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ABSTRACT 

 

 

It is a well-established fact that the foreign exchange market is the largest 

financial market in the world1. However, it is relatively less well-known that currency 

options and other foreign exchange-related derivatives have become more popular and 

prominent in size since the mid-1980’s. Today, currency options are used by numerous 

players in the financial market, including portfolio managers, hedgers, speculators and 

even central bankers. Despite their popularity amongst market participants, research in 

currency options has received little attention in comparison with options on stocks and 

other underlying assets. This is not surprising as most of the currency option contracts 

are written by commercial and investment banks in the privately negotiated over-the-

counter option markets rather than the exchange-traded markets.  

 

This thesis provides empirical investigations into the behaviour of implied 

volatility quotes for currency options on the British pound/U.S. dollar (GBP/USD), the 

euro/U.S. dollar (EUR/USD), the Australian dollar/U.S. dollar (AUD/USD) and the 

U.S. dollar/Japanese yen (USD/JPY). The analyses are performed using dealer-quoted 

implied volatility and spot exchange rate datasets collected from the over-the-counter 

currency option market.  

 

                                                            
1 According to the Triennial Central Bank Survey conducted by the Bank for International Settlements, global foreign 
exchange market recorded a daily turnover of USD3.21 trillion in April 2007 (See Table B.1 of the survey released in 
December 2007).     
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Two main aspects of the implied volatility quotes are examined in this 

dissertation. First, the time series behaviour of implied volatility of various maturities is 

analysed. Second, analysis concerning the dynamics of implied volatility smiles for 

these four currency-pairs is undertaken.  

 

The first empirical chapter examines the random walk hypothesis using implied 

volatility quotes of various maturities. Conventional and nonparametric variance ratio 

tests are performed on the volatility levels and first-differences. The results provide 

evidence of random walk violations in the volatility series across all currency pairs 

examined. Specifically, strong rejections are found in the short-dated volatility of one 

week and one month. Further, out-of-sample robustness tests suggest that forecasting 

implied volatility changes using a random walk model produce significantly higher 

forecasting errors compared with two alternative models based on the artificial neural 

networks (ANNs) and autoregressive integrated moving average (ARIMA) frameworks. 

These findings suggest that short-dated implied volatility are better characterised as a 

mean-reverting process while the random walk process captures long-dated implied 

volatility more accurately.  

 

The analysis in the second chapter extends the key findings by examining the 

profitability of volatility trading using a simple technical trading strategy.  This study 

concludes that the trading rules generated positive returns in the majority of the 

currency pairs even after allowing for volatility and exchange rate spreads. The buy 

straddle signals generate positive average holding-period returns for three of the four 

currency pairs examined. Further, the average holding-period return of the buy trade is 

statistically different from the average holding-period return of the sell trade. This is 
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especially evident for the USD/JPY straddles. Conversely, risk reversal trades produced 

less compelling outcomes with lower winning trades and holding-period returns. Thus 

the overall results suggest that moving average trading rules are useful in volatility 

trading. In addition the profits from the option strategies are often large enough to offset 

the transaction costs.  

 

The third analysis chapter examines a well-known empirical anomaly in the 

currency option market. Specifically, the relation between the dynamics of the volatility 

smile and the anticipated volatility for the GBP/USD, EUR/USD, AUD/USD and 

USD/JPY currency pairs is investigated. The analysis uses a unique trader-quoted 

implied volatility dataset to construct the volatility smile over the sample period. To 

fully capture the time series dynamics of the volatility smile, different measures of 

volatility smile dynamics are employed, namely, (i) the slope coefficient of the call and 

put volatility curves, (ii) a measure of curvature, and (iii) the degree of skewness in the 

daily volatility smile. The Granger-causality tests show that the lagged coefficients for 

the recursive GARCH estimates are statistically different from zero over the optimal lag 

choice. This evidence of a unidirectional relationship is particularly strong when the 

tests are performed using put volatility curves. The results also reveal significant 

feedback between the curvature of the volatility smile and the quoted volatility. Further, 

tests are performed using a trivariate vector autoregressive model and impulse response 

functions to trace the impact of a volatility shock. A robustness test using probit 

regression suggests evidence of predictability of jumps using the smile curvature and 

out-of-money options. Consistent with recent literature, this study suggests that the 

behaviour of the volatility smile is driven by trading activities induced by the 

anticipated risk in the foreign exchange market.  
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The final analysis chapter extends earlier empirical work on volatility 

forecasting using information subsumed in the volatility smile dynamics. Specifically, it 

combines volatility smile dynamics with corresponding at-the-money implied volatility 

and GARCH(1,1) volatility estimates to forecast realised exchange rate volatility. The 

relative information content of the forecasting models is analysed using encompassing 

regression tests. The coefficients for smile curvature are both significant and negatively 

related to the level of implied volatility. The validity of the unbiasedness and efficiency 

hypothesis for the implied volatility forecasts is found to be related to the shape of the 

volatility smile. In particular, when the smile effect is more pronounced, the forecast 

performance of the implied volatility series deteriorates.    
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“Traders now use the formula [the Black and Scholes (1973) option pricing 

formula] and its variants extensively. They use it so much that market prices 

are usually close to formula values even in situations where there should be a 

large difference.” 

- Fisher Black (1989a), The Journal of Portfolio Management, 15(2), 

pp.7 and pp.8. (bracket added by the author of this dissertation) 

 

“The language and conventions that traders in the over-the-counter currency 

option markets use are borrowed from the Black-Scholes model, even though 

traders are fully aware that the model is at best an approximation.” 

- Allan Malz, 1997, The Journal of Derivatives, 5(2), pp.19. 
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CHAPTER 1 – INTRODUCTION 
 

1.1 Objective of the Dissertation 
 

This dissertation provides four empirical analyses that are centred upon one 

subject matter – the implied volatility characteristics of currency options. The analyses 

are performed using trader-quoted implied volatility according to standard market 

convention. In essence, the volatility of an asset over the remaining life of an option 

contract is unobservable and thus it is often assumed to follow a random walk process. 

Whether the volatility parameter can be adequately described as a random walk process 

for all option maturities remains an empirical question. A better understanding of 

implied volatility characteristics is critical to the pricing of currency option contracts 

and offers insights into the implied volatility “smile” anomaly reported in the currency 

option market.  

 

Each analysis in this dissertation offers empirical examination of dealer-quoted 

implied volatility data for options on four major currency pairs: the British pound 

against the U.S dollar (GBP/USD), the euro against the U.S. dollar (ERU/USD), the 

Australian dollar against the U.S. dollar (AUD/USD) and the U.S. dollar against the 

Japanese yen (USD/JPY). The empirical analyses are original studies and they employ a 

unique and rich option dataset from the over-the-counter market, consisting of options 

with various maturities and moneyness.   
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The key objective of this dissertation is to extend existing empirical literature 

on the characteristics of currency option-implied volatility. This is achieved through the 

consideration of how implied volatility data at various maturities may vary over time, 

investigating the use of simple trading rules for volatility trading, examining the 

dynamics of the volatility smile, and finally testing the usefulness of information 

embedded in the volatility smile for the prediction of realised volatility.  

 

1.2 Motivation of the Dissertation 
 

There are three main reasons for undertaking empirical analyses on currency 

option contracts using data from the over-the-counter market. The first reason relates to 

the size of the over-the-counter currency option. Most currency option contracts are 

traded in the over-the-counter market. A recent survey by the Bank for International 

Settlements indicates that the notional amount of the over-the-counter currency option 

contracts grew from USD 9,597 billion in December 2006 to USD 12,748 billion in 

December 2007 globally 2 . In sharp contrast, exchange traded currency options 

amounted to USD 78.6 billion in December 2006 and rose to USD 132.7 billion in 

December 2007. This survey suggests that the over-the-counter currency option is about 

96 times larger than the exchange traded equivalent. The sheer size of the over-the-

counter market indicates that it plays a central role in the provision of currency option 

contracts to various market players. It is also potentially a more reliable source for 

information extraction due to its liquidity.  

 

                                                            
2 See Table 20A, BIS Quarterly Review, March 2009. 
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Second, a clear understanding of implied volatility behaviour facilitates price 

discovery for currency options and thus enhances dissemination of market information 

to different participants in the over-the-counter option markets, including central banks, 

hedger, speculators and arbitragers. This is crucial as market transparency is lacking due 

to the highly customised nature of option contracts traded in this market. Further, recent 

over-the-counter derivative losses sustained by banks imply that more careful scrutiny 

of price behaviour in these markets would provide useful information to risk 

management professionals and policy makers for supervisory purposes. 

 

Third, empirical research into the price dynamics of over-the-counter currency 

options is still relatively sparse. The current literature that employs information from 

over-the-counter currency option markets focuses mainly on the forecasting ability of 

implied volatility data in two aspects: the information content of implied volatility and 

the estimation of risk-neutral density functions for exchange rates. In contrast, this 

research is mainly concerned with the dynamics of implied volatility and how the 

implied volatility smile relates to anticipated volatility in the exchange rate market. 

 

1.3 The Importance of an Empirical Examination of Option-implied Volatility 
 

An empirical study of currency option-implied volatility is important for a 

number of reasons:  

a) It allows a better understanding of implied volatility characteristics for different 

option maturities. In practice, implied volatility varies across maturities and this 

contradicts the constant volatility assumption of the Garman-Kohlhagen (1983) 

currency option pricing model. However, little is known about whether or not a 
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common time series process can be used to describe implied volatility across all 

maturities. 

b) Empirical evaluation of implied volatility behaviour has both theoretical and 

practical implications for risk forecasting, hedging decisions and the 

construction of volatility trading strategies. Since implied volatility provides an 

ex-ante view of an asset’s volatility over the remaining life of the option, it can 

potentially forecast future volatility more accurately than volatility forecasts 

based on historical data. 

c) It offers a better understanding of volatility smile dynamics in terms of how the 

smile is related to the anticipated risk in the currency market. This assessment 

can help to explain option pricing biases that are reported in empirical studies.    

d) The analysis fills a gap in the volatility forecasting literature by investigating 

how the forecasting performance of at-the-money implied volatility is related to 

the shape of the volatility smile. Such analysis reveals relationships that exist 

between different proxies of volatility smile dynamics and how these proxies 

may improve the accuracy of the implied volatility forecasts. 

 

1.4 Scope and Structure of this Dissertation 
 

This dissertation is structured in the following manner. Chapter 2 provides an 

overview of the over-the-counter currency option market. All of the analyses presented 

in this dissertation are concerned with currency options that are traded in the over-the-

counter market. The chapter documents the unique features of over-the-counter 

currency options, including the contract details, volatility trading strategies, market 

structure and implied volatility data available from this market. It also compares 
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contract features between the over-the-counter option and the exchange-traded 

equivalent.  

 

Chapter 3 provides a broad review of the main published research papers 

concerning theoretical and empirical characteristics of implied volatility, with emphasis 

on currency options. It presents two main areas of literature concerning implied 

volatility – first, the time series behaviour of implied volatility, and second, the 

moneyness characteristics of implied volatility. The literature that constitutes the basis 

of the empirical chapters (that is Chapter 4 through to Chapter 7) is briefly revisited in 

each relevant chapter. 

  

The empirical analyses are presented in Chapter 4 through to Chapter 7. 

Chapter 4 is concerned with the behaviour of quoted implied volatility at various 

maturities. Specifically, the chapter extends the literature dealing with implied volatility 

in several aspects. First, by testing the random walk hypothesis across implied volatility 

of different maturities, the implied volatility characteristics across the term structure can 

be better understood. The results using in-sample tests provide evidence of random walk 

violations in the volatility series across all currency pairs. Notably, rejections of a 

random walk are particularly strong for the short-dated options maturing in one week 

and one month. Contrary to Garman-Kohlhagen (1983) and Hull-White (1987), the 

empirical evidence reported in this chapter suggests that option-implied volatility are 

not constant over time and they do not always vary strictly according to a random walk 

process. Second, the results from this study suggest that option pricing and volatility 

models that assume a random walk component across the entire volatility term structure 

are not consistent with empirical findings. Third, out-of-sample tests involving 
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forecasting implied volatility changes from a random walk model produce significantly 

higher forecasting errors compared with two alternative models using artificial neural 

networks (ANNs) and autoregressive integrated moving average (ARIMA) frameworks. 

These findings confirm the in-sample test results and suggest that short-dated implied 

volatility are better characterised as a mean-reverting process while the random walk 

process may better capture time series variation in long-dated implied volatility. The 

results are broadly consistent with the recent innovations in option pricing methodology 

of Sabanis (2003) who assumes volatility follows a mean-reverting process, at least for 

maturities of one week and one month. 

 

Chapter 5 extends the key findings of Chapter 4 by examining the profitability 

of volatility trading using simple technical trading strategies. This is largely motivated 

by the evidence of random walk violations in the volatility process documented in 

Chapter 4. The trading rules assume that when the prevailing volatility price departs 

considerably from its moving average price, a buy or sell trade will emerge. Two main 

contributions stem from Chapter 5. First, this chapter documents profitability of option 

combination trades including straddles and risk reversals which have received little 

attention in the literature. Second, consistent with Brock, Lakonishok and LeBaron 

(1992) the results presented in this chapter indicate that volatility trading using moving 

average trading rules can result in profitable trades even after adjusting for transaction 

costs. In particular, the buy straddle trades generate positive holding-period returns for 

three of the four currency pairs tested. The evidence is particularly strong for the 

USD/JPY straddles. Conversely, risk reversal trades produced less compelling outcomes 

with lower winning trades and holding-period returns. Even so, positive holding-period 

returns still exist for these trades.  
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The dynamics of the volatility smile anomaly are examined in Chapter 6. Little 

empirical research exists with respect to how the volatility smile evolves over time. This 

chapter examines the relationship between different proxies for volatility smile 

dynamics and the anticipated volatility for the GBP/USD, EUR/USD, AUD/USD and 

USD/JPY currency pairs. The volatility smile is constructed daily using a unique trader-

quoted implied volatility dataset. This chapter provides two important findings with 

regard to the dynamics of the volatility smile. First, the results indicate that the 

dynamics of the volatility smile are related to variation in risk of the underlying 

currency. Second, the analysis also reveals significant feedback between the curvature 

of the volatility smile and the anticipated volatility of the underlying currencies. 

Consistent with recent literature ( for example, Ederington and Guan (2002) and Bollen 

and Whaley (2004)), the results show that the behaviour of the volatility smile is related 

to trading activities induced by anticipated changes in foreign exchange risk.   

 

The analysis presented in Chapter 7 extends the empirical work on volatility 

forecasting of Christensen and Prabhala (1998) and Covrig and Low (2003) using 

information subsumed in the volatility smile dynamics. This is the first empirical 

research to investigate how the shape of the volatility smile may affect the forecasting 

ability of implied volatility forecasts. The rationale for incorporating the volatility smile 

dynamics is based on the results from Chapter 6 which indicate that the smile dynamics 

are related to the future volatility of the underlying currency. Two important 

contributions to the existing literature on volatility forecasting are offered in this 

chapter. First, the curvature and slope coefficients of the volatility smile are strongly 

correlated with at-the-money implied volatility. In particular, these coefficients are both 

significant and negatively related to the level of implied volatility. This finding is 
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consistent with the results of Pena, Rubio, and Serna (1999). Furthermore the chapter 

also finds significant relationship between the shape of the volatility smile and the 

realised volatility. Second, the validity of the unbiasedness and efficiency hypothesis is 

found to be related to the shape of the volatility smile. When the smile effect is more 

pronounced, the predictive ability of the implied volatility deteriorates. Chapter 8 

concludes with the key findings of this dissertation and future research directions are 

also offered. 
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CHAPTER 2 - AN OVERVIEW OF THE OVER-THE-COUNTER 
CURRENCY OPTION MARKET 
 

2.1 Introduction 
 

This chapter provides an overview of the over-the-counter foreign exchange 

derivative market with emphasis on aspects of the currency option market that are 

relevant to this dissertation. First it traces the growth of the market. This is followed by 

a discussion of the standard market conventions for currency option trading and a 

review of the two data sources used in this dissertation. The chapter concludes by 

presenting some unique features of over-the-counter currency option contract, when 

compared with the exchange-traded counterparts. 

 

Derivative contracts are traded in privately negotiated over-the-counter market 

or on organised exchanges. The origin of the over-the-counter call option on olive 

presses can be traced back to the dawn of civilisation at around 350 B.C. according to 

the Greek philosopher Aristotle3. Today, derivative instruments play a very crucial role 

in financial markets all around the world. They are used by various market participants, 

including portfolio managers, hedgers and even central bankers for protection against 

adverse movements in the underlying assets. Speculators are also involved in this 

market, often taking the other side of the contract in the hope of making gains. This, in 

turn, provides liquidity to the derivatives markets.    

                                                            
3 A brief discussion of this event is provided in Whaley (2003).  
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During his Nobel Prize lecture on 9th December 1997, Myron Scholes argued 

that the over-the-counter derivative industry will continue to grow and evolve in 

sophistication. He also highlighted that academic research into this market will become 

increasingly important over time due to the dynamic nature of the industry4. Indeed the 

size of the over-the-counter derivative market has grown tremendously - the total 

notional amount of this market grew by approximately seven times since 1998 to USD 

591.96 trillion5 in December 2008. In comparison, the world gross domestic product 

stood at USD 60.12 trillion6 over the same period. The size of the over-the-counter 

derivative market is also several times larger than the global outstanding value of stocks 

and bonds which is estimated to be around USD 115.6 trillion7.  

 

Currency option contracts were first introduced in the organised exchange 

market through the Philadelphia Stock Exchange (PHLX). Option contracts on the 

British pound were first introduced in December 1982, followed by the Canadian dollar, 

German mark, Japanese yen and Swiss franc in early 1983 8  (Smithson, 1998). In 

response to the introduction of currency option trading on the PHLX, commercial banks 

offered their clients customised currency options in the over-the-counter market.  

 

The over-the-counter currency option market has become very prominent in 

size since the mid-1980. In 1984, the British Bankers’ Association established a 

working group to draw up the terms and conditions of the British London Interbank 

Currency Option Market (Hicks, 2000). This documentation received universal 

                                                            
4The lecture was subsequently published. See Scholes, Myron, S.(1998) The American Economic Review, 88(3). 
5See Table 19 on pp.103 of the Statistical Annex, BIS Quarter Review, June 2009. 
6 World Bank Development Indicators database, World Bank, 1 July 2009  
7 International Financial Services, London (IFSL), extracted from the June and July 2009 Equity Markets and Bond 
Markets Reports. Bonds and stocks had notional values of USD 83 trillion and USD 32.6 trillion respectively in 
2008.  
8 Options on the Australian dollar became available in 1987. 
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acceptance in the following years 9 . By 1987, trading in this market became very 

efficient through ‘volatility trading’ and delta-hedging10. Its rapid growth is largely 

attributable to the highly customised nature of the contracts where the strike price and 

the transaction size can be negotiated between a customer and the bank. 

 

2.2 Size and Structure of The Over-the-counter Foreign Exchange Derivative 
Market 

 

Due to the decentralised nature of the over-the-counter market, collection of 

market information is an extremely onerous task. Since 1998, however the Bank for 

International Settlements (BIS) has been actively involved in the collection of global 

financial markets statistics through regular surveys 11 . Amongst other statistics, the 

survey provides detailed information on over-the-counter, as well as exchange traded, 

derivatives relating to the size and structure of these markets.   

 

Figure 2-1 displays the aggregate notional amount of the over-the-counter 

foreign exchange derivatives classified according to instrument types. The notional 

amount as estimated by the Bank for International Settlements in December 2008 was 

USD 49.8 trillion. This represents the total outstanding contractual payment in the 

derivatives markets on the reporting date and gives an indication of the equivalent 

positions in the underlying spot exchange rates markets.  

 

 

                                                            
9 The London Interbank Currency Option Market (LICOM) Terms and Conditions was subsequently renamed the 
International Currency Options Market (ICOM) Terms and Conditions due to its world-wide appeal. 
10 Ibid, p.3 
11 This survey was introduced by the central banks of the G10 countries in 1998 to track the size and structure of the 
global financial markets.  
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Figure 2-1: Over-the-counter Foreign Exchange Derivatives by Instruments 

 

0 5000 10000 15000 20000 25000 30000
Forwards & forex swaps

Currency swaps
Currency Options Gross Market Value

Notional Amount

Source: Table 19 of BIS Quarterly Review, June 2009. The notional amount and 
market value are reported in billions of U.S. dollars. 

 

The total gross market value for the same foreign exchange derivatives is much 

less. The global foreign exchange derivatives market is estimated to have a total gross 

market value of USD 3.9 trillion which is approximately 8 percent of the total notional 

amount of the over-the-counter foreign exchange derivatives. This represents the 

liquidation value of these contracts and is a measure of market risk exposure in these 

derivatives instruments12.  

 

Forward and foreign exchange swap contracts are the most common form of 

foreign exchange derivatives. This is followed by currency swaps and currency options. 

For currency option contracts, the global notional amount was USD 10.5 trillion in 

December 2008. This represents about 21 percent of the total notional amount for 

foreign exchange derivatives and reflects a very large and liquid market.      

 

 

                                                            
12 The gross market value approach provides more useful information from a risk management perspective.  
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Figure 2-2: OTC Currency Derivatives by Instrument and Maturity 

0 5000 10000 15000 20000 25000 30000
1 year or less

Between 1 & 5 years 

Over 5 years
OptionsForwards & swaps

 

Source: Table 20C of BIS Quarterly Review June 2009. The notional 
amount is reported in billions of U.S. dollars. 

 

Figure 2-2 shows the foreign exchange derivatives by maturity buckets. The 

use of short-dated contracts with maturities of one year or less is most common across 

all derivative types. This suggests that short-dated contracts are more liquid than the 

long-dated contracts. In comparison, short-dated currency options are much smaller in 

notional amount than forwards and swaps. However, relative to the short-dated 

maturities, currency options with maturities of one to five years occupy a larger 

proportion of the maturity bucket, which is about 40% of forwards and swaps. Overall, 

the one to twelve month options have the greatest market liquidity while it is also 

possible to negotiate a contract with maturity of five years and above.    

 

The global positions of over-the-counter foreign exchange derivatives by 

currency type are provided in Figure 2-3. The data includes both currency sides of every 

foreign exchange transaction. Not surprisingly, the U.S dollar has the highest notional 

amount, followed by the euro, Japanese yen and pound sterling. These currencies 

contribute about 80 percent of the global notional amount.  This pattern is consistent 

with the popularity of the underlying currencies in which most of the global foreign 
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exchange transactions are denominated. The notional amount for the Australian dollar is 

slightly below the Canadian dollar which had a notional amount of USD 127.5 billion in 

December 2008.  

 

Figure 2-3: OTC Currency Derivatives by Currency Type 
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Source: Table 20B of BIS Quarterly Review June 2009. The notional 
amount is reported in billions of U.S. dollars. 

 

 

2.3 Growth of Over-the-counter and Exchange Traded Currency Options 
 

Figure 2-4 traces the size of the over-the-counter and exchange traded currency 

option contracts in notional amounts. A similar upward growth pattern can be noted in 

both markets although, on average, the size of the over-the-counter currency option 

market is about one hundred times larger than the exchange traded currency option 

market. This suggests that a large majority of currency option trading activities take 

place in the over-the-counter currency option market rather than on organised 

exchanges. In terms of the global derivative market share, the over-the-counter 

derivative market has also grown steadily from 85.2% in December 1998 to 91.10% in 
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December 200813. Taken together, the limited growth in the exchange-traded currency 

option markets reflects intense competition between the two market types. The growth 

pattern for the exchange-traded currency option market is in line with the over-the-

counter currency option. Such patterns are consistent with the results of Cincibuch 

(2004) who finds that intensive arbitrage activity occurs between currency options 

traded on organised exchanges and those traded in the over-the-counter market.         

 

Figure 2-4: Growth of OTC and Exchange-traded Currency Options 
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Source: Table 19 and Table 23A of BIS Quarterly Review, June 2009. 
The notional amount is reported in billions of U.S. dollars. 

 

 

 

 

 

 

                                                            
13 These figures are estimated from Tables 19 and 23A of the BIS Quarterly Review, 2009. See page 103 and 108 of 
the survey.  



16 
 

2.4. Volatility Trading in the Over-the-counter Currency Option Market 
 

Currency option traders quote option prices in terms of implied volatility 

instead of dollar premium14. This is also known as “quoted implied volatility” which is 

sometimes referred to by traders15in the interbank currency option market. For instance, 

on a given trading day, a trader may provide a volatility quote for the one-month 

EUR/USD at-the-money forward call option by stating “one-month at-the-money 

forward dollar call are 11 at 11.5”, meaning the trader is prepared to buy the call at the 

implied volatility of 11 percent per annum and sells it at a higher implied volatility of 

11.5 percent per annum. Quoting implied volatility facilitate the comparison of relative 

option values across different contract specifications.  

 

Once a deal is struck between the bank and the customer, the quoted implied 

volatility is then entered into the Garman-Kohlhagen (1983) currency option pricing 

model with the other contract details (eg agreed strike price) so that the dollar premium 

can be calculated. The application of this standard market convention is in contrast with 

the implied volatility literature since the option’s implied volatility is known before the 

option dollar premium is calculated. Specifically, in the implied volatility literature, the 

model price of an option contract is set equal to the observed market price so that the 

implied volatility parameter can be determined using the Garman-Kohlhagen (1983) 

model16. In practice, the use of the term “quoted” implied volatility does not alter the 

original concept of implied volatility - it represents the market assessment of the 

                                                            
14 This gives rise to the term “volatility trading” in the over-the-counter currency option market. 

15 These are mostly market makers who provide their customers with bid and ask quotes at which they are willing to 
buy or sell options.  
16 Mayhew (1995) provides a detailed discussion on implied volatility estimations.  
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underlying spot exchange rate volatility over the remaining maturity17of the option 

contract.  

 

Another distinct feature of the implied volatility quoting convention used by 

traders in the over-the-counter currency option market relates to the moneyness of an 

option contract. Instead of providing the strike price and spot exchange rate that 

correspond to each maturity, traders provide implied volatility quotes for a given option 

delta. The delta of an option is defined as the rate of change of the option value with 

respect to the change in the spot exchange rate. The delta for a call equals N(d1) in the 

Garman-Kohlhagen (1983) currency option pricing model18 while the delta of a put is 

defined as N(d1) minus one (Hull, 2006). Therefore for a given strike price and 

maturity, if a call option has a delta of 0.7, the delta for a put will be -0.319.  

 

Traders in the over-the-counter currency option market express delta in 

percentage terms instead of decimal form. The negative signs for put option deltas are 

also omitted in practice. For example a “35 delta put” for a one-month EUR/USD may 

have an implied volatility of 10 percent per annum. This means the put option has a 

delta value of -0.35 for the dollar premium calculation using the Garman-Kohlhagen 

(1983) pricing model. The measure of moneyness in the form of delta is related to the 

                                                            
17 This is sometimes referred to as “tenor”. 
18 This model is described in Section 5.5.1 of Chapter 5. For European put options, -1≤ δ ≤ 0.0. 
19  This relationship can be shown mathematically using the put-call parity. Under the put-call parity,                           

C = P + S - T)r1(
X

+
, where X= strike price, r = risk-free interest rate and T is time to maturity. By treating the 

present value of the strike price as a constant, differentiating the put-call parity with respect to S gives 1
S
P

S
C

+∂
∂

=∂
∂

.  
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risk management of traders’ open positions against price risks, which need to be delta-

hedged when an option is purchased or sold in the over-the-counter market20.      

    

2.4.1 At-the-money Forward Straddles 
 

Although customisation is available in the over-the-counter currency option 

market, there is also a wide variety of currency options traded in combinations21. The 

most common trade is known as a “straddle” which involves a combination of an “at-

the-money forward” call and an “at-the-money forward” put with the same maturity. 

These European calls and puts share the same strike price which is equal to the 

prevailing forward exchange rate. In terms of moneyness, the at-the-money forward has 

a delta value of 0.50. As the call and put move away from the common strike price with 

a delta value of 0.5 (or X / F ≈ 1.0), they become more in or out-of -the-money.  

Figure 2-5: AUD/USD At-the-money Forward Straddle 
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Payoff diagram of AUD/USD at-the-money straddle at maturity: Spot exchange rate     
= AUD/USD 0.6463 (5 September 2003), 1-month AUD BBA-LIBOR = 4.8025% p.a.,    
1-Month USD BBA-LIBOR = 1.12% p.a., at-the-money implied volatility = 10.34% 
p.a. 

 

                                                            
20 Traders provide the bid and ask quotes upon demand but do not know which position would be taken by their 
customers until the contracts have been finalised.   
21 The popularity of combination trades in the over-the-counter may be attributable to the highly liquid market where 
even out-of-the money options are actively traded. For instance, trading of 25-delta calls and 25-delta puts is very 
common. 
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The payoff diagram of the AUD/USD straddle at maturity has a v-shaped 

pattern as illustrated in Figure 2-5. The long call and put positions have the same strike 

price of AUD/USD 0.64855 (which corresponds with the delta value of 0.522). On 5 

September 2003, the spot exchange rate was AUD/USD 0.6463 and the respective 

BBA-LIBOR interest rates for the Australian and the U.S dollar were 4.80 percent per 

annum and 1.12 percent per year. The observed implied volatility for the 50-delta option 

on the same day was recorded as 10.34 percent per annum. Using these parameters, the 

estimated premium for the put and call was approximately USD 0.0076 per Australian 

dollar23. Thus the estimated break-even points for the call and put are approximately at 

the exchange rates of AUD/USD 0.6562 and AUD/USD 0.640924 respectively. Outside 

these break-even points, the straddle will generate profitable outcomes. The difference 

between these break-even prices is USD 0.0152. This difference also reflects the total 

premium incurred for the long call and long put positions.   

 

2.4.2 Strangle Trades 
 

The payoff diagram for the “strangle” is displayed in Figure 2-6. Similar to the 

straddle, this combination is comprised of two long positions – one long position in a 

European call and one long position in a European put option. However, the call and put 

do not share a common strike price. In this case, the 25-delta call and the 25-delta put25 

                                                            
22 This is also referred to as “50-delta” according to market convention. 
23 The premium is estimated using the Garman-Kohlhagen (1983) currency option pricing model. The total premium 
due depends on the notional amount of the contract. If the call option allows the holder to purchase 100 million 
Australian dollars one month from the inception of the contract, then the total premium due is 2x0.0076x 
100,000,000 = USD 1.511 million. All things being equal, an implied volatility of 14% p.a. would increase the total 
premium to USD 2.056 million.  
24 For call options, at break-even point, SBE – X – P = 0. Therefore, SBE = AUD/USD 0.64855 + AUD/USD 0.0076 ≈ 
AUD/USD 0.6562. For puts the break-even point is estimated as X-P = AUD/USD 0.64855 - AUD/USD 0.0076≈ 
AUD/USD 0.6409. 
25 This is also equivalent to a 75-delta call which is in-the-money. See the discussion in the previous section. 
Estimation of the strike price is explained in Chapter 5 of this dissertation. 
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are used to construct the strangle trade. The payoff diagram resembles a u-shaped 

pattern in contrast with the straddle trade. These options have strike prices of 

AUD/USD 0.6623 and AUD/USD 0.6333 with moneyness values, S/X of 0.9765 and 

1.0168 respectively.  

Figure 2-6: AUD/USD Strangle 
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Payoff diagram of AUD/USD 25-delta strangle at maturity: Spot exchange rate           
= AUD/USD 0.6463 (5 September 2003), 1-month AUD BBA-LIBOR = 4.8025% 
p.a., 1-Month USD BBA-LIBOR = 1.12% p.a., 25-delta call implied volatility = 
10.783% p.a., 25-delta put implied volatility =10.393% p.a. 

 

The total premium incurred is USD 0.0054 per Australian dollar which is relatively 

cheaper than the straddle trade. This is not surprising as a larger movement is needed in 

the underlying spot exchange rate before the options start to move in-the-money. The 

gap between the break-even points is USD 0.0344 which is about two times larger than 

the straddle trade. The holder of the strangle will lose both premiums if the underlying 

spot exchange rate closes within the break-even strike prices at the expiration of the 

option contracts. In practice, traders are often involved in the buying or selling out-of-

money options and the strangle combination is quoted as a spread between the at-the-

money forward implied volatility and the 25-delta put or call implied volatility. Thus if 

the difference between these quoted implied volatility departs from zero, the degree of 

curvature for the volatility smile can be measured (Malz, 1997).  
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2.4.2 Risk Reversal Trades 
 

The risk reversal combination is constructed by a simultaneous purchase and 

sale of out-of-money options of equal moneyness. This is considered to be an 

aggressive directional trade (DeRosa, 2000). For instance, a risk reversal trade can be 

created by taking a long position in a 25-delta call and a short position in a 25-delta put. 

Alternatively, the combination can also be constructed by taking a short position in the 

call and a long position in the put option.  

 

The payoff from a risk reversal combination (long call and short put) is shown 

in Figure 2-7 for the one-month AUD/USD trade. In this case, the trader receives a 

premium from the put and the put moves in-the-money when the spot exchange rate is 

above the break-even price of AUD/USD 0.630926 while the long call position will 

move in-the-money above the break-even price of AUD/USD 0.6653 at maturity. 

Between the two break-even points, the net cost of the combination is close to zero27.  

 

 

 

                                                            
26 This is estimated as –(X-SBE-P) = 0, SBE = AUD/USD 0.6309. 
27 The estimated premium incurred for the call option is 0.0030 per Australian dollar and 0.0024 per Australian dollar 
is received from short put position. The net position over this range is therefore -0.0030 + 0.0024 = loss of USD 
0.0006.   
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Figure 2-7: 25-delta Risk Reversal 
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Payoff diagram of AUD/USD 25-delta risk reversal at maturity: Spot exchange rate = 
AUD/USD 0.6463 (5 September 2003), 1-month AUD BBA-LIBOR = 4.8025% p.a.,  
1-Month USD BBA-LIBOR = 1.12% p.a., 25-delta call implied volatility = 10.783% 
p.a., 25-delta put implied volatility =10.393% p.a. 

 

Market traders provide risk reversal quotes in terms of net volatility spread 

between the implied volatility for the put and call options of the same moneyness. For 

instance a one-month 25-delta call may have an implied volatility of 10 percent per 

annum while a put with of the same delta value and maturity may be priced at 11.2 

percent per annum. Thus the one-month risk reversal on the AUD/USD is quoted as 1.2 

percent per year. Since the put option is bid over the call option, the Australian dollar is 

expected to depreciate against the U.S. dollar over the maturity of the option contracts.            

 

2.5 Data from the Over-the-counter Currency Option Market 
 

This section provides a brief examination of implied volatility data obtained 

from two sources28: the British-Bankers’ Association-Reuters (BBA-Reuters) in London 

and UBS Investment Bank in Switzerland29. The BBA-Reuters data is used in Chapters 

Four and Five while Chapter Six and Seven use data from UBS. The implied volatility 
                                                            
28 Statistical examinations of the implied volatility data are provided in Chapters 4, 5, 6 and 7.  

29 The author thanks John Ewan of BBA and Perio Musio of UBS. 
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quotes for four selected major currencies, namely, the GBP/USD, the EUR/USD, the 

AUD/USD and the USD/JPY currency pairs of various maturities and moneyness are 

obtained from these sources. 

 

2.5.1 The BBA-Reuters Implied Volatility Data  
 

The British-Bankers’ Association-Reuters implied volatility data comprises of 

the average daily implied volatility30 of twelve contributors in the London interbank 

market31. These contributors are major market makers in the London over-the-counter 

currency option market. The data consists of at-the-money forward implied volatility of 

European options for six different maturities: one-week, one-month, three-month, six-

month, one-year and two-year. Strangles and risk reversals are available in three 

different maturities of one-month, three-month and one-year 32 . These series are 

available for thirteen different currency pairs.  

 

The implied volatility data are supplied daily by the contributors between 3:30 

pm and 3:50 pm London time. The average of each series is calculated and this forms 

the benchmark for the currency option implied volatility in the over-the-counter market. 

The establishment of the BBA-Reuters dataset promotes market transparency and 

allows independent valuation of currency option contracts consistent with the 

                                                            
30 The average bid and ask implied volatility are supplied by the contributors.  
31 While banks customise option deals for their customers, an active interbank market also exists where traders are 
linked with several currency option brokers.  
32 Amongst others, the contributing banks include BNP Paribus, Barclays Capital, UBS AG, HSBC and Citibank. 
These are major market makers in the over-the-counter currency option market. 
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requirements of the International Accounting Standards (IAS) 39 on fair value of 

financial instruments33.  

 

The option-implied volatility data is also useful for the estimation of foreign 

exchange rates probability distribution and the volatility smile. McCauley and Melick 

(1996) and Malz (1997) showed how the at-the-money forward implied volatility, the 

strangle and the risk reversal data can be used jointly to recover market traders’ 

probability distribution. These volatility data can also be used to estimate the volatility 

smile for currency options. An estimated volatility smile, using a second order Taylor’s 

approximation method, is displayed in Figure 2-834. More importantly, for the purpose 

of this dissertation, the at-the-money forward implied volatility of different maturities 

can be used to examine the behaviour of implied volatility across the term structure.   

 
 
 

Figure 2-8: AUD/USD One-Month Implied Volatility on 1 October 2003  
2
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Data Source: BBA-Reuters, London. Used with permission. “ATM” represents at-the-
money forward implied volatility, “RR” is the risk reversal quote, “STR” is the 
strangle quote and “δ” denotes the delta value. 

                                                            
33 The IAS 39 Fair Value and Hedging provision became operational in the European Union countries in 2005. The 
equivalent accounting standard in the United States is FAS 133.  
34 A detailed discussion is provided in Malz (1997). 
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Figure 2-9 displays the time series of the at-the-money implied volatility series 

for the one-month, three-month, six-month and two-year maturities35for the EUR/USD 

currency pair. Evidently, the volatility for the EUR/USD currency pair are not constant 

over time and exhibit differences across maturities.  

 

The variation in the implied volatility levels is greater for the short-dated series 

than for the long-dated series. For instance, one-month implied volatility varied between 

6.87 percent per annum and 12.75 percent per annum while the two-year series 

fluctuates from 8.76 percent per annum to a peak of 12.48 percent per annum. The 

pattern of the implied volatility contradicts the theoretical assumptions of the Garman-

Kohlhagen (1983) currency option pricing model but is consistent with the studies on 

term structure of implied volatility by Xu and Taylor (1994) and Campa and Chang 

(1995) that use currency option data.  

 

Figure 2-9: EUR/USD Implied Volatility Term Structure 
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        Data Source: BBA-Reuters, London. Used with permission. 

                                                            
35 For brevity, the one-week and one-year implied volatility are not shown in Figure 2-9. 
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2.5.2 The UBS Implied Volatility Data 
 

The daily data from UBS Investment Bank consists of one-month implied 

volatility quotes36for different values of delta. These are daily implied volatility quotes 

for European call and put options collected at 6:00 p.m. New York trading time. This 

is a more refined dataset and is useful for investigating the behaviour of the volatility 

smile in the over-the-counter currency option market. For any given day of the sample 

period, a cross-section of nineteen data points can be observed for each currency pair. 

These are implied volatility that correspond with delta values of 5-delta, 10-delta, 15-

delta, 20-delta, 25-delta, 30-delta, 35-delta, 40-delta, 45-delta for put options; and 5-

delta, 10-delta, 15-delta, 20-delta, 25-delta, 30-delta, 35-delta, 40-delta, 45-delta for 

call options. The 50-delta implied volatility are also available.  

 

Figure 2-10 provides the volatility smile constructed using implied volatility 

for call and put options that correspond with different values of delta.  In contrast with 

the volatility smile constructed using the BBA-Reuters dataset in Figure 2-8, the 

volatility smile constructed using the UBS implied volatility data avoids the use of 

interpolation and thus provides a richer cross-sectional representation of volatility 

smile on any given day of the sample period. The u-shaped pattern is very pronounced 

and is consistent with the analysis of implied volatility smiles found in Taylor and Xu 

(1994). The quadratic approximation for the volatility smile seems to fit the currency 

option market data quite well. Again, the existence of a u-shaped pattern across 

                                                            
36 These are averages of bid and ask quotes. 
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moneyness lends support for the violation of the constant volatility assumption 

implicit in the Garman-Kohlhagen (1983) currency option pricing model.    

 

Figure 2-10: AUD/USD One-month Implied Volatility on 1 October 2003 
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Data Source: UBS Investment Bank, Switzerland. Used with permission. 

 

 

2.6 A Comparison of Contract Features 
 

There are several differences between options traded in the over-the-counter 

markets and the exchange-traded equivalents. The main differences between the over-

the-counter and exchange-traded currency options are summarised in Table 2-1. In 

essence, the over-the-counter markets are attractive because they offer tailor-made 

option contracts to their customer. The highly flexible nature of these contracts allows 

banks to offer option contracts in numerous currencies with any strike price or maturity 

to their customers. Furthermore odd lots are available from this market in contrast with 

the highly standardised contracts offered on the exchange traded currency option 
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market. This means that market participants are able to hedge a specific amount of 

foreign exchange risk over any horizon or any strike price. On the other hand, the 

privately negotiated deal between the bank and the customer in the over-the-counter 

market suggests that there is a lack of price transparency – it is difficult for the customer 

to know for certain if the premium charged by the bank equals a fair market value. In 

contrast, the option premium for contracts traded in centralised exchanges is publicly 

available. 

Table 2-1: A Comparison of Over-the-counter Currency Options and Exchange-traded Currency 
Options 

   
Attribute Over-the-counter Option Exchange-traded Options 

  
Access to Contract Through a bank Traded on PHLX, CME and FINEX 

through a broker 

Strike Price Negotiated between a bank and the customer Limited strike prices 

Underlying Spot 

 

Any currency pair that has a spot and forward 
market 

 

Limited to currency pairs listed on 
exchanges 

Regulation Not regulated by a single regulatory body but 
governed by codes of conduct37 

Regulated by the exchanges and 
clearinghouses 

Transaction Size Negotiable Standardised 

   

Option Type European American 

   

Credit Risk Customer at risk of bank defaulting No default risk, clearinghouse becomes 
counterparty 

Trading Method Use of telephone, 24-hour market Open outcry, restricted trading hours 
   

Brokerage None on bank Mandatory 

   

 

Source: Adapted from Sutton (1990) and Hicks (2000). 
                                                            
37 The International Swaps and Derivative Association provides standard legal documents for most of the over-the-
counter contracts. Further, indirect supervision is also in place through bank capital adequacy requirements for off-
balance sheet activities under “Pillar 1” of the Basel II Accord. 
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2.7 Conclusion 
 

This chapter provides a brief overview of the over-the-counter currency option 

market. The over-the-counter currency option market has grown significantly in size 

and is substantially larger than its exchange-based competitors. Such explosive growth 

provides an important justification for conducting empirical research into this market. 

Further, implied volatility data obtained from this market is available for empirical 

analysis of currency options traded on the over-the-counter market. Such empirical 

investigation creates a better understanding of implied volatility and option valuation as 

well as the various trading activities that take place in these markets. 
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CHAPTER 3 - LITERATURE REVIEW 
 

3.1 Introduction 
 

Empirical studies on volatility of asset price returns are crucial to many aspects 

of the financial markets. It is not surprising that this is a subject of interest amongst the 

investment and academic communities as evidenced by the extensive body of literature 

devoted to the study of volatility modelling and forecasting. From a practical 

standpoint, if market volatility is expected to increase, portfolio managers may purchase 

more insurance or rebalance their portfolio positions in order to reduce their exposure to 

particular classes of asset. Furthermore, since investors have different risk preferences, 

predictable volatility suggests that a more appropriate and effective asset allocation 

strategy can be designed to achieve investor risk-return trade-off requirements.  

 

In the practice of risk management, the volatility parameter serves as an 

important proxy for financial asset risk which is frequently estimated for a single 

security or a portfolio of assets over a given period of time. The measurement of such 

risk first requires the estimation of asset price volatility. The estimated volatility is then 

used as an input parameter for probability models, such as the benchmark Value-at-

Risk38 (VaR) measure or other simulation-based procedures that provide risk estimates 

for an expected maximum loss at a given confidence level over a target time horizon39. 

                                                            
38 An extensive review of this methodology is provided by Jorion (2000). 
39 Under the Basel Accord, the VaR estimate is calculated with 99 percent confidence interval over a 10-business day 
period. Under “Pillar 1” of the Basel II Accord banks are required to set up an internal model to forecast their 
financial risk exposure. 
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These procedures have become industry-standard for internal and external risk reporting 

and are now reported by financial institutions all around the world.    

 

An accurate representation of market volatility is also important for the pricing 

of derivative instruments whose trading volumes have grown sharply since the 1980s. 

Black and Scholes (1973) developed the well-known option pricing formula that 

depends on five input parameters, namely, the spot price of the underlying asset, the 

strike price, the risk free rate of interest, the time to maturity, and the volatility of asset 

price returns. All of these parameters are directly observable, with the exception of the 

volatility, which must be estimated. Thus, the usefulness of the Black-Scholes model 

and its variants rests upon the forecast quality of the volatility parameter. Indeed, it is 

shown in Hull (2006) that the price of an option is a monotonically increasing function 

of volatility. This is true for both call and put options.  

 

In an early paper by Black and Scholes (1972), it was shown that a better 

estimate of the volatility parameter can lead to more accurate pricing of option contracts 

using their formula 40 . Consistent with this view, Rendleman and O’Brien (1990) 

analysed the effect of volatility mis-estimation on a synthetic portfolio insurance41 

program and show that understatement of the volatility parameter is associated with an 

under-insured portfolio while overestimation of the underlying asset’s volatility results 

in the portfolio manager purchasing more insurance than is needed.  

 

 

                                                            
40 See pp.408-409 of Black and Scholes (1972). 
41 This involves keeping the portfolio’s delta position to be very close to the delta position of the desired put option. 
See Smithson (1998). 
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The literature on volatility modelling and estimation can be broadly classified 

into two strands: an historical-based approach and an option-based approach. Under the 

former, volatility is estimated from historical price returns while the latter infers 

volatility from traded option prices. The development of the historical-based approach 

is largely attributed to the early work of Engle (1982) 42  with estimation of the 

conditional asset return volatility using an autoregressive conditional heteroskedasticity 

(ARCH) model. A multitude of variants and extensions to the ARCH model have been 

developed since the groundbreaking work of Robert Engle, including inter alia the work 

of Bollerslev (1986) on the generalised autoregressive conditional heteroskedasticity 

(GARCH) model, the integrated GARCH(IGARCH) model of Engle and Bollerslev 

(1986), the exponential GARCH (EGARCH) model of Nelson (1991), the threshold 

ARCH(TARCH) model of Zakoian (1994) and the quadratic ARCH (QARCH) model 

of Sentana (1995) and the fractional integrated exponential GARCH(FIEGARCH) of 

Bollerslev and Mikkelsen (1996). These models have generally assumed that the 

volatility parameter is time-varying. In other words, the variances of the error terms are 

not equal - the error terms may be larger in some periods and smaller in others. The 

methodology rests upon the notion that asset price returns observed in the recent past 

might provide information about the conditional variance for the current period. 

Parameter estimation for these models usually involves the implementation of least 

squares or maximum likelihood (Engle, 1982), where with sufficiently, large return time 

series43, estimated parameters44 converge to their true values.   

                                                            
42  The ARCH model was initially used to model inflation rates. Bollerslev (2001) noted that improvement in 
computing power and the availability of high quality data have allowed wide applications of these models in the field 
of finance. 
43 For instance, Jorion (1995) uses approximately 1500 observations of daily spot exchange rate data to estimate the 
GARCH parameters. 
44 For instance, the implementation of the popular GARCH (1,1) model requires estimates of the average variance 
rate (ω), the coefficient of the lagged conditional variance (α) and the correlation coefficient of the lagged conditional 
variance (β). 
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The option-based approach to volatility estimation was first formalised by 

Henry Latane and Richard Rendleman when they published an empirical study on 

volatility estimation titled ‘Standard Deviations of Stock Price Ratios Implied in Option 

Prices’ in 197645. The paper shows that volatility implied in call option prices are 

significantly correlated with the actual volatility of the underlying stocks over the 

corresponding periods. The volatility parameter imputed from an option price using 

their estimation procedure is known as the ‘implied volatility’ or the ‘implied standard 

deviation’ of the option46 . In essence, the implied volatility of an option contract 

represents a trader’s view of the market sentiment over the remaining life of the option 

contract. Thus its forward-looking nature can be viewed as an ex-ante approach to 

volatility estimation.  

 

The procedure for volatility estimation using option price is distinctly different 

from the historical approach. Specifically, the estimation of volatility does not require a 

long history of asset price returns or complex econometric procedures. This is a 

relatively straight-forward approach that uses observed option prices and the 

corresponding input parameters from an option contract, including the prevailing risk-

free interest rate, the option time to expiration, the price of the underlying asset and the 

stipulated strike price.  Given the observed option price and the input parameters, one 

can recover the corresponding value of the volatility parameter using the Black-Scholes 

(1973) formula and some iterative search algorithm.  

 

Recent empirical studies suggest that implied volatility of traded option 

contracts are superior to the historical-based estimates for the prediction of future 
                                                            
45 See Latane and Rendleman (1976). 
46 The term implied volatility is used interchangeably with implied standard deviation.  
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volatility. For example, studies by Jorion (1995) and Covrig and Low (2003) both show 

that option-implied volatility subsume all information contained in time series models in 

the currency market. Similar results are also reported in the stock market by Jiang and 

Tian (2005) using model-free implied volatility estimates.  Thus, implied volatility can 

be used to monitor market behaviour over a given time period. Indeed, central banks 

such as the Bank of England, provide regular updates of market sentiment using an 

option-implied probability density functions, estimated from implied volatility,47 that 

correspond with various strike prices and different time intervals. 

 

This chapter aims to survey the main literature pertaining to option-implied 

volatility with particular emphasis on currency options. It highlights two key areas of 

the literature – the time series and the moneyness characteristics of implied volatility. 

Since the volatility parameter that is required to price an option contract cannot be 

directly observed, a number of estimation procedures have been suggested in the 

literature. The theoretical basis and development of these procedures are briefly 

presented in Section 3.2. Measurement errors due to non-synchronous trading and 

market frictions have led to a number of authors employing quoted implied volatility 

data from the over-the-counter currency option market. These issues are discussed in 

Section 3.3. Studies on modelling the time series behaviour of implied volatility are 

discussed in Section 3.4 while the moneyness characteristic of implied volatility known 

as the ‘volatility smile effect’ is discussed in Section 3.5. Several explanations for the 

existence of such anomalies are also presented. The conclusion of this chapter is offered 

in Section 3.6. 

                                                            
47 See Clews, Panigirtzoglou and Proudman (2000) for the methodology adopted by the Bank of England for the 
estimation of the probability density function.  
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3.2 Implied Volatility Estimation 
 

In their study on the option pricing framework, Black and Scholes (1973) 

assumed that the volatility of the underlying stock remained constant over the maturity 

of the option contract. The volatility parameter was estimated using historical stock 

price returns calculated as the annualised standard deviation of the continuous 

compounded returns48. It was shown that the model systematically overvalued stocks 

with high variance while low variance stocks are largely undervalued. They also 

demonstrated that when the same test was repeated using actual variance of price 

returns over the maturity of the option contracts, the model provide estimates of option 

prices more accurately.  

    

As an alternative to historical volatility estimation, the market price of an 

option contract can be set to equal the theoretical option price to determine the volatility 

of the underlying asset. This relationship is expressed in Equation 3-1, where Mkt
iTC ,  is 

the observed call option market price with strike price Xi at time t with maturity T. The 

corresponding spot price, model price, risk-free rate of interest and volatility are 

denoted as St, CMod, r and σT,i respectively: 

   

)σ,r,T,X,S(CC i,TitMod
Mkt

i,T =      (3-1) 

 

                                                            
48 Stock price returns are estimated by taking the natural logarithm of price relative, (pt / pt -1) where p represents 
stock price at time t. The empirical results of the Black-Scholes (1973) option pricing framework were published 
separately in Black and Scholes (1972). 
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Using this method, a unique implied volatility σT,i that corresponds with each cross- 

section49 option market price i can be found. As no closed-form solution is available, 

the volatility parameter σT,i is often estimated using numerical procedures such the 

Newton-Raphson algorithm. 50  Manaster and Koehler (1982) provide the necessary 

conditions to arrive at a positive implied volatility using this procedure.  

 

Under the strict assumption of the Black-Scholes (1973) model, options written 

on the same underling asset with various strike prices and maturities should have 

identical implied volatility. Often this assumption is violated in empirical studies51. 

