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Abstract 

A number of different uranium minerals are processed in different regions of the world 

to produce the uranium based fuel that is used to generate electricity. Potential future 

increases in demands for uranium based fuel have led to increased interest in the extraction 

of uranium from minerals that to date have not been mined / processed as extensively as 

the most widely mined / processed uranium mineral uraninite. The uranium titanate 

mineral brannerite (UTi2O6), which is found in numerous uranium ore bodies around the 

world, is one such mineral that may be a potential future source for increased uranium 

production. 

 

In this thesis the characteristics and dissolution chemistry of both natural and synthetic 

brannerites have been investigated in detail. Natural samples were investigated to identify 

the major minerals that are in close association with naturally occurring brannerite. 

Leaching chemistry of all natural and synthetic brannerites have been studied under 

conditions that are used in uranium minerals processing. An electrochemical leaching 

study of synthetic brannerite was undertaken to examine the surface behaviour of synthetic 

brannerite suspended in tank based leaching conditions similar to those used in uranium 

mineral processing. 

Characterisation studies conducted on two naturally occurring brannerites ore bodies 

from South Australia, focussed on their chemistry and mineralogy, and involved the use of 

use of multiple characterisation techniques (X-ray Diffraction Analysis, Raman 

Spectroscopy, Scanning Electron Microscopy and Electron Probe Micro Analysis). 

Recrystallization of the natural brannerite samples (via heat treatment) were also 

investigated. From the results obtained, the natural brannerite samples contained brannerite 
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that was rich in thorium and also uranothorite and thorianite-uraninite phases. Gangue 

mineralogy phases found in both mineral samples were rutile quartz, aluminosilicates, 

unidentified REE-containing phosphates, zircon, titanates and apatite. After heat treatment 

the natural brannerite samples contained a high-Th brannerite and the thorianite-uraninite 

phase in the unheated samples was decomposed into separate ThO2 and UO2 phases.  

One of the research aims of this thesis was to synthesise and characterise a brannerite 

that has little impurities (rutile and uraninite) as possible and use this synthetic product to 

investigate the maximum extraction of uranium. This investigation was undertaken to gain 

detailed knowledge into the rate of dissolution of the synthesised brannerite over a range of 

conditions (temperature, [H2SO4] and [Fe] / ORP). One for the major findings from this 

research indicated that [Fe(III)] (over the range 3 – 12 g/L) did not have a significant 

influence on dissolution at a reaction temperature of 50 °C (in 15 g/L H2SO4). Yet at 95 °C 

in 15 g/L H2SO4, increasing [Fe(III)] (over the range 3 – 12 g/L) leads to significant 

increases in the dissolution rate.  

These aforementioned dissolution tests were conducted to probe the mechanism of 

synthetic brannerite dissolution and were compared with respect to the electrochemical 

behaviour of this synthetic mineral. An investigation was undertaken to determine the 

reason why this uranium mineral is not readily leachable under mild conditions and to 

determine if any type of passivation was occurring on the surface of synthetic brannerite. 

Tafel curves reveal that acid concentrations from 15 to 50 g/L H2SO4 show limited 

leaching, with only a modestly active region corresponding to dissolution. H2SO4 

concentrations of 100 to 150 g/L show a well-defined active region, ranging from 

approximately 0.45 to 0.55 V vs Ag/AgCl, where dissolution proceeds readily, but further 

scanning in the anodic direction leads to surface passivation, and a rapid drop off of the 

dissolution current.  
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When dissolution tests for the two natural brannerite samples were conducted under 

identical conditions investigated for synthetic brannerite, the results showed that the effect 

of increasing [Fe(III)], [H2SO4], and temperature was to increase the solubility of uranium 

from brannerite. The natural brannerite samples that were heat treated to 1200 ºC to restore 

crystallinity resulted in poor uranium extraction under identical conditions, with maximum 

uranium extraction rates of < 10 % uranium observed. The lower extraction rates were 

attributed to the heat treatment causing chemical and structural (recrystallisation) changes 

to the brannerite. 

Uranium recovery processes from brannerite is not straightforward with the efficiency 

of uranium recovery being greatly influenced by the mineralogical characteristics of the 

ore. Synthetic and natural brannerites can achieve high uranium extraction rates providing 

that acid strength, oxidant strength and temperatures are maintained at high levels.   

 



 

 

Chapter 1 

 

 

 

Introduction and Literature 

Review 

 

 

 

 

 

This chapter provides an overview of the field of uranium processing; a brief history of 

uranium mining and processing in Australia: a discussion of the chemistry of uranium 

minerals and the importance of the uranium bearing mineral brannerite. The synthesis of 

synthetic versions of brannerite is also discussed. 
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Global warming concerns have led to significant interest in processes for generating 

electrical energy that do not generate significant quantities of carbon dioxide. The 

generation of electricity via uranium based nuclear fuel is a well-established technology 

that does not result in the production of significant quantities of carbon dioxide and hence 

is considered by many as a replacement for fossil fuel based processes. Hence the element 

uranium (and the minerals in which it is found) may receive significantly increased interest 

in the near future. 

The nuclear energy market is expected to grow substantially over the next 20 years, for 

example in the U.S. alone it is predicted to rise by 50 % by 2030, whilst worldwide 

electricity consumption is expected to double by 2030 according to the Department of 

Energy (World Nuclear Association, 2012a).  

Due to the predicted increase in uranium demands and with a decrease in the 

availability of numerous high quality grade ores, a greater understanding and awareness is 

needed to improve the mining technology of refractory ores to meet future uranium 

demands without increasing environmental impact. For industrial companies to achieve 

such demands with minimal environmental impact, an enhanced fundamental 

understanding of chemical processes is essential. Areas that are essential in understanding 

the aforementioned are; composition / structure of uranium minerals and their effects on 

the processing of uranium, as well as the chemical / mechanism reactions that are involved 

in the dissolution of uranium minerals that influence leaching, by the liberation of gangue 

minerals and the uranium speciation in aqueous solutions. 

The major objective of this thesis was to improve the understanding of the fundamental 

chemistry of the uranium titanate mineral, brannerite by gaining knowledge of its 

composition / structure of natural and synthetic samples and to gain an improved 

understanding of the dissolution behaviour of this refractory mineral.  
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1.1. Literature Review 

1.1 Historical background of Uranium 

Uranium was discovered in the mineral pitchblende (U3O8) in 1789 by the German 

chemist, Martin Heinrich Klaproth (to date uranium has been identified as a major 

constituent in over 200 naturally occurring minerals) (Clark, et al., 2006; Burns and Finch, 

1999; Finch and Murakami, 1999). In 1841 French scientist, Eugene Peligot first isolated 

uranium in the metallic state. In 1896, the French physicist Antoine Becquerel discovered 

the radioactive properties of uranium, and in 1898 Marie and Pierre Curie carried out 

further pioneering work on atoms, radioactivity and uranium. Research by Enrico Fermi 

and others starting in 1934 led to its use as a fuel for the generation of the electricity 

industry. In the 1940s a team of scientists created the world’s second artificial nuclear 

reactor but the first reactor that was continuous. By the late 1950s, several nuclear reactors 

were in commercial use generating electricity for towns around, The Soviet Union, 

England and The United States of America.  

 

1.1.2. Uranium mining production in Australia 

Uranium minerals have been mined in Australia since 1954 and currently there are four 

operating mines in Australia. Australia has 31 % of the world's uranium reserves (World 

Nuclear Association, 2012b) and the world's largest single uranium deposit, located at the 

Olympic Dam Mine in South Australia.  
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Figure 1.1: Map of Australia’s past and present mines and deposits (Australian 

Uranium, 2013). 

 

The three largest uranium mines in Australia are Olympic Dam, Ranger Uranium Mine 

and Beverley Uranium Mine. Future production is expected from Honeymoon Uranium 

Mine and the planned Four Mile uranium mine (shown in Figure 1.1 (Australian Uranium, 

2013)). 

Radium Hill in South Australia was the first uranium mine and where the mineral 

davidite was discovered. Ores containing radium and uranium at high concentrations were 

found, as well as camotite and trace amounts of ilmenite, rutile, magnetite, hematite, 
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pyrite, chalcopyrite inter-grown with quartz and biotite, chromium, vanadium and 

molybdenum.  

The Rum Jungle uranium deposit in the Northern Territory operated from 1954 to 

1971, were the major metals processed were uranium and copper.  

The Mary Kathleen open-cut uranium mine in Queensland operated from 1958 to 1963 

and then re-opened again in 1976 to 1982.  

Olympic Dam (OD), located at 265 km north of Port Augusta in South Australia, 

commenced operations in 1988 and was acquired by BHB-Billiton in 2005 (World Nuclear 

Association, 2008). It is potentially the world’s largest uranium producer, with estimated 

ore reserves of 195, 883 tonnes of uranium, 7.5 million tonnes of copper and significant 

amounts of gold and silver (Agency, O.N.E. and Agency, I.A.E., 2006). 

Ranger Uranium Mine in the Northern Territory is surrounded by the Kakadu National 

Park. It is operated by Energy Resources of Australia and the Rio Tinto Group. The 

operation began processing of the uranium ore body in 1980 (ore is ground and sulphuric 

acid leached) and in 2006 an expansion was announced to process low grade ore material.  

Beverley Uranium Mine in South Australia is Australia’s first in-situ mine located in 

the Flinders Rangers. It first opened in 2001 and the major uranium mineral, coffinite is 

hosted by loose sands in the channel of a former river. 

Honeymoon Uranium Mine is Australia’s fourth uranium deposit to go into production 

and its second in-situ recovery mine (ABC News, 2009).  

The Four Mile Mine deposit in South Australia is the fifth uranium deposit to go into 

production in Australia. In 2009, Alliance Resources publicized that the deposit contained 

28,000 tonnes of uranium oxide and the ore grade was ten times that of Olympic Dam 

mine and double that of the Ranger mine (Tasker, 2009). Approval of the mine was given 

in 2009 after Australia’s three-mine policy (established in 2007) had been abolished.  
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In 2010-2011, Kazakhstan, Canada and Australia produced concentrated uranium 

oxides of 33%, 18% and 11% of world production respectively.  

1.2. Uranium mineral deposits / uranium minerals 

Concentrated deposits of uranium minerals are found in various regions of the world. 

There are 15 different types of deposits that have been identified (shown in Table 1.1), 

which have been further categorised according to their geological setting and genesis of 

mineralisation.  
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Table 1.1: Types of uranium deposits. 

Deposit type Location Ore / Mineral type Ore grade 

Unconformity-related 

deposits 

Saskatchewan, 

Canada and Northern 

Territory, Australia 

Quartz-rich sandstones Highest grade 

Sandstone deposits Australia, Mongolia, 

South America and 

Africa 

Pitchblende, coffinite 

and secondary 

minerals.  

Low to medium 

grade. 

Quartz-pebble conglomerate 

deposits 

Ontario, Canada and 

South Africa 

 

Uraninite, 

uranothorite, 

brannerite and 

coffinite 

 

Low grade with 

high tonnages 

Breccia complex deposits South Australia, 

Queensland, 

Australia, Chile, 

Brazil and Southern 

Peru 

Uraninite, brannerite 

and coffinite 

Low grade 

Vein deposits France, Germany, 

Czech Republic, 

Canada and Africa 

Uraninite and 

pitchblende 

Low grade 

Intrusive deposits Namibia, Greenland 

and South Africa 

Betafite and uraninite 

 

Low grade 

Phosphorite deposits United States and 

Morocco  

Torbernite Low grade 

Collapse breccia pipe 

deposits 

United States  Uraninite and 

pitchblende 

Medium grade 

Volcanic deposits Russia, Mongolia, 

Nevada and Siberia  

Pitchblende Low grade 

Metasomatite deposits Ukraine, Brazil, 

United States and 

Queensland, 

Australia 

Uraninite and 

brannerite 

Low grade 

Metamorphic deposits Queensland, 

Australia and Austria 

Uraninite Low grade 

Lignite Greece and United 

State 

 Not 

commercially 

viable 

Black shale deposits Sweden, United 

States, Brazil and 

Germany* 

Uranium oxide 

minerals 

Low grade 

 

Other types of deposits - 

(Jurassic Todilto Limestone, 

Permian hard coal (and host 

rocks) and uranium extraction 

from fly ash) 

United States, 

Germany, Hungry 

and China 

Jurassic Todilto 

Limestone, Permian 

hard coal (and host 

rocks) and uranium 

extraction from fly ash 

Low grade 

* High grade 
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Olympic Dam in Southern Australia is the only iron-ore-copper-gold (IOCG-U) deposit 

known as a Breccia complex deposit. There are many types of uranium ores around the 

world, as a result of the differing ores, different minerals processing procedures are applied 

and it is therefore very important to understand the type of ore being processed. 

As mentioned previously there have been over 200 minerals discovered to date that 

contain uranium as major constituent. The most common uranium mineral is known as 

uraninite (UO2) or pitchblende (UO3, U2O5) or collectively referred to as U3O8. Other 

primary uranium minerals include coffinite (U(SiO4)1-x(OH)4x), brannerite (UTi2O6), 

davidite ((REE)(Y, U)(Ti,Fe
3+

)20O38, betafite ((Ca,U)2(Ti,Nb,Ta)2O6) and thucholite 

(uranium-bearing pyrobitumen). Secondary uranium minerals include autunite 

(Ca(UO2)2(PO4)2 x 8-12H2O), carnotite (K2(UO2)2(VO4)2 x 1-3H2O), gummite (a mixture 

of oxides, silicates and hydrates of uranium), seleeite (Mg(UO2)2(PO4)2 x 10H2O), 

torbernite (Cu(UO2)2(PO4)2 x 12H2O), tyuyamunite (Ca(UO2)2(PO4)2 x 8-10H2O) and 

Zeunerite (Cu(UO2)2(AsO4)2 x 8-10H2O).  

Most uranium minerals can be separated into two groups; the reduced species- which 

contain uranium as U
4+

 - and the oxidized species- which contain uranium as U
6+

. There 

are very few mixed valence (4+ / 6+) minerals and at least one uranium mineral that 

contains U
5+

 (Burns and Finch, 1999). Uranium ore deposits predominately contain 

reduced uranium species. The reduced uranium minerals are often more chemically 

complicated that their original structures due to isomorphous substitution of elements such 

as Th
4+

 and REE
3+

 and U
4+

. The addition of substituting elements such as Th
4+

 and REE
3+

 

for U
4+

 is common in reduced uranium minerals.  

There are a number of commercially important uranium minerals (from which uranium 

is extracted to produce uranium based nuclear fuel). The three most important uranium 
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minerals from a uranium minerals processing perspective are uraninite, coffinite and 

brannerite. 

Uraninite 

Uraninite (UO2+x) is the most common U
4+

 mineral and is the main ore mineral in many 

uranium deposits found around the world. Uraninite has a fluorite structure, where the 

uranium is coordinated by eight oxygen atoms in cubic arrangement, in which each oxygen 

atom bonds with four uranium atoms. The structure of natural uraninite contains many 

defects due to oxidation and substitution on the uranium site, as well as radiation damage.  

 

Coffinite  

Coffinite is a tetragonal orthosilicate with U
4+

 coordinated by eight oxygen atoms in the 

form of a distorted cube-like polyhedron. The chemical formula of coffinite is still 

controversial with respect to the existence of water molecules USiO4·nH2O) or hydroxyl 

groups (U(SiO4)1-x(OH)4x).  

 

Brannerite 

Brannerite is an archetype structure and adopts a monoclinic symmetry where the 

anatase-like edge TiO6 octahedra shares corners and edges to the U
4+

O6 octahedra. The 

chemical formula of brannerite is U
4+

Ti2O6, where the uranium in brannerite is partly 

oxidized. Brannerite crystals are metamict and recovering their crystallinity requires 

annealing to produce an X-ray diffraction pattern. 
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1.3. Uranium minerals processing 

In Australia there are three types of mines in operation at the present, in-situ leaching 

(Beverley, Honeymoon and the soon to be open Four Mile mine), open-pit mining (Ranger 

Mine) and an underground mine (Olympic Dam).  

Olympic Dam is an extremely large site which produces copper, uranium, gold and 

silver. The deposit itself is known as an iron oxide copper gold deposit and is the fourth 

largest copper deposit and the largest known single deposit of uranium in the world. The 

site hosts an underground mine as well as an intergraded metallurgical processing plant.  

The metallurgical processing plant processes uranium containing ore into yellow cake 

is achieved using a combination of processes (characterisation, preconcentation / leaching 

and treatment of the liquor. Yellow cake is then shopped off shore to countries such as the 

United States of America, to where the purification of yellow cake to UF6 and preparation 

of UO2 nuclear fuel used in nuclear fuel rods. Of these processes the characterisation and 

leaching process is of considerable interest to this thesis, which is discussed in detail as 

follows.  

 

1.3.1. Characterisation 

To recover uranium from ores, a series of steps is required, but ultimately the 

aforementioned depends on the nature of the ore involved. Characterisation techniques are 

used to identify the host gangue mineralogy such as quartz- which is chemically inactive or 

calcite- an acid consuming mineral. Highly refractory ores require intensive processing 

whereas others break down between the mine and the mill. It is therefore important to 

understand the mineralogy before extraction has been begun. 
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1.3.2. Preconcentration / leaching 

After thoroughly characterising the gangue mineralogy and uranium minerals in the 

orebody, a pre-treatment is essential to enrich a low-grade ore to be processed 

economically.  

The high grade, run-of-mine ore is crushed and ground to liberate the mineral particles 

to prepare the ore for leaching. For low grade ores, floatation is commonly used as a pre-

concentration step prior to leaching. Size reduction of the ore is necessary and is adequate 

for most types of ores which use sulphuric acid in their process, however finer grinding is 

needed for only alkali treated ores.  

The leaching process is carefully chosen according to the mineralogical nature 

investigated in the characterisation of the ore (section 1.3.1).  

For acid treatment of ores dilute sulphuric acid is always used, where the rate of 

dissolution is dependent on acid concentration, temperature and surface area of the 

particles within the ore. Highly concentrated acid is only used in ores that contain feldspar 

and clay, since the high concentration will dissolve any aluminium silicates. If tetravalent 

uranium is present (minerals such as uraninite, coffinite and brannerite), an oxidising agent 

such as sodium chlorate or manganese dioxide with dissolved iron acting as a catalyst; is 

added to the leaching solution (Peehs, et al., 2012). The following reactions that occur 

during the dissolution process are listed in equations 1-5 (Clark, 2006):  

 

2	H�SO� 	+ 	MnO� 	+ 	UO� 	→ 	UO�SO� 	+ 	MnSO� 	+ 	2	H�O   (Equation 1.1) 

3	H�SO� 	+	NaClO� 	+ 	3	UO� 	→ 	3	UO�SO� 	+ 	NaCl	 + 	3	H�O   (Equation 1.2) 

UO� 	+ 	2	Fe
�� 	→ 	UO�

�� 	+ 	2	Fe��      (Equation 1.3) 

2	Fe�� 	+ 	MnO� 	+ 	4	H
� 	→ 	2	Fe�� 	+ 	Mn�� 	+ 	2	H�O    (Equation 1.4) 

6	Fe�� 	+ 	ClO�
� 	+ 	6	H� 	→ 	6	Fe�� 	+ 	Cl� 	+ 	3	H�O    (Equation 1.5) 
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Complex anions such as [UO2(SO4)3]
4-

 are also formed at high concentrations but do 

not cause problems in later processing (Clark, 2006).  

 

For alkaline treatment an alkaline solution is used on more finely ground ores. For 

alkaline treated ores, it is considered to be slower than acid leaching but is more effective 

with ores containing gangue minerals such as calcium compounds or other acid-consuming 

minerals. Carbonate leaching is selectively leached and is carried out using sodium 

carbonate. If tetravalent uranium is present as an oxidant, such as oxygen (as air) or 

permanganate is typically used to generate a more soluble hexavalent uranium species 

(Peehs, et al., 2012). The dissolution of simple uranium oxide follows the reactions shown 

in equations 6-8 (Clark, 2006). Biocarbonate is used to kept the hydroxide concentration 

low and avoid the precipitation of urinates (equation 9).  

 

2	UO� 	+ 	O� 	→ 	2	UO�	       (Equation 1.6) 

UO� 	+ 	3	CO�
�� 	+ 	H�O	 → 	UO�(CO�)�

�� 	+ 	2	OH�	   (Equation 1.7) 

OH� 	+ 	2	HCO�
� 	→ 	CO�

�� 	+ 	H�O	      (Equation 1.8) 

2	UO�(CO�)�
�� 	+ 	6	OH� 	+ 	2Na� 	→ 	Na�U�O� 	+ 	6	CO�

�� 	+ 	3	H�O	 (Equation 1.9) 

 

1.3.3. Recovery of uranium from leach solutions to refining to a high-purity 

product 

Ion exchange, solvent extraction and the Eluex process (a combination of the 

aforementioned two processes) can be used to remove uranium from the leached liquor. 

Removed first from the liquor are the undissolved solids (which would have a negative 

effect) by sedimentation or decanting or with hydro cyclones, filters or centrifuges (Peehs, 

et al., 2012).  
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Ion exchange  

In ion exchange, an anion exchange resin is used to selectively adsorbs the hexavalent 

uranium into either the anionic sulfato or the carbonato complex from leached solutions 

(Peehs, et al., 2012). In carbonate solution the uranyl species is thought to be the tris-

carbonato complex, UO2(CO3)3
4-

 and from sulphate solutions the anion is likely to be 

UO2(SO4)n
2-2n

 (n is either 3 or 2). Strongly basic ion exchanger is generally used to extract 

these complexes (equations 10 and 11), where the R is the matrix and X is the functional 

basic group of the ion exchanger (Clark, 2006).  

 

4	RX	 +	[UO�(CO�)�]
�� 	= 	R�[UO�(CO�)�] 	+ 	4	X

�	   (Equation 1.10) 

4	RX	 +	[UO�(SO�)�]
�� 	= 	R�[UO�(SO�)�] 	+ 	4	X

�    (Equation 1.11) 

 

The sulphate solution is acidified and the carbonate solution is kept slightly basic with 

addition of bicarbonate (Merritt, 1971.). From this solution the uranium is precipitated and 

recovered as a fairly pure uranium concentrate.  

 

Solvent Extraction  

In solvent extraction two types of solvents are used in the extraction process; the first 

includes alkylated phosphoric acids and pyrophosphoric acids and the second, higher 

aliphatic amines (Peehs, et al., 2012). During the process, both types are dissolved in inert 

hydrocarbons, mostly high-purity kerosene. The mechanism of extraction is based on ion 

exchange in the liquid phase.  

 

Eluex process 
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In the Eluex process, uranium is separated by ion-exchange resin subsequently by 

solvent extraction (Merritt, 1971.). The ion exchange resin collects uranium quantitatively 

and the breakthrough of foreign ions is tolerated since these are removed easily in the 

solvent extraction stage. In this process, the first stage has the useful effect of increasing 

the concentration of uranium, with consequent reduction in the mass flow and the second 

stage improves the purification effect of this step as the uranium concentration in the feed 

is higher (Clark, 2006; Peehs, et al., 2012). 

