, model results are plotted against measured values to observe the 

discrepancies between both sets of the data (Figure (6.13)): 

 

 

Figure 6.13: Comparison between mud level plant values and model data (Eq. 6.31) 
 

Simulation outputs from the model predict values closer to the measured data, 

indicating the influence of rheology parameters. However, the fit is still not very good. 

Thus, these parameters need to be determined using a different method, such as 

filtration. There may be several reasons for the discrepancy between measured and 

predicted data. One of these reasons is that the effect of rakes was not considered in 

the mathematical model (raking action in the bottom of the vessel generates stress). 

The rakes move the suspension through the discharge point in the bottom of the 

vessel, but also the effect of the rakes help to create a more compact bed in the 

compression zone, obtaining a value of mud level lower than simulation result. This 

effect may be overcome introducing into the model a relationship between the torque 

of the rakes and slurry yield stress.  

 

On the other hand, the range of concentrations used to evaluate the suspension 

properties was low, so it did not cover the entire range of concentration that may be 

present in the vessels.  
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Chapter VII 

NEURAL NETWORK IDENTIFICATION 

 

VII.1. INTRODUCTION 

Modelling and simulation have become powerful tools for design, analysis and 

optimization systems and industrial processes. The availability of personal 

computers that are continuously becoming more powerful, lower in cost and easy to 

use, accompanied by software or application programs and programming languages 

with high flexibility, has allowed the mass use of different techniques of simulation 

and process control. 

 

Unlike the method discussed in the previous chapter, which describes the 

representation of a system based on a mathematical model, this part of the work will 

propose the utilization of computational tools based on historical data in order to 

obtain an instrument for the prediction of control variables. In order to achieve this, 

historical data were collected from Rio Tinto’s database and a multilayer perceptron 

was trained to learn the relationship between input and the target variables. 

 

VII.2. DEVELOPMENT OF THE NEURAL MODEL 

For the neural network design, numeric values of the variables involved in the 

washing process from Rio Tinto’s data base were considered. The data set available 

was part of the first ten months of 2009, randomly divided into two groups: 80% for 

training and 20% for validation and testing.  

 

The development of the neural network can be defined by the following steps: 

� Variable selection 

� Normalization 

� Architecture  

� Training and testing of the network 
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VII.2.1. VARIABLE OR DATA SELECTION 

Working continuous data come from the washer train and belong to washers 10 and 

60. Figure (7.1) illustrates the vessel (washer 10) and the process variables taken 

into account for the design of the neural network. 

 

 

Figure 7.1: Washer vessel with operating variables 

 

The variables can be arranged in a table in order to show the relationships between 

the input variables and the target. The number of rows depends on the number of 

relations between variables presented. Table (7.1) presents input and output 

variables for washer 10. 

 

Table 7.1: Variables relation 
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Values belonging to the database (29180 readings) correspond to data collected by 

the sensors every 15 minutes. Because of the large number of data available, this 

number was reduced to 139, which corresponds to daily average values. In addition, 

only values corresponding to a normal operation of the vessel were accepted (vessel 

in DUTY was rejected). 

 

Figures (7.2) and (7.3) show, in detail, the behaviour of some of the variables that 

were used as an input pattern for network training. 
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Figure 7.2: Clarifier 10 U/F – Rio Tinto Yarwun (2009) 
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Figure 7.3: Clarifier 20 U/F conc. – Rio Tinto Yarwun (2009) 
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VII.2.2. PREPARATION OF THE DATA 

Once process variables were identified, preparation of the data was performed in 

order to train the network. These variables are those measured daily by sensors in 

the plant, which will be used as input and output patterns for both training and testing 

of the network. 

 

VII.2.2.1. DATA NORMALIZATION 

It is useful to normalize the input data before submission to the neural network. This 

normalization is used to reduce the range of the set of values, which become 

appropriate for the transfer or activation function that will be used. In general, the 

data are normalized between 0 and 1 (or -1 and 1) to prevent the saturation effect of 

the transfer function. 

 

This process will help the network to learn a greater number of relationships between 

inputs and outputs, avoiding uncertainties that would be induced when input values, 

due to their size, cannot be processed. The real value of the output variables will be 

obtained by inverting the normalization process applied to each of them. 

 

In the standardization process, the data are transformed in order to obtain a zero 

mean and standard deviation equal to 1 according to the equation: 

P

xx
x

σ

−
='                  (7.1) 

Where '
x  are the standardized data, x are the original values, x is the mean of the 

values and Pσ  the standard deviation. 