Consequently, a number of researchers have developed various weighting schemes to 

estimate implied volatility. Latane and Rendleman (1976) 52  estimate the implied 

standard deviations for various options written on a particular stock and the weighted 

average of the implied standard deviations is then used as an estimator of the future 

volatility over the maturity of the option. Their results show that while the weighted 

implied standard deviation for a particular stock is not constant and produce biased 

results, the estimated volatility correlates strongly with the actual volatility over the 

sample period. This technique has been criticised for the use of improper weights since 

the individual weights do not sum to one. In a similar vein, Chiras and Manaster 

                                                            
49 This refers to options on the same underlying asset with different levels of moneyness. 
50 This is essentially a simple iteration technique for solving one-dimensional nonlinear equations. 
51 The empirical evidence for this anomaly is known as the “volatility smile” which is discussed in Section 3.5 of this 
chapter.  
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37 
 

(1978)53 propose that the implied standard deviation should be weighted by the price of 

an option with respect to its implied standard deviation. They argue that investors are 

concerned with the size of their investments and thus price elasticity of options with 

respect to their implied standard deviations should be considered in the weighting 

scheme. Beckers (1981) 54  propose a relatively straight-forward implied standard 

deviation estimation technique that allocates more weight to at-the-money options. The 

implied standard is then estimated by minimising the difference between the market and 

model option prices. Instead of weighting schemes, Whaley (1982) employs a nonlinear 

cross-sectional regression model to estimate the implied volatility that minimises the 

difference between the observed and the model price. This technique is found to be 

superior to its predecessors.  

 

A special case of implied volatility estimation using a closed-form solution is 

provided by Brenner and Subrahmanyam (1988)55. Consistent with Beckers (1981), this 

technique makes use of at-the-money European options to provide an accurate estimate 

of implied volatility. More recently, Corrado and Miller (1996) extend the Brenner-

Subrahmanyam formula to estimate implied volatility over a wide range of moneyness. 

The study shows that the improved formula generates accurate estimates of implied 
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fraction of a year) , r is the risk free rate of interest, F is the forward rate and MVT is the market price of the option 
contract with maturity T period(s) from now. Under the put-call parity condition, this approximation can be directly 
applied to both at-the-money call and put options.  
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volatility and the approximations are less sensitive to various levels of moneyness 

compared with the original Brenner-Subrahmanyam formula. 

 

3.2.1 Implied Volatility Estimation Error 
 

Irrespective of the techniques discussed in the preceding section, implied 

volatility estimates based on the methodology defined by Equation 3-1 implicitly 

assume that data from listed options on exchanges can be precisely observed and are 

accurately matched with their corresponding parameters. This concept holds in the 

frictionless world of Black and Scholes (1973). In reality, these techniques suffer from 

estimation error caused by measurement biases and various forms of market frictions. 

Specifically, Stoll and Whaley (1993) note that weighting with an option’s vega 

effectively places more weight on near-the-money options which are more sensitive to 

volatility. On the other hand, illiquid out-of-the-money options receive more emphasis 

when the elasticity of the option price is used in implied volatility estimations. 

Furthermore, the pooling and averaging of implied volatility is inconsistent with the 

smile anomaly and term structures of implied volatility reported by Bollen and Rasiel 

(2003) and Xu and Taylor (1994) in currency option markets. Hull and White (1987) 

also note that estimates of implied volatility from options listed on exchanges are 

contaminated by option pricing errors.  

 

Hentschel (2003) posits that the application of weighted average schemes 

assumes that implied volatility measurement error is attributed to the sensitivity of 

implied volatility to option price error and ignores other possible sources of error. He 

argues that, since prices in the cash and option markets are observed imprecisely, small 

errors in the input parameters can amplify implied volatility measurement error. While 
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options’ strike prices and maturities can be observed with certainty, the values for the 

option market price, the underlying spot price, risk-free rate of interest and volatility are 

all subject to market structure constraints such as minimum tick sizes and bid-ask 

spreads. The study shows that the ideal Black-Scholes (1973) option price is a 

monotonic function of moneyness. The option bid-ask spread is however, characterised 

as a step function of moneyness. Using variance decomposition analysis, Hentschel 

(2003) finds that for the majority of options, measurement errors from option and spot 

prices account for most of the total error variance.  

 

Another source of friction that gives rise to implied volatility measurement 

error is attributable to non-synchronous trades between the option market and the cash 

market. In other words, the option and the underlying asset price quotations are often 

available at different times of the day. Bookstaber (1981) developed a probability model 

that can be used to evaluate the extent of option mispricing due to non-synchronous 

trading. The results indicate that the problem of non-synchronous trades is more severe 

when the volatility of the underlying asset is higher. Conversely, the probability of non-

synchronous trades decreases when option trading volumes are higher.  

 

The lack of liquidity in the option market is another important source of bias. A 

study of Israel stock market by Brenner, Eldor and Hauser (2001) reveals that lack of 

liquidity has important pricing implications for currency options. In particular, they 

show that the average illiquidity discount value, defined as the ratio of option price for 

non-traded options divided by the price for options traded on the exchange, has an 

average value of 0.21 in the total sample. This finding suggests that illiquid currency 

options auctioned by the Bank of Israel are priced, on average, 21 percent lower than 
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those traded on the Tel-Aviv Stock Exchange. These results are robust across three 

different subperiods. 

 

3.3 The Quality of Over-the-counter Currency Option-implied Volatility 
 

Most empirical studies on implied volatility employ data from exchange-listed 

option contracts. As articulated in the preceding section, the use of option data from this 

market can produce measurement errors arising from various forms of market frictions. 

In order to obtain better estimates of implied volatility, a number of researchers have 

proposed the use of implied volatility data obtained from the over-the-counter currency 

option market. These studies include Dunis and Keller (1995), Campa and Chang 

(1995), Malz (1997), Campa, Chang and Reider (1998), Bollen and Rasiel (2003), 

Covrig and Low (2003), and more recently Carr and Wu (2007).  

 

In comparison with exchange-traded option contracts, the use of option data 

from the over-the-counter currency option market has several advantages. First, over-

the-counter currency option markets are generally more liquid than organised 

exchanges. This is largely attributable to the highly customised nature of these 

contracts, which is advantageous to market participants. For instance, specific strike 

price and notional value of an option contract can be negotiated between a writing bank 

and its customer. Other benefits to the users of over-the-counter options are discussed in 

Chapter 256.  

 

                                                            
56 See Table 2-1 of this thesis for a comparison of key differences between currency options traded in the over-the-
counter market and an organised exchange. 
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Second, option prices are quoted in terms of implied volatility by traders in the 

over-the-counter currency option market, in sharp contrast with option quotes available 

in dollar premium through organised exchanges. In other words, these options are 

quoted in the form of implied volatility and thus the application of the back-solving 

procedure using the methodology presented in Equation 3-1 is not required. This 

mitigates implied volatility measurement errors arising from the matching of option 

parameters and non-synchronous trades for the researcher.  

 

Third, currency option contracts traded in the over-the-counter currency market 

are available as European style options and pay no dividend. This is in contrast with 

stock options traded on stock exchanges which are mostly American style. The early 

exercise feature embedded in these contracts is another potential source of bias for 

implied volatility estimates since additional assumptions are needed with respect to the 

timing of dividends and the behaviour of stock prices on ex-dividend date57. Consistent 

with this view, Whaley (1982) suggests that the option valuation model would become 

more complex, with high additional computational costs when multiple dividends are 

paid before the expiration of an option contract.     

 

Fourth, options traded on exchanges mature on fixed dates and therefore the 

prices observed successively relate to options with lower time-to-maturity.  In contrast, 

volatility quotes from the over-the-counter currency option markets are available with 

fixed maturities. For instance, the BBA-Reuters at-the-money implied volatility58 are 

available in maturities of one-week, one-month, three-month, six-month, one-year and 

two-year. On any given period t, the one-week option will expire exactly in one week 

                                                            
57 It is usually assumed that stock prices will fall by the amount of the dividend on the ex-dividend date (Hull, 2006).  
58 Further details of the BBA-Reuter data are provided in Chapter 2 of this thesis.  
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from period t. Thus, time series of implied volatility for fixed maturity can be 

constructed. The use of implied volatility data with constant maturity also avoids the 

complexities arising from varying time-to-expiration59. 

 

3.4 Time Series Behaviour of Implied Volatility 
 

In the previous sections it has been established that research into improving the 

accuracy of volatility estimates has received some attention in the literature. 

Considerable research effort has been dedicated to the accuracy of volatility estimates 

using historical data. On the other hand, researchers have employed a more forward-

looking approach to the use of option prices in recovering volatility estimates. These 

studies are motivated by the observation that asset price volatility tends to vary over 

time and such variation is not entirely predictable. Consistent with this widely held 

view, the study by Geske and Roll (1984) advocates that empirical biases reported for 

the Black-Scholes (1973) model are related to the volatility parameter. They conjecture 

that the “variance bias” is attributable to the nonstationary behaviour of volatility over 

time and hence an option pricing model with changing volatility would alleviate such a 

bias. Black (1989b) concurs with this view and suggests that since asset price volatility 

is not constant in reality, the dynamics of asset price volatility should be incorporated 

into the option pricing formula in order to improve its pricing performance.  

 

Garman-Kohlhagen (1983) modified the Black-Scholes (1973) formula to 

include interest rates for both the domestic and the foreign currency. This is achieved by 

replacing the price of the underlying asset with the spot foreign exchange rate which is 

                                                            
59 Since the option price decreases as maturity approaches, the corresponding implied volatility is also expected to 
fall over time. 
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then discounted by the foreign interest rate. As with the assumption used in the 

frictionless world of Black and Scholes (1973), the Garman-Kohlhagen (1983) currency 

option pricing model takes on the assumption that the volatility of the underlying 

exchange rate remains constant throughout the remaining life of the option. Such a 

strong assumption is often violated in empirical studies evidenced by the time-varying 

behaviour of volatility and pricing biases resulting from model misspecification. The 

following section reviews key empirical studies that employ random volatility in the 

pricing of currency options. Studies on term structures of implied volatility for currency 

option are also discussed. 

 

3.4.1 Random Walks and Implied Volatility 
 

Since the implied volatility of the underlying asset represents uncertainty over 

the remaining life of the option contract, it cannot be directly observed. The elusive 

nature of volatility suggests that the variation of asset price returns can be generalised as 

a random walk process. Accordingly, a more realistic approach is to relax the constant 

volatility assumption in order to account for the time series dynamics of the volatility 

parameters. Specifically, currency option-pricing models that assume a random walk in 

the volatility process have been examined by several authors including Chesney and 

Scott (1989), Heston (1993), Xu and Taylor (1994), Melino and Turnbull (1995), and 

Gessner and Poncet (1997). These studies are largely motivated by the stochastic 

volatility option pricing framework of Hull and White (1987) which is based on 

empirical observations that indicate random characteristics of asset price volatility 

(Fouque, Pananicolaou and Sircar, 2000).  

 



44 
 

Hull and White (1987) introduced the stochastic volatility option pricing to 

price European call options on stocks. In this model the volatility of the underlying asset 

is time-variant and is governed by a random process: 

ds = ØSdt + σS dw      (3-2) 

dV = µVdt + ξV dz      (3-3) 

where dz and dw are the Weiner process and ξ is the volatility of the volatility. The 

variable V is the underlying asset’s variance rate which is assumed to revert to a mean 

value at a known rate. They point out that although there are an infinite number of paths 

that give the same mean variance when the variance term is stochastic, all paths produce 

the same terminal distribution of the asset price. Accordingly, under this model, it is 

shown that when volatility is random and uncorrelated to the underlying price, an 

option’s price is the Black-Scholes (1973) integrated price that corresponds with the 

distribution of the mean variance over the remaining maturity of the option60. They 

argue that although the variance is treated as a random process, the asset price 

distribution at the expiration of the option remains lognormal.  

 

Hull and White (1987) also show that when volatility is stochastic, the Black-

Scholes (1973) model tends to overprice at-the-money options and underprice deep-in-

the-money and deep-out-of-the-money options. This observation is consistent with the 

smile pattern observed in the currency option market (Campa, Chang and Reider 1998). 

Hull and White (1987) report such a pattern is sensitive to the size of the ξ coefficient 

that measures the volatility of the volatility parameter. Further, the mispricing becomes 

more severe when the coefficient becomes larger. In addition, they note that an estimate 
                                                            
60 The Monte Carlo simulation procedure can be used to examine pricing biases when asset price and volatility are 
correlated. 
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of the volatility change coefficient is by no means a straightforward procedure. It can be 

approximated from changes in implied volatility using option prices traded on organised 

exchanges, such as the Philadelphia Stock Exchange (PHLX). However such estimates 

are contaminated by pricing errors in line with Hentschel (2003). 

 

Similar to Hull and While (1987), Scott (1987) also considers an option pricing 

model that allows the variance rate to vary randomly over the maturity of the option 

contract. Consistent with the findings of Hull and White (1987), the random variance61 

model has the lowest sum of squared errors compared with the two other Black-Scholes 

(1973) models specified with daily revised variance rate and constant variance rate 

respectively. The pricing error reported for the constant variance Black-Scholes (1973) 

model is nearly two times larger than the error reported for the random variance model. 

However, the pricing error for random variance is only about 8.8 percent lower62 than 

the Black-Scholes (1973) model that uses daily variance estimates. This suggests that 

the random variance model performed only marginally better than the daily revised 

variance Black-Scholes (1973) model. The study also identifies some evidence of 

random changes in stock returns with a mean-reverting tendency. 

 

Chesney and Scott (1989) investigated the performance of the random variance 

model for European calls and puts on the Swiss franc. They advocate that the violation 

of the lognormal assumption in foreign exchange rates is attributed to the random 

behaviour of the variance rate. Building upon the stochastic volatility framework of 

Hull and White (1987) and Scott (1987), they suggest that the volatility process of the 

                                                            
61 Although the term “Random Variance” is used in Scott (1987) and Chesney and Scott (1989), the models are based 
on the same premise of Hull and White (1987) that allows the underlying asset price volatility to vary randomly over 
time.  
62 See Table 3 on pp.435 of Scott (1987). 
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underlying exchange rate can be set up in a manner that allows the log of the volatility 

parameter to follow a mean-reverting process. The parameter estimation involves 

running the following model:  

lnσt = α + ρlnσt-1 + εt       (3-4) 

The regression model provides estimates of α, ρ and σε using daily exchange rates data 

from November 1979 to December 1983. These estimates are then used to simulate 

values of volatility for the random variance option pricing model. Similar to Scott 

(1987), they calculate the mean squared error and mean absolute deviation from both 

the random variance model and the Garman-Kohlhagen (1983) model. The estimated 

option prices are compared with call and put option values traded in Geneva for the year 

1984. The random variance model uses two different volatility specifications for the 

underlying exchange rates: first, using the mean-reverting procedure described in 

Equation (3-4) and second, by setting α =0 and ρ=1 that permits the volatility process to 

evolve as a random walk process.  

 

Chesney and Scott (1989) show that the Garman-Kohlhagen (1983) model 

performed poorly when the volatility parameter is either constant or when it is estimated 

using the historical method, with high mean squared errors of 24.725 and 21.384 

respectively. On the other hand, the random variance model, with a mean-reverting 

volatility parameter, dominates the random walk volatility model, with mean squared 

errors of 0.125. This is more than ten times lower than the random variance model with 

a random walk volatility specification. Notably, the Garman-Kohlhagen model with 

daily revised implied volatility has the lowest mean squared error amongst the five 
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models63, which is about one and a half times lower than the random variance model 

with mean-reverting volatility process. In contrast with previous studies, this result 

raises doubts about the random behaviour of volatility since an option pricing model 

that uses daily revised variance estimates can outperform models that employ mean-

reverting and random walk specifications.  

 

Furthermore, for the Garman-Kohlhagen (1983) model, Chesney and Scott 

(1989) observe that strike price bias alone explains model pricing error. In contrast, two 

additional biases (time-to-maturity and volatility biases) are found to be significant 

explanatory variables for pricing bias under the random variance model. Finally, these 

results also suggest that the random variance model has a tendency to overvalue long-

dated options and undervalue short-dated options.  

 

In contrast with a number of previous studies that employ Monte Carlo 

simulation procedures, Heston (1993) developed a stochastic volatility model with a 

closed-form solution for European currency options when the underlying spot price is 

correlated with volatility. The model assumes that the mean-reverting volatility process 

can be modelled using four different components, namely, mean reversion, long-run 

variance, current variance and volatility of volatility. Heston (1993) observes that when 

the correlation between spot returns is positively correlated with volatility, a fat-tail 

effect is reported to the right of the spot returns distribution. This increases the price of 

out-of-the-money options and decreases the price of in-the-money options relative to the 

Garman-Kohlhagen (1983) model. However, when the parameter is set to zero, the spot 

returns exhibit a normal distribution. Further, in this study, the volatility of the volatility 
                                                            
63 These are: 1) random variance model with mean-reverting volatility process, 2) random variance model with 
random walk volatility process, 3) Garman-Kohlhagen model with daily revised variance, 4) Garman-Kohlhagen 
model with historical variance, and 5) Garman-Kohlhagen model with a constant variance estimate.  
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parameter is shown to be related to the shape of the spot price returns when the 

volatility is uncorrelated with the spot price, increasing the parameter increases the 

kurtosis of spot returns. On the contrary, when the volatility and the spot price are 

correlated, a skewed distribution exists. Thus, the study suggests that within the 

stochastic volatility framework, the correlation between volatility and spot price is an 

important precursor for leptokurtic and skewed asset price returns, which affects the 

pricing of in-the-money options relative to out-of-the-money options. This result is 

generally consistent with pricing biases reported in the currency option market64. 

 

Melino and Turnbull (1995) analyse the pricing and hedging performance of 

the constant volatility and stochastic volatility model by constructing a portfolio to 

replicate the payoffs of European options on the USD/CAD exchange rate. They argue 

that since option writers are able to fully and perfectly hedge their exposures, the cost of 

hedging via replication will be the price of the option. This procedure can be used to 

price options even when an active secondary market for long-term options is not 

available. 

 

The replication of option positions in Melino and Turnbull (1995) are 

performed for four different maturities of ninety-day, one-year, two and a half-year and 

five-year from January 1975 to December 1986. This results in approximately one 

hundred portfolios for each maturity over the entire sample period. These options are 

held until maturity and the mean square hedging errors are recorded65. The constant 

volatility Garman-Kohlhagen (1983) currency option pricing model is applied using 

                                                            
64  See for instance, Bollen and Rasiel (2003). 
65 The errors are calculated based on the difference between predicted option prices and the value of the replicating 
portfolio. 
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implicit volatility estimated from a sixty-day European option to value options of 

different maturities. In other words, a flat term structure is assumed under this approach 

and the results indicate that the implicit volatility characteristics of short-dated options 

are consistent with the volatility behaviour of long-dated options. This contradicts the 

term structure of volatility model reported in Xu and Taylor (1994) and Campa and 

Chang (1995).  

 

Compared with the constant volatility model, Melino and Turnbull (1995) find 

lower mean square errors when the stochastic volatility model is used to construct the 

weights used for option replications. This result is consistent with the earlier findings of 

Hull and White (1987) and Chesney and Scott (1989). It further shows that the total 

hedging error is consistently lower with positive values across all maturities with the 

stochastic volatility model is used. Thus, contrary to the constant volatility model, 

improvement in hedging is noted when the time varying nature of the volatility term 

structure is taken into consideration.  However, using simulated option prices, the 

magnitude of the total hedging error tends to increase with time-to-maturity. Taken 

together, the implication is that treating volatility as a random process may be more 

appropriate for short-dated option than for long-dated options.  

 

The joint hypothesis that the volatility spread66 and the long term implied 

volatility follow a random walk process is suggested by Xu and Taylor (1994).  The 

reported likelihood-ratio indicates that this hypothesis is doubtful. Instead, the study 

suggests that it is more probable to model long-dated volatility alone as a random walk 

                                                            
66 This is estimated as the difference between the estimated short-term and long-term volatility. 
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process. Indeed Xu and Taylor (1994) find support for the latter at the five per cent 

significance level using the British pound and the German marks option datasets.  

 

Gessner and Poncet (1997) examine the ability of both the Hull and White 

(1987) and Heston (1993) stochastic volatility model to generate volatility smiles and 

volatility term structures using currency option data from the over-the-counter market67. 

The option data are available in various maturities, one-week, one-month, two-month, 

three-month, six-month, nine-month and twelve-month. Notably, the derived smile 

convexity using the Hull-White (1987) model is distinctly different from the observed 

short-dated and long-dated elements of the smile. Thus, contrary to the initial findings 

of Hull and White (1987), modelling volatility as a random process does not appear to 

be strictly consistent with empirical observations. The authors argue that the use of 

random walk model in volatility modelling contradicts practitioners’ belief that 

volatility is better modelled as a mean-reverting process. This lends support for the use 

of Heston’s model in favour of the Hull and White (1987) model. 

 

3.4.2 Term Structure of Implied Volatility 

 

The constant volatility Garman-Kohlhagen (1983) model suggests that implied 

volatility should be independent of the options’ maturities. This assumption is often 

violated in empirical studies evidenced by different levels of volatility for different 

maturities. Xu and Taylor (1994), for instance estimate the short-dated volatility and 

long-dated volatility using currency option data for the British pound, Japanese yen, 

Swiss franc, and German mark obtained from the Philadelphia Stock Exchange. The 

                                                            
67 Distinct from previous studies, the study employs a relatively limited sample covering one month, ranging from 2 
February to 29 February, 1996.  
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study finds the difference between a 15-day and a long-term implied volatility usually 

differ by several percent (several 100 basis points). Further the slope of the term 

structure varies widely in a fairly random manner over time. Such variations are more 

prevalent for short-dated volatility.  

 

In a similar vein, Campa and Chang (1995) examine the consistency between 

current term structure of volatility and the behaviour of future volatility quotes using 

option data from the over-the-counter market. Under the expectation hypothesis, it is 

expected that movement in long-term volatility should be consistent with future short-

term volatility. For most of the cases, regressing short-dated volatility against current 

long-dated volatility give a slope coefficient close to one. This indicates that future 

increases in the short-dated volatility behave in line with the expectations hypothesis. 

Further, the paper is unable to reject the expectations hypothesis in the majority of 

cases. Thus, for all currencies and maturity pairs, current spreads between long-dated 

and short-dated volatility seems to predict the right direction for future short-rate and 

long-rate changes. Similar to Xu and Taylor (1994), the study also finds short-dated 

volatility quotes have significantly higher variability compared with long-dated options. 

More recently, Byoun, Kwok and Park (2003) investigate the implied volatility term 

structure using an alternative approach that incorporates implied volatility from various 

strike prices. Although they find some evidence of predictability of future short-dated 

volatility under the expectation hypothesis, the increase in long-term volatility 

incorrectly predicts the direction in the subsequent change in long-term volatility. 
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3.5 Moneyness Effect of Implied Volatility 
 

It is well-established that the cross-sectional pattern of implied volatility 

recovered from the Garman-Kohlhagen (1983) model contradicts the constant volatility 

assumption. Several researchers have concluded that implied volatility of out-of-the-

money and in-the-money options are consistently higher than at-the-money options. For 

instance, Taylor and Xu (1994) show that implied volatility of currency options can be 

approximated as a quadratic function of the strike price. Another study by Campa, 

Chang and Reider (1998) reveals asymmetrical U-shaped patterns when the three-month 

implied volatility of the DEM/USD and JPY/USD exchange rates are graphed against 

the strike prices relative to the forward rates. Using similar data from the over-the-

counter market, however, Bollen and Rasiel (2003) report a more symmetrical U-shape 

pattern when daily average implied volatility data is presented against moneyness 

measured in terms of delta. Further Malz (1997) proposed an accurate second-order 

Taylor approximation to obtain the volatility smile from option combinations 

constructed with puts and calls.  

 

The volatility smile anomaly has attracted much attention in the literature. 

Several authors have attempted to explain and understand the existence of such a pattern 

from two perspectives - some believe that the anomaly is attributable to error of the 

option pricing model while others argue that the existence of the volatility smile is 

related to market demand for out-of-money options. The following section reviews the 

theoretical framework and empirical findings relating to the volatility smile with an 

emphasis on currency options. 
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3.5.1 Lognormal Distribution and Volatility Smile 
  

The literature offers two explanations for the existence of the volatility smile. 

First, it is widely held that the volatility smile pattern is attributable to the erroneous 

assumption used in the Garman-Kohlhagen (1983) option pricing model where the 

probability distribution of the exchange rate over the maturity of the option contract is 

assumed to be lognormal distributed. In reality, exchange rate distributions are found to 

exhibit significant skewness and kurtosis. For instance, Campa, Chang and Reider 

(1998) show that the foreign exchange probability density function derived from an 

asymmetric volatility smile deviates significantly from the lognormal distribution. 

Along with skewness the estimated distributions reveal extreme kurtosis. A similar 

finding is also provided by Malz (1997) who suggests that skewed distributions inferred 

from the volatility smile are useful for measuring future market sentiment.  

 

It is therefore no surprise that several studies have examined the ability of 

“smile-consistent” models to generate the volatility smile behaviour observed in the 

currency option market. Although Bates (1996a) finds improved explanatory power 

when fitting a stochastic jump-diffusion model to German mark options over 1984 to 

1991 though the model fit was not strong. For the call options, the model tends to over-

estimate actual prices for options of three to six months maturity; such a pattern is 

reported across all levels of moneyness. On the other hand, in-the-money calls are 

under-estimated by the model. The average errors for put options are generally lower 

but they remain under-valued for maturities of three to six months. He noted that the 

poor fit of the model is related to parameter instability since skewness, implicit in the 

exchange rates distribution, appears to vary over time. 
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Gessner and Poncet (1997) posit that leptokurtosis and skewness in the foreign 

exchange rate returns give rise to the smile anomaly in the currency option market. 

Accordingly, the Hull and White (1987) model is used to fit the smile pattern observed 

in the over-the-counter market and the derived volatility smile is markedly different 

from the empirical smile. In particular, for one-month volatility, the Hull-White 

estimated smile is more pronounced than the actual smile, while the three-month and 

one-year smiles appear too flat relative to the observed smile.  

 

In a related literature, Das and Sundaram (1999) applied a similar approach to 

Bates (1996a) by introducing jumps into the return process and allowing the volatility 

parameter to follow a stochastic process. The model was found to exhibit term structure 

patterns inconsistent with the smile anomaly observed in actual data. Specifically, the 

term structure from the model is too flat relative to actual data. The difference between 

short and long-dated volatility is also found to be negligible, which contradicts the two 

to three percentage point spreads reported in the literature. The estimated smiles for 

long-dated options also flatten too rapidly. For instance, the generated three-month 

smile is almost a constant function of moneyness even though high levels of skewness 

and kurtosis are assumed in the model.  

 

Sarwar and Krehbiel (2000) evaluate the pricing performance of the Heston 

(1993) and Garman-Kohlhagen (1983) model for European call options written on the 

British pound. The study reports root mean square errors (RMSE) of 0.36 for the 

Garman-Kohlhagen model with daily revised volatility estimates, while the RMSE for 

the Heston model is 0.37 in the aggregate option sample. The Heston model performed 

slightly less favourably for in-the-money and out-of-the money options, with RMSE of 
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1.03 and 0.24 respectively, versus the corresponding RMSE values of 0.96 and 0.21 

reported from the Garman-Kohlhagen model. Both models fit the observed option data 

equally well for near and at-the-money options.  

 

Taken together, these studies offer no conclusive support for the argument that 

the smile anomaly is explained or reproduced by including jump processes and 

stochastic volatility components into the Garman-Kohlhagen (1983) option-pricing 

model. At best, these extensions produce marginal improvement in the Garman-

Kohlhagen model and only offer a partial explanation for the smile anomaly. Contrary 

to the more complex stochastic volatility model, when daily revised estimates of 

implied volatility are used in the Garman-Kohlhagen (1983) model, lower pricing errors 

relative to the more complex stochastic volatility models can be attained (Chesney and 

Scott, 1989). Thus it is apparent that skewness and leptokurtic effects alone may not be 

sufficient to explain the empirical smile puzzle. 

 

3.5.2 Option Trading and Volatility Smile 
 

More recently, a number of authors have explored an alternative explanation 

for the existence of the volatility smile based on the demand for out-of-money call and 

put options. According to this view, market participants actively use calls and puts as an 

effective tool for hedging their exposure against adverse movements in the underlying 

assets returns. In related work, Ederington and Guan (2002) suggest that the existence 

of the smile pattern is driven by hedging pressure. They report that the average daily 

trading volume for out-of-the-money put options are consistently higher than for at-the-

money and in-the-money put options for index options. The average trading volumes for 



56 
 

far out-of-the-money puts is approximately ten times larger than the volumes reported 

for in-the-money puts. The study finds that when a significant movement in the cash 

market is expected, out-of-the money options are purchased by market players in order 

to protect their positions from potential downside risks. Such hedging activities would 

generate upward pressure on option premia as option trading volume increases. This 

eventually bids up the prices for out-of-money calls and out-of-the money puts. In line 

with this view, the Granger-causality test results of Sarwar (2003) indicate that lagged 

option trading volumes from the currency option market have significant forecasting 

power with respect to the implied volatility of the British pound, although the result is 

much stronger for the in-the-money options than the out-of-money options.  

 

In another related literature, Bollen and Whaley (2004) present the “net buying 

pressure” 68  hypothesis which posits that supply and demand imbalances driven by 

trading activities in the index option market, will eventually push up implied volatility 

for out-of-the-money index options. The authors suggest that option writers will not 

leave their positions unhedged – as their positions grow and become imbalanced, they 

are exposed to increasing risk69 and they are therefore forced to sell their options at a 

higher price. This causes implied volatility to exceed the actual volatility thus causing 

the slope of volatility smile to change. The study shows that the net buying pressure 

coefficients for both call and put options are significant explanatory variables for the 

change in implied volatility of at-the-money options. Furthermore, in most instances, 

positive coefficients are reported for both call and put options, although stronger 

support is noted for put options. 

 
                                                            
68 This is estimated as the difference between the number of buyer-driven contracts less the number of seller-driven 
contracts. 
69 Option writers are exposed to unlimited downside risk. 
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A recent study by Doran, Peterson and Tarrant (2007) finds evidence of 

predictability of extreme movements in the stock market using information embedded in 

volatility smiles. The authors construct measures of volatility skew by taking the 

difference between the implied volatility of deep-out-of-the-money option and the 

implied volatility that corresponds with various level of moneyness. Using probit model 

analysis, the coefficient estimates are found to be positively related to the incidence of 

large negative jumps at the 5% level of significance. They note that large skew 

coefficients are related to large negative jumps. The relationship is stronger when out-

of-money puts are used in the probit models. This supports the findings of Bollen and 

Whaley (2004) and is consistent with the hedging pressure argument presented by 

Ederington and Guan (2002). It further implies that skewness in option prices reflected 

in the volatility smile is capable of generating information about future movements of 

the underlying market, specifically when a large decline in the underlying asset price is 

expected.  

 

In their study of pricing performance of currency option pricing model, Bollen 

and Rasiel (2003) find pronounced smiles when the one to three months implied 

volatility are graphed against moneyness measured in deltas. They suggest that the 

presence of symmetrical smiles reflects foreign exchange market sentiment over the 

option expiration periods. Thus a symmetrical smile indicates that on average, there is 

demand from hedgers against depreciation as well as appreciation of the underlying 

exchange rates. They perform a regression of implied volatility on moneyness and find 

the slope coefficients vary widely. Notably, put options have negative slopes while 

positive coefficients are reported for the calls. These observations are consistent with 

the “net buying pressure” hypothesis of Bollen and Whaley (2004) and imply that the 
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dynamics of the volatility smile may be related to future volatility over the remaining 

life of the option contract.  Also, consistent with the hedging hypothesis of Ederington 

and Guan (2002), the ‘skewness premium’ 70  reported in Bates (1996b) fluctuated 

drastically over the Exchange Rate Mechanism (ERM)71 crisis period and became more 

negative preceding the withdrawal of the British pound from the ERM, when the Bank 

of England failed to support the pound sterling above its lower limit of DM2.77872. 

Campa and Chang (1995) also note that implied volatility quotes rose sharply one 

month prior to the ERM crisis in September 1992. 

 

3.5.3 Other Explanations for the Volatility Smile Anomaly 

 

It is widely acknowledged that the volatility smile effect became more 

pronounced after the October 1987 stock market crash. In line with this, Liu, Pan and 

Wang (2005) introduce the notion of ‘rate-event premium’ and develop a model that can 

be used to explain implied volatility skew. According to this model, out-of-money put 

options are sensitive to this premium. When a rare event such as a market crash occurs, 

investors react by assigning such premium to rare-event-sensitive instruments 

particularly out-of-money put options. It is shown that a large portion of volatility skew 

can be explained by the rare-event premium hypothesis. The model is consistent with 

the belief that out-of-money options are often used as a cheap form of insurance against 

large movements in the underlying asset. It also explains the information content of 

volatility skew proposed by Doran et al (2007) by showing that option prices are 

                                                            
70 This is defined as ( 1-/ PC ), where c and p are call and put option premia. These options are equally out-of-money.  
71 The Exchange Rate Mechanism was operational from 12 March, 1979 to 2 August, 1993.  
72 See Figure 1 and Figure 4 of Bates (1996b); Malz (1996) provides extensive discussion and analysis on the ERM 
crisis using over-the-counter currency option prices. 
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sensitive to large negative movements in the underlying asset. This is particularly the 

case for put options.     

 

Pena, Rubio and Serna (1999) argue that the volatility smile observed 

empirically is usually twice the size of the predicted smile using a “smile-consistent 

model”. Motivated by this observation, the study investigates several possible 

determinants of the volatility smile using various explanatory variables including bid 

and ask spreads, share volumes, option volumes, a day-of-the-week dummy variables, 

and the standard deviation of the underlying asset. Using the Granger-causality model, 

the study shows that the magnitude of volatility smile curvature is significantly and 

positively related with option bid-ask spreads. The volatility of the underlying asset is 

also found to be significant but negatively associated with the volatility smile curvature. 

Thus during periods of high volatility, the curvature of smile tends to be lower. This 

indicates that transaction costs proxied by bid and ask spreads has an important impact 

on the pricing of out-of-money options relative to at-the-money options. This finding 

also supports the dynamic nature of the volatility smile in response to the impending 

risk of the underlying market. 
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3.6 Conclusion 
 

This chapter provides an overview of empirical studies in the area of implied 

volatility with an emphasis on currency options. Despite the overwhelming efforts 

devoted to the estimation and characterisation of implied volatility, the performance of 

option pricing models that assume a random volatility process remain mixed and 

inconclusive.  In addition, there is evidence to suggest that strike price bias in the 

Garman-Kohlhagen (1983) option pricing model may not be solely attributed to 

erroneous assumptions used in the model.   

 

Chapter 4 provides further investigation into the random behaviour of implied 

volatility across the term structure using time series of quoted implied volatility 

collected from the over-the-counter currency option market. The test results are further 

explored using simple trading rules in Chapter 5. Chapter 6 examines the moneyness 

behaviour of quoted implied volatility in the currency option market. The dynamics of 

the volatility smile is investigated using proxies of slopes and curvatures. The 

information content of these proxies is considered in Chapter 7. 
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CHAPTER 4 - FOREIGN EXCHANGE IMPLIED VOLATILITY 
AND THE RANDOM WALK HYPOTHESIS 
 
 

4.1 Introduction 

 

The study of foreign exchange volatility has attracted considerable interest in 

the literature due to its vital role in the financial markets, including for instance, pricing 

in the currency option market, risk forecasting, portfolio diversification, multinational 

investment activities and the implementation of foreign exchange policies by the central 

banks. Indeed, since the early 1980s, the study of volatility modelling in the foreign 

exchange market has become an important part of the finance literature. 

 

Although the volatility of asset returns is considered elusive, some stylized 

facts are well documented: mean-reversion, pronounced persistence and an “asymmetric 

pattern” induced by market innovations. Such attributes are discussed in Poon and 

Granger (2005) and Engle and Patton (2001). While the existing literature is dominated 

by volatility forecasting using time series techniques73, studies into the dynamics of 

option-implied volatility have received little attention. This examination is necessary as 

it has important implications for the implementation of relatively recent option-pricing 

frameworks and time series models that treat foreign exchange volatility as an 

unobservable component. These approaches often assume a random walk process in the 

estimation of the underlying foreign exchange volatility. Studies on currency option 

pricing that assume volatility follows a random walk process include for example, 

                                                            
73 A comprehensive literature survey by Poon and Granger (2003) reports a total of 93 studies on asset volatility 
prediction have been studied in various market contexts. 
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Chesney and Scott (1989), Heston (1993), Melino and Turnbull (1995), Bates (1996), 

Duffie, Pan and Singleton (2000). These are largely motivated by the work of Hull and 

White (1987). Time series modelling techniques used by Harvey, Ruiz and Shephard 

(1994) and Chowdhury and Sarno (2004) also assume a random walk component in the 

modelling of foreign exchange volatility. Further, Nelson (1991) suggests that the 

logarithm of the conditional variance takes on the characteristic of a random walk 

process. 

 

Modelling foreign exchange volatility as a random walk process is largely 

motivated by the skewness and kurtosis effects observed in empirical data. However, 

such models ignore the ‘term structure’ effect reported in the currency option market, 

asset returns and volatility changes are generally assumed to be independent. Gessner 

and Poncet (1997) argue that modelling of asset price volatility as a random walk 

process contradicts empirical findings and market convention. Traders often argue that 

the market data exhibits a mean reverting pattern rather than a random walk process. In 

line with this view, Sabanis (2003) extended the work of Hull and White (1987) by 

allowing the volatility of the underlying asset to follow a mean reverting process. More 

recently, Bali and Demirtas (2008) present evidence of mean reversion in asset price 

volatility using data from the index futures market.    

 

A number of authors have shown that foreign exchange volatility is not well 

described by a random process. A study by Scott (1987) shows that only marginal 

improvement is made to the option pricing model when volatility of the underlying asset 

is assumed to vary randomly over time. Chesney and Scott (1989) compared the 

performance of the random variance option-pricing model with the Garman-Kohlhagen 
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(1983) model; the random variance model takes on the assumption that the log of 

volatility follows a random walk process over time while a constant volatility parameter 

is used in the Garman-Kohlhagen (1983) model. The results indicate a mean squared 

error of 1.431 for the former while the latter has a value of 0.056 against the observed 

price74. This suggests that option pricing models that assume a random walk in the 

volatility process do not provide a better fit to market prices than a constant variance 

model. Instead, Chesney and Scott (1989) suggest that allowing the volatility of the U.S. 

dollar/Swiss franc exchange rate to follow a mean-reverting process generates a lower 

pricing error for the calls and puts compared with the constant volatility model. Xu and 

Taylor (1994) examine the term structure of implied volatility using currency option 

data from the Philadelphia Stock Exchange. Their joint test for a random walk process 

over the implied volatility spread (between the short and long-term volatility) and long-

term volatility is rejected. However, the same hypothesis for the long-term implied 

volatility series is not rejected at the five percent significance level.   

 

This chapter examines the dynamics of the implied volatility series by 

performing various in-sample and out-of-sample tests on quoted implied volatility of 

four major currencies. It focuses on the over-the-counter European currency options of 

different maturities. Since implied volatility are actively traded in this market, daily 

quoted implied volatility can be observed and this provides a reliable data source for 

empirical examination. Tests are performed for the implied volatility series with 

maturities of one-week, one-month, three-month, six-month, one-year and two-year. 

 

                                                            
74 See Table 3 on pp.276 of Chesney and Scott (1989). 
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While former studies test for random walk property in asset prices, empirical 

tests based on implied volatility data have yet to be undertaken. This study provides an 

extension to the existing literature on the random walk hypothesis using option-implied 

volatility estimates. It further adds to a growing interest in the option-implied volatility 

literature driven by a greater appreciation of the information content of option prices.  

 

In this analysis, both conventional and nonparametric variance ratio 

methodologies are employed. These include the distribution-free variance ratio test of 

Wright (2000) in order to avoid the potential sensitivity of the test results induced by 

non-normality, heteroscedasticity and excess kurtosis frequently observed in volatility 

data. To confirm the robustness of the variance ratio test results, the Sidack-adjusted p-

values are also calculated for all maturities and currency pairs. This controls for 

possible biases due to sample size distortions. For completeness, the standard unit root 

tests are also reported in this study. Finally, out-of-sample tests are performed using 

various forecasting models to check robustness of the variance ratio test results. 

 

The following section provides a brief review of implied volatility estimation. 

Section 4.2 introduces the implied volatility data and the variance ratio literature. In 

Section 4.3, the variance ratio method and the nature of the datasets are described. The 

empirical findings for the variance ratio tests are presented in Section 4.4 and Section 

4.5. Section 4.6 examines the mean reverting nature of the volatility series while 

robustness tests using out-of-sample forecasting tests are discussed in Sections 4.7 and 

4.8. The conclusion of this study is provided in Section 4.9. 
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4.1.1 Implied Volatility Estimation 

 

Early research into option-implied volatility by Latane and Rendleman (1976), 

Schmalensee and Trippi (1978), and Beckers (1981) suggests that implied volatility is a 

better estimate of realised volatility than historical data based estimates. In essence, the 

estimation of implied volatility involves solving the level of volatility that equates the 

observed option price with the theoretical price according to the Black-Scholes (1973) 

model. The application of this procedure suffers from various measurement error 

problems due to market frictions (Hentschel, 2003). This raises doubt about the 

precision of implied volatility estimated in the traditional way. Dunis and Keller (1995) 

propose the use of quoted implied volatility traded in the over-the-counter currency 

option market to mitigate such measurement errors. Another study by Covig and Low 

(2003) also uses at-the-money implied volatility from the over-the-counter currency 

option market to eliminate data biases induced by maturity effects, the 

nonsynchronisation problem and moneyness effects commonly found in empirical 

studies. 

 

Another possible concern for the estimation of implied volatility relates to the 

liquidity of the option market. Indeed, empirical work by Brenner, Eldor and Hauser 

(2001) suggests that market liquidity is important for the pricing of option contracts. 

Their study shows that illiquid currency options are priced 21% less than liquid options. 

A recent industry survey conducted by the Bank for International Settlements suggests 

that most currency options are traded in the over-the-counter market75. The over-the-

counter currency option market is quite liquid thus allowing a more accurate estimate of 

                                                            
75 See BIS Quarterly Review, March 2009, Table 19 and Table 23A. 
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implied volatility and this further alleviates measurement error problems that arise from 

various market frictions. 

 
4.1.2 Random Walk and Foreign Exchange Volatility 

 

Where volatility follows a random walk model the time series process is non-

stationary as its variance fluctuates randomly over time. Such a process is said to 

contain a unit root. Traditionally, the presence of a random walk process can be 

identified using a unit root test on the time series data. Taylor (1994), Bollerslev, Engle 

and Nelson (1994), report evidence against a unit root process in foreign exchange 

volatility sampled from the 1980s to the 1990s. Wright (1999) uses the log-squared 

volatility series for currencies and rejects the null of a nonstationary stochastic process. 

In a more recent paper, Chowdhury and Sarno (2004) report that the volatility process in 

the foreign exchange market is better characterised as a persistent stationary process 

rather than as a unit root process. 

 

4.2 Random Walks and Variance Ratio Tests 

 

The random walk hypothesis has been the central focus of the finance literature 

over the last three decades. Arguably, improved time series modelling techniques, the 

availability of superior quality, and larger sample sizes over a longer time horizon in the 

1980s have allowed researchers to re-examine the price dynamics of security returns 

more effectively.  

 

Lo and MacKinlay (1988) examine the time series behaviour of asset prices 

using data spanning from 1962 to 1985. Their study proposes that if a price series 
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follows a random walk process, then the variance of the asset returns should be 

proportional to the return interval. However, if the estimated variance ratio is 

statistically different from the value of one, then the random walk hypothesis is rejected. 

Specifically, this method assumes that the variance of an asset’s volatility increments 

increase linearly with the holding-period. Therefore the variance of Yt -Yt-2 is twice the 

variance of Yt -Yt-1. This property is used to test the random walk hypothesis by 

calculating a ratio based on the variance of qth differences divided by the product of q 

and the variance of the first difference. The ratio should yield a value of one if no 

violation of the random walk exists. Deviation from the expected ratio of one is 

statistically tested using a Z-test statistic. Their study provides strong support for 

rejection of the random walk hypothesis for the entire sample period using NYSE 

Indexes. In their following paper 76 , the authors re-examine the robustness of the 

variance ratio test using Monte Carlo simulation and concluded that under the null 

hypothesis of a random walk with heteroscedasticity, their Z-test statistic provides a 

better test than the traditional Dickey-Fuller (1979) unit root test or the Box-Pierce 

(1970) test for autocorrelation.  

 

Numerous researchers have since adopted the variance ratio test with the Lo 

and MacKinlay’s (1988) Z-test statistic to investigate the random walk hypothesis. For 

instance, studies by Alam, Hasan and Kadapakkam (1999), Darrat and Zhong (2000), 

Lima and Tabak (2004), Chang (2004), Abraham, Seyyed, and Alsakran (2002), Smith 

and Ryoo (2003), Lai, Balachander, and Mat Nor (2002) have tested the random walk 

hypothesis in different markets using the variance ratio method. A more recent study on 

share prices by Belaire-Franch and Opong (2005) examines the behaviour of FTSE 

                                                            
76 See Lo and MacKinlay (1989). 
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indices and it also uses the variance ratio approach. In contrast with previous studies, a 

more robust nonparametric version of variance ratio test based on signs and ranks of 

Wright (2000) was also used in this study.  

 

Using spot exchange rate data, Liu and He (1991) examine weekly exchange 

rate series for five currency pairs and find evidence of deviation from the random walk 

process using the variance ratio test. The Z-test statistic of Lo and MacKinlay (1988), 

which is robust to heteroscedasticity, rejected the variance ratio test in three of the five 

currency pairs. Another study by Pan, Chan and Fok (1997) investigates the behaviour 

of currency futures prices from 1977 to 1987 and it also employs the variance ratio 

methodology. The study uses prices of individual currency futures for the British pound, 

the German mark, the Japanese yen and the Swiss franc. With the exception of the yen 

currency futures, they find little evidence of random walk violation in the currency 

futures market. 

 

4.3 Data and Methodology  

 

The data used in this study comprises of daily implied volatility quotes for four 

currency options traded in the over-the-counter currency option market, namely the 

British pound against the U.S. dollar, euro against the U.S. dollar, Australian dollar 

against the U.S. dollar and the U.S. dollar against the yen. At-the-money options on 

forward contracts where the strike prices of the option contracts are set to equal the 

forward exchange rate. As most of the option contracts are dealt at the forward 

exchange rate, such contracts have high liquidity and therefore provide a reliable source 

of data for this study. Indeed a number of researchers have relied on this attribute to 
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estimate the risk-neutral probability density function of future exchange rates, including 

studies by McCauley and Melick (1996), Malz (1997) and Campa, Chang and Reider 

(1998), and more recently Carr and Wu (2007). 

  

Quoted volatility are obtained from the British Bankers’ Association (BBA) 

database. BBA provides the average volatility quotes estimated daily from a total of 12 

major market makers in the over-the-counter currency option market. Daily closing 

implied volatility quotes are provided by the market makers between 3:30 pm and 3:50 

pm London time. BBA excludes the two highest and lowest rates for each trading day 

and the average of the remaining rates is stored in the BBA-Reuters database.  

 

Option contracts with maturities of one-week, one-month, three-month, six-

month, one-year and two-year are obtained from this database. The range of maturities 

allows examination of the random walk hypothesis across the term structure of the 

volatility series. Since the database became available from August 2001, daily sampling 

provides a reasonably large number of observations with an average sample size for 

each maturity of approximately 1,140 observations from 29 August, 2001, to 28 April, 

2006. This generates a total of 27,45077 usable data points over the sample period.  

 

 

 

 

 

                                                            
77 This study uses four currency pairs with 6 respective maturities, therefore 6 x (1133+1145+1151+1146) = 27,450 
usable observations. 
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4.3.1 Quoting Convention for Implied Volatility Data 
 

The quoted implied volatility series used in this study are provided in the 

standard form and following the interbank quoting conventions. The British pound, euro 

and the Australian dollar are available in the “American” form while the Japanese yen 

are quoted in the “European” form (also known as the “bankers’ quotes”). The former 

provides the value of the base currency (that is the British pound, euro and the 

Australian dollar) in American dollars while the latter gives the value of the American 

dollar in terms of the countercurrency (in this case, the Japanese yen). The level of the 

quoted implied volatility is unaffected by the quoting convention used.78  

 

In the over-the-counter currency option market, quoted implied volatility are 

entered into the Garman-Kohlhagen model (1987) to calculate the dollar premium. 

Therefore the market price of an option contract is not known before the corresponding 

implied volatility is available.  

 

A working example is used to demonstrate implied volatility estimation using 

the different quoting conventions discussed in the preceding paragraph, option market 

prices (in the “American” and “European” forms) are provided by DeRosa (2000, 

pp.63). An approximation of implied volatility for at-the-money options can be 

simplified using Equation (4-1). This is based on the study of Brenner and 

Subrahmanyam (1988) who demonstrate that the price of an at-the-money call option 

can be approximated as the product of the forward rate and the volatility of the 

underlying asset. This is then adjusted for time-value by the square-root of T/2П. 

                                                            
78 This is illustrated in the example following Equation 4-1. 
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Specifically, this approximation can be used to estimate the implied volatility of a call 

option traded at-the-money where the strike price equals the forward rate. This is 

specified as: 

   T

rT

T MV
F

e
T

IV ∏
≈

2       (4-1) 

where IVT is the estimated implied volatility with T-period(s) to maturity (as a fraction 

of a year) , r is the interest rate differential between the currency pair, F is the forward 

exchange rate and MVT is the market price of the option contract with maturity, T 

period(s) from now. Under put-call parity, this approximation can also be directly 

applied to put options. Using the dollar premium and interest rate data provided in 

DeRosa (2000, pp.63), the implied volatility for the European and American quotes are 

estimated below: 

Call option on USD/JPY (quoted in “European” form) 

Spot exchange rate   = JPY115 
Strike price (forward outright) = JPY114.58 
Interest rate (USD)   = 5.00% p.a. 
Interest rate (JPY)   = 0.50% p.a. 
Maturity    = 30 days 
Dollar premium (“pips”)  = JPY2.6545 
 
The estimated implied volatility using equation (4-1) gives: 
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     IVT ≈ 20.18% p.a. 
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Call option on JPY/USD (quoted in “American” form) 

Spot exchange rate   = USD1/115 
Strike price (forward outright) = USD1/114.58 
Interest rate (USD)   = 5.00% p.a. 
Interest rate (JPY)   = 0.50% p.a. 
Maturity    = 30 days 
Dollar premium (“pips”)  = USD0.0002015 
 
The estimated implied volatility using equation (4-1) gives: 
 

     0002020.0
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e
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     IVT ≈ 20.16% p.a. 

This example shows that the level of implied volatility is independent of the quotation 

form used.  

 
4.3.2 Descriptive Statistics 

 

Table 4-1 reports the descriptive statistics for the first differences of implied 

volatility calculated from the four currency options over five years from 29 August, 

2001 through to 28 April, 2006. The change in volatility is calculated by taking the 

differences in logs between the closing implied volatility of two successive trading 

days. The mean change in volatility series for the implied volatility is negative for all 

maturities and currencies. The standard deviation of the implied volatility changes 

series consistently decreases as maturity increases. The variation in the mean change in 

volatility series confirms the existence of “term structure” effects of implied volatility 

reported in Campa and Chang (1995), Xu and Taylor (1994) and Byoun, Kwok and 

Park (2003). This result violates the constant volatility assumption underlying the 

Garman-Kohlhagen (1983) model. 
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An analysis of higher moments reveals high positive kurtosis in the implied 

volatility series. Except for the one-week GBP/USD and the two-year AUD/USD 

volatility return series, the skewness coefficients are all above zero.  