 

Refining to a high-purity product 

Yellow cake (65-85 % U3O8) product of uranium milling operations is not generally 

pure enough for use in most nuclear applications and therefore refining yellow-cake into a 

product of satisfactory purity for use in the nuclear industry is required. From the 

abovementioned process, yellow-cake is refined from these solutions where by the uranium 

in the form of its sulphate complex or the carbonato complex (Peehs, et al., 2012). Yellow 

cake is then produced by precipitation from the acid liquor with ammonia or Mg(OH)2 or 

by precipitation from alkaline liquor with NaOH. The dried uranium concentrate product 

obtained is called yellow cake due to its colour and form, where the precipitation is carried 

out in large, agitated vessels.  

 

1.3.4. Purifying yellow cake to UF6 

In a wet treatment process, the refined high-purity product, the obtained yellow cake is 

dissolved in nitric acid and then purified using solvent extraction. The resulting solution of 

uranium in nitric acid can then be reacted chemically to form UO2 or UO3 by using either 

the ammonium diuranate or the ammonium uranyl carbonate process, or by denitrating 

evaporation (Peehs, et al., 2012). The intermediate product is then calcined to form UO2. In 
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a two stage process UO2 is then converted to UF6, by treating UO2 produced with HF to 

form UF4 is then converted into UF6 by treatment with fluorine gas. The dry UF6 product 

must then be purified by fractional distillation (Peehs, et al., 2012). 

 

1.3.5. Preparation of UO2 nuclear fuel pellets 

The preparation of UO2 nuclear fuel pellets entails the purified UF6 product to be 

enriched by either wet methods such as ammonium diuranate or the ammonium uranyl 

carbonate process and / or dry methods such as Integrated Dry Route, Direct Conversion, 

General Electric Dry conversion to obtain a UO2 powder (Peehs, et al., 2012). The powder 

must be pretreated, except in the ammonium uranyl carbonate process, only after 

pretreatment do the various steps of pelletization, such as compression, sintering, and 

grinding; give an end product with the preferred properties (Peehs, et al., 2012).  

1.4. Brannerite 

As mentioned previously brannerite is a uranous titanate mineral that occurs naturally 

in many uranium ore bodies (Zhang, et al., 2001). The structure and composition of 

naturally occurring and synthetic brannerite; synthesis of synthetic versions of brannerite 

and the dissolution of brannerite are discussed in detail in the proceeding sections. 

 

1.4.1. Structure, composition and preparation of synthetic forms 

Brannerite’s crystal structure is monoclinic and both the U and Ti atoms are in distorted 

octahedral coordination (Zhang et al., 2001). Figure 1.2 shows the distorted polyhedral 

diagram of UTi2O6 projected along the [0 1 0] direction. The TiO6 octahedra form a zigzag 

sheet by sharing common edges and the neighbouring sheets are connected by UO6 
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octahedra (Lian, et al., 2002). The structure of synthetic brannerite was determined by 

Szymanski and Scott (1982), and contains both U
4+

 and Ti
4+

 in octahedral coordination 

(UrФ6 hexagonal bipyramid).  

 

 

Figure 1.2: Crystal structure of Brannerite (Szymanski and Scott, 1982). 

 

Natural brannerite generally contains impurity elements including Pb, Ca, Th, Y and 

REE on the U-site, and Si, Al and Fe on the Ti-site (Lian, et al., 2002). Natural brannerite 

is completely metamict (amorphous) as a result of the α-decay damage from the 

constituent U and Th (Lian, et al., 2002) and requires annealing to reconstitute the crystal 

structure and thus produce an XRD pattern. The recrystallisation of natural amorphous 

brannerite on annealing at ∼1000 °C has been confirmed by X-ray diffraction (XRD) 

(Zhang, et al., 2006; Patchett and Nuffield, 1960). Thermogravitry along with differential 

thermal analysis (TG/DTA) (Zhang, et al., 2006; Balek, et al., 2007) and emanation 

thermal analysis (ETA) (Balek, et al., 2007) has been used to investigate and characterise 

the thermal reactivity / recrystallisation of amorphous brannerite. Also a study of an 
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amorphous natural brannerite has been conducted with the details of its thermal 

recrystallisation and the effect of radiation damage on its chemical durability reported 

(Zhang et al., 2006). Figure 1.3 is an image of natural brannerite from the Crockers Well 

region in South Australia. 

 

 

Figure 1.3: Brannerite from Crockers Well East, Olary Ranges, South Australia, Australia 

(sample size: 2.5 x 2 x 1 cm) (Mineral Atlas, 2012).  

 

The U in natural brannerite is nearly always partly oxidized (Burns and Finch, 1999). 

The presence of Pb is mainly due to the radioactive decay of U and Th (e.g. 
238

U and 
232

Th 

series) (Zhang, et al., 2006). Brannerite also exists, as a minor phase, in the ceramic 

formulations designed for the immobilization of spent nuclear fuel and surplus plutonium 

(Zhang, et al., 2006). From compositional and leach studies, sufficient evidence exists to 

support the presence of coffinite (U[SiO4]1-x[OH]4x) as an alteration product inter-growing 

with brannerite (Zhang, et al., 2003). 

There is very little information available in the open literature on the mineralogy of 

brannerite containing ore bodies. Analysis of ore samples from the Sunshine Mine in 

Idaho, USA, which is a silver and base metal vein deposit, showed that most of the 
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uranium occurs in a prismatic UTi2O6 mineral, commonly in aggregates of 5–50 µm long 

lath-like crystals, identified as originally being brannerite. Subsequently, the brannerite has 

exsolved into extremely fine-grained uraninite and a TiO2 polymorph (Zartman and Smith, 

2009). Quantitative microprobe spot analyses were made on different areas of the prismatic 

crystals all of which revealed uranium and titanium, reported as UO2 and TiO2, in the 

approximate molar ratio of 1:2 (Zartman and Smith, 2009). An X-ray diffraction 

confirmation of the U–Ti phase has not yet been achieved, but brannerite with the idealized 

formula UTi2O6 satisfies both the chemical and crystallographic attributes of the mineral 

(Zartman and Smith, 2009). Analysis on other areas showed a particularly large brannerite 

crystal with considerable variation in backscatter electron (BSE) intensity; three separate 

spot analyses give slightly different compositions with the highest uranium and lowest 

titanium concentrations occurring in the lightest area (Zartman and Smith, 2009). This 

region also contained several uraninite grains, some apparently replacing the brannerite, 

and others proposed to have formed from uranium that migrated out of the brannerite. 

Except for its presence as a fine-grained product of brannerite un-mixing, this one minor 

and apparently secondary occurrence represents the only positive identification of uraninite 

encountered in the study (Zartman and Smith, 2009).  

A recent study on brannerite mineralogy was conducted on gold deposits in the Vaal 

River region in South Africa. Analysis in this study showed that uraninite as well as 

brannerite-type minerals are jointly responsible for the major portion of uranium carriers in 

ore from the Witwatersrand basin. 80–90% of the uranium in the ores is contained as 

uraninite, 8–19% as brannerite, and the balance as traces of coffinite and uranium 

phosphates (Lottering, et al., 2008). Liebenberg (1955) distinguished between two 

uraniferous titanates in Witwatersrand ore: uraniferous leucoxene and brannerite which 

have UO2:TiO2 mole ratios of <1 and >1, respectively (Lottering, et al., 2008). Previous 
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work done by Glatthaar and Duchovny (Glatthaar and Duchovny, 1979) indicated that 

Vaal River ores mostly consist of brannerite associated with leucoxene and other 

titaniferous minerals (termed uraniferous leucoxene) which have a more loosely knit 

appearance and probably are more readily available for dissolution as compared to 

brannerite associated with silicates (termed brannerite), which occurs as minute, compact 

crystals intergrown in the siliceous material (Lottering, et al., 2008). This however, is not 

indicative that the different types of brannerite minerals will dissolve. Minerals with 

exposed surface area are technically leachable as they can be accessed by a lixiviant. 71% 

to 86% of the brannerite particles have more than 10% of their surfaces exposed, and even 

higher proportions have more than 5% of their surfaces exposed (Lottering, et al., 2008).  

Synthetic brannerite is often associated with rutile and in many cases with anatase as a 

natural alteration product (Zhang, et al., 2003). Previously reported experimental studies 

on the syntheses of brannerite have shown that the prepared brannerite contains minor 

rutile inclusions (~5% TiO2 and trace amounts of reduced Ti oxide) and trace amounts of 

UO2 (<0.1%) (Zhang, et al., 2001; Zhang, et al., 2003; Zhang, et al., 2004; Zhang, et al., 

2001; Thomas and Zhang, 2003). There are many methods that have been reported for 

preparing synthetic brannerite. The most common method reported is known as the 

alkoxide/nitrate route (Ringwood, 1988). This method involves the following main 

reaction steps: 

- Preparation of an aqueous solution containing stoichiometric amounts of U and Ti 

- Co-precipitation of U and Ti hydroxides 

- Heating of hydroxides to remove water, nitrate and alcohol 

- Wet milling and drying 

- Hot-pressing the milled product at 1260°C for 2 h under 21 MPa in graphite dies 

(Zhang, et al., 2001). 
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Synthetic brannerite can also be prepared by wet grinding for 1 hour and fired at 1450 

°
C for 24h in air (Lu, 2006). A mechano-chemical method for preparing brannerite 

involves dry mixing of high purity uranium oxide and anatase (TiO2) which is then ball-

milled, pressed into a pellet and fired at 1350 
°
C for 300 hours in a mixture of CO (5%) 

and CO2 gas (Donaldson, et al., 2005).  

For the preparation of doped brannerite; a mixture of oxides is dried and calcined in air 

at 700-750 
°
C for 1 hour, followed by wet milling for long periods, followed by drying. 

The dried product is then ground and hot-pressed at 1260 
°
C or cold-pressed and then fired 

at 1200-1300 
°
C for 14-15 hours (James, 2002; Shatalov, et al., 2007). In contrast to the 

preparation of brannerite, the synthesis of lithium tungsten vanadates, which are iso-

structural to uranium titanate, are performed at low temperature, via a wet chemistry route 

(Amdouni, et al., 2003). 

 

Synthetically doped brannerites that have been substituted with Ca
2+

, La
3+

, Gd
3+

, Y
3+

, 

Hf
4+

 and Pu
4+

 onto the U site has allowed the synthesis to take place in an air or argon 

atmosphere (Vance et al., 2001, James and Watson, 2002 and Finnie et al., 2003). 

From studies conducted by Vance et al (2001), the substitution of Ca
2+

, La
3+

, Gd
3+

, Y
3+

, 

Hf
4+

 and Pu
4+

 on the U site within the brannerite structure, !"�#$#%&�'(  and the 

incorporation of these other impurity ions provides a means of stabilizing brannerite phases 

produced in air. The doping of lower valence M atoms; Ca and La in particular, into these 

brannerite phases occurs in concurrence with the oxidation of U
4+

 to U
5+

 (James and 

Watson, 2002). 
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1.4.2. Dissolution chemistry of brannerite 

1.4.2.1. Dissolution of Synthetic brannerite 

There have been studies on the leaching of synthetic brannerites that have 

predominantly focussed on determining the stability of this mineral when used as a storage 

material for radioactive waste, such as to immobilise surplus plutonium (Jostsons et al., 

1999) (where it is commonly referred to as synroc) (Zhang et al., 2001). The conditions 

used in these studies (simulated environmental conditions) are however significantly 

different to those used in uranium minerals processing.  

However a study by Shatalov et al (2007) investigated the dissolution of synthetic 

brannerite under conditions relevant to minerals processing. They reported that synthetic 

brannerite can be completely dissolved in 10-15 g/L of [H2SO4] at 140 °C in an oxidative 

autoclave leaching process (Shatalov et al., 2007). 

 

1.4.2.2. Dissolution of Natural brannerite  

There have been a number of studies on the leaching of natural brannerites under 

minerals processing conditions reported in the open literature. It must be noted that the 

high potential for variations in the composition of this complex mineral across a single ore 

body and different ore bodies makes it impossible to accurately compare the leaching 

results reported for brannerite in different studies (and in some cases it might not be 

accurate to compare brannerite leaching from different grains in the same ore sample). 

Ifill et al (1996) conducted a detailed study on oxidative acid leaching of brannerite and 

allied titaniferous assemblages in uranium ores from Elliot Lake, Ontario. The results 

obtained from this study, which was conducted using a rotating-disc (polished section) 

method in H2SO4 and HCl solutions with added Fe
3+

/NaClO3 at 25 to 70 °C were however 

qualitative. Some of the main qualitative findings from this study reported were: 
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- Regardless of its morphology and texture (laths or needles, reticulate or 

blocky) brannerite was not readily leachable under the conditions studied 

- Regardless of the process conditions the rate controlling step appears to be 

initial leach-pit formation. These pits expand radially throughout the aggregate as 

leaching proceeds – this dissolution mode is independent of the relative amounts of 

brannerite and titania  

- Secondary coffinite growths which are readily leachable enhance the overall 

leaching kinetics of brannerite by accelerating leach-pit formation 

 

From their studies on the leaching of a composite grain aggregate (which consisted of a 

brannerite rich core surrounded by uraniferous titania) Ifill et al (1996) reported that 

brannerite leaching from this composite grain was complete under the following 

conditions: 75 g/L H2SO4, 5 g/L NaClO3, 4 g/L Fe
3+

, as Fe2(SO4)3, 60 °C, 1 h. 

Lottering and Lorenzen (2009; 2008) investigated the leaching of brannerite from low 

grade uranium ores from South Africa. The results reported for brannerite leaching from 

these ores are summarised in Table 1.2. A number of interesting results were reported on 

brannerite leaching in the aforementioned study. Firstly solution ORP had a significant 

effect on brannerite leaching with maximum leaching being achieved for all of the ores at 

the highest ORP tested (700 mV). Interestingly for one of the ores there was a significant 

decrease in extent of brannerite leaching when the ORP was increased from ~416 to 500 

mV. Uraninite leaching however also decreased (albeit marginally) for this same ore 

sample when the ORP was increased from ~416 to 500 mV (as opposed to the reasonable 

increase that was observed for the other 2 ores) and hence this result may have been an 

outlier. Another interesting finding from the study conducted by Lottering and Lorenzen 

(2008) was the significant difference in the extent of brannerite leaching observed for the 
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three different ores when an ORP of ~416 mV (vs SCE) was used (63.8%, 83.0% and 

29.0%). This result was in complete contrast to the results obtained for uraninite leaching 

at the same ORP where the extent of leaching of uraninite was very similar for all three 

ores (87.4%, 82.1% and 81.7% respectively). This result could have been due to the 

composition / structure of brannerite being significantly different across the three different 

ores and the extent of leaching of this mineral being highly dependent on these factors at 

conditions of low-moderate ORP. 

 

Table 1.2 Brannerite leaching results reported by Lottering and Lorenzen (2008). 

Ore Initial brannerite (ppm as U) in sub 

samples used for tests at varied ORP 

% Extent of leaching at different ORP 

(vs SCE)  

  ~416 mV 500 mV 700 mV 

A 30.2, 46.1, 31.4 63.8 86.5 86.7 

B 59.3, 56.7, 65.5 83.0 72.2 86.3 

C 34.3, 36.6, 50.0 29.0 39.7 82.9 

Reaction conditions: T = 60 ° C, [H2SO4] = 16.3 kg/t, [MnO2] = 4 kg/t, pH 0.5 – 1.2, H2O2 

and HNO3 used to obtain ORP of 500 mV and higher, t = 24 h. 

 

Uranium leaching from “brannerite ores” has been investigated by Shatalov et al (2007) 

and Muralikrishna et al (1991). In the aforementioned studies no uranium mineral 

characterisation data was given, hence the proportion of uranium minerals present as 

brannerite is not known. The results obtained by Shatalov et al (2007) are given in Table 

1.3. In this study leaching tests were conducted at high temperature (160 °C) in a corrosion 

resistant steel autoclave equipped with an anchor type mixing apparatus (280 rpm) with 

added oxygen (oxygen partial pressures 300-800 kPa (total pressure 900 – 1500 kPa). 

>97% uranium leaching was achieved in 3h from the brannerite ore studied over the range 

of conditions studied (refer to Table 1.3).  
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Table 1.3: Brannerite ore leaching results reported by Shatalov et al (2007). Note: Tests 

conducted at 160 ° C for 3 h. 
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Concentration, 

g/liter 

Oxidation-

reduction 

potential, 

mV 

 

Yield, 

% 

 

Content, % 

H2SO4 Fe3+ U Ssulfide Ssulfate Fe 

1 0 6.3 2.2 600 88.1 0.020 1.32 1.70 12.2 82.6 97.4 

2 ~3 7.9 2.0 620 83.8 0.015 3.67 1.42 12.2 56.1 97.9 

3 5 11.5 2.5 620 81.5 0.010 4.76 2.26 10.7 38.7 98.9 

4 10 12.0 2.5 640 81.5 0.008 1.83 3.45 10.5 75.9 98.9 

5 15 14.4 3.3 700 87.3 0.005 1.14 3.31 9.75 98.3 99.5 

 

 Muralikrishna et al (1991) investigated the effect of using a pre-concentration process 

on the leaching of uranium from a brannerite ore over a range of conditions. The results 

obtained for the same ore when the pre-concentration process was not used revealed that 

<4% of the uranium was leached under the following conditions: pH = 1.4, [H2SO4] = 30.7 

kg/t, t= 6h, (temperature not reported, however based on other tests conducted was most 

likely 50 or 80 ° C). The results obtained when the pre-concentration process was used are 

given in Table 1.4. The pre-concentrate was obtained using a wet high intensity magnetic 

separator. The results reported by Muralikrishna et al showed that acid concentration has a 

significant effect on brannerite leaching from the ore they studied. They also showed that 

increasing the residence time from 6 to 12 hours lead to a significant increase in leaching at 

a lower acid concentration. No residence time effect was observed after 6 hours when a 

higher acid concentration was used and no further effect of residence time occurred beyond 

12 hours when a lower acid concentration was used. Muralikrishna et al (1999) also 

reported that sulphuric acid was able to leach a higher extent of uranium from the 

brannerite ore compared to nitric acid and hydrochloric acid under the conditions used 

(Table 1.4). 
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Table 1.4: Results on brannerite ore leaching reported by Muralikrishna et al (1991).  

Time in 

hours 

Temperature 

°C 

ROM kg 

H2SO4/t 

Concentrate kg 

H2SO4/t 

CeO2 in 

liquor g/l 

% brannerite 

leached (as U3O8) 

12 50 2.74 68.4 nd 16.0 

12 50 5.48 136.8 nd 28.5 

12 50 8.20 205.2 nd 36.6 

6 80 16.4 410.0 nd 57.0 

12 80 16.4 410.0 1.6 71.0 

24 80 16.4 410.0 2.0 69.0 

6 80 25.0 612.0 nd 75.0 

12 80 25.4 610.0 nd 74.0 

6 80 49.0 1224.0 nd 80.0 

(nd = not detected; ROM = Run of the mill ore) 

 

Table 1.5: Effect of acid type on leaching of uranium from a brannerite ore (1991). 

Leachant Time in 

hours 

Temperature °C Quantity of 

acid 

% U3O8 

leached 

HCl 6 80 Tonne/Tonne 62 

HNO3 6 80 Tonne/Tonne 63 

H2SO4 6 80 Tonne/Tonne 70 

 

Based on the studies that have been published in the open literature on brannerite 

leaching using minerals processing conditions it is difficult to determine which 

parameter(s) have the most influence on brannerite leaching. Each of the studies that have 

been reviewed in detail confirm the influence of a different parameter: Temperature 

(Shatalov, et al., 2007); ORP (Lottering and Lorenzen, 2008); and acid concentration and 

residence time (Muralikrishna, et al., 1991). The fact that brannerite composition / 

structure can vary considerably and that this most likely influences leaching makes it 

extremely difficult to draw general conclusions on the effects of individual parameters on 

brannerite leaching. It is most likely that the influence of various parameters on leaching 

will be highly dependent on the composition / structure of the brannerite studied. 
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1.4.2.3. Electrochemical studies of brannerite 

Studies on minerals such as chalcopyrite in carbon paste electrodes have been shown to 

be a reliable way to observe the leaching behaviour, particularly in regards to the effects of 

electrolyte and temperature on dissolution processes, surface passivation and the study of a 

possible leaching mechanism. The use of carbon paste electrodes to measure minerals by 

electrochemically means has been previously applied predominantly to sulphide minerals. 

Such studies include; simulation of conditions under which industrial leaching of sulphide 

minerals take place (Cruz et al., 2005), determining the differences in kinetics for 

chalcopryrite in the leaching process within different acidic media (Lazaro et al., 1995) and 

optimising individual leaching processes for the electrochemical activity of galena 

(Ahlbery and Asbjornsson, 1993).  

There have been no studies specific to investigating the abovementioned on the mineral 

brannerite and therefore to gain a greater understanding on the optimum leaching 

conditions of this mineral of such high refractory nature would be a great achievement.  

 

1.5. Summary of literature review 

Although brannerite is nominally given the simple formula UTi2O6, naturally occurring 

brannerite in ores is chemically complex. Naturally occurring brannerite is heavily 

substituted with other cations and is always X-ray amorphous requiring calcination to 

achieve a diffraction pattern. With regards to the dissolution of stoichiometric, pure 

brannerite there have only been studies conducted on this form of brannerite pertaining to 

its use as a radioactive waste host (these conditions are generally referred to as 

“environmental” conditions and are significantly different from those used in uranium 

minerals processing). The combined effects of chemical modifications such as structure, 
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oxidation, alteration and gangue mineralogy, undoubtedly explains the differences often 

reported / observed in leaching studies of natural brannerite bearing ores and makes it 

essential to consider unique processing conditions for different brannerite ore bodies in 

order to gain optimal uranium extraction during processing. While numerous uranium 

extraction studies have been conducted on naturally occurring brannerite ores, this review 

has demonstrated that results are variable, being strongly dependent on differences in 

structure and chemistry of the host brannerite, the composition of any associated uranium 

containing minerals and the gangue mineral content. The differences in chemistry also 

makes it essential that before any extraction process takes place, detailed ore 

characterisation studies are of major importance in order to fully understand the 

interrelationship between chemistry, mineralogy, mineral liberation and therefore a 

possible indication in the potential leaching characteristics / behaviour / mechanism of the 

uranium with in the brannerite containing orebody.  

 

1.6. Objectives  

As discussed previously there have been a number of studies conducted on a number of 

aspects of synthetic and natural brannerite reported in the literature. This includes studies 

on structure, composition and occurrence, and also studies on the stability of synthetic 

brannerites under environmental conditions as well as natural brannerites under minerals 

processing conditions. However these studies have been varied and limited in their scope 

due to the differences that occur across brannerite bearing ore bodies. Furthermore there 

have been no relevant studies conducted on synthetic UTi2O6 dissolution under conditions 

of relevant to minerals processing. There is also very little information on the mechanism 

of dissolution of this mineral under these conditions. 
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The main aim of this thesis was to investigate the dissolution of brannerite and obtain 

information that could contribute to improvements in the processing of this important 

uranium bearing mineral. Specific aims of this project included are:  

- Investigating the chemistry and mineralogy of two naturally occurring 

brannerite samples using multiple characterisation techniques to gain a greater 

understanding on the structure and gangue minerals associated with brannerite 

bearing ores. 

- Investigating the rate of dissolution of synthetic brannerite over a range of 

conditions including conditions similar to those used in tank based leaching of 

uranium minerals as well as probing the mechanism of synthetic brannerite 

dissolution by electrochemical means.  