 

VII.2.3. ARCHITECTURE 

As specified above, the architecture of the network is related to the organization and 

arrangement of neurons forming layers. Thus, the basic parameters of the network 

are: number of layers, number of neurons per layer, learning algorithms and 

activation function.  
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The number of input and output layers of the network is dictated by the number of 

inputs and outputs considered. However, the number of neurons in the hidden layer 

is a key point in the design strategy of the network. If a network is designed with a 

small number of neurons, it will not reproduce the dynamics of the system and 

therefore will not provide an accurate forecast. On the other hand, excessive 

numbers of neurons can provide an appropriate behaviour but with high 

computational cost. Knowledge from non-learned patterns will also not be 

generalizable.  

 

Considering the number of variables of the washer system (see VII.2.1 – washer 10) 

the following consideration was opted: 

� Feed forward backpropagation neural network 

� One input layer formed by 10 neurons 

� One hidden layer formed by 9 neurons with activation function sigmoid. 

� One output layer formed by one neuron with activation function Tansig. 

 

The network architecture considered, which contains the consideration above stated, 

is shown in Figure (7.4). 

 

 
Figure 7.4: Neural network model 
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The selection of an ideal activation function, as well as, layers in the hidden layers 

depends of the nature of the problem and the researcher discretion, that in most of 

occasions include trial and error. In literature, standard criteria for the selection of the 

“correct” activation function cannot be found, and its choice would depend of the 

network response in comparison with the desired output. In most of cases, sigmoid 

functions are used because is a monotonous crescent function which exhibits a good 

balance between a linear and non-linear behaviour. On the other hand, problems 

that require more than one hidden layer are rarely found and there is not theoretical 

reason for that matter. In fact, using more than one hidden layer can affect the 

convergence to local minima, introducing more complexity which rarely improves the 

network results. 

 

VII.2.4. TRAINING AND TESTING 

The training algorithms selected are the most commonly used. These algorithms can 

be summarized by the following functions: 

� Quasi-Newton:  

The threshold and weights are updated according to the following algorithm: 

kkkk Hxx ∇⋅−= −
+

1

1               (7.2) 

where H is the Hessian matrix of the performance index at the current values of 

the weights and biases, and k∇ is the gradient. 

� Levenberg-Marquardt: 

This algorithm is one of the fastest for training of the neural network, but it may 

require more memory than do other algorithms. 

( ) eJIJJxx
TT

kk ⋅⋅+−=
−

+

1

1 µ           (7.3) 

where J is the Jacobian matrix that contains first derivatives of the network 

errors with respect to the weights and biases, e is a vector of network errors 

and µ is a scalar which can be zero (Newton method) or larger (gradient 

descent).  
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� Gradient descent with momentum backpropagation: 

This is a descent steps algorithm, which updates weights and gains in the 

negative direction of the gradient error function. 

 

Momentum allows a network to respond not only to the local gradient, but also 

to recent trends in the error surface. 

 

The training algorithm is used to find weights that minimize a global measure of the 

error. This can be called performance function, which can be described as a Mean 

Square Error (MSE): 

( )∑
+=

−=
N

ni

ii ayE
1

2

2

1
            (7.4) 

 

According to the training algorithm stated above, the Levenberg-Marquardt was 

selected due to the speed in obtaining an acceptance MSE value, which ensures a 

maximum accuracy during the learning process. 

 

All the design process, training and testing of the network were developed using 

Matlab, which possesses a toolbox for that purpose. 

 

Starting from a random set of initial weights, and applying the Levenberg-Marquardt 

training algorithm using the standard input/output values (see Table (7.1)) of the 

variables of the final database (139 values per variable), a convergence process is 

needed, which will be achieved when the error reaches a value of 10-10. 

 

For washer 10 data, the error proposed was found after 2422 iterations, as shown in 

the plot below:  
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Figure 7.5: Error convergence. E=10

-11 

 

After arriving at a satisfactory network design, this was tested with 20% of the data 

reserved, allowing assessment of the ability of the neural model in describing the 

phenomenon. The results are shown in Figure (7.6).  