 

Table 4-1: Descriptive Statistics for the First-Differenced Implied Volatility Series 
Mean Std Dev Kurt Skew

ρ 1 ρ 2 ρ 3 ρ 4 ρ 5

Panel A: GBP/USD ( n = 1133)

1-Week -0.0002 0.525 48.237 -0.148 -0.143 *** -0.047 -0.083 *** -0.038 -0.063 **

1-Month -0.0011 0.222 12.226 0.361 -0.036 -0.091 *** -0.081 *** 0.031 0.088 ***

3-Month -0.0014 0.188 10.372 0.451 -0.034 -0.068 ** -0.097 *** 0.040 0.088 ***

6-Month -0.0011 0.096 34.350 1.222 0.013 0.022 -0.042 0.025 0.039
1-Year -0.0012 0.077 28.626 1.113 0.055 * -0.011 0.002 0.033 0.048
2-Year -0.0012 0.068 22.567 0.585 0.101 *** 0.006 0.020 0.045 -0.008

Panel B: EUR/USD ( n = 1145)

1-Week -0.0016 0.562 6.626 0.383 -0.033 -0.048 -0.098 *** -0.096 *** -0.061 **

1-Month -0.0024 0.275 7.331 0.900 -0.001 -0.094 *** -0.131 *** 0.023 0.083 ***

3-Month -0.0026 0.178 12.412 1.157 0.011 -0.015 -0.094 *** -0.042 0.081 ***

6-Month -0.0028 0.137 21.211 1.161 0.013 -0.034 -0.069 ** -0.027 0.088 ***

1-Year -0.0028 0.124 38.127 1.507 -0.032 -0.065 ** -0.052 * -0.013 0.074 **

2-Year -0.0026 0.118 52.479 1.607 -0.022 -0.067 ** -0.054 * -0.037 0.084 ***

Panel C: AUD/USD ( n = 1151)

1-Week -0.0034 0.548 8.980 1.077 0.008 -0.116 *** -0.118 *** -0.060 ** -0.012
1-Month -0.0038 0.286 12.125 1.255 -0.008 -0.113 *** -0.098 *** 0.000 0.125 ***

3-Month -0.0033 0.190 22.090 1.237 -0.080 *** -0.094 *** -0.019 -0.040 0.066 **

6-Month -0.0031 0.158 89.376 0.547 -0.105 *** -0.154 *** 0.033 -0.052 * 0.032
1-Year -0.0037 0.199 39.999 2.543 -0.047 -0.004 -0.059 ** -0.037 0.064 **

2-Year -0.0027 0.156 175.121 -0.068 -0.191 *** -0.200 *** 0.026 -0.014 0.025

Panel D: USD/JPY ( n = 1146)

1-Week -0.0014 0.729 13.068 0.208 -0.100 *** -0.009 -0.107 *** -0.095 *** -0.034
1-Month -0.0015 0.361 9.972 0.819 -0.031 -0.051 * -0.096 *** -0.075 ** 0.021
3-Month -0.0015 0.210 10.474 0.876 -0.043 0.004 -0.035 -0.092 *** -0.004
6-Month -0.0016 0.149 12.649 0.557 -0.036 -0.001 -0.013 -0.054 * -0.002
1-Year -0.0018 0.121 19.633 0.118 -0.023 -0.013 0.015 -0.022 -0.017
2-Year -0.0019 0.114 23.389 0.104 -0.015 -0.006 0.020 -0.018 -0.015

Autocorrelations

 
Notes: This table presents the mean, standard deviation, kurtosis, skewness and 
autocorrelation coefficients for the first differenced implied volatility series of the four 
currencies. The standard errors for the autocorrelation coefficients are calculated as 1/√T 
and T is the number of observations. The summary measures the statistics from 29 August, 
2001 to 28 April, 2006 with an average sample size of 1140 for each volatility series. 
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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The autocorrelations for the implied volatility returns are estimated from one to 

five lags and are reported in columns five to nine. These coefficients vary across 

maturities and currencies and remain significant after five lags. The signs of these 

coefficients become more consistent at lag five, where the one-week volatility returns 

have negative coefficients while the remaining maturities are all above zero (with the 

exception of the USD/JPY currency pair). The level of skewness increases with 

maturities in most instances. These findings are consistent with the “fat tail” effect, 

indicating that the distributions of the volatility series significantly depart from the 

normality assumption. 

 

Table 4-2 provides the standard unit root tests on the daily implied volatility 

levels and the first differenced series using the Augmented Dickey-Fuller (1981) and 

Phillips-Perron (1988) unit root tests. In columns one and three, the null hypothesis of a 

unit root in the volatility process can be rejected in most instances when the tests are 

applied on the volatility levels. Specifically, stronger rejections are noted for the short-

dated series. For the six-month, one-year and two-year GBP/USD series, the null 

hypothesis of a unit root cannot be rejected. The results are fairly consistent across the 

two methods. When the tests are repeated using the first differenced series, the null 

hypothesis of a unit root in the series is strongly rejected across all currency pairs and 

maturities. This result holds under both methods. Thus, the Augmented Dickey-Fuller 

(1981) and Phillips-Perron (1988) unit root tests provide evidence of stationary 

volatility in levels while the first differences of the volatility series are strictly 

stationary. 
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Table 4-2: Augmented Dickey-Fuller (1981) and Phillips-Perron (1988)                           
Unit Root Tests 

  Augmented Dickey-Fuller       Phillips-Perron  
  IVt ∆IVt IVt ∆IVt   
Panel A: GBP/USD (n=1133)        

1-Week -2.727 * -11.592 *** -5.456 *** -39.806 *** 
1-Month -2.910 ** -10.596 *** -2.969 ** -35.133 *** 
3-Month -2.875 ** -10.313 *** -2.832 * -35.011 *** 
6-Month -2.123 -19.823 *** -2.154 -33.223 *** 
1-Year -1.964 -23.400 *** -1.977 -31.832 *** 
2-Year -1.893 -22.611 *** -1.891 -30.438 *** 
Panel B: EUR/USD (n=1145)  
1-Week -3.340 ** -13.032 *** -6.305 *** -35.268 *** 
1-Month -3.707 *** -11.781 *** -3.762 *** -34.102 *** 
3-Month -3.844 *** -11.591 *** -3.174 ** -33.506 *** 
6-Month -3.408 ** -11.224 *** -2.820 * -33.401 *** 
1-Year -3.316 ** -8.931 *** -2.784 * -35.083 *** 
2-Year -3.207 ** -8.953 *** -2.874 ** -34.714 *** 
Panel C: AUD/USD (n=1151)    
1-Week -3.250 ** -16.174 *** -4.305 *** -33.957 *** 
1-Month -3.487 *** -11.431 *** -2.856 * -34.430 *** 
3-Month -3.011 ** -11.919 *** -2.458 -37.149 *** 
6-Month -2.695 * -9.456 *** -2.259 -38.513 *** 
1-Year -3.529 *** -8.094 *** -2.926 ** -35.617 *** 
2-Year -2.564 -8.334 *** -2.286 -44.299 *** 
Panel D: USD/JPY (n=1146)  
1-Week -5.214 *** -11.224 *** -7.975 *** -37.915 *** 
1-Month -4.310 *** -15.654 *** -5.408 *** -35.143 *** 
3-Month -3.718 *** -16.356 *** -4.340 *** -35.338 *** 
6-Month -3.606 *** -15.590 *** -3.531 *** -35.066 *** 
1-Year -3.063 ** -8.812 *** -3.172 ** -34.601 *** 
2-Year -3.001 ** -8.574 *** -3.063 ** -34.352 *** 

        
 

Note: This table reports the Augmented Dickey-Fuller (ADF) test statistic for the presence of a unit root. 
IVt is the natural logarithm of the implied volatility; ∆IVt is the first differences of IVt. The appropriate 
number of lags in the ADF test is determined using the Akaike Information Criterion. The unit root tests 
are also performed with a constant and a deterministic trend individually. In order to conserve space, 
these results are not reported here since the overall pattern remains unchanged.   
*** Significant at the 1% level 
**Significant at the 5% level 
*Significant at the 10% level   

 

   

 The autocorrelation coefficient that corresponds with each volatility series for 

different lags is reported in Table 4-3. The joint tests for zero autocorrelation using the 

Ljung-Box Q statistics coefficients are performed on the first 200 lags79  using the 

natural logarithm of the implied volatility levels. The test statistics are reported on the 

                                                            
79 This is broadly consistent with Poon and Granger (2005) who find strong persistence in volatility process. 
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last row of each panel in Table 4-3. The relevant critical value of 249.455 at the 1% 

level of significance is from a 2χ distribution with 200 degrees of freedom. 

 

Table 4-3: Autocorrelation Coefficients and the Ljung-Box Q-statistic 
Lag 1-Week  1-Month  3-Month  6-Month  1-Year  2-Year  

 
Panel A: GBP/USD      

1 0.8884 0.9808 0.9816 0.9909 0.9926 0.9934 
5 0.7527 0.9194 0.9199 0.9506 0.9580 0.9596 

10 0.6926 0.8467 0.8464 0.8948 0.9092 0.9115 
20 0.5891 0.7056 0.6947 0.7852 0.8131 0.8102 
30 0.4308 0.5621 0.5430 0.6735 0.7119 0.6997 

100 0.0075 0.0910 0.0348 0.2115 0.2482 0.2260 
200 0.1688 0.0991 0.0163 -0.1001 -0.1642 -0.1588 

Q(200-0) 20034.01* 30100.70* 27024.25* 41111.73* 45864.94* 43824.53* 
      

Panel B: EUR/USD      

1 0.9268 0.9727 0.9835 0.9882 0.9887 0.9885 
5 0.7131 0.8879 0.9241 0.9454 0.9543 0.9536 

10 0.6282 0.7966 0.8551 0.8930 0.9119 0.9107 
20 0.5791 0.6633 0.7343 0.7966 0.8253 0.8248 
30 0.4065 0.5487 0.6322 0.7099 0.7465 0.7483 

100 -0.0112 0.0526 0.2031 0.3196 0.3799 0.3956 
200 0.1887 0.2175 0.2346 0.2600 0.2725 0.3097 

Q(200-0) 19919.84* 31502.21* 45097.38* 60581.02* 68626.02* 72177.53* 
      

Panel C: AUD/USD      

1 0.9665 0.9863 0.9885 0.9865 0.9886 0.9782 
5 0.8646 0.9435 0.9589 0.9613 0.9485 0.9542 

10 0.7998 0.8906 0.9235 0.9336 0.8982 0.9297 
20 0.738 0.8022 0.8618 0.8803 0.7944 0.8791 
30 0.6283 0.7175 0.7977 0.8232 0.6932 0.8267 

100 0.1463 0.2186 0.3388 0.4136 0.1414 0.4439 
200 0.1296 0.0957 0.035 0.018 0.1183 0.0269 

Q(200-0) 36450.06* 47226.30* 61601.17* 71367.27* 42148.52* 75080.07* 
      

Panel D: USD/JPY      

1 0.8958 0.9506 0.9711 0.9828 0.9879 0.9896 
5 0.6188 0.8012 0.8715 0.9206 0.9423 0.9486 

10 0.5242 0.6869 0.7838 0.8591 0.8944 0.9037 
20 0.4149 0.4821 0.6040 0.7274 0.7889 0.8056 
30 0.2297 0.3220 0.4675 0.6289 0.7146 0.7353 

100 0.0362 0.0771 0.2003 0.3301 0.4171 0.4574 
200 -0.0495 -0.0828 -0.0064 0.1315 0.2334 0.2946 

Q(200-0) 11663.17* 18732.55* 33193.57* 54343.61* 70890.21* 78869.43* 
   

 

Note: This table presents the autocorrelation coefficients of different lags. The 
Ljung-Box Q statistics on the last row of each panel test for the joint hypothesis of 
zero autocorrelation up to 200 lags. The asterisk (*) shows that the test statistic is 
significantly difference from zero at the 1% level of significance. The sample period 
spans from 29 August, 2001 to 28 April, 2006. The statistics are calculated using the 
log of daily implied volatility quotes. 

 

The first-order autocorrelation coefficients estimated using implied volatility 

levels show very high autocorrelation. For the GBP/USD series reported in Panel A of 

Table 4-3, the autocorrelation coefficients fall within the range of 0.1688 (200th lag) to 
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0.888 (first lag) for the one-week implied volatility series. For the two-year volatility 

series, the autocorrelation coefficient of the first lag is 0.993 which is larger than the 

corresponding one-week autocorrelation coefficient. These coefficients indicate “half-

lives” from 6 calendar days to 98.780 calendar days. The significant persistence in the 

long-dated volatility series suggests that the change in the prevailing volatility series has 

a significant effect on the volatility series approximately five months into the future81. 

 

Relative to the short-dated volatility series, the long-dated volatility series take 

about sixteen times longer to move halfway back towards their unconditional mean. The 

Ljung-Box test statistic for the joint null hypothesis of zero autocorrelation is strongly 

rejected across all implied volatility series at the 1% level of significance. This result 

holds across all currency-pairs. The autocorrelation coefficients reported in Table 4-3 

show strong persistence in the implied volatility series and they remain significant 

across a range of lag choices. For instance, in Panel C, the one-week and two-year 

AUD/USD series have autocorrelation coefficients of 0.6283 and 0.8267 respectively 

after 30 lags.    

   
 

In contrast with the long-dated volatility series, the autocorrelation coefficients 

for the short-dated series declined more rapidly at the same lags length. For instance, 

the one-week GBP/USD series in Panel A has a coefficient of 0.0075 at 100 lags. In 

comparison, the autocorrelation coefficients for the one-year and two-year series remain 

at 0.2482 and 0.2260 respectively. 

                                                            
80 0.888 h = 0.5, h=5.83;  0.993h = 0.5, h =98.7 
81 This is estimated as: h / trading day per year x 12 months. For the two-year series, 98.7/250 x 12=4.73, assuming 
there are 250 trading days in a year. 
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Overall, the size of the autocorrelation coefficients reported in Table 4-3 are 

broadly consistent with the persistent nature of financial market volatility noted in Poon 

and Granger (2003), where the autocorrelation coefficients for realised volatility were 

found to be significantly greater than zero even after 1000 lags. These results indicate 

that volatility levels can be characterised as a stationary series with very slowly 

decaying autocorrelation coefficients. 

 

4.3.3 The Conventional Variance Ratio Test 
 

The preceding analyses suggest that the null hypothesis of a unit root in the 

volatility data can be rejected across all currencies and maturities. Since both a unit root 

and uncorrelated increments are required for the random walk process to hold (Liu and 

He, 1991), variance ratio tests are employed in the following section to investigate the 

violation of the uncorrelated increments requirement.  

 

The variance ratio test of Lo and MacKinlay (1988) relies on an important 

property of the random walk process; that is, if the random walk hypothesis holds, the 

variance of the first difference of a series should be proportionally related to the 

variance of the q differences. For example, the variance of monthly change in volatility 

should be thirty times as large as the variance of daily change in volatility under the null 

hypothesis if the daily volatility series follows a random walk process. Thus the 

variance ratio estimated at lag q, can be expressed as:  

VR (q)  = 
)R(Var
)R(Var

q
1

1

q

      (4-2) 
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The notation R is the natural logarithm of the first difference of the implied volatility (V) 

series measured as logVt - logVt-1 and Rq and R1 represent q-period and 1-period change 

in volatility respectively. The variance ratio (VR) has a value of one if the random walk 

null hypothesis holds. That is, if the estimated variance ratio is equal to one over q 

intervals, the implied volatility series can be characterised as a random walk process. 

The standard normal test statistics under homoscedasticity, Zs(q) is given by: 

q
qqqVRN

qZs
3/)]1)(12(2][1)()[1(

)(
−−−−

=    (4-3) 

The heteroscedastic-consistent standard normal test statistics Z(q) is given by: 

 

)(
]1)()[1(

)(
qV

qVRN
qZ

−−
=                      (4-4) 

where N is the number of observations of Rt, and V(q) is the consistent estimate of the 

variance ratio at interval q. The standard normal test statistics Zs(q) has independent and 

identically distributed standard normal error terms while the heteroscedastic-robust test 

statistic, Z(q), has a less restrictive assumption that allows heteroscedastic and non-

normal error terms.        

 

In testing the random walk hypothesis using the implied volatility series, both 

Zs and Z statistics are calculated for different levels of q. Daily closing implied 

volatility are used as the base observation interval. The Zs and Z statistics are calculated 

for each q by comparing the variance of the base interval with the variance for two-day, 

five-day, ten-day, twenty-day and thirty-day periods. The VR for each level of q is 

calculated for the volatility series with maturities of one-week, one-month, three-month, 

six-month, one-year and two-year. Since both Zs(q) and Z(q) statistics are asymptotic 

normal, the usual critical values are used for hypothesis testing. For completeness, the 
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variance ratio test is also performed using volatility levels for the selected currency 

pairs. 

 

4.3.4 The Nonparametric Variance Ratio Test 
 

Wright (2000) developed a nonparametric version of the variance ratio test that 

uses ranks and signs in place of the underlying change in volatility. In contrast with the 

conventional asymptotic normal variance ratio tests of Lo and MacKinlay (1988), this 

method avoids making the limiting assumptions about the underlying distribution. This 

is an important consideration as the implied volatility first differences reported in Table 

4-1 exhibit significant leptokurtic distributions.   

 

Wright (2000) tests six different time series models, including two long 

memory models using Monte Carlo simulation. The test statistics are found to be more 

robust to size distortion in the presence of conditional heteroscedasticity than the 

conventional variance ratio test. Given that the distribution-free method is more precise 

than the conventional asymptotic tests, more reliable results can be expected when the 

implied volatility first difference series are characterised by skewness, kurtosis and 

persistence. The rank-based variance ratio test statistics are defined as: 

RK1=
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RK2=
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where  

tRK1 = 
12

)1)(1-(/
2

1-)( +






 + TTTyR t  

tRK2 = 1−Φ ( ))1/()( +TyR t  

 

Φ is the standard normal cumulative distribution function and )( tyR is ranked amongst T 

observations of differences in logs in the volatility series from Tyyy ,...., 21  with simple 

linear transformation used to produce a ranking with sample mean of zero and variance 

of one. The sign-based variance ratio tests are specified as: 
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where ktt SS −++ ..... are the signs of the differences in logs in the volatility series, which 

are assumed to be independent and identically distributed (iid) with mean of zero and 

variance of one. The test statistics for RK1, RK2 and S1 for a given T and interval k can 

be compared with the critical values found in Wright (2000)82. The test statistics are 

estimated for each of the volatility series. 

 

                                                            
82 Refer to Table 1 on pp.3 of Wright (2000). 



82 
 

4.4 Empirical Results for the Conventional Variance Ratio Test 
 

The results for the conventional variance ratio tests are presented in Table 4-4. 

The tests are performed on differences in logs of the volatility series as well as the 

volatility levels.  The first column shows the respective maturities of the volatility series 

for each of the currency-pairs. The test results for the GBP/USD currency pair are 

presented in columns two to five. The second and the fourth columns report the 

estimated variance-ratio, VR, for each holding-period q. The corresponding standard 

normal Zs-test statistics under the assumption of homoscedasticity are displayed in 

columns three and five. For the rest of the currency pairs, the results are tabulated in the 

same manner.  

 

Table 4-4 reveals that the variance ratio test under homoscedasticity rejects the 

unit variance hypothesis overwhelmingly when the test is applied on the volatility 

levels. In fact, the null hypothesis of unity variance ratio can be rejected at the 1% level 

of significance in all cases. The Zs-test statistic ranges from 18.3 for the two-year 

AUD/USD volatility series to 148.5 for the one-year GBP/USD volatility series. The 

high homoscedastic Zs-test statistic corresponds with large deviation in variance ratio 

from unity where in most cases, the estimated variance ratios are well in excess of five. 

Drawing from the autocorrelation analysis reported in Table 4-3, the Ljung-Box Q 

statistics and the variance ratio statistics are consistent with one another up to this point. 

This suggests that the rejection of the variance ratio test may be attributed to the 

presence of autocorrelation in the implied volatility series. 
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Table 4-4: Variance Ratio Estimation and Hypothesis Testing of Unity Variance Ratios Using Zs(q) 

  GBP/USD   EUR/USD   AUD/USD   USD/JPY   

 Diff. in logs   Levels   Diff. in logs   Levels   Diff. in logs   Levels   Diff. in logs   Levels 

 q VR Zs   VR  Zs    VR Zs   VR  Zs    VR Zs   VR  Zs    VR Zs   VR Zs   

1-Week    5 0.440 -8.609 *** 4.419 52.528 *** 0.786 -3.300 *** 4.163 48.880 *** 0.813 -2.895 *** 4.110 48.159 *** 0.735 -4.097 *** 4.266 50.466 *** 
10 0.271 -7.271 *** 8.330 73.078 *** 0.509 -4.920 *** 7.594 66.115 *** 0.604 -3.982 *** 6.388 54.137 *** 0.459 -5.419 *** 7.504 65.206 *** 
20 0.180 -5.557 *** 15.576 98.719 *** 0.285 -4.871 *** 13.538 85.401 *** 0.391 -4.159 *** 6.587 38.137 *** 0.284 -4.876 *** 12.866 80.823 *** 
30 0.165 -4.557 *** 22.264 116.075 *** 0.269 -4.010 *** 18.905 98.296 *** 0.372 -3.456 *** 5.085 22.474 *** 0.253 -4.104 *** 17.514 90.659 *** 

1-Month   5 0.831 -2.603 *** 4.888 59.730 *** 0.824 -2.724 *** 4.287 50.794 *** 0.828 -2.666 *** 4.213 49.750 *** 0.810 -2.936 *** 4.643 56.292 *** 
10 0.789 -2.106 ** 9.591 85.643 *** 0.748 -2.527 ** 8.228 72.469 *** 0.807 -1.944 * 6.606 56.327 *** 0.639 -3.619 *** 8.715 77.350 *** 
20 0.753 -1.675 * 18.474 118.343 *** 0.604 -2.697 *** 15.208 96.777 *** 0.727 -1.864 * 6.453 37.224 *** 0.532 -3.190 *** 15.626 99.625 *** 
30 0.748 -1.374 26.683 140.195 *** 0.537 -2.540 ** 21.208 110.943 *** 0.697 -1.668 * 4.850 21.181 *** 0.471 -2.906 *** 21.325 111.585 *** 

3-Month   5 0.856 -2.211 ** 4.887 59.723 *** 0.929 -1.093 4.091 47.767 *** 0.717 -4.379 *** 4.216 49.803 *** 0.894 -1.631 4.780 58.411 *** 
10 0.817 -1.820 * 9.579 85.520 *** 0.888 -1.127 7.886 69.040 *** 0.669 -3.330 *** 6.610 56.370 *** 0.752 -2.482 ** 9.152 81.736 *** 
20 0.805 -1.320 18.371 117.651 *** 0.800 -1.363 14.691 93.258 *** 0.601 -2.726 *** 6.269 35.964 *** 0.694 -2.087 ** 16.858 108.019 *** 
30 0.800 -1.091 26.371 138.495 *** 0.737 -1.443 20.594 107.572 *** 0.590 -2.254 ** 4.538 19.467 *** 0.629 -2.036 ** 23.539 123.738 *** 

6-Month   5 1.091 1.397 4.952 60.720 *** 0.928 -1.113 3.924 45.180 *** 0.576 -6.564 *** 4.222 49.891 *** 0.928 -1.116 4.862 59.672 *** 
10 1.168 1.670 * 9.794 87.669 *** 0.912 -0.886 7.574 65.911 *** 0.495 -5.076 *** 6.618 56.453 *** 0.821 -1.795 * 9.445 84.674 *** 
20 1.189 1.281 19.085 122.486 *** 0.858 -0.967 14.200 89.911 *** 0.440 -3.821 *** 6.190 35.429 *** 0.800 -1.362 17.829 114.628 *** 
30 1.226 1.231 27.904 146.865 *** 0.818 -1.001 19.971 104.152 *** 0.436 -3.103 *** 4.406 18.738 *** 0.735 -1.452 25.419 134.060 *** 

1-Year      5 1.150 2.310 ** 4.961 60.859 *** 0.815 -2.855 *** 3.772 42.829 *** 0.906 -1.463 4.238 50.143 *** 0.962 -0.592 4.895 60.182 *** 
10 1.251 2.500 ** 9.829 88.019 *** 0.789 -2.117 ** 7.274 62.909 *** 0.901 -0.991 6.673 57.002 *** 0.877 -1.233 9.568 85.901 *** 
20 1.286 1.938 * 19.222 123.416 *** 0.778 -1.513 13.670 86.303 *** 0.898 -0.697 6.297 36.161 *** 0.883 -0.797 18.265 117.599 *** 
30 1.348 1.898 * 28.204 148.500 *** 0.756 -1.339 19.243 100.153 *** 0.900 -0.548 4.588 19.743 *** 0.804 -1.074 26.299 138.894 *** 

2-Year      5 1.262 4.027 *** 4.962 60.875 *** 0.808 -2.963 *** 3.655 41.017 *** 0.422 -8.954 *** 4.232 50.050 *** 0.989 -0.165 4.903 60.305 *** 
10 1.393 3.915 *** 9.827 87.994 *** 0.781 -2.195 ** 7.032 60.478 *** 0.325 -6.787 *** 6.642 56.688 *** 0.922 -0.786 9.595 86.176 *** 
20 1.504 3.416 *** 19.181 123.136 *** 0.764 -1.604 13.183 82.985 *** 0.276 -4.942 *** 6.142 35.098 *** 0.937 -0.430 18.353 118.198 *** 
30 1.624 3.405 *** 28.052 147.673 *** 0.736 -1.449 18.513 96.148 *** 0.266 -4.041 *** 4.321 18.272 *** 0.858 -0.778 26.462 139.786 *** 

Note: This table reports the variance ratios and the corresponding test statistics. The sample period spans from 29 August, 2001 to 28 April, 2006 using volatility levels and differences in logs of 
the quoted implied volatility series. VR denotes the estimated variance ratio at each holding-period q and Zs is the test statistics under the homoscedasticity assumption. The tests are conducted 
with small sample size adjustment.  
***significant at the 1% level 
**significant at the 5% level 
*significant at the 10% level 
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In sharp contrast, rejections of the null hypothesis are most evident for short-

dated series when the test is repeated using first differences of the implied volatility 

series. For these series, the Zs-test statistics are above 1.96 suggesting the random walk 

hypothesis can be comfortably rejected at the 5% level of significance (two-tailed test). 

Notably, the one- week and one-month series are consistently rejected across all four 

currency-pairs. For the USD/JPY currency-pair, rejections of the null hypothesis at 1% 

level of significance can be found for the one-week and one-month series at various 

holding-periods (q). However for the AUD/USD and the GBP/USD currency pairs, 

rejections of the null hypothesis are more widespread and can be found across all 

maturities. Consistent with this pattern, the variance ratios estimated using first 

differences are also closer to unity compared with those estimated with volatility levels. 

This can be seen across all currency-pairs.  

 

Since the Zs-test statistics are calculated based on the assumption of 

homoscedasticity, rejection of the null hypothesis of a random walk process could be 

largely the result of heteroscedasticity or autocorrelation in the data series. To confirm 

this conjecture, the heteroscedastic-consistent Z-test statistic of Lo and MacKinlay 

(1988) is used to test for the rejection of the null hypothesis. The results are displayed in 

Table 4-5. 

 

Notably, the results in Table 4-5 are considerably different from those reported 

in Table 4-4 when heteroscedastic adjustment is applied to the Z-test statistics. 

Specifically, the heteroscedastic-consistent z statistics are substantially lower than the 

unadjusted equivalent in Table 4-4 when the variance ratio test is applied on the 

volatility levels. This pattern is observed across all series in the sample.  
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Table 4-5: Variance Ratio Estimation and Hypothesis Testing of Unity Variance Ratios Using Z(q) 

  GBP/USD EUR/USD AUD/USD USD/JPY 

 Diff. in logs   Levels   Diff. in logs   Levels   Diff. in logs   Levels   Diff. in logs   Levels   

q VR Z   VR Z   VR Z   VR Z   VR Z   VR Z   VR Z   VR Z   

1-Week             5 0.440 -1.588 4.419 30.390 *** 0.786 -3.019 *** 4.163 33.880 *** 0.813 -2.519 ** 4.110 6.784 *** 0.735 -3.376 *** 4.266 34.086 *** 
10 0.271 -2.245 ** 8.330 43.122 *** 0.509 -4.453 *** 7.594 47.938 *** 0.604 -3.540 *** 6.388 8.150 *** 0.459 -4.488 *** 7.504 46.867 *** 
20 0.180 -2.446 ** 15.576 59.498 *** 0.285 -4.496 *** 13.538 63.504 *** 0.391 -3.847 *** 6.587 6.286 *** 0.284 -4.111 *** 12.866 62.116 *** 
30 0.165 -2.311 ** 22.264 70.923 *** 0.269 -3.750 *** 18.905 74.249 *** 0.372 -3.253 *** 5.085 4.056 *** 0.253 -3.525 *** 17.514 72.751 *** 

1-Month            5 0.831 -1.864 * 4.888 29.552 *** 0.824 -2.328 ** 4.287 32.883 *** 0.828 -2.238 ** 4.213 6.931 *** 0.810 -2.037 ** 4.643 38.461 *** 
10 0.789 -1.852 * 9.591 42.697 *** 0.748 -2.170 ** 8.228 49.159 *** 0.807 -1.704 * 6.606 8.225 *** 0.639 -2.638 *** 8.715 54.828 *** 
20 0.753 -1.657 * 18.474 59.867 *** 0.604 -2.380 ** 15.208 67.572 *** 0.727 -1.722 * 6.453 5.939 *** 0.532 -2.475 ** 15.626 73.796 *** 
30 0.748 -1.465 26.683 71.954 *** 0.537 -2.285 ** 21.208 78.122 *** 0.697 -1.575 4.850 3.720 *** 0.471 -2.346 ** 21.325 85.711 *** 

3-Month            5 0.856 -1.800 * 4.887 30.853 *** 0.929 -0.778 4.091 29.878 *** 0.717 -1.697 * 4.216 6.824 *** 0.894 -1.072 4.780 39.237 *** 
10 0.817 -1.738 * 9.579 44.519 *** 0.888 -0.824 7.886 45.488 *** 0.669 -1.548 6.610 8.074 *** 0.752 -1.761 * 9.152 56.278 *** 
20 0.805 -1.426 18.371 62.105 *** 0.800 -1.056 14.691 62.604 *** 0.601 -1.414 6.269 5.629 *** 0.694 -1.598 16.858 77.395 *** 
30 0.800 -1.225 26.371 74.132 *** 0.737 -1.156 20.594 72.471 *** 0.590 -1.215 4.538 3.358 *** 0.629 -1.619 23.539 92.037 *** 

6-Month            5 1.091 0.144 4.952 33.339 *** 0.928 -0.522 3.924 26.312 *** 0.576 -1.289 4.222 6.784 *** 0.928 -0.638 4.862 36.491 *** 
10 1.168 0.304 9.794 48.444 *** 0.912 -0.459 7.574 40.589 *** 0.495 -1.248 6.618 8.016 *** 0.821 -1.162 9.445 52.702 *** 
20 1.189 0.291 19.085 68.639 *** 0.858 -0.546 14.200 56.413 *** 0.440 -1.087 6.190 5.498 *** 0.800 -0.969 17.829 73.789 *** 
30 1.226 0.386 27.904 83.524 *** 0.818 -0.592 19.971 65.741 *** 0.436 -0.927 4.406 3.207 *** 0.735 -1.079 25.419 89.170 *** 

1-Year               5 1.150 0.507 4.961 36.169 *** 0.815 -0.984 3.772 24.003 *** 0.906 -0.860 4.238 6.856 *** 0.962 -0.283 4.895 33.777 *** 
10 1.251 0.740 9.829 52.647 *** 0.789 -0.849 7.274 37.601 *** 0.901 -0.617 6.673 8.127 *** 0.877 -0.697 9.568 48.918 *** 
20 1.286 0.711 19.222 74.877 *** 0.778 -0.676 13.670 52.816 *** 0.898 -0.460 6.297 5.635 *** 0.883 -0.504 18.265 68.945 *** 
30 1.348 0.846 28.204 91.471 *** 0.756 -0.625 19.243 61.750 *** 0.900 -0.371 4.588 3.395 *** 0.804 -0.709 26.299 83.760 *** 

2-Year               5 1.262 1.153 4.962 37.057 *** 0.808 -0.872 3.655 23.035 *** 0.422 -1.379 4.232 6.761 *** 0.989 -0.074 4.903 33.001 *** 
10 1.393 1.379 9.827 53.886 *** 0.781 -0.766 7.032 36.167 *** 0.325 -1.325 6.642 7.983 *** 0.922 -0.425 9.595 47.785 *** 
20 1.504 1.499 19.181 76.422 *** 0.764 -0.629 13.183 50.602 *** 0.276 -1.125 6.142 5.403 *** 0.937 -0.261 18.353 67.335 *** 
30 1.624 1.742 * 28.052 93.027 *** 0.736 -0.593 18.513 58.909 *** 0.266 -0.968 4.321 3.104 *** 0.858 -0.493 26.462 81.790 *** 

Note: This table reports variance ratios with the corresponding test statistics. The sample period spans from 29 August, 2001 to 28 April, 2006 using volatility levels and differences in logs of 
the quoted implied volatility series. VR denotes the estimated variance ratio at each holding-period q and Z is the Lo and MacKinlay (1988) test statistics robust to heteroscedasticity. The tests 
are conducted with small sample size adjustment.  
***significant at the 1% level 
**significant at the 5% level 
*significant at the 10% level 
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A similar pattern also exists when the test is applied on the differences in logs 

of the volatility series, although the reduction in the estimated test statistics is less 

pronounced when compared to the volatility levels. For instance, the homoscedastic Zs 

reported in Table 4-4 is 139.786 (q=30) for the two-year USD/JPY volatility series but 

it has a considerably lower test statistic of 81.790 (q=30 in Table 4-5) when the 

heteroscedastic robust Z statistic is tested on the volatility levels.  

 

A relatively small reduction in the test statistics is noted when the test is 

repeated using differences in logs of the implied volatility series. This can be seen in the 

z-test statistic for the two-year USD/JPY volatility series which reduced from -0.778 to 

-0.473 when the homoscedastic adjustment is applied to the standard z-test statistic. 

This suggests that heteroscedasticity is more severe in the implied volatility levels than 

the first difference in the logs of implied volatility. The reductions in the test statistics 

do not alter the test results for the volatility levels and the null hypothesis remains 

strongly rejected at the 1% level of significance in all cases. 

  

Together, the results presented in Tables 4-4 and 4.5 suggest that most of the 

rejections of the null hypothesis under homoscedasticity are not robust to 

heteroscedasticity when the variance ratio test is performed on the difference in log 

volatility series. In particular, the long-dated series of six-month, one-year and two-year 

are no longer rejected under the heteroscedastic-consistent Z statistic. Therefore it is clear 

that the variance ratios of these series are significantly different from one due to the 

presence of heteroscedasticity in the volatility process. More importantly, this is 

consistent with the findings of Diebold and Nerlove (1989) who find strong ARCH 

effects in the volatility patterns of spot exchange rates.         
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In contrast, short-dated implied volatility series of one-week and one-month 

remain significant in Table 4-5 with the heteroscedastic adjusted z-test statistic. The only 

exception is the two-year GBP/USD series which is marginally rejected with a Z-test 

statistic of 1.742 over an interval of 30 days.  

 

The rejection of the null hypothesis is particularly strong for the Japanese yen. 

For example, the heteroscedastic-consistent z-statistics associated with time interval, q of 

5, 10, 20 and 30, are -3.376, -4.488, -4.111, -3.525 for the one-week USD/JPY series. 

Clearly, the null hypothesis is strongly rejected at the 1% level of significance.  

 

For the three-month series, rejections of the unity variance ratio assumption are 

also reported for time intervals of 10 and 20 days. For the EUR/USD and AUD/USD 

currency pairs, rejections of the null are also reported for the one-week and one-month 

series. These short-dated series results are robust to heteroscedasticity and thus the 

rejections of the variance ratio test appear to be related to autocorrelation rather than 

heteroscedasticity.   

 

4.5 Empirical Results for the Nonparametric Variance Ratio Test 
 

Although the preceding test results reported in Table 4-5 are robust to 

heteroscedasticity, the conventional variance ratio assumes the sampling distribution of 

the variance ratio test statistic is normally distributed. As the quoted volatility series are 

far from normally distributed, violation of the underlying assumption in the variance 

ratio test statistics can produce erroneous test results.    
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Table 4-6: Hypothesis Testing of Unity Variance Ratios Using Ranks and Signs 

  GBP/USD   EUR/USD                     AUD/USD                    USD/JPY 
K  RK1   RK2   S1   RK1   RK2   S1   RK1   RK2   S1   RK1   RK2   S1   

     
1-Week      5  -2.702 *** -3.031 *** -2.360 ** -3.140 *** -3.302 *** -2.844 *** -2.354 ** -2.746 *** -0.939 -4.229 *** -4.447 *** -3.030 *** 

10  -3.963 *** -4.554 *** -3.177 *** -4.319 *** -4.803 *** -3.322 *** -3.481 *** -4.016 *** -1.572 -5.220 *** -5.638 *** -3.524 *** 
20  -3.735 *** -4.216 *** -2.914 *** -3.925 *** -4.595 *** -2.840 *** -3.347 *** -4.101 *** -1.498 -4.645 *** -5.020 *** -3.390 *** 
30  -3.102 *** -3.475 *** -2.548 ** -3.167 *** -3.751 *** -2.231 ** -2.544 ** -3.305 *** -1.107 -3.872 *** -4.189 *** -3.099 *** 

1-Month      5  -2.494 ** -2.773 *** -1.425 -3.103 *** -2.926 *** -2.594 *** -3.042 *** -2.917 *** -3.655 *** -3.439 *** -3.271 *** -2.714 *** 
10  -1.678 * -2.240 ** -0.579 -2.925 *** -2.899 *** -2.386 ** -2.405 ** -2.278 ** -2.763 *** -3.944 *** -4.038 *** -2.870 *** 
20  -1.396 -1.941 * 0.147 -2.610 *** -2.799 *** -2.129 ** -2.001 ** -2.088 ** -1.993 ** -3.362 *** -3.544 *** -2.720 *** 
30  -1.046 -1.582 0.516 -2.394 ** -2.578 *** -1.935 * -1.807 * -1.871 * -1.574 -3.021 *** -3.172 *** -2.701 *** 

3-Month      5  -1.797 * -2.034 ** 0.003 -0.991 -1.103 -0.436 -1.117 -1.466 0.228 -0.867 -1.045 -0.679 
10  -1.316 -1.731 * 0.761 -0.845 -1.044 -0.654 -0.885 -1.218 -0.042 -2.185 ** -2.394 ** -1.868 * 
20  -1.075 -1.406 1.081 -0.725 -1.244 -0.341 -1.017 -1.394 -0.043 -2.190 ** -2.276 ** -1.977 ** 
30  -0.698 -1.102 1.381 -0.775 -1.374 -0.344 -0.839 -1.237 0.392 -1.922 * -2.089 ** -1.679 * 

6-Month      5  3.586 *** 3.328 *** 1.079 1.877 * 1.186 1.248 1.926 * 1.475 1.826 * 0.790 0.497 1.270 
10  3.359 *** 3.076 *** 1.045 1.319 0.905 0.535 1.723 * 1.372 1.630 -0.809 -1.014 0.124 
20  2.692 *** 2.263 ** 0.439 0.426 0.143 -0.388 0.999 0.790 0.996 -0.904 -1.020 -0.175 
30  2.903 *** 2.335 ** 0.600 0.183 -0.143 -0.446 0.895 0.697 0.927 -0.749 -1.004 -0.340 

1-Year      5  3.662 *** 3.961 *** 1.576 1.475 0.951 1.053 -0.065 -0.670 0.005 2.542 ** 2.310 ** 2.710 *** 
10  3.321 *** 3.646 *** 1.716 * 1.251 1.022 0.570 0.701 0.038 0.587 0.867 0.647 1.429 
20  2.706 *** 2.772 *** 1.441 0.824 0.783 -0.052 0.967 0.474 0.565 0.487 0.374 0.515 
30  2.837 *** 2.768 *** 1.289 0.635 0.543 -0.217 0.762 0.400 0.327 0.165 -0.011 0.018 

2-Year      5  4.115 *** 4.912 *** 2.671 *** 2.611 *** 2.192 ** 1.797 * 1.292 1.206 -0.713 3.010 *** 2.995 *** 1.815 * 
10  3.667 *** 4.434 *** 2.446 ** 2.227 ** 2.010 ** 1.393 2.151 ** 2.268 ** -0.197 1.455 1.369 0.343 
20  2.957 *** 3.617 *** 1.989 ** 1.552 1.416 1.058 1.609 2.024 ** -0.779 0.889 0.946 -0.483 
30  3.028 *** 3.646 *** 1.900 * 1.155 0.961 0.717 1.478 1.949 * -0.939 0.343 0.369 -0.833 

          
Note: The table reports nonparametric variance ratio test of Wright (2000) with a null hypothesis of one. The sample period spans from 29 August, 2001 to 28 
April, 2006 using differences in logs of implied volatility quotes. The rank tests statistics are denoted as RK1 and RK2 while S1 denotes the results for the sign tests.  
***significant at the 1% level 
**significant at the 5% level 
*significant at the 10% level 
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In order to confirm the robustness of the test results, additional variance ratio tests are 

conducted using the nonparametric ranks and signs tests of Wright (2000), which are 

free from distribution assumptions. The methodology is presented in Equations (4-5), 

(4-6) and (4-7). Table 4-6 provides the ranks and signs test statistics R1, R2 and S1 with 

time intervals of 5-day, 10-day, 20-day and 30-day. This is consistent with the 

conventional variance ratio tests previously reported in Tables 4-4 and 4-5.  

  

As indicated in Table 4-6, the nonparametric ranks and signs statistics show 

that there is sufficient evidence to reject the null hypothesis of unity variance ratio 

across all currency pairs. Notably, the three-month contracts have the lowest rejection 

rate among the various maturities. For maturities of one month or less, there is strong 

rejection of the random walk hypothesis across all currency pairs at various values of k. 

The rejections are stronger with the rank-based tests RK1 and RK2. These test statistics 

are mostly significant at the 5% level and constitute convincing evidence against the 

random walk hypothesis across all currency pairs. The test statistics are larger for short-

dated volatility. These results are fairly consistent with the heteroscedasticity adjusted 

conventional variance ratio tests reported in Table 4-5 for the EUR/USD and USD/JPY 

currency pairs.   

 

In contrast with the rank-based test results, the sign-based tests provide some 

evidence of rejection of the null of unity variance ratio for the one-year and two-year 

volatility series. However, as demonstrated by Wright (2000), the sign-based test 

statistics are normally less robust than the rank-based tests but they can still be more 

powerful than the conventional variance ratio tests. Following a recent paper by Belaire-
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Franch and Opong (2005), Sidack-adjusted p-values83 are used to control for possible 

test-size distortions in the ranks and signs tests. The adjusted p-value is estimated as:  

   α)1(1~
ji

S
ji Pp −−=       (4-8) 

where 

=α  Number of k values 

jiP =  p-value computed for nonparametric variance ratio test j for a given value k,  

 i = 1,2,…. α  

 

To perform this adjustment, the p-value of each variance ratio test that corresponds to 

the ranks and signs tests are estimated for each currency pair. Since the tests are 

performed over four different intervals, the number of k values used to estimate the 

corrected p-values is set to four. Thus, for each currency pair, the p-values are estimated 

for every maturity using intervals of 5, 10, 20 and 30 days, resulting in a total of 72 

adjusted p-values for the entire sample.   

 

The final test results for the adjusted p-values are reported in Table 4-7. As can 

be seen, the rejections of the random walk hypothesis persist even after controlling for 

data bias due to size distortions. Notably, strong rejection of the unity variance ratio 

assumption is found for the one-week series. However, in contrast with the results in 

Table 4-6, rejections of the null hypothesis are only reported for the one-month 

EUR/USD and USD/JPY series. Overall, the results are fairly consistent with those 

reported previously (see Table 4-5) in the conventional variance ratio test with 

heteroscedestic-robust test statistics. With the exception of the GBP/USD currency pair, 

                                                            
83 This is consistent with Psaradakis (2000). 
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no rejection of unity variance ratio is reported for series with maturity of three month 

and above. It is interesting to note that for the GBP/USD currency pair, the six-month, 

one-year and two-year volatility series still reject the ranks tests using RK1 and RK2 

although only marginal rejection was reported for the two-year volatility in Table 4-5.  

 

Table 4-7: Sidack-adjusted S
jiP~ -values for Ranks and Signs 

 1-Week    1-Month   3-Month   6-Month   1-Year   2-Year   

Panel A: GBP/USD            

RK1 0.011 ** 0.431  0.662  0.014 ** 0.015 ** 0.007 *** 
RK2 0.004 *** 0.183  0.441  0.051 * 0.014 ** 0.001 *** 
S1 0.041 ** 0.897  0.794  0.750  0.368  0.120  
          
Panel B: EUR/USD         

RK1 0.004 *** 0.029 ** 0.867  0.688  0.694  0.306  
RK2 0.002 *** 0.022 ** 0.659  0.868  0.837  0.385  
S1 0.040 ** 0.107  0.984  0.884  0.880  0.561  
          
Panel C: AUD/USD         

RK1 0.030 ** 0.124  0.796  0.531  0.909  0.380  
RK2 0.007 *** 0.116  0.557  0.701  0.978  0.271  
S1 0.590  0.146  0.998  0.552  0.981  0.910  
          
Panel D: USD/JPY         

RK1 0.000 *** 0.003 *** 0.305  0.880  0.717  0.579  
RK2 0.000 *** 0.003 *** 0.256  0.826  0.750  0.581  
S1 0.005 *** 0.022 ** 0.401  0.909  0.627  0.768  
                          
 

Notes: This table presents the final test results using the Sidack-corrected p-values. The adjusted             
p-values are calculated from individual p-value that corresponds to the variance ratio test with four 
values of k (5,10,20,30). 
***significant at the 1% level 
**significant at the 5% level 
*significant at the 10% level 

 
 
 

4.6 Mean Reversion 
 

The variance ratio statistics is strictly unity when a stationary series is 

uncorrelated over time. Campbell, Lo and MacKinlay (1997) show that the ratio of the 

variance of a q-period variable and q times the variance of a one-period variable can be 

reduced to (1+ρ1), where ρ1 is the first-order autocorrelation coefficient of the variable. 
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Under this rationale, the calculated variance ratio is simply one plus the zero 

autocorrelation (that is ρ1 = 0) for an uncorrelated return series, and hence this gives rise 

to the notion of variance ratio is unity. However, if positive first-order autocorrelation is 

present in the return series, then the sum of one plus the first-order autocorrelation will 

be larger than one. Conversely, the presence of negative first-order autocorrelations will 

reduce (1+ρ1) to below a value of one.    

 

If a series reverts toward its long-term mean over time84 then the variance for 

q-period return will be less than q times the one period variance resulting in variance 

ratio being less than unity. In other words, negative first-order autocorrelation will 

reduce (1+ρ1) to less than unity. This property of variance ratios provides a simple and 

useful diagnostic tool for examining characteristics of asset price returns. Indeed, 

studies by Poterba and Summers (1988), Lo and MacKinlay (1989) and Kim, Nelson 

and Startz (1991) use this property to examine the presence of mean reversion in stock 

prices.  

 

Figure 4-1 and 4-2 present the estimated variance ratios for each currency by 

maturity with a time interval of q=10 and q=20 respectively. This is based on the 

variance ratio statistics calculated using differences in logs of implied volatility reported 

in Table 4-5. The mean variance ratio is also calculated for each of the respective 

maturities. For the variance ratio estimated over a 10-day interval, the average variance 

ratio increases steadily from a value of 0.5 for the one-week series to 1.0 for the one-

year series. Notably, the one-year series has the highest mean variance ratio which is 

close to one.  

                                                            
84This may due to the presence of transitory factors in the price series caused by speculative trades or changes in 
required rate of returns. See Poterba and Summers (1988). 
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Figure 4-1: Variance Ratio versus Maturity (q=10) 
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Figure 4-2: Variance Ratio versus Maturity (q=20) 
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This is followed by the two-year series which has an average of approximately 0.9. For 

the short-dated series of one-month and three-month, the estimated variance ratios fall 

between 0.7 and 0.8. The lowest mean variance ratio is reported for the one-week series. 

On the whole, the mean variance ratio appears to increase steadily with maturity 

through to 12 months. 

 

In terms of currency type, the GBP/USD currency pair exceeded the variance 

ratio of one for maturities of six-month, one-year and two-year with estimated variance 
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ratios between 1.2 and 1.4. This is indicative of positive autocorrelation in the volatility 

process and coincides with the test results presented in Table 4-7 which show rejection 

for the same series even after controlling for test size distortions. Thus, the rejection of 

the variance ratio test for these maturities is attributable to high positive autocorrelation 

in the GBP/USD volatility series.     

 

On the other hand, the estimated variance ratios for the AUD/USD series are 

consistently below unity across all maturities. These exhibit the lowest variance ratios 

for the three-month, six-month and two-year series. In contrast with the GBP/USD 

series, this suggests the presence of negative autocorrelation in the volatility series and 

therefore there is a greater tendency for the volatility series to revert toward their mean. 

The pattern in Figure 4-2 constructed at a higher interval of twenty days, exhibits a 

similar trend. 

 

 

4.7 Model Comparison Tests 
 

It should be noted that while the results from the preceding analyses are 

unambiguous for the short maturities of one week and one month, evidence for the 

longer maturities is somewhat mixed. Furthermore, both the parametric and 

nonparametric variance ratio tests provide in-sample analysis for the null hypothesis of 

random walks. Such tests may not be very meaningful or have little practical value for 

market practitioners and forecasters. Therefore, to substantiate the validity of the test 

results, further evidence seems warranted. In view of this, implied volatility forecasts 

based on the random walk model is constructed. The forecasting ability of this model is 
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compared with two alternative competing models and the test results would render 

further insights into the behaviour of the implied volatility series and the forecasting 

ability of the alternative models.  

 

In this section, further analysis is performed by examining the forecasting 

ability of two competing models against the random walk process. If the implied 

volatility series is best characterised as a random-walk process, then forecasting using a 

random-walk model should generate superior results compared to other competing 

models.  

 

Three different time series forecasting models are constructed including a 

driftless random walk model, an autoregressive integrated moving average (ARIMA) 

model and an artificial neural networks (ANNs) model. These models are used to 

generate one-day ahead out-of-sample forecasts of implied volatility changes for each of 

the six maturities examined in the previous section. The out-of-sample prediction is 

adopted as a means of avoiding data mining issues associated with in-sample inference. 

 

The implied volatility data is divided into two subsamples. The first subsample 

consists of 900 observations of daily log implied volatility changes from 29 August 

2001 to 29 April 2005 and is used for modelling. For out-of-sample forecasting 

evaluations, the second subsample is used. This consists of 250 daily observations from 

30 August 2005 to 28 April 2006. The modelling and forecasting tests are performed 

using first-differences in the implied volatility series. This specification is motivated by 

the lack of stationarity in the volatility levels according to the unit root results reported 

in Table 4-2, particularly for the longer maturities. For the competing models, the well-
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established univariate autoregressive integrated moving average (ARIMA) model is 

used as the linear forecasting model, while the more flexible artificial neural networks 

(ANNs) model is chosen to capture possible nonlinear structure in the volatility series. 

 

4.7.1 The Random Walk Model 
 

 

Empirical evidence suggests that foreign exchange volatility is persistent with a 

root close to unity; for example, the studies by Engle and Bollerslev (1986) and Engle 

and Gonzalez-Rivera (1991). It appears reasonable to expect that the random walk is 

used as the first forecasting model. The persistent nature of implied volatility also 

suggests that an I(1) process provides a better characterisation of the volatility series for 

the purpose of forecasting. Thus, the first specification considered is a driftless random 

walk model: 

t
M

t µIV =∆        (4-9) 

where, 
 

M
tIV∆   = The first-difference of the implied volatility series for a given 

 maturity M for period t, 
 

 tµ   = a white noise process.  
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4.7.2 The ARIMA(p,1,q) Model 
 

This is a general univariate linear model to account for higher-order 

autoregressive processes combined with a moving-average processes to capture time 

series variation in the data. It allows the series, tIV∆ , to depend linearly on its own past 

values plus a combination of current and previous values of a white noise error term:    
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     (4-10) 

where,  

jt−ε    = a white noise process, 

p   = order of autoregressive component, 

q   = order of moving-average component, 

 
The parameters p and q are non-negative integers and the autoregressive and moving 
average-parameters are defined as 10,10 <<<< θφ , 0≠θφ + so that the series tIV∆ is 

stationary.  
 

The Schwarz’s Bayesian information criterion (SBIC) is relied upon to 

determine the appropriate values for p and q (Brooks, 2002). The model is estimated for 

all six maturities that correspond to each of the four currency pairs. In most instances, 

the information criterion selects either an ARIMA(2,1,1) or an ARIMA(2,1,2) process 

for the short-dated series of one-week and one-month. For the three-month, six-month, 

one-year and two-year series, the SBIC criterion results in selection of an 

ARIMA(1,1,0) process. 
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4.7.3 Artificial Neural Networks Model 
 

The artificial neural networks (ANNs) model is a nonparametric technique that 

is not new in the finance literature. For instance, Trippi and DeSieno (1992) and 

Altman, Marco and Varetto (1994) have previously examined the usefulness of this 

method in the trading of equity index futures and the prediction of corporate distress 

respectively. In a recent study, Ferland and Lalancette (2006) also adopt the ANNs 

model to estimate volatility in the EuroDollar futures market. Due to the flexibility of 

this approach, it can be used to approximate any nonlinear behaviour in the data series 

(Campbell, Lo and MacKinlay, 1997). The estimation procedure uses a feedforward 

neural network85 model with two hidden layers. 
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where  

M
tIV∆  = system output or the estimated change in the IV series for  

maturity M estimated at period t,  
s  = number of inputs or lagged first difference of the implied  

volatility series,  

0α    = intercept coefficient of the model, 

lα    = network weighting estimated from l =1,…to k, 

ilψ   = the weights from the input i layer to the hidden unit,  

lψ0   = bias weights of the hidden unit l, 

tε   = error term of the model. 
 