- Investigating the rate of dissolution of naturally occurring brannerite over a 

range of conditions including temperature, [H2SO4] and [Fe(III)].  
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This chapter provides information on the materials and methods that were used to 

conduct research that is presented in more than one chapter of this thesis.  
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2.1. Materials 

Two naturally occurring brannerite samples were obtained from the Victorian Museum, 

Melbourne, Australia. The samples were originally sourced from the Crockers Well 

uranium prospect in South Australia and from the Roxby Downs region, also in South 

Australia. These samples are hereafter referred to as NBCW and NBRD respectively.  

High grade brannerite leach feed ore sample was obtained from BHP Billiton. The 

sample was sourced from Roxbury Downs in South Australia. 

Other materials used were as follows; Uranyl acetate (UO2(CH3COO)2.2H2O) (97.5%) 

and titanyl sulphate dihydrate (TiOSO4.2H2O) (97 %) were used as received. Sulphuric 

acid (H2SO4) (Aldrich Chemical), iron sulphate (Fe2(SO4)3) (Aldrich Chemical), nitric acid 

(HNO3) (70 % AR grade) (Merck Led) and 1000 ppm uranium ICP-MS standard 

(AccuStandard).  

 

Milli-Q water (H2O) (18 MΩ) was used in all experimental procedures / experiments. 

 

2.2 Methods 

2.2.1 Dissolution test procedure 

A 1 L glass reaction vessel with a five-necked glass lid equipped with a thermometer, a 

mechanical stirrer and a reflux condenser was used as the dissolution reaction vessel. The 

reaction vessel was heated by a thermostatically controlled mantle to reach and maintain 

the preferred temperature within ±1 °C. For each run, 500 mL of [H2SO4] and [Fe(III)] 

solution of predetermined molarity was charged into the reaction vessel and heated to the 

desired temperature. A known amount of uranium bearing sample was then added and the 

contents were well agitated. Solution samples of 0.25 mL were taken at pre-determined 

times during a run and analysed for uranium by ICP-MS. 
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2.2.2 Digestion method for determination of elemental composition 

100 mg of powdered brannerite (NBCW and NBRD) samples were weighed out into 

separate Teflon vessels. The sides of these vessels were rinsed down with a small amount 

of Milli-Q water. 4 mL of concentrated hydrochloric acid was added slowly to each vessel 

and left to subside, followed by 3 mL of concentrated nitric acid and left to subside. Next 2 

mL of concentrated sulphuric acid and 3 mL of concentrated hydrofluoric acid was then 

added to each vessel and they were then placed on aluminium heating blocks at 110 °C 

where the solutions were heated until incipient dryness. The temperature was raised to 160 

°C to bring each sample to complete dryness. A further 1 mL of concentrated sulphuric 

acid was added to each vessel where each sample was heated to 160 °C to complete 

dryness. 

Once each sample was dry 1 mL of concentrated nitric acid and 2 drops of concentrated 

sulphuric acid were added to each vessel and the reaction was left to subside. 19 mL of 2 

% nitric acid were added to each vessel and were capped and placed into a drying oven at 

110 °C for 2 h.  

The samples were prepared for ICP-MS by diluting each sample which was then 

acidified. Using a multi elemental environmental standard full quantitative analysis was 

completed for the all-natural brannerite samples. 
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2.3. Characterisation and analytical techniques 

2.3.1 X-ray Diffraction (XRD) 

2.3.1.1 Theory 

X-ray diffraction (XRD) is a non-destructive method used to identify the differing 

phases / structure of crystalline materials, which utilizes the wave properties of X-rays. 

The positions and intensities of the X-rays diffracted by the crystalline solid can provide a 

wealth of information such as crystal structure, composition of a solid, particle size, 

evidence of decomposition, polymorphism, preferred orientation and order-disorder 

relationships (Whiston et al., 1987). Modern devices for producing X-rays are called X-ray 

tubes. These produce an intense characteristic line spectrum superimposed on a less intense 

continuous spectrum known as white or background radiation. Characteristic X-rays are 

produced when high-speed electrons remove inner K, L or M electrons from target atoms, 

and outer electrons fill the vacancies and in consequence release energy in the form of x-

rays. The continuous spectrum arises from the conversion of the electron’s kinetic energy 

to radiant energy on impact.  

An X-ray beam of original intensity Io becomes reduced to intensity I on passing 

through a distance x of absorbing medium of density ρ. The intensities are related by the 

equation:  

� = ���
����	    (Equation 2.1) 

Where µm is called the mass absorption coefficient, µm is characteristic to a particular 

medium but is independent of its state.  

Mass absorption generally increases with increasing wavelength, but the graph of µm 

versus λ shows a number of vertical discontinuities called absorption edges. These 

correspond to the ionisation energies of the K, L and M electrons of the absorbing medium. 
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The X-rays having wavelengths less than these absorption edges have sufficient energy to 

displace inner electrons resulting in the emission of characteristic radiation (Whiston et al., 

1987). When electrons with sufficient energy to dislodge inner shell electrons of are 

directed towards the target material such as copper (Cu), the characteristic X-ray spectra of 

copper are produced.  

These spectra consist of several components, the most common being Kα and Kβ 

(Whiston et al., 1987). The specific wavelengths are characteristic of the target material 

and the most widely used is Cu. The important x-ray lines for Cu are Kα1 and Kα2 with 

wavelengths of 1.5405 and 1.544 Å respectively. These X-rays are used to determine 

crystallographic parameters such as lattice constants, which are, in turn, used to identify 

the crystallographic structure of a sample (Whiston et al., 1987).  

Families of planes of atoms in a crystal have the ability to reflect an X-ray beam when 

the Bragg equation: 

2�	
��	� = ��    (Equation 2.2) 

is fulfilled, where d is the inter-planar spacing, θ is the angle between the planes and 

the X-ray beam (Bragg angle), λ is the X-ray wavelength, and n is an integer called the 

order of reflection.  

Families of planes are identified by a system of Miller Indices (hkl). Miller Indices take 

integer values which correspond to the number of times a set of crystal planes with a, b and 

c edges of the unit cell intercept (Whiston et al., 1987). In principle XRD measurements 

are basically applied to measuring distances between planes with X-ray waves. When (CB 

+ BD) in Figure 2.1 equals 2d sin θ, the Bragg condition (2� sin � = ��) is satisfied and 

an x-ray peak will be measured. 
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Figure 2.1: X-ray diffraction Bragg condition when	��	���	� = ��. 

 

The Bragg law indicates the angle at which this strong diffraction peak is observed and 

depends on the distance between the planes in the crystal lattice, and is called the d spacing 

(Whiston et al., 1987). The values of the d spacing are calculated from appropriate 

equations. The crystal structure of the sample is determined from the crystallographic 

databases available from the Joint Committee on Powder Diffraction Standards (JCPDS) 

files (Whiston et al., 1987). 

 

2.3.1.2 Sample preparation and instrument details 

Whole rock samples containing natural brannerite were prepared for XRD analysis as 

follows: samples were crushed using a mortar and pestle to form a powder, this was then 

placed into a circular poly methyl methacrylate holder and the sample was evenly placed 

onto a glass flat plate within the holder and covered by Kapton film. The same process, 

excluding the crushing step, was used to prepare all synthetic brannerite samples. X-ray 

powder diffraction patterns were obtained on a Bruker D8 Advance diffractometer fitted 

with a copper tube (copper Kα radiation), an incident beam monochromator, and a 

scintillation detector. The diffractometer was operated at a voltage of 40 kV and current of 
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35 mA. Diffraction patterns were collected over the range 10-60 ° 2θ using a 1 
o
 fixed 

divergence slit, a step size of 0.015 
o
, and counting times of 2.5 s per step (total pattern 

collection time of 138 minutes per sample). The instrument was calibrated using quartz and 

corundum calibration standards prior to use. 

 

2.3.2. X-Ray Photoelectron Spectroscopy (XPS) 

2.3.2.1 Theory 

X-ray photoelectron spectroscopy (XPS) is a quantitative spectroscopic technique that 

can be used to analyse the surface chemistry of a material through a single photon in / 

electron out process.  

In XPS, spectra are obtained using a monochromatic source via radiation (i.e. photons 

of fixed energy given � = ℎ�) by irradiating a material with a beam of X-rays, which leads 

to the ionisation of the atom (A) and the emission of core (inner shell) electrons called 

photoelectrons from the top layer of the materials surface (Figure 2.2) (Van Der Heide, 

2011). 

 

 

Figure 2.2: Path flow of electrons when X-rays of fixed photon energy is bombarded on a 

target surface in XPS. 
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While the irradiation is taking place, simultaneous measurements are taken of the 

kinetic energy distribution of the emitted photoelectrons and number of electrons that 

escape from the top 1 to 10 nm of the material being analysed. The photoionization process 

can be given as:  

� + ℎ� = 	�! +	��     (Equation 2.3) 

Conservation of energy requires: 

�"�# + ℎ� = �"�!# − �"��#   (Equation 2.4) 

Since the number of electrons that escaped from the top 1 to 10 nm of the material is 

observed to possess kinetic energy (KE), the below expression can be rearranged in terms 

of kinetic energy as: 

    %� = &� − "�"�!# − �"�##   (Equation 2.5) 

The final term "�"�!# − �"�## , represents the difference in energy between the 

ionised and neutral atoms is generally called the binding energy (BE) of the electron which 

is represented in the equation below: 

%� = ℎ� − '�    (Equation 2.6) 

The electron binding energy levels of the material are measured with respect to the 

Fermi-level of the solid. The below equation has now accounted for the work function (() 

of the material: 

%� = ℎ� − '� − (    (Equation 2.7) 

The precise binding energy of an electron is determined not only by the level from 

which photoemission is occurring, but also on the formal oxidation state of the atom and 

the local chemical and physical environment. This gives rise to small shifts in the peak 

position seen in the spectrum which are known as chemical shifts.  
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2.3.2.2 Sample preparation and instrument details 

Samples were prepared for XPS analysis by firstly pressing the particles in a die press. 

The pressed samples were then placed onto a carbon tape / silicon substrate, which were 

placed into a condenser to remove air from carbon tape / silicon substrate. XPS 

measurements were carried out using a Thermo Scientific K-Alpha X-ray Photoelectron 

Spectrophotometer instrument at a pressure lower than 1 x 10
-9

 Torr). All scans were 

recorded with un-monochromatized Mg Kα radiation (photon energy of 1253.6 eV) at pass 

energy of 20 eV and an electron take off angle of 90 °. The overall resolutions for all XPS 

measurements were 0.1 eV. The core level spectra were background corrected using the 

Shirley algorithm and chemical distinct species were resolved using a nonlinear least 

squares fitting procedure.  

 

2.3.3. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

2.3.3.1 Background and Theory 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a technique used for 

determining the elemental composition of samples. Most instruments are only capable of 

analysing aqueous samples however solid samples can also be analysed directly using a 

technique known as laser ablation ICP-MS. ICP-MS can be used to precisely identify and 

measure quantitatively a number of elements in the periodic table including elements that 

are often difficult to analyse. This technique can also be used to measure individual 

isotopes of an analyte, and also can be used to detect and measure concentrations of 

analytes in solution at very low levels (Taylor, 2001).  

In this technique, positive ions generated by the high temperatures in an inductively 

coupled plasma (ICP) are extracted via a differentially pumped interface, into a low-
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resolution mass analyser to scan a wide mass range very rapidly (Taylor, 2001). This 

provides near simultaneous determination of most elements down to pg.ml
-1

 levels. 

ICP-MS instruments consist of several components including the ICP, a sample 

introduction system, a mass spectrometer with ion detector, and a data acquisition/readout 

system as seen in Figure 2.3 (Taylor, 2001 and Thomas, 2008). 

 

 

Figure 2.3: Schematic diagram of an ICP-MS (Thomas, 2008). 

 

The sample as an aqueous solution is introduced into the nebuliser which converts it 

into an aerosol, which passes through to the argon plasma torch, where it is rapidly 

vaporized, dissociated, atomised and ionised (Taylor, 2001). The sample leaves the torch 

as a mixture of ions, atoms, un-dissociated molecular fragments and un-volatilised 

particles. The function of the interface is to representatively sample ions produced in the 

ICP, deliver them from the high-temperature atmospheric pressure argon plasma, and 

facilitate their transport into the mass spectrometer (Taylor, 2001). Semi-quantitative 

analysis is a method used to qualitatively determine the elemental composition of an 

unknown sample.  
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2.3.3.2 Sample preparation and instrument details 

Uranium concentrations were measured using an Agilent HP 7700 ICP-MS. The 

instrument was calibrated prior to sample analysis using uranium calibration standards. 

These standards were prepared using a uranium standard solution. An internal standard 

(terbium) was also added to all calibration and test samples. Solution samples of 0.25 mL 

were taken at pre-determined times during dissolution tests where they were diluted to 100 

mL in a volumetric flask with 0.715 mL of HNO3 followed by analyses for uranium by 

ICP-MS. The calculated percentage error for uncertainty in all dissolution tests was ± 2.64 

%. 

 

2.3.4. Scanning Electron Microscopy (SEM) 

2.3.4.1 Background and Theory 

The scanning electron microscope (SEM) is an electron microscope used to image a 

sample surface by scanning it with a high-energy beam of electrons in a programmed scan 

pattern. The electrons interact with the atoms that make up the sample producing signals 

that contain information about the sample's surface topography, composition and other 

properties such as electrical conductivity (Goldstein et al., 2003). In the Environmental 

SEM instrument (ESEM), a series of pressure limiting apertures (PLAs) are placed down 

the column, across each of which a pressure differential is maintained as shown in the 

schematic diagram in Figure 2.4. The microscope column is shown in Figure 2.4. The 

difference between the ESEM and the SEM is that environmental scanning electron 

microscopy is a form of electron microscopy that can be carried out under atmospheric 

pressure, while the SEM requires vacuum in the specimen chamber. Also ESEM permits 

the imaging of wet samples with minimal sample preparation (Goldstein et al., 2003). 

Consequently, despite the relatively high pressure in the chamber, this design allows 
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ESEMs to operate with LaB6 filaments as well as tungsten, and field emission guns are 

also becoming available to give superior quality imaging (McDonald, 2002). 

The vacuum system is employed which offers greater control of the specimen 

environment as well as the ability to control the higher pressures up to 20 torr (McDonald, 

2002). This pressure range is achieved by having several successive levels of differential 

apertures and intermediate pumps to minimize gas flow back to the gun region. The ESEM 

has a facility to flood the sample chamber with water mist prior to experiments in which 

liquids or hydrated materials are being observed to ensure that full saturation is achieved so 

that no drying occurs during the pump down of the system (McDonald, 2002). This system 

maintains a high vacuum in the column while allowing higher pressures and water vapour 

to be present in the specimen chamber. The sample sits on a Peltier stage, which maintains 

the sample temperature a few degrees above freezing. The coolness of the sample plus the 

water vapour in the chamber can keep the sample completely hydrated (McDonald, 2002). 

 

 

Figure 2.4: Diagram of a standard ESEM column (McDonald, 2002). 
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Water vapour in the chamber is ionised by secondary electrons reflected from the 

sample. The freed electrons amplify the signal from the sample, while positive ions drift to 

the sample and suppress charging, as schematically represented in Figure 2.5 (McDonald, 

2002). As a result, ESEM can examine non-conductive, uncoated samples under low 

vacuum.  

 

 

Figure 2.5: SEM column (McDonald, 2002). 

 

2.3.4.2 Sample preparation and instrument details 

Samples were prepared for SEM analysis by placing grains of the sample onto a 

stainless steel holder that was covered in carbon tape. Samples were then carbon coated.  

Scanning electron microscopy was performed on a FEI Quanta 200 Environmental 

Scanning Electron Microscope (SEM) fitted with an AMETEK Si(Li) Energy Dispersive 

X-ray (EDX) detector system EDX system (refer to next section). The instrument was 

operated under high vacuum at an accelerating voltage of 25 kV.  
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2.3.5. Energy Dispersive X-ray Spectroscopy (EDX) 

2.3.5.1 Background and Theory 

The Energy-dispersive X-ray spectrometer (EDX) is an analytical technique used for 

qualitative elemental x-ray microanalysis. Due to the short period of time taken to acquire 

the total spectrum of interest, the beam energy allows for a rapid evaluation of the 

specimen constituents. This technique is particularly suited for the identification of 

unknown samples. It is useful to consider the appearance of the K, L and M lines in EDX 

spectra as a function of position in the SEM/x-ray microanalysis field to study x-ray 

spectra from pure elements and simple compounds (Vaughan, 1989). 

In EDX each emitted x-ray produces a charge pulse in a semiconductor detector. This 

tiny and short-lived current is converted first into a voltage pulse, then into a digital signal 

reflecting the energy of the original X-ray, which is schematically represented in Figure 

2.6 (Vaughan, 1989). The digital signal, in turn, adds a single count to the appropriate 

channel of a multichannel analyser (MCA). 

 

 

Figure 2.6: Schematic diagram of an EDX system. 

 

X-ray Mapping using EDX is a technique which is specifically used to gain the 

elemental distribution of a desired sample area. This involves recording and displaying the 

total x-ray count in an energy window of a sample as a scaled grey level, to rigorous 
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quantitative compositional mapping in which a complete compositional analysis is 

performed at each location in a matrix scan (Vaughan, 1989). In quantitative compositional 

mapping, the grey or colour scale at a particular pixel displayed on an analogy device such 

as a CRT is related to the actual concentration of each constituent (Goldstein et al., 2003). 

 

2.3.5.2 Sample preparation and instrument details 

Samples were prepared for EDX analysis by placing grains of the sample onto a 

stainless steel holder that was covered in carbon tape. Samples were then carbon coated.  

An environmental scanning electron microscope ESEM FEI XL30 equipped with an 

Oxford energy dispersive spectroscope (EDX) attachment was used to determine the 

composition of selected samples.  

 

2.3.6. Electron Probe Micro-Analyser (EMPA) 

2.3.6.1 Background and Theory 

The electron Probe Micro-Analyser (EPMA) is an analytical instrument used to 

determine the chemical composition of small volumes of solid materials (Figure 2.7). It 

works in the same way as a scanning electron microscope where the sample is bombarded 

with an electron beam, emitting x-rays at wavelengths characteristic to the elements being 

analysed. This enables the abundances of elements present within small sample volumes 

(typically 10-30 cubic micrometres or less) to be determined (Wittry, 1958). The 

concentrations of elements from boron to plutonium can be measured at levels as low as 

100 parts per million (ppm) (Wittry, 1958). 
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Figure 2.7: Schematic diagram of an EPMA system (Heidelberg University, 1994). 

 

A beam of electrons is fired at a sample. The beam causes each element in the sample 

to emit X-rays at a characteristic frequency; the X-rays can then be detected by the electron 

microprobe. The size of the electron beam determines the trade-off between resolution and 

scan time. 

 

2.3.6.2 Sample preparation and instrument details 

Samples were prepared for EPMA mapping analysis by dispersing grains of the natural 

uncrushed brannerite samples in epoxy resin and mounting into 2.5 cm round blocks. The 

blocks were cured overnight, sectioned to expose a fresh surface, and then polished flat 
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using successively finer diamond paste cutting compounds down to a final cutting size of 1 

µm. Immediately prior to analysis, each sample was coated with a 15 nm thick carbon film 

to prevent charge build-up on the surface of the sample when probed by the electron beam. 

Two types of EPMA information were obtained. Initially, the two samples containing 

natural brannerite were mapped using a high resolution Field Emission Gun (FEG) 

equipped EPMA (JEOL 8500F Hyperprobe). This was done in order to: 1) locate 

individual brannerite grains and examine their distribution and, 2) to examine the chemical 

homogeneity of the brannerite grains. Following mapping by FEG-EPMA, the samples 

were examined by quantitative EPMA techniques using a JEOL 8900 Superprobe to 

determine the chemistry of the brannerites.  

To locate regions of high uranium, the samples were initially inspected using high 

contrast back scattered electron (BSE) imaging and then selected areas on each of the 

polished sample mounts were mapped using a combination of wavelength dispersive (WD) 

and energy dispersive (ED) spectroscopic techniques. The elements mapped using the WD 

spectroscopic techniques were Fe, Si, U, Ti and Pb. The elements Si and Pb were included 

in the mapping dataset to check for the presence of coffinite (U[SiO4]1-x[OH]4x) and also 

for the presence of secondary lead (a decay product from uranium). Standards used to 

calibrate the EPMA WD spectrometers prior to mapping were: hematite (Fe2O3), 

wollastonite (CaSiO3), uranium oxide (UO2), rutile (TiO2) and anglesite (PbSO4). Elements 

that were not measured by WD spectroscopy were measured using two energy-dispersive 

(ED) spectrometers operating in parallel. Measuring both ED and WD signals 

simultaneously ensured that the complete chemical spectrum, at each step interval in the 

map, was obtained. This additional information was important when trying to identify 

phases that contained elements not present in the main WD element map suite. Operating 

conditions for the microprobe during mapping were an accelerating voltage of 12 kV, a 
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current of 50 nA, a step size of between 0.2-1.0 µm and counting times of 25 msec per 

step. The choice of step size was based on a compromise between maximising the number 

of particles analysed and ensuring any fine-grained U-rich mineral phases were located. 

 

After mapping, the element distribution data were manipulated using the software 

package CHIMAGE (Harrowfield et al., 1993) which incorporates an automated clustering 

algorithm that identifies chemical groupings (Wilson and MacRae, 2005). The clustering 

procedure used was a multi-element data analysis approach whereby the groupings of 

elements identified via the clustering algorithm represented statistically different 

chemical/mineral phases. These phases were then overlaid onto the mapped region to 

provide a “phase-patched” map showing the distribution of all chemical/mineral phases 

within the mapped area. 

 

2.3.7. Raman Spectroscopy 

2.3.7.1 Background and Theory 

Raman spectroscopy is a spectroscopy technique that is used to study the vibrational, 

rotational and other low-frequency modes in a material, which assists in the determination 

of a materials chemical composition (Gardiner et al., 1989). It is also a complementary 

technique to infrared spectroscopy (IR). In contrast to IR a change of polarisation potential 

(i.e. deformation of the electron cloud) is essential for a molecule to exhibit a Raman 

effect. The intensity of the scattered light is dependent on the amount of the polarisation 

potential change, i.e. photons are scattered by the interaction with vibrational and 

rotational transitions in molecules (Nasdala et al., 2004). Figure 2.8 visually demonstrates 

the states involved in a Raman signal. The energy level diagram shows a line thickness is 

roughly proportional to the signal strength from the different transitions.  
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Figure 2.8: Energy level diagram showing the states involved in Raman signal. The line 

thickness is roughly proportional to the signal strength from the different transitions 

(Sharma, 1981). 

 

2.3.7.2 Sample preparation and instrument details 

Samples were prepared by dispersing the crushed and powdered samples onto a gold 

coated glass plate. Raman measurements were carried out with a PerkinElmer 

RamanStation 400 at an excitation wavelength of 785 nm and recorded at a resolution of 4 

cm
-1

 in the range between 50 cm
-1

 and 3000 cm
-1

. 