 
Figure 7.6: Mud level values for washer 10 (measured data - neural network result)  

 

The Figure above shows a comparison between measured data and those obtained 

by the neural network in a 30 day period. In the first 25 days, the network response 

produced a good agreement with the measured data from washer 10. However, this 

trend is different for the next four days, having a significant difference at day 28. This 
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can be explained by the fact that there were insufficient training data in this specific 

range (0.02 m – 1.4 m approximately), so the network did not have enough 

information to achieve a better generalization. A good generalization occurs when 

training data are sufficiently representative of the domain to which they belong. 

 

Similarly, a neural network was employed for identification of washer 60. Three 

months of data were collected.  

 

The data, again, were separated into two categories, training data (60% of total) and 

testing data (40%). In this case, different topologies were tested in order to find the 

one most appropriate for the data under consideration. 

First, a network with one hidden layer of 10 neurons and Tansig transfer functions for 

both hidden and output layer was considered. According to this configuration, a 

performance graph is shown in Figure (7.7): 

 

 

Figure 7.7: Washer 60 error performance 

 

Figure (7.7) shows that the target error was reached after about 300 iterations, and 

whereas the regression graph (Figure (7.8)) shows a poor fit for the response. In 

order to increase the degree of fit, different approaches were used. 
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Figure 7.8: Washer 60 regression graph 

 

In the new approach, the connection weights were reset, and the network was 

trained again. The corresponding regression is presented in Figure (7.8): 

 

 
Figure 7.9: Washer 60 regression graph (2

nd
 run) 
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Figure (7.9) shows that the correlation was increased to 0.84. It was of interest to 

see if this could be improved, so the number of hidden neurons was increased from 

10 to 12 to watch the network response. 

 

After several weight initializations, the new network reached the best regression 

value achievable, according to Figure (7.10): 

 

 
Figure 7.10: Washer 60 regression graph (3

rd
 run) 

 

Once this point had been reached, the network was tested with 40% of the remaining 

data, as shown in Figure (7.11): 
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Figure 7.11: Mud level values for W60 (reference data - neural network result)  

 

Figure (7.11) shows that the predicted data fit the measured data quite well, which 

indicates that the number of neurons in the hidden layer has increased the accuracy 

of the network. However, the neurons should not exceed a number that permits over-

learning (Haykin, 1999). Although over-learning achieves a high rate of success, this 

is reached at the expense of ability to generalize, since the network extracts too 

much information and focuses on peculiarities from the training set, forgetting 

relevant information for a more general case. 
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SECTION D: 

SUMMARY OF RESULTS, CONCLUSIONS AND FUTURE WORK 
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Chapter VIII 

OVERALL OUTCOMES 

 

VIII.1. INTRODUCTION 

This work was focused on understanding the sedimentation phenomenon that occurs 

in industrial equipment such as thickener/washers. Simulation of a continuous 

thickener was made in order to obtain the concentration profile and height of the 

heavy mud level, which is an important controlled variable of the process. 

Mathematical modelling and neural networks were chosen as simulation methods. 

 

The mathematical models used in this work were tested using actual measured data 

from Rio Tinto. These models require obtaining parameters for solids flux density 

function (or hindered settling) according to the Richardson-Zaki model (Richardson 

et al 1997) and effective solid stress indentified by the Bürger empirical Equation 

(Bürger et al, 1999). Experimental work was conducted in order to obtain these 

parameters. 

 

The use of computational techniques as an alternative for process identification was 

adopted using historical data from Rio Tinto’s data base. Two neural models were 

developed for washers 10 and 60.  

 

This chapter presents the major outcomes obtained in this work, as well as general 

conclusions based on results and observations. Finally, recommendations for further 

work will be presented. 

 

VIII.2. SUMMARY OF RESULTS 

The following are the major findings of this research: 

� During settling test (Figure (6.2)) the settling rate was verified as strongly 

dependant on the concentration of flocculant. Thus, a higher concentration of 

flocculant resulted in a faster settling rate. 

 

� The Richardson-Zaki index found experimentally differs from theoretically 

predicted values (assuming spherical particles). This index (Richardson & Zaki, 
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1997) is said to take values greater than 1, which was not reflected 

experimentally. The initial concentration considered in a settling test should be 

as close as possible to the actual initial concentration of the process. 

 

� The critical concentration obtained ( 1.0≈Cϕ at cmZC 8.17= ) by the angle 

bisection method (Figure (6.4)) showed a good agreement with literature 

values. 

 

� The relationship of yield stress as a function of volume concentration for red 

mud showed a good fit according to the empirical Bürger power law (Equation 

(6.10)). 