 

                                                            
85 Further exposition on ANNs is provided in Campbell, Lo, and MacKinlay (1997).   
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The inputs are connected to multiple nodes; weighting is applied at each node and (.)g  

determines the connections between the nodes and is used as the activation function to 

enhance the nonlinearity of the model.   

 

4.8 The Forecast Performance Test 
 

The out-of-sample forecasting accuracy of the models is carried out using three 

different evaluation measures. The first measure is the root-mean-squared error (RMSE) 

while the mean-error (ME) and mean-absolute-error (MAE) are also reported in the test 

results. Out-of-sample forecasts of the series M
tIV∆ are calculated using each of the 

models defined in the previous section and these one-day ahead forecasts are estimated 

using data from the second subsample (30 August 2005 to 28 April 2006). For a given 

maturity M at period t, the RMSE is defined as: 
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where M
tIV

∧
∆  represents the forecast values for options with maturity M at period t, 

M
tIV∆ is the actual value for maturity M at period t and N is the forecast horizon which is 

one day.  

 

The second forecast performance test provides a relative measure of 

forecasting error for the rival models. A ratio, RMSECM/RMSERW, is calculated for the 

various models relative to a random walk process where RMSECM denotes the root-

mean-squared error for the competing models, while RMSERW is the root-mean-squared 

error for the benchmark random walk model. A ratio of 1.0 suggests that the competing 
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model is as good as the random walk benchmark model. A ratio less than 1.0 indicates 

that the benchmark model is out-predicted by the competing model. No gain is achieved 

from using the competing models if the ratio is greater than 1.0. Inferences are based on 

the null hypothesis of zero difference in the forecast accuracy measured using RMSE, 

that is the competing models relative to the driftless random walk model.  

 

In the third appraisal, the Diebold-Mariano statistics (Diebold and Mariano, 

1995) are employed to examine the statistical significance of the forecast errors between 

the random walk and the competing model. The null hypothesis of zero difference in 

forecast error between the random walk and the competing model is assumed in this 

approach. Specifically, the loss differential is measured as the difference between the 

squared forecast error of the competing models and that of the benchmark random walk 

model. The test statistic is useful for comparing forecast accuracy as it allows the 

forecast errors to be “non-Gaussian, non-zero mean, serially correlated, and 

contemporaneously correlated” (pp.253, Diebold and Mariano, 1995). The Diebold-

Mariano statistic is specified as: 

)(ˆ dV

dDM =                  (4-13) 

 
where the loss function differential, td ≡  )(-)( |,|, httCMhttRW egeg −− with h-step ahead 
forecast error, and 
 

)(ˆ dV  = the estimated standard error for the sample mean loss differential, d , 
 

eRW    = the forecast error for the random walk model estimated as
2

|, 
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4.8.1 Forecast Results 
 

Table 4-8 provides the out-of-sample RMSE statistics associated with the 

driftless random walk, ARIMA and the ANNs model for one-day ahead forecasts. The 

RMSE statistics unambiguously favour the competing models over the random walk. 

Notably, in all cases the RMSE for the competing models is consistently lower than 

those reported for the benchmark model. For example, the one-week GBP/USD has a 

RMSE of 5.78 using the random walk model, while the ARIMA and ANNs have 

RMSEs of 4.93 and 4.88 respectively.  

 

For the two-year series of the same currency, the RMSE reported for the 

random walk model is 0.54 while the ARIMA and ANNs models both have lower 

RMSE (0.45). This pattern is reported across all maturities and currency pairs. This 

suggests that the competing models have higher forecasting accuracy than the random 

walk model. Thus the random walk specification does not receive support against the 

two alternative models when using the RMSE criterion. This further validates the 

preceding random walk violations when using conventional and nonparametric variance 

ratio tests.  

 

The predictive accuracy of the ARIMA and ANNs models is not distinctly 

different from each other although the ARIMA model has marginally lower RMSEs, 

particularly for the shorter maturities of one-week and one-month. For these maturities, 

the mean RMSE difference (mean RMSE for ARIMA less mean RMSE for ANNs) is    

-0.14 and -0.005 respectively, while differences for the three-month to two-year series 

fall between -0.003 and -0.013. In comparison, the mean RMSE gap between the 

random walk and the competing models is much larger, for instance forecasting using  
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Table 4-8: Out-of-Sample One-day Ahead Forecast Performance for the Random Walk and Competing Models 

Random-walk Model ARIMA Model Artificial Neural Network Model
 GBP/USD EUR/USD AUD/USD USD/JPY  GBP/USD EUR/USD AUD/USD USD/JPY  GBP/USD EUR/USD AUD/USD USD/JPY 

1-week                

ME 0.030 0.036 -0.007 0.032 -0.071 -0.002 0.025 0.091 -0.022 -0.028 -0.015 0.121 
MAE 4.343 4.599 3.985 4.907 3.806 3.368 3.190 3.711 3.651 3.471 3.275 3.884 
RMSE 5.778 6.129 5.133 6.597 4.931 4.632 4.243 4.925 4.875 4.864 4.298 5.225 
    
1-month    
ME 0.009 -0.001 0.008 0.010 -0.037 0.006 -0.004 0.057 -0.015 -0.025 0.023 0.032 
MAE 2.067 2.222 2.287 2.330 1.558 1.626 1.653 1.746 1.553 1.613 1.704 1.747 
RMSE 2.659 2.912 2.903 3.124 2.068 2.240 2.189 2.358 2.080 2.210 2.262 2.345 
    
3-month    
ME 0.009 0.001 0.001 0.013 -0.033 0.004 -0.035 0.029 -0.025 0.052 0.001 -0.010 
MAE 2.070 1.180 1.119 1.162 1.593 0.902 0.960 0.902 1.573 0.896 0.959 0.918 
RMSE 2.664 1.537 1.475 1.543 2.108 1.243 1.277 1.205 2.090 1.237 1.291 1.224 
    
6-month    
ME 0.001 0.000 -0.001 0.010 -0.029 -0.002 -0.053 0.020 -0.013 0.042 0.133 -0.003 
MAE 0.567 0.671 0.781 0.703 0.446 0.519 0.684 0.550 0.442 0.514 0.677 0.552 
RMSE 0.792 0.914 1.039 0.972 0.647 0.752 0.919 0.778 0.643 0.751 0.931 0.783 
    
1-year    
ME -0.001 0.001 0.001 0.005 -0.030 -0.003 -0.051 0.010 -0.025 0.042 0.015 0.021 
MAE 0.442 0.493 0.612 0.466 0.357 0.380 0.515 0.372 0.358 0.382 0.512 0.373 
RMSE 0.612 0.682 0.816 0.641 0.503 0.553 0.698 0.518 0.505 0.556 0.698 0.517 
    
2-year    
ME 0.001 0.005 0.005 0.005 -0.028 0.002 -0.061 0.006 -0.022 0.046 -0.056 0.018 
MAE 0.392 0.437 0.585 0.439 0.314 0.348 0.483 0.351 0.316 0.353 0.491 0.352 
RMSE 0.537 0.597 0.769 0.610 0.445 0.498 0.654 0.501 0.446 0.505 0.677 0.502 
                              

Note: This table reports the mean error (ME), the mean average error (MAE), and the root mean square error (RMSE). These statistics are defined below. All 
figures are multiplied by 100. The modelling is performed from the first subsample which comprises of 900 daily observations from 29 August, 2001 to 29 April, 
2005. The second subsample consists of 250 daily observations and is used to calculate the out-of-sample forecasting errors that correspond with the models above.  
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the random walk model results in a mean RMSE of 5.91 for the one-week volatility 

series while the ANN model gives a corresponding value of 4.82. The differences in 

RMSEs decrease steadily as maturity increases.  

 

A consistent result across all three models is that the lowest RMSE is reported 

for the one-week AUD/USD volatility series while the GBP/USD recorded the lowest 

RMSEs for the one-month, six-month, one-year and two-year series. This tends to 

suggest that although improvement in predictive accuracy can be achieved using the 

ARIMA and ANN models, these models performed equally well for the AUD/USD and 

GBP/USD series.  

 

However, the performance for the three-month volatility series appears mixed 

across all currency pairs. Specifically, in that while the lowest RMSE is reported for the 

AUD/USD currency pair under the random walk model, both the ARIMA and ANN 

models have the lowest RMSEs for the USD/JPY volatility series. By maturity, the 

forecasting performance for the two-year series has the lowest mean RMSEs while the 

one-month series has the highest RMSEs. Overall, a regular pattern of RMSEs across 

maturities can be noted – that is, the root-mean-squared errors decrease proportionately 

with maturity.  

 

Results from the RMSE ratios in Table 4-9 paint a very similar picture. For 

each currency pair, the ratio for each maturity is estimated. In all instances, the RMSE 

ratios, which is measured as the ratio of RMSE from the competing model divided by 

the RMSE from the random walk model, is less than 1.0. This is suggestive of lower 
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forecasting error when using the competing models. Such a pattern is observed 

consistently across maturities and currencies.  

 

  Table 4-9: RMSE Ratios Relative to the Random Walk Model 

Maturity GBP/USD EUR/USD AUD/USD USD/JPY Mean 

ARIMA Model      

1-Week  0.8535 0.7557 0.8268 0.7466 0.7956 
1-Month 0.7776 0.7692 0.7538 0.7548 0.7638 
3-Month 0.7911 0.8083 0.8658 0.7811 0.8115 
6-Month 0.8169 0.8225 0.8852 0.8001 0.8312 
1-Year 0.8219 0.8112 0.8551 0.8074 0.8239 
2-Year 0.8278 0.8331 0.8505 0.8210 0.8328 
  
ANN Model      

1-Week  0.8438 0.7936 0.8373 0.7920 0.8166 
1-Month 0.7823 0.7589 0.779 0.7506 0.7677 
3-Month 0.7845 0.8045 0.8758 0.7934 0.8145 
6-Month 0.8118  0.8211  0.8962  0.8057  0.8337 
1-Year 0.8246 0.8152 0.8552 0.8057 0.8251 
2-Year 0.8299 0.8457 0.8802 0.8219 0.8444 
    

 

Note: The RMSE ratios are measured as RMSECM/RMSERW, where 
RMSECM and RMSERW denote the root-mean-squared error for the 
competing and random walk model. The RMSEs are calculated using the 
out-of-sample forecasting results from the second subsample. 

 

For short-dated maturities of one-week and one-month, the mean RMSE ratios 

for the ARIMA model are 0.796 and 0.764. These values are lower than the results for 

the one-year and the two-year series of 0.824 and 0.833 respectively. A similar 

observation can be made when the ratios are calculated using the ANNs model. Thus, 

forecasting using the ARIMA model can achieve an improvement of 17% to 24%86 

compared with the random walk model. On the whole, as maturity increases, the mean 

RMSE ratios move closer to 1.0, indicating that the choice of forecasting model 

becomes less important for the long-dated volatility series. The same result is reported 

when using the ANNs model. 
                                                            
86 Using mean RMSE ratio for the one-month series, this is estimated as 1-0.7638 = 23.62% 
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Figure 4-3 plots the total RMSE of the models versus maturity. The total 

RMSE is calculated as the sum of the individual RMSE from each of the four 

currencies. Consistent with the preceding results, the RMSEs decreases proportionately 

against maturity. It is clear that the random walk model has the highest total RMSE 

amongst all the three models. This result holds across each of the six maturities. 

However, the total RMSE lines for all three models tend to converge as maturity 

increases. For the ANNs and ARIMA models the RMSE lines overlap each other in 

most instances thus suggesting the similar performance for both the ANN model and the 

ARIMA model. For majority of the currency pairs, the RMSEs for the ANN model are 

only marginally higher than RMSEs for the ARIMA model.  

 

To this point, an important parallel can be drawn between Figure 4-1 and 

Figure 4-3. By examining the solid line that represents the total RMSE for the random 

walk model, it can be seen that the RMSEs for the short-dated maturities are higher than 

that of the long-dated maturities; at the same time, short-dated maturities also have 

lower variance ratio than the long-dated series. Conversely, the long-dated maturities 

have higher mean variance ratios. Indeed, the mean variance ratios for the long-dated 

maturities of six-month to two-year are close to 1.0. For example the mean variance 

ratio (with q=10) for the one-week volatility is 0.46 and this increases to 0.93 for the 

two-year series, while the corresponding RMSEs for the same series drops from 0.23 to 

0.03 under the random walk model. Thus, it appears that the data-generating process for 

short-dated volatility is better characterised as a mean-reverting process, while long-

dated maturities are better modelled using a unit root specification. Although the 

random walk model records lower RMSE for the long-dated series, it is still dominated 

by the ARIMA and ANNs models.  
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Figure 4-3: Total RMSE versus Maturity 
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Note: This figure shows the total root-mean-squared errors (RMSEs) from the 
random walk (RW), autoregressive integrated moving average (ARIMA) and the 
artificial neural networks (ANNs) models. The total RMSE is calculated as the 
sum of the individual RMSE for each of the four currencies examined.  
 

 

4.8.2 Diebold- Mariano (1995) Forecast Accuracy Test 
 

In Table 4-10, the results for the out-of-sample one-day ahead forecast 

performance using the Diebold-Mariano (DM) statistics are displayed. The DM statistic 

tests for the null hypothesis of no difference in forecast errors between the random walk 

and competing models. Since the competing models perform almost as well as each 

other, the DM statistic is only used to assess the forecasting performance of the random 

walk model against one of the competing models. However, given previous results 

indicate that the mean RMSE for ANNs is marginally higher than the mean RMSE for 

the ARIMA model, the random walk model is evaluated against the ANNs model87.    

 

                                                            
87 This is a conservative approach as the ARIMA model performed marginally better than the ANNs model across all six 
maturities. Subsequent comparisons between the random walk and ARIMA model using the Diebold-Mariano (1995) 
statistic do not alter the findings reported in Table 4-10. 
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The Diebold-Mariano (1995) statistic is performed according to the 

specification provided in Equation (4-13). If the regression coefficient is positive and 

significant, then the random walk model’s performance is worse than that of the ANNs 

model. The rejection of the null hypothesis is based on standard t-test statistics, and a 

linear regression of the loss function on a constant is performed to obtain the DM 

statistics. The standard errors of the test statistics are corrected for heteroscedasticity 

and autocorrelation using the Newey-West (1987) procedure.  

 

Table 4-10: Diebold-Mariano (1995) Test of Equal Forecast Accuracy 
Currency  1-Week 1-Month 3-Month 6-Month      1-Year     2-Year 

GBP/USD 0.723 0.269 0.266 0.021 0.012 0.009
      (2.838) ***     (5.514) ***    (5.554) ***    (3.550) ***    (4.122) ***  (3.619) *** 
   
EUR/USD 1.471 0.368 0.081 0.026 0.014 0.006
     (5.325) ***     (5.741) ***    (4.388) ***   (3.175) ***    (2.883) *** (1.466)
   
AUD/USD 0.742 0.325 0.048 0.019 0.016 0.017
     (3.585) ***     (4.993) ***   (2.333) ** (1.621)   (2.407) **  (3.175) *** 
   
USD/JPY 1.697 0.423 0.092 0.036 0.016 0.014
     (3.917) ***    (5.521) ***    (4.635) ***    (4.248) ***    (4.626) ***  (4.131) *** 

 

Note: This table presents the Diebold-Mariano (1995) statistics for the null hypothesis of zero loss function 
differential (multiplied by 1000). The t-statistics are reported in the parentheses. The standard errors of the 
test statistics are corrected for heteroscedasticity and autocorrelation using the Newey-West (1987) 
procedure. 
***significant at the 1% level 
**significant at the 5% level 
*significant at the 10% level 

 

The results in Table 4-10 provide resounding rejection of the null hypothesis 

across all maturities and currencies. Specifically, each of the reported Diebold-Mariano 

(1995) statistics is above zero and in virtually all instances show strong rejection of the 

null with coefficients significant at the 1% level. Across all currencies, the coefficients 

for the short-dated maturities are consistently larger than those of the long-dated 

maturities. For example, the DM statistic for the one-week GBP/USD is 0.723 while the 
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two-year DM statistic has a value of 0.009. The same observation can be made for all 

other currency pairs.  

  

Although the size of the coefficients becomes smaller as maturity increases, 

they remain statistically significant except for the two-year EUR/USD and the six-

month AUD/USD volatility series. These observations are consistent with the preceding 

findings reported in Table 4-9 and Figure 4-3. This empirical evidence can be 

interpreted as supporting of the superior forecasting performance of the ANNs model 

against the random walk model. This reaffirms the view that the implied volatility 

process is not well characterised as a random walk process.  

 

These results are broadly consistent with the work of Sabanis (2003) that 

suggests the use of mean reverting volatility for pricing European options. Furthermore 

the notion of mean-reverting volatility in asset prices was recently investigated by Bali 

and Demirtas (2008) with support for this model. Thus, the result is consistent with 

recent literature and offers convincing evidence in favour of the ARIMA and ANNs 

models for implied volatility forecasting. 
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4.9 Conclusion 
 

Previous studies have tested the random walk hypothesis for securities traded on  

stock exchanges. This chapter examines the random walk hypothesis using traded 

implied volatility data collected from the over-the-counter currency option market using 

various in-sample and out-of-sample tests, in addition to standard unit root tests. The 

test statistics are applied to the implied volatility levels and the differences in logs for 

the volatility series for four major currencies.  Both parametric and nonparametric 

variance ratio tests are applied in analysis of the data. The null hypothesis of a random 

walk process in the implied volatility series is consistently rejected across all currency 

pairs examined. Specifically, for the one-week and one-month series, violations of the 

random walk persist even after controlling for data bias and test size distortions. These 

results are confirmed in out-of-sample forecasting tests. 

  

 The main empirical finding from the variance ratio tests appear to suggest that 

there is potential for variation with respect to the appropriateness of the random walk 

process for modelling quoted volatility process across various maturities and currencies. 

Thus time series in foreign exchange implied volatility is not well characterised by a 

random walk process. This implies that option pricing and volatility models that assume 

a random walk in volatility across all maturities is not consistent with empirical findings 

reported in this chapter. It further suggests that while it may be useful to model foreign 

exchange volatility as a random walk process, the volatility patterns that exist within the 

term structure need to be recognised. In particular, short-dated volatility series of one-

week and one-month are better characterised as a mean reverting process. This 

proposition is supported by the out-of-sample test results. 
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The out-of-sample forecasting accuracy tests demonstrate the usefulness of 

alternative volatility modelling methods, namely the ARIMA and ANNs. In particular, 

autoregressive integrated moving average (ARIMA) process and artificial neural 

networks (ANNs) models produce superior volatility forecasts compared with the 

random walk model. This underscores the merit of such modelling techniques in 

capturing the nonlinear behaviour of volatility. 
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CHAPTER 5 – VOLATILITY TRADING USING SIMPLE 
TRADING RULES88 
 

5.1 Introduction 

 

The behaviour of option-implied volatility series is examined in Chapter 4 and 

the test results show that there are violations of the random walk hypothesis in the 

implied volatility process. This chapter considers a further extension to these test results 

using simple moving-average trading rules on at-the-money forward straddles and risk-

reversals option combination trades. 

 

 Trading strategies that are based on technical rules rely on the existence of 

time series patterns over a particular time frame and assume that asset prices do not 

follow a random walk process. Users of technical rules believe that a buy or sell signal 

appears when a lower or upper price bound is breached.  

 

The following section presents literature concerning technical trading. Section 

5.3 introduces volatility trading in the currency option market. In Section 5.4, 

description of the datasets is provided while the methodology and test results are 

available in Section 5.5 and Section 5.6 respectively. Section 5.7 concludes the findings 

of this chapter. 

 

                                                            
88 The early version of this chapter forms the basis of a paper presented to the 14th Global Finance Conference at 
Melbourne, Australia in April 2007. It was co-authored with Eric Chan of UBS Investment Bank and 70% of the 
paper is completed by the author of this dissertation. The work presented in this dissertation reflects the opinions of 
the author alone and does not necessarily reflect the views of UBS Investment Bank.    
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5.2 Application of Technical Trading Rules 
 

Technical analysis has been practiced in the financial markets for more than 

two centuries. According to Brock, Lakonishok and LeBaron (1992), the oldest charting 

technique is attributed to Charles Dow in the late 1800s. Nison (1991) provides a 

detailed commentary on the ancient Japanese candlestick charting technique which can 

be traced back to the 17th century. It is widely held that technical trading provides useful 

buy and sell signals amongst market practitioners in futures, currencies, equities and 

bonds.  

 

Contrary to the popularity of technical analysis, the classical random walk 

theory asserts that technical trading has no value in any investment decision making. 

Apparent predictability of future returns using such trading methods is considered to be 

spurious and can be eliminated out-of-sample. Further, such information cannot be 

exploited after allowing for transaction costs. As such, according to Campbell, Lo and 

MacKinlay (1997), this technique has been regarded as a “black sheep” and has never 

enjoyed the same degree of acceptance as fundamental analysis. The general attitude of 

academics to the use of such tools for investment decision making is one of doubt, as 

described by James (1968): 

“trends” are spurious or imaginary manifestations; and that tools of 

technical analysis, and tool such as charts and Dow Theory, are without 

investment value.” 
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However, there is growing evidence that supports profitability of technical trading in 

various market contexts including studies by Blume, Easley and O’Hara (1994), Brock, 

Lakonishok and LeBaron (1992), Neely, Weller and Dittmar (1997), Chan, Hameed and 

Tong (2000). The Brock, Lakonishok and LeBaron (1992) study offers the most 

comprehensive empirical study on technical trading using 90 years of daily data from 

the Dow Jones Index. Using popular moving average technical trading rules, they find 

that such trading rules are useful in predicting stock price changes. Their results also 

hold when the bootstrap methodology is used to correct for problems with standard 

statistical tests. Consistent with this study, Chang and Osler (1999) investigate the 

profitability of technical trading rules in the foreign exchange market using six major 

currency pairs and they conclude that simple technical trading rules have the ability to 

generate a statistically significant profit. Another study by Pilbeam (1995) compares the 

forecasting techniques produced by fundamentalists and chartist using four major 

currency pairs: the British pound, Japanese yen, German mark and the French franc. 

The study finds no clear evidence of the superiority of fundamentalists over chartists 

despite the fact that fundamentalists have the advantage of possessing information on 

economic fundamentals.  

 

A more recent work by Hsu and Kuan (2005) examines an extensive range of 

trading rules and strategies using daily closing prices for four main equity indices: the 

S&P500, NASDAQ, Russell 2000 and the DJIA. Compared with the buy-and-hold 

strategy, their results show that the best trading rule produced superior performance 

over the entire sample period for the Russell 2000 index and seven of the eleven in-

sample periods for the NASDAQ Composite. Further, a questionnaire survey conducted 

by Taylor and Allen (1992) finds overwhelming evidence for the use of technical 



 

114 
 

analysis in the London foreign exchange market89 . More than 90 per cent of the 

respondents used charting in their trading room. The survey also shows that 13.6 per 

cent of the respondents viewed technical analysis and fundamental analysis as 

complementary tools in their trading activities while 7.3 per cent consider them to be 

mutually exclusive.  

 

In a strict sense, the efficient market hypothesis suggests that no predictable 

pattern should exist in asset returns. However research by DeBondt and Thaler (1985), 

Stein (1989), Jegadeesh and Titman (1993) and Barberis, Shleifer and Vishny (1998) 

casts doubt on the efficient market hypothesis. As a result, most researchers today are 

more willing to accept the notion that the market may not be fully efficient and market 

psychology should not be ignored.  

 

Substantial liquidity in the over-the-counter currency option market allows 

different combinations of option positions to be initiated by traders. Combinations such 

as “butterfly”, “condor”, “straddle”, “strangle” and “risk reversal” are frequently traded 

in the over-the-counter currency option market. However, limited attention has been 

given to empirical analysis of such option trades. Indeed, Chaput and Ederington (2005) 

note that although option combinations are heavily traded, they receive relatively little 

attention in empirical research. While their study is based on options on EuroDollar 

Futures contracts traded on the Chicago Mercantile Exchange (CME), this chapter 

considers two types of option combinations available in the over-the-counter currency 

option market, namely at-the-money forward straddles and risk-reversals. 

                                                            
89 The study was conducted on behalf of the Bank of England. A total of 213 completed questionnaires were 
analysed. 



 

115 
 

5.3 Volatility Trading in the Over-the-counter Currency Option Market 
 

Unlike other markets, traders in the over-the-counter interbank markets express 

their option quotes and execute their trades in terms of implied volatility. The volatility 

parameter which represents traders’ subjective view of the future movement of the 

underlying currency is used to determine the option premium. By standard market 

convention, traders enter this parameter into the Garman-Kohlhagen (1983) to obtain 

the option premium. Specifically, traders use the prevailing volatility prices coupled 

with option contract details to back-solve for the option dollar premium. This produces 

a convenient method for traders to compare prices of different options over time.  

 

The foreign exchange and currency option market have a unique 24-hour 

global market which trades daily except on New Year holiday and weekends. Financial 

institutions, especially investment banks, are active in providing customised currency 

option contracts to their clients. Unlike exchange-traded currency options90 with fixed 

exercise prices, over-the-counter currency options are traded on fixed moneyness 

measured in terms of option delta with constant maturity. 

 

5.3.1 Straddle Trades 
 

An at-the-money forward straddle is a combination of a European call and a 

European put with identical strike prices, which are approximately equal to the forward 

exchange rate. The at-the-money forward straddle has the greatest liquidity in the over-

the-counter market as most deals are done in these combinations. When a large increase 

                                                            
90 These are traded on the Philadelphia Stock Exchange (PHLX) and the Chicago Board of Trade (CBOT). 
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in volatility is anticipated in the option market, the trader can purchase a combination of 

a call and a put. An upward or downward movement in the spot market will result in 

one of the options being deeply “in-the-money” while the other will expired 

unexercised. When the “in-the-money” option is sold in the market, the profit generated 

will be more than enough to pay for the option premia. Alternatively, when a drop in 

volatility is expected in the option market, the trader will sell the straddle to receive two 

option premia from the call and put91. This is a relatively risky strategy as an incorrect 

view of the market could result in a severe loss.  

 

5.3.2 Risk Reversal Trades 
 

Risk reversal is a widely used indicator amongst practitioners, policy makers 

and central banks to infer information about expected future foreign exchange rate 

movement92. A standard risk reversal instrument is the “25-delta” contract which is a 

combination of a long position in a 25-delta European call option and a short position of 

25-delta European put option for the same currency pair. A combination of short call 

and long put position can also be created to reflect an opposite view of the market.93 

This is a standard market convention used in the over-the-counter currency option 

market where option prices are quoted in terms of implied volatility for a given level of 

delta.  

 

The volatility of risk reversal is quoted as the difference in the implied 

volatility of the long option position and the short option position. For instance, if a 25-

delta call has an implied volatility quote of 10% and a 25-delta put has a volatility of 
                                                            
91 Under such market condition, the trader anticipates the call and put will not move in-the-money. 
92 For instance, see pp.72-73 of Cooper and Talbot (1999). 
93 Both call and put have delta values of 0.25 and -0.25 respectively. 
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9%, then the risk reversal94 is quoted as 1% per annum. Therefore when a risk reversal 

is positive, the call is bid over the put.  

 

Traders use the sign and the magnitude of risk reversals to gauge the degree of 

skewness in expected exchange rate movements. A positive risk reversal implies that 

the out-of-money call is more expensive than the out-of-money put. For instance, in the 

USD/JPY market, when the 25 delta risk reversal is trading at 0.3, the 25 delta call is 

trading at a volatility of 0.3 percentage points above the 25 delta put. This is an 

indication of skewness toward appreciation of the USD against the yen.  

 

In essence, the simultaneous purchase of a call and sale of a put results in a 

synthetic foreign exchange forward position. A range between the two strike prices 

exists due to the different strike price for the call and put options. A combination of a 

long call and short put will result in a net gain when the spot exchange rate moves 

above the strike price for the call.  On the other hand, a profitable position exists for the 

long put and short call position when the spot exchange rate moves below the strike 

price for the put. 

 

 

5.4 Data 
 

This study employs datasets available from the over-the-counter currency 

option market on four major currency pairs: the British pound against the U.S. dollar, 

                                                            
94 This is also known as a “collar”. 
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euro against the U.S. dollar, Australian dollar against the U.S. dollar and Japanese yen 

against the U.S. dollar quotes. The use of over-the-counter currency option data 

circumvents non-synchronisation problem and the expiration-day effect commonly 

addressed in the option pricing literature. The average of bid and ask implied volatility 

quotes is used to avoid bid and ask bounce effects.  

 

The daily volatility quotes of European options are obtained from the British 

Bankers’ Association (BBA) database which is contributed to by 12 major market 

makers in the London over-the-counter currency option market. The contributors 

provide the closing rates between 3:30 and 3:50 pm daily. BBA excludes two highest 

and lowest rates for the day and the average of the remaining rates is stored in the BBA 

database.  

 

The corresponding spot exchange rates are recorded at the same time as the 

implied volatility quotes. Maturities for at-the-money-forward implied volatility are 

available for one-week, one-month, three-month, six-month, one-year and two-year. For 

the 25-delta risk-reversals and 25-delta strangles, daily data for the one-month, three-

month and one-year contracts are available.  

 

To allow for comparability in the test results with risk reversal trades, the one-

week and the two-year at-the-money forward volatility are omitted in this study. Daily 

interest rate data for the respective currency pairs are also available from the BBA for 

the shortest maturity of overnight to 12 months. The BBA-LIBOR rates are released 

daily at approximately 11:00 am London time. 
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5.4.1 Descriptive Statistics 
 

Table 5-1 reports the descriptive statistics for the natural logarithm of the at-

the-money forward straddle quotes for the British pound, euro, Australian dollar and 

Japanese yen. The univariate statistics are calculated using the log series of the volatility 

levels to allow for comparison with an earlier study by Covrig and Low (2003)95. The 

sample mean, standard deviation, skewness, excess kurtosis and their respective p-

values are reported for the period 1 October, 2001 to 31 July, 2006.  

 

The mean of the log series increases with maturity for three out of four 

currency pairs. This supports the existence of “term structure” effects reported in 

Campa, Chang and Reider (1998), Xu and Taylor (1994) and Gessner and Poncet 

(1997). For the Japanese yen, the sample means decrease as the maturity increases. 

 

Variations in the sample mean reported for each currency pair are consistent 

with the violation of the constant volatility assumption implicit in the Garman-

Kohlhagen (1983) model. Table 5-1 also shows that as the horizon increases, the 

standard deviation of the respective maturities decreases. This pattern holds across all 

currency pairs. For instance, in the GBP/USD currency pair, the standard deviation for 

the one-month series is 0.136 while the one-year contract has a standard deviation of 

0.075. This pattern is consistent with the work of Covrig and Low (2003). Overall, the 

values for excess kurtosis and skewness indicate that the distributions are not normal 

across all maturities.  

                                                            
95 Their study is based on three currency pairs, namely USD/JPY, AUD/USD and GBP/USD and the sample period 
range from 5 June, 1996 to 25 April, 2000. Implied volatility for the 1-month, 2-month, 3-month and 6-month series 
are used. 
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Table 5-1: Descriptive Statistics for At the Money Forward Straddle Quotes 

N Mean p -value Std Dev Skw p -value Ex-Kurt p -value Min Max

GBP/USD
1-Month 1204 2.093 0.000 0.136 -0.294 0.000 1.375 0.000 1.647 2.453
3-Month 1204 2.111 0.000 0.112 0.327 0.000 1.285 0.000 1.775 2.453
6-Month 1204 2.142 0.000 0.084 0.044 0.531 0.472 0.001 1.905 2.371
1-Year 1204 2.156 0.000 0.075 0.128 0.071 -0.040 0.779 1.952 2.352

EUR/USD
1-Month 1207 2.247 0.000 0.119 0.083 0.240 -0.616 0.000 1.927 2.560
3-Month 1207 2.276 0.000 0.098 -0.001 0.989 -0.947 0.000 2.054 2.535
6-Month 1207 2.299 0.000 0.088 0.019 0.785 -0.937 0.000 2.105 2.515
1-Year 1207 2.314 0.000 0.080 0.140 0.048 -0.818 0.000 2.152 2.525

AUD/USD
1-Month 1204 2.314 0.000 0.154 0.327 0.000 -0.428 0.003 1.966 2.716
3-Month 1204 2.332 0.000 0.119 0.339 0.000 -0.574 0.000 2.074 2.629
6-Month 1204 2.344 0.000 0.100 0.330 0.000 -0.626 0.000 2.122 2.611
1-Year 1204 2.350 0.000 0.090 0.332 0.000 -0.633 0.000 2.153 2.592

USD/JPY
1-Month 1207 2.222 0.000 0.113 0.407 0.000 -0.422 0.003 1.996 2.638
3-Month 1207 2.217 0.000 0.087 0.234 0.001 -0.611 0.000 2.044 2.479
6-Month 1207 2.216 0.000 0.079 0.366 0.000 -0.167 0.239 2.064 2.495
1-Year 1207 2.215 0.000 0.077 0.638 0.000 0.442 0.002 2.088 2.504

 
Note: This table presents the mean, standard deviation, skewness, excess kurtosis of the 
natural logarithm for the at-the-money forward implied volatility quotes from 1 
October, 2001 to 31 July, 2006.  

 

Table 5-2 presents the univariate statistics for the risk reversal series in the 

same format as the straddles series in Table 5-1. As the 25-delta risk reversals series can 

be above or below zero, the statistical tests are performed on the volatility levels 

without applying natural logarithm transformations. The sample mean is significantly 

different from zero and this pattern is consistently reported across all currency pairs. 

Standard option pricing theory suggests that equally out-of-money call and put options96 

should have identical implied volatility (Malz, 1997) but this is not the case.  

                                                            
96 In this case, moneyness in terms of delta. 
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Table 5-2: Descriptive Statistics for Risk Reversal Quotes 

N Mean p -value Std Dev Skw p -value Kurt p -value Min Max

GBP/USD
1-Month 1201 0.091 0.000 0.302 0.279 0.000 -0.370 0.009 -0.660 1.030
3-Month 1201 0.123 0.000 0.251 0.125 0.078 -0.661 0.000 -0.510 0.770
1-Year 1201 0.153 0.000 0.218 -0.063 0.376 -0.964 0.000 -0.290 0.630

EUR/USD
1-Month 1206 0.295 0.000 0.396 0.294 0.000 -0.179 0.206 -0.650 1.450
3-Month 1206 0.373 0.000 0.367 0.032 0.651 -0.429 0.002 -0.560 1.320
1-Year 1206 0.429 0.000 0.331 -0.053 0.457 -0.824 0.000 -0.280 1.120

AUD/USD
1-Month 1204 -0.302 0.000 0.376 0.441 0.000 -0.381 0.007 -1.450 0.710
3-Month 1204 -0.333 0.000 0.328 0.560 0.000 -0.451 0.001 -1.170 0.580
1-Year 1204 -0.365 0.000 0.285 0.512 0.000 -0.885 0.000 -0.880 0.340

USD/JPY
1-Month 1205 -0.686 0.000 0.592 -0.801 0.000 3.890 0.000 -3.470 1.270
3-Month 1205 -0.883 0.000 0.653 -0.207 0.003 1.362 0.000 -3.320 1.100
1-Year 1205 -1.128 0.000 0.841 -0.124 0.079 -0.034 0.809 -3.220 0.870

 

Note: This table presents the mean, standard deviation, skewness, excess kurtosis, risk 
reversal of the implied volatility quotes for different maturities from 1 October, 2001 to 
31 July, 2006. 

 

In column two, positive means are reported for the GBP/USD and the 

EUR/USD series while the AUD/USD and the USD/JPY series record negative means. 

The p-values for the null hypothesis of zero mean in column three suggest that equality 

of the implied volatility spread between the 25-delta call and 25-put is overwhelmingly 

rejected across currencies and maturities. Thus, on average, the market anticipates an 

appreciation of the GBP/USD and EUR/USD exchange rates while the AUD/USD is 

expected to depreciate over the sample period.  

 

Figure 5-1 provides the time series plots for the spot exchange rates, one-

month at-the-money implied volatility and the one-month 25-delta risk reversals in their 

respective panels. Upward trends in the spot exchange rates are shown for the 
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GBP/USD and EUR/USD series while the USD/JPY97 has a downward trend over the 

sample period. These patterns are consistent with the statistics reported in Table 5-2. 

The one-month at-the-money implied volatility varied considerably over time with 

common spikes around early 2002 and late 2003 for the GBP/USD, EUR/USD and 

AUD/USD currency pairs. For the 25-delta risk reversal, considerable variation in the 

daily movement is also noted. The risk reversal pattern for the USD/JPY currency pair 

is below zero in most instances over the sample period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                            
97 The volatility spread between the call and put appears to be more severe for USD/JPY. As the value of the U.S. 
dollar is quoted in yen term, this reflects the strengthening of the yen against the U.S. dollar over the sample period. 
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Figure 5-1: Time Series Plots of Spot Exchange Rate, At-the-money Forward  
Implied Volatility and Risk Reversal from 1 October, 2001 to 31 July, 2006. 
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5.5 Methodology 
 

The moving average method is one of the oldest and most widely used 

strategies in the foreign exchange market. In essence a buy or sell signal is generated 

when the prevailing market price has risen or declined more than its average value a few 

periods earlier. Within the context of this study, such a contrarian98 strategy assumes 

mean reversion in the volatility process (Engle and Patton, 2001) and is consistent with 

the findings of Balvers, Wu and Gilliland (2000).  

 

While numerous variations of moving average trading rules exist amongst 

market practitioners, the moving average of the volatility series in this study is 

estimated using a 253-day99 window. This approach is largely motivated by empirical 

evidence that supports profitability of the contrarian strategies over long time horizons. 

For instance,  Lakonishok, Shleifer, Vishny (1994) and Conrad and Kaul (1998) suggest 

that contrarian strategies are capable of generating profitable trades over one to five 

year investment horizons. In this chapter, due to sample size limitations, the window 

interval for the trading rules is limited to 253 days.  

 

 

                                                            
98  This strategy profits from price reversal in contrast with the “momentum” approach which expects price 
continuation in one direction (Angel, Christophe and Ferri, 2003).   
99 It is assumed that there are approximately 253 trading days in a year. 
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Figure 5-2: The Simple Moving Average Trading Rule 

 

 

The application of the simple moving average trading rule is illustrated in 

Figure 5-2. Under this rule, an upper (UB) and a lower bound (LB) are estimated from a 

253-day moving average of the implied volatility series ( V ). When the prevailing 

implied volatility series (V) shown in Figure 5-2 breaches the upper bound, a sell signal 

is registered. Based on the same rationale, a buy signal is generated when the lower 

bound is breached. Estimations of the upper and lower bounds are described in 

Equations 5-1 and 5-2 below:    

   tintinti nTVVUB ,,,,, )(σ+=      (5-1) 

tintinti nTVVLB ,,,,, )(σ−=      (5-2) 

where  

n,t,iUB     = upper bound for series i at period t, calculated over the sample period n, 

n,t,iLB     =  lower bound for series i at period t, calculated over the sample period n, 
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n,t,iV       =  moving average of series i at period t, calculated over the sample period 

n, estimated as ∑
-+

=

1nt

tj
jV

n
1 , where Vj denotes the at at-the-money or risk 

reversal series,  

tin ,)(σ     =  standard deviation for series i at period t, calculated over the sample 

period n, estimated as ∑
1-

2)(
1-

1 nt

tj
j VV

n

+

=

− , 

TV   =  trigger value for the upper and lower bounds.    

 

To identify the buy or sell signals, two dummy variables are set up as follow: 
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The term n,t,i)V(D is the dummy variable for series i, at period t. When the prevailing 

series (Vt) is above the upper bound, the dummy variable registers a value of positive 

one and a sell position is undertaken. In other words, a sell straddle trade is performed 

when the prevailing series Vt exceeds the upper bound (UBi,t,n) for any give day t within 

the sample period. Conversely, when the prevailing series is below the lower bound, a 

value of negative one is registered and a buy position is engaged.  

 

The upper and lower bounds are constructed using selected trigger values, which 

effectively define the distance between the bounds. They are expressed in terms of a 

given number of standard deviations above or below the moving average of the 

prevailing series. For instance, when the trigger value is set to one, the upper bound is 

one standard deviation above the moving average of the prevailing series. Buying and 

selling of straddles and risk reversals at high trigger values is consistent with the belief 

that a trend reversal is expected when the prevailing volatility prices are at their 
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extremes. In other words, the use of large trigger values will not result in a trade if only 

a small movement in the prevailing prices occurs, but a buy or sell signal is initiated 

when a large movement is detected. 

 

Figures 5-3 and 5-4 illustrate the effect of using different trigger values to 

generate buy and sell signals. In Figure 5-3, the bounds are constructed using a trigger 

value of one; when the prevailing one-month EUR/USD at-the-money forward implied 

volatility (denoted as V) is inside the lower and upper bounds, no trade signal is 

registered. However, between 15 January, 2004 and 15 June, 2004, the volatility moved 

above the upper bound resulting in sell signals over this period. When a larger trigger 

value of two is used (Figure 5-3), the gap between the upper and lower bound widens. 

With the wider non-trading range, less trade signals are recorded over the same time 

period.  

 

This chapter reports the results obtained using trigger values of 0.01, 0.5, 1.0 

and 1.5. For most of the currency pairs, less than 30 buy and sell signals are observed 

when a trigger value greater than 1.50 is used. Consequently these test results are not 

reported due to limited sample size. 

 

New trades are initiated over the sample period whenever a buy or a sell signal 

is identified. For both the straddle and risk reversal trades, when a trade signal becomes 

available, a long or short trade is performed and the contract is held until maturity. This 

approach is adopted to simplify daily monitoring of the trade positions.   
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Figure 5-3: EUR/USD Buy and Sell Signals (Trigger Value =1) 
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Figure 5-4: EUR/USD Buy and Sell Signals (Trigger Value =2) 
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5.5.1 Options Premia Estimations 
 

This study uses the Garman-Kohlhagen model (1983) to price currency 

options. The option premium is adjusted for trading days and bid and offer spread to 

reflect the volatility a trader has to pay for trade execution. For example, given a bid 

and offer spread of 0.5% and a three-month volatility of 20% per annum, the volatility 

bid is estimated as 19.5% per annum (that is 20% x (1-0.05/2). If a buy signal emerges 

when the one-year volatility is 8% per annum, the one- year volatility offer will be 8.2% 

per annum100 . The bid and offer spreads for the one-month and one-year contracts are 

assumed to be 0.25% and 0.15% per annum respectively, which are conservative 

estimates for G-7 currencies according to market conventions. For contracts maturing 

between one month and one year, linear interpolation technique is employed to estimate 

the spreads for these contracts. This is given by the following formula: 

1
12

1
12 )( BA

DD
DD

BABABA i
i +

−
−

−=      (5-4) 

where  

BAi  = estimated i-period bid/offer spread,  

Di  = number of trading days that corresponds with BA,i, 

D1  = number of trading days for one-month contract, 

D2  = number of trading days for one-year contract, 

BA1  = one-month bid/offer spread,  

BA2  = one-year bid/offer spread. 

 

As an example, the volatility spread for the three-month contract can be estimated using 

Equation 5-4. Assuming that number of trading days for the one-month, three-month 

                                                            
100 That is, 8% x (1+0.05/2). 
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and the one-year contracts is 22, 65 and 260 respectively, the bid and offer spread for 

the three-month contract is estimated as: 

0025.0
22260

2265)0025.00015.0(3 +





−
−

−=mBA  

%232.03 =mBA per annum 

The implied volatility parameter of the Garman-Kohlhagen (1983) model is adjusted for 

bid and offer spread according to the following specification: 

)]((
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tiBAi VD
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−+=σ       (5-5) 

where 

BAi,σ            = Garman-Kohlhagen (1983) implied volatility for maturity i, 

adjusted for bid/offer spread, 

tiV ,              = quoted implied volatility for maturity i available at period t, 

iBA             = estimated bid/offer spread for an option contract with maturity i, 

)( ,tiVD        = dummy variable for a buy or a sell signal for maturity i available 

at period t (see Equation 5-3, + 1 = sell, -1 = buy). 

 

On 5 September, 2003, the AUD/USD call option is quoted at 10.34% per annum and a 

buy signal is reported using the simple moving average trading rule. Using Equation    

5-5, the bid volatility for the call is estimated as: 

BAm,1σ  = 0.1034   +   [-(0.0025/2)(-1)] 

= 10.47% per annum. 

If a sell signal is generated instead, the dummy is replaced with a value of plus one, 

resulting in an offer volatility of 10.22% per annum. The estimated bid/offer volatility is 
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used to price the call and put options. Under the Garman and Kohlhagen (1983) model, 

the value of a European currency call option is defined as:  

   )()(),,,,,( 21 dNe rXdNe rSrrXTSC TT
tdft df

−− −=σ             (5-6) 

where 

T
TrrXSd fdt

σ
σ )]5.0([)/ln( 2

1

+−+
=

      (5-7) 

and Tdd σ−= 12  

σ  =  BAi,σ  defined above, 

St  = spot exchange rate at maturity, 

X  = strike price of the underlying currency, 

rf , rd  = foreign and domestic interest rates respectively, 

T  = option term to maturity. 

 

N(x) is the cumulative normal distribution function for a random variable with upper 

integral limit of x. The Garman-Kohlhagen (1983) is also used to estimate put option 

premium. The premium calculation is adjusted for bid and offer spread via the volatility 

parameter using Equation 5.5.  

 

As the data collected are available in deltas,  1d  and 2d can be inferred from the deltas. 

The delta of a call, denoted as cδ is the first derivative of an option with respect to the 

spot exchange rate therefore differentiating the call price function using Equation 5.6 

with respect to St  gives: 
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=
∂
∂
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c )( 1dNe r T
f

−      (5-8) 

Given the value of cδ from market data, the inverse of 1d  can be calculated using the 

inverse of the cumulative normal distribution function.  

)(1
1 δ c

TreNd f−=      (5-9) 

In the same manner the value of 1d for the put option can be estimated, 

)(1
1 δ p

TreNd f−−= −               (5-10) 

The values for d1 in Equations 5-9 and 5-10 can be plugged into Equation 5-7 to find the 

strike prices of the calls and puts in the risk reversal trades. Since the risk reversal data 

described in Table 5-2 is the net of the combination (not separate implied volatility 

prices of each leg), implied volatility data for the 25-delta call and 25-delta put are 

subsequently obtained from UBS Investment Bank to estimate the strike prices101. For 

the at-the-money forward straddle, the strike price of a given currency f with maturity m 

is defined as102: 

f
mX  =

[ ]
[ ]dT

nT
t i).360/d(1

i).360/d(1
S

+
+

               (5-11) 

where   

dT  = maturity of the option in days,  

St  = spot exchange rate of the underlying currency, 

in  = BBA-LIBOR rate of the foreign currency, 

id    = BBA-LIBOR rate of the domestic currency. 

                                                            
101 Further details are provided in the data section of Chapter 6. 
102 For the GBP/USD currency pair, 365 days is used to calculate the strike price. 
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5.5.2 Estimation of Holding-period Return 
 

At the expiration of the contract, a comparison of the strike price with the 

closing spot exchange rate is made. The difference is netted off against the total option 

premium incurred or received to determine the holding-period return for the sample 

period.  

 

For the straddle trades, the holding-period return is estimated as: 
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260             (5-12) 

where 

hpa
ntiR ,,  =       t-period holding-period return per annum for series i over sample  

period n,  

ntiP ,,   =       total option premium for each combination trade, 

Sd   =     bid and ask spread of the underlying spot exchange rate, 
ST   =       spot price of the underlying exchange rate at maturity, 

f
mX   =       strike price103 of the option contracts given the currency f with  

maturity m,  
D(Vi,t)   =       buy or sell dummy variable ( +1 = sell, -1 = buy) 

Td         =       option maturity in days, 
 
 
The term dS approximates the bid and ask spread of 0.05%, charged on the spot 

exchange rate at the exit of each trade. Thus hpa
ntiR ,,  > 0 reflects a profit and hpa

ntiR ,,  < 0 

indicates a loss on the trade. The options premia are calculated in U.S. dollar terms for 

all currency pairs to ensure return comparability across currency. It is assumed that the 

number of trading days is as follows: i.) 22 trading days for the one month contracts, ii.) 

65 days for the three month contracts, iii.) 130 days for the six month contracts, and iv.) 
                                                            
103 For the straddle, the call and put options are bought and sold at the same strike price. 
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260 days for the one year contracts. The trading days counts are used to calculate the 

holding-period returns defined according to Equation 5-12.  

 

As option price increases less than proportionately over time (Hull, 2006), the 

annualised holding-period returns are measured as a function of the square root of time. 

The total option premium ( ntiP ,, ) used in Equation 5-12 is defined according to the type 

of option combination. Table 5-3 summaries the calculation of option premium used in 

this study. The total premium reflects the net option premium incurred or received from 

the option position. Thus a positive value represents premium received from the option 

combination and a negative value indicates cost incurred for the option trades. 

 

Table 5-3: Calculation of Total Option Premium 

Combination  Position 
 

Total Premium 
 

Buy a straddle buy a call + buy a put )( ,,,,,,
C

nti
P

ntinti PPP +≡ ×  (-1) 

Sell a straddle sell a call + sell a put )( ,,,,,,
C

nti
P

ntinti PPP +≡   

Risk reversal A buy a call + sell a put )( ,,,,,,
C

nti
P

ntinti PPP −≡  

Risk reversal B sell a call + buy a put )( ,,,,,,
P

nti
C

ntinti PPP −≡  

 

 

 

 

 

 

 



 

135 
 

The holding-period return for risk reversal trades is calculated as: 
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(5-13) 

)( ,,,,,,
C

nti
P

ntinti PPP −≡ for buy a call + sell a put, 

)( ,,,,,,
P

nti
C

ntinti PPP −≡ for sell a call + buy a put, 

 
 
where 
  

hpa
ntiR ,,  =       t-period holding-period return per annum for series i over sample  

period n,  
D(Vi,t)   =  buy or sell dummy variable 

 (+1= sell a call and buy a put,-1 = buy a call and sell a put), 
XC  = strike price for a 25-delta call option, 
 
XP  = strike price for a 25-delta put option, 
 

ntiP ,,   =       total option premium for each combination trade, 

Sd   =  bid and ask spread of the underlying spot exchange rate, 

ST   = spot price of the underlying exchange rate at maturity, 

Td         = option maturity in days, 

 

The exercise prices for call and put options are calculated individually using Equation 

5-9 and Equation 5-10. The option premia for the call and the put are estimated using 

the Garman-Kohlhagen (1983) model to give a total option premium for the risk 

reversal position. If the exchange rate falls between XP and XC on the expiration of the 

contracts, then the total premium is zero. If a sell signal (D(Vi,t) = +1) is recorded on a 

particular day of the sample period, a sell-call and buy-put 104  is initiated and the 

                                                            
104 This is referred to as “risk reversal B” in Table 5-3. 
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contracts are held until maturity. Similarly, when a buy signal is registered            

(D(Vi,t) = -1), a buy-call and sell put position is undertaken. 

 

5.5.3 Examples of Holding-period Return Calculations 
 

The following sections give a detailed holding-period return calculations for 

the straddle and risk reversal trades based on Equation 5-12 and Equation 5-13. The 

option parameters are based on the dataset collected on 5 September, 2003. 

5.5.3.1 Straddle Holding-period Return  
 

The value of the Australian dollar is AUD/USD 0.6463 on 5 September, 2003. 

On this day, the one-month BBA-LIBOR interest rate is 4.8025% in Australia and 

1.12% in the United States. The one-month at-the-money European call and put have a 

common strike price of AUD/USD 0.6486 and the implied volatility is quoted at 

10.34% per annum. Using the simple moving average trading rule, a buy signal is 

generated. The estimated bid volatility, BAi,σ =10.47% per annum (assume a spread of 

0.25%). The Garman-Kolhhagen (1983) currency option pricing model thus calculates a 

total premium of USD 0.0153 for the straddle. A buy straddle trade is performed and the 

options are held until contract expiration. On maturity, the exchange rate increased to 

AUD/USD 0.6819. The holding-period return of the buy straddle trade can be 

calculated using Equation 5-12. In this case, ntiP ,, = USD 0.0153, Sd = 0.0005, ST = 

0.6819, X = 0.6486 and the dummy variable, D(V) = -1. Hence: 
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=  53.01% per annum. 