 

2.3.8. Electrochemical techniques  

2.3.8.1 Linear Sweep Voltammetry  

2.3.8.1.1 Background and Theory 

Linear sweep voltammetry (LSV) is a voltammetric method where the current of the 

working electrode is measured while the potential between the working electrode and a 

reference electrode is swept linearly in time (Figure 2.9). Oxidation or reduction of a 

species is registered as a peak in the current signal at the potential at which the species 

begins to be oxidised or reduced (Bard et al., 2001). Figure 2.9 is a typical representation 
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of analytes in solutions where the peak shape and position gives information about the 

thermodynamics and kinetics of the redox process, as well as diffusion processes. In 

mineral samples either solid samples (when the mineral is conducting) or carbon paste 

electrodes (CPE) are used as the working electrode. It has been established that the 

electrochemical behaviour of the CPE can represent the conditions under which real 

leaching processes are conducted (Lazaro, et al., 1995). In this thesis, carbon paste 

electrodes were used for brannerite as the sample is in a powder form of limited 

conductivity. 

 

 

Figure 2.9: (a) LSV the voltage is scanned from a lower limit to an upper limit and (b) 

Voltammogram for a single voltage scan using an electrolyte solution. 

 

2.3.8.2. Cyclic Voltammetry  

2.3.8.2.1. Background and Theory 

Cyclic voltammetry (CV) is a potentiodynamic electrochemical measurement. In CV, 

the working electrode potential is ramped linearly versus time (Figure 2.10), where the 

ramping is known as the scan rate (V/s). A potential is applied between the reference 
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electrode and the working electrode, in which the current is measured between the working 

electrode and the counter electrode, where the data is plotted as current (i) vs. potential (E).  

 

 

Figure 2.10: Cyclic voltammetry waveform. 

 

The forward scan (waveform) produces a current peak for any analytes that can be 

reduced / or oxidised depending on the initial scan direction, through the range of the 

potential scanned. For a solution based process, there is an increase in current as the 

potential reaches the reduction potential of the analyte, this will fall as the concentration of 

the analyte is depleted close to the electrode surface. The oxidation peak will have a 

similar peak shape to the reduction peak when the process is chemically and 

electrochemically reversible, and detailed studies of voltametric curves can give 

information about the mechanism, thermodynamics and kinetics of a redox process (Figure 

2.11).  
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Figure 2.11: CV where ipc and ipa show the peak cathodic and anodic current respectively 

for a reversible reaction. 

 

Traditional electrochemical techniques such as CV have been used on pure mineral 

samples, yet a tendency to fracture in the polishing procedure, an irregular and 

heterogeneous surface, and varying resistivities of mineral samples can affect the 

confidence of data recorded (Horta, et al., 2009). Therefore in solid state electrochemical 

analysis used in this thesis, the mineral sample is ground together with a carbon paste to 

produce a mixture that has been shown to give reliable results in electrochemical studies. 

 

2.3.8.3. Tafel Curve 

2.3.8.3.1. Background and Theory 

The Tafel curve in electrochemistry is used predominately to study corrosion. Using the 

Tafel curve the determination of the corrosion potential and the rate of corrosion can be 

achieved as well as prediction of mechanistic information. Tafel curves are a convenient 

method to observe active dissolution and surface passivation based on redox processes. 

The coefficient of charge transfer can also be determined as the slope of the Tafel curve. 

Figure 2.12 shows the current-potential curve on the left and the Tafel curve (log10(current) 

vs. potential) on the right. 
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Figure 2.12: Current-potential curve on the left and Tafel curve on the right. 

 

From the literature, the mineral chalcopyrite has been quite extensively studied using 

Tafel curves to determine the corrosion potential of the system. Viramontes, et al (2007) 

describes how the passivation of chalcopyrite can be studied by voltammetry by looking at 

the shape of the Tafel curves.  

 

2.3.9. Sample preparation and instrument details for electrochemical 

studies 

Carbon Paste (CP) consisting of uniform graphite particles mixed with a paraffin 

binder, was purchased from Bioanalytical Systems (West Lafayette, USA), and used as 

received. To prepare the working formula, a 1:1 ratio of Carbon Paste: Synthetic 

Brannerite (by weight) was freshly prepared by grinding in a mortar and pestle, to obtain a 

homogeneous paste. This paste was placed in a working electrode with a diameter of 

approximately 0.3 cm, levelled with a spatula and polished on low roughness paper to 

obtain a flat, reproducible surface.  

All experiments were undertaken under a nitrogen atmosphere in a 100 mL temperature 

controlled glass reactor with a Pt wire as a counter electrode, an Ag/Ag/Cl reference 
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electrode held at ambient (22 °C) temperature by separation from the reaction vessel with a 

salt bridge, and a compressed and polished Carbon Paste-brannerite mixture as the working 

electrode. The reactor was maintained at the desired temperature with a circulating hot 

water bath. Electrochemical experiments were undertaken with a CH Instruments CH920D 

potentiostat. Solutions of varying concentrations of H2SO4 and were prepared with Milli-Q 

water (H2O). For potential scanning experiments in H2SO4 the Carbon Paste-brannerite 

working electrode was initially rested in the electrolyte solution for 10 min before scanning 

as practice showed that this resulted in the most reproducible results. 
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Chapter 3 

 

 

Characterisation studies on 

a uranium ore and natural 

brannerite samples 
 

 

 

In this chapter a uranium bearing ore and two mineral samples containing natural 

brannerite were extensively characterised to identify the key impurities / gangue 

mineralogy that are associated with natural brannerite. Heat treatment of the 

aforementioned samples was also investigated. 
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3.1. Introduction 

As mentioned in Chapter 1 the uranium titanium oxide species, brannerite (nominally 

UTi2O6), has the potential to be a source for maintaining or increasing uranium production. 

Given the increased emphasis on brannerite as a primary source of uranium, there have 

been several studies undertaken on various aspects of the composition, structure and 

physical occurrence of this mineral. 

Brannerite is typically found in alkali-metasomatic ore bodies formed at medium-high 

hydrothermal temperatures (i.e. temperatures approaching 400-600 °C) as well as in 

numerous uraninite and coffinite containing uranium deposits where it has been identified 

in both unconformity-type and hydrothermal-vein deposits (Finch, 1996). It forms via 

precipitation from oxidised U-bearing fluids where the uranium is transported as the uranyl 

ion, UO2
2+

, and its complexes, until changes in solution chemistry lead to precipitation of 

brannerite (Finch and Murakami, 1999). In some deposits however, brannerite is believed 

to have formed following adsorption of uranium onto Ti oxides (McCready and Parnell, 

1998). 

As mentioned earlier (section 1.2) the mineral brannerite is commonly represented by 

the chemical formula, U
4+

Ti2O6 although the uranium in brannerite is nearly always partly 

oxidised and sometimes hydrated (Finch and Murakami, 1996).  

Due to the varied chemical composition of natural brannerites such as 

((U0.629Th0.039Ca0.20)(Ti2.199Fe0.13)O69) in Ontario (Ifill et al., 1996), (U(Ti, Fe)2O6) from 

Olympic Dam in South Australia (Macnaughton et al., 1999) and (U, Th, Ca)(Ti, Fe)2O6) 

from Vaal river ore bodies in South Africa (Lottering et al., 2008); the formula for 

brannerite is thus considerably more complex than the ideal UTi2O6 and is therefore more 

commonly reported as [U,Ca,Th,Y,REE][Ti,Si,Fe,Al]2O6-8[OH]x. 
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The chemistry of natural brannerites has been previously investigated by Hess and 

Wells (1920), Pabst (1954), Hewett et al. (1957), Lumpkin et al. (2000), Colella et al. 

(2005) and Polito et al. (2009). A recent Scanning Electron Microscopy-Energy Dispersive 

X-ray (SEM-EDX) study on twelve natural brannerite samples by Lumpkin et al. (2012) 

demonstrated that unaltered natural brannerite typically had Ti and U contents ranging 

from 1.8 to 2.1 and 0.4 to 0.9 atoms per formula unit, respectively (based on a total of three 

metal cations). Other cations on the U-site included Ca, Th, Y and REE while Fe, Si, Al, 

Nb, Mn and Ni were present on the Ti site. Where there was evidence of alteration, 

significant amounts of Si and other elements were able to be incorporated and up to 40-90 

% of the original U could be lost. An examination of the valence state of uranium in a 

range of natural brannerite samples by Colella et al. (2005) indicated the presence of minor 

U
5+

 and/or U
6+

 (in addition to U
4+

) suggesting partial solid solution with orthobrannerite, 

[U
6+

,U
4+

]Ti2O6[OH]. Typical alteration phases associated with natural brannerite include: 

TiO2 phases such as rutile and anatase, galena and unidentified Th-rich phases (Lumpkin et 

al., 2012).  

 

All natural brannerites are metamict (Smith, 1984) due to destruction of crystallinity 

through alpha-radiation decay from the constituent U (Lian et al., 2002). The presence of 

Pb in many brannerite samples is mainly due to the decay of the contained U and Th (e.g. 

238
U and 

232
Th series decay). Zhang et al. (2006) heated natural brannerite samples at a 

range of temperatures up to 1100 °C and examined the thermally recrystallised products by 

XRD, SEM and TEM. Heating resulted in the formation of UO2 particles among the 

recrystallised brannerite grains as well as the formation of Pb-rich aluminosilicate glass 

films at grain boundaries. According to Zhang et al. (2006), the transition from amorphous 

(metamict) to crystalline brannerite occurs between 900-1100 °C. The recrystallisation of 
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natural amorphous brannerite on annealing at ~ 1000 °C confirms previous studies using 

XRD (Patchett and Nuffield, 1960, Vance et al., 2000), thermogravimetry / differential 

thermal analysis (TG/DTA) (Vance et al., 2000, Balek et al., 2000) and emanation thermal 

analysis (Balek et al., 2000, 2007). The crystal structure parameters of naturally occurring 

brannerite are not known with certainty due to the loss of crystallinity associated with 

metamictization. The crystal structure of synthetic, stoichiometric UTi2O6 however, 

indicates the unit is monoclinic with space group C2/m and both the U and Ti atoms are in 

distorted octahedral coordination (Szymanski and Scott, 1982). 

 

The main aim of the research reported in this chapter was to investigate the chemistry 

and mineralogy of two naturally occurring brannerite samples using multiple 

characterisation techniques including X-ray Diffraction (XRD) analysis, Scanning Electron 

Microscopy (SEM), Raman spectroscopy, Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) and Electron Probe Microanalysis (EPMA). In addition, the natural brannerite 

samples were heat treated to examine the effect of temperature on the chemistry, texture 

and microstructural properties of the two samples. Results were also compared with a 

brannerite containing leach feed sample (derived directly from a uranium bearing ore) from 

Roxbury Downs, South Australia. Results will provide an evaluation of the key differences 

between natural and heat treated brannerite samples and the likely impact of these 

parameters on the composition and structure of this mineral. 
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3.2. Materials and Methods 

3.2.1. Materials 

The details of the samples that are used in this Chapter: NBCW, NBRD and high grade 

brannerite leach feed sample are described in section 2.1 in Chapter 2. 

3.2.2. Methods 

Details of the following methods used in this chapter: XRD, EPMA mapping, ICP-MS, 

SEM, XPS and Raman spectroscopy are given in Chapter 2.  

2.2.1. Heat treatment of samples 

All heat treatments were conducted in a Carbolite HTF 18/8 furnace. The temperatures 

ranged from 100-1200 °C in air, at 100 °C intervals. All samples were individually placed 

in a platinum boat and the furnace was heated to the required temperature at a steady ramp 

rate of 6 °/min. Upon reaching the required temperature, the sample was held at the 

designated temperature for 3 h, before cooling. This procedure was then repeated for the 

same sample at the next allocated temperature. 

2.2.2. Quantitative EPMA 

The chemical composition of the natural brannerite samples was quantitatively 

determined using a JEOL 8900 Superprobe Electron Probe Microanalyser (EPMA, JEOL 

8900). The accelerating voltage and beam current were 15 kV and 10 nA, respectively. All 

analysis positions were verified as being homogeneous and flat by viewing the secondary 

electron image of the area to be analysed (at 5000 × magnification). The electron beam 

diameter was defocused to 4 µm for all analyses. The following suite of elements was 

analysed: Fe, Pb, Si, U, Ti, Th, Al, P, Ca, Y, S and O. A separate Energy Dispersive (ED) 

x-ray detector system was used during the analyses to check for the presence of other 

elements. For each element, the counting time on the peak was 20 s and half of that time 
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was measured on both sides of the peak (to measure the background). The standards used 

for calibration, the x-ray peak used, and the calculated detection limits (2σ, listed in ppm) 

were as follows: synthetic hematite (Fe2O3) for Fe(Kα), 2000 ppm, natural thorianite 

(ThO2) for Th(Mα), 1000 ppm, natural wollastonite (CaSiO3) for Si(Kα), 270 ppm, natural 

rutile for Ti(Kα), 3000 ppm, natural wollastonite for Ca(Kα), 370 ppm, synthetic 

magnesium aluminate spinel (MgAl2O4) for Al(Kα), 150 ppm, natural anglesite (PbSO4) 

for Pb(Mα), 1300 ppm, synthetic yttrium vanadate (YVO4) for Y(Lα), 420 ppm, cerium 

oxide (CeO2) for Ce(Lα), 550 ppm, natural UO2 for U(Mα), 1700 ppm. Oxygen was 

measured directly using the Kα x-ray line. The oxygen peak position was calibrated using 

the natural uraninite standard and detection limits (2σ) were calculated to be 2600 ppm.  

 

All elemental analyses were corrected for atomic number (Z), absorption (A) and 

fluorescence (F) using the CITZAF Phi-Rho-Z matrix correction procedure (Armstrong, 

1995) implemented on the JEOL 8900 EPMA. In order to determine the possible influence 

of
 
different matrix correction

 
procedures, the PAP procedure of Pouchou and Pichoir, 

(1985,
 
1991) was also used to calculate the element abundances. There was no significant 

difference in results obtained from either matrix correction procedure. 
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3.3. Results and Discussion  

3.3.1. X-Ray Diffraction and Effect of Calcination Temperature on 

Crystallinity of Natural brannerite samples 

The two natural brannerite samples were initially analysed to determine the bulk 

mineralogy of the powdered material. The XRD patterns that were obtained are shown in 

Figure 3.1a (NBCW) and Figure 3.1c (NBRD). Both patterns were characterised by having 

a broad, low intensity hump extending from 10-60 ° 2θ that lacked any recognisable 

diffraction peaks. Such patterns are characteristic of amorphous materials indicating: a) the 

brannerite in both samples was highly metamict, and, b) both samples had little 

contamination by individual gangue mineral phases that were crystalline. Note however, if 

contamination by extraneous phases was present, it was generally at levels below the 

detection limits of the XRD technique which are typically < 1-2 wt %.  

 

To confirm that the samples contained brannerite, each was calcined at 1200 °C for 24 

hours in air to recrystallise any amorphous brannerite present. Calcination conditions were 

selected on the basis of conditions used in previous studies to convert amorphous 

brannerite into a crystalline form (e.g. Vance et al., 2000). The XRD patterns for the heated 

NBCW and NBRD samples are shown in Figure 3.1b (NBCW) and Figure 3.1d (NBRD). 

Analysis of the XRD patterns using the ICDD library database indicated that the metamict 

natural samples were both successfully converted to crystalline brannerite (Database of the 

International Centre for Diffraction Data (ICDD) pattern 12-0477).  
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Figure 3.1: X-ray diffraction patterns comparing data obtained from the unheated and 

calcined brannerite samples. Peaks labelled ‘B’ indicate brannerite peaks while peaks 

labelled ‘?’ are unknown (see text for details). In both samples, the unheated material 

produced patterns consistent with an amorphous, metamict sample whereas the effect of 

calcination at 1200 °C for 24 h in air was to produce well-crystallised brannerite. 



73 

 

For sample NBCW, the XRD pattern obtained for the calcined sample contained three 

diffraction lines at ~ 15.5 °, 25 ° and 27.5 ° 2θ that were not characteristic of recrystallised 

brannerite, nor were observed in the unheated sample (Figure 3.1b). The diffraction line at 

~ 27.5 ° 2θ was most likely due to the presence of rutile/anatase (TiO2) which is typically 

associated with brannerite-rich ores while the peak at 25 ° 2θ was a possible match for 

uranothorite ([Th,U]SiO4). It is unclear as to the origin of the peak at 15.5 ° 2θ. In 

comparison, the calcined NBRD sample appeared to consist almost exclusively of 

recrystallised brannerite plus a minor amount of rutile/anatase (Figure 3.1d).  

 

The effects of calcining the two natural brannerite containing samples at temperatures 

from 100 – 1200 °C in air, at 100 °C intervals, was investigated. The main focus of these 

tests was to understand the effect of radiation damage on the stability of brannerite through 

the recrystallisation process. Results are shown in Figures 3.2 (NBCW) and 3.3 (NBRD).  
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Figure 3.2: XRD patterns obtained for NBCW calcined at different temperatures for 24 h 

in air. All patterns have been background corrected to remove the broad hump characteristic 

of metamict material. Peak positions corresponding to brannerite (ICDD pattern number 12-

477) are shown as sharp lines along the x-axis.  
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Figure 3.3: XRD patterns obtained for NBRD calcined at different temperatures for 24 h 

in air. All patterns have been background corrected to remove the broad hump characteristic 

of metamict material. Peak positions corresponding to brannerite (ICDD pattern number 12-

477) are shown as sharp lines along the x-axis.  

 

For the NBCW sample, radiation damage annealing began at temperatures as low as 

800 °C with brannerite peaks just beginning to become visible. In comparison, the NBRD 

sample did not begin to show evidence of brannerite recrystallisation until an annealing 

temperature of 900 °C was reached. Results are consistent with previous annealing 

measurements made by Vance et al. (2000) and Zhang et al. (2006) who both determined 

the metamict-crystalline transition in natural brannerite samples occurred at temperatures 

of around 900-1000 °C. It is unclear however, as to why the NBCW showed evidence of 
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recrystallisation at temperatures up to 100 °C lower than the NBRD sample. Vance et al. 

(2000) speculated that the recrystallisation temperature was related to the purity of the 

sample with the presence of impurities such as rare earths and calcium stabilising the 

brannerite structure (in air). If so, the current results indicate the NBCW sample may 

contain more impurities than the NBRD sample. 

 

3.3.1.1. Elemental compositions of Natural Brannerites 

The two natural brannerite samples were digested using a multi acid digestion 

discussed in Chapter 2 and analysed by ICP-MS to determine the elements present in both 

natural samples (Table 3.1).  

The two natural brannerite samples were digested in order to determine the bulk 

chemistry of the NBCW and NBRD samples. A summary of the bulk chemistry for each 

sample is provided in Table 5.1. Stoichiometric brannerite contains ~ 55 % U however 

both samples contained levels of uranium well below the theoretical content. Of the two 

natural brannerite samples, NBCW contained the lowest amount of uranium (24.16 % U) 

indicating the sample had impurities and contained other mineral phases. The high levels 

of elements Th, Cu, Zn, Al and Ca could suggest the occurrence of mineral phases of 

thorium oxides, sulphides and aluminium oxides with the natural brannerite sample. 
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Table 3.1: Summary of bulk chemical analysis data determined by ICP-MS for the 

natural brannerite samples NBCW and NBRD (in average weight % concentrations). 

 

Elements NBCW NBRD 

 Na 0.00 0.47 

Al 1.70 2.63 

K 0.00 10.20 

Ca 1.36 2.23 

Ti 19.30 21.04 

V 0.05 0.05 

Mn 0.04 0.15 

Fe 0.00 0.00 

Cu 2.41 0.00 

Zn 1.13 0.17 

Nb 0.31 0.77 

Mo 0.02 0.02 

Ag 0.01 0.02 

Sb 0.06 0.06 

Ba 0.01 0.00 

Ta 0.04 0.07 

Tl 0.02 0.02 

Pb 0.49 0.57 

Th 6.85 6.68 

U 24.16 26.45 

 

3.3.2. Raman Spectroscopy 

Raman spectroscopy was used to investigate any potential structural differences 

between the two brannerite containing samples, pre- and post-calcination. The samples 

were scanned between a range of 50 cm
-1

 to 3000 cm
-1

.  

 

The Raman spectra of the unheated brannerite samples are shown in Figures 3.4a and 

3.4b. In previous work, the brannerite Raman spectrum has been throughly analysed 

between 100-1100 cm
-1

, with the vibration modes fitted by Raman data from known uranyl 

titanate minerals holfertite, davidite and betafite and from known uranyl oxyhydroxide 

minerals (Frost et al., 2009, Frost and Reddy, 2010, Frost, 2011, Frost and Reddy, 2011). 
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As well, the RRUFF™ Project online database (http://rruff.info/) also contains reference 

spectra for a natural (RRUFF ID: R060613) and heated (RRUFF ID: R080091) brannerite 

sample sourced from Crockers Well. The heated sample had been calcined in air at 1000 

°C for 18 hours.  

 

For the unheated samples, both spectra may be conveniently divided into sections 

according to the position and intensity of the Raman bands. These are between 50-900 cm
-1

 

and 900-2100 cm
-1

. The bands observed in the region 50-900 cm
-1

 are typically associated 

with UO2
2+

 and Ti-O stretching vibrations while the broad Raman bands in the 1000 to 

2100 cm
-1

 region are attributed to U-OH bending modes and overtones (Frost et al., 2009). 

Normally, the UO stretching and bending modes are very intense and sharp in the Raman 

spectra of uranyl minerals (Frost et al., 2010). However, in both natural brannerite samples 

examined in the current study, these bands tended to be broad and of low intensity. It is 

likely therefore, that metamictisation has affected the Raman spectrum of brannerite 

causing the bands to become broad and overlapping. As well, it was observed that the 

intensity of bands in the 50-900 cm
-1

 region for the NBCW sample were more reduced in 

intensity than for the NBRD sample. These differences may indicate possible differences 

in the degree of metamictisation between samples. 

 

The Raman spectra for both samples after high temperature heating are shown in 

Figures 3.4c and 3.4d. Compared to the unheated samples, the effect of heating was to 

sharpen and intensify the Raman peaks. The heated Crockers Well spectrum (Figure 3.4c) 

is in excellent agreement with the Raman spectrum provided in the RRUFF™ database for 

a heated brannerite sample. 
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Figure 3.4: Raman spectra for the natural and heated brannerite samples: (a) natural 

brannerite, Crockers Well (NBCW), (b) natural brannerite, Roxby Downs (NBRD), (c) 

heated natural brannerite, Crockers Well (HNBCW), and, (d) heated natural brannerite, 

Roxby Downs (HNBRD). Y axes is in arbitrary units. 

 

3.3.3. Scanning Electron Microscopy (SEM) and EPMA Mapping 

The four samples (NBRD, NBCW, Heated NBRD and Heated NBCW) were examined 

by SEM and also mapped by EPMA to determine the key minerals associated with the 

brannerite, to examine the distribution of phases, and to examine the textures of individual 
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particles. Results are shown in Figures 3.5 and 3.6 for the Crockers Well sample and in 

Figures 3.7 and 3.8 for the sample from Roxby Downs. 