 

� Dynamic simulation of a washer vessel based on Kynch theory of 

sedimentation and its extension to flocculated suspension allowed obtaining of 

the concentration profile inside the vessel. 

 

� The steady state model of a continuous thickener predicted both the 

concentration profile and the height of the mud level. The model was very 

sensitive to the measured of solid stress function of the suspension. On the 

other hand, the model was weakly sensitive to the settling function. 

 

� Simulation results, according to Figure (6.10), were significantly different from 

the measured data; further analysis based on dewaterability theory (Landman 

et al, 1988) illustrated in Figure (6.12) showed better results, but there were still 

differences with measured data. 

 

� The concentration ranges used for rheology characteristic determination were 

low. Thus, extrapolation of the data was necessary in order to cover the entire 

range of concentration present in the washer operation. 

 

� As an alternative to mathematical models, neural networks were developed for 

2 different washers (washer 10 and 60). The architecture that reported the best 

results for washer 10 was formed by 10 neurons in the input layer, 9 neurons in 

the hidden layer and one neuron in the output layer. On the other hand, the 
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architecture chosen for washer 60 consisted of 10 neurons in the input layer, 12 

neurons in the hidden layer and one neuron in the output layer. 

 

� The Levenberg-Marquardt algorithm was chosen as a training algorithm due to 

its speed in obtaining the best mean square error. 

 

� The neural identification for washer 10 (Figure (7.6)) showed a very good fit for 

about 85% of the data considered for network testing. The remaining 15% did 

not show the same behaviour. On the other hand, results for washer 60 (Figure 

(7.11)) showed a good agreement with measured data for a 19 days period. 

The differences presented between predicted and measured data in both cases 

can be explained as being due to network generalization errors. 

 

VIII.3. CONCLUSIONS 

In this thesis, the identification of the concentration profile and the height of the 

heavy mud level using two simulation methods (mathematical based simulation and 

neural networks) are predicted. The outcomes of this work lead to the following 

conclusions: 

 

The disagreement between measured and predicted data, according to model based 

simulation, is likely due to errors in the determination of suspension properties. The 

range of concentrations used to determine both solid stress and hindered settling 

functions, was not sufficient. Thus, in order to cover the entire range of concentration 

inside the thickener, extrapolations of the data are needed at lower concentrations. 

 

The mathematical model used to determine the heavy mud level and the 

concentration profile does not consider the effect of rakes. This could be one of the 

main reasons for poor agreement of data. Raking is used to remove sediments in the 

bottom of a settling vessel, leading the slurry towards a discharge point, but raking 

also influences the underflow concentration. The action of raking improves the 

sediment permeability by liberating bound water, thus creating a more compact 

structure on the bottom. The raking shear effect could increase underflow 

concentration. 
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The neural network approach shows better results in comparison with mathematical 

models. However, some considerations are needed in order to use this method for 

process prediction. 

 

The quality, as well as the quantity, of the data has to be considered when a neural 

network is developed for process identification. Although the range of data was quite 

large for both washers, in the case of washer 60, these values are low in a certain 

range of operation. The input data for network training should contain sufficient 

information pertaining to the domain. 

 

VIII.4. FUTURE WORK 

As a consequence of the results found in this work, some recommendations for 

further work can be made in order to improve the mathematical model used, as well 

as data mining for process identification. 

 

New experiments on settling and rheology should be conducted, increasing the 

range of concentrations. This would improve the accuracy of the hindered settling 

and effective solid stress functions. In addition, another method, such as pressure 

filtration, should be used to obtain a relationship for the compression zone 

(compressive yield stress). The effect of raking should be considered in a new model 

to observe its influence over the concentration profile and heavy mud level. 

 

Once a better understanding of the washer vessel dynamics is achieved, a 

simulation of the whole washer train can be made. This would further increase the 

robustness of the model. 

 

If a new set of data with a larger range was collected, the neural network learning 

process could be improved. New network architectures could be tested. These might 

improve the behaviour of the network and achieve a better fit to the measured data. 
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APPENDIX A: 

SETTLING TEST DATA 
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APPENDIX A.1: Settling test at different flocculant dosages (Washer 20) 

Settling test for washer 20 at different flocculant dosages (initial solids concentration: 

50g/L). 