 
However, if the spot exchange rate decreased from the initial value of AUD/USD 

0.6463 to AUD/USD 0.6212, the calculated holding-period return then becomes              

-78.88% per annum. Alternatively, since the put option expires in-the-money, the net 

payoff (X-S-P) becomes (USD 0.6486-USD 0.6212-USD 0.0153) which gives a profit 

of USD 0.0121. The one-month dollar return is therefore USD 0.01179, net of bid/ask 

spread (that is USD 0.6212 x 0.0005). The annualised holding-period return is therefore 

[(USD 0.01179/USD 0.0153)-1] x √(260/22)  which is approximately -78.88% p.a. 

 

5.5.3.2 Risk Reversal Holding-period Return 
 

On 5 September 2003, the quoted one-month implied volatility for a 25-delta call option 

is 10.39% and put option of the same maturity and delta value has a quoted volatility of 

10.78% per annum. The bid volatility for the call option using Equation 5-5 is 

calculated as σC,BA = 0.1039+[-(0.0025/2)(-1)] = 10.52%, while the ask volatility for the 

put, σP,BA = 0.1078+[-(0.0025/2)(+1)] = 10.66%. Using the Garman-Kohlhagen (1983) 

model, the call option has a value of USD 0.0011 and the put option is worth            

USD 0.0073, and hence the total premium, ntiP ,, = (USD 0.0074 - USD 0.0011) for the 

buy a call and sell a put risk reversal.  

 

The holding-period return of risk reversal trade can be calculated using 

Equation 5-13. In this case, ntiP ,, = USD 0.0063, Sd = 0.0005, ST = 0.6819, XC = 0.6722, 

XP = 0.6472 and the dummy variable, D(V) = -1. Accordingly, the holding-period return 

for the buy-call and sell-put, hpa
ntiR ,, is calculated as: 
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 = 510.71% per annum. 

In this case, the put option expires out-of-money but the call moves in-the-money 

generating a profit of USD 0.6819-USD 0.6722 = USD 0.0097. The total premium net 

of the spread of 0.0005 x 0.6819 (SdST) is added and this gives a total profit of         

USD 0.015659. The annualised holding period return of [(0.015659/0.0063)-1] x 3.4378 

= 510.71% per annum is generated over the trading period. If the spot exchange rate 

decreased to AUD/USD 0.6212 on expiration of the contracts, then the holding-period 

return becomes -1435.72% per annum.   

 

5.5.4 The Naïve Strategy and the Simple Moving Average Strategy 
 

In Brock, Lakonishok and LeBaron (1992), the performance of technical 

trading rules are evaluated against the daily unconditional mean returns for the Dow 

Jones Index105. A similar approach is adopted in this study. Trading positions based on 

naïve trading models are created for each of the option maturities. The average holding-

period returns of these positions are recorded for each option maturity over the test 

period. Statistical tests are then performed to determine if the mean holding-period 

returns from the simple moving average strategy are statistically different from the 

naïve strategy. 

 

                                                            
105 See Tables I and II of Brock, Lakonishok and LeBaron (1992). 
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For each maturity, an upper and lower bound for the naïve positions are 

constructed with trigger values of -10 and +10 respectively, based on Equations (5-1) 

and (5-2). The rationale for this approach is to conduct buy and sell trades irrespective 

of any trade signals that may exist over the test period. Using these trigger values, 

nearly all data points fall outside of the bounds, generating a sufficiently large number 

of trades for the estimation of mean daily holding-period returns over the sample period. 

For instance, in Table 5-4, the estimated mean average holding-period return for the 

GBP/USD one-month at-the-money forward buy straddle is 0.009% per year – this is 

used as a naive holding-period return for comparison with holding-period return 

achieved under various trigger values. Since one buy and sell trade is generally initiated 

each day of the sample period, trading decisions made using this approach do not 

specifically make use of the information contained in the time pattern of the volatility 

price series. Thus, if the mean holding-period return of the combination trades is 

positive and statistically different from the mean holding-period return for the naïve 

trades, one can conclude that the moving average rules contain useful information. 
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Table 5-4: Naïve Models for At-the-money Forward Straddles 

N % win Rhpa (%) Rhpa/SD N % win Rhpa (%) Rhpa/SD

GBP/USD
1M 926 48.488 0.009 0.352 926 45.464 -0.023 -0.841
3M 885 41.582 0.000 0.007 885 56.723 -0.010 -0.202
6M 825 50.182 0.006 0.096 825 45.333 -0.015 -0.221
1Y 698 52.436 0.022 0.226 698 44.986 -0.027 -0.289

Mean 48.172 0.009 0.170 48.127 -0.019 -0.388

EUR/USD
1M 932 42.918 -0.001 -0.032 932 52.468 -0.008 -0.423
3M 891 47.026 0.002 0.065 891 50.730 -0.009 -0.249
6M 831 49.699 0.006 0.118 831 46.811 -0.011 -0.238
1Y 704 46.875 0.000 -0.006 704 49.290 -0.004 -0.057

Mean 46.630 0.002 0.036 49.825 -0.008 -0.242

AUD/USD
1M 929 42.734 0.001 0.044 929 51.884 -0.006 -0.467
3M 889 42.070 0.003 0.125 889 55.906 -0.008 -0.288
6M 828 48.792 0.012 0.275 828 49.275 -0.015 -0.358
1Y 700 53.857 0.016 0.237 700 44.143 -0.018 -0.276

Mean 46.863 0.008 0.170 50.302 -0.012 -0.347

USD/JPY
1M 930 41.183 -0.491 -0.285 930 54.301 -0.351 -0.204
3M 890 34.831 -1.215 -0.431 890 61.685 0.574 0.204
6M 829 45.959 -0.223 -0.057 829 50.543 -0.298 -0.076
1Y 702 45.726 -0.292 -0.054 702 51.994 -0.081 -0.015

Mean 41.925 -0.555 -0.207 54.631 -0.039 -0.023

Buy Straddle Sell Straddle

 
Note: The above results are for trading days from 1 October, 2001 to 31 July, 2006. The 
upper and lower bounds are estimated using trigger values of -10 and +10 for the at-
the-money straddle trades. 

 

The naïve strategies are constructed for at-the-money forward implied 

volatility and risk reversal trades respectively. The average trade signals reported in 

Tables 5-4 and 5-5 result in approximately 800 trades over the sample period. The 

fraction of profitable trades (holding-period returns > 0) is approximately 0.48 for the 

straddles while it is approximately 0.30 for the risk reversal naïve trades.  
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Table 5-5: Naïve Models for Risk Reversals  

N % win Rhpa (%) Rhpa/SD N % win Rhpa (%) Rhpa/SD

GBP/USD

1M 926 34.665 0.012 0.451 926 21.922 -0.024 -0.926
3M 885 33.559 0.027 0.608 885 12.655 -0.036 -0.800
1Y 698 50.716 0.053 0.693 698 22.636 -0.059 -0.761

Mean 39.647 0.031 0.584 19.071 -0.039 -0.829

EUR/USD

1M 932 29.721 0.006 0.364 932 19.850 -0.015 -0.821
3M 891 34.119 0.014 0.440 891 17.621 -0.021 -0.626
1Y 704 38.636 0.015 0.281 704 50.568 -0.019 -0.348

Mean 34.159 0.012 0.362 29.346 -0.018 -0.598

AUD/USD

1M 929 36.060 0.011 0.972 929 15.070 -0.016 -1.402
3M 889 39.708 0.021 0.942 889 8.436 -0.024 -1.104
1Y 700 59.143 0.037 0.685 700 0.143 -0.040 -0.726

Mean 44.970 0.023 0.866 7.883 -0.027 -1.077

USD/JPY

1M 930 29.032 -0.076 -0.049 930 20.645 -0.682 -0.443
3M 890 34.719 -0.129 -0.054 890 18.764 -0.417 -0.177
1Y 702 61.254 1.453 0.299 702 23.077 -1.780 -0.366

Mean 41.668 0.416 0.065 20.829 -0.960 -0.329

Buy Call Sell Put Sell Call Buy Put

 
Note: The above results are for trading days from 1 October, 2001 to 31 July, 2006. 
The upper and lower bounds are estimated using trigger values of -10 and +10 for the 
risk reversal trades. 
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5.6 Empirical Results 
 

Tables 5-6 and 5-7 present the results for trading day ranging from 1 October 

2001 to 31 July 2006. The first column reports the trading rules used. These are 

identified according to contract type by maturity with the relevant trigger value. For 

instance (1M, 0.5) means the trades are performed using a 253-day moving average 

with a trigger value of 0.5 on the one-month contract. The number of closed trades 

(“N”) is reported in the second column and the seventh column. The term “% win” 

records the percentage of trades with holding-period returns greater than zero at the 

expiration of the contract. “Rhpa” is the mean annualised holding-period return generated 

over the sample period, while “Rhpa/SD” is the ratio of mean holding-period return 

divided by the standard deviation of the holding-period returns over the corresponding 

trading period.  

 

The t-ratios for the trades are presented in columns five and ten. They are used 

to test for differences of the mean holding-period returns for the buy and sell trades 

from the corresponding naïve trades presented in Tables 5-4 and 5-5. The term“Diff” is 

the mean holding-period return for the buy trade less the mean holding-period return for 

the sell trade. The corresponding t-ratios in the last column test the difference between 

the mean buy and the mean sell trades with the null hypothesis of zero. All t-ratios are 

2-tailed tests at various levels of significance.  

 

Across each of the tables, the number of trades decline with the trigger value as 

expected. As the lower and upper bound move further away from the prevailing rates, 

less trade signals are generated. For instance, in the one-month AUD/USD buy straddle 
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trade (see Panel C of Table 5-6), 513 buy signals are generated at the trigger value of 

0.01 but only 112 signals are available at the trigger value of 1.5. 

 
Table 5-6: Results for At-the-money Forward Straddle Trades  

N % win t -ratio Rhpa/SD N % win t -ratio Rhpa/SD Diff t -ratio

Panel A: GBP/USD

(1M, 0.01) 435 53.793 0.022 ** 2.328 0.765 489 49.284 -0.011 ** 2.295 -0.461 0.010 ** 5.546
(3M, 0.01) 418 45.215 0.004 0.671 0.094 464 59.267 -0.007 0.574 -0.123 0.006 1.614
(6M, 0.01) 400 46.500 -0.004 * -1.887 -0.073 422 43.128 -0.023 -1.489 -0.299 0.014 ** 3.081
(1Y, 0.01) 307 33.876 -0.015 *** -5.730 -0.173 384 31.771 -0.056 ** -4.757 -0.601 0.041 *** 6.050
(1M, 0.5) 311 55.949 0.031 ** 3.432 1.023 326 49.387 -0.010 ** 2.176 -0.386 0.012 ** 5.363
(3M, 0.5) 291 56.357 0.024 ** 3.599 0.570 292 53.767 -0.017 -0.860 -0.287 0.021 ** 4.864
(6M, 0.5) 281 40.569 -0.020 ** -4.583 -0.545 264 45.833 -0.017 -0.411 -0.213 -0.002 -0.403
(1Y, 0.5) 221 24.434 -0.030 *** -7.397 -0.414 239 37.657 -0.038 -1.510 -0.463 0.008 1.076
(1M, 1) 156 65.385 0.048 ** 4.781 1.583 195 50.256 -0.005 ** 2.410 -0.203 0.016 ** 5.199
(3M, 1) 148 67.568 0.043 ** 4.745 1.020 166 56.627 -0.008 0.269 -0.131 0.025 ** 4.253
(6M, 1) 184 46.196 -0.012 ** -2.596 -0.367 184 51.087 -0.005 1.258 -0.061 -0.005 -0.834
(1Y, 1) 162 12.963 -0.050 *** -9.303 -1.178 192 40.104 -0.027 0.109 -0.382 -0.023 ** -3.673

(1M, 1.5) 46 73.913 0.069 ** 4.231 2.027 125 52.800 0.008 ** 3.514 0.327 0.018 ** 3.772
(3M, 1.5) 29 96.552 0.102 ** 5.272 3.278 115 62.609 0.012 ** 2.125 0.202 0.045 ** 4.070
(6M, 1.5) 61 26.230 -0.024 ** -2.527 -0.732 140 66.429 0.022 ** 4.220 0.314 -0.032 ** -3.491
(1Y, 1.5) 87 22.989 -0.038 *** -5.734 -0.820 150 38.000 -0.026 0.139 -0.430 -0.012 -1.529

Mean 48.030 0.009 0.379 49.250 -0.013 -0.200 0.009

Panel B: EUR/USD

(1M, 0.01) 540 48.889 0.007 ** 2.186 0.378 387 59.173 0.003 ** 2.765 0.152 0.001 0.982
(3M, 0.01) 537 48.603 0.006 0.805 0.151 346 54.046 -0.004 1.110 -0.113 0.005 * 1.910
(6M, 0.01) 497 58.753 0.023 ** 4.338 0.465 327 60.245 0.015 *** 6.126 0.356 0.005 * 1.675
(1Y, 0.01) 424 47.170 -0.003 -0.674 -0.046 276 48.913 -0.007 -0.783 -0.122 0.004 0.811
(1M, 0.5) 363 46.832 0.004 1.159 0.224 265 61.132 0.008 ** 3.392 0.397 -0.001 -0.648
(3M, 0.5) 402 55.224 0.015 ** 2.721 0.384 240 50.000 -0.009 -0.001 -0.254 0.012 ** 3.901
(6M, 0.5) 386 62.953 0.026 ** 4.941 0.575 208 72.115 0.034 *** 8.925 0.903 -0.005 -1.475
(1Y, 0.5) 344 40.116 -0.013 ** -2.990 -0.208 177 56.497 0.011 ** 2.776 0.258 -0.024 ** -4.518
(1M, 1) 243 48.971 0.009 ** 2.058 0.482 126 65.079 0.023 ** 4.993 1.380 -0.004 ** -1.968
(3M, 1) 270 68.889 0.038 *** 6.846 1.025 126 57.143 0.001 1.485 0.033 0.019 ** 4.541
(6M, 1) 255 70.980 0.034 *** 6.082 0.865 104 79.808 0.047 *** 8.475 1.460 -0.009 ** -2.013
(1Y, 1) 245 40.408 -0.015 ** -3.056 -0.246 94 43.617 0.000 0.488 -0.015 -0.015 ** -2.239

(1M, 1.5) 110 49.091 0.013 * 1.941 0.625 42 76.190 0.043 ** 4.858 3.355 -0.009 ** -2.613
(3M, 1.5) 145 78.621 0.052 *** 7.388 1.603 36 41.667 -0.027 -1.359 -0.676 0.039 *** 6.234
(6M, 1.5) 147 72.789 0.025 ** 3.420 0.971 42 78.571 0.043 ** 5.151 1.460 -0.013 ** -2.658
(1Y, 1.5) 142 39.437 -0.018 ** -3.023 -0.383 46 47.826 0.002 0.573 0.080 -0.020 ** -2.755

Mean 54.858 0.013 0.429 59.501 0.011 0.541 -0.001

Rhpa(%) Rhpa(%)

Buy Straddle Sell Straddle Buy - Sell

 
Note: The above results are for trading days ranging from 1 October 2001 to 31 July, 2006. The t-ratios 
for the buy and sell straddle in columns 5 and 10 test the difference of the average holding-period 
returns for the buy and sell trades from the naïve trades. Trading rules are identified as (contract type 
by maturity, trigger value) in the first column. “N (Buy)” and “N (Sell)” are the number of buy and sell 
signals generated during the sample period.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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5.6.1 Buy and Sell At-the-money Forward Straddle 
 

Results for the straddle trades based on the moving average rules are presented 

in Table 5-6. For the four currency pairs examined, three currency pairs produced 

positive average holding-period returns for the buy straddle trades.  

 
Table 5-6: Results for At-the-money forward Straddle Trades (continued) 

N % win t -ratio Rhpa/SD N % win t -ratio Rhpa/SD Diff t -ratio

Panel C: AUD/USD

(1M, 0.01) 513 40.546 0.000 -0.317 -0.016 412 50.728 -0.007 -0.316 -0.486 0.002 ** 2.283
(3M, 0.01) 497 29.376 -0.014 *** -6.457 -0.748 388 39.691 -0.029 *** -6.534 -0.972 0.008 ** 4.673
(6M, 0.01) 475 37.895 0.001 ** -2.996 0.030 350 34.286 -0.029 ** -3.760 -0.732 0.022 *** 7.373
(1Y, 0.01) 364 46.978 0.027 ** 2.440 0.328 331 35.952 -0.006 ** 3.156 -0.156 0.033 *** 6.660
(1M, 0.5) 429 36.131 -0.004 * -1.691 -0.324 298 48.322 -0.009 -0.813 -0.580 0.001 1.465
(3M, 0.5) 414 26.087 -0.017 *** -7.133 -0.964 263 39.544 -0.032 *** -6.409 -1.016 0.008 ** 4.038
(6M, 0.5) 352 28.693 -0.010 *** -5.687 -0.242 255 33.725 -0.025 ** -2.288 -0.705 0.010 ** 3.352
(1Y, 0.5) 233 35.622 0.020 0.781 0.227 251 35.857 -0.003 ** 3.653 -0.104 0.022 ** 3.906
(1M, 1) 293 32.082 -0.009 ** -3.367 -0.934 195 45.128 -0.012 * -1.730 -0.789 0.001 0.871
(3M, 1) 320 23.125 -0.019 *** -7.218 -1.165 175 45.714 -0.022 ** -3.146 -0.692 0.001 0.517
(6M, 1) 292 19.863 -0.017 *** -7.219 -0.448 188 35.106 -0.019 -0.926 -0.643 0.002 0.500
(1Y, 1) 176 30.114 0.011 -0.811 0.128 203 36.453 -0.003 ** 3.226 -0.129 0.014 ** 2.239

(1M, 1.5) 112 28.571 -0.012 ** -2.817 -1.315 128 48.438 -0.005 0.194 -0.366 -0.002 -1.197
(3M, 1.5) 129 22.481 -0.022 ** -5.205 -1.214 122 52.459 -0.012 -0.811 -0.398 -0.005 -1.623
(6M, 1.5) 118 10.169 -0.029 *** -7.097 -1.043 135 40.741 -0.014 0.177 -0.483 -0.010 ** -2.852
(1Y, 1.5) 80 2.500 -0.044 *** -7.951 -1.563 149 34.899 -0.003 ** 2.764 -0.128 -0.040 *** -11.523

Mean 28.140 -0.009 -0.579 41.065 -0.014 -0.524 0.004

Panel D: USD/JPY

(1M, 0.01) 562 44.128 0.206 ** 2.212 0.121 363 59.229 0.640 ** 2.708 0.374 -0.126 -1.099
(3M, 0.01) 558 46.774 0.169 ** 4.362 0.054 327 80.428 2.883 *** 6.957 1.701 -1.357 *** -7.273
(6M, 0.01) 580 53.448 0.675 ** 2.945 0.165 244 66.393 1.786 ** 5.444 0.601 -0.785 ** -2.713
(1Y, 0.01) 487 55.852 0.727 ** 3.465 0.168 213 77.465 2.287 ** 5.280 0.340 -1.560 ** -3.673
(1M, 0.5) 423 48.936 0.657 ** 3.320 0.387 237 54.008 -0.001 0.812 -0.001 0.191 1.385
(3M, 0.5) 414 55.314 1.440 *** 7.650 0.462 222 76.577 2.738 ** 5.451 1.525 -0.649 ** -2.860
(6M, 0.5) 421 65.321 2.299 *** 7.615 0.587 143 59.441 1.258 ** 3.227 0.451 0.736 ** 2.073
(1Y, 0.5) 330 54.545 0.750 ** 3.104 0.182 124 83.065 3.248 *** 6.088 0.484 -2.499 ** -4.781
(1M, 1) 222 52.252 0.727 ** 2.754 0.422 168 53.571 -0.413 -0.125 -0.238 0.332 * 1.876
(3M, 1) 262 60.687 1.910 *** 7.757 0.634 142 82.394 3.292 ** 5.579 1.901 -0.691 ** -2.516
(6M, 1) 262 78.626 4.091 *** 11.073 1.073 78 65.385 1.541 ** 2.879 0.601 1.803 ** 3.920
(1Y, 1) 220 49.091 0.127 1.092 0.040 70 82.857 3.555 ** 5.180 0.485 -3.428 ** -5.501

(1M, 1.5) 74 48.649 0.508 1.405 0.321 88 48.864 -0.875 -0.797 -0.532 0.402 1.578
(3M, 1.5) 123 60.976 2.337 *** 6.450 0.741 70 88.571 3.853 ** 4.803 2.357 -0.758 * -1.872
(6M, 1.5) 138 90.580 5.873 *** 12.295 1.855 43 72.093 2.183 ** 2.913 0.888 2.609 ** 4.955
(1Y, 1.5) 134 58.209 0.512 * 1.692 0.217 28 100.000 7.282 *** 7.203 6.040 -6.770 *** -14.732

Mean 57.712 1.438 0.464 71.896 2.204 1.061 -0.784

Rhpa(%) Rhpa(%)

Buy Straddle Sell Straddle Buy - Sell

 
Note: The above results are for trading days ranging from 1 October 2001 to 31 July, 2006. Trading rules 
are identified as (contract type by maturity, trigger value) in the first column. “N (Buy)” and “N (Sell)” 
are the number of buy and sell signals generated during the sample period. The t-ratios for the buy and sell 
straddle in columns 5 and 10 test the difference of the average holding-period returns for the buy and sell 
trades from the naïve trades.  
*** Significant at the 1% level 
** Significant at the 5% level 
*Significant at the 10% level 
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The null hypothesis that the holding-period returns equal the holding-period returns 

generated by the respective naïve trades is generally rejected. The buy straddle mean 

holding-period returns range from a mean of –0.009% for the AUD/USD to 1.438% for 

the USD/JPY currency pair. This compares with the mean holding-period return of        

–0.555% for the USD/JPY and the highest mean holding-period return of 0.009% 

reported for the GBP/SUD naive trades. On a risk-adjusted basis, the mean buy straddle 

holding-period returns are also higher than the corresponding naïve trades. For instance, 

the “Rhpa/SD” ratio for the EUR/USD and the USD/JPY pairs are 0.43 and 0.46 

respectively compared with a ratio of 0.036 and –0.207 for the naïve trades. Nearly all 

of the currency pairs rejected the null hypothesis that the holding-period returns equal 

the returns generated by the naïve trades at the 5 percent level of significance using a 

two-tailed test.  

 

Similar results are reported for the sell trades. However, the overall mean 

holding-period return is less favourable for sell trades with only two out of four 

currency pairs reporting positive mean holding-period returns. The USD/JPY pair has 

the highest holding-period return of 2.20% per year. It is interesting to note that the 

USD/JPY series also has the highest mean holding-period return in the buy straddle 

trades of 1.44% per year across all trades. For this currency pair, nearly all the returns 

for the respective maturities and trigger values have positive returns over the sample 

period.  

 

The third and the eighth columns in Table 5-6 report the fraction of buy and 

sell trades with holding-period returns greater than zero. For the buy trades, the mean 

fraction ranges from 0.28 to 0.57 while the sell trades have a range of 0.41 to 0.72 for 
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the AUD/USD and the USD/JPY straddle trades respectively. These fractions exhibit 

greater variation compared with the naïve trades with mean fractions of 0.42 to 0.55. If 

the trading rules did not produce useful trade signals, the mean fraction for moving 

average and naïve trades would be very close.  

 

The second last column lists the differences between the mean buy and sell 

holding-period returns for the various maturities and trigger values. Most of the buy-sell 

differences are above zero with the exception of the EUR/USD and the USD/JPY 

currency pairs. Such differences appear to become increasingly negative as the triggers 

increase. This suggests that at higher trigger values, the sell trades perform slightly 

better than the buy trades. Overall, the t-tests for these differences are significant 

suggesting the null hypothesis of zero difference in trading profits for the buy and sell 

straddles trades can be rejected. The overall result is consistent with the general market 

trend observed in Figure 5-1 and the discussion provided in Section 5-2.  

 

Regardless of the market trend, we observe that the buy straddle strategies 

profit when movement in the spot market is large enough to offset the cost incurred in 

the option trades. In an upward-trending market, the long straddles produce winning 

outcomes and positive holding-period returns as the call options move in-the-money at 

the expiration of the contracts. Likewise, in a declining market put options move in-the-

money, generating positive holding-period returns sufficient to offset the option premia 

incurred. This explains the positive average holding-period returns reported for the 

GBP/USD, EUR/USD and USD/JPY currency pairs. Further a steady upward 

movement in the EUR/USD from 0.90 to around 1.30 over the sample period results in 

average winning trades of 55% and average holding-period return of 0.013% across all 
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maturities and trigger values. On the other hand, the spot exchange rate for USD/JPY 

declined from 132.165 on 4 March, 2002 to 114.371 on 31 July, 2006. The profit 

generated from the put option position produces average winning trade of 57.71% with 

average holding-period return of 1.438% per year across all trades, after taking into 

account of transaction costs.  

 

For the sell straddle trades, profitable opportunities exist when the strategies 

offer large option premia from the sell call and put combination in a relatively less 

volatile spot market as such a market condition reduces the probability of the call and 

put moving in-the-money. For the EUR/USD and USD/JPY currency pairs, their 

respective implied volatility decline from 12.50% to 8.51% and 10.75% to 8.50% over 

the sample period (see Figure 5-1). Consistent with these patterns, positive mean 

holding-period returns are reported for these currency pairs over the same period. This 

is in contrast with the GBP/USD currency pair where the one-year at-the-money 

forward implied volatility moved from 7.10% on 1 April, 2002 to around 8.00% per 

year at the end of the sample period. As expected, the increase in volatility results in an 

average loss of -0.013% per year. 
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5.6.2 Risk Reversal Trades 
 

The results for the risk reversals trades are presented in Table 5-7. For the buy-

call-sell-put strategy, and consistent positive holding-period returns are reported for the 

AUD/USD, GBP/USD and EUR/USD currency pairs across all maturities.  

 
Table 5-7: Results for Risk Reversal Trades  

N % win t -ratio Rhpa/SD N % win t -ratio Rhpa/SD Diff t -ratio

Panel A: GBP/USD

(1M, 0.01) 514 32.296 0.005 -1.453 0.203 408 19.608 -0.033 -1.630 -1.153 0.011 *** 6.391
(3M, 0.01) 509 32.809 0.024 -0.512 0.536 366 14.208 -0.039 -0.602 -0.906 0.032 *** 10.387
(1Y, 0.01) 320 32.813 0.030 ** -4.708 0.470 373 31.903 -0.079 ** -4.017 -0.971 0.109 *** 19.382
(1M, 0.5) 403 34.243 0.008 -0.606 0.350 279 18.996 -0.041 ** -2.651 -1.301 0.014 *** 6.735
(3M, 0.5) 363 37.466 0.033 1.129 0.789 218 13.761 -0.046 -1.502 -1.029 0.039 *** 10.726
(1Y, 0.5) 240 36.250 0.035 ** -3.251 0.526 276 26.812 -0.082 ** -4.354 -1.129 0.117 *** 18.971
(1M, 1) 222 31.982 0.012 0.091 0.485 129 19.380 -0.050 ** -3.056 -1.490 0.018 *** 5.745
(3M, 1) 209 45.933 0.054 ** 4.095 1.308 125 12.800 -0.046 -1.198 -1.045 0.050 *** 10.439
(1Y, 1) 184 35.326 0.029 ** -4.003 0.478 174 17.241 -0.088 ** -4.716 -1.572 0.117 *** 18.959

(1M, 1.5) 96 25.000 0.008 -0.404 0.245 47 27.660 -0.051 ** -2.011 -1.531 0.017 ** 2.998
(3M, 1.5) 109 43.119 0.055 ** 3.114 1.263 16 0.000 -0.027 0.368 -1.498 0.041 ** 3.730
(1Y, 1.5) 96 50.000 0.043 -1.206 0.642 89 13.483 -0.089 ** -3.604 -1.814 0.132 *** 15.143

Mean 36.436 0.028 0.608 17.988 -0.056 -1.287 0.058

Panel B: EUR/USD

(1M, 0.01) 574 20.557 -0.001 -2.153 -0.033 355 14.648 -0.027 -3.390 -1.712 0.008 6.522
(3M, 0.01) 585 30.940 0.014 -0.111 0.424 304 13.158 -0.022 -0.271 -0.675 0.018 7.715
(1Y, 0.01) 451 28.825 0.006 -3.366 0.164 250 43.600 -0.037 -3.885 -0.481 0.042 10.068
(1M, 0.5) 415 23.373 0.003 -0.822 0.177 235 13.617 -0.028 -2.958 -1.764 0.009 6.102
(3M, 0.5) 443 27.540 0.013 -0.328 0.423 188 5.851 -0.024 -0.652 -0.857 0.019 *** 7.047
(1Y, 0.5) 342 27.778 0.006 ** -3.135 0.218 155 36.129 -0.057 *** -7.227 -0.745 0.063 *** 13.557
(1M, 1) 237 24.895 0.007 0.209 0.353 148 11.486 -0.035 ** -3.789 -2.384 0.012 *** 6.207
(3M, 1) 243 28.395 0.017 0.634 0.689 94 2.128 -0.032 * -1.711 -1.543 0.025 *** 8.511
(1Y, 1) 192 29.688 0.006 ** -2.313 0.362 59 15.254 -0.101 *** -10.955 -1.699 0.108 *** 22.282

(1M, 1.5) 125 29.600 0.016 1.540 0.658 59 13.559 -0.031 * -1.953 -2.089 0.014 ** 3.969
(3M, 1.5) 119 27.731 0.022 1.168 0.845 37 2.703 -0.027 -0.601 -1.647 0.024 ** 5.434
(1Y, 1.5) 134 37.313 0.009 -1.355 0.490 19 5.263 -0.121 *** -7.992 -2.830 0.130 *** 23.427

Mean 28.053 0.010 0.398 14.783 -0.045 -1.535 0.039

Rhpa(%) Rhpa(%)
Buy Call & Sell Put Sell Call & Buy Put Buy  - Sell 

 
Note: The above results are for trading days ranging from 1 October, 2001 to 31 July, 2006. The t-ratios 
in columns 5 and 10 test the difference of the average holding-period return for the “buy call & sell put” 
and “sell call & buy put” trades from the naïve trades. Trading rules are identified as (contract type by 
maturity, trigger value) in the first column. “N (Buy)” and “N (Sell)” are the number of buy and sell 
signals generated during the sample period.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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Table 5-7: Results for Risk Reversal Trades (continued) 
 

N % win t -ratio Rhpa/SD N % win t -ratio Rhpa/SD Diff t -ratio

Panel C: AUD/USD

(1M, 0.01) 468 39.530 0.015 * 1.772 1.224 454 19.163 -0.011 ** 2.130 -1.121 0.008 *** 10.335
(3M, 0.01) 485 36.701 0.019 -0.649 0.844 401 3.990 -0.026 -0.839 -1.260 0.023 *** 15.420
(1Y, 0.01) 456 41.886 0.011 *** -10.149 0.636 240 0.000 -0.091 *** -11.954 -1.410 0.101 *** 31.686
(1M, 0.5) 295 36.610 0.014 0.935 1.060 302 20.199 -0.007 ** 3.787 -0.873 0.006 *** 6.853
(3M, 0.5) 315 37.143 0.021 0.058 0.889 278 1.079 -0.031 ** -2.231 -1.635 0.026 *** 14.662
(1Y, 0.5) 333 46.246 0.012 *** -8.361 0.699 181 0.000 -0.100 *** -12.677 -1.536 0.111 *** 29.589
(1M, 1) 155 36.129 0.011 -0.027 0.748 143 18.182 -0.005 ** 3.397 -0.656 0.005 ** 3.350
(3M, 1) 159 32.704 0.018 -0.769 0.702 151 0.662 -0.035 ** -2.958 -2.059 0.027 *** 10.784
(1Y, 1) 216 55.093 0.015 *** -5.987 0.843 120 0.000 -0.122 *** -15.022 -2.020 0.136 *** 31.041

(1M, 1.5) 95 34.737 0.009 -0.393 0.609 55 29.091 0.001 ** 3.239 0.191 0.002 1.065
(3M, 1.5) 105 25.714 0.008 ** -2.762 0.342 73 0.000 -0.039 ** -2.793 -2.609 0.023 *** 7.538
(1Y, 1.5) 138 65.217 0.018 ** -4.047 1.004 71 0.000 -0.150 *** -16.786 -4.521 0.168 *** 47.360

Mean 40.643 0.014 0.800 7.697 -0.051 -1.626 0.053

Panel D: USD/JPY

(1M, 0.01) 390 32.051 -0.160 -0.257 -0.096 523 23.901 -0.764 -0.291 -0.533 0.176 * 1.708
(3M, 0.01) 392 42.602 -0.017 0.419 -0.010 490 26.327 -0.333 0.299 -0.121 0.158 0.985
(1Y, 0.01) 431 58.701 1.247 -0.666 0.235 260 12.308 -2.143 -1.082 -0.554 3.390 *** 8.948
(1M, 0.5) 244 35.656 -0.528 -1.136 -0.283 296 28.378 -0.250 1.226 -0.165 -0.081 -0.555
(3M, 0.5) 218 60.550 -0.333 -0.603 -0.201 295 27.458 -0.727 -0.928 -0.256 0.197 0.915
(1Y, 0.5) 246 73.984 2.029 1.604 0.421 124 4.032 -1.485 0.665 -0.701 3.514 *** 7.740
(1M, 1) 144 38.194 -0.743 -1.332 -0.351 98 34.694 -0.099 1.023 -0.057 -0.187 -0.724
(3M, 1) 117 64.957 -1.383 ** -2.755 -0.727 154 33.117 0.596 ** 2.567 0.380 -0.990 ** -4.686
(1Y, 1) 128 89.063 0.426 ** -2.368 0.270 89 0.000 -1.130 1.254 -0.816 1.556 *** 7.508

(1M, 1.5) 81 56.790 0.803 1.402 0.411 15 53.333 5.914 ** 4.766 2.920 -1.487 ** -2.691
(3M, 1.5) 57 54.386 -2.560 ** -3.782 -1.170 15 0.000 -0.532 -0.094 -1.792 -1.014 * -1.781
(1Y, 1.5) 91 96.703 0.201 ** -2.457 2.172 27 0.000 -0.222 * 1.664 -68.596 0.423 *** 23.680

Mean 58.636 -0.085 0.056 20.296 -0.098 -5.858 0.471

Rhpa(%) Rhpa(%)
Sell Call & Buy Put Buy  - Sell Buy Call & Sell Put

 
Note: The above results are for trading days ranging from 1 October, 2001 to 31 July, 2006. The t-ratios 
in columns 5 and 10 test the difference of the average holding-period return for the “buy call & sell put” 
and “sell call & buy put” trades from the naïve trades.  Trading rules are identified as (contract type by 
maturity, trigger value) in the first column. “N (Buy)” and “N (Sell)” are the number of buy and sell 
signals generated during the sample period.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
 

However, only the USD/JPY currency pair produced winning trades above 50 per cent. 

For the yen, the annual holding-period return is as high as two per cent for the one-year 

contract, after accounting for volatility and spot exchange rate spread. However, the 

overall result has a mean holding-period return of -0.085% per year. This is less 

compelling when compared to the results reported for straddle trades.  
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Overall, the mean holding-period returns are also less favourable than the corresponding 

holding-period returns reported in the naïve trades. With the exception of the USD/JPY 

series, all three currency pairs have a smaller fraction of winning trades compared with 

the naïve trades. Only 14.80% of closed trades record holding-period returns greater 

than zero for the EUR/USD sell-call and buy-put combinations while the naïve trade 

records 29.35% across all maturities for the same combination (refer to Table 5-5).  

 

The averages calculated from all trades executed indicate that sell-call-buy-put 

risk reversal trades produce negative mean holding-period returns for all four currency 

pairs. For instance, a loss of -0.098% per annum is reported for the USD/JPY currency pair 

and this result is consistent with the steady appreciation of the underlying currencies 

against the U.S. dollar. This has resulted in negative holding-period returns as the call 

options moved in-the-money. Furthermore, the mean holding-period returns for the sell-

call-buy-put risk reversals are consistently below the mean holding-period returns for the 

buy-call-sell-put positions. This result holds across all currency pairs and this confirms that 

the sell-call-buy-put combination resulted in greater losses due to the depreciation of the 

U.S dollar against all four currencies over the sample period.  

 

In terms of winning trades, the sell-call-buy-put trades also performed less 

favourably. Whenever a positive profit is generated with the buy-call-sell-put strategy, it 

is unlikely to achieve the same trading outcome for the sell-call-buy-put strategy. This 

contention is supported by the t-ratios reported on the last column of Table 5-7 where 

the difference in the trading outcomes are statistically significant across all maturities 

and trigger values. When compared to the straddles trades, the rejections for equal 

means are stronger in this class of trading strategy.  
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5.6.3 Straddle Aggregate Result by Trigger Values 
 

Tables 5-8 and 5-9 provide the aggregate mean percentage win (“% win”) and 

the aggregate mean holding-period returns ( hpaR ) for the at-the-money forward straddle 

and risk reversals according to maturity and trigger values. The buy straddle trades 

consistently report higher holding-period returns and percentage winning trades 

compared with the naïve trades reported in Panel A. A similar pattern is also noted for 

the sell straddle trades.   

 

The six-month buy straddle reported in Table 5-8 has the highest holding-

period returns across most trigger values. Specifically, the mean holding-period return 

increases from 0.174% to 1.461% per year while the percentage wining trades increased 

marginally from 49.149% to 49.942%. This suggests that more profitable trades can be 

achieved at higher trigger values. This provides support for the notion that when the 

prevailing volatility series is high, the moving average rules provide useful signals for 

volatility trades. Similar patterns can be noted for three-month options. Furthermore, it 

is interesting to note that the one-year straddle has the lowest percentage of winning 

trades and holding-period returns at trigger values of 1.0 and 1.5.         
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Table 5-8: Aggregate Result for At-the-money Forward Straddles 

 
Buy Straddle Sell Straddle  

 Mean % win hpaR (%) Mean % win hpaR (%)  

Panel A: Naive Trades:     
(1M, ±10) 43.831 -0.120 51.029 -0.097  
(3M, ±10) 41.377 -0.302 56.261 0.137  
(6M, ±10) 48.658 -0.050 47.991 -0.085  
(1Y, ±10) 49.724 -0.064 47.603 -0.033  
Panel B: Aggregate Trades     
(1M, 0.01) 46.839 0.059 54.604 0.156  
(3M, 0.01) 42.492 0.041 58.358 0.711  
(6M, 0.01) 49.149 0.174 51.013 0.437  
(1Y, 0.01) 45.969 0.184 48.525 0.554  
(1M, 0.5) 46.962 0.172 53.212 -0.003  
(3M, 0.5) 48.246 0.366 54.972 0.670  
(6M, 0.5) 49.384 0.574 52.779 0.313  
(1Y, 0.5) 38.682 0.182 53.269 0.805  
(1M, 1.0) 49.672 0.194 53.509 -0.102  
(3M, 1.0) 55.067 0.493 60.472 0.816  
(6M, 1.0) 53.916 1.024 57.846 0.391  
(1Y, 1.0) 33.144 0.018 50.758 0.881  
(1M, 1.5) 50.056 0.145 56.573 -0.207  
(3M, 1.5) 64.657 0.617 61.326 0.957  
(6M, 1.5) 49.942 1.461 64.458 0.558  
(1Y, 1.5) 30.784 0.103 55.181 1.814  

Note: hpaR is the mean annualised percentage holding-period over the 
sample period for the GBP/USD, EUR/USD, AUD/USD and USD/JPY 
currency pairs.“Mean % win” is the mean of the corresponding 
trades with holding-period returns>0 at maturity.  

 
 

A similar result can be observed for the sell straddle trades. In contrast 

however, the buy straddle trades reported in columns two and three provide evidence 

that the one-year straddles has the highest holding-period return for trigger values of 

0.5, 1.0 and 1.5. Losses are incurred for the one-month sell straddle at trigger values of 

0.5, 1.0 and 1.5, with the largest loss of -0.207% per year when the trigger is set at 1.50. 

This suggests that the test results are sensitive to the size of the trigger. Further the 

performance of the straddle trades is also associated with the movement of underlying 

exchange rates over the sample period. 
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5.6.4 Risk Reversal Aggregate Result by Trigger Values 
 

Overall, the distinction between risk reversal and corresponding naïve trades 

are less pronounced in Table 5-9 even at high trigger values. The buy-call-sell-put risk 

reversal performed marginally better than the naïve trades reported in Panel A. The one-

month and one-year risk reversals generate better holding-period returns and winning 

trades at higher trigger values. This is consistent with the results for the three and six-

month straddle reported in Table 5-8.  

 

 

Table 5-9: Aggregate Result for Risk Reversals 

 
Buy-Call & Sell-Put Sell-Call & Buy-Put  

 Mean % win hpaR (%) Mean % win hpaR (%)  

Panel A: Naive Trades:     

(1M, ±10) 32.370 -0.012 19.372 -0.184  
(3M, ±10) 35.526 -0.017 14.369 -0.124  
(1Y, ±10) 52.437 0.390 24.106 -0.474  
Panel B: Aggregate Trades     

(1M, 0.01) 31.108 -0.035 26.459 -0.208  
(3M, 0.01) 35.763 0.010 26.667 -0.104  
(1Y, 0.01) 40.555 0.323 44.022 -0.587  

   
(1M, 0.5) 32.470 -0.125 26.219 -0.081  
(3M, 0.5) 40.674 -0.066 29.326 -0.206  
(1Y, 0.5) 46.064 0.520 45.792 -0.430  

   
(1M, 1.0) 32.799 -0.178 26.297 -0.047  
(3M, 1.0) 42.997 -0.323 28.147 0.120  
(1Y, 1.0) 52.292 0.118 44.162 -0.360  

   
(1M, 1.5) 36.531 0.209 33.186 1.458  
(3M, 1.5) 37.737 -0.610 20.700 -0.156  
(1Y, 1.5) 62.308 0.067 45.166 -0.145  

   
Note: hpaR is the mean annualised percentage holding-period over 
the sample period for the GBP/USD, EUR/USD, AUD/USD and 
USD/JPY currency pairs.“Mean % win” is the mean of the 
corresponding trades with holding-period returns >0 at maturity.  
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The sell-call-buy-put risk reversals have fewer winning trades compared with 

the buy-call-sell-put risk reversals. The holding-period returns are also lower than those 

observed for the buy-call-sell-put positions in most instances. The largest trading loss is 

reported for the one-year position at the trigger value of 0.01. The losses are less severe 

when a larger trigger value is used. This can be seen at the trigger values of 0.5, 1.0 and 

1.5 where the losses improved from -0.430% to -0.145% per year.  

 

5.7 Conclusion 
 

By allowing for volatility and exchange rate spreads, the trading rules 

examined in this study earn positive returns for the majority of the currency pairs over 

the test period. The empirical evidence for the straddles indicates that buy signals 

generate a greater number of profitable trades than the sell signals. The differences in 

profit size for the buy and sell strategies are also statistically significant. Further, risk 

reversal trades produce less compelling outcomes with lower winning trades and profits. 

This could be attributed to the size of the gap between the strike prices as the net cost of 

the call and put produces a zero position over this range. As a result, the movement in 

the underlying market has to be sufficiently large to shift the price outside the region for 

the strategies to generate positive holding-period returns.  

 

Overall, the empirical results in this study are consistent with the market trend 

over the sample period.  They indicate that the use of simple average trading rules 

provides useful buy and sell signals for volatility trading. This finding contradicts the 

random walk theory and thus lends support to the results reported in Chapter 4. 
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Furthermore, consistent with recent literature, the results confirm the usefulness of the 

moving average trading rules even after adjusting for transaction costs.  

 

As discussed in Chang and Olser (1999), central bank intervention in foreign 

exchange markets may lead to the violations of random walk behaviour. Since the 

implied volatility prices reflect spot market sentiment, such a violation may introduce 

identical price behaviour in the currency option market. In additional, Bonser-Neal and 

Tanner (1996) find no support for the hypothesis that exchange rate intervention by the 

Bank of Japan reduced USD/JPY implied volatility. Instead, the intervention seems to 

have resulted in a significant increase in the USD/JPY implied volatility. Beine, 

Benassy-Quere and Lecourt (2002) report similar findings in their study of central bank 

interventions in the foreign exchange market. These studies offer support for the results 

reported in Tables 5-6 (Panel D) and 5-7 (Panel D) for the USD/JPY currency pair. 

Since market inefficiency can be demonstrated if exploitable opportunities are revealed 

by technical trading strategies, the test results reported in this chapter suggest that the 

over-the-counter currency option market may not be fully efficient. It may further imply 

that pricing models employed by market traders do not fully capture actual market 

characteristics. 
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CHAPTER 6 – THE DYNAMICS OF VOLATILITY SMILE AND 
FOREIGN EXCHANGE RISK 
 

 

6.1 Introduction 
 

In Chapters 4 and 5, empirical examinations of the over-the-counter currency 

option market are performed using implied volatility data from at-the-money option and 

from various option combinations. It is shown in Chapter 4 that short-dated implied 

volatility tend to violate the random walk hypothesis over the sample period. The results 

from the volatility trading analysis in Chapter 5 indicate that moving average trading 

strategies generate positive returns.   

 

 This chapter offers further empirical analysis of the behaviour of the over-the-

counter currency option market using a richer dataset that comprises of implied 

volatility quotes which correspond to various levels of moneyness. The structure of the 

implied volatility data facilitates close examination of the volatility smile anomaly in 

the over-the-counter currency option market.  

 

The Garman-Kohlhagen (1983) option-pricing model assumes that the 

volatility of the underlying exchange rate is constant across all strike values. Empirical 

evidence, however, suggests that the implied volatility parameter derived from a 

currency option-pricing model is not a constant function of moneyness. This systematic 

departure from the theoretical assumption underlying the Garman-Kohlhagen option-

pricing model is known as the “volatility smile” where a u-shaped pattern between 

implied volatility and moneyness is often observed. Specifically in-the-money and out-
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of-the-money options have relatively higher implied volatility than at-the-money 

options.   

 

This chapter is structured as follows. Section 6.2 presents literature on the 

volatility smile anomaly and describes the nature of the data used in this study. Section 

6.3 introduces the process used to estimate the daily volatility smile and the results of 

quadratic approximation are presented in Section 6.4. Section 6.5 analyses the dynamics 

of the estimated curvature and slope proxies while Section 6.6 describes the estimation 

of conditional volatility. Section 6.7 explains the Granger-causality tests and the results 

from these tests are reported in Section 6.8. A robustness test, using probit analysis, is 

presented in Section 6.9. Section 6.10 concludes this chapter. 

 

6.2 Volatility Smile Anomaly 
 

The literature supporting the existence of the volatility smile suggests two 

underlying reasons for this phenomenon.  First, some studies report that the smile is a 

result of the erroneous assumption regarding the probability distribution of the future 

exchange rate.  Specifically, these studies suggest that the probability of asset price 

distribution is skewed and leptokurtic instead of lognormal. For example, Malz (1997) 

and Campa, Chang and Reider (1998) show that foreign exchange distributions derived 

from an asymmetric volatility smile deviate significantly from the lognormal 

assumption.  

 

In line with the violation of lognormal assumption, a number of researchers 

have tested smile-consistent classes of model, including Bates (1996a), Gessner and 
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Poncet (1997), Das and Sundaram (1999) Sarwar and Krehbiel (2000). These authors 

generally conclude that incorporating jump processes and stochastic volatility 

components into the Garman-Kohlhagen (1983) option-pricing model does not fully 

explain or reproduce the pronounced volatility smile observed in empirical studies. 

Chesney and Scott (1989) suggest that the use of the Garman-Kohlhagen (1983) model 

with daily revised implied volatility, provides a better estimate of observed currency 

option prices than more complex models such as the stochastic volatility models. Thus 

it appears that skewness and leptokurtic effects alone may not fully explain the 

empirical smile puzzle. 

 

Another explanation for the smile effect that has emerged in recent literature is 

related to trading activity in response to hedging pressures.  Specifically, as currency 

option traders anticipate significant volatility in the market, out-of-money options are 

purchased as a form of insurance.  Ederington and Guan (2002) argue, for example, that 

in the stock index options market implied volatility differs because of hedging pressure. 

When a market crash is anticipated, market players hedge their portfolio from downside 

risk by purchasing out-of-money puts. As downside movement of the underlying asset 

eventuates, the option will move in-the-money and thus generates positive payoffs. 

Such hedging activities would create upward pressure on the option premia as the 

volume of trade increases. Put-call parity would then result in changes in implied 

volatility of the put and call with the same moneyness to remove arbitrage 

opportunities.   

 

Bollen and Rasiel (2003) also support the hedging argument and conclude that 

the existence of a symmetric u-shaped pattern of quoted implied volatility in the 
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currency option market reflects demand by hedgers in anticipation of erratic movements 

in the foreign exchange market. Thus, a trading-based argument may provide further 

insight into the dynamics of the empirical smile.  Finally, the “net buying pressure” 

argument by Bollen and Whaley (2004) postulates that the supply and demand 

imbalance due to trading activities by market players push up the implied volatility for 

out-of-money options in the index option market. 

 

Also consistent with the hedging hypothesis, the ‘skewness premium’ 106 

reported in Bates (1996) fluctuated drastically over the ERM 107  crisis period and 

became increasingly negative preceding the withdrawal of the British pound from the 

ERM, after the Bank of England failed to support the pound sterling above its lower 

limit of DM2.778108. In addition, Doran, Peterson and Tarrant (2007) provide empirical 

evidence that the skewness in option prices resulting from higher implied volatility for 

out-of-the money relative to at-the-money and in-the-money options provides some 

information about the future movement of the underlying market. 

 

In the spirit of Doran et al (2007), this chapter contributes to the literature by 

exploring the relation between volatility smile dynamics and future volatility for the 

following currency pairs - the GBP/USD, EUR/USD, AUD/USD and USD/JPY. 

Different measures of smile dynamics are used to capture the daily behaviour of the 

volatility smile, namely, the slope of the put and call volatility curves, the skewness of 

the foreign exchange rate distribution and curvature of the volatility smile. In addition, 

the slope coefficient at each level of moneyness is also estimated. In particular, this 

                                                            
106 This is defined as ( 1-/ PC ), where c and p are call and put option premia. These options are equally out-of-
money.  
107 This stands for Exchange Rate Mechanism which was operational from 12 March, 1979 to the 2 August, 1993.  
108 See Figure 1 and Figure 4 of Bates (1996b). Malz (1996) also provides extensive discussion and analysis on the 
ERM crisis using over-the-counter currency option prices. 
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study aims to determine whether the daily movement of the smile curve is related to the 

anticipated volatility in the underlying currency. 

 

A volatility smile is constructed for each trading day using one-month implied 

volatility quotes for call and put options. A smooth volatility smile is estimated by 

fitting a quadratic function to the observed volatility smile data. Further, the first 

derivative of the quadratic approximation is derived to estimate the slope at various 

points along the smile. For the estimation of future volatility, this study uses a recursive 

GARCH (1,1) model proposed by Kroner, Kneafsey, Claessens (1995) to obtain  

comparable one-month ahead GARCH estimate of  conditional exchange rate volatility. 

Granger causality and vector-autoregressive tests are then applied to examine the 

relations that exist between measures of smile dynamics and anticipated volatility for 

each currency pair. The robustness of the analysis is confirmed using multivariate 

probit. 

 

6.2.1 Currency Option Trading and Volatility Smiles 
 

The dynamics of the volatility smile in the over-the-counter currency option 

market may be induced from the interaction between the supply and the demand of puts 

and calls resulting from active trading of out-of-money options. As the quoted implied 

volatility of spot exchange rates reflects traders’ assessment of the future currency 

movement, any anticipated volatility change is likely to be reflected in the currency 

option market associated with a change in option trading activities. In particular, 

informed traders who perceive out-of-money options as a cheap form of insurance can 

enter into a trade with a put option writer to reduce their risk of a large decline in the 
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spot exchange rate market. If this hypothesis holds for this group of trades in the market 

then quoted implied volatility for the out-of-money option premia should increase to 

reflect increased demand.  

 

Out-of-money puts and calls are also attractive to market participants who seek 

to engage in speculative and highly leveraged option trades. With a relatively low 

premium, the speculator may purchase out-of-money calls or puts when the foreign 

exchange market is calm, in the hope that a large upward or downward shock develop 

within the option expiration period leaving one or more of the options  in-the-money at 

expiration.  

 

The exposure of the option writers to unlimited downside risk can be hedged 

by taking an offsetting position in the option market. For instance, a put option writer 

can hedge against market exposure by purchasing a put option on the same currency 

under the same terms. Their position needs to be rebalanced frequently, thus creating a 

demand for near or out-of-money options. 

 

6.2.2 Data 
 

Traditionally, the estimation of implied volatility is achieved given the 

observed option price using the Black-Scholes (1973) formula. The application of this 

procedure can result in considerable measurement errors due to various market frictions 

(Hentschel, 2003). A distinct feature of the dataset obtained from the over-the-counter 

option market is the use of quoted implied volatility to estimate the daily volatility 

smile. This alleviates estimation errors induced by non-synchronous trades and other 
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market frictions resulting from separate trading of spot exchange rate from the option 

market. 