 

3.3.3.1. Crockers Well (NBCW and HNBCW) 

The unheated Crockers Well sample exhibited complex, heterogeneous microstructural 

features including evidence for alteration – most likely through interaction with an aqueous 

fluid – formation of secondary alteration products, and the presence of cracks and fractures 

within the brannerite grains and in adjacent minerals (Figures 3.5a-3.5d). The brannerite 

was intimately mixed with uranothorite ([Th,U]SiO4) and a solid solution of thorianite-

uraninite ([Th,U]O2) (Figure 3.6). The uranothorite typically formed large, porous bright 

patches within brannerite particles (Figure 3.5d) while the thorianite-uraninite typically 

was present as smaller grains (inclusions) within brannerite. Energy Dispersive (ED) 

analysis of the brannerite indicated a composition rich in thorium, consistent with the 

Crockers Well brannerite commonly being reported as Th-brannerite (Whittle, 1954, 

Ashley, 1984, Lumpkin et al., 2012). Throughout the sample there was clear evidence for 

alteration of the Th-brannerite e.g. the dark grey particle slightly below centre in Figure 

3.6a and the particle shown in Figure 3.6d. Alteration of the Th-brannerite was associated 

with an increase in P, Si, and Al (determined by ED analysis) compared to less altered 

regions. 

 

Rutile was common in the Crockers Well sample and was typically distributed as fine-

grained crystals throughout the Th-brannerite and uranothorite dominated particles (dark 

grey mineral phase in Figures 3.5a and 3.5c and Figure 3.6). In rare cases, rutile was 

present as large, (~100-150 µm) particles. Other gangue mineral phases present in the 

Crockers Well sample included: quartz (upper dark particle in top left quadrant of Figure 
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3.5b), biotite (bottom dark phase in Figure 3.5b), unidentified REE-containing phosphates 

(not shown), and zircon. 

 

Textures within the heated Crockers Well sample were less heterogeneous compared to 

the unheated sample with much of the alteration that was apparent in Figures 3.5a-3.5d 

being homogenised by the heating process. The main phases present in the heated sample 

included Th-brannerite, thorianite (ThO2 – brightest phase in Figure 3.5e) and small 

crystals of uraninite (UO2 – bright grains in Figure 3.5g). Heating the sample to 1200°C 

caused extensive recrystallisation of the brannerite to produce clusters of 2-3 µm sized, 

prismatic grains (e.g. Figures 3.5g and 3.5h). The crystalline form of the heated brannerite 

grains is of the monoclinic space group observed in synthetic brannerite (Szymanski and 

Scott, 1982). After heating, the composition of the brannerite remained Th-rich although 

patches of brannerite appeared to have more thorium than others. The presence of uraninite 

indicates that the thorianite-uraninite ([Th,U]O2 phase present in the unheated sample was 

decomposed into a ThO2 phase and a UO2 phase (note however, the ThO2 contained minor 

U in solid solution whereas the UO2 contained negligible Th - determined by ED analysis). 

Larger gangue mineral phases such as rutile (Figure 3.5f) remained unaffected by the 

heating process although the smaller rutile grains that were originally present within the 

Th-brannerite appear to have undergone some recrystallisation forming small equant 

crystals (Figure 3.5h). 
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Figure 3.5: Representative back-scattered electron (BSE) images of brannerite samples 

from Crockers Well Images a-d are from the unheated sample showing Th-containing 

brannerite (medium grey) and recrystallisation to secondary phases including uranothorite 

(white) and rutile (small black patches). Additional dark phases in images b) and d) include 
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quartz and unidentified aluminosilicates. Images e-f are from the heated sample showing Th-

containing brannerite (medium grey), uraninite (white) and rutile (small black patches). The 

large dark particle in f) is a rutile grain. Images g-h show magnified images of recrystallised 

areas. Note the recrystallisation of the brannerite to produce clusters of 2-3 µm sized, 

prismatic grains (medium grey phase in 3.5f) with uranothorite at grain boundaries (white 

phase in 3.5f) and small rutile crystals (dark phase in 3.5f and 3.5h). See text for further 

details.  

 

EPMA mapping of the unheated Crockers Well samples (Figures 3.6a and 3.6b) 

confirmed the uranium-bearing mineralogy was made up mostly of Th-rich brannerite, 

uranothorite and a small amount (< 5 %) of an unidentified (U,Th,Ti,Si,Ca) oxide mineral 

– this was assumed to be an alteration product of the Th-rich brannerite. Minor gangue 

phases present in the unheated sample included (in approximate order of abundance) rutile, 

unidentified aluminosilicates, zircon and apatite. These additional gangue phases were not 

previously identified by the XRD analysis due to their relatively low abundance i.e. XRD 

is sensitive to mineral phases in abundances greater than about 1-2 wt %. 

 

The heated Crockers Well sample had a grain population that exhibited less 

heterogeneous mineral and textural features than the unheated material (Figures 3.6c and 

3.8d). The main mineral phase identified in the heated sample was Th-brannerite (over 70 

%) although there was also uranothorite, a higher-Th brannerite, rutile and an unidentified 

(Th,Ca)-phosphate. Minor amounts of quartz, titanite and zircon were also identified in the 

heated sample. 
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Figure 3.6: Back-scattered electron (BSE) image and corresponding classified mineral 

maps for the Crockers Well sample. Images a) and b) represent the natural, unheated sample 

(NBCW) while images c) and d) are from the sample calcined at 1200 ° C (HNBCW). 
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3.3.3.2. Roxby Downs (NBRD and HNBRD) 

The natural sample from Roxby Downs consisted of a range of heterogeneous particles 

containing predominantly brannerite with smaller grains and inclusions of uranothorite, 

rutile, a thorianite-uraninite ([Th,U]O2 phase and a Th-rich brannerite phase (Figure 3.7a-

3.7c). Minor impurity phases included quartz, titanates and unidentified aluminosilicates. 

In general, impurity phases were much less common in the Roxby Downs brannerite 

sample compared to the one from Crockers Well. In patches, the brannerite showed 

evidence for extensive alteration (Figure 3.7d) and ED analysis of the altered material 

indicated that brannerite alteration was accompanied by a decrease in uranium and an 

increase in Si, Ca and Al.  

 

Heating of the sample was associated with extensive recrystallisation (Figures 3.7e-

3.7g) and segregation of phases. For example, Figure 3.7h shows a magnified view from a 

recrystallised brannerite particle – phases present include a Pb-silicate phase (dark grey) 

which appeared to have formed as a low melting point phase interstitial to prismatic 

brannerite grains (medium grey in Figure 3.7h) and uraninite (brightest phase). As with the 

Crockers Well sample, heating of the Roxby Downs sample appears to have broken down 

the thorianite-uraninite ([Th,U]O2 into separate ThO2 and UO2 phases. The presence of 

uraninite and Pb-rich aluminosilicate glass films at grain boundaries is consistent with 

previous observations on brannerite heated up to 1000 °C made by Zhang et al. (2006). 
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Figure 3.7: Representative back-scattered electron (BSE) images of brannerite samples 

from Roxby Downs Images a-d are from the unheated sample showing Th-rich brannerite 

(medium grey) and recrystallisation to secondary phases including uranothorite (white) and 
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rutile (small black patches). Image d) shows a hydrothermally altered section of a grain with 

uranothorite (white) at grains boundaries of Th-brannerite (medium and dark grey phases). 

Images e-f are from the heated sample showing Th-containing brannerite (medium grey), 

needle-like uraninite (white) and rutile (small black patches). The large dark particles in e) 

are rutile grains. Image h) shows a magnified view of the recrystallisation of the brannerite to 

produce clusters of < 5 µm sized, prismatic grains (grey) mixed with uraninite (white) and an 

interstitial Pb-silicate phase (dark). See text for further details.  

 

EPMA map images showing mineral textures and phases present in the heated and 

unheated Roxby Downs sample are shown in Figure 3.8. The map for the unheated sample 

confirmed the lack of substantial amounts of impurities in the brannerite compared to the 

Crockers Well sample. After heating, the recrystallised sample exhibited a similar texture 

to that observed in the Crockers Well sample (c.f. Figures 3.8d and 3.6d).  
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Figure 3.8: Back-scattered electron (BSE) image and corresponding classified mineral 

maps for the Roxby Downs sample. Images a) and b) represent the natural, unheated sample 

(NBRD) while images c) and d) are from the sample calcined at 1200 ° C (HNBRD). 
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3.3.4. Chemistry of Natural Brannerite - Quantitative EPMA 

Average compositions for brannerite and associated uranium-containing mineral phases 

in the natural and recrystallised samples are provided in Table 3.2 and are described 

separately below. 

 

3.4.1. Crockers Well (NBCW and HNBCW) 

The brannerite in the unheated Crockers Well sample exhibited the following 

compositional ranges, based on fifteen analyses 7-10 wt % Th, 18-21 wt % Ti, 31-34 wt % 

U. Additional constituents include on average 0.9 wt % Fe, 0.4 wt % Si, 2.2 w t% Ca, < 0.1 

wt % Al, 2.4 wt % Pb, 1.3 wt % Y, 0.1 wt % Zr and 0.7 wt % Ce. According to the 

analyses, the Crockers Well brannerite is thorium-rich, consistent with previous analyses 

from Whittle (1954) – included in Table 3.2 – and indicative of partial solid solution 

between brannerite and thorutite (ThTi2O6 – which has the brannerite structure). The data 

of Whittle (1954) also indicate the Crockers Well brannerite is hydrated, containing ~ 10 

wt % H2O. Total analysed contents of the brannerite measured via EPMA ranged from 88 

to 93 %. These low totals are likely to reflect a combination of partially hydrated 

brannerite (c.f. Whittle, 1954), and metamict or slightly amorphous brannerite as described 

by Lumpkin et al. (2012). Assuming direct substitution of Th for U, the low combined 

U+Th compared to stoichiometric brannerite (41 wt % U+Th compared to 55 wt % U) 

indicates that up to 25 % (by weight) of the original amount of U+Th was lost as a result of 

alteration. As indicated by the extensive variation in BSE contrast in Figures 3.6a-3.6d, a 

large proportion of the sample is altered and fine-grained rutile and thorianite are present - 

presumably both formed as a result of alteration of the host natural brannerite.  
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For the heated sample, three uranium containing mineral phases were analysed. These 

included a brannerite of similar composition to the unheated sample, a high-Th brannerite 

and thorianite. Based on the SEM and EPMA results, uraninite was also present in the 

heated sample. However grainsizes of the uraninite were typically small and below the 

resolution of the EPMA’s analytical capability. The brannerite exhibited the following 

compositional ranges, based on nine analyses, 9-11 wt % Th, 21-24 wt % Ti, 34-36 wt % 

U. Additional constituents included on average 1.1 wt % Fe, 0.1 wt % Si, 1.7 wt % Ca, < 

0.1 wt % Al, 0.1 wt % Pb, 1.3 wt % Y, 0.1 wt % Zr and 1.0 wt % Ce. Total analysed 

contents of the brannerite measured via EPMA ranged from 97-100 % indicating that 

dehydration accompanied recrystallisation of the brannerite. Compared to the brannerite in 

the unheated sample, the heated brannerite contained less Si, less Ca and significantly less 

Pb. These elements appeared not to be stabilised in the high temperature brannerite with 

the Ca and Si being incorporated into a Ca silicate mineral phase (Figure 5) and the Pb and 

Si into a Pb-rich aluminosilicate film at grain boundaries. The heated sample also 

contained a high-Th brannerite (22 wt % Th, 25 wt % U) and a low uranium thorianite 

phase (1.8 wt % U, 61 wt % Th and 9.4 % Si). 
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Table 3.2: Average compositions of brannerite and other U-contaiing minerals in natural and heated samples from Crockers Well and Roxby Downs. 

 

n.d. = below detection limit 

* data from Whittle (1954). Sample includes ~10 wt % H2O, 0.19 % Sc2O3 and 0.13 % P2O5 

** including Er 

 

 

Element 

(wt %) 

Brannerite 

(UTi2O6) 

Ideal 

Brannerite- 

Crockers 

Well
*
 

Brannerite 

NBCW 

Brannerite 

HNBCW 

High- Th 

Brannerite 

HNBCW 

Thorite 

HNBCW 

Brannerite 

NBRD 

Med-Th 

Brannerite 

NBRD 

High-Th 

Brannerite 

NBRD 

Brannerite 

HNBRD 

High- Th 

Brannerite 

HNBRD 

Fe  0.96 0.90 1.07 1.06 0.05 1.07 1.64 0.47 1.07 1.05 

Th  11.26 8.46 10.93 22.03 60.88 9.46 14.15 28.36 11.85 29.88 

Si  - 0.40 0.12 1.57 9.40 0.31 0.19 2.77 0.91 1.61 

Ti 22.29 22.29 20.01 23.41 21.99 0.74 19.69 21.05 10.81 22.49 18.00 

Ca  - 2.19 1.68 1.18 0.32 2.03 1.93 0.87 1.77 1.96 

Al  - 0.06 0.04 0.13 0.17 0.03 0.06 0.03 0.12 0.12 

Pb  2.59 2.40 0.11 0.69 0.62 2.47 2.18 1.38 2.61 3.72 

Y  2.92
**

 1.29 1.32 0.97 0.57 1.17 1.46 0.93 1.30 0.82 

U 55.37 26.49 32.48 35.21 25.01 1.80 30.75 25.73 21.07 31.86 16.24 

Zr  - 0.11 0.07 0.42 0.13 0.10 0.22 0.62 0.18 0.27 

Ce  1.22 0.74 1.00 0.30 n.d. 0.85 1.48 0.71 0.49 0.31 

O 22.33 - 21.67 23.84 24.55 20.77 21.22 22.46 21.58 23.23 23.31 

Total 99.99 99.34 90.67 98.78 99.87 95.05 89.11 92.49 89.53 98.84 98.35 

# Analyses   15 9 5 5 11 5 5 9 3 
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3.4.2. Roxby Downs (NBRD and HNBRD) 

Three distinct brannerite-like phases were observed in the unheated Roxby Downs 

sample (Table 3.2). The first, and most abundant type, contained significant thorium and 

had a similar composition (9-10 wt % Th, 19-20 % Ti, 28-33 wt % U from eleven 

analyses) to the brannerite from Crockers Well. There was also a medium-Th brannerite 

(14 wt % Th, 21 wt % Ti, 26 wt % U) and a high-Th (28 wt % Th, 11 wt % Ti, 21 wt % U) 

brannerite. For the latter phase it was not clear if this was a true brannerite phase (the 

average Ti was low compared to the typical Ti levels of ~19-21 wt % measured in all other 

brannerite phases). This composition may represent a mixture of fine-grained brannerite 

and thorianite phases. 

 

In the heated Roxby Downs sample, two uranium containing mineral phases were 

analysed. These included a brannerite of similar composition to the unheated sample, plus 

a high-Th brannerite. The brannerite exhibited the following compositional ranges, based 

on nine analyses, 9-15 wt % Th, 22-23 wt % Ti, 29-35 wt % U. Additional constituents 

included on average 1.1 wt % Fe, 0.9 wt % Si, 1.8 wt % Ca, 0.1 wt % Al, 2.6 wt % Pb, 1.3 

wt % Y, 0.2 wt % Zr and 0.5 wt % Ce. Total analysed contents of the brannerite measured 

via EPMA ranged from 96-101 %. The heated sample also contained a high-Th brannerite 

mineral phase (30 wt % Th, 18 wt % Ti, and 16 wt % U). 

 

3.5. Examination of a brannerite ore (XRD / EPMA) 

The mineralogy of a ‘high grade’ brannerite uranium leach feed sample (uranium 

bearing ore sample that had been through a flotation process) from the Roxby Downs 

region, South Australia was investigated. 
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The bulk mineralogy of the aforementioned sample was analysed by XRD and the 

pattern that was obtained is shown in Figure 3.9. The pattern was characterised by having 

three major phases of quartz (SiO2) (ICDD pattern 01-085-1054), hematite (Fe2O3) (ICDD 

pattern 0-013-0534) and feldspar potassium (K0.5Na0.5AlSi3O8) (ICDD pattern 01-084-

0710). A minor phase that was identified with this pattern was rutile (TiO2) (ICDD pattern 

00-004-0551). No brannerite matches were observed.  

 

 

Figure 3.9: XRD pattern obtained for high grade brannerite uranium leach feed. Peak 

positions corresponding to quartz (SiO2) (ICDD pattern 01-085-1054) (Red), hematite (Fe2O3) 

(ICDD pattern 0-013-0534) (Pink) and feldspar potassium (K0.5Na0.5AlSi3O8) (ICDD pattern 

01-084-0710) (Blue) are shown as sharp lines along the x-axis.  
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Due to the lack of recognisable brannerite diffraction patterns EPMA analysis was used 

to locate the brannerite within this sample. Quantitative EPMA analysis was not performed 

on this sample as the map analysis gave an accurate representation of the types of minerals 

found within the sample. 

The leach feed sample consisted of a range of heterogeneous particles containing 

predominantly quartz, iron oxides and feldspar potassium with smaller grains and 

inclusions of barite ((Ba, Pb)SiO4), portlandite (Ca(OH)2), bastnasite ((Ce, La)FCO3), 

rutile and aluminosilicate phases (Figure 3.10).  

 

 

Figure 3.10: Mineral phase map for the Leach feed, Olympic Dam sample.  

 

The brannerite (Figure 3.11) was found to be encapsulated within an aluminosilicate 

(high in potassium and iron) / quartz grain. The brannerite particles were also in close 

proximately to a portlandite inclusion with the aluminosilicate / quartz grain.  
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The map data obtained for the brannerite in the leach feed sample largely confirmed the 

XRD results as the sample is dominated by quartz, feldspar potassium and hematite. While 

other minerals are present, they are generally at low abundance and hence wouldn’t be 

picked up by XRD. Even though this is presented as a ‘high grade’ brannerite sample, the 

actual amount of brannerite is very low. This conclusion is not surprising as the bulk 

sample contained very low total U and presumable most of the total U is present as 

uraninite. 

 

 

Figure 3.11: Mineral phase map magnified to 100 µm, showing brannerite inclusions.  
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3.4. Conclusions 

Two natural brannerite samples from the Crockers Well and Roxby Downs deposits in 

South Australia were studied by XRD, Raman spectroscopy, SEM imaging and EPMA to 

determine their chemical, textural and structural properties. In addition the samples were 

heat treated to examine the effect of temperature on recrystallisation, mineral stability and 

deportment of impurities.  

 

The XRD analysis of the unheated samples indicated both were amorphous having 

undergone radiation-induced metamictisation. The crystallinity of the brannerite was 

restored upon heating of the samples to 1200 °C for 24 hours in air. For the Crockers Well 

sample, radiation damage annealing began at temperatures as low as 800 °C while the 

Roxby Downs sample did not begin to show evidence of brannerite recrystallisation until 

an annealing temperature of 900 °C was reached. 

 

Raman spectroscopy indicated that the effect of metamictisation was to make the peaks 

broad and of low intensity. The intensity of bands in the 50-900 cm
-1

 region for the 

Crockers Well sample were more reduced in intensity than for the Roxby Downs sample 

possibly indicating differences in the degree of metamictisation. After heating, the Raman 

peaks were sharpened and intensified due to the increased crystallinity. 

 

SEM and EPMA investigations indicated that both samples exhibited complex, 

heterogeneous microstructural features including evidence for alteration, formation of 

secondary alteration products, and the presence of cracks and fractures within the 

brannerite grains and in adjacent minerals. In each sample, the brannerite was Th-rich (~ 8-

10 wt % Th) indicating partial solid solution between brannerite and thorutite (ThTi2O6) 
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and was intimately mixed with uranothorite ([Th,U]SiO4) and a solid solution of thorianite-

uraninite ([Th,U]O2). Typical gangue mineral phases included: rutile (distributed as fine-

grained crystals throughout the Th-brannerite and uranothorite dominated particles), 

quartz, aluminosilicates, unidentified REE-containing phosphates, zircon, titanates and 

apatite. 

 

In the heat treated natural brannerite samples (HNBCW and HNBRD), the 

recrystallisation of the brannerite caused a number of chemical changes. The heated 

brannerite generally contained less Si, less Ca and significantly less Pb. These elements 

appeared not to be stabilised in the high temperature brannerite with the Ca and Si being 

incorporated into a Ca silicate mineral phase and the Pb and Si into a Pb-rich 

aluminosilicate film at grain boundaries. In addition, both samples contained a high-Th 

brannerite (up to 22-30 wt % Th). The thorianite-uraninite phase in the unheated samples 

was decomposed into separate ThO2 and UO2 phases after heating. 

 

A ‘high grade’ brannerite leach feed sample from the Olympic Dam deposit in South 

Australia was also studied by XRD and EPMA mapping analysis to determine the gangue 

mineralogy. XRD analysis of the ‘high grade’ ore samples indicated that the sample was 

high in quartz, iron oxides and feldspar potassium (no X-ray diffraction pattern for 

brannerite could be identified). EPMA mapping investigations determined very low 

quantities of brannerite within a quartz grain.  
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Chapter 4  

 

 

Synthesis, characterisation, 

dissolution and 

electrochemical behaviour of 

synthetic brannerite (UTi2O6) 

 

 

 

This chapter includes results on the synthesis and dissolution of synthetic brannerite 

(UTi2O6). Results on the influence of the start U : Ti ratio used to prepare synthetic 

brannerite on the purity of synthetic brannerite produced are presented along with results 

on the influence of the following parameters on synthetic brannerite dissolution: 

Temperature, [Fe(III)] and [H2SO4]. This chapter also includes studies on the dissolution of 

brannerite using an electrochemistry technique. 
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4.1. Introduction 

The synthesis of synthetic brannerite has been of interest due to its potential as a 

storage material for radioactive waste generated from nuclear fuel and secondly due to the 

potential of this material for use in gaining an improved understanding of the dissolution of 

brannerite found in commercially important uranium ore bodies. As mentioned previously 

a greater understanding of the chemistry of brannerite leaching is important for the 

development of improved processes for the production of uranium for use in nuclear fuel. 

As mentioned earlier (Chapter 1), there are many ways to synthesise synthetic 

brannerite (UTi2O6), from wet grinding to mechano-chemical methods. Synthesis of 

brannerite using the wet grinding method involves the following: stoichiometric oxide 

mixtures are cautiously mixed and calcined to 1100 °C for 5 hours in air; wet ground for 1 

hour; andpressed into pellets under pressure and calcined at 1480 °C for 24 hours in air (Lu 

et al., 2006). The mechano-chemical method of synthesising brannerite involves the use of 

high purity uranium oxide and anatase (TiO2) which is dry mixed, followed by ball-milling 

and pressed into a pellet and calcined in a mixture of CO (5 %) and CO2 for 300 hours at a 

temperature of 1350 °C (Donaldson et al, 2005). The most common technique to 

synthesise UTi2O6 is using the alkoxide/nitrate route under low-oxygen conditions 

(Ringwood et al., 1988 and Szymanski and Scott, 1982). The alkoxide/nitrate route 

involves the following five reaction steps for the synthesis to take place, they include; 

preparation of an aqueous solution containing stoichiometric amounts of U and Ti, co-

precipitating as U and Ti hydroxides, calcining the hydroxides to remove water, nitrate and 

alcohol, wet milling and drying and finally hot-pressing the milled product at 1260 °C for 

2 hours under 21 MPa in graphite dies.  
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As mentioned previously in Chapter 1 the main reasons that brannerite has not been 

extensively exploited as a source of uranium is due to the uranium in this mineral generally 

has been found to be difficult to leach under mild conditions (such as those used to leach 

uraninite). The dissolution of the non-substituted form of brannerite, UTi2O6, has been 

proposed by Gogoleva to occur via reactions 1 and 2 in acidic media containing ferric ion 

(Gogoleva, 2012). 
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Thomas and Zhang have also proposed a reaction sequence for brannerite dissolution 

(reactions 3 and 4) that involves the oxidation of U
4+

 to U
6+

 on the brannerite surface 

followed by a second reaction that involves surface complexation of the U
6+

 from the 

lattice (Thomas and Zhang, 2003). 
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���     (Equation 4.4) 

 

Where ‘S’ represents the surface of the brannerite, ‘L’ represents a single complexing / 

coordinating species such as H
+
, ‘n’ represents the reaction order and “ULn” represents all uranium 

solution species that are unknown. 