 

Table A.1: flocculant dosage: 50 gpt                
MSlurry (g) 187.8  

MLiquor (g) 962.7  

   FLOCCULANT DOSAGE (g/T) 

  50   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 33.26 

850 29.75 45.73 

800 28 58.45 

750 26.25 70.86 

700 24.5 83.57 

650 22.75 96.73 

600 21 110.51 

550 19.25 126.02 

500 17.5 144.73 

450 15.75 177.39 

400 14 248.29 

350 12.25 395.32 

 

 

Table A.2: flocculant dosage: 60 gpt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSlurry (g) 187.3  

MLiquor (g) 964.1  

   FLOCCULANT DOSAGE (g/T) 

  60   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

950 33.25 30.5 

900 31.5 45 

850 29.75 56.89 

800 28 68.76 

750 26.25 80.7 

700 24.5 94.9 

650 22.75 107.87 

600 21 122.12 

550 19.25 140 

500 17.5 172.65 

450 15.75 242.3 

400 14 380.65 
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Table A.3: flocculant dosage: 70 gpt  

MSlurry (g) 187  

MLiquor (g) 962.3  

   FLOCCULANT DOSAGE (g/T) 

  70   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 30.23 

850 29.75 42.23 

800 28 54.26 

750 26.25 66.13 

700 24.5 77.7 

650 22.75 91.16 

600 21 104.07 

550 19.25 117.7 

500 17.5 131.8 

450 15.75 169.7 

400 14 236.64 

350 12.25 376.57 

 

 

 

Figure A.1: initial settling rate at different flocculant dosages 
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APPENDIX A.2: Settling test at constant flocculant dosages (Washer 20) 

Settling test for washer 20 at constant flocculant dosage (70 gpt). 

 

Table A.4: solids concentration 70 g/L 

MSlurry (g) 262  

MLiquor (g) 907.2  

   FLOCCULANT DOSAGE (g/T) 

  70   

SOLIDS CONCENTRATION (g/L) 

  70   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 43.16 

850 29.75 65.07 

800 28 86.92 

750 26.25 109.2 

700 24.5 129.42 

650 22.75 153.64 

600 21 175.64 

550 19.25 217.86 

500 17.5 300.76 

450 15.75 455.89 

400 14 744.86 

 

Table A.5: Solids concentration 90 g/L 

MSlurry (g) 337.1  

MLiquor (g) 856.3  

   FLOCCULANT DOSAGE (g/T) 

  70   

SOLIDS CONCENTRATION (g/L) 

  90   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 157.76 

850 29.75 212.64 

800 28 255.7 

750 26.25 308.86 

700 24.5 357 

650 22.75 422.64 

600 21 566.8 

550 19.25 901.02 
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Figure A.2: Initial settling rate washer 20 (flocculant dosage 70 gpt) 
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APPENDIX A.3: Settling test at different flocculant dosages (Washer 50) 

Settling test for washer 50 at different flocculant dosages (initial solids concentration: 

50g/L). 

Table A.6: Settling test at 10 gpt 

MSlurry (g) 140  

MLiquor (g) 990  

   FLOCCULANT DOSAGE (g/T) 

  10   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 46.16 

850 29.75 56.42 

800 28 67 

750 26.25 78.32 

700 24.5 90.54 

650 22.75 103.23 

600 21 115.92 

550 19.25 130.82 

500 17.5 146.82 

450 15.75 176.95 

400 14 235.89 

350 12.25   

300 10.5   

250 8.75   

 

Table A.7: Settling test at 20 gpt 

MSlurry (g) 141  

MLiquor (g) 990  

   FLOCCULANT DOSAGE (g/T) 

  20   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 12.3 

850 29.75 15.61 

800 28 19.58 

750 26.25 23.8 

700 24.5 27.83 

650 22.75 32.45 

600 21 38.02 

550 19.25 43.48 

500 17.5 49.11 

450 15.75 56.04 

400 14 71.95 

350 12.25 107.04 

300 10.5 180.04 

250 8.75   
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Table A.8: Settling test at 30 gpt 

MSlurry (g) 140.7  

MLiquor (g) 990.6  

   FLOCCULANT DOSAGE (g/T) 

  30   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 8.13 

850 29.75 10.36 

800 28 12.13 

750 26.25 13.95 

700 24.5 15.95 

650 22.75 18.48 

600 21 20.7 

550 19.25 23.54 

500 17.5 26.64 

450 15.75 29.73 

400 14 35.92 

350 12.25 53.16 

300 10.5 87.57 

250 8.75 249.67 

 

 

 

Figure A.3: initial settling rate at different flocculant dosages 
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APPENDIX A.4: Settling test at constant flocculant dosages (Washer 50) 

Settling test for washer 50 at constant flocculant dosage (20 gpt). 