  

The quoted implied volatility used in this study is generously provided by UBS 

Investment Bank109 in Switzerland. UBS is a major market-marker of over-the-counter 

currency option in the European market. The sample consists of daily closing average of 

bid and ask implied volatility prices of European options with their corresponding delta 

values for the GBP/USD, EUR/USD, AUD/USD and USD/JPY over different time 

periods from 27 October, 1999 to 5 May, 2006. The use of average bid-ask implied 

volatility avoids the bid-ask bounce problem commonly found in empirical research.  

 

Over-the-counter implied volatility are quoted with constant maturity as 

distinct from the exchange-traded equivalent available at PHLX. Daily closing dealer 

quotes for the one-month European calls and puts are collected at 6:00 pm, Monday to 

Friday at New York trading time. The volatility quotes for the each currency pair are 

available in different delta values of 5 to 45 with increments of 5110. Daily quotes for 

delta-neutral options are also available over the corresponding period. In essence, the 

delta of an option measures the rate of change of the option price relative to the 

underlying asset price.  Mathematically, this is defined as the first-order partial 

derivative of the option price with respect to the price of its underlying asset. The delta 

neutral option is struck when the delta value for the call and put are equal but opposite; 

the delta value of this option is approximately 50111. Market convention also refers to 

                                                            
109 UBS AG was formed through the merger of Swiss Bank Corporation and the Union Bank of Switzerland in 1998. 
110 This is equivalent to 0.05 in decimal places which is used in the Garman-Kohlhagen (1983) model to calculate the 
dollar premium for the option contract.     
111 This is equivalent to 0.5 in decimal places. 
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the delta neutral option as the at-the-money option where the strike price of the option 

equals or is close to, the underlying spot exchange rate.  

 

This study draws on Covrig and Low (2003) who suggests that the one-month 

at-the-money implied volatility of currency option is an unbiased estimator of future 

volatility. According to Covrig and Low (2003), the delta-neutral position should 

correlate reasonably well with the estimated volatility over time.  

 

The daily spot exchange rate data for each currency pair is obtained from 

Reuters at 5:00 pm New York trading time. Thus, measurement errors induced by time 

mismatch for the spot and the currency option are assumed negligible. To obtain daily 

forecasts of one-month ahead volatility for each of the three currency pairs, a recursive 

GARCH (1,1) is used to estimate conditional variance following Kroner, Kneafsey and 

Claessens (1995).  

 

The daily one-month interest rates for the British pound (GBP), euro (EUR), 

Japanese yen (JPY) and American dollar (USD) are obtained from Reuters-British 

Bankers’ Association database where daily fixing of the one-month interest rates is 

performed at 11:00 am GMT. A mismatch error might arise between interest rates, 

option and spot reporting times, but the impact on analysis is assumed to be small as 

intra-day money market interest rates are usually stable. Matched interest rates, spot rate 

and option volatility give rise to an aggregate sample of 3,744 daily observations which 

translates to 71,136112 useable sets of data. The availability of both time series and 

                                                            
112 For each day, there are 19 cross-sectional data points that corresponds to different levels of delta. Thus total 
number of usable observations equals 19 x 3,744 for the entire sample period.   
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cross-sectional components allow the construction of a reasonably complete volatility 

smile for each day over the entire sample period. 

 

6.2.3 Implied Volatility vs Deltas 
 

 

Figure 6-1 presents implied volatility quotes against different levels of delta for 

the GBP/USD, EUR/USD, AUD/USD and USD/JPY currency pairs on 21 August, 

2003. The graphs reveal a very prominent smile pattern in the over-the-counter currency 

option market data. The complete volatility smile is constructed using both put and call 

quoted implied volatility of the same moneyness measured in deltas; the put and call 

volatility curves are connected at the delta-neutral113position which has a value of 

approximately 50. Thus put volatility curve appears to the left of the delta-neutral and 

call volatility curve is located to the right of the delta-neutral position.  

 

By definition, the absolute values of European put and call deltas should sum 

to the value of one (Hull, 2006). It should be noted that, the quoted implied volatility for 

a put with delta value of x must equal the quoted implied volatility for a call with delta 

value of (1-x). For instance, the implied volatility for a 25-delta put should be identical 

to that of a 75-delta call option.  

                                                            
113 This is approximately equivalent to at-the-money position. The terms “delta-neutral” and “at-the-money” are used 
interchangeably.   
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Figure 6-1: One-month Quoted Implied Volatility versus Delta on 21/08/2003 
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Note: The quoted volatility for each level of moneyness measured in 
delta are used to construct the smiles. The letters "P" and "C" on the 
horizontal axis denote put and call option respectively; the value 
following these letters represents the degree of moneyness. For 
instance, "C5D" refers to a call option with delta value of five. "DN" 
represents the delta-neutral position.   

 
 

Figure 6-1 illustrates that the volatility smiles are less than symmetrical with 

higher quoted volatility to the left of the volatility smiles. For instance, the 10-delta put 

and call for the EUR/USD have implied volatility of 11.34% and 10.47% respectively; 

this could suggest unequal preference for put and call at this level of delta. This is 

sometimes called a ‘smirk’ pattern. The existence of a ‘smirk’ pattern is also reported 

by Campa et al (1998) and is consistent with the post-1987 phenomena discussed in 

Bates (1991). Asymmetrical smiles may reflect market assessment of anticipated change 

in volatility for the unit currency – in this case depreciation of the GBP, EUR and AUD 

exchange rates against the US dollar. 
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6.2.4 Descriptive Statistics 
 

Table 6-1 displays the summary statistics for the GBP/USD, EUR/USD, 

AUD/USD and USD/JPY currency pairs. The daily implied volatility series are 

available on different dates in some cases but most observations cover a common period 

from 2 October, 2001 to 2 June, 2006. The calls and puts are identified by delta values 

with their corresponding implied volatility. The series "C" and "P" denote call and put 

options respectively and the number that follows indicates the degree of moneyness. For 

instance,"C5D" means call option with a delta value of five while "DN" is the delta-

neutral position.  

 

First, the results report that the implied volatility for the out-of-the money calls 

and puts are consistently higher as the level of delta decreases; this pattern is observed 

across the four currency pairs. These results are not surprising since a u-shaped pattern 

is expected from the datasets where the smile applies. For the GBP/USD and EUR/USD 

currency pairs, calls have higher mean implied volatility compared with the puts of 

same moneyness. In contrast, if one expects the unit currency to have an equal chance 

of appreciation or depreciation against the US dollar, the call volatility should mirror 

the patterns observed in puts; clearly this is not the case. For instance, the 5-delta call 

for the GBP/USD has a mean of 9.375% but the corresponding mean for put is 9.111%. 

The gap between the calls and puts of the same moneyness becomes wider as the level 

of delta ranges from 45 to 5. For example, the GBP/USD gap changes from 0.022% 

(8.254% - 8.232%) to 0.264% (9.375% - 9.111%); the EUR/USD has slightly larger 

gaps of 0.078% and 0.947% respectively. Perhaps traders expect the GBP/USD and 

EUR/USD currency pairs to appreciate over the sample period and trade accordingly.   
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Table 6-1: Summary Statistics for the Implied Volatility Datasets  

 Mean  Maximum  Minimum  Std. Dev.  Skewness  Ex. Kurtosis
Panel A : GBP/USD 
Spot GBP/USD 1.6814 1.9451 1.4082 0.1574 -0.1802 -1.2884
1-Mth GBP 4.2290 4.8831 3.3363 0.4439 0.1809 -1.3608
1-Mth USD 1.9288 4.1213 1.0200 0.8252 1.0465 0.1191
P5D 9.1110 13.2734 6.2070 1.1164 0.7996 1.7683
P10D 8.7592 12.8260 5.8002 1.1095 0.7227 1.7307
P15D 8.5561 12.5291 5.5165 1.1049 0.6689 1.7130
P20D 8.4292 12.3206 5.3405 1.1006 0.6375 1.6898
P25D 8.3463 12.1668 5.2300 1.0969 0.6190 1.6581
P30D 8.2915 12.0495 5.1602 1.0940 0.6079 1.6196
P35D 8.2570 11.9584 5.1180 1.0917 0.6014 1.5750
P40D 8.2380 11.8869 5.0961 1.0900 0.5977 1.5247
P45D 8.2320 11.8311 5.0908 1.0889 0.5965 1.4683
DN 8.2377 11.7898 5.1000 1.0885 0.5972 1.4070
C45D 8.2544 11.7597 5.1233 1.0886 0.5996 1.3375
C40D 8.2842 11.7398 5.1636 1.0893 0.6041 1.2544
C35D 8.3285 11.7318 5.2236 1.0909 0.6107 1.1567
C30D 8.3911 11.7373 5.3091 1.0935 0.6195 1.0397
C25D 8.4776 11.7793 5.4300 1.0975 0.6309 0.8974
C20D 8.5976 11.9060 5.6017 1.1037 0.6441 0.7236
C15D 8.7673 12.0858 5.8462 1.1138 0.6550 0.5170
C10D 9.0137 12.3555 6.1736 1.1319 0.6483 0.3000
C5D 9.3753 12.7922 6.5076 1.1653 0.6008 0.1753

Panel B: EUR/USD
Spot EUR/USD 1.0876 1.3488 0.8600 0.1375 -0.1404 -1.2864
1-Mth EUR 2.6592 3.8300 2.0145 0.5917 0.2889 -1.6502
1-Mth USD 1.5431 2.6375 1.0200 0.3950 0.4945 -0.7408
P5D 10.7569 14.4068 7.6360 1.1728 -0.1387 -0.2867
P10D 10.3549 13.9295 7.2319 1.1553 -0.1499 -0.2823
P15D 10.1465 13.6291 7.0244 1.1421 -0.1602 -0.2825
P20D 10.0278 13.4247 6.9099 1.1331 -0.1651 -0.2821
P25D 9.9585 13.2777 6.8450 1.1269 -0.1659 -0.2808
P30D 9.9206 13.1684 6.8106 1.1226 -0.1637 -0.2784
P35D 9.9052 13.0861 6.7974 1.1195 -0.1590 -0.2746
P40D 9.9076 13.0241 6.8009 1.1174 -0.1521 -0.2693
P45D 9.9255 12.9786 6.8190 1.1161 -0.1428 -0.2623
DN 9.9574 12.9476 6.8500 1.1155 -0.1315 -0.2536
C45D 10.0041 12.9293 6.8950 1.1155 -0.1172 -0.2424
C40D 10.0692 12.9769 6.9578 1.1162 -0.0986 -0.2272
C35D 10.1550 13.1547 7.0409 1.1176 -0.0748 -0.2074
C30D 10.2671 13.3671 7.1502 1.1199 -0.0442 -0.1811
C25D 10.4141 13.6251 7.2950 1.1235 -0.0045 -0.1457
C20D 10.6097 13.9429 7.4894 1.1290 0.0462 -0.0988
C15D 10.8742 14.3373 7.7525 1.1377 0.1071 -0.0395
C10D 11.2348 14.8169 8.0980 1.1517 0.1629 0.0204
C5D 11.7041 15.3376 8.4807 1.1750 0.1549 0.0259  

 
Note: The series "C" and "P" denote call and put option respectively; the number following these letters 
represents the degree of moneyness, for instance,"C5D" denotes call option with a delta value of 
five."DN" is the delta-neutral position;"1-Mth GBP" and "1-Mth USD" are the one-month BBA-Reuters 
LIBOR for the British pound and US dollar respectively. The sample period for the GBP/USD spans 
from 1 October, 2001 to 14 November, 2005, with a total of 962 observations. For the EUR/USD series, 
a total of 772 observations were collected over the period 1 October, 2001 to 23 December, 2004. 
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Table 6-1: Summary Statistics for the Implied Volatility Datasets (continued) 

 Mean  Maximum  Minimum  Std. Dev.  Skewness  Ex. Kurtosis
Panel C: AUD/USD
Spot AUD/USD 0.6901 0.7978 0.5275 0.0810 -0.6641 -1.0274
1-Mth AUD LIBOR 5.1834 5.7500 4.3713 0.3491 -0.3631 -1.4834
1-Mth USD LIBOR 2.2173 5.0756 1.0200 1.2006 0.9162 -0.5336
P5D 11.3809 17.5913 8.2627 1.8717 0.8720 0.5133
P10D 11.1188 17.1950 8.0562 1.8318 0.8644 0.5050
P15D 10.8399 16.7387 7.7900 1.7862 0.8437 0.4707
P20D 10.6429 16.3440 7.6057 1.7467 0.8080 0.3930
P25D 10.4925 16.0173 7.4679 1.7101 0.7782 0.3307
P30D 10.3503 15.7143 7.3450 1.6780 0.7489 0.2638
P35D 10.2456 15.4722 7.2602 1.6528 0.7193 0.1969
P40D 10.1862 15.2934 7.2179 1.6350 0.6898 0.1298
P45D 10.1489 15.1392 7.1995 1.6193 0.6593 0.0597
DN 10.1227 15.0000 7.1931 1.6049 0.6291 -0.0100
C45D 10.0984 14.8624 7.1899 1.5911 0.5979 -0.0809
C40D 10.0811 14.7290 7.1948 1.5791 0.5637 -0.1575
C35D 10.0828 14.6213 7.2165 1.5724 0.5261 -0.2381
C30D 10.1164 14.5437 7.2693 1.5716 0.4817 -0.3278
C25D 10.1874 14.4800 7.3622 1.5708 0.4287 -0.4315
C20D 10.2602 14.4700 7.3572 1.5738 0.3688 -0.5353
C15D 10.3651 14.4720 7.3795 1.5800 0.2962 -0.6520
C10D 10.5616 14.6410 7.4070 1.6136 0.2077 -0.7571
C5D 10.7604 14.8485 7.4352 1.6563 0.1321 -0.8251

Panel D: USD/JPY
Spot USD/JPY 115.4272 134.7700 102.0300 7.5644 0.4464 -0.3333
1-Mth JPY LIBOR 0.0566 0.3622 0.0363 0.0406 5.4620 33.7159
1-Mth USD LIBOR 2.3370 5.4000 1.0200 1.2810 0.9800 -0.3212
P5D 11.2904 19.2557 7.8938 1.5133 1.0828 1.8487
P10D 10.8764 18.6149 7.8411 1.4894 1.0512 1.6462
P15D 10.4535 17.6429 7.7140 1.3922 1.0129 1.3782
P20D 10.0910 16.6869 7.6536 1.2887 0.9443 1.1069
P25D 9.8588 16.1191 7.6251 1.2296 0.8867 0.8883
P30D 9.6451 15.5899 7.6314 1.1739 0.8366 0.7012
P35D 9.5020 15.0761 7.5570 1.1326 0.7682 0.4312
P40D 9.3953 14.6463 7.4973 1.1010 0.7078 0.2082
P45D 9.3070 14.2963 7.4394 1.0757 0.6581 0.0396
DN 9.2396 14.0000 7.4000 1.0562 0.6182 -0.0940
C45D 9.1869 13.7055 7.3610 1.0399 0.5845 -0.2099
C40D 9.1510 13.4213 7.3392 1.0284 0.5601 -0.2957
C35D 9.1307 13.1360 7.3040 1.0217 0.5460 -0.3445
C30D 9.1333 12.8710 7.2775 1.0228 0.5484 -0.3380
C25D 9.1849 12.8500 7.3500 1.0383 0.5730 -0.2703
C20D 9.2636 13.2000 7.4373 1.0641 0.6054 -0.1755
C15D 9.4198 13.7875 7.5233 1.1274 0.6881 0.0514
C10D 9.6468 14.4824 7.6799 1.1989 0.7346 0.2234
C5D 9.8411 14.9903 7.7313 1.2710 0.7192 0.2207

 
Note: The series "C" and "P" denote call and put option respectively; the number following these 
letters represents the degree of moneyness, for instance, "C5D" denotes call option with a delta value 
of five. "DN" is the delta-neutral position; "1-Mth AUD" and "1-Mth USD" are the one-month BBA-
Reuters LIBOR for the Australian dollar and US dollar respectively. The sample period for the 
AUD/USD spans from 19 April, 2002 to 5 May, 2006, with a total of 960 observations. For the 
USD/JPY series, a total of 1150 observations were obtained from 1 October, 2001 to 31 July, 2006. 
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In contrast, the implied volatility for the AUD/USD reported in Panel C are 

higher for puts than for calls of the same moneyness; the out-of-money 5-delta put has 

an implied volatility of 11.381% while the implied volatility for the 5-delta call is 

10.760%. This is indicative of more demand for puts over calls.  The difference between 

calls and puts of the same moneyness displayed greater variation the further the strike 

price from the spot price. Call options generally exhibit lower volatility and out-of-

money calls do not show the same level of volatility as the puts. For example, for the 5-

delta call, the standard deviation of volatility series is 1.656, which is lower than the 

corresponding standard deviation for put option of 1.872 while the corresponding 

skewness coefficients are 0.132 and 0.916 respectively.  

 

Panel D of Table 6-1 reports the highest degree of skewness in the volatility 

smile for the Japanese yen compared with the other three currency pairs. The gaps 

between the puts and calls of the same delta values are much wider than the rest of the 

currency pairs.  For example, the 5-delta put has a mean implied volatility of 11.290% 

while the mean for corresponding call is 9.841%, resulting in a gap of 1.449%. In fact 

the implied volatility for puts are consistently higher than the corresponding calls across 

all levels of moneyness. Thus it appears that on average, the market has a bearish view 

of the US dollar against the Japanese yen over the sample period. Indeed, the average 

exchange rate for the USD/JPY currency pair dropped from 132.705 in January 2002 to 

115.681 in July 2006.  Similar with the pattern observed in the AUD/USD currency 

pair, larger variations in the implied volatility series are also reported for the put 

options. 
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6.3 The Volatility Smile  
 

As strike prices of over-the-counter currency options are usually set to equal 

the forward exchange rate of the same maturity, option moneyness is redefined as M 

which is a ratio of the strike price X relative to the forward exchange rate. For each delta 

level i on day t, the relative moneyness of an option with delta level i is measured as 

(Xi,t) / (Ft) where Xi,t is the strike price relating to delta level i. The variable Ft is the 

corresponding forward price calculated on day t. Since the daily implied volatility 

quotes are expressed relative to the option delta, the option pricing parameter d1 along 

with other observed option variables has to be inferred from the deltas to estimate the 

strike price. Given the option’s delta is the first derivative of an option value with 

respect to the spot exchange rate, differentiating the call price function with respect to 

the spot price results in )N(de Tr f
1 . The value of d1 can be then calculated by inverting 

the cumulative normal distribution function. Finally using the option’s expiration, T and 

quoted implied volatility, σ, the strike price denoted as X can be estimated using 

Equation (6-2). This transformation is necessary so that the behaviour of the volatility 

smile can be examined across various strike prices. Figure 6-2 presents the 

reconstructed smiles using implied volatility and moneyness. The characteristics of the 

smiles remain consistent with those previously reported in Figure 6-1.  

  

The daily forward rates are calculated using the observed interest rates for the respective 

exchange rates together with the daily closing spot exchange rates: 

)Tfrdr
Se=F

(
             (6-1) 
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TσdTσ/
Fe=X

1
221

            (6-2) 

where 

rd  = 1-month LIBOR for the currency d,   

where d represents the British pound, euro, Australian dollar and 

Japanese yen,  

rf  = 1-month LIBOR for the US dollar, 

T   = time to expiration for the option contract, 

S  = Daily closing average bid and ask exchange rate for  

   GBP/USD, EUR/USD, AUD/USD and USD/JPY 
 

Figure 6-2: Implied Volatility versus Moneyness (X/F) for AUD/USD 
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Note: This table plots two AUD/USD volatility smiles together with the average pattern 
over the sample period. The estimated smile on 19 April, 2002 and 21 August, 2003 vary 
considerably from the average smile over the sample period.  
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6.3.1 Smile Asymmetry 
 

In Figure 6-2, the AUD/USD implied volatility of the puts and calls against the 

estimated moneyness defined as (Xi,t)/(Ft) is presented for selected trading days. Again 

significant skewness consistent with the findings of Bollen and Rasiel (2003) can be 

noted. Notably, a more symmetrical smile pattern is observed on 19 April, 2002 but the 

smile becomes a smirk on 21 August, 2003. The dynamic nature of the smile pattern 

may reflects the market sentiment over the trading days. The average closing exchange 

rate for the Australian dollar over the sample period is USD 0.6564. It appreciates from 

0.5402 on 19 April, 2002 to 0.5555 on 20 May, 2002. Conversely it depreciates from 

0.6582 on 21 August, 2003 to approximately 0.6450 in early September 2003.  

 

6.3.2 Slope Coefficients for Call and Put Volatility Curves 
 

The summary statistics for the daily volatility smile suggests that the shape of 

the smile changes considerably over time due mainly to the movement of the out-of-

money calls and puts (see Table 6-1). It is possible that when a downward movement in 

the spot exchange rate is anticipated, market makers sell calls (puts) for lower (higher) 

implied volatility. To capture these responses from puts and calls separately, the smile 

slope for the call and put volatility curves are measured separately using a piecewise 

approximation method: 

   
t,DNt,DP5

t,DNt,DP5
t MM

IVIV
PF

-
-

=             (6-3) 

   
tDNtDC

tDNtDC
t MM

IVIV
CF

,,5

,,5

-
-

=             (6-4) 
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where  

 

tPF   = slope of the estimated put volatility curve at period t, 

tCF   = slope of the estimated call volatility curve at period t, 

tDPIV ,5   = quoted volatility for 5-delta put at period t, 

t,DC5IV   = quoted volatility for 5-delta call at period t, 

tDNIV ,   = quoted volatility for delta-neutral at period t, 

tDPM ,5  = estimated moneyness (Xi,t)/(Ft) for 5-delta put for  period t, 

tDCM ,5  = estimated moneyness (Xi,t)/(Ft) for 5-delta call for period t. 

 

Using this method the slopes for the call and put volatility curves are calculated using 

two data points measured from the delta neutral position (which is approximately the 

lowest point of the call or put volatility curve) to the 5-delta position located which is 

generally at the highest point of the call and put volatility curves. This effectively 

measures the steepness of the volatility smile along the put and call volatility curves. 

The estimated slopes for the put volatility curve located to the left of the minimum point 

of the smile would generally have a negative value while positive slopes are expected 

for the call volatility curve.   

 

6.3.3 Measure of Skewness for Volatility Smile 
 

To measure the degree of skewness of the volatility smile, the difference 

between the absolute values of the slopes for the call and put volatility curves, defined 

in Equations (6-3) and (6-4) is estimated. Thus, smile skewness, SKW is defined as: 

  

   tt PFCF −               (6-5) 
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If the slope of the call volatility curve (to the right of the volatility smile) is steeper than 

the put volatility curve, then the smile skewness measure will report a positive value 

reflecting the non-symmetrical nature of the smile with a larger skewness to the right of 

the smile. It follows that for a symmetrical smile, SKW should have a value close to 

zero.   

 

6.4 Quadratic Approximation of Volatility Smile  
 

To capture the time-varying characteristic of the smile, a model for the volatility 

smile is required. Following Shimko (1993) and Dumas, Fleming and Whaley (1998)114, 

estimation of a smooth volatility smile is performed by fitting a quadratic function to 

the daily observed implied volatility smile. The quadratic function takes the following 

form: 

iu+Ma+Ma+a=IV i,ii,i,ii
2

210     (6-6) 

where  
Mi   = estimated moneyness calculated as (Xi,t) / (Ft) 
IVi  = quoted implied volatility for a given level of moneyness i  

 

The regression model specified in Equation (6-6) is estimated using a nonlinear 

approximation method for each day of the sample period. The sample is constructed 

using all available put and call data points. In other words, a cross-section of 19 data 

points by moneyness is used to estimate the volatility smile for each day. For each 

currency pair, regressions are estimated over the entire sample period, resulting in 

approximately 900 sets of estimates for the coefficients a1 and a2. 

                                                            
114 See Model 7, pp.2068 of the original article. 
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Table 6-2:  Estimated Smile Coefficients Using Quadratic Approximation 

 iu+Ma+Ma+a=IV i,ii,i,ii
2

210  FX=M /  

Currency â0 â1 â2 R2
 Mmin =  -â1/ 2â2 

GBP/USD 5.475 -10.808 5.415 0.987 0.998
EUR/USD 4.466 -8.811 4.445 0.984 0.991
AUD/USD 3.858 -7.445 3.689 0.972 1.009
USD/JPY 5.619 -10.897 5.371 0.992 1.014

  

Table 6-2 reports the coefficients estimated using the quadratic specification 

given by Equation (6-6).115 The quadratic model provides a good fit for the observed 

smiles across all four currency pairs evidenced by the high average R2 value. The 

coefficient â1 is directly related to â2 where â1 is approximately -2â2. The minimum 

point of the smile curve can be calculated as the derivative of Equation (6-6) relative to 

the degree of moneyness X/F, which can be set to zero to find the minimum volatility 

moneyness value, X/F. The results are reported in the last column of Table 6-2. Overall, 

the minimum point of the volatility smile, “Mmin”, is very close to 1.00 as expected. 

This result is consistent with the volatility smile presented in Figure 6-2 suggesting, on 

average, the at-the-money option has the lowest implied volatility on any given day of 

the sample period. This result holds across all currency pairs. In short, the quadratic 

model appears to provide a good estimate of the daily smile curve. 

 

6.4.1 Measure of Curvature for Volatility Smile 
 

In order to examine the sensitivity of the smile curve to future foreign 

exchange risk at each level of moneyness, Equation (6-6) is differentiated with respect 

to moneyness (M) to give: 
                                                            
115 These represent averages of the coefficients estimated from the quadratic model.  
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titt
t

t Ma+a=
δM
δIV

,,2,1 2               (6-7) 

The coefficients a1 and a2 from Equation (6-6) are substituted into Equation (6-7) to 

calculate the slope of the smile at different values of M along the volatility smile. The 

calls and puts correspond to the delta values from 5 to 45 (increasing by 5). In contrast 

to the method defined in Equations (6-3) and (6-4), this procedure provides an 

estimation of a slope coefficient for any given level of moneyness. Taking the second 

derivative of Equation (6-6) with respect to M provides a measure of curvature, CE, for 

the volatility smile, which is calculated as: 

 tt aCE 22=             (6-8) 

The coefficient for a2 is obtained from estimation of Equation (6-6). The curvature 

coefficient is estimated daily resulting in approximately 900 observations for each 

currency pair. If the observed smile on a given day t has become less prominent than the 

previous day t-1, the coefficient for the smile curvature on day t is expected to be lower 

than the day before. The dynamics of the volatility smile proxied by CF, PF, SKW and 

CE are used in the time series and probit models reported in sections 6-8 to 6-9.  

 

6.5 Dynamics of Curvature and Slopes Coefficients over Time 
 

Figure 6-3 displays the estimated daily smile curvature and slope for the call 

and put volatility curves over the sample period for the GBP/USD, EUR/USD, 

AUD/USD and the USD/JPY currency pairs. The estimated daily slope coefficients for 

the call “CF” (middle line) and put volatility curves “PF” (bottom line) are shown. 

Equations (6-3) and (6-4) are used for the estimation of these coefficients. On the right 

axis of the graph, the smile curvature coefficient denoted as “CE” is also presented. 
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This is estimated using the second derivative of the quadratic equation specified in 

Equation (6-8). 

 

The slope coefficients (“PF”) estimated from the put volatility curves are 

mostly below zero and vary considerably over the sample period. However, for the 

euro, the slope coefficients exceed zero from 26 June, 2002 to 17 January, 2003. When 

a smile is constructed using average implied volatility over the entire sample period, a 

virtually linear upward-sloping line is obtained. The shape of smile is nearly flat for the 

5-delta to 45-delta puts and starts to slowly increase from delta-neutral onwards with the 

highest volatility recorded for the 5-delta call. Conversely for the AUD/USD, the 

average smile curves for the periods from 20 April, 2004 to 27 July, 2004, 13 May, 

2005 to 30 December, 2005 and 17 May, 2006 to 4 October, 2006 are generally 

downward sloping. 
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Figure 6-3: Time Series Plots of Curvature and Slope Coefficients  
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Note: “CE” (top line) is the daily curvature coefficient of the entire volatility smile, estimated using 
the second derivative of the quadratic equation; “CF” (middle line) and “PF” (bottom line) 
represent the daily slope coefficients for the call and put volatility curves estimated separately using 
Equations (6-3) and (6-4).  
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Figure 6-3: Time Series Plots of Curvature and Slope Coefficients  
(continued) 
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Note: “CE” (top line) is the daily curvature coefficient of the entire volatility smile, estimated 
using the second derivative of the quadratic equation; “CF” (middle line) and “PF” (bottom 
line) represent the daily slope coefficients for the call and put volatility curves estimated 
separately using Equations (6-3) and (6-4).  

 
 



 

180 
 

6.5.1 Summary Statistics for Smile Dynamics 
 

Table 6-3 presents summary statistics for the estimated smile dynamics proxied 

by the call volatility curve (CF), put volatility curve (PF), curvature of the volatility 

smile (CE) and skewness of the volatility smile (SKW) along with the one-month 

conditional volatility.  

 

Table 6-3: Statistics for the Shape Proxies and Conditional Volatility 

Series Mean Min Max St.Dev Skew Ex.Kurt PP Test 

GBP/USD (obs=962)   
CF 0.222 -0.078 0.397 0.090 -0.171 -0.679 -3.443* 
PF -0.192 -0.405 0.035 0.073 0.426 -0.496   -4.884**  
CE 9.635 4.939 18.616 2.174 0.813 1.451   -4.142** 
SKW -0.030 -0.360 0.327 0.145 -0.073 -0.744   -4.084** 
σ 0.088 0.074 0.120 0.010 1.537 2.497  

EUR/USD (obs=772)        
CF 0.306 0.122 0.463 0.069 -0.242 -0.634  -2.957* 
PF -0.160 -0.372 0.115 0.089 0.343 -0.040   -5.014** 
CE 8.891 4.005 17.479 2.450 1.057 1.160   -4.087** 
SKW 0.142 -0.170 0.422 0.124 -0.043 -0.763   -4.498** 
σ 0.105 0.084 0.133 0.013 0.099 -0.800  

AUD/USD (obs =960)       
CF 0.088 -0.114 0.357 0.094 0.940 0.127    -3.450** 
PF -0.234 -0.341 -0.019 0.056 0.764 0.080    -5.675** 
CE 6.860 3.498 12.138 1.487 0.487 0.163  -3.322* 
SKW -0.114 -0.332 0.277 0.143 0.662 -0.705    -4.818** 
σ 0.107 0.071 0.169 0.022 1.109 1.036  

USD/JPY (obs =1150)        
CF 0.118 -0.280 0.480 0.133 0.118 0.154    -4.759** 
PF -0.387 -0.694 0.010 0.084 0.035 1.870    -6.423** 
CE 10.742 3.897 19.326 2.450 0.195 0.103     -5.067** 

SKW -0.243 -0.553 0.434 0.161 1.076 1.563     -6.342** 

σ 0.099 0.078 0.132 0.011 0.630 0.250  

 
Note: "σ" is the annualized 1-month conditional volatility."CF" and "PF" are the 
estimated slope coefficients for the call and put volatility curves."CE" is the curve 
coefficients of the volatility smile.”SKW” is the skewness of the volatility smile, “PP” is 
the Phillips-Perron (1988) unit root test statistics. 
** Significant at the 1% level 
* Significant at the 5% level 
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The mean coefficient for CF is positive and for PF it is negative. The null hypothesis of 

a unit root process is rejected across all currency pairs suggesting differencing is not 

necessary to achieved stationarity. For the estimated conditional volatility, restrictions 

are imposed on the GARCH (1,1) parameters to ensure stationarity in the volatility 

process (see discussion in the following section). 

 

6.6 Estimation of one-Month Conditional Volatility 
 

For estimation of future volatility of the underlying exchange rate, this chapter 

adopts the GARCH (1,1) specification. This method is also used in Jorion (1995) and 

Covrig and Low (2003) in the study of foreign exchange volatility forecasting, amongst 

others. The conditional variance using the GARCH (1,1) model is specified as: 

 

                                   1-
2

1- +)-(+= ttt hβµrαωh                                                          (6-9)  

                                 ttt zhµr += ,  Zt ~ N (0,1)            

 

The variable rt is the log return of the daily spot exchange rate, Zt is the standardised 

residual and µ  is the average daily return of the log series. The parameter ω  is the 

average variance rate, α  represents the coefficient of the squared error term and β  is 

the correlation coefficient of the lagged conditional variance.  The parameter 

restrictions, (α + β) < 1.0 and ω > 0 are imposed in estimating the GARCH process to 

ensure stationarity in the volatility process. Equation (6-9) provides an estimate of one-

day ahead forecasts of the exchange rate volatility. The model uses daily closing 

average of the bid and ask spot exchange rate from 1 January, 1998 to 13 July, 2007 

which results in approximately 2,500 usable observations for each currency pair. The 
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use of maximum likelihood procedure results in the following GARCH estimates 

presented in Table 6-4 below: 
 

 

Table 6-4: Estimated GARCH (1,1) Parameters 

Currency ω α β L

GBP/USD 0.000000331 0.028889901 0.957545250 9695.356219000
EUR/USD 0.000000024 0.020080494 0.978919506 8249.540681000
AUD/USD 0.000000030 0.027785550 0.971214450 8946.724741000
USD/JPY 0.000000500 0.043223241 0.945398362 9067.856401000

µ

0.000120268
0.000158124
0.000010000
0.000050280

 

Note: L denotes the maximized log-likelihood function. 

 

 

6.6.1 Recursive GARCH(1,1) of Kroner et al (1995) 
 

Since the daily implied volatility used to construct the smile curve have 

constant maturity of one-month, the conventional GARCH (1,1) model has to be 

adjusted to generate comparable estimates of one-month volatility for the exchange 

rates. Following Covrig and Low (2003), a recursive method is used to generate the 

comparable estimates of one-month ahead volatility. This specification was originally 

suggested by Kroner et al (1995): 

                        
∑

1=
++, =

N

i
itNtt hh             (6-10) 

N denotes the number of days ahead starting from time t. For simplicity, it is assumed 

that there are 23 business days within a one-month period. Therefore N as defined in 

Equation (6-10) takes the value of 23. The square-root of ht, t+N is calculated each day 

and multiplied by a factor of 12  to arrive at the estimated yearly volatility parameter.  
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Evidence provided by Covrig and Low (2003) suggests that quoted implied 

prices for at-the-money currency options is an unbiased estimator of actual volatility 

over the option expiration period. Drawing from this result, the soundness of daily 

volatility estimates using the recursive GARCH (1,1) method can be evaluated against 

the at-the-money volatility. To do this, the delta neutral volatility series is used as a 

proxy for at-the-money volatility.   

 

Time series plots116of the one-month delta-neutral volatility and the estimated 

conditional volatility suggests that the recursive method of Kroner et al (1995) is a 

reliable approach and is consistent with Covrig and Low (2003). The GARCH (1,1) 

predicted one-month exchange rate volatility fluctuates significantly over the sample 

period consistent with the delta-neutral volatility series. For instance, the estimated 

conditional volatility for GBP/USD varied from 7.4% to 12.0% per annum (see Table 6-

3). These results are similar to the range reported in Table 6-1where the implied 

volatility of the delta-neutral position moved from 5.1% to 11.8% per annum over the 

same time period. Both series are strongly correlated producing results consistent with 

the literature.  

 

6.7 Volatility Smiles Dynamics and Future Exchange Rate Volatility 
 

To investigate whether a relationship exists between future exchange rate 

volatility and the shape of the volatility smile, a variant of the Granger causality test 

based on Koch (1993) is used. Kyriacou and Sarno (1999) and Sarwar (2003) have 

previously employed this method to investigate the existence of Granger causality in the 
                                                            
116 See Figure A1 provided in Appendix A. 
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futures and options markets respectively. Peiers (1997) uses a similar approach to 

examine the foreign exchange trading patterns in the interbank market. Specifically, this 

chapter provides a test for correlation between future exchange rate volatility and the 

slope of the volatility smile:         

 

∑ ∑
= =

-- +++=
p

1i

q

Lj
tjt1jit1i0t εSασγασ          (6-11) 

 

∑ ∑
= =

-- +++=
p

Li

q

1j
tjt2jit2i0t υSασγγS          (6-12) 

where t  =  0,1,……, n 

 

L = value of the lag structure and takes a value of 1.0 for the conventional Granger- 
causality test and a value of 0.0 when the Granger test is performed following 
Koch (1993), 
 

σt = daily forecast of one-month exchange rate using the recursive GARCH (1,1)  
model specified in Equation (6-10), 
 

St   = measure of smile dynamics defined in Equations (6-3) – (6-5) and (6-8) namely,  
the slope of the call volatility curve (CFt); slope of the put volatility curve (PFt) 
and degree of skewness in the smile curve (SKWt) ; curvature of the smile (CEt) 
and slope of the smile estimated at different levels of moneyness (Mt). 

 

The variable α0 and γ0 in Equations (6-11) and (6-12) are intercepts; p and q are the 

number of lag period used in the regression model, and tε , tυ represent the respective 

error terms resulting from these equations. Equation (6-11) tests the null hypothesis that 

the coefficients of the daily smile dynamics jointly do not have any predictive ability 

over future volatility of the exchange rate. The test of significance is performed for up 

to total number of q lags. This is a joint test for q zero coefficients on the independent 

variable St using a standard F-test. The test postulates that the anticipated volatility 
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measured at period t is related to past values of itself, as well as the volatility smile 

dynamics denoted as St.  

 

In Equation (6-12), the null hypothesis suggests that past values of the 

estimated exchange rate volatility do not have any predictive ability over the smile 

dynamics. If this is true, then the coefficients, 21γ … q2γ , should equal  zero up to p lags. 

Significant lagged coefficients indicate that the association between the GARCH (1,1) 

estimated exchange rate volatility and the dynamics of the smile curve is not 

spontaneous. This suggests that it takes some time for option traders to react to the 

anticipated volatility in the underlying currency.  

 

A possible concern with running the regressions from lag 1 is the exclusion of 

possible contemporaneous interaction between the variables since informed traders in 

the currency option market may act quickly to cause a change in the smile dynamics 

within a one day interval. Following Koch (1993), the same test is repeated from lag 

zero to examine any simultaneous relationship between the variables. Both regression 

models are performed from lag zero and 1 respectively resulting in a total of 88 

regression outputs per currency pair117. Rejection of the joint hypothesis is consistent 

with the information content of the volatility estimator and the volatility smile 

characteristics. 

 

The choice of lagged terms for Equations (6-11) and (6-12) is determined using 

the Akaike information criterion (AIC) commonly used in distributed lagged model. 

The AIC indicates 4 lags to be used in the regression models for the GBP/USD series 
                                                            
117 There are 4 different measures of smile dynamics used in Equations (6-11) and (6-12). The slope of the smile 
measured at 5-delta to 45-delta (in increments of 5) for calls and puts provides another 18 slope measures for the 
daily smile curvature. The total regression output is therefore (4x2x2+18x2x2) per currency pair. 
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while 5, 8 and 3 lags are selected for the EUR/USD, AUD/USD and USD/JPY series 

respectively. The standard errors of the regression models are corrected for 

autocorrelation using the heteroscedasticity-and-autocorrelation-consistent method of 

Newey-West (1987). The test of stationarity on the smile dynamics is performed using 

the Phillips-Perron (1988) unit root test. All the test results are significant and therefore 

the null hypothesis of nonstationary can be rejected for the smile dynamics defined in 

Equation (6-3) – (6-5) and (6-8) (see column 7 of Table 6-3). 

 

6.8 Empirical Results 
 

Tables 6-5 and 6-6 report the F-test statistics for the bilateral Granger causality 

tests along with the corresponding p-values for the individual currency. The results of 

Equation (6-12) are reported in the first and third columns while the second and fourth 

columns provide the results for Equation (6-11). The mean values for the F-statistics 

and p-values are calculated from the individual results for each currency pair. Results 

reported in Panel A are for tests with lag starting at one using Equations (6-11) and (6-

12). Panel B, reports the results for the same test but with lags beginning at zero.  
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Table 6-5: Granger Causality Tests on Dynamics of Volatility Smile (CF & PF) 

Dependent var Dependent var Dependent var Dependent var
(Eq.6-12 ) (Eq.6-11 ) (Eq.6-12 ) (Eq.6-11 )

Currency pair Lags  Obs Slope (CF) GARCH (σ) Slope (PF) GARCH (σ)

Panel A: lag 1 to p,q

GBP/USD
F-stats 4 962 0.057 2.199 2.649 0.923
p -value 0.084 0.066 0.031 0.449
Adj-R2 0.942 0.899
EUR/USD
F-stats 5 772 2.014 1.778 2.712 0.444
p -value 0.073 0.114 0.060 0.818
R2 0.940 0.860
AUD/USD
F-stats 8 960 2.528 0.482 2.710 0.972
p -value 0.009 0.870 0.005 0.456
Adj-R2 0.949 0.858
JPY/USD
F-stats 3 1105 2.652 0.973 1.634 2.507
p -value 0.047 0.404 0.179 0.057
Adj-R2 0.902 0.837

Mean F-stats 1.813 1.358 2.426 1.212
Mean p -value 0.053 0.364 0.069 0.445

Panel B: lag 0 to p,q

GBP/USD
F-stats 4 962 0.742 1.909 2.643 0.916
p -value 0.563 0.106 0.032 0.453
Adj-R2 0.942 0.899
EUR/USD
F-stats 5 772 1.946 1.611 1.986 0.570
p -value 0.083 0.153 0.077 0.723
Adj-R2 0.940 0.860
AUD/USD
F-stats 8 960 2..521 0.428 4.913 1.199
p -value 0.010 0.905 0.000 0.295
Adj-R2 0.949 0.859
JPY/USD
F-stats 3 1150 11.054 1.208 1.158 2.445
p -value 0.000 0.305 0.320 0.062
Adj-R2 0.901 0.838

Mean F-stats 4.581 1.289 2.675 1.283
Mean p -value 0.164 0.367 0.107 0.383

Call Function (CF) Put Function (PF)
Measures of Dynamics

 
Note: Panel A reports the results for the bilateral Granger causality tests performed from lag 1 to the 
optimal lag term p and q. Panel B provides the results for the same test performed from lag 0 to p and 
q; R2 is the adjusted goodness of fit. The following regression models are performed using 
autocorrelation and heteroscedasticity consistent covariance matrix of Newey-West (1987):  

∑ ∑
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The estimated slope coefficients are measured from the delta-neutral implied volatility to the 5-delta 
call (“CF”) and put (“PF”) implied volatility respectively using the piecewise method; the annualized 
1-month conditional variance ("σ") of the underlying currencies is estimated using the recursive 
GARCH model.  
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6.8.1 Bilateral Granger-causality Test along Volatility Smile 
 

An autocorrelation and heteroscedasticity consistent covariance matrix 

(Newey-West, 1987) is used to calculate the standard errors of the regression models. 

The estimated smile dynamics are defined previously in Equations (6-3) – (6-5) and (6-

8). The annualized one-month conditional variance (σ) of the underlying currencies is 

estimated using the recursive GARCH model specified in Equation (6-10). 

 

The results presented in Panel A of Table 6-5 that report a significant 

unidirectional relationships exist between the anticipated currency volatility and the 

smile dynamics. Specifically, the joint test for q zero coefficients on the smile dynamics 

S cannot be rejected, with the exception of the GBP/USD currency pair. These results 

are reported in columns two and four. In contrast, the results for Equation (6-12) 

reported in columns one and three demonstrate rejections of the null hypothesis of zero 

lagged coefficients on the anticipated volatility σ. The rejections of the null are slightly 

stronger when the put volatility curve (PF) is used as the dependent variable in the 

regression tests. For instance, the p-values for PF are consistently lower than CF for the 

GBP/USD, EUR/USD and AUD/USD currency pairs. For the USD/JPY series, 

however, rejection of the null hypothesis is only reported for the call volatility curve in 

column one of Panel A. This suggests that the estimated volatility has the ability to 

predict the smile dynamics proxied by put and call volatility curves.  

 

In Panel B contemporaneous interactions among the variables are allowed in 

the Granger causality test. With the exception of the USD/JPY series, the results remain 

unchanged for Equation (6-11) although the F-statistics are slightly lower and have 

higher p-values for CF. Notably, the overall results for Equation (6-12) are considerably 
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different for the call volatility curve. When contemporaneous interactions amongst the 

variables are allowed, rejections of the null become less apparent for the GBP/USD, 

EUR/USD and the AUD/USD currency pairs. However, the results for the Japanese yen 

become more significant at the 1% level.  This confirms the importance of modelling 

the variables contemporaneously as suggested by Koch (1993). For the put volatility 

curve, the overall results remained unchanged.  

 

Table 6-6 gives the Granger test results using skewness (SKW) and curvature 

(CE) measures. As in Table 6-5, the test statistics for Equation (6-12) are provided in 

columns one and three and the results for Equation (6-11) are available in columns two 

and four. For Equation (6-11), the null hypothesis of zero coefficients values for the 

independent variable SKW cannot be rejected except for the AUD/USD currency pair. 

Thus, overall, it seems that the measure of skewness in the smile curve does not have 

any predictive ability for the future volatility of the exchange rate. When the causality 

test is repeated from lag zero, the overall results remain unchanged.  

 

Across all currency pairs, the results for Equation (6-12) reported in Panel A 

are consistently rejected at the 1% level. When the regression is performed from lag 

zero, rejection of the null remains. Therefore similar to the results reported for PF, 

skewness of the smile curve is linked to the estimated currency volatility 

contemporaneously and over time. The unidirectional causality from the recursive 

GARCH volatility to the smile dynamics is stronger for PF. Similarly, the null of zero 

lagged coefficients for the estimated volatility specified in Equation (6-12) is rejected. 
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Table 6-6: Granger Causality Tests on Dynamics of Volatility Smile (SKW and CE) 

Dependent var Dependent var Dependent var Dependent var
(Eq.6-12 ) (Eq.6-11 ) (Eq.6-12 ) (Eq.6-11 )

Currency pair Lags  Obs Skewness (SKW) GARCH (σ) Slope (CE) GARCH (σ)

Panel A: lag 1 to p,q

GBP/USD
F-stats 4 962 3.622 1.929 7.263 2.866
p -value 0.006 0.103 0.000 0.022
Adj-R2 0.928 0.927
EUR/USD
F-stats 5 772 13.511 1.827 4.164 0.547
p -value 0.000 0.121 0.000 0.741
Adj-R2 0.873 0.907
AUD/USD
F-stats 8 960 3.963 2.095 4.207 3.222
p -value 0.003 0.079 0.000 0.001
Adj-R2 0.911 0.958
JPY/USD
F-stats 3 1105 0.700 3.256 16.595 17.222
p -value 0.552 0.206 0.000 0.000
Adj-R2 0.841 0.896

Mean F-stats 5.449 2.277 8.057 5.964
Mean p -value 0.140 0.127 0.000 0.191

Panel B: lag 0 to p,q

GBP/USD
F-stats 4 962 3.020 1.250 11.316 2.012
p -value 0.017 0.287 0.000 0.090
Adj-R2 0.928 0.928
EUR/USD
F-stats 5 772 2.249 1.472 3.523 0.418
p -value 0.061 0.208 0.003 0.837
Adj-R2 0.873 0.910
AUD/USD
F-stats 8 960 7.531 1.574 3.774 3.244
p -value 0.000 0.178 0.000 0.001
Adj-R2 0.911 0.958
JPY/USD
F-stats 3 1150 0.970 2.952 13.032 16.072
p -value 0.405 0.031 0.000 0.000
Adj-R2 0.841 0.896

Mean F-stats 3.442 1.812 7.911 5.437
Mean p -value 0.121 0.176 0.001 0.232

Skewness (SKW) Curvature (CE)
Measures of Dynamics

 
Note: Panel A reports the results for the bilateral Granger causality tests performed from lag 1 to 
the optimal lag term p and q. Panel B provides the results for the same test performed from lag 0 to 
p and q; R2 is the adjusted goodness of fit. The following regression models are performed using 
autocorrelation and heteroscedasticity consistent covariance matrix of Newey-West (1987):  
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Skewness (“SKW”) of the volatility smile is measured as |CF|-|PF|. The curvature (“CE”) 
coefficients of the volatility smile are estimated using the second derivative of the daily fitted 
quadratic function. The annualized 1-month conditional variance ("σ") of the underlying currencies 
is estimated using the recursive GARCH model.  
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For estimated smile curvature, CE, the results suggest the existence of 

feedback between anticipated currency volatility and the curvature of the smile. This is 

reported for the GBP/USD, AUD/USD and the USD/JPY currency pairs. This 

relationship remains in the contemporaneous model. 

 

The mean p-value is high due to non-rejection of the null for the EUR/USD 

series. In three out of four currency pairs, a bilateral relationship between smile 

curvature and anticipated currency volatility is reported in this study. Again the results 

for Equation (6-12) are much stronger with an overall F-statistic of 7.911, significant at 

the 1% level. This suggests that, the direction of causality from future volatility (σ) to 

measure of smile dynamics (S) is stronger. 

 

In short, the results of this analysis suggest a unidirectional causality from the 

anticipated volatility of the underlying currency to the daily smile dynamics. The results 

based on analysis of the curvature of the smile indicate the existence of significant 

feedback between the smile curvature and the estimated volatility. Further, the 

conventional and contemporaneous Granger causality tests suggest that a unidirectional 

relationship between anticipated volatility and smile dynamics, measured with PF, SKW 

and CE, is robust to varying time intervals.      

 

6.8.2 Granger-causality Test at Individual Delta Levels 
 

To extend the findings tabulated in Tables 6-5 and 6-6, the Granger causality 

tests defined in Equations (6-11) and (6-12) are repeated using moneyness MD in place 

of S. This allows a closer examination of the smile dynamics at individual point of the 
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smile curve. Thus the dynamics of the smile can be specifically assessed at the 5-delta 

level or 15-delta and so forth.   

 

The moneyness variable MD measures the slope of the volatility smile using the 

first derivative of the fitted smile defined in Equation (6-7). The value of moneyness 

that corresponds to the delta value of 5 to 45 is used in Equation (6-7) to estimate the 

slope coefficient that corresponds with each individual point on the volatility smile 

curve. For instance, the slope coefficient for the call on day t is calculated as MD  = a1,t +  

2a2,tMi,t , where the coefficients a1 and a2 are estimated daily using ordinary least 

squares regression. The level of moneyness for a given delta value is estimated as Mi,t = 

Xi/Ft, and i denotes delta values of 5 to 45 (in increments of 5).   

 

As in the former approach, the standard errors from the regression models are 

corrected for autocorrelation and heteroscedasticity using the Newey-West (1987) 

procedure. Recursive GARCH models specified in Equation (6-10), provide the one-

month ahead volatility estimates for each currency pair. Both the conventional and 

contemporaneous Granger causality tests are  performed. The results for the put and call 

options are provided in Tables 6-7 and 6-8 respectively. For brevity, only the p-values 

of the regression tests are presented.  
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Table 6-7: Granger Causality Test on Individual Slope for Put Options 

Eq.6-12 Eq.6-11 Eq.6-12 Eq.6-11 Eq.6-12 Eq.6-11 Eq.6-12 Eq.6-11
Dep var Dep var Dep var Dep var Dep var Dep var Dep var Dep var

Slope (MD) GARCH (σ) Slope (MD) GARCH (σ) Slope (MD) GARCH (σ) Slope (MD) GARCH (σ)
Panel A: Lag 1 to p,q
P5D 0.014 0.571 0.020 0.640 0.004 0.641 0.887 0.074
P10D 0.025 0.573 0.012 0.596 0.005 0.699 0.741 0.132
P15D 0.039 0.541 0.007 0.552 0.007 0.734 0.546 0.204
P20D 0.057 0.500 0.005 0.509 0.010 0.756 0.417 0.288
P25D 0.075 0.457 0.003 0.469 0.015 0.772 0.322 0.372
P30D 0.095 0.413 0.002 0.430 0.021 0.785 0.258 0.461
P35D 0.114 0.368 0.001 0.392 0.030 0.796 0.214 0.551
P40D 0.132 0.329 0.001 0.356 0.040 0.805 0.181 0.640
P45D 0.148 0.290 0.001 0.321 0.051 0.813 0.156 0.722
Panel B: lag 0  to p,q
P5D 0.011 0.568 0.062 0.667 0.001 0.317 0.907 0.093
P10D 0.024 0.571 0.109 0.666 0.002 0.408 0.885 0.162
P15D 0.039 0.547 0.157 0.658 0.005 0.488 0.676 0.226
P20D 0.055 0.515 0.209 0.649 0.010 0.555 0.466 0.296
P25D 0.073 0.481 0.267 0.638 0.017 0.615 0.297 0.368
P30D 0.091 0.443 0.333 0.627 0.026 0.668 0.185 0.452
P35D 0.110 0.403 0.406 0.613 0.035 0.714 0.117 0.543
P40D 0.131 0.365 0.485 0.595 0.046 0.755 0.075 0.631
P45D 0.155 0.326 0.568 0.572 0.056 0.792 0.049 0.702

Put Options
GBP/USD EUR/USD AUD/USD USD/JPY

 
Note: Panel A reports the p-values for the bilateral Granger causality tests performed from lag 1 to 
the optimal lag term p and q. Panel B provides the p-values for the same test performed from lag 0 
to p and q; The following regression models are performed using autocorrelation and 
heteroscedasticity consistent covariance matrix of Newey-West (1987):  
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MD is the slope of the smile curve measured at moneyness level M using Equation (6-7). The 
moneyness measure M defined in Equation (6-6) corresponds to the delta value of 5 to 45 (in 
increments of 5). 