 

As previously mentioned in 1.5.2, there have been several studies conducted on the rate 

and / or extent of dissolution of both natural and synthetic brannerites over a range of 

conditions using various processes. Muralikrishna et al (1991) used a combination of 
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gravity concentration and wet high intensity magnetic separation to obtain 93% uranium 

extraction from a natural brannerite containing ore from Ramsingpura, India, under the 

following conditions: 1224 kg H2SO4 / t, 80 °C, 6 hours (Muralikrishna et al., 1991). They 

concluded that concentrated acid leaching is required to extract uranium from the pre-

concentrate. Ifll et al determined that natural brannerite 

(U0.629Th0.039Ca0.20)(Ti2.199Fe0.13)O69) from the New Quirke and Panel mines at Elliot Lake, 

Ontario, was not readily leachable in sulphuric or hydrochloric acid solutions under the 

following conditions: 75 g/L H2SO4, 5 g/L NaClO3, 4 g/L Fe
3+

 as Fe2(SO4)3, 60 °C, 8 

hours. Ifill et al (1996) reported that the resistance of brannerite to leaching was not 

improved by textural and morphological variations nor by crystallite size (Ifill et al., 1996). 

Studies by Macnaughton et al (1999) showed that natural brannerite (U(Ti, Fe)2O6) from 

the Olympic Dam deposit in South Australia was found to be entirely unaffected by 

leaching under the conditions used (20 g/L H2SO4, 55 °C, 1 g/L of Fe (Fe
2+

:Fe
3+

 = 1:1, 12 

hours) (Macnaughton et al., 1999)), where no visible effects on either morphology or 

composition were observed. Lottering et al investigated natural brannerite dissolution from 

Vaal river ore bodies from South Africa (bulk mineralogy of brannerite was found to be 

(U, Th, Ca)(Ti, Fe)2O6) and found that under the conditions studied (temperature of 40 °C, 

50 °C and 60 °C, 36.5 % Fe as a solid oxidant, 647 g/L H2SO4). Lottering et al reported 

that since the total uranium dissolution obtained (90 %) could not be accounted for by 

uraninite alone (composition of ore was Uraninite 85 %, Brannerite 12 %) that some of the 

brannerite must have dissolved (Lottering et al., 2008). Gogoleva et al, 2012 also found 

that natural brannerite (from a uranium deposit at Jakutia in Russia) dissolution rates were 

significantly influenced by temperature and acid concentration under the conditions studied 

(10-200 g/L H2SO4, 0.0025-0.010 M Fe
3+

 as Fe2(SO4)3 and 70 °C for 8 hours). 
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The majority of studies that have been published in the open literature on the 

dissolution of synthetic brannerites have been focussed on determination of the stability of 

this mineral when used as a storage material for radioactive waste (where it is commonly 

referred to as synroc) (Zhang et al., 2001). The conditions used in these studies (simulated 

environmental conditions) are however significantly different to those used in uranium 

minerals processing. Shatalov et al investigated the dissolution of synthetic brannerite 

under conditions relevant to minerals processing. They reported that synthetic brannerite 

can be completely dissolved in solution containing 10-15 g/L H2SO4 at 140 
o
C in an 

oxidative autoclave leaching process (Shatalov et al., 2007). 

  

Although there have been several studies that have reported on the dissolution of 

brannerite published in the literature there have been no detailed studies conducted on the 

dissolution of this mineral under conditions similar to those used in uranium minerals 

processing. There is also very little information on the mechanism of dissolution of this 

mineral under these conditions.  

 

As mentioned in Chapter 1, there have been no specific studies to investigating the 

electrochemical behaviour of brannerite. As previously discussed in section 1.4.2.3 in 

Chapter 1, studies on minerals such as chalcopyrite in carbon paste electrodes have been 

shown it to be a reliable way to observe the leaching behaviour, particularly in regards to 

the effects of electrolyte and temperature on dissolution processes surface passivation, and 

the study of possible leaching mechanisms. The use of carbon paste electrodes (CPE) to 

measure minerals by electrochemically means have been previously applied predominantly 

to sulphide minerals. Studies included; similar conditions under which industrial leaching 

of sulphide minerals had taken place (Cruz et al., 2005), and for chalcopyrite to determine 
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the differences in the kinetics of the leaching process in different acidic media (Lazaro et 

al., 1995). The electrochemical activity of galena in CPE was studied and is directly 

proportional to the amount of galena present at the electrode surface and therefore minerals 

in powder form and flotation concentrates can be used directly as electrode material, which 

implies the optimisation of individual leaching processes (Ahlbery and Asbjornsson, 

1993). Studies of voltammetric in carbon paste are thus able to give a preliminary screen 

for the conditions under which a mineral will effectively leach, and enable convenient 

iteration to leaching parameters that are likely to be effective in a metallurgical process. 

  

The main aim of the research presented in this chapter were (1) To synthesise and 

characterise UTi2O6 that has as little impurities such as rutile (TiO2) and uraninite (UO2); 

(2) To investigate the rate of dissolution of synthetic brannerite over a range of conditions 

including conditions similar to those used in tank based leaching of uranium minerals. The 

conditions investigated included temperature, [Fe(III)] and [H2SO4], (3) To investigate the 

mechanism of brannerite dissolution and (4) To investigate and probe the electrochemical 

behaviour of synthetic brannerite using a carbon paste electrode, under a range of varying 

[H2SO4] solutions and at differing temperatures which were relevant to commercial 

leaching 
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4.2. Materials and Methods 

4.2.1. Materials 

Uranyl acetate (UO2(CH3COO)2.2H2O) (97.5 %) and titanyl sulphate dihydrate 

(TiOSO4.2H2O) (97 %) were used as received. Sulphuric acid (H2SO4) (Aldrich Chemical), 

iron sulphate (Fe2(SO4)3) (Aldrich Chemical), nitric acid (HNO3) (70 % AR grade) (Merck 

Led) and 1000 ppm uranium ICP-MS standard (AccuStandard). Carbon Paste (CP) was 

used as received from Bioanalytical Systems (West Lafayette, USA). Milli-Q water (H2O) 

(18 MΩ cm) was used for material synthesis, dissolution and electrochemical experiments.  

 

4.2.2. Methods 

The details of the methods used to conduct the research presented in this chapter for 

characterisation studies (XRD, SEM/EDX Mapping, XPS and ICP-MS analysis) and 

dissolution test procedures are given in Chapter 2. 

 

4.2.2.1. Electrochemical methods 

To prepare the working formula, a 1:1 ratio of Carbon Paste: Synthetic Brannerite (by 

weight) was freshly prepared by grinding in a mortar and pestle, to obtain a homogeneous 

paste. This paste was placed in a working electrode with a diameter of approximately 0.3 

cm, levelled with a spatula and polished on low roughness paper to obtain a flat, 

reproducible surface. Based on amounts of brannerite used, and SEM mapping studies of 

carbon paste/synthetic brannerite surfaces after preparation, the estimated area of exposed 

brannerite in all voltammetric and scanning experiments were 0.7 cm
2
. All experiments 

were undertaken under a nitrogen atmosphere in a 100 mL temperature controlled glass 

reactor with a Pt wire as a counter electrode, an Ag/Ag/Cl reference electrode held at 
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ambient (220 °C) temperature by separation from the reaction vessel with a salt bridge, and 

a compressed and polished Carbon Paste-brannerite mixture as the working electrode. The 

reactor was maintained at the desired temperature with a circulating hot water bath. 

Electrochemical experiments were undertaken with a CH Instruments CH920D 

potentiostat. Solutions of varying concentrations of H2SO4 were prepared with Milli-Q 

water (H2O) (18 MΩ cm). For potential scanning experiments in H2SO4 the Carbon Paste-

brannerite working electrode was initially rested in the electrolyte solution for 10 min 

before scanning as practice showed that this resulted in the most reproducible results. 

 

4.3. Results and Discussion 

4.3.1 Synthesis and Characterisation of Synthetic Brannerite 

Synthetic brannerite (UTi2O6) was prepared using a method similar to that reported by 

Hussein et al (2008). This method involved the following: Oxalic acid (12.607 g in 100 

mL), uranyl acetate (0.0557 g) and titanyl sulphate dihydrate (0.1345 g) were added to 

Milli-Q water (50 mL) and the resulting mixture was agitated until clear to confirm 

dissolution of all components; the resulting solution was then heated (200 °C) to dryness 

and the solids collected; the solids obtained were then calcined at 600 °C for 5 hours in 

Ar/H2 (95 %/ 5 %) and then ground with a mortar and pestle before being calcined in 

Ar/H2 at 1200 °C for 96 hours.  

 

An XRD pattern of synthetic brannerite prepared using the aforementioned quantities 

of oxalic acid, uranyl acetate and titanyl sulphate dihydrate is presented in Figure 4.1. The 

pattern displays all of the diffraction lines associated with the mineral brannerite. In 

addition a low intensity diffraction line not due to brannerite is present at ~ 28.5 °. This 
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diffraction line is most likely due to the presence of uraninite in the prepared material. The 

intensity of this line which is the main diffraction line for uraninite is low however 

compared to those obtained for brannerite, and hence indicative of the sample containing 

only a low amount of uraninite. Based on the results presented in Figure 4.1 it was decided 

to investigate the influence of the U : Ti ratio to determine the purity of synthesis UTi2O6.  

 

 

Figure 4.1: XRD pattern of prepared brannerite (▲ brannerite, ● rutile and ■ uraninite 

patterns). 
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4.3.1.1. Investigations on the influence U : Ti ratios on preparation of synthetic 

brannerite 

The influence of the initial U:Ti ratio on the purity of synthetic brannerite produced 

using the method discussed in the previous section was investigated. Six synthesis 

experiments were conducted with varying Ti molar concentrations, (Table 4.1) while the 

concentration of U was kept constant. The XRD patterns of the materials prepared using 

the varying U:Ti ratios are shown in Figure 4.2. All materials clearly contained brannerite 

based on the XRD results obtained. The U:Ti ratio used however did influence the extent 

of uraninite and rutile impurity (based on the intensity of the diffraction lines observed for 

these compounds in prepared brannerites). If there were less than 5.23 mols of Ti in the 

system, the formation of uraninite (ICDD 01-075-0421) is prominent. If there were more 

than 5.23 of Ti in the system, the formation of uraninite (ICDD 01-075-0421) and rutile 

(001-1292) is observed. It was seen that the composition of experiment A is the optimum 

Ti/U ratio to synthesise brannerite.  

 

Table 4.1: Varying Ratios of U vs. Ti for the synthesis of undoped brannerite. 

Experiment Uranium (mols) Titanium (mols) U : Ti Molar 

Ratio 

A 0.525 2.745 1 : 5.23 

B 0.525 2.725 1 : 5.19 

C 0.525 2.735 1 : 5.21 

D 0.525 2.752 1 : 5.24 

E 0.525 2.755 1 : 5.25 

F 0.525 2.900 1 : 5.52 
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Figure 4.2: XRD patterns of products obtained using differing ratios of U:Ti to synthesise 

undoped brannerite (♦ brannerite, ▲ rutile and ■ uraninite patterns). 
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4.3.1.2. SEM/EDX Mapping Analysis 

SEM/EDX mapping analysis was used to investigate the homogeneity of the prepared 

brannerite and the degree of uraninite impurity. The results obtained from SEM / EDX 

mapping analyses are presented in Figure 4.3. Figure 4.3 shows the homogeneity of the 

synthesised brannerite, where no significant clusters of titanium or uranium can be 

observed. The lack of significant clusters of uranium in the mapping image indicated that 

the prepared brannerite contained only minor amounts of uraninite.  

 

 

Figure 4.3: SEM/EDX mapping analysis of prepared synthetic brannerite a) SEM image 

of UTi2O6, b) and c) SEM/EDX maps showing the distribution of titanium (b) and uranium 

(c).  
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4.3.1.3. XPS Analysis 

An XPS spectra obtained for a sample of the prepared synthetic brannerite is shown in 

Figure 4.4. The spectrum contains two main peaks U 4f7/2 (380.12 eV) and 4f5/2 (391.63 

eV), around 10.78 eV apart due to the spin-orbit splitting, as well as their corresponding 

satellite peaks (marked sat 4f7/2 and 4f5/2). The two main peaks at 380.12 and 381.68 eV are 

due to U
4+

 and U
6+

, respectively. The main satellite peak for U
4+

 was observed at 7.15 eV 

from the U
4+

 4f7/2 peak and U
6+

 was located 6.88 and 7.9 eV above the U
6+

 4f5/2 peak. The 

presence of U
6+

 at the surface, which based on the intensity of the peaks obtained is less 

than the amount of U
4+

 present, is most likely due to oxidation of surface U
4+

 from 

exposure of the sample to air. Oxidation of surface U
4+

 has been previously reported to 

occur in synthetic brannerite (Colella et al., 2005). Based on the lack of any pattern for a 

U
6+

 bearing compound in the XRD pattern obtained the total amount of U
6+

 present in the 

prepared synthetic brannerite was most likely low and most likely restricted to the surface 

of the sample. 
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Figure 4.4: XPS U 4f spectra of synthetic UTi2O6 showing curve fitting using 

Gaussian/Lorentzian peaks. Dashed lines are shown for the fitted peaks, solid black lines are 

shown for the satellite peaks and the thick black line represents the envelope of the fit. All 

energies are shifted by 0.71 eV as their calibration was based on fixing the C 1s peak at 285 

eV.  
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4.3.2. Dissolution Studies using a standard reaction vessel 

The influence of temperature, [Fe(III)] and [H2SO4] on synthetic brannerite dissolution 

was investigated. These studies ecompassed testing under some conditions very similar to 

those used in large scale tank based uranium minerals leaching processes.  

 

4.3.2.1. Synthetic brannerite dissolution under conditions similar to those used in 

large scale tank based uranium minerals leaching processes 

Four dissolution experiments were conducted to investigate the dissolution of synthetic 

brannerite under temperature and [H2SO4] conditions similar to those used in large scale 

tank based leaching of uranium minerals (T ~ 50 °C, [H2SO4] ~ 15 g/L (Macnaughton et 

al., 1999). The influence of [Fe(III)] under the aforementioned conditions was also 

investigated. The conditions used in these tests and the results obtained are given in Table 

4.2 and Figure 4.5 respectively. From the results presented in Figure 4.5 it can be seen that 

only a very small amount of dissolution of synthetic brannerite occurred (as a percentage 

of the initial slurry concentration), under the conditions used, within 6 hours. Increasing 

[Fe(III)] clearly had no influence on brannerite dissolution under the conditions used. 

 

Table 4.2: Conditions for tests conducted on influence of [Fe(III)]. 

Test condition Value 

Initial brannerite slurry concentration 100 mg/L as U 

Temperature 50 °C 

[H2SO4] 15 g/L 

[Fe2(SO4)3]  3, 6, 9 and 12 g/L (as [Fe(III)]) 

Solution ORP 650-700 mV 
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Figure 4.5: % Uranium (brannerite) dissolved as a function of time for solutions 

containing various [Fe(III)]. Refer to Table 1 for reaction conditions. 

 

4.3.2.2 Effect of temperature  

The effect of temperature on the dissolution of synthetic brannerite was investigated 

over the temperature range 50 – 95 °C. Other conditions used in these tests are given in 

Table 4.3. The results showed that an increase in temperature from 50 °C to 95 °C 

increased the dissolution of UTi2O6 in 1 hour from ~ 1 % to ~ 8 %. At 95 °C, ~ 16 % 

uranium was dissolved from UTi2O6 after 6 hours (Figure 4.6).  

 

Table 4.3: Conditions for tests conducted on influence of temperature. 

Test condition Value 

Initial brannerite slurry concentration 100 mg/L as U 

Temperature 50, 65, 80, 95 °C 

[H2SO4] 15 g/L 

[Fe2(SO4)3]  3 g/L (as [Fe(III)]) 

Solution ORP 600-700 mV 
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Figure 4.6: % Uranium dissolved as a function of time at various temperatures. Refer to 

Table 4.2 for test conditions.  

 

The brannerite dissolution / uranium leaching from brannerite kinetics obtained from 

the tests conducted were analysed to investigate the order of the dissolution. The results of 

this analysis showed that the kinetics’ of dissolution of uranium from synthetic brannerite 

were most closely fitted by first order kinetics under the conditions studied (Figure 4.7). 

When synthetic brannerite initial rates are compared to synthetic uraninite studies (Ram, et 

al., 2011) the initial rate of synthetic uraninite is significantly lower than the observed 

synthetic brannerite rates.  
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Figure 4.7: Plot of Ln [U] (M) versus time for dissolution of synthetic brannerite at 

various temperatures. 

  

4.3.2.3. Effect of [H2SO4]  

The effect of [H2SO4] on brannerite dissolution was investigated by conducting 

dissolution tests at five different [H2SO4]: 15 g/L, 50 g/L, 100 g/L, 150 g/L and 200 g/L. 

The other reaction conditions that were used in these tests are given in Table 4.4. From the 

results presented in Figure 4.8 it can be seen that synthetic brannerite dissolution increased 

with increasing [H2SO4] over the concentration range investigated (at a reaction 

temperature of 50 °C). The results show a ~ 8 % increase in uranium dissolution over the 

initial hour when 200 g/L H2SO4 was used compared to 15 g/L H2SO4. This increase in U 

dissolution rate was shown to continue for the duration of the 6 hour experiment with ~ 15 

% more uranium liberated out of brannerite using 200 g/L H2SO4. This was shown to be a 

significant increase in uranium dissolution with respect to the 150 g/L of H2SO4 where by 

~ 10 % of uranium was leached after 6 hours. 
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Table 4.4: Conditions for tests conducted on influence of [H2SO4]. 

Test condition Value 

Initial brannerite slurry concentration 100 mg/L as U 

Temperature 50 °C 

[H2SO4] 15, 50, 100, 150 and 200 g/L 

[Fe2(SO4)3]  3 g/L (as [Fe(III)]) 

Solution ORP 600-700 mV 

 

 

Figure 4.8: % Uranium dissolved as a function of time for solutions containing various 

[H2SO4]. For conditions refer to Table 4.3. 

 

The brannerite dissolution / uranium leaching from brannerite kinetics for the tests 

conducted using varying [H2SO4] were analysed to investigate the order of the dissolution 

under these conditions. The results of this analysis showed that the kinetics’ of dissolution 

of uranium from synthetic brannerite were most closely fitted by first order kinetics for 

over the range of [H2SO4] investigated (Figure 4.9). 

 



125 

 

Figure 4.9: Plot of Ln [U] (M) versus time for dissolution of synthetic brannerite in 

different concentrations of [H2SO4]. 

 

4.3.2.4. Studies on the effect of [Fe(III)] and [H2SO4] using a high reaction 

temperature (95 °C). 

The effect of [Fe(III)] on the dissolution of synthetic brannerite was investigated using 

a higher reaction temperature then that used for the initial tests reported in section 4.3.2.1, 

where [Fe(III)] was shown to have no significant effect on brannerite dissolution when a 

reaction temperature of 50 °C was used. The conditions used in the tests to investigate the 

effect of [Fe(III)] at a higher temperature are given in Table 4.5. As can be seen in Figure 

4.10, the dissolution rate of uranium increased with increasing [Fe(III)] over the range 

investigated. Between 3 g/L and 6 g/L of Fe(III) a significant increase in the rate of 

dissolution can be seen in the first hour of leaching where ~ 7 % of uranium is released for 

the system containing 3 g/L Fe(III) compared to ~ 14% for the system containing 6 g/L 

Fe(III). It can also be seen that for the system containing 12 g/L Fe(III) ~ 35 % of the 
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uranium in the synthetic brannerite was dissolved after 6 hours. The results obtained on the 

influence of [Fe(III)] at 50 °C (Figure 4) and 95 °C clearly show that [Fe(III)] only 

influenced the dissolution of synthetic brannerite when a higher reaction temperature is 

used (for systems having an [H2SO4] of 15 g/L). Interestingly [H2SO4] however had a 

significant influence on the dissolution of brannerite at a lower reaction temperature (50 

°C) (for systems containing 3 g/L [Fe(III)]) (Figure 4.8).  

  

Table 4.5: Conditions for tests conducted on influence of [Fe(III)]. 

Test condition Value 

Initial brannerite slurry concentration 100 mg/L as U 

Temperature 95 °C 

[H2SO4] 15 g/L 

[Fe2(SO4)3]  3, 6, 9 and 12 g/L (as [Fe(III)]) 

Solution ORP 600-650 mV 

 

 

Figure 4.10: % U dissolved versus time for systems containing varying [Fe(III)] at 95 °C. 

For reaction conditions refer to Table 4.4. 
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The effect of [H2SO4] was also investigated at a higher reaction temperature (95 °C). 

The conditions used in these tests and the results obtained are given in Table 4.6 and 

Figure 4.11 respectively. From the results presented in Figure 4.11 it can be seen that 

increasing [H2SO4] led to significant increases in brannerite dissolution at the higher 

reaction temperature used (95 °C).  

 

Table 4.6: Conditions for tests conducted on influence of [H2SO4]. 

Test condition Value 

Initial brannerite slurry concentration 100 mg/L as U 

Temperature 95 °C 

[H2SO4] 15, 50, 100, 150 and 200 g/L 

[Fe2(SO4)3]  3 g/L (as [Fe(III)]) 

Solution ORP  600-610 mV 

 

 

Figure 4.11: % U dissolved versus time for systems containing varying [H2SO4]. For 

reaction conditions refer to Table 4.6.  
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From the results obtained on the influence of [H2SO4] at 50 and 95 °C respectively 

(Figures 4.8 and 4.11) it can be seen that the influence of [H2SO4] on brannerite dissolution 

is clearly higher when a higher reaction temperature is used. For example at a reaction 

temperature of 50 °C increasing [H2SO4] from 15 g/L to 50 g/L led to an increase in 

dissolution from 2.59 % to 5.87 %, whereas at a temperature of 95 °C increasing [H2SO4] 

from 15 to 50 g/L led to an increase in dissolution from 16.23 % to 49.11 %. Furthermore 

at 95 °C, increasing the [H2SO4] from 15 to 200 g/L led to a significant increase in 

dissolution from 16.23 % to of 80.23 %. These results clearly show that temperature has an 

influence on the role(s) that H2SO4 has in the mechanism of synthetic brannerite 

dissolution. 