 

Table A.9: Settling test at 20 gpt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4: Settling curve at 20 g/T 

 

 

MSlurry (g) 196.7  

MLiquor (g) 946  

   FLOCCULANT DOSAGE (g/T) 

  20   

SOLIDS CONCENTRATION (g/L) 

  70   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 20.07 

850 29.75 29.95 

800 28 37.2 

750 26.25 45.23 

700 24.5 53.7 

650 22.75 62.73 

600 21 72.7 

550 19.25 85.2 

500 17.5 108.67 

450 15.75 152.42 

400 14 233.8 
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APPENDIX A.5: Settling test at different flocculant dosages (Washer 70) 

Settling test for washer 70 at different flocculant dosages (initial solids concentration: 

50g/L). 

 

Table A.10: Settling test at 50 gpt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.11: Settling test at 60 gpt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSlurry (g) 127.9  

MLiquor (g) 910  

   FLOCCULANT DOSAGE (g/T) 

  50   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 56.02 

850 29.75 84.8 

800 28 109.64 

750 26.25 137.2 

700 24.5 165 

650 22.75 194.57 

600 21 224.2 

550 19.25 256.89 

500 17.5 297.89 

450 15.75 375.1 

400 14 531.1 

300 10.5 960 

MSlurry (g) 127.7  

MLiquor (g) 910  

   FLOCCULANT DOSAGE (g/T) 

  60   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 11.67 

850 29.75 17.3 

800 28 22.48 

750 26.25 28.36 

700 24.5 33.77 

650 22.75 40.51 

600 21 46.74 

550 19.25 53.7 

500 17.5 62.7 

450 15.75 80.3 

400 14 114.51 

350 12.25 193.04 
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Table A.12: Settling test at 50 gpt 

MSlurry (g) 127.4  

MLiquor (g) 910  

   FLOCCULANT DOSAGE (g/T) 

  30   

SOLIDS CONCENTRATION (g/L) 

  50   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 22.36 

850 29.75 30.8 

800 28 38.64 

750 26.25 48.04 

700 24.5 57.32 

650 22.75 66.82 

600 21 76.51 

550 19.25 88.02 

500 17.5 101.67 

450 15.75 128.73 

400 14 176.1 

350 12.25 254.23 

 

 

 

 

 

 

Figure A.5: initial settling rate at different flocculant dosages 



A-11 

 

APPENDIX A.6: Settling test at constant flocculant dosages (Washer 70) 

Settling test for washer 70 at constant flocculant dosage (70 gpt). 

 

Table A.13: Settling test at 70 gpt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6: initial settling rate at 70 g/L 

 

MSlurry (g) 178.8  

MLiquor (g) 872.4  

   FLOCCULANT DOSAGE (g/T) 

  70   

SOLIDS CONCENTRATION (g/L) 

  70   

L (ml) H(cm) t (s) 

1000 35 0 

900 31.5 78.7 

850 29.75 107.16 

800 28 136.86 

700 24.5 197.7 

650 22.75 230.6 

600 21 269.82 

550 19.25 341.51 

500 17.5 458.32 

      

      



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B: 

RHEOLOGY TEST DATA 
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APPENDIX B.1: Torque vs time (Washer 20) 

 

 

Figure B.1: Torque vs time at 200 g/L 

 

 

Figure B.2: Torque vs time at 300 g/L 
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Figure B.3: Torque vs time at 400 g/L 

 

 

APPENDIX B.2: Torque vs time (Washer 50) 

 

Figure B.4: Torque vs time at 300 g/L 
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Figure B.5: Torque vs time at 450 g/L 

 

 

APPENDIX B.3: Torque vs time (Washer 70) 

 

 

Figure B.6: Torque vs time at 300 g/L 
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Figure B.7: Torque vs time at 450 g/L 

 

APPENDIX B.4: Herschel-Bulkley parameters: 

 

Table B.1: Herschel-Bulkley parameters 

Washer 
No. Concentration τy (Pa) k n 

  (gpl)       

20 200 2.5 1.3 0.21 

  300 10.97 7.5 0.12 

  400 47 39.41 0.04 

50 200 3.58 1.83 0.21 

  300 4.2 2.42 0.18 

70 200 1.66 0.94 0.19 

  300 5.3 3.7 0.12 

  450 33.08 27.37 0.05 
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