 

 

The regression tests reported in Tables 6-7 and 6-8 reveal several notable 

findings. First, the Granger test for the puts in Table 6-7 confirms the existence of 

unidirectional causality from the estimated volatility to the slope MD. The mean p-

values are significant in most instances for all but the USD/JPY pair. The evidence is 

particularly strong for the out-of-money puts with delta values of 5 to 35 in most 

instances. In the contemporaneous Granger test reported in Panel B, the results remain 

significant for delta values of 5 to 25 with the exception of the USD/JPY series. 
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Table 6-8: Granger Causality Test on Individual Slope for Call Options 

Eq.6-12 Eq.6-11 Eq.6-12 Eq.6-11 Eq.6-12 Eq.6-11 Eq.6-12 Eq.6-11
Dep var Dep var Dep var Dep var Dep var Dep var Dep var Dep var

Slope (MD) GARCH (σ) Slope (MD) GARCH (σ) Slope (MD) GARCH (σ) Slope (MD) GARCH (σ)
Panel A: Lag 1 to p,q
C5D 0.030 0.096 0.000 0.143 0.108 0.620 0.079 0.435
C10D 0.055 0.086 0.001 0.081 0.116 0.787 0.088 0.584
C15D 0.083 0.095 0.006 0.101 0.160 0.930 0.089 0.706
C20D 0.111 0.110 0.033 0.135 0.054 0.905 0.084 0.812
C25D 0.135 0.127 0.054 0.166 0.072 0.828 0.088 0.865
C30D 0.167 0.149 0.035 0.193 0.057 0.763 0.089 0.904
C35D 0.165 0.168 0.013 0.211 0.044 0.920 0.101 0.889
C40D 0.170 0.192 0.005 0.234 0.270 0.919 0.110 0.872
C45D 0.168 0.223 0.002 0.260 0.749 0.454 0.123 0.835
Panel B: lag 0  to p,q
C5D 0.245 0.141 0.000 0.168 0.077 0.855 0.001 0.243
C10D 0.441 0.142 0.000 0.123 0.102 0.924 0.001 0.327
C15D 0.527 0.148 0.002 0.107 0.158 0.967 0.002 0.417
C20D 0.512 0.158 0.075 0.101 0.076 0.970 0.004 0.514
C25D 0.448 0.170 0.362 0.148 0.233 0.974 0.005 0.593
C30D 0.370 0.184 0.641 0.294 0.203 0.891 0.007 0.674
C35D 0.311 0.205 0.756 0.352 0.149 0.963 0.011 0.711
C40D 0.259 0.229 0.764 0.438 0.337 0.934 0.016 0.745
C45D 0.216 0.260 0.719 0.499 0.758 0.796 0.023 0.756

Call Options
GBP/USD EUR/USD AUD/USD USD/JPY

 
Note: Panel A reports the p-values for the bilateral Granger causality tests performed from lag 1 to 
the optimal lag term p and q. Panel B provides the p-values for the same test performed from lag 0 
to p and q; The following regression models are performed using autocorrelation and 
heteroscedasticity consistent covariance matrix of Newey-West (1987):  
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MD is the slope of the smile curve measured at moneyness level M using Equation (6-7). The 
moneyness measure M defined in Equation (6-6) corresponds to the delta value of 5 to 45 (in 
increments of 5). 

  

Second, the p-values of the regression models in Table 6-7 seem to relate 

directly to the level of moneyness. That is, lower delta options also have lower p-values. 

Therefore the out-of-money puts show stronger support for a unidirectional relationship 

than near-money options. The results for the GBP/USD and AUD/USD currency pairs 

still hold when the Granger causality is performed from lag zero. For the EUR/USD 

currency pair, contemporaneous modelling of the variable produces significant test 

results compared to the conventional Ganger method except for the far out-of-money 

option of 5-delta which remains significant in Panel B. There is little evidence of links 

for the USD/JPY currency pair. On the whole, the evidence suggests that far out-of-

money puts relate strongly with the volatility of the underlying currency.  
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Third, the p-values for Equation (6-12) (Table 6-8) are generally higher both in 

Panels A and B than the corresponding values reported previously for the put options in 

Table 6-7. The unidirectional relations between conditional volatility and the slope MD 

do not hold under the contemporaneous Granger test. Again, this is consistent with 

previous results reported for CF in Table 6-5. As in Table 6-7, the p-values of the 

regression tests are still stronger for more out-of-the money options.  

 

6.8.3 Trivariate vector autoregressive model 
 

To this point, the analysis of the relationship between currency volatility and 

the behaviour of the smile has been restricted to a two-variable model. The preceding 

analyses reported in Tables 6-5, 6-6, 6-7 and 6-8 provide evidence of causality between 

currency volatility and the put volatility curve, as well as currency volatility and the call 

volatility curve. It is plausible that the causality that exists may not be solely due to the 

anticipated volatility in the foreign exchange market as call and put volatility curves 

will be tend to move together due to the put-call parity relationship. In this section, 

further analysis is performed using the vector autoregressive (VAR) technique to 

examine the linkages between three anticipated volatility (σ), the put volatility curve 

(PF) and call volatility curve (CF).  

 

As all the three endogenous variables are stationary according the Phillips-

Person unit root test results (see Table 6-3), vector autoregressive modelling can be 

applied to ascertain the causal dynamics among the three endogenous variables. The 

unrestricted trivariate VAR is specified as: 
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where σFX,t is the estimated conditional volatility for currency FX;  CFFX,t and PFFX,t are the 

slopes of the call and put volatility curves defined in Equations (6-3) and (6-4) at time t 

; k is the lag choice determined using the AIC specification. The trivariate specification 

allows for a reliable analysis of the shock transmission mechanism among the variables 

in the system. Further, impulse response and variance decompositions analyses are 

undertaken to trance the impact of shocks in conditional volatility on smile slope (call 

volatility curve and put volatility curve).  

 

A generalized impulse response function is employed to avoid issues 

associated with the ordering of the endogenous variables. Variance decomposition 

determines the fraction of variation in the endogenous variables resulting from the 

innovations in other variables within the trivariate system – that is, the relative 

magnitude of the effect of one variable on other variables within the model. 

 

6.8.4 Residuals Autocorrelation and Results for VAR(3) model 
 

In Table 6-9, the Breusch-Godfrey LM test is performed to test autocorrelation 

in the residuals. The initial VAR (3) specification shows evidence of autocorrelation up 

to 10 lags. To alleviate this problem, a time trend in the VAR (3) model is specified. 

The summary statistics in Table 6-9 indicate that the adjusted specification is adequate 
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for the purposes of this study. Specifically, for the LM test, the null of zero 

autocorrelation in the residuals cannot be rejected in all cases. This is further confirmed 

using the Q-test statistic for the null of zero joint residual autocorrelation.        

 

Table 6-9: Residuals Autocorrelation Tests for VAR (3) Model 

Currency Obs σ p -value CF p -value PF p -value Chi-Sqr(63) p -value

GBP/USD 962 11.102 0.350 8.739 0.557 13.220 0.212 51.999 0.837
EUR/USD 772 15.345 0.120 9.615 0.475 14.279 0.161 52.347 0.829
AUD/USD 960 8.595 0.571 14.527 0.150 12.361 0.262 64.569 0.422
USD/JPY 1050 12.725 0.239 4.564 0.918 7.763 0.652 64.045 0.440

LM(10) Test  on Residuals Q(10) Joint Test 

 
Note: LM(10) denotes the LM test with 10 lags. The tests are performed on the individual unrestricted 
trivariate VAR model specified with a trend component. Columns 2, 4 and 6 present the test statistics 
for the regression models specified with the dependent variables “σ”, “CF” and “PF”. The 
corresponding p-values are reported in columns 3, 5 and 7. The Portmanteau Test (“Q(10)”) for joint 
residual autocorrelation is estimated over 10 lags.  
 

The test results using the VAR (3) specification are provided in Table 6-10. 

The F-statistics for the system indicates that the VAR (3) model is highly significant 

with high R2 values. This is consistent with the results reported in Table 6-5. The F-

statistic has the highest value when the VAR (3) model is performed using the estimated 

conditional volatility as the dependent variable.  

      

Table 6-10: Test Results for the Trivariate VAR Model 

Dep Var  F -stats p -value  Adj. R2  F -stats p -value  Adj. R2  F -stats p -value  Adj. R2  F -stats p -value  Adj. R2

σ 1263.40 0.000 0.999  2219.11 0.000 0.999 1683.42 0.000 0.999 1806.85 0.000 0.999

CF 12.96 0.000 0.942  3.09 0.000 0.857 2.36 0.000 0.856 10.71 0.000 0.903
PF 7.11 0.000 0.899  8.18 0.000 0.941 7.38 0.000 0.948 4.22 0.000 0.838

GBP/USD, k =4 EUR/USD, k =5 USD/JPY, k =3AUD/USD, k =5

 
Note: The table above reports the system F-test statistics with the corresponding p-values. The optimal 
lag k (using AIC specification) adjacent to the currency pair is used to perform the regression tests.  



 

198 
 

6.8.5 Impulse Response Analysis 
 

To examine the impact of a shock in anticipated volatility on the future values 

of the endogenous variables within the VAR (3) system, an impulse response function is 

estimated for each of the currency pairs using generalized one standard deviation shocks 

on the endogenous variables. The impulse response functions due to a shock in the 

anticipated volatility for the calls and puts are presented separately in Figure 6-4. They 

are reproduced in Figures 6-5, 6-6, 6-7 and 6-8 together with impulse response 

functions for all other endogenous variables using different scales.  

 

The impulse response functions for the slope coefficients of puts and calls 

volatility curves can be characterized as a sine wave pattern which reflects a dynamic 

system (Greene, 2003). This pattern is consistent with the findings of Sarwar (2003) 

which suggests that an over or under-reaction in the currency option market occurs as 

informed trader adjust their trading positions over time due to the impending risk in the 

spot foreign exchange market.  

 

In response to one standard deviation volatility shock, the slope of the put 

volatility curve results in an immediate flattening of the smile associated with both the 

put and the call volatility curves. The slope of the put volatility curve becomes less 

negative (positive reaction) and slope for the call volatility curve becomes less positive 

(negative reaction). There is a tendency toward “overshooting” over a period of 25 days 

for the currency pairs with respect to the slope coefficient for the put volatility curve but 

this is not evident with the slope of the call volatility curve where the initial reaction to 

the volatility shock produced negative reaction and remains so over the next 50 to130 

days.     
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Figure 6-4: Impulse Reponses for Smile Slopes due to Volatility Shock 
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Figures 6-5, 6-6, 6-7 and 6-8 show the impulse response functions for the 

endogenous variables according to the trivariate VAR model for each of the three 

currency pairs respectively. The patterns for the impulse response functions and 

variance decompositions are largely identical across all four currency pairs. The 

notation GVOL stands for GARCH estimated conditional volatility, CF and PF are the 

slope coefficients defined in Equation (6-3) and (6-4). For ease of comparison, a 

common scale for all responses of a single variable is used, for instance the shock of 

GVOL on GVOL, CF and PF have a common scale. The 95% confidence bands using 

Monte Carlo simulation is drawn around the impulse response functions (dotted lines). 

The corresponding variance decompositions analysis is presented on the bottom panels. 

 

The impulse response function for the GBP/USD put volatility curve to a shock 

in volatility is presented on the bottom left panel of the impulse response chart in Figure 

6-5. GVOL shocks have a positive effect on future GVOL values. However, a shock to 

the CF or the PF coefficients does not produce any significant response in GVOL. This 

further supports the existence of the unidirectional relationship identified in Table 6-5. 

Further, a shock in CF generates a significant response from PF but a shock in PF only 

produces a modest response in CF. There is some asymmetry in the relationship 

between CF and PF with a relatively large reaction reported for PF due to a shock to 

CF.   

 

The variance decomposition analysis shows that the anticipated volatility in the 

underlying currency is not explained by changes in the CF or PF. However, the 

anticipated volatility of the underlying currency appears to have significant impact on 

the call and put volatility curves. Approximately 5% to 20% of 150 days ahead variance  
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Figure 6-5: GBP/USD Impulse Reponses for Trivariate VAR 
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Figure 6-6: EUR/USD Impulse Reponses for Trivariate VAR 
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Figure 6-7: AUD/USD Impulse Reponses for Trivariate VAR 
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Figure 6-8: USD/JPY Impulse Reponses for Trivariate VAR 
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forecast of the put volatility curve is attributed to the innovations in the anticipated 

currency volatility. The call volatility curves have similar results with higher weights of 

10% to 22% over the same interval. Therefore consistent with the findings in the 

previous section, the slope of the call and put volatility curves are related to the 

anticipated currency volatility. Further, evidence of feedback between the call and put 

volatility curves is also identified using the impulse response analysis.   

 

6.9 Jumps and the Smile Dynamics 
 

The findings from the preceding sections suggest that a significant relationship 

exists between the different measures of smile dynamics and the anticipated volatility of 

the underlying exchange rates. As a robustness check and further extension of this 

analysis, it is of interest to examine whether the information embedded in the smile 

dynamics is capable of providing insights into the behaviour of prices in the spot 

exchange rate market. Specifically, this section investigates whether the absolute 

change in the smile dynamics explains the likelihood of significant movements in the 

underlying currency. Following Doran et al (2007), jumps over the maturity of the 

option contracts are estimated and this is followed by a multivariate probit analysis 

using different measures of volatility smile dynamics as explanatory variables. These 

measures of smile dynamics are formally defined in Equations (6-3)-(6-4) and (6-7)-(6-

8).  
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For the detection of jumps in the daily spot exchange rates, this study adopts 

the nonparametric method of Lee and Mykland (2007) which is defined as:  
)(iL   ≡   ∧

−

)(

)(/)(log 1

i

ii

t

tStS

σ
                                                     (6-16)         

where 
 

∧

)( itσ 2             ≡       ∑
−

+−=
−−−−

1

2
211 )(/)(log)(/)(log

2
1 i

Kij
ijjj tStStStS

K
                   (6-17) 

K                 =        window size measured in days 

)( itS            =        daily closing spot exchange rate at period ti 

J                  =         t + T  

 

A threshold of ± 4.6001118 is adopted from Lee and Mykland (2007) to detect the 

presence of a jump on any given day ti to the expiration of the option contract t+T; 

when the threshold is breached on day ti, a jump is recorded and a value of one is 

assigned for that day. If the estimated L(i) statistic specified in Equation (6-16) stays 

within the thresholds, day ti receives a value of zero. The null hypothesis of no jump at 

ti can be rejected at the 1% level of significance when the thresholds are violated.  

   

The choice of K in Equation (6-17) can be determined by sampling frequency 

as noted in theorem 2 of Lee and Mykland (2007). However, the determination of the 

optimal size for K is by no means straightforward. According to Lee and Mykland 

(2007), if daily data is used, the optimal size for K should range from 15.87 to 252.  

 

Table 6-11 summarises estimated jump frequency using three different window 

sizes. Negative jumps are denoted as “JN” while “JP” represents positive jumps that 

occurred over the option expiration period. A total of 245 and 58 jumps are reported 

                                                            
118 See pp.9 of their paper for further details. 
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when a window size of 5 and 16 days are used respectively. On the other hand, a 

window size of 30 days reduces the sample size of the dependent variable significantly, 

resulting in a limited observation of 22 jumps from the currency pairs. For simplicity, 

since the data are sampled on daily intervals, K is set to a value of 16 trading days 

following Lee and Mykland (2007). This appears to generate a reasonable aggregate 

sample size of 58 jumps over the option expiration period119.  

 

Table 6-11: Jump Frequencies and Window Sizes 

Currency 
JP JN Total JP JN Total JP JN Total

GBP/USD 32 35 67 4 8 12 2 3 5
EUR/USD 36 27 63 0 10 10 0 0 0
AUD/USD 23 27 50 3 9 12 3 4 7
USD/JPY 31 34 65 10 14 24 4 6 10

Observations 122 123 245 17 41 58 9 13 22

Window Size (K )
5 16 30

 
Note: This table indicates the frequencies of positive and negative jumps using various 
window sizes. The jumps are estimated using the nonparametric procedure of Lee and 
Mykland (2007). The terms “JP” and “JN” denote positive and negative jumps respectively. 

 

 

In terms of currency type, when a window size of 16 days is used, a total of 12 

jumps are recorded for the AUD/USD and the GBP/USD, while the EUR/USD and the 

USD/JPY report 10 and 24 jumps respectively. The USD/JPY has the greatest number 

of negative jumps of 14, followed by the EUR/USD with 10 negative jumps, while 

AUD/USD and GBP/USD each with 9 and 8 negative jumps. Positive jumps comprise 

approximately 29% of the aggregate sample and are mostly recorded by the USD/JPY 

currency pair.  

 
                                                            
119 Further analysis is also performed using a window size of 5 days. See Tables B1 and B2 reported in Appendix B 
of this dissertation.  
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Figures 6-9 and 6-10 present the estimated jumps for the AUD/USD and the 

USD/JPY currency pairs over the sample period. The at-the-money implied volatility 

series (IV) is shown on the left axis while the spot exchange rate is displayed on the 

right axis. The estimated jumps reflect much of the upward and downward movement in 

the series over the sample period. 

 

Figure 6-9: Estimated Jumps for AUD/USD 
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Figure 6-10: Estimated Jumps for USD/JPY 
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6.9.1 Probit Model Analysis 
 

To maintain a reasonably parsimonious model, it is assumed that the daily 

dynamics of the volatility smile can be reasonably estimated using the slope of the 

volatility smile measured at 5-delta, 10-delta and 15-delta. In addition, the curvature and 

slope coefficients for put and call volatility curves are also included in probit model 

analysis. The following probit model tests the relationship between jumps and volatility 

smile dynamics using call options:   

 
 
Pb(Jumpt+T=1)   =  F (β0 + β1∆CFt + β2∆CEt + β3∆C5Dt + β4∆C10Dt + β5∆C15Dt) + εt        (6-18) 
 
 
 
where  
 
 
Pb(Jumpt+T=1)  = probability that jumps occur within periods t to t+T, T denotes the  

maturity of the option contract, 
 

F  = the standardized cumulative distribution function, 
 

∆CF                  = natural logarithm of the absolute change in CF measured  
as log(|CFt /CFt-1|), 

 
∆CE = natural logarithm of the absolute change in the curvature coefficients  

measured as log(|CEt /CEt-1|), 
 

∆C5D  = natural logarithm of the absolute change in the slope coefficient for 5- 
delta call measured as log(|C5Dt /C5Dt-1|). For the 10-delta and 15-delta  
calls, the same method is used. 

 
 

 

The null hypothesis of simultaneous zero coefficients in the regressors 

(β0=β1=β2…=β5=0) is tested using the likelihood ratio test (“LR”). The reported z-

statistics for the individual regressors are based on standard errors and covariance from 

the Huber/White quasi-maximum likelihood method. This ensures consistent estimates 
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of the regression coefficients which are robust to distributional bias in the standard 

error. The estimation of the jumps is performed over the option expiration period of one 

month. For simplicity, this study assumes the one month option contracts has 30 trading 

days to expiration.  

 

The probit regression model is repeated using put option contracts. Thus, the 

test using the put option contracts is specified as: 

 
Pb(Jumpi=1) = F (β0 + β1∆PFt + β2∆CEt + β3∆P5Dt + β4∆P10Dt + β5∆P15Dt) + εt     (6-19) 

 

 

6.9.2 Results for Probit Model Analysis 
 

Table 6-12 presents the aggregate test results of the multivariable probit 

estimation for the put and call options. The joint test of zero coefficients in the 

dependent variables using the likelihood ratio “LR” is strongly rejected for both calls 

and puts at the 1% level.120  This suggests the change in the curvature, the slope of the 

call and put volatility curves together with the out-of-money options are capable of 

generating insights into the likelihood of jumps in the underlying currencies. Compared 

with call options, the result is marginally stronger for the put options, with a higher 

likelihood ratio of 51.68. This is broadly consistent with the findings reported in the 

previous sections using Granger causality and VAR methodologies.  

 

                                                            
120 A similar result is reported when the window size of 5 days is used to estimate the jumps. See Appendix B for 
further details. 



 

211 
 

The probit model demonstrates positive and significant coefficients for 

∆PF,∆P5D, indicating the larger the change in the slope of the put volatility curve, and 

more out-of-money the put, the greater the likelihood of a jump in the underlying 

currency. For the slope of the call volatility curve, a negative significant coefficient for 

∆CF is reported instead. This suggests a lower slope coefficient for call volatility curve 

is associated with higher probability of a jump in the underlying currency. Overall, the 

results for put and call volatility curves appear to indicate that when the volatility smile 

becomes steeper to the left of at-the-money implied volatility (put volatility curve), and 

relatively flat to the right of at-the-money implied volatility (call volatility curve), the 

more likely is a jump. This is consistent with the view that a “smirk” pattern exists 

when a large movement of the underlying exchange rate is anticipated.           

 

Table 6-12: Probit Regressions for the Aggregate Sample 
 
                Pb(Jumpt+T=1)   =  F (β0 + β1∆CFt + β2∆CEt + β3∆C5Dt + β4∆C10Dt + β5∆C15Dt) + εt 

Pb(Jumpt+T=1)   =  F (β0 + β1∆PFt + β2∆CEt + β3∆P5Dt + β4∆P10Dt + β5∆P15Dt) + εt 

Coefficient z -statistics Coefficient z -statistics

∆PF (∆CF) 0.541 ** (2.191) -0.291 *** (-3.475)
∆CE -0.991 *** (-6.742) -0.689 *** (-3.527)
∆P5D (∆C5D) 0.334 *** (2.878) -0.154 (-0.739)
∆P10D (∆C10D) -0.057 (-0.668) 0.161 (0.885)
∆P15D (∆C15D) -0.296 *** (-3.844) 0.018 (0.245)

LR 51.684 *** 50.203 ***
2

Put Options Call Options

 
 
Note: The Jump parameter is estimated using the Lee and Mykland (2007) method 
to detect for the presence of a on day t to (t+T).When the threshold is breached, a 
value of one is assigned or zero otherwise. A total of 58 jumps are used in the probit 
models. To save space, the constant term is omitted from the table.      
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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The curvature coefficient for the smile is negative and significantly related to 

the probability of jumps, suggesting that a significant skewness exists in the put 

volatility curve while the call volatility curve is relatively flat when a jump is expected. 

This is due to a significant adjustment in the shape of the volatility smile, that is, as a 

spike is anticipated (upward or downward), puts are bid up relative to calls causing a 

considerable increase in the slope coefficient for the put volatility curve while the call 

volatility curve moved in the opposite direction. The combined effect of this adjustment 

is a decrease in the curvature coefficient for the volatility smile. Again, these findings 

are consistent with the “smirk” pattern reported in Campa and Chang (1995).  

 

To further examine the robustness of the test results presented in Table 6-12, 

positive and negative jumps are identified separately and the probit regression is 

repeated in the total sample. If puts are preferred over calls when a negative jump 

occurs, the regression coefficients for the puts should register positive values while 

negative values are expected for the corresponding calls. To test this conjecture, 

positive (L(i) > threshold) and negative jumps (L(i) < threshold) are identified 

separately in the total sample and the probit regression is repeated. This is undertaken 

for both calls and puts, and results in four estimated models presented in Table 6-13.  

 

For the prediction of negative jumps, the LR statistics are consistently higher 

than the corresponding statistics reported for positive jumps although the joint 

hypothesis of zero coefficients in the dependant variables remains significant at the 1% 

level in both instances. However, the relatively low LR statistics for positive jumps may 

be due to less frequent positive jumps reported over the sample period and thus the 

results should be interpreted with caution considering the limited sample size.  
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Table 6-13: Aggregate Results for Probit Regressions 

Coefficient z -statistics Coefficient z -statistics Coefficient z -statistics Coefficient z -statistics

∆PF (∆CF) -0.835 *** (-4.464) 0.860 *** (4.873) 0.194 *** (2.411) -0.331 *** (-3.905)
∆CE -0.469 (-1.616) -0.555 *** (-3.446) -0.887 *** (-3.332) -0.700 *** (-3.924)
∆P5D (∆C5D) -0.500 *** (-4.537) 0.132 (0.881) 0.795 *** (4.047) 0.236 (1.081)
∆P10D (∆C10D) 0.365 *** (3.364) -0.062 (-0.501) -0.604 *** (-3.047) -0.151 (-0.666)
∆P15D (∆C15D) 0.238 *** (2.971) -0.134 * (-1.824) -0.178 *** (-3.362) -0.153 ** (-2.447)

LR 20.424 *** 66.500 *** 24.904 *** 69.188 ***
2

Positive Jumps Negative Jumps Positive Jumps Negative Jumps
Put options Call options

 
 
Note: The dependent variable is the Jump parameter estimated using the Lee and Mykland (2007) 
method. A threshold of +4.6001(-4.6001) is used to detect for the presence of positive (negative) jumps on 
day t to (t+T). The term “LR” is the likelihood ratio statistics for the joint test of β0=β1 =β2…=β5=0. The 
reported z-statistics are based on standard errors and covariance from the Huber/White method. For 
brevity, the constant term is omitted from the table.      
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 

 

The regression coefficients for the put volatility curve are positive and 

statistically significant when negative jumps are detected. It demonstrates that there is a 

higher probability of a downward spike in the underlying exchange rate when the slope 

of the put volatility curve increases. On the contrary, a negative significant coefficient is 

reported for the call volatility curve suggesting that the probability of a market crash is 

associated with a flattening of the call volatility curve. Similar to the result previously 

reported in Table 6-12, the coefficient for out-of-money put of 15-delta remains 

negative and significant. Except for positive jumps reported for the put options, the 

curvature coefficients remain negative and significant in Table 6-13.  

 

In summary, the results presented are consistent with the notion that 

information contained in the smile dynamics is useful for the prediction of jumps in 

daily exchange rates. This is consistent with Doran et al (2007) in their analysis of the 

equity market. The curvature of the smile and the slopes of the put and call volatility 
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curves are important explanatory variables for predicting jumps in the underlying 

currency.  

 

6.10 Conclusion 
 

In this chapter, the dynamics of volatility smiles are investigated using a trader-

quoted currency option dataset, collected from the over-the-counter market. The 

relationship between the behaviour of the volatility smile and the anticipated volatility 

for the underlying currency is investigated. The results and analysis lead to three 

important conclusions about the behaviour of volatility smile. First, the dynamics of the 

volatility smile is related to the anticipated volatility of the currency market. Second, a 

large downward movement in the underlying currency appears to be related to an 

increase in slope coefficient for the put volatility curve and a decrease in slope 

coefficient for the call volatility curve. Third, the curvature of the volatility smile 

contains an important signal about market expectations and the findings of this chapter 

show that smile curvature has significant predictive ability.  
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CHAPTER 7 – FOREIGN EXCHANGE VOLATILITY 
PREDICTION: INTEGRATING VOLATILITY SMILE WITH 
IMPLIED VOLATILITY 
 

 

7.1 Introduction 
 

The information content of option-implied volatility has been actively studied 

in both the academic and practitioner literature. However, the forecasting power of 

traded implied volatility and its relationship with the smile anomaly has not been fully 

investigated. In the previous chapter, it is shown that the dynamics of the volatility 

smile is related to the anticipated volatility in the underlying currency. The current 

chapter extends these findings by investigating the usefulness of information 

embedded in the shape of the volatility smile for the prediction of future realised 

volatility. In particular, it adds to the literature on volatility prediction that uses at-the-

money implied volatility forecasts by studying how the shape of the volatility smile 

affects the forecasting ability of implied volatility.  

 

The analysis first examines the relationship between the level of implied 

volatility and the shape of the volatility smile. Second, the relative information content 

of the forecasting model is analysed using encompassing regression tests. The overall 

results suggest that the shape of the volatility smile, proxied by slope and curvature 

provides useful predictions of realised volatility over the remaining life of the option 

contract. Information embedded in volatility smile is forward-looking and is important 

in prediction of foreign exchange volatility. In addition, the results reported in this 
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chapter suggest that the forecasting ability of at-the-money implied volatility is 

affected by the shape of the volatility smile.  

 

The following section briefly reviews the volatility smile literature. Section 7.3 

surveys previous literature on volatility forecasting. The data and methodology used in 

this chapter are discussed in Sections 7.4 and 7.5 respectively. Data analysis and test 

results are presented in Sections 7.6 to 7.10. The conclusion of this chapter is offered in 

Section 7.11. 

 

7.2 Shapes of Volatility Smiles and Volatility of the Underlying Assets 
 

It is widely acknowledged that the volatility smile effect became more 

pronounced in the equity option markets after the October 1987 stock market crash. In 

a recent paper, Liu, Pan and Wang (2005) argue that option prices are very sensitive to 

market crashes and they suggest that the smile effect is attributable to extreme events 

in the financial markets. In the currency option market, Campa and Chang (1995) and 

Bollen and Rasiel (2003) note that the volatility smile effect occurs as a result of 

expectations of increasing risk in the underlying currency. Further, probit model 

analysis by Doran, Peterson and Tarrant (2007) provides evidence that information 

about volatility skew can be used to predict positive and negative jumps in the equity 

market.  

 

The economic determinants of the volatility smile effect are examined by Pena, 

Rubio and Serna (1999) using implied volatility from the Spanish equity IBEX-35 

index. They find that the curvature of the volatility smile is both significant and 
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negatively related to actual volatility in the underlying index. Slope and curvature 

estimates for the volatility smile are positively related to the option bid-ask spread. 

They note that as market makers anticipate higher volatility in the underlying market, 

out-of-money calls and puts are more highly valued than what the Black-Scholes (1973) 

model would suggest. A recent investigation by Deuskar, Gupta, and Subrahmanyam 

(2008) suggests that the volatility smile effect in the interest rate option market is 

affected by the degree of uncertainty in the underlying market. The volatility smile 

becomes steeper and more skewed over high-interest periods, but when the yield curve 

is sloping downwards, the smile effect becomes less pronounced. These results are 

generally consistent with the forward-looking nature of option-implied volatility. 

 

7.3 Previous Studies on Volatility Forecasting 
 

Implied volatility can be viewed as the ex-ante estimate of market volatility 

over the option expiration period. Therefore it is no surprise that a number of authors 

have examined the information content of implied volatility for option markets (for 

example, Jorion (1995), Fleming Ostdiek and Whaley (1995), Christensen and 

Prabhala (1998), Covrig and Low (2003), and Corrado and Miller (2005). These 

studies generally agree that option-implied volatility is capable of generating reliable 

forecasts of future volatility for the underlying asset.  

 

Yet, earlier work by Day and Lewis (1992) and Canina and Figlewski (1993) 

find little evidence of implied volatility as a superior source of volatility forecast. 

Christensen and Prabhala (1998) argue that the Canina and Figlewski study suffers 

from mis-specified tests arising from highly autocorrelated errors due to the use of an 

overlapping sampling procedure.    
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    When at-the-money implied volatility is used as a forecast for future volatility, 

it is commonly assumed that the shape of the smile has no impact on this forecast. 

Based principally on the studies by Christensen and Prabhala (1998), and Pena, Rubio 

and Serna (1999), it is therefore hypothesised in this chapter that while at-the-money 

implied volatility provides a valid forecast of future volatility, the shape of the implied 

volatility smile may also change significantly with changes in the level of future 

volatility as market sentiment evolves over time. A significant relationship may exist 

between the shape of the volatility smile and the level of at-the-money implied 

volatility and thus information about the smile may be included in the volatility 

forecasting model to increase explanatory power. In this study both the level of at-the-

money implied volatility and the shape proxies of the smile are used for the prediction 

of realised volatility following the work documented in previous chapters. 

 
 

7.4 Data 
 

The over-the-counter currency option sample used in this chapter consists of 

daily closing quoted implied volatility corresponding to various levels of delta. To 

avoid the issue of bid-ask bounce, the mid-point of the bid-ask implied volatility for 

calls and puts is used in the analysis, with the spread obtained from UBS Investment 

Bank of Switzerland. The various implied volatility series are available on different 

periods but most observations cover the common period from 2 of October, 2001 to 2 

June, 2006. These option series have constant time-to-maturity of one-month at any 

point in time of the sample period.     
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Quoted implied volatility for four major currency pairs are considered in this 

chapter, namely, the GBP/USD, the EUR/USD, the AUD/USD and the USD/JPY 

currency pairs. The traded implied volatility corresponds to call  and put options with 

delta values ranging from 5 to 45, increasing by increments of 5. The at-the-money 

implied volatility is proxied using option contracts with a delta value of 0.50 where the 

exercise price is either close or equal to the underlying exchange rate. The structure of 

the data allows a fairly complete volatility smile to be observed on any given day over 

the entire sample period. This alleviates implied volatility estimation errors due to non-

synchronous trades in the spot and option markets.  

 

The daily average closing bid-ask quotes for the spot exchange rates are 

obtained from Reuters over the period 1 January, 1998 to 28 June, 2006. The spot 

exchange rate series extends over a longer time period relative to the option series in 

order to ensure sufficient observations are available for the estimation of conditional 

volatility using a 1000-day rolling GARCH (1,1) model. The corresponding one-month 

interest rates for each of the currency pairs are obtained from the British-Bankers’ 

Association database.  

 

 

7.5 Methodology 
 

In Chapter 4, it is revealed that the levels of at-the-money implied volatility 

exhibit a significant non-normal distribution over the sample period. Accordingly in the 

following analysis, log transformation is applied to the volatility data to reduce 

skewness and kurtosis of the data so that the volatility series are approximately 

normally distributed. This transformation is also consistent with other studies that 
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employ volatility data, including Christensen and Hansen (2002) and Corrado and 

Miller (2005). 

 

7.5.1 The Relationship between Implied Volatility and the Shape of Volatility 
Smile 

 

The first analysis involves investigating the relationship between the levels of 

at-the-money implied volatility and the shape of the volatility smile. The at-the-money 

implied volatility is often used as a forecast for future volatility because as shown in 

Feinstein (1989), it represents an unbiased estimate of average variance over the life of 

the option. Furthermore, the use of at-the-money options result in less estimation error 

(Day and Lewis, 1992). Since at-the-money implied volatility is frequently used as an 

ex-ante forecast for realised volatility, any significant relationship that exists between 

the levels of at-the-money implied volatility and the shape of the volatility smile imply 

that the latter may contain useful information for volatility forecasting.  

 

The shape of the volatility smile is proxied using slope and curvature 

coefficients estimated from each day’s volatility smile. The methodology for estimating 

the shape of the volatility smile is previously discussed in Chapter 6121. The average 

slope of the smile (AS) is also included as an additional proxy in the regression tests. 

This is estimated as the first derivative of the quadratic form defined in Chapter 6.122 

For simplicity, the daily moneyness coefficient (Xt/Ft) is calculated by taking the 

average of moneyness that corresponds to 50-delta, 40 delta, 30-delta, 20 delta and 10-

                                                            
121 See Equations 6-3, 6-4, 6-7 and 6-8. 

122See Equation 6-7. 
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delta for call and put options. Furthermore, this chapter uses absolute values of these of 

these proxies since it is hypothesised that the levels of at-the-money implied volatility 

are related to the shape of the volatility smile. In other words, this study focuses on the 

steepness of the slope rather than its direction.  

 

In order to account for the possibility of non-linear dependence and to 

minimise the impact of extreme values of the implied-volatility series, nonparametric 

Spearman rank order correlation coefficients are estimated over the sample period. A t-

statistics test is conducted for the null hypothesis that the correlation between at-the-

money implied volatility and the shape of the volatility smile is zero. Correlation 

analysis also allows examination of the relationship that may exist between different 

proxies for the shape of the volatility smile. 

 

7.5.2 Estimation of Realised Volatility 
      

To assess the forecasting ability of the various proxies used in this study, the 

ex-post realised volatility of the underlying currency is estimated using the average of 

daily closing bid-ask prices. Since the option implied volatility has a constant maturity 

of one month, the realised volatility has to be estimated over the corresponding option 

time-to-maturity to ensure comparability. Ex-post realised volatility for the underlying 

currency over the option expiration period t to T is estimated as: 

 

[ ]∑
1=

2
1-, )/259()/ln(=

T

t
ttTt TSSRV              (7-1) 
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where TtRV , is the estimated ex-post realised volatility of the exchange rate over the 

option expiration period t to T and St is average bid-ask price for 1 unit of spot exchange 

rate available at period t. The square of the daily log returns are annualised by assuming 

259 trading days per year. Consistent with the approach used in previous studies, (for 

instance Christoffersen and Mazzotta (2005), and Covrig and Low (2003)), this study 

assumes 20 trading days in a one month period. 

 

7.5.3 Estimation of Conditional Volatility 
 

A GARCH forecast series is constructed using a rolling window of 1000 

observations123. That is, on any given day of the sample period, spot exchange rate 

returns over the last 1000 days are used to estimate the GARCH (1,1) parameters. The 

procedure involves the use of a constant sample size for each forecast, adding the 

return on day (t-1) and omitting the return on day t-(1000+1) from the sample to arrive 

at the variance forecast for day t. This assumes that market participants use of market 

information available to them at the time when the forecast is made. The GARCH 

parameters are estimated using the Broyden, Fletcher, Goldfarb and Shanno 

algorithm124. 

 

 

                                                            
123 Various rolling windows are also used in the estimation process. However the choice of 1000-day 
window is adopted as the estimated GARCH parameters are closer to previous studies such as Jorion 
(1995).  
124 See Press, Flannery, Teukolsky and Vettering (1988). 
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7.5.4 The Relationship between Realised Volatility and the Shape of Volatility 
Smile 
 

Following Christensen and Prabhala (1998), the forecasting ability of the 

independent variable is evaluated by regressing the ex-post realised volatility on the 

proxies for the shape of the smile. Thus the univariate regression model takes the 

following form: 

tTtTt εSMβγRV +ln+=ln ,10,     (7-2) 

where TtSM ,  includes a range of estimation capturing the shape of the volatility smile 

according to the methodology provided in chapter 6 125 , and TtRV , is the realised 

volatility estimated from Equation (7-1). The standard errors of the OLS regression 

tests are corrected for autocorrelation and heteroscedasticity using the Newey-West 

(1987) procedure. 

 

Using the same univariate specification defined in Equation (7-2), the regression test is 

repeated using at-the-money implied volatility IVt,T as the independent variable. If the 

at-the-money implied volatility forecast is the true expected value of the realised 

volatility, RVt,T, regressing RVt,T on IVt,T should produce regression coefficients of 0.00 

for the intercept γ0, and 1.00 for coefficient β1. However, if the estimated coefficients 

are statistically different from 0.00 and 1.00, it is concluded that the forecasting model 

is inefficient and produces a biased estimate of realised volatility over the forecasting 

horizon. 

                                                            
125 See section 6.3.2 to 6.4.1. 
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7.5.5 Forecasting Realised Volatility using Smile-adjusted Implied Volatility 
 

To examine forecasting power using information in the volatility smile, the 

predictive ability of the implied volatility forecasts is examined using bivariate and 

multivariate models. First, Equation (7-2) is redefined as:  

   ttTtTtTt εSMIVβIVβγRV +lnln+ln+=ln ,2,10,           (7-3) 

where tTt SMIV , is an interaction term. This regression model allows for interactions 

between IVt and SMt to be included in the forecasting procedure. It suggests that the 

evolution of at-the-money implied volatility is related to the shape of volatility smile 

over time.  

 

Unbiasedness126 and efficiency127 tests that account for the interaction term 

tTt SMIV , described in Equation (7-3) can be evaluated using the Wald coefficient 

restriction test. If the forecast is an unbiased and efficient predictor of  future realised 

volatility, regressing RVt,T on IVt,T and the interaction term IVt,TSMt should result in 

failure to reject the joint coefficient restriction test, with the null hypothesis specified 

as γ0 =0 and (β1+β2)=1. The alternative null hypothesis can be tested by restricting the 

regression coefficients jointly as γ0 =0 and β1=1, β2 =0 to evaluate the performance of 

the TtIV , forecasts when the interaction term is included in the forecasting model. 

Failure to reject the null suggests that TtIV ,  is an unbiased and efficient estimate of 

realised volatility. 

                                                            
126 That is, the slope coefficient is not statistically different from 1.00. 
127 This means the coefficient for the intercept term is not significantly different from zero. 
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7.5.6 Forecasting Realised Volatility Using, Smile Characteristics, Implied 
Volatility and Rolling-GARCH (1,1) Model 

 

To further examine the relative performance of the at-the-money implied 

volatility and the GARCH (1,1) conditional volatility, the following regression is 

constructed with the interaction term described in Equation (7-3): 

  tTtTtTtTtTt εGVβSMIVβIVβγRV +ln+lnln+ln+=ln ,3,,2,10,        (7-4) 

where the variable GVt is the estimated future volatility of the underling currency using 

the rolling-GARCH (1,1) framework. This model extends the earlier work of Jorion 

(1995), Day and Lewis (1992) and Covrig and Low (2003) by incorporating a third 

explanatory variable into the forecasting model – that is, the interaction 

term TtTt SMIV ,, . This is used in addition to the option-implied volatility and GARCH 

(1,1) predictions of volatility.  

 

Several hypotheses can be tested within the encompassing regression test 

according to Equation (7-4). The first test involves imposing restrictions on the 

estimated OLS coefficients with γ0 =0, (β1+ β2) =1 and β3 =0.  This allows the IV series 

to be tested when interactions between IV and the shape of the volatility are considered. 

The rationale rests on the premise that the predictive ability of at-the-money implied 

volatility is related to the shape of the volatility smile.  

 

The second test adopts the conventional specification used in previous studies 

to test the predictive power of the at-the-money implied volatility series. The coefficient 

restrictions for the null hypothesis are γ0 =0, β1 =1 and β3 =0.  Finally, the third 
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coefficient restrictions test is performed with the null hypothesis of γ0 =0, β1 =0 and β3 

=1. This tests the information content of the estimated GARCH (1,1) forecast. 

 

7.6 Descriptive Statistics 
 

Table 7-1 reports the descriptive statistics for the slope, curvature and 

volatility series for the currency pairs. The quoted at-the-money implied volatility (IV) 

series are based on the average of the bid and ask volatility prices for the one-month 

options. The realised volatility (RV) and the conditional volatility (GV) are estimated 

over the corresponding periods. The series CF denotes the slope of the call volatility 

curve and the series PF is the slope of the put volatility curve. The slope and curvature 

of the smile are represented by the series AS and CE. The realised volatility estimated 

over the maturity of the option period is denoted by the series RV. The GBP/USD 

series comprises of 1109 observations while 847 observations are used for the 

EUR/USD currency pair while the AUD/USD and the USD/JPY currency pairs have 

daily observations of 1104 and 1126 respectively.   

 

There are no systematic differences in the mean realised volatility, mean 

quoted implied volatility, and mean conditional volatility for the currency pairs 

GBP/USD and USD/JPY. However, the mean conditional volatility series for the 

EUR/USD and the AUD/USD exchange rates are consistently greater than the mean 

realised volatility series.        
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Table 7-1: Descriptive Statistics for Implied Volatility and Estimated Series 

CF PF AS CE RV IV GV

Panel A : GBP/USD (2/10/2001 - 3/7/2006)

 Mean 0.236 0.202 0.160 10.434 8.487 8.197 8.401
 Median 0.244 0.219 0.163 10.029 8.352 8.050 8.277
 Maximum 0.460 0.405 0.284 28.430 14.549 11.790 11.802
 Minimum 0.001 0.003 0.097 4.939 3.748 5.100 5.915
 Std. Dev. 0.093 0.072 0.032 3.297 2.012 1.043 0.639
 Skewness -0.094 -0.443 0.766 2.208 0.434 0.651 1.342
 Kurtosis 2.515 2.715 4.638 10.536 3.375 4.699 6.698

Panel B : EUR/USD (4/12/2002 - 28/6/2006)

 Mean 0.224 0.167 0.153 7.842 7.794 9.555 10.235
 Median 0.225 0.176 0.153 7.737 7.554 9.400 10.108
 Maximum 0.427 0.330 0.281 11.933 15.123 12.948 13.761
 Minimum 0.008 0.002 0.107 5.139 2.919 7.325 6.003
 Std. Dev. 0.082 0.068 0.029 1.271 1.983 1.083 0.684
 Skewness -0.187 -0.254 0.943 0.354 0.771 0.372 0.956
 Kurtosis 2.909 2.330 5.161 2.603 3.983 2.397 7.904

Panel C : AUD/USD (22/4/2002 - 8/12/2006)

 Mean 0.112 0.236 0.139 7.295 9.959 9.868 11.096
 Median 0.076 0.246 0.135 6.856 9.574 9.700 10.958
 Maximum 0.357 0.341 0.233 14.846 18.100 15.000 16.206
 Minimum 0.000 0.019 0.073 3.498 4.593 5.900 8.439
 Std. Dev. 0.095 0.056 0.030 2.024 2.855 1.700 1.230
 Skewness 0.766 -0.760 0.527 1.239 0.579 0.488 1.212
 Kurtosis 2.338 3.104 3.084 4.895 2.789 3.010 5.747

Panel D : USD/JPY (2/10/2001 - 28/6/2006)

 Mean 0.146 0.387 0.238 10.836 9.135 9.244 9.071
 Median 0.127 0.387 0.231 10.734 9.165 9.100 9.118
 Maximum 0.480 0.694 0.565 19.326 14.304 14.000 10.620
 Minimum 0.000 0.010 0.154 3.897 4.470 7.400 4.517
 Std. Dev. 0.104 0.083 0.050 2.387 1.950 1.054 0.366
 Skewness 0.928 -0.081 2.130 0.247 0.093 0.581 -3.285 
 Kurtosis 3.402 4.773 11.845 3.173 2.522 2.837 31.929

 
Note: This table displays the summary statistics for levels of the series used in this 
study. The statistics are calculated on levels of the individual series.  The absolute 
values for the slopes are used in this study. The GBP/USD series comprises of 1109 
observations, 847 observations are used for the EUR/USD while the AUD/USD and 
the USD/JPY consist of 1104 and 1126 observations respectively. 

 

 

The realised volatility, quoted at-the-money implied volatility and the 

conditional volatility estimates fluctuate considerably over the sample period. For 

example, in Panel B, the EUR/USD IV series vary from 7.33% p.a. to 12.95% p.a. in 

line with the RV series. These series also have similar values for mean, median, 

maximum, minimum, skewness and kurtosis. However, it is clear that the implied 

volatility series exhibit consistently greater volatility for daily levels than the 
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corresponding GARCH-estimated conditional volatility series. Except for the 

AUD/USD currency pair, the conditional volatility standard deviations for the 

currencies are less than 1.00. In contrast, the implied volatility series have values in 

excess of 1.00 across all currency pairs from time to time.  

 

The estimated slope coefficients for the calls (CF), puts (PF) and average 

slope of the volatility smile (AS) have relatively small variance compared with the 

curvature coefficients (CE). Nonetheless noticeable movements in the coefficient for 

CF and PF can be seen over the sample periods. For instance, the GBP/USD slope 

coefficient for the call volatility curve has a minimum and maximum value of 0.001 

and 0.460 respectively. A similar pattern is noted for the put volatility curves. This 

empirical observation is consistent with the “smirk” or “sneer” patterns due to marked-

perceived volatility in the currency market. In other words, the daily volatility smiles 

are ‘skewed’ in one direction. An examination of the third and fourth moments 

indicates the existence of both excess skewness and kurtosis. This suggests a violation 

of normal distribution in the data series.  

 

 

7.7 Stationarity Tests 
 

To test for the possibility of spurious regression, stationarity tests are applied 

to the individual data series. Table 7-2 provides the Phillips-Perron (1988) 

nonparametric unit root tests for (i) stationarity of the estimated slopes for the call and 

put volatility curves, (ii) the slope and curvature of the volatility smile, (iii) the realised 

volatility of the underlying currency, (iv) the at-the-money implied volatility, and (v) 
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the estimated GARCH (1,1) volatility series. The hypothesis that the estimated slopes 

and curvatures are nonstationary is rejected at the 5% level of significance. Similarly 

for the estimated realised and GARCH (1,1) volatility series, the nonstationary 

hypothesis for each series is rejected at the 1% level. For the quoted-at-the money 

implied volatility series, the nonstationary hypothesis is rejected at the 5% level for all 

currencies except the AUD/USD, which is stationary at the 10% level of significance. 

Overall, the rejections of the null of nonstationary suggest that differencing is not 

required to achieve stationary data series.       

 

Table 7-2: Phillips-Perron(1988) Unit Root Tests 

Series p -values BW p -values BW p -values BW p -values BW

CF 0.001 4 0.008 6 0.002 3 0.000 5
PF 0.000 4 0.000 3 0.000 2 0.000 0
AS 0.001 6 0.000 4 0.034 2 0.000 4
CE 0.001 6 0.000 9 0.001 2 0.000 7
RV 0.003 3 0.000 9 0.006 1 0.000 6
IV 0.039 2 0.000 3 0.079 2 0.000 12
GV 0.000 13 0.000 23 0.000 4 0.000 25

GBP/USD EUR/USD AUD/USD USD/JPY

 
Note: This table provides the nonparametric Phillips-Perron (1988) unit root tests for the null of a 
unit root in the individuate series. The tests are performed on levels of the individual series. The 
Newey-West (1994) bandwidth (“BW”) is selected using the Barlet kernel function. The GBP/USD 
series comprises of 1109 observations, 847 observations are used for EUR/USD while AUD/USD 
and USD/JPY consist of 1104 and 1126 observations respectively.   

 

7.8 At-the-money Implied Volatility and the Shape of Volatility Smile 
 

This section provides a preliminary analysis of whether there is a significant 

correlation between at-the-money implied volatility and the shape of volatility smiles 

proxied by the slope of the call (CF) and put (PF) volatility curves, the average slope 

of the volatility smile (AS) and the curvature of the volatility smile (CE).  
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The results for the Spearman correlation tests are displayed in Table 7-3. 

Across all currency pairs, the shape of the smile proxied by the size of the smile 

curvature (CE) exhibits the highest correlation with the at-the-money implied 

volatility. In addition, the relationship between these two series is consistently negative 

across all currency pairs. The p-values for the Spearman correlation are less than 0.000 

suggesting strong rejections of the null hypothesis of zero correlation at the 1% level 

of significance. Thus, when at-the-money implied-volatility is low, the smile curvature 

coefficient has a considerable degree of curvature.  

 

Drawing from the findings of Pena et al (1999), it appears that at higher levels 

of volatility, the curvature of the volatility smile becomes flatter reflecting lower bid-

ask spreads. On the other hand, when a less volatile market is anticipated, the size of 

the curvature coefficient becomes larger with a higher bid-ask spread. In the foreign 

exchange market when higher levels of volatility are anticipated, out-of-money calls 

and puts are demanded by market players. Trading activity under such market 

conditions creates strong liquidity and, as a result, the bid-ask spread becomes 

narrower. In turn, this causes the curvature of the volatility smile to flatten. This 

interpretation is consistent with the “hedging pressure” argument proposed by 

Ederington and Guan (2002) who conjecture that the smile anomaly may be partially 

attributed to active trading of out-of-money calls and puts when less favourable market 

conditions are anticipated.  
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Table 7-3: Correlations Between Parameter Estimates and Implied Volatility  

Series CF PF AS CE IV

Panel A: GBP/USD

CF 1.000

PF -0.411 1.000
-14.995 
(0.000)

AS 0.796 0.130 1.000
43.713 4.366
(0.000) (0.000)

CE 0.519 0.420 0.840 1.000
20.203 15.402 51.466
(0.000) (0.000) (0.000)

IV -0.160 -0.358 -0.398 -0.702 1.000
-5.396 -12.749 -14.460 -32.856 
(0.000) (0.000) (0.000) (0.000)

Panel B: EUR/USD

CF 1.000

PF -0.600 1.000
-21.788 
(0.000)

AS 0.778 -0.032 1.000
36.021 -0.918 
(0.000) (0.359)

CE 0.225 0.372 0.529 1.000
6.728 11.654 18.144

(0.000) (0.000) (0.000)

IV 0.358 -0.067 0.402 -0.370 1.000
11.159 -1.956 12.758 -11.599 
(0.000) (0.051) (0.000) (0.000)

 
Note: This table shows the Spearman rank-order correlations corrected for 
degrees-of-freedom. The t-test statistic for the null of zero correlation coefficient is 
reported immediately below the Spearman correlation coefficient. The p-values for 
the test statistics are available in the parentheses.  