 

Based on the results observed on the influence of [Fe(III)] and [H2SO4] on brannerite 

dissolution at 95 °C (Figures 4.10 and 4.11) it was decided to investigate the influence of 

[Fe(III)] under conditions of moderate [H2SO4] (50 g/L) at high temperature (95 °C). The 

results from the aforementioned tests are presented in Figure 4.12. As can be seen in 

Figure 4.12 the dissolution rate increased with increasing [Fe(III)] over the range tested (3 

g/L to 12 g/L). It was observed that ~ 37 % of uranium dissolved from synthetic brannerite 

when 3 g/L of [Fe(III)] was present, whereas at 12 g/L Fe(III) ~ 65 % of the uranium 

dissolved. The dissolution of brannerite in the test containing 12 g/L Fe(III) also most 

likely reached equilibrium at a value of ~ 65% as there was no significant change in the 

extent of dissolution after 3 hours. The extent of dissolution that occurred after 6 hours in 

the test using 50 g/L H2SO4 and 12 g/L [Fe(III)] (~ 65%) was significantly lower than that 

obtained for the system containing 3 g/L Fe(III) and 200 g/L H2SO4 (Figure 4.11) and 

hence indicates that [H2SO4] has a significant influence on the equilibrium solubility of 

synthetic brannerite.  
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Figure 4.12: % Uranium (brannerite) dissolved as a function of time for solutions 

containing various [FeIII] at an [H2SO4] of 50 g/L and a temperature of 95 °C.  

 

Comparison of the data obtained on the influence of [Fe(III)] at 15 and 50 g/L H2SO4, 

for a reaction temperature of 95 °C, showed that the influence of [Fe(III)] on the extent of 

brannerite dissolution after 6 hours for these systems containing differing [H2SO4] was 

very similar. Hence the role of Fe(III) in the dissolution of brannerite was not significantly 

impacted by [H2SO4] under the conditions investigated. 

 

The influence of H2SO4 alone at 95 °C (in the absence of any Fe(III)) was investigated 

to determine if dissolution of brannerite could be achieved without any Fe(III) present (and 

hence to determine if the significant influences of [H2SO4] identified may have been due to 

a dissolution mechanism that did not involve Fe(III)). The results of this test, conducted 

using a [H2SO4] of 150 g/L, are shown in Figure 4.13. From the results presented in Figure 

4.13 it is clear that no significant dissolution of brannerite occurred under these conditions. 
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Hence the significant influence of [H2SO4] on brannerite dissolution clearly relies on the 

presence of Fe(III). The influence of [H2SO4] on brannerite dissolution therefore is most 

likely due to one or more of the following: 

 

- H2SO4 initiates dissolution of brannerite through reacting with surface functional 

groups which leads to the formation of surface species that can react with Fe(III) species 

(with this latter reaction resulting in subsequent uranium dissolution) 

- H2SO4 influences the species of Fe(III) present, leading to the formation of species 

that react with brannerite surface functional groups leading to subsequent uranium 

dissolution 

  

 

Figure 4.13: % Uranium (brannerite) dissolved as a function of time in a solution 

containing no [Fe(III)] at a temperature of 95 °C and [H2SO4] of 150 g/L. 

 

In aqueous H2SO4 solutions Fe distributes as dissolved Fe(II) and Fe(III) species , as 

free ions (Fe
3+

, Fe
2+

) or complex compounds [FeSO4, FeSO4
+
, Fe(SO4)

2−
] (Casas et al., 

2005). The concentration of these species is strongly dependent on solution composition 
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and temperature (Figure 4.14). Previous results that have indicated Fe speciation 

influencing uranium mineral dissolution (uraninite) via an electron-transfer reaction have 

been published by Laxen (1971) (Laxen, 1971). Laxen (1971) reported that Fe
3+

 in the 

presence of SO4
2-

 increases the rate of dissolution. An increase in rate is thought to be 

recognized as an increase in active ferric sulphate complexes and free hydroxyl complexes 

which either do or do not contain SO4
2-

 species.  

 

 

Figure 4.14: Calculated speciation at 25 and 50 °C for an aqueous solution containing: 

[H2SO4] = 2.22 m (200 g/L); [Fe(II)] = 0.543 m (27 g/L); [Fe(III)] = 0.437 m (23 g/L) (Casas et 

al., 2005). 

 

4.3.2.5. Investigation of decrease in rate of synthetic brannerite dissolution 

The decreases in rate of synthetic brannerite dissolution that were observed in a number 

of tests were investigated to determine if this was predominantly due to decreasing 

brannerite slurry concentration. This involved combining brannerite remaining from tests 
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that had been conducted under the following conditions ([Fe(III)] = 3 g/L, temperature = 

95 °C, [H2SO4] = 100 and 150 g/L), t = 3 hours) with fresh brannerite (to give the same 

total intial brannerite slurry concentration as used in all prevous tests) and studying the 

overall rate of dissolution of the combined used and fresh brannerite. The results of these 

tests are shown in Figure 4.15. From the results presented in Figure 4.15 it is clear that the 

dissolution rate of the pre leached brannerite / fresh brannerite combinations were 

significantly lower than those obtained with fresh brannerite, and hence show that the 

decreases in brannerite dissolution rate observed in previous tests under the same test 

conditions were not predominantly due to the decreasing brannerite slurry concentrations 

that occur during testing, but due to a change in the rate of dissolution from the 

undissolved brannerite particles remaining in solution. The rate of dissolution of the 

brannerite particles present in solution could change (decrease) over time due to one or 

more of the following: 

- Surface compositional changes / surface passivation 

- Surface morphology changes (decrease in surface roughness / surface area) 

- Change in particle size distribution (change in overall surface area) 

 

Based on Ifill et al’s finding discussed earlier that the resistance of brannerite to 

leaching is not improved by textural and morphological variations, nor by crystallite size, it 

was decided to investigate if there were any significant differences between the surfaces of 

the pre leached brannerite and fresh brannerite particles. This was done by conducting XPS 

analyses of the pre-leached brannerite particles (Figure 4.16) and comparing these results 

with those obtained for fresh brannerite particles. The results of these analyses showed that 

there were no significant differences in the ratio of surface U
4+

 to U
6+

 between the pre-

leached brannerite particles and the fresh brannerite particles (Figure 4.4). Therefore the 
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significantly slower dissolution observed for the pre-leached brannerite particles was most 

likely not due to any changes in the uranium speciation. Semi quantitative data obtained 

using XPS on the composition of the surfaces of the pre-leached and fresh particles also 

showed no significant differences in surface composition between these. Hence based on 

the aforementioned data obtained the significantly lower dissolution rates observed for pre-

leached particles was most likely due to changes in surface morphology and / or particle 

size. It is important to note however that the aforementioned XPS surface composition data 

was semi-quantitative and hence could not be used to determine subtle differences in 

surface composition that may have led to significant differences in dissolution from the 

surface. 

 

 

Figure 4.15: % Uranium (brannerite) dissolved as a function of time for solutions 

containing various [H2SO4] and at constant [Fe(III)] of 3 g/L and temperature of 95 °C. The 

amount of pre-leached brannerite and Fresh brannerite added for 100 g/L H2SO4 were 0.0458 

g and 0.04442 g respectively. The total amount of pre-leached brannerite and fresh 

brannerite added for 150 g/L H2SO4 were 0.0476 g and 0.0427 g respectively.  
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Figure 4.16: XPS U 4f spectra of a) Pre-leached brannerite and Fresh brannerite – 100 

g/L H2SO4 and b) Pre-leached brannerite and Fresh brannerite – 150 g/L H2SO4 residue 

samples showing curve fitting using Gaussian/Lorentzian peaks. Dashed lines are shown for 

the fitted peaks, solid black lines are shown for the satellite peaks and the thick black line 

represents the envelope of the fit. All energies are shifted by 0.71 eV as their calibration was 

based on fixing the C 1s peak at 285 eV. 
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4.3.3. Dissolution studies using an electrochemical method 

Electrochemical studies were used to determine if synthetic brannerite under high 

[H2SO4] conditions from previous experiments in section 4.3.2.3 could lead to 

understanding the mechanism of brannerite leaching under these conditions.  

As discussed in 4.2.2.2, the working formula of 1:1 ratio of Carbon Paste: Synthetic 

Brannerite (by weight) was freshly prepared by grinding in a mortar and pestle, to obtain a 

homogeneous paste. This paste was placed in a working electrode where upon it was 

analysed using SEM mapping studies to determine if the surface after preparation of the 

carbon paste/synthetic brannerite electrode was homogenous.  

The results obtained from SEM / EDX mapping analyses are presented in Figure 4.17, 

showing the homogeneity of the synthetic brannerite in the CPE, where concentration of 

the titanium, uranium and carbon are well dispersed. This indicates that the crushed 

synthetic brannerite / carbon paste samples were homogeneously mixed, with adequate 

dispersion of the brannerite throughout the carbon paste mixture. 

 

 

Figure 4.17: SEM/EDX mapping analysis of synthetic brannerite/CPE. Colour maps are 

based upon the Kαααα C, Mαααα U and Kαααα Ti line intensities. 
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4.3.3.1 Electrochemical Studies 

Electrochemical experiments were conducted over a range of conditions to investigate 

the influence of temperature and sulphuric acid concentration on synthetic brannerite 

dissolution. These studies also were conducted under some conditions very similar to those 

used in uranium minerals leaching processes (large scale tank based procedures). 

 

The following conditions were set in the electrochemical leaching tests of synthetic 

brannerite: constant temperature of 50 °C and differing concentrations of H2SO4 15, 50, 

100 and 150 g/L. No Fe was added to the solutions as the main focus of these experiments 

was to apply a potential across the synthetic brannerite/CPE surface and determine the 

electrochemical behaviour of the sample.  

Figure 4.18 shows a scan from the open circuit potential (OCP) to anodic potentials 

resulting in dissolution of the brannerite. Figure 4.18 shows that there are two distinct 

regions: 1) active- where the current rises quickly with respect to the potential and 2) 

passive- where the current flattens out with respect to the potential.  

 

 

Figure 4.18: Open circuit potential in the anodic direction for four different [H2SO4] of 

15, 50, 100 and 150 g/L at 50 °C of synthetic brannerite.  
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A clear observation between the different in behaviour seen for 15-50 g/L [H2SO4] and 

the 100-150 g/L [H2SO], where 15-50 g/L shows modest reactivity on increasing the 

potential, current gains (which is due to dissolution) are modest. Compared to 100-150 g/L, 

where there is a very ‘active’ region, which is seen between potentials of 0.44-0.60 V. This 

gives way to an area where there is surface passivation, a decrease in current, and this is 

presumably due to blocking / coating the surface of the brannerite with the purpose of 

inhibiting dissolution. In the active regions, it can still be assume that passivation will 

occur, nonetheless the passive layer takes time to form, it is not instantaneous, and thus as 

scanning continues, the potential may takes a few hundred mV until the passive region has 

been reached.  

It is therefore concluded that the ideal region for leaching brannerite would take place 

is between 0.4-0.6 V and similarly an ORP that places the potential of the brannerite in this 

region of activity. The potential of the brannerite in a leaching solution would be situated 

somewhere between the open circuit potential (where we start the scan), and the ORP of 

the leaching solution (600 mV). 

 

4.3.3.1.1 Investigation of the residue of electrochemical leaching via SEM/EDX 

mapping analysis 

Scanning electron microscopy and energy dispersive X-ray analysis were used to 

investigate further the leaching of synthetic brannerite/CPE sample. Figure 4.17 shows an 

SEM/EDX image of the synthetic brannerite/CPE pre leaching. Figure 4.20 shows an 

SEM/EDX image of post leaching at conditions of 15 g/L H2SO4 at 25 °C, after a series of 

voltammograms (Figure 4.19). The successive scans in this voltammogram show that the 

height of the anodic peak is successively decreased on repeat scans, indicating dissolution 

of the surface, and possible passivation. SEM/EDX mapping confirmed compositional 
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changes across the surface of the brannerite sample. Figure 4.21 illustrates this by 

determining a decrease in U post leaching by EDX analysis. 

 

 

 

Figure 4.19: Cyclic voltammograms of synthetic brannerite/CPE, [H2SO4] = 15 g/L, 

temperature = 25 °C, scan rate = 0.05 V/s and segments = 8.  
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Figure 4.20: SEM/EDX mapping analysis of synthetic brannerite/CPE post leaching. 

Colour maps are based upon the Mαααα U and Kαααα Ti line intensities. 

 

 

Figure 4.21: EDX analysis un-leaching of CPE-brannerite and leached CPE-brannerite 

([H2SO4] = 15 g/L at 25 °C).  
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ICP-MS analysis of the solution was taken and analysed to determine the amount of U 

and Ti in solution. The ICP-MS results showed that amount of U in solution was 0.00478 

% and Ti in solution was 0.00049 %. Analysis showed that U leached out of the brannerite 

structure 10 times more than Ti. Considering again equations (4.1) and (4.2) in section 4.1 

of this chapter we can conclude that predominate reaction is the dissolution of U(IV) 

species, solubilised by the electrode potentials positive of approximately 0.4 Vs vs 

Ag/AgCl and also that due to the surface decrease in uranium concentration with respect to 

titanium concentration, thus indicating that a TiOx passivation layer is responsible for this 

limited leaching of synthetic brannerite.  

 

4.3.3.1.2 Activation Energies 

Apparent activation energy values were determined by studying the oxidation of 

synthetic brannerite/CPE at varies temperatures (25 – 80 °C), which can be seen in Figure 

4.22. Determination of activation energies will thus provide evidence to how much 

temperature affects dissolution in each region – and will be indicative of a possible 

mechanism.  

The following CV shows that the rate of dissolution is dependent upon the temperature. 

A significant elevation of leaching is observed when temperature is increased from 25 to 

50 °C. A further increase in leaching is also observed between 50 and 65 °C, suggesting 

that (dissolution noticeably increases) temperature affects the dissolution reaction as 

expect. 

The activation energies were determined from the slopes of plots at two differing 

potentials of 0.51 V (Figure 4.23) and 0.61 V (Figure 4.24). From these potentials, it was 

observed that an active region was present at the potential of 0.51 V and a passivated 

region at the 0.61 V potential. 
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Figure 4.22: Cyclic voltammograms obtained for CPE in synthetic brannerite with 

different temperature conditions and [H2SO4] = 15 g/L.  
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In order to quantify as well as possible the increase in the anodic dissolution with 
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visible here, indicating a different reaction mechanism. Calculated activation energies are 

in the Table 4.7 below. 
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Table 4.7: Calculated activation energies at potentials of 0.51 and 0.61 V vs Ag/AgCl. 

Potential at 0.51 V     

[H2SO4] 15 g/L 50 g/L 100 g/L 150 g/L 

Slope (K, Ea/R) -4396 -5185 -6012 -6067 

Ea (kJ/mol) 36.5 43.1 50.0 50.4 

Potential at 0.61 V     

[H2SO4] 15 g/L 50 g/L 100 g/L 150 g/L 

Slope (K, Ea/R) -3689 -3752 -3202 -3780 

Ea (kJ/mol) 30.7 31.2 26.6 31.4 

 

 

 

Figure 4.23: The determination of activation energy at 0.51 V. 
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Figure 4.24: The determination of activation energy at 0.61 V. 
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4.4. Conclusions 

UTi2O6 was successfully synthesised and extensively characterised. The X-ray 

diffraction pattern confirmed the formation of UTi2O6 with impurities from uraninite 

(UO2). The SEM/EDX analysis showed homogenous distribution between the U and the Ti 

and therefore the impurity of uraninite was found to be minimal. The oxidation state of U 

in the UTi2O6 structure was determined to be majority U
4+

.  

Based on the results obtained from synthetic brannerite dissolution studies the 

following conclusions can be made: 

- [Fe(III)] (over the range 3 – 12 g/L) does not have a significant influence on 

dissolution at a reaction temperature of 50 °C (in 15 g/L H2SO4). However at 95° C in 15 

g/L H2SO4, increasing [Fe(III)] (over the range 3 – 12 g/L) leads to significant increases in 

the dissolution rate. 

- [H2SO4] has a significant influence on dissolution at 50 °C and 95° C in solutions 

containing 3 g/L Fe(III). This influence is however significantly higher at a reaction 

temperature of 95° C, and is consistent with a combined effect of acid and temperature.  

- No significant dissolution occurs at 95° C at high acid concentration ([H2SO4] = 

150 g/L) in solution containing no Fe(III). 

- Synthetic brannerite dissolution most closely follows first order kinetics under the 

following conditions (T = 95° C, [H2SO4] = 15 – 200 g/L), [Fe(III)] = 3 g/L). 

- Tests conducted on synthetic brannerite residues combined with fresh synthetic 

brannerite showed that decreases in dissolution rates observed during the dissolution of 

synthetic brannerite were predominantly not due to decreasing brannerite slurry 

concentration and were most likely due to one or more of the following:  

o Changes in surface composition / surface passivation  

o Changes in surface morphology 
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o Changes in particle size 

 

Synthetic brannerite electrochemical properties in [H2SO4] were studied in a carbon 

paste electrode. The results are as follows: 

- It is shown that H2SO4 concentration has a predominate effect on the anodic 

dissolution rate of brannerite, confirming the importance of acid concentration in 

dissolution studies of naturally occurring ores containing brannerite.  

- Voltametric scans at a range of temperatures have shown that the surface of 

the brannerite is liable to passivate, with the solution temperature and acid 

concentration key players in the behaviour of the surface. Acid concentrations of 

above 100 g/L are required to prevent the onset of a passive region at moderate 

over-potentials, and promote facile dissolution.  

- Tafel curves reveal that acid concentrations from 15 to 50 g/l H2SO4 show 

limited leaching, with only a modestly active region corresponding to dissolution. 

H2SO4 concentrations of 100 to 150 g/L show a well-defined active region, ranging 

from approximately 0.45 to 0.55 V vs Ag/AgCl, where dissolution proceeds 

readily, but further scanning in the anodic direction leads to surface passivation, 

and a rapid drop off of the dissolution current.  

- EDX analysis after scanning for several minutes shows that the surface 

concentration of U relative to Ti is significantly decreased, indicating that a TiOx 

passivating layer is responsible for the limited leaching of brannerite in commonly 

employed leaching conditions. Analysis of the electrolyte solution after 

electrochemical leaching revealed that approximately 10 times the concentration of 

U dissolved when compared to Ti.  
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- Apparent activation energies for the brannerite leaching in this active area 

was calculated to be around 50 kJ/mol when the concentration of the acid was 

above 100 g/L, and this drops to around 30 kJ/mol for regions where passivation is 

seen in the polarisation curves. 

- Electrochemistry of synthetic brannerite in a carbon paste is thus revealed 

as a highly useful tool to screen and better understand the leaching behaviour of 

synthetic ores of uranium that have been empirically shown to display refractory 

behaviour. 
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Chapter 5 

 

 

Dissolution of natural 

brannerite ores 

 

 

In this chapter, two natural brannerites and two calcined natural brannerites were 

investigated to obtain information on the influences of the effect of temperature, 

[H2SO4] and [Fe(III)] on the dissolution of these natural minerals. A greater 

understanding of the influence of the aforementioned on the dissolution of these 

minerals will assist in the development of improved processes for extracting uranium 

from these minerals.  
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5.1. Introduction 

As discussed in Chapter 3, natural brannerites have been found to contain a number of 

substituent elements. Pb, Ca, Th, Y and rare earth elements are commonly found to 

substitute for U and Si, whilst Al and Fe have been found to substitute for Ti (Lian et al., 

2002). The influence of the aforementioned substitutions on the structure and properties of 

brannerite are of significant interest to the nuclear waste industry due to the potential of 

brannerite to be used as a repository for radioactive isotopes present in nuclear waste. The 

influence of substitution is also of significant interest to the uranium minerals processing 

industry as it most likely influences the processing of brannerite bearing ores.  

 

As mentioned previous in Chapter 1, natural brannerite is also partly oxidised and 

hydrated (Finch and Murakami, 1999) and shows extensive evidence for metamictisation 

as a result of α-decay event damage. The formula for brannerite is considerably more 

complex than the ideal UTi2O6 and is therefore more accurately reported as 

(U,Ca,Th,Y,REE)(Ti,Si,Fe,Al)2O6-8(OH)x, which is also mention in Chapter 4, in addition, 

an examination of the valence state of uranium in a range of natural brannerite samples by 

Colella et al (2005) indicated the presence of minor U
5+

 and/or U
6+

 (in addition to U
4+

) 

suggesting partial solid solution with orthobrannerite, (U
6+

,U
4+

)Ti2O6(OH) is common. 

 

From previously reviewed literature in Chapter 1, there have been numerous studies on 

the rate and/or extent of dissolution of both natural and synthetic brannerites over a range 

of conditions. Brannerite ores are known to require stronger leaching conditions than ores 

containing uraninite or secondary uranium minerals, and this was confirmed by Goldney et 

al (1972). They showed, using a brannerite-rich ore from the Valhalla prospect 

(Queensland, Australia), that over 80 % extraction of uranium could be obtained with 
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sulphuric acid leaching at 50 °C with continuous agitation over a period of 50 hours, 

provided the ore was finely ground to ~ 63 microns and the free acidity of the leach liquor 

was maintained at 0.5 N or higher throughout the leaching period. Similar results could be 

achieved in shorter times using higher free acidity levels and/or higher temperatures. The 

addition of oxidant, either as a soluble ferric salt or as MnO2 increased the rate of leaching 

significantly under most conditions and also increased the final leaching efficiency. The 

effect of the addition of oxidant was more significant at the lower free acidity levels. Finer 

grinding of the ore to ~ 45 microns resulted in a small improvement in leaching rate and in 

final extraction in tests at 50 °C, but had no effect in tests at 70 °C. Goldney et al (1972) 

therefore concluded that finer grinding would not be worthwhile. The effectiveness of an 

alternative alkaline leach option was also briefly investigated by Goldney et al (1972). This 

resulted in a uranium extraction of only 24 % on a composite sample ground to -45 

microns and leached at 50 ºC for 50 h using 50 g Na2CO3 and 50 g NaHCO3. A similar 

leach at 20 ºC resulted in 18 % extraction of uranium while an alkaline leach at 100 ºC on a 

random Valhalla sample was ineffective (Goldney et al., 1972). 

 

Ring (1979) conducted sulphuric acid leaching studies of uraninite-brannerite 

containing ores from a number of Australian deposits (Ranger, Nabarlek and Koongarra all 

within the Alligator Rivers region) as well as a uranium-rich copper tailings concentrate 

from the Roxby Downs (Olympic Dam) deposit. The three ores from the Alligator Rivers 

region all had uraninite or pitchblende as the primary uranium mineral although some 

uranium was present as brannerite, and unidentified uranium-titanium, -phosphate and -

silicate minerals. All three ores were readily amenable to conventional sulphuric acid 

leaching (T = 35-40 °C, time = 16-24 h, pH = 1.5-2.0, redox potential of ~ 475 mV and 

acid addition 37-55 kg/t
-1

 ore) with variations in temperature and pH had the most 
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influence in determining the most suitable leaching conditions. The presence of minor 

refractory brannerite, which was not affected by the leach conditions, limited uranium 

extraction to 90-96 %. In comparison, the leaching characteristics of the Roxby Downs 

copper tailings residue differed considerably from the Alligator Rivers ores because of the 

different gangue composition and uranium mineralogy. The Roxby Downs ore had both 

uraninite and brannerite as the primary uranium minerals while the gangue was made up of 

quartz, sericite, hematite and minor barite and fluorite. The extraction of uranium from the 

refractory uranium minerals in this ore required stringent oxidising conditions with 

leaching at 55 °C and a redox potential of ~ 650 mV. Under these conditions however, the 

initial rate and overall extraction of uranium were reduced to below 90 %. 

 

MacNaughton et al (1999) followed up the study by Ring (1979) and also examined the 

leaching behaviour of brannerite present in three uranium-rich copper tailings (1600 ppm 

U3O8) from the Olympic Dam deposit. In the samples tested, brannerite occurred as a 

minor uranium-bearing component (10-11 %) in association with uraninite (80-82 %) and 

some coffinite (8-9 %). Uranium leaching behaviour was found to be characterised by a 

very rapid initial dissolution (> 60 % dissolution after ~ 15 mins) that slowed down 

significantly after ~ 80 % dissolution. The slow uranium leaching rate above ~ 80 % 

extraction was attributed to the presence of additional uranium-bearing minerals including 

coffinite and brannerite as well as poorly liberated uraninite. In all cases, uranium 

extraction increased with acidity and temperature and had a complex co-dependence on 

Fe
3+

 and redox potential. They also observed that the amount of acid consumed under 

standard leach conditions (pH 1.5, 55 °C, 55 wt % solids and 1.5 kg/t
-1

 NaClO3) 

significantly varied across the three samples due to changes in gangue mineral (mainly 

chlorite and fluorite) abundances. 
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As previously discussed in Chapter 1 and 4, Muralikrishna et al (1991) used a 

combination of gravity concentration and wet high intensity magnetic separation to 

produce 93 % uranium containing brannerite concentrate from Rajasthan India. Eighty 

percent uranium extraction was achieved under the following conditions; 1224 kg H2SO4/t, 

80 °C, 6 hours leach time. They concluded that concentrated acid leaching conducted at 

elevated temperatures was required to maximise the extraction of uranium from the 

brannerite pre-concentrate.  

 

Ifill et al (1996) conducted laboratory leach tests on single specimens of natural 

brannerite of composition (U0.629Th0.039Ca0.20)(Ti2.199Fe0.13)O69) from the Elliot Lake 

uranium district, Ontario, Canada. They concluded that brannerite was not readily 

leachable in sulphuric or hydrochloric acid solutions. Furthermore, the resistance of 

brannerite to leaching was not significantly improved by using samples with different 

textural and morphological variations, nor by grinding and decreasing the overall 

crystallite size. Results were consistent with previous work on Elliot Lake brannerite ores 

which demonstrated that lengthy retention times (36 h to 48 h), high temperatures (75 ºC) 

and high initial acid concentrations (75 g/L H2SO4) were required (LaRocque and Pakkala, 

1979; Hester, 1979). 

 

Previously discussed in Chapter 1, Lottering et al (2008) investigated uranium 

dissolution on three low grade uranium ores from the Vaal River region in South Africa. 

Characterisation of the ores showed that uraninite as well as brannerite were jointly 

responsible for the uranium carrier minerals in the ores with 80-90 % of the uranium 

present in uraninite, 8-19 % as brannerite, and the balance as traces of coffinite and 

uranium phosphates. Results showed it was difficult to achieve uranium dissolutions higher 
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than 90 % under conventional uranium leaching conditions. This was attributed to the 

presence of refractory brannerite in the ores. If ~ 100 % uranium extraction was desired, 

more extreme conditions (probably pressure leaching) would be required.  

 

Previously reviewed in Chapter 4, Gogoleva (2012) conducted a leaching study on a 

powdered brannerite ore (Jakutia, Russia) and determined that dissolution rates were 

significantly influenced by temperature and acid concentration. Maximum uranium 

extraction (~ 99 % U) was achieved using T = 90 ºC, 0.5 M H2SO4 and [Fe(III)]initial = 0.01 

M. Analysis of samples led Gogoleva (2012) to conclude that low extraction rates were 

due to the development of an amorphous film on the surface of the brannerite. X-ray 

diffraction analysis indicated the amorphous layer was TiO2 which was presumed to inhibit 

uranium extraction kinetics and is the rate controlling mechanism of the dissolution 

reaction.  

 

In this Chapter, the uranium extraction results from already well-characterised (Chapter 

3), naturally-occurring high-grade brannerite samples that were subject to variations in 

standard brannerite leach parameters including [Fe(III)], [H2SO4] and temperature. As 

well, heat treated samples were examined to characterise the effect of recrystallisation on 

the extent of uranium dissolution. Leached residues were analysed using scanning electron 

microscopy (SEM) and electron probe microanalysis (EPMA) techniques to scrutinise the 

distribution of any remaining uranium. 
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5.2. Materials and Methods 

5.2.1 Materials 

Details of the two naturally occurring brannerite samples that were used to obtain the 

results presented in this chapter, NBCW (Natural Brannerite Crockers Well) and NBRD 

(Natural Brannerite Roxby Downs) are given in Chapter 3.  

 

Sulphuric acid (H2SO4) (Aldrich Chemical), iron sulphate (Fe2(SO4)3) (Aldrich 

Chemical), nitric acid (HNO3) (70 % AR grade) (Merck Led) and a 1000 ppm uranium 

ICP-MS standard (AccuStandard) were used as received. Milli-Q water (H2O) (18 MΩ cm) 

was used to prepare all solutions.  

 

5.2.2. Methods 

The following methods that were used to conduct the research presented in this chapter; 

dissolution test procedure, acid digestion test procedure, XRD analysis, EPMA analysis 

and ICP-MS analysis are given in Chapter 2. During all dissolution experiments within this 

chapter, the ORP of the reaction solution  varied by ± 10 mV. 

 

5.2.1. Electron Probe Microanalysis (EPMA) analysis 

Residues - Selected residues were prepared as polished mounts and examined using a 

high resolution Field Emission Gun (FEG) equipped EPMA (JEOL 8500F Hyperprobe). 

This was done in order to: 1) locate residual brannerite grains and examine their 

distribution, 2) to examine the chemical homogeneity of the brannerite grains, and, 3) to 

determine if any other mineralogical changes had occurred (e.g. dissolution/removal of 
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some gangue components). The sample preparations of polished samples are discussed in 

greater detail in Chapter 2. 

5.3. Results and Discussion  

5.3.1. Characterisation of samples containing natural brannerite  

Characterisation results obtained for the samples containing natural brannerite that 

were used to conduct dissolution tests are given in Chapter 3. Briefly, these results showed 

the following: 

Composition 

Brannerite was the main component in the samples based on XRD analysis. EPMA 

analysis indicated that in each sample, the brannerite was Th-rich (8-10 wt % Th) 

indicating partial solid solution between brannerite and thorutite (ThTi2O6) and was 

intimately mixed with uranothorite ([Th,U]SiO4) and a solid solution of thorianite-

uraninite ([Th,U]O2). Typical gangue mineral phases included: rutile (distributed as fine-

grained crystals throughout the Th-brannerite and uranothorite dominated particles), 

quartz, aluminosilicates, unidentified REE-containing phosphates, zircon, titanates and 

apatite. 

 

Brannerite structure 

XRD analysis of the samples indicated both were amorphous having undergone 

radiation-induced metamictisation. It was found that the crystallinity of the brannerite in 

these samples was restored upon heating the samples to 1200 ºC for 24 h in air (Figure 

5.1). The recrystallisation of the brannerite resulted in a number of chemical changes.  

 

Microstructure 
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Both samples exhibited complex, heterogeneous microstructural features including 

evidence for alteration, formation of secondary alteration products, and the presence of 

cracks and fractures within the brannerite grains and in adjacent minerals. 

 

 

Figure 5.1: X-ray diffraction patterns comparing data obtained from the calcined 

brannerite samples. ‘B’ indicates brannerite peaks whereas peaks labelled ‘?’ are unknown 

(see Chapter 3, section 3.3.1). 

 

In the heated samples, crystalline heated brannerite (Database of the International 

Centre for Diffraction Data (ICDD) pattern 12-0477) was the major mineral found in the 
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XRD patterns for both samples. For HNBCW sample, the diffraction line at ~ 27.5 ° 2θ 

was most likely due to the presence of rutile/anatase (TiO2), whereas sample HNBRD 

appeared to consist almost exclusively of recrystallised brannerite plus a minor amount of 

rutile/anatase. 

 

5.3.2 Dissolution studies  

It is important to note that as the samples obtained for investigating the dissolution of 

natural brannerite contained other uranium bearing minerals (see Chapter 3) the amount of 

uranium that was leached from these samples that was solely due to brannerite dissolution 

in dissolution tests could not be determined. Hence the amount of uranium dissolved from 

these samples that is reported hereafter in this chapter refers to the amount of uranium 

dissolved from all uranium bearing minerals in the samples tested and not solely due to 

brannerite. For ease of discussion however, and due to brannerite clearly being the 

predominant uranium mineral present in the samples tested, hereafter the uranium 

dissolved from the samples tested is described as uranium dissolved from natural 

brannerite. The amount of sample containing natural brannerite used in the dissolution tests 

conducted was determined based on the total amount of uranium in the respective samples 

(elemental composition data for the samples investigated is given in Table 5.1).  
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Table 5.1: Summary of bulk chemical analysis data determined by ICP-MS for the 

natural brannerite samples NBCW and NBRD (in average weight % concentrations). 

Elements NBCW NBRD 

 Na 0.00 0.47 

Al 1.70 2.63 

K 0.00 10.20 

Ca 1.36 2.23 

Ti 19.30 21.04 

V 0.05 0.05 

Mn 0.04 0.15 

Fe 0.00 0.00 

Cu 2.41 0.00 

Zn 1.13 0.17 

Nb 0.31 0.77 

Mo 0.02 0.02 

Ag 0.01 0.02 

Sb 0.06 0.06 

Ba 0.01 0.00 

Ta 0.04 0.07 

Tl 0.02 0.02 

Pb 0.49 0.57 

Th 6.85 6.68 

U 24.16 26.45 

 

The initial slurry concentration of the samples that contained natural brannerite that 

was used in dissolution tests was the same as that used in the dissolution tests conducted on 

synthetic brannerite in terms of initial uranium concentration (100 mg/L U). The initial 

sample slurry concentration used in tests conducted with NBCW was 0.4139 g /L. The 

initial sample slurry concentration used in tests conducted with NBRD was 0.3781 g /L.  

 

An initial series of dissolution tests were conducted in order to determine the 

dissolution of NBCW and NBRD under conditions typically used at mining operations 

(e.g. Merritt, 1971; Ring, 1979; MacNaughton et al., 1999). The dissolution conditions 

used are given in Table 5.2 while results showing the percentage dissolution of uranium 
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versus time are shown in Figure 5.2. The influence of varying the oxidant concentration, 

[Fe(III)], under the aforementioned conditions was also studied. 

 
Table 5.2: Standard parameters used for brannerite dissolution tests using standard leach 

parameters and also using variable [Fe(III)]. 

Parameter Value 

[H2SO4] 15 g/L 

Temperature 50 °C 

Initial U slurry concentration 100 mg/L as U  

[Fe2(SO4)3] 3, 6, 9 and 12 g/L (as [Fe(III)] 

Initial ORP 650-700 mV 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

%
 U

 d
is

so
lv

ed

Time (hrs)

a) Sample NBCW
12 g/L Fe(III)

9 g/L Fe(III)

6 g/L Fe(III)

3 g/L Fe(III)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

%
 U

 d
is

so
lv

ed

Time (hrs)

b) Sample NBRD
12 g/L Fe(III)

9 g/L Fe(III)

6 g/L Fe(III)

3 g/L Fe(III)



162 

 

Figure 5.2: % U dissolved vs. time for tests conducted using standard leach parameters (T 

= 50°C, ([H2SO4] = 0.15M, initial slurry concentration of 100 mg/L as U), and with variable 

oxidant concentration ([Fe(III)]). Plot a) shows the data for sample NBCW, plot b) the data 

for sample NBRD.  

 

Results in leach tests conducted up to 6 hours in duration showed that increasing 

[Fe(III)] had a significant effect on brannerite dissolution results under the conditions used. 

For both samples, the initial total uranium dissolved (as a percentage of the initial slurry 

concentration), was low but underwent a rapid increase after 0.5 h leach time. Overall, 

sample NBCW proved easier to extract uranium from, with a final U extraction percentage 

after 6 hours that was ~ 8 % U greater than measured for sample NBRD (i.e. 43 % U 

dissolution for sample NBCW compared to only 35 % U for sample NBRD).  

The dissolution rates observed for the two natural brannerite samples were significantly 

higher than those observed for synthetic brannerite under identical conditions (where ~ 5 

% of uranium was dissolved from synthetic brannerite after 6 hours under the following 

conditions T = 50 °C, [H2SO4] = 15 g/L, [Fe(III)] = 12 g/L, ORP = 650-700 mV, see 

section 4.3.2 Chapter 4).It is also interesting to note the difference in the influence of 

[Fe(III)] on the dissolution of natural brannerite versus synthetic brannerite where [Fe(III)] 

was found to have no influence on the dissolution of synthetic brannerite. The 

aforementioned differences in dissolution between the natural brannerite samples and 

synthetic brannerite are discussed in detail in section 5.3.1.4.  

The difference in the dissolution rates observed for the natural brannerite samples was 

most likely due to one or more of the following: Differences in the extent of crystallinity of 

the samples (Based on the textural observations of the two samples presented in Chapter 3 

the only difference between the samples was that NBCW appeared (based on Raman 
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spectroscopic measurements) to be slightly more metamict than sample NBRD and had 

some evidence for the Th-brannerite having undergone more pervasive alteration. As well, 

additional U-bearing phases such as uranothorite, uraninite and thorianite-uraninite were 

more abundant than in the Roxby Downs sample.  

 

Differences in the composition of the brannerite grains present in the respective 

samples may either decrease or increase the dissolution of brannerite leaching. For 

example Ifill et al (1996) concluded that natural brannerite of composition 

(U0.629Th0.039Ca0.20)(Ti2.199Fe0.13)O69) did not increase the extraction of uranium and the 

overall leaching.  

These observations, together with the dissolution test results, suggest either; a) uranium 

may be more easily extracted from less crystalline brannerite ores, or; b) the uranium 

solubility of the other U-bearing phases present in sample NBCW (uranothorite, uraninite 

and thorianite-uraninite) may be higher than that of brannerite. 

 

5.3.1.1. Effect of Temperature  

The effect of temperature on the dissolution of natural brannerite in samples NBCW 

and NBRD was investigated over the temperature range 50-95 °C with an initial slurry 

concentration of 100 mg/L (as U), the acid concentration kept constant at 15 g/L, an 

[Fe(III)] of 3 g/L, and a solution ORP of between 600-700 mV.  

Results are shown in Figure 5.3 and these indicate that for both samples, there was a 

systematic increase in the amount of uranium dissolved as the temperature was increased 

from 50 to 95 °C. As for the tests conducted under standard leach conditions, the effect of 

temperature was much greater for sample NBCW compared to sample NBRD. It is also of 

note that the effect of increasing the temperature of dissolution is similar to the effect of 
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increasing the overall Fe(III) concentration. For both samples, the % U dissolved at 95 °C 

is almost identical to the % U dissolved at the highest Fe(III) concentrations tested under 

standard leach conditions (c.f. the results at 12 g/L Fe(III) in Figure 5.2 with the results at 

95 °C in Figure 5.3).  

The dissolution rates observed for synthetic brannerite under identical conditions (see 

section 4.3.2.2 in Chapter 4) where ~ 16 % of uranium was dissolved from synthetic 

brannerite after 6 hours. The two natural brannerite samples were significantly higher in 

uranium extraction than those observed for synthetic brannerite.  
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Figure 5.3: % U dissolved vs. time for tests conducted at different temperatures between 

50-95 °C with an initial slurry concentration of 100 mg/L (as U), the acid concentration kept 

constant at 15 g/L, an Fe(III) concentration of 3 g/L, and a solution ORP of between 600-700 

mV. Plot a) shows the data for sample NBCW, plot b) the data for sample NBRD. 

Plots of the dissolution kinetics obtained from the temperature dissolution tests 

conducted for the two samples are shown in Figure 5.4. The results of this analysis showed 

that for both samples, the kinetics of uranium dissolution were closely fitted by first order 

kinetic equations. When these results are compared to the dissolution kinetics of synthetic 

brannerite (section 4.3.2.2 in Chapter 4), the initial rate is marginally higher for synthetic 

brannerite with respect to the two natural brannerite initial rates seen in Figure 5.4. When 

synthetic brannerite and the two natural brannerite initial rates are compared to synthetic 

uraninite studies (Ram, et al., 2011) it is obvious that the initial rate of synthetic uraninite 

is significantly lower than the observed synthetic and natural brannerite rates.  
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Figure 5.4: Plot of Ln [U] vs. time for the dissolution of uranium at various temperatures. 

Plot a) shows the data for sample NBCW, plot b) the data for sample NBRD. 
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5.3.1.2. Effect of [H2SO4] 

The effect of H2SO4concentration was investigated to determine if an increase in 

concentration would increase uranium extraction rates. The H2SO4 concentrations tested 

were 15 g/L, 25 g/L, 50 g/L, 100 g/L and 150 g/L with all other experimental parameters 

(temperature, initial ORP, Fe(III) concentration) the same as used for the effect of 

temperature measurements. Results, shown in Figure 5.5 indicate that H2SO4 concentration 

had a significant effect on the rate and % U dissolution for both samples with uranium 

dissolution percentages increasing to over 50 % after 6 hours at the highest acid 

concentration of 150 g/L. 

When these results are compared with synthetic brannerite (studies in section 4.3.2.3 in 

Chapter 4) where ~ 10 % of uranium was dissolved from synthetic brannerite after 6 hours 

under the following conditions T = 50 °C, [H2SO4] = 150 g/L, [Fe(III)] = 3 g/L, ORP = 

600-700 mV. This result, while confirming previous experimental work on natural 

brannerite-containing ores (Gogoleva, 2012) is in contrast to leaching studies on uraninite 

ores which showed that uranium solubility was largely independent of high acid 

concentrations, all other parameters remaining constant (e.g. Ring, 1979). The data provide 

further proof that compared to the easily leached uraninite phase, brannerite ores require 

significantly higher acid strengths in order to dissolve uranium. 
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Figure 5.5: % U dissolved vs. time for tests conducted different acid concentrations. Plot 

a) shows the data for sample NBCW, plot b) the data for sample NBRD. 

 

The uranium dissolution from brannerite kinetics for the tests conducted using varying 

acid concentrations were analysed to investigate the order of the dissolution under these 

conditions. The results of this analysis (Figure 5.6) showed that the kinetics of dissolution 

of uranium for both the NBCW and NBRD samples were most closely fitted by first order 

kinetic equations. The result suggests that the natural brannerite samples are undergoing a 

mechanism which is similar when the temperature is increased.  
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Figure 5.6: Plot of Ln [U] vs. time for the dissolution of uranium at various acid 

concentrations. Plot a) shows the data for sample NBCW, plot b) the data for sample NBRD. 
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5.3.1.3. Effect of [Fe(III)] and [H2SO4] using a high reaction temperature (95°C). 

Previous results determined after increasing parameters such as the acid strength, 

oxidant concentration and temperature have demonstrated that all three parameters have 

the potential to significantly increase uranium extraction from brannerite. In the following 

section, the leach temperature is raised to 95 ºC whilst studying; a) the effect of varying the 

Fe(III) oxidant concentration and, b) the acid strength. Results from these tests are 

discussed below. 

 

Increasing oxidant concentration – the conditions used in the tests to investigate the 

effect of varying [Fe(III)] at a higher temperature were as follows: an initial slurry 

concentration of 100 mg/L (as U), an acid concentration of 15 g/L, and a solution ORP of 

between 600-650 mV. Results in Figure 5.7a show that for sample NBCW, the addition of 

between 3 g/L and 12 g/L of Fe(III) causes a significant increase in the rate of uranium 

dissolution in the first hour of leaching where ~ 19 % of uranium was released for the 

system containing 3 g/L Fe(III) compared to ~ 38 % for the system containing 12 g/L 

Fe(III). It can also be seen that for the system containing 12 g/L Fe(III) (the maximum 

amount of oxidant tested), ~ 56 % of the uranium in the NBCW was dissolved after 6 

hours. A comparison of the results obtained on the influence of [Fe(III)] at 50 °C (Figure 

5.2a) versus 95 °C demonstrate that [Fe(III)] has a greater influence on the dissolution of 

NBCW when a higher reaction temperature is used with an overall increase of ~ 13 % U. 

For sample NBRD (Figure 5.7b), similar effects were observed with ~ 53 % of the uranium 

dissolved after 6 hours. Compared to the equivalent experiment conducted at 50 °C (Figure 

5.2b), this represents an increase of ~ 18 % U extracted. 
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This effect is also seen in synthetic brannerite (section 4.3.2.4 in Chapter 4) where 

exact conditions of T = 95 °C, [H2SO4] = 15 g/L, [Fe(III)] = 3-12 g/L, ORP = 600-650 mV 

were used. An observation of an increased rate of uranium extraction can be seen in the 

first hour of leaching where ~ 7 % of uranium is released for the system containing 3 g/L 

Fe(III) compared to ~ 14 % for the system containing 6 g/L Fe(III). It can also be seen that 

for the system containing 12 g/L Fe(III) ~ 35 % of the uranium in the synthetic brannerite 

was dissolved after 6 hours. These results are consistent with the results obtained for 

natural brannerite (an increase in [Fe(III)] increases the U dissolution), yet the dissolution 

rate for synthetic brannerite is still significantly slower than the amorphous natural 

brannerite.  
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Figure 5.7: % U dissolved vs. time for tests conducted at 95 °C to examine the effect of 

varying [Fe(III)]. Conditions used: an initial slurry concentration of 100 mg/L (as U), an acid 

concentration of 15 g/L, and a solution ORP of between 600-650 mV. Plot a) shows the data 

for sample NBCW, plot b) the data for sample NBRD. 
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Increasing acid concentration – results from high temperature dissolution tests 

examining the effect of increasing acid concentration are shown in Figure 5.8. The data 

show that increasing [H2SO4] led to significant increases in brannerite dissolution. The 

maximum uranium dissolution measured after 6 hours at the highest acid strength of 150 

g/L was ~ 61 % U (for both samples). This is compared to only 50 % U extracted at the 

same acid concentration (also for both samples) when the leach tests were conducted at 50 

ºC (Figure 5.5). 

Furthermore at 95 °C for synthetic brannerite at the similar acid conditions (section 

4.3.2.4 in Chapter 4, an increase in the [H2SO4] from 15 to 150 g/L led to a significant 

growth in dissolution from 16.23 % to of 64.31 %, which is slightly higher than natural 

brannerites at ~ 61 % U for both NBCW and NBRD. These results clearly show that there 

is a similar mechanism of dissolution for synthetic brannerite compared with natural 

brannerite at higher temperatures and elevated [H2SO4].  

 

Differences in leaching rates for the natural vs. synthetic brannerites – results suggest 

that synthetic brannerite has a significantly slower dissolution rate with respect to the 

natural brannerite samples that have been leached at temperatures of 50 °C. [Fe(III)] only 

has a significant effect on the dissolution of synthetic brannerite at higher temperatures. 

Natural brannerite at a temperature of 50 °C shows a significant increase in U dissolution. 

For both synthetic brannerite and natural brannerite an increase in dissolution is observed 

when an increase in [H2SO4] is used. A major observation is seen when synthetic 

brannerite