 

For the average slope of the volatility smile (AS), the correlation coefficients 

are again highly significant across all currency pairs. Positive relationships between 

the slope of volatility smile and at-the-money implied volatility are reported for the 

currency pairs EUR/USD, AUD/USD and USD/JPY, while the GBP/USD has a 

negative correlation coefficient of -0.398 as indicated in Panel A. 
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Table 7 3: Correlations Between Parameter Estimates and Implied Volatility 
(continued) 

Series CF PF AS CE IV

Panel C: AUD/USD

CF 1.000

PF -0.527 1.000
-20.588 
(0.000)

AS 0.826 -0.097 1.000
48.613 -3.221 
(0.000) (0.001)

CE 0.568 -0.116 -0.346 1.000
22.938 -3.888 -12.265 
(0.000) (0.000) (0.000)

IV 0.088 0.091 0.127 -0.566 1.000
2.922 3.049 4.240 -22.814 

(0.004) (0.002) (0.000) (0.000)

Panel D: USD/JPY

CF 1.000

PF -0.506 1.000
-19.634 
(0.000)

AS 0.163 0.653 1.000
5.551 28.866

(0.000) (0.000)

CE 0.508 -0.073 -0.008 1.000
20.203 20.203 20.203
(0.000) (0.000) (0.000)

IV 0.058 0.156 0.432 -0.537 1.000
1.939 5.307 16.066 -21.332 

(0.000) (0.000) (0.000) (0.000)
 

Note: This table shows the Spearman rank-order correlations corrected for 
degrees-of-freedom. The t-test statistic for the null of zero correlation coefficient is 
reported immediately below the Spearman correlation coefficient. The p-values for 
the test statistics are available in the parentheses  

  
 

The sign and size of the slope coefficient varies significantly over the sample 

period suggesting that the shape of the volatility curve is responsive to expected 

volatility in the underlying currency. Since the slope of the smile is constructed using 

both call and put volatility curves, this result suggests that average skewness in the 

volatility smile and at-the-money implied volatility are strongly correlated over time. 
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The correlation coefficients for call and put volatility curves range from 0.058 

to 0.358 while slopes and curvatures have larger coefficients of 0.127 to -0.702. The 

fact that call and put volatility curves are less correlated with the at-the-money implied 

volatility indicates that daily movement in the at-the-money implied volatility is 

mainly related to the slope and curvature coefficients of the volatility smile. 

Nonetheless, except for the EUR/USD currency pair reported in Panel B, the slope 

coefficients for calls and puts remain significant at the 1% level.  

 

Of note is the negative correlation between calls and puts across all currency 

pairs. This is consistent with the notion that the demand for calls and puts reflects 

different market sentiment over the sample period. For instance, some market players 

would prefer to use puts rather than calls when the underlying currency is expected to 

depreciate in the coming month.                                                                          

 

In summary, the overall findings from this preliminary analysis suggest that 

daily movements in the at-the-money implied volatility series is associated with the 

shape of the volatility smiles. Further, the degree of uncertainty in the underlying 

foreign exchange market appears to be associated with the shape of the smile.  

 

To further illustrate the relationship between the at-the-money implied 

volatility series and the size of the volatility smile coefficients, the time series plots for 

the GBP/USD at-the-money implied volatility series are graphed together with the 

curvature coefficients of the same currency. The GBP/USD is chosen because of the 

four currency pairs, it has the strongest correlation with the at-the-money volatility 

series.  
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Figure 7-1: Movement of Implied Volatility and Smile Curvature over Time 
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Note: This figure shows the time series plots of at-the-money implied volatility series 
(“IV”, right-scale) and the volatility smile curvature coefficients (“CE”, left-scale) 
from 18 April, 2002 to 3 July, 2006.  

 
 

The time series plots in Figure 7-1 illustrate the movement of at-the-money 

implied volatility series and the estimated curvature coefficients for the GBP/USD. 

The two series are observed to move in the opposite direction over the period 18 April, 

2002 to 3 July, 2006 and the resultant correlation coefficient is -0.72 (t-statistic of -

32.856 with p-value of 0.000). Of note are the level of at-the-money implied volatility 

and the size of the curvature coefficients on two particular days within this sample 

period.  These are 24 May, 2002 and 3 March, 2004. Specifically on 24 May, 2002 the 

at-the-money implied volatility is 5.35% p.a., while the smile curvature coefficient is 

approximately 26.2. In contrast, the at-the-money implied volatility increased to 

approximately 11.7% p.a. and at the same time the size of the smile curvature 
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decreased to approximately 5.7 on 3 March, 2004. The volatility smiles on these two 

days are displayed in Figure 7-2. 

 

Figure 7-2: Volatility Smiles for GBP/USD 
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Note: This figure shows the volatility smiles on 24 May, 2002 and 3 March, 2004. The 
smiles are constructed using trader-quoted implied volatility.   

 

Two interesting observations can be made from Figure 7-2. First, the volatility 

smile on 3 March, 2004 is relatively flat compared with that on 24 May, 2002. In the 

former, the smile extends over a wider range of moneyness from 0.94 to around 1.06. 

In contrast, on 24 May, 2002, the smile spans over a relatively smaller range of 

moneyness from 0.97 to around 1.03. 

 

 Second, on 24 May, 2002 the level of at-the-money implied volatility is about 

half the implied volatility reported on 3 March, 2004 but the size of the smile curvature 
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is about 5 times greater. Thus, the size of the smile curvature appears to be inversely 

related to the level of implied volatility. These findings are consistent with the 

previous analysis using Spearman rank-order correlation presented in Table 7-3 where 

a significant negative relationship is reported. 

 

Table 7-4 displays the GBP/USD implied volatility levels for the at-the-

money option (“IV”) together with the shape proxies and the moneyness ratio for each 

level of deltas. The ratio is estimated relative to the at-the-money implied volatility 

denoted as “DN”. For example, the quoted implied volatility for 5-delta put (“P5D”) 

on 24 April, 2002 is 6.21% while at-the-money option has volatility of 5.10%, giving 

an estimate of 1.217 in column six.  

 
Table 7-4: Estimated Shape Proxies and Volatility Smile 

Date IV CF PF AS CE P5D P20D P35D DN C35D C20D C5D

24/04/2002 5.100 0.448 0.382 0.284 28.430 1.217 1.047 1.004 1.000 1.024 1.098 1.276
16/09/2003 8.425 0.223 0.256 0.170 10.840 1.134 1.038 1.008 1.000 1.005 1.030 1.122
21/04/2004 11.789 0.091 0.244 0.122 5.615 1.126 1.045 1.014 1.000 0.995 1.001 0.047

 
Note: This table displays the at-the-money implied volatility levels, proxies for the slope and 
curvature of the smile along with the corresponding moneyness ratios. The values are shown in 
columns six to twelve.  

 

Table 7-4 shows that the curvature coefficients (“CE”) on 24 April, 2002 and 

21 April, 2004 are distinctly different from the mean curvature coefficient of 10.83 

(estimated for the entire sample period). However, on 16 September, 2003, the 

estimated curvature coefficient is 10.84, which is nearly identical to the mean value. At 

the same time, the size of the slope coefficients for the put and call volatility curves 

(denoted as “PF” and “CF”) are nearly equal (0.256 and 0.223 respectively). This 

suggests that on average, the smile is fairly symmetrical over the sample period.    
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 On 24 April 2002, the smile curvature coefficient has the highest value and 

decreases to 10.840 and 5.615 on 16 September, 2003 and 21 April, 2004 respectively. 

Over the same period, the slope proxies also decrease steadily in tandem with the size of 

the curvature coefficient. The shape of the smile presented in Figure 7-3 provides a 

graphical representation of the smile dynamics over the same time period and indicates 

that the smile effect becomes less pronounced over the two year period. This is 

consistent with the size of the slope coefficients reported in columns two to five of 

Table 7-4.  The average slope of the smile proxied by AS, is approximately equal to the 

mean of slope for the put (PF) and call volatility curve (CF) when the difference 

between PF and CF are small. As expected, when the smile is more symmetrical, the 

coefficient for AS is approximately the average of the PF and CF slope coefficients. 

This is particularly the case on 16 September, 2003. Notably the level of at-the-money 

implied volatility increased from 5.10% to 11.80% over the same period. This is also 

consistent with the pattern reported in Figure 7-2. 

 

Figure 7-3: Volatility Smile Dynamics for GBP/USD 
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Note: The volatility smiles are constructed using the estimated moneyness 
values presented in columns six to twelve of Table 7-4. 
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7.9 Univariate Regression Test Results 

 

Two different regression test results are presented in this section. First, the 

predictive power of the proxies for the shapes of the volatility smile is evaluated. 

Second, the univariate model is repeated using at-the-money implied volatility as the 

independent variable to examine the information content of the implied volatility series. 

 
 

7.9.1 Regressing RV on SM 
 

Table 7-5 reports the OLS estimates using Equation (7-2).  The regressions are 

performed independently by regressing the realised volatility (RV) on the shape of the 

smile (SM), which is proxied by (i) the slope coefficient of the call volatility curve (CF) 

and put (PF), (ii) the average slope of the volatility smile (AS) and (iii) the curvature of 

the volatility smile (CE).To reduce the impact of incorrect inference from tests using 

overlapping data, the regressions are performed with Newey-West (1987) adjusted 

standard errors. This adjustment is also applied to all other regression tests undertaken 

in this chapter.  

 

The results indicate that the shape of the volatility smile contains information 

about future realised volatility. The β1 coefficients for the slopes and curvature 

measures produce significant results in all cases with the exception of the CF series for 

the EUR/USD and the USD/JPY currency pairs. It is clear that in most instances, the t-

test statistic for the null hypothesis of zero β1 coefficients is rejected at the 1% level of 

significance. It is also important to note that amongst all other proxies, CF has the  
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Table 7-5: Univariate Regression Tests Using Shape Proxies of Volatility Smile 

ct. CF PF AS CE R 2

Panel A: GBP/USD

2.256 *** -0.618 *** 0.054
(0.042) 0.168

2.297 *** -0.926 *** 0.074
(0.043) 0.200

2.601 *** -3.068 *** 0.159
(0.077) 0.463

2.489 *** -0.036 *** 0.241
(0.055) 0.005

Panel B: EUR/USD

1.984 *** 0.167 0.002
(0.061) 0.245

1.864 *** 0.943 *** 0.063
(0.053) 0.258

1.727 *** 1.930 ** 0.047
(0.138) 0.885

2.226 *** -0.100 * 0.003
(0.110) 0.052

Panel C: AUD/USD

2.319 *** 0.022 *** 0.009
(0.020) 0.006

2.533 *** 0.190 ** 0.032
(0.114) 0.080

1.911 *** 2.777 ** 0.031
(0.153) 1.215

2.984 *** -0.112 *** 0.252
(0.102) 0.015

Panel D: USD/JPY

2.218 *** -0.203 0.008
(0.024) 0.133

2.093 *** 0.245 *** 0.008
(0.027) 0.070

2.051 *** 0.575 ** 0.017
(0.056) 0.227

2.429 *** -0.022 *** 0.057
(0.068) 0.007

0γ 1β

 
Note: This table displays the univariate regression tests performed using autocorrelation and 
heteroscedasticity consistent covariance matrix of Newey-West (1987). The corrected standard errors 
are reported in the parentheses. The regression model is specified as: 

tTtTt εSMβγRV +ln+=ln ,10,   
where SM denotes the shapes of volatility smile proxied using “CF”, “PF”,”AS”, “CE” which 
represents the slope for the call volatility curve, slope for the put volatility curve, average slope of the 
volatility smile and curvature of the smile respectively. 
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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lowest R2. In contrast, the put volatility curve (PF) rejects the null hypothesis in all 

currency pairs and also has a higher R2. 

The average slope of the volatility smile (AS) has the greatest β1 coefficients. 

The OLS estimates are -3.068 for the GBP/USD, 1.930 for the EUR/USD, 2.777 for the 

AUD/USD, and 0.575 for the USD/JPY currency pair respectively. Thus, the shape of 

the smile proxied by AS appears to exhibit significant upward and downward bias, 

reflecting average skewness of the volatility smile over the sample period. The results 

for the put volatility curve (PF) are also highly significant with lower β1 coefficients. 

For example, the OLS estimated β1 coefficient for EUR/USD is 0.943 (R2 = 0.063). 

Overall, the results in this table are fairly consistent with the Spearman rank-order 

statistics presented in Table 7-3. 

 

The smile curvature has the best goodness-of-fit with the exception of the 

EUR/USD currency pair. The Australian dollar has the highest R2 of 0.252. Again, 

consistent with the previous analysis using the Spearman rank order correlation, the 

OLS estimates for the smile curvatures have negative coefficients across all currency 

pairs.    

 

7.9.2 Regressing RV on IV 
 

Consistent with previous studies using over-the-counter currency option 

contracts128, the OLS estimated β1 coefficients reported in column two of Table 7-6 

strongly reject the null hypothesis of zero coefficients at the 1% level of significance. 

The unbiasedness and efficiency test is performed by imposing joint coefficient 

                                                            
128 For instance, earlier work by Covrig and Low (2003) also find similar results using one-month at-the-money 
implied volatility from the OTC currency option market.  
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restrictions (α0 =0 and β1=1). The Wald test statistic indicates that the null hypothesis 

cannot be rejected for the GBP/USD and the AUD/USD currency pairs. Thus, there is 

evidence to support the hypothesis that implied volatility of foreign exchange option 

contracts are unbiased and efficient predictors of future realised volatility since the 

intercepts, α0, are insignificantly different from zero and the β1 coefficients are close to 

and insignificantly different from 1.0.     

Table 7-6: Univariate Regression Tests Using At-the-money Implied Volatility 

  Currency 
0γ   

1β   R2            WT   

 GBP/USD   
 ct.        -0.043 1.027 *** 0.282 0.506
 s.e. (0.215) (0.101)
 EUR/USD 

 ct.        -1.057 *** 1.368 *** 0.371 101.856 ***
 s.e. (0.286) (0.127)
 AUD/USD 

 ct.       -0.179 1.068 *** 0.315 1.909
 s.e. (0.178) (0.080)
 USD/JPY 
 ct.        1.070 *** 0.504 *** 0.064 11.701 ***
 s.e. (0.289) (0.128)
 

Note: This table provides the univariate regression tests performed using autocorrelation and 
heteroscedasticity consistent covariance matrix of Newey-West (1987). The corrected standard errors are 
reported in the parentheses. The regression model is specified as: tTtTt εIVβγRV +ln+=ln ,10,   
The Wald test statistics reported in column four test the biasness of the forecasting model with the null of   
α0 =0 and β1=1. 
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
 

 
 

7.10 Multiple Regression Test Results 
 

The analysis in the previous sections suggests that the shape of the smile is a 

significant explanatory variable for future realised volatility. It is also shown that 

significant correlation exists between the level of at-the-money implied volatility and 

the shape of the smile. In this section, the at-the-money implied volatility are used 
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jointly with the proxies for the smile shape to forecast future realised volatility.  This 

approach enables one to examine the forecasting ability of the implied volatility series 

when interactions between the shapes of smile and the implied volatility series are 

permitted.   

 

7.10.1 Regressing RV on IV and SM 
 

The test results for the multiple regressions performed by regressing the 

realised volatility (RV) on the at-the-money implied volatility (IV) series and the shapes 

of the volatility smile (SM) are reported in Tables 7-7 to 7-10. In each of the tables, the 

implied volatility and proxies for the shape of the smile are used jointly as explanatory 

variables.  

 

Table 7-7 reports that the IV series remains significant at the 1% level and the 

size of the β1 coefficients are approximately the same as reported in Table 7-6. However 

the slope coefficients (β2) for the at-the-money implied volatility and CF interaction 

term are only marginally significant for the EUR/USD and the USD/JPY at the 5% and 

10% level respectively. 

 

Not surprisingly the size of the β2 coefficients is relatively small compared 

with the slope coefficient β1 for the IV series. Further, the interaction term is only 

marginally significant for two of the four currencies examined. The Wald test with the 

null hypotheses of γ0 =0 and (β1+ β2) =1, and γ0 =0 and β1=1, β2 =0 cannot be rejected 

for the GBP/USD and the AUD/USD currency pairs.  
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Table 7-7: Regression Tests Using At-the-money Implied Volatility and CF 

  Currency  
0γ    

1β    
2β    Adj-R2  WT-1  WT-2  

 GBP/USD    
 ct.  -0.058 1.006 *** -0.117 0.289 0.935 1.310
 s.e.  (0.236) (0.106) (0.079)  
 EUR/USD    
 ct.  -1.239 1.489 *** -0.178 ** 0.385 18.739 *** 75.988 ***
 s.e.  (0.266) (0.118) (0.086)  
 AUD/USD    
 ct.  -0.077 1.016 *** 0.089 0.377 0.519 1.301
 s.e.  (0.072) (0.074) (0.198)  
 USD/JPY    
 ct.  1.038 *** 0.535 *** -0.114 * 0.078 10.113 *** 9.166 ***
 s.e.  (0.285) (0.127) (0.059)  

Note: This table provides the regression tests performed using autocorrelation and heteroscedasticity 
consistent covariance matrix of Newey-West (1987). The corrected standard errors are reported in the 
parentheses. The regression model is specified as: ttT,t2T,t10T,t εCFlnIVlnβIVlnβγRVln +++=   
The Wald test statistics reported in columns five and six test the biasness of the forecasting model with the 
null of 1.): γ0 =0 and (β1+ β2) =1; 2.): γ0 =0 and β1=1, β2 =0 respectively.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
 
 

The result for regressing RV on IV and PF is displayed in Table 7-8. The 

overall pattern remains similar to that reported in Table 7-7, although the coefficient for 

the GBP/USD interaction term is marginally significant at the 10% level. The size of the 

β2 coefficient increases from -0.117 to -0.145, suggesting the interaction between at-the-

money implied volatility and the put volatility curve has slightly greater explanatory 

power than the call volatility curve reported in the previous table.  
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Table 7-8: Regression Tests Using At-the-money Implied Volatility and PF 
  Currency  

0γ    
1β    

2β    Adj-R2  WT-1   WT-2    

 GBP/USD    
 ct.  0.086 0.994 *** -0.145 * 0.288 1.259 1.227 
 s.e.  (0.236) (0.106) (0.079)   
 EUR/USD     
 ct.  -1.143 *** 1.328 *** 0.467 *** 0.451 18.004 *** 83.027 ***
 s.e.  (0.266) (0.118) (0.086)   
 AUD/USD     
 ct.  -0.071 1.035 *** -0.049 0.373 0.102 0.493 
 s.e.  (0.072) (0.074) (0.198)   
 USD/JPY     
 ct.  1.108 *** 0.463 *** 0.060 0.067 7.306 *** 7.879 ***
 s.e.  (0.285) (0.127) (0.059)   

Note: This table provides the regression tests performed using autocorrelation and heteroscedasticity 
consistent covariance matrix of Newey-West (1987). The corrected standard errors are reported in 
the parentheses. The regression model is specified as: ttT,t2T,t10T,t εPFIVβIVβγRV +++=   
The Wald test statistics reported in columns five and six test the biasness of the forecasting model 
with the null of 1.): γ0 =0 and (β1+ β2) =1; 2.): γ0 =0 and β1=1, β2 =0 respectively.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
 

 

For the USD/JPY currency pair, the β2 coefficient is not significant and the 

Wald statistics for the coefficient restriction tests decreased more sharply. The Wald test 

statistic for the joint coefficient restriction test with the null of γ0 =0 and (β1+ β2) =1 

remains significant at the 1%. The same pattern can be noted when the null hypothesis 

for the at-the-money implied volatility is specified as γ0 =0 and β1=1, β2 =0. Similar with 

the results reported in Table 7-7, the null hypotheses for the AUD/USD currency pairs 

still hold. 
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Table 7-9: Regression Tests Using At-the-money Implied Volatility and AS 

  Currency  
0γ    

1β    
2β    Adj-R2  WT-1   WT-2    

 GBP/USD    
 ct. 0.334 0.957 *** -0.703 ** 0.305 3.098 ** 2.627 **
 (0.236) (0.106) (0.079)   
 EUR/USD     
 ct. -0.948 *** 1.397 *** 0.041 ** 0.374 6.595 *** 70.190 ***
 (0.266) (0.118) (0.086)   
 AUD/USD     
 ct. -0.067 0.996 *** 0.187 0.374 0.319 0.776 
 (0.072) (0.074) (0.198)   
 USD/JPY     
 ct. 1.115 *** 0.473 *** 0.044 0.064 8.224 *** 7.981 ***
 (0.358) (0.185) (0.218)  

Note: This table provides the regression tests performed using autocorrelation and heteroscedasticity 
consistent covariance matrix of Newey-West (1987). The corrected standard errors are reported in the 
parentheses. The regression model is specified as: ttTtTtTt εASIVβIVβγRV +lnln+ln+=ln ,2,10,   
The Wald test statistics reported in columns five and six test the biasness of the forecasting model with the 
null of 1.): γ0 =0 and (β1+ β2) =1; 2.): γ0 =0 and β1=1, β2 =0 respectively.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 

 

In Table 7-9, the OLS estimated GBP/USD coefficient for the interaction 

between at-the-money implied volatility and the average slope of the smile (IVAS) is 

significant at 5% level. These are in contrast to the results reported in Tables 7-8 and 7-

7 where the same coefficient is either not significantly differently from zero or is only 

marginally significant at the 10% level. It is also interesting to note that both the 

unbiasedness and efficiency hypotheses, not previously rejected, have Wald statistics of 

3.098 and 2.627 (both rejected at the 5% level of significance). This suggests that the 

rejection of the unbiasedness and efficiency hypotheses seems to be related to the 

significance of the interaction term. That is, the slope of the smile has a significant 

impact on the forecasting ability of the at-the-money implied volatility series – the more 

significant is the size of the slope coefficient, the less accurate is the at-the-money 

implied volatility forecast. Conversely, when the interaction term is not significant, the 

Wald tests cannot be rejected. Further evidence is provided in the AUD/USD test results 
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where the Wald statistic is not rejected when the interaction term is insignificant. This 

result is also evident for the AUD/USD currency pair presented in Tables 7-7, 7-8 and 

7-10.       

 

Table 7-10: Regression Tests Using At-the-money Implied Volatility and CE 

  Currency  
0γ    

1β    
2β    Adj-R2  WT-1   WT-2    

 GBP/USD     
 ct. 0.853 ** 0.710 *** -0.010 ** 0.306 3.384 ** 2.757 **
 (0.236) (0.106) (0.079)   
 EUR/USD     
 ct. -1.509 *** 1.419 *** 0.019 *** 0.410 18.731 *** 79.096 ***
 (0.266) (0.118) (0.086)   
 AUD/USD     
      
 ct. -235 1.062 *** -0.030 0.492 0.965 0.997 
 (0.072) (0.074) (0.198)   
 USD/JPY     
 ct. 1.443 *** 0.405 *** -0.007 * 0.080 10.214 *** 8.654 ***
 (0.326) (0.132) (0.218)   

Note: This table provides the regression tests performed using autocorrelation and heteroscedasticity 
consistent covariance matrix of Newey-West (1987). The corrected standard errors are reported in the 
parentheses. The regression model is specified as: ttTtTtTt εCEIVβIVβγRV +lnln+ln+=ln ,2,10,   
The Wald test statistics reported in columns five and six test the biasness of the forecasting model with 
the null of 1.): γ0 =0 and ( β1+ β2) =1; 2.): γ0 =0 and β1=1, β2 =0 respectively.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 

 

On the whole, using smile curvature as a proxy for the shape of volatility smile 

shows the highest adjusted-R2 (see column four of Table 7-10). This is consistent with 

the univariate test results reported in Table 7-5 where the RV series is regressed on the 

CE series. The interaction between at-the-money implied volatility and the smile 

curvature (IVCE) is significantly different from zero for the GBP/USD, the EUR/USD 

and the USD/JPY currency pairs. Furthermore, the Wald test statistics for the null 

hypotheses of γ0 =0 and (β1+ β2) =1, and γ0 =0 and β1=1, β2 =0 are rejected at the 1% 

and 5% level of significance for these three currency pairs.  
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Thus compared with other proxies, the curvature of the volatility smile appears 

to be a more robust explanatory variable in predicting the variation of realised volatility 

across the currency pairs. Furthermore the effect of including smile curvature into the 

regression tests has a greater impact on the forecasting ability of the IV series.  

 

In summary, it is noted that the rejection of the null hypotheses of unbiasedness 

and efficiency occurs whenever the interaction term is reported to be significant. Thus 

when the shape of volatility smile is found to be significant in the regression model, the 

forecasting ability of the IV series worsens and the unbiasedness and efficiency 

hypotheses is more likely to be rejected. Stronger empirical evidence is provided when 

the smile curvature (CE) is used in the forecasting procedure. 

 

7.10.2 Regressing RV on IV, SM and GV 
 

The final regression tests involve forecasting future realised volatility using 

currency option-implied volatility together with the GARCH-estimated conditional 

volatility. This provides a further extension to the testing methodology by focusing on 

the relative performance of the option-implied volatility and the GARCH (1,1) 

estimated volatility when the shape of the volatility smile is accounted for in the 

forecasting procedure. 

  

The first encompassing regression test results are presented in Table 7-11 using 

a bivariate model. They indicate that unbiasedness and efficiency (null hypothesis of γ0 

=0 and β1=0, β2=1) is strongly rejected for the GARCH (1,1) forecasts across all 

currency pairs while evidence for implied volatility forecasts (null hypothesis of γ0 =0 
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and β1=1, β2=0) is not rejected for AUD/USD. The coefficient for the IV series denoted 

as β1 is significant at the 1% level for the currency pairs GBP/USD, EUR/USD and 

AUD/USD while the estimates for β2 are only significant for the GBP/USD and the 

EUR/USD currency pairs (marginally significant at the 10% level). Notably the size of 

the β1 coefficients is consistently larger than that of β2, suggesting that the option-

implied volatility explain a much greater share of the variation in future realised 

volatility than the GARCH (1,1) estimated volatility. In a broad sense, while support for 

the unbiasedness and efficiency hypotheses is weaker in the bivariate analysis, the IV 

series still captures much of the variation in realised volatility.  

 

Table 7-11: Regression Tests with At-the-money Implied Volatility and GARCH 
(1,1) Estimates 

  Currency  
0γ   

1β   
2β   Adj-R2  WT-1  WT-2   

 GBP/USD     
 ct. -0.849 *** 0.897 *** 0.506 *** 0.301 4.021 *** 24.128 ***
 (0.409) (0.108) (0.194)   
 EUR/USD     
      
 ct. -1.725 *** 1.239 *** 0.412 * 0.380 71.238 *** 159.848 ***
 (0.412)  (0.157) (0.222)   
 AUD/USD     
      
 ct. -0.418 0.9377 *** 0.227 0.377 0.619  79.623 ***
 (0.128)  (0.251) (0.262)   
 USD/JPY     
 ct. 1.306 * 0.503 -0.106 0.066 7.447 *** 14.902 ***
 (0.748)  (0.136) (0.267)   
 

Note: This table provides the encompassing regression tests performed using autocorrelation and 
heteroscedasticity consistent covariance matrix of Newey-West (1987). The corrected standard errors are 
reported in the parentheses.The regression model is specified as:  
 tTtTtTt εGVβIVβγRV +ln+ln+=ln ,2,10,   
The Wald test statistics reported in columns five and six test the biasness of the forecasting model with the 
null of 1.): γ0 =0 and β1=1, β2=0; 2.): γ0 =0 and β1=0, β2=1 respectively. 
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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The magnitude for the estimated adjusted R-square is quite high in most 

instances. Using implied volatility of currency option from the Chicago Mercantile 

Exchange (CME), Jorion (1995) reports R2 results between 0.100 and 0.152 whereas the 

R2 reported in Table 7-11 range from 0.066 to 0.380. Specifically, GBP/USD, 

EUR/USD and AUD/USD all have adjusted R2 greater than 0.300.  

 

In Tables 7-12 to 7-15, the encompassing regressions are performed by 

including different proxies for the shape of the smile as a third explanatory variable. 

Together with the existing unbiasedness and efficiency hypotheses, a third unbiasedness 

and efficiency hypotheses is  employed for the GARCH-estimated volatility series. The 

Wald test statistic for the multivariate regression with the null hypothesis of γ0 =0, β1=0 

and β3=1 is available in column eight of each table.  

 

In sharp contrast with the GV forecasts, the IV series are highly significant and 

the null hypothesis of zero coefficients is rejected in all cases. The size of the β1 

coefficients is always larger than the β3 coefficients. This result holds across all 

currencies. For instance, in Table 7-14, the GBP/USD coefficients for β1 and β3 are 

0.901 and 0.293 respectively. Further, for AUD/USD, the unbiasedness and efficiency 

hypotheses cannot be rejected when the forecasting test is performed using different 

proxies represented by CF, AS and CE (see Tables 7-12, 7-14 and 7-15). Consistent 

with the previous analysis, the empirical evidence suggests that at-the-money implied 

volatility has stronger predictive power than the GARCH-estimated conditional 

volatility. In fact, the unbiasedness and efficiency hypotheses are rejected for the GV 

forecast at the 1% level of significance in all of the forecasting tests. 
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Table 7-12: Regression Tests Using At-the-money Implied Volatility with CF and GARCH (1,1) Estimates 

 Currency  0γ    
1β    

2β    
3β     Adj-R2  WT-1  WT-2    WT-3    

   
 GBP/USD   
    
 ct. -0.752 0.905 *** -0.031 0.462 **  0.298 2.083 3.176 ** 24.991 *** 
 s.e. (0.507) (0.105) (0.096) (0.221)  
    
 EUR/USD   
    
 ct. -1.826 *** 1.368 *** -0.168 ** 0.368  0.391 13.911 *** 10.788 *** 43.854 *** 
 s.e. (0.175) (0.218) (0.233) (0.201)  
    
 AUD/USD   
    
 ct. -0.946 ** 0.942 *** -0.089 *** 0.443 **  0.517 2.071 1.827 69.280 *** 
 s.e. (0.407) (0.089) (0.167) (0.207)  
    
 USD/JPY   
    
 ct. 1.557 ** 0.523 *** -0.117 ** -0.222  0.079 6.501 *** 4.270 *** 16.091 *** 
 s.e. (0.788) (0.134) (0.059) (0.288)  
   
 
Note: This table provides the encompassing regression tests performed using autocorrelation and heteroscedasticity consistent covariance matrix of Newey-West (1987). 
The corrected standard errors are reported in the parentheses. The regression model is specified as: tT,t3tT,t2T,t10T,t εGVlnβCFlnIVlnβIVlnβγRVln ++++=   
RVt,T is the estimated realised volatility over the period t to T. The independent variable IVt,T is the quoted at-the-money implied volatility series and GVt denotes the 
estimated future volatility of the underlying exchange rate using a rolling GARCH (1,1) model. “CFt” represents the slope of the call volatility curve estimated using 
piecewise method. The Wald test statistics (WT-1, WT-2, WT-3) reported in columns six to eight test the biasness of the forecasting model with the null of 1.) γ0 =0, (β1+ β2) 
=1 and β3 =0; 2.)  γ0 =0, β1 =1 and β3 =0; 3.) γ0 =0, β1 =0 and β3 =1 respectively. Column five reports the adjusted R-squares for the regression models.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level  
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Table 7-13: Regression Tests Using At-the-money Implied Volatility with PF and GARCH (1,1) Estimates 

 Currency  0γ    
1β    

2β    
3β     Adj-R2  WT-1  WT-2    WT-3    

   
 GBP/USD   
    
 ct. -0.809 0.831 *** -0.202 ** 0.594 ***  0.312 3.291 ** 4.238 *** 21.679 *** 
 s.e. (0.396) (0.116) (0.089) (0.201)  
    
 EUR/USD   
    
 ct. -1.289 *** 1.300 *** 0.459 *** 0.091  0.452 12.387 *** 42.988 *** 82.296 *** 
 s.e. (0.400) (0.154) (0.089) (0.198)  
    
 AUD/USD   
    
 ct. -0.824 ** 0.884 *** 0.171 0.401 *  0.520 2.126 * 2.244 * 60.848 *** 
 s.e. (0.442) (0.120) (0.197) (0.219)  
    
 USD/JPY   
    
 ct. 1.191 0.466 *** 0.067 -0.0425  0.067 4.549 *** 4.337 *** 15.658 *** 
 s.e. (0.749) (0.149) (0.074) (0.278)  
   

Note: This table provides the encompassing regression tests performed using autocorrelation and heteroscedasticity consistent covariance matrix of Newey-West (1987). 
The corrected standard errors are reported in the parentheses. The regression model is specified as: tT,t3tT,t2T,t10T,t εGVlnβPFlnIVlnβIVlnβγRVln ++++=   
RVt,T is the estimated realised volatility over the period t to T. The independent variable IVt,T is the quoted at-the-money implied volatility series and GVt denotes the 
estimated future volatility of the underlying exchange rate using a rolling GARCH (1,1) model. “PFt” represents the slope of the put volatility curve estimated using 
piecewise method. The Wald test statistics (WT-1, WT-2, WT-3) reported in columns six to eight test the biasness of the forecasting model with the null of 1.) γ0 =0, (β1+ β2) 
=1 and β3 =0; 2.)  γ0 =0, β1 =1 and β3 =0; 3.) γ0 =0, β1 =0 and β3 =1 respectively. Column five reports the adjusted R-squares for the regression models. 
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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Table 7-14: Regression Tests Using At-the-money Implied Volatility with AS and GARCH (1,1) Estimates 

      
 Currency  0γ    

1β    
2β    

3β     Adj-R2  WT-1  WT-2    WT-3    

   
 GBP/USD   
    
 ct. -0.227 0.901 *** -0.521 * 0.293  0.309 2.725 * 3.315 ** 25.168 *** 
 s.e. (0.518) (0.110) (0.308) (0.204)  
    
 EUR/USD   
    
 ct. -1.659 *** 1.196 *** 0.145 0.404 *  0.379 7.361 *** 10.036 *** 36.764 *** 
 s.e. (0.385) (0.165) (0.274) (0.218)  
    
 AUD/USD   
    
 ct. -1.059 ** 0.941 *** -0.202 0.508 **  0.571 2.014 02.028 46.884 *** 
 s.e. (0.435) (0.121) (0.454) (0.236)  
    
 USD/JPY   
    
 ct. 1.213 * 0.468 *** 0.062 -0.043  0.066 5.003 *** 3.642 ** 15.915 *** 
 s.e. (0.721) (0.181) (0.135) (0.284)  
   

Note: This table provides the encompassing regression tests performed using autocorrelation and heteroscedasticity consistent covariance matrix of Newey-West (1987). 
The corrected standard errors are reported in the parentheses. The regression model is specified as: tTttTtTtTt εGVβASIVβIVβγRV +ln+lnln+ln+=ln ,3,2,10,   
RVt,T is the estimated realised volatility over the period t to T. The independent variable IVt,T is the quoted at-the-money implied volatility series and GVt denotes the 
estimated future volatility of the underlying exchange rate using a rolling GARCH (1,1) model. “ASt” represents the average slope of the volatility smile estimated using 
quadratic approximation. The Wald test statistics (WT-1, WT-2, WT-3) reported in columns six to eight test the biasness of the forecasting model with the null of 1.) γ0 =0, 
(β1+ β2) =1 and β3 =0; 2.)  γ0 =0, β1 =1 and β3 =0; 3.) γ0 =0, β1 =0 and β3 =1 respectively. Column five reports the adjusted R-squares for the regression models.  
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level  
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Table 7-15: Regression Tests Using At-the-money Implied Volatility with CE and GARCH (1,1) Estimates 

      
 Currency  0γ    

1β    
2β    

3β     Adj-R2  WT-1  WT-2    WT-3    

   
 GBP/USD   
    
 ct. 0.111 0.683 *** -0.010 ** 0.351 *  0.313 3.735 ** 3.673 ** 20.533 *** 
 s.e. (0.563) (0.168) (0.004) (0.181)  
    
 EUR/USD   
    
 ct. -1.845 1.347 *** 0.018 *** 0.222  0.411 13.193 *** 12.396 *** 27.387 *** 
 s.e. (0.378) (0.164) (0.005) (0.193)  
    
 AUD/USD   
    
 ct. -1.010 0.893 *** -0.011 0.518  0.516 1.978 1.991 27.939 *** 
 s.e. (0.459) (0.128) (0.063) (0.231)  
    
 USD/JPY   
    
 ct. 2.327 ** 0.455 ** -0.085 * -0.320  0.089 7.111 *** 3.728 ** 13.632 *** 
 s.e. (1.083) (0.197) (0.047) (0.317)  
   

Note: This table provides the encompassing regression tests performed using autocorrelation and heteroscedasticity consistent covariance matrix of Newey-West (1987). 
The corrected standard errors are reported in the parentheses. The regression model is specified as: tTttTtTtTt εGVβCEIVβIVβγRV +ln+lnln+ln+=ln ,3,2,10,   
RVt,T is the estimated realised volatility over the period t to T. The independent variable IVt,T is the quoted at-the-money implied volatility series and GVt denotes the 
estimated future volatility of the underlying exchange rate using a rolling GARCH (1,1) model. “CEt” represents the slope of the curvature of the volatility smile estimated 
using quadratic approximation. The Wald test statistics (WT-1, WT-2, WT3) reported in columns six to eight test the biasness of the forecasting model with the null of 1.) γ0 
=0, (β1+ β2) =1 and β3 =0; 2.)  γ0 =0, β1 =1 and β3 =0; 3.) γ0 =0, β1 =0 and β3 =1 respectively. Column five reports the adjusted R-squares for the regression models.   
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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Similar to the results reported previously in Tables 7-7 to 7-10, there is still evidence to 

suggest that rejection of the unbiasedness and efficiency hypotheses is related to the 

interaction term defined in Equation (7-4). This empirical evidence is particularly strong 

in Table 7-15 where the forecast regression is performed by incorporating smile 

curvature as the chosen measure of volatility smile shape. It appears that smile 

curvature is the most robust and statistically important in virtually all the regression 

tests reported in this chapter.  

 

 

7.11 Conclusion 
 

In this chapter, an empirical analysis is undertaken to examine the usefulness 

of information embedded in the shape of the volatility smile for the purpose of foreign 

exchange volatility prediction. In addition, the study examines how the shape of the 

volatility smile affects the forecasting ability of implied volatility forecasts. The 

regression tests are performed using traded implied volatility data which is directly 

observable in the over-the-counter market place. There are three main findings reported 

in this chapter. 

 

First, the shape of the volatility smile, proxied by the slope and curvature 

coefficient, is significantly correlated with the level of at-the-money implied volatility. 

In particular, the coefficient for the smile curvature appears to be both significant and 

negatively related to the level of implied volatility. This confirms the findings of Pena et 

al (1999). In univariate analysis, it is also shown that these proxies are significant 

explanatory variables for future realised volatility.  
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Second, the validity of the unbiasedness and efficiency hypotheses for implied 

volatility forecasts is attributable to the shape of the smile. The more pronounced is the 

smile, the more likely is the rejection for the null hypothesis. In other words, when the 

smile effect is more pronounced, the forecast performance of at-the-money volatility is 

expected to deteriorate. These empirical findings are reported consistently across both 

the bivariate and multiple regression analyses when the curvature of the smile is 

incorporated into the forecasting model.      

 

Third, the overall results are consistent with recent empirical findings that 

suggest implied volatility data from the over-the-counter currency option provide good 

forecasts for realised volatility. The results also confirm the empirical findings of 

Christensen and Prabhala (1998), Christensen and Hansen (2002), Covrig and Low 

(2003) but contradicts earlier findings of Day and Lewis (1992) and Canina and 

Figlewski (1993). In short, implied volatility does predict realised volatility both in the 

univariate specification as well as in more complex models that include conditional 

volatility estimates. 
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CHAPTER 8 – CONCLUSIONS AND FUTURE RESEARCH 
 

 

8.1 Introduction 

 

As stated in Chapter 1 and in Chapter 3, a better understanding of implied 

volatility behaviour has important implications to the pricing of option contracts, 

hedging and risk estimation. Option implied volatility cannot be directly observed and 

often obtaining an accurate estimate has proven to be a difficult task. This dissertation 

provides four analyses of the empirical characteristics of currency option implied 

volatility. To this end, the behaviour of implied volatility is examined using data for 

four major currency pairs. The analyses presented in this dissertation are performed 

using trader-quoted implied volatility prices obtained from the over-the-counter market.  

 

Chapter 2 provides an overview of the over-the-counter currency option 

market. It gives an introduction to the size of the currency option market, the trading 

conventions used in the industry, volatility trading strategies, details of two sources of 

implied volatility data available from this market, and finally, a comparison of contract 

features for exchange-traded and over-the-counter currency option contracts is also 

considered. Chapter 3 offers a broad survey of the key literature concerning two aspects 

of implied volatility - first, estimating and modelling the behaviour of implied volatility, 

and second, the volatility smile effect and explanations for this anomaly. In this chapter, 

issues concerning the estimation of implied volatility are also discussed,  highlighting 

the potential problems associated with the calculation of implied volatility estimates and 
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arguing that the use of quoted implied volatility data can potentially alleviate 

measurement errors arising from the use of these procedures. Option pricing models that 

assume random volatility parameters appear to provide better pricing performance than 

the traditional Garman-Kohlhagen (1983) model but fail to provide a good fit to market 

data. Thus modelling implied volatility as a random walk process may not be entirely 

consistent with empirical data.  

 

8.2 Contributions of the Dissertation 
 

Empirical analyses are presented in Chapter 4 through Chapter 7. Chapter 4 

investigates the behaviour of quoted implied volatility of various maturities. This 

chapter extends the literature on implied volatility in several ways. First, by testing the 

random walk hypothesis across implied volatility of different maturities, the implied 

volatility characteristics across the term structure can be better understood. The results 

using in-sample tests provide evidence of random walk violations in the volatility series. 

This evidence is reported across all currency pairs, notably with strong rejections of 

random walk hypothesis for the short-dated volatility of one week and one month. 

Contrary to the Garman-Kohlhagen (1983) and Hull-White (1987) models, the results 

reported in this chapter suggest that option-implied volatility is not constant over time 

and is not well described as a random walk process. Second, the study also suggests that 

option pricing and volatility models that assume a random walk component across the 

volatility term structure are not consistent with empirical findings. Third, the in-sample 

test result is further supported in the out-of-sample tests involving forecasting implied 

volatility changes from a random walk model, artificial neural networks and ARIMA 

frameworks. These findings suggest that short-dated implied volatility is better 
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characterised as a mean-reverting process while the random walk process captures 

variation in long-dated implied volatility. The results are broadly consistent with the 

recent literature in option pricing methodology. 

 

Chapter 5 extends the key findings of Chapter 4 by testing the profitability of 

volatility trading using simple technical trading strategies. It is shown in Chapter 4 that 

the random walk hypothesis is violated and therefore trading rules could be profitable. 

The trading rules used in this chapter assume that when prevailing quoted volatility 

departs considerably from its moving average, a buy or sell trade will emerge. Two 

main contributions stem from Chapter 5. First, the focus on option combination trades, 

including straddles and risk reversals, provides an important extension to standard 

trading rule analysis. Second, consistent with previous studies, the results presented in 

this chapter indicate that volatility trading using moving average trading rules is capable 

of generating profitable trades even after adjusting for transaction costs. In particular, 

the buy straddle trades generate positive holding-period returns for three of the four 

currency pairs tested. However, risk reversal trades produced less compelling outcomes 

across all currency pairs.  

 

In Chapter 6, the moneyness of implied volatility is examined using quoted 

implied volatility data. This chapter draws attention to the dynamic behaviour of 

volatility as little empirical research exists with respect to how the volatility smile 

evolves over time. It examines the relationship between different proxies for the shape 

of volatility smile and the anticipated volatility for the GBP/USD, the EUR/USD, the 

AUD/USD and the USD/JPY exchange rates. This chapter provides two important 

findings with regard to the dynamics of volatility smile. First, variation in the volatility 
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smile is related to increasing risk of the underlying currency. This result is particularly 

strong when the curvature of the smile and the slope of the put volatility curve are 

included in both the Granger-causality analysis and trivariate vector autoregression 

based analysis. Second, the results reveal significant feedback between the curvature of 

the volatility smile and the anticipated volatility of the underlying currencies. 

Robustness test using probit model provides similar findings with respect to jumps in 

the underlying foreign exchange rate series. 

 

 Chapter 7 explores the implication of these findings by incorporating the 

proxies for the shape of the volatility smile in predicting future realised volatility. This 

extends the current literature on volatility forecasting by introducing an interaction term 

between the shape of the volatility smile and the at-the-money implied volatility. Three 

key contributions are made to the existing literature. First, it is shown that proxies for 

the shape of the volatility smile are significantly correlated with at-the-money implied 

volatility. Curvature coefficients are found to be both significant and negatively related 

to the level of at-the-money implied volatility. Second, acceptance of the unbiasedness 

and efficiency hypothesis for at-the-money implied volatility is a function of the shape 

of the smile. The more pronounced is the smile, the more likely is the rejection of the 

null hypothesis. Third, in terms of volatility forecasting, preference for the use of 

quoted implied volatility data is supported. 

  

8.3 Further Extensions to the Dissertation 
 

The extensions of this dissertation can be categorised, but not limited to, three 

main areas: the predictability of implied volatility, forecasting ability of out-of-money 
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options and finally, the dynamics of volatility smile across maturities. The findings 

reported in Chapters 4 and 5 provide evidence of the predictability of at-the-money 

implied volatility. Stemming from this result, the predictability of out-of-money call and 

put options may also be explored using similar in and out-of-the sample methods. The 

analysis can be further improved using larger sample sizes and more currency pairs. 

Predictability of implied volatility across different level of moneyness will provide 

important insight into the evolution and predictability of the volatility smile.   

   

Based on the results presented in Chapter 6, a second extension involves the 

use of out-of-the money implied volatility data for the prediction of realised volatility. 

This approach is in contrast with the use of at-the-money implied volatility which is 

often considered in empirical studies. However, it is pointed out in Chapter 2 that 

currency options are heavily traded in the over-the-counter market, even for out-of-the-

money options. The rationale for this extension is consistent with the findings of 

Chapter 6 that suggest out-of-the money options can be used to predict future market 

sentiment, especially when large adverse movement in the underlying exchange rate is 

imminent.  

  

The analyses presented in Chapter 6 and in Chapter 7 are based on implied 

volatility data of one-month maturity. A natural extension to these analyses is to employ 

data of various maturities to see if the test results are robust across the term structure. 

Differences in test results may be attributed to differences in liquidity since market 

liquidity generally decreases as maturity increases since long term contracts are usually 

less actively traded in the derivative markets. Future research could also employ 

different indicators of uncertainty such as inflation rates, unemployment and credit 
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spreads as a means of understanding how the dynamics of the smile are related to 

alternative measures of uncertainty. Any seasonal behaviour of volatility smile could 

also be examined by introducing a dummy variable that captures seasonal effects, such 

as day-of-the week. Finally the same analysis may also be extended to other over-the-

counter derivative instruments which have yet to be explored, for example, options on 

interest rate swaps. 

 

 

8.4 Conclusion 

 

This dissertation provides four empirical analyses relating to the behaviour of 

implied volatility. The time series behaviour of implied volatility appears to be 

inconsistent with the random walk hypothesis both in the analysis of in-sample and out-

of-sample data. This is particularly the case for short-dated volatility. A volatility 

trading strategy based on simple average trading rules suggests evidence of profitable 

trades even after adjusting for transaction costs. This is contrary to the notion that 

volatility of the underlying asset can be characterised as a random walk process. 

  

This study confirms the notion that the volatility smile anomaly is not solely 

attributable to the erroneous assumptions underlying in the Garman-Kohlhagen (1983) 

option pricing model. The analysis suggests that the shape of the volatility smile can 

affect the forecasting ability of at-the-money implied volatility. Furthermore, the shape 

of the volatility smile also appears to have predictive power over future volatility in 

excess of that provided by implied volatility. 
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APPENDIX A – CONDITIONAL AND IMPLIED VOLATILITY  
 

 

Figure A1: Implied Volatility and Conditional Volatility  
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APPENDIX B – ADDITIONAL PROBIT MODEL ANALYSIS  
 

 

Table B1: Probit Regressions for Put Options 

 

(The Lee and Mykland (2007) Jump Estimated with K=5) 

Pb(Jumpt+T=1)    =  F (β0 + β1∆PFt + β2∆CEt + β3∆P5Dt + β4∆P10Dt + β5∆P15Dt) + εt 
 

Coefficient z -statistics Coefficient z -statistics Coefficient z -statistics Coefficient z -statistics

∆PF 2.099 ** (1.766) -0.449 (-1.474) -16.981 ** (-2.008) -37.241 * (-1.841)
∆CE -4.738 *** (-2.927) -2.617 ** (-2.169) -9.184 *** (-2.631) -0.528 ** (-2.022)
∆P5D 16.013 *** (1.791) 0.421 ** (2.244) 85.183 (1.623) 1.624 ** (2.119)
∆P10D -13.251 (-1.524) 0.152 * (1.755) -106.274 (-1.629) -4.586 ** (-2.457)
∆P15D -0.109 (-0.205) 0.194 (0.942) 48.938 ** (2.041) 3.301 *** (2.652)

LR 21.476 *** 9.856 * 15.08 ** 25.602 ***

Put Options 
AUD/USDGBP/USD EUR/USD USD/JPY

 
Note: “∆PF” denotes the natural logarithm of the absolute change in the slope coefficients for the put 
function measured as log(|PFt /PFt-1|), “∆CE” is the natural logarithm of the absolute change in the 
curvature coefficients of the daily volatility smile estimated as log(|CEt /CEt-1|), “∆P5D” is the natural 
logarithm of the absolute change in the slope coefficients  for the 5-delta put estimated as log(|P5Dt 
/P5Dt-1|); the same method is used for the 10-delta and 15-delta puts. The dependent variable is the Jump 
parameter estimated using the Lee and Mykland (2007) method; this study employs a threshold of 
±4.6001 to detect for the presence of jumps on any given day t to t+T; when the threshold is breached, a 
value of one is assigned or zero otherwise. Positive and negative jumps were not identified separately due 
to sample size limitation. “LR” is likelihood ratio statistics for the joint test of β0=β1 =β2…=β5=0. The 
reported z-statistics are based on standard errors and covariance from the Huber/White method. For 
brevity, the constant term is omitted from the table.      
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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Table B 2: Probit Regressions for Call Options 
 

(The Lee and Mykland (2007) Jump Estimated with K=5) 

Pb(Jumpt+T=1)    =  F (β0 + β1∆CFt + β2∆CEt + β3∆C5Dt + β4∆C10Dt + β5∆C15Dt) + εt 

Coefficient z -statistics Coefficient z -statistics Coefficient z -statistics Coefficient z -statistics

∆CF 0.066 (0.302) 2.162 (1.469) -0.081 (-0.759) -45.589 ** (-2.222)
∆CE -1.734 (-1.547) -3.95 (-1.236) -2.677 * (-1.809) -0.628 *** (-2.724)
∆C5D 5.075 ** (2.292) 24.05 (0.905) -0.138 (-0.523) 1.078 (1.426)
∆C10D -7.323 **  (-2.153) -27.473  (-1.082) 0.019 (0.144) -1.793 (-0.938)
∆C15D 1.219 * (1.670) 3.606 (1.213) 0.015 (0.292) 1.044 (0.779)

LR 9.483 * 10.924 * 9.167 30.669 ***

Call Options
GBP/USD EUR/USD USD/JPYAUD/USD

 
Note: “∆CF” denotes the natural logarithm of the absolute change in the slope coefficients for the 
call function measured as log(|CFt /CFt-1|), “∆CE” is the natural logarithm of the absolute change 
in the curvature coefficients of the daily volatility smile estimated as log(|CEt /CEt-1|), “∆C5D” is 
the natural logarithm of the absolute change in the slope coefficients  for the 5-delta call estimated 
as log(|C5Dt /C5Dt-1|); the same method is used for the 10-delta and 15-delta call. The dependent 
variable is the Jump parameter estimated using the Lee and Mykland (2007) method; this study 
employs a threshold of ±4.6001 to detect for the presence of jumps on day t to t+T; when the 
threshold is breached, a value of one is assigned or zero otherwise. Positive and negative jumps 
were not identified separately due to sample size limitation. “LR” is likelihood ratio statistics for the 
joint test of β0=β1 =β2…=β5=0. The reported z-statistics are based on standard errors and 
covariance from the Huber/White method. For brevity, the constant term is omitted from the table.      
*** Significant at the 1% level 
** Significant at the 5% level 
* Significant at the 10% level 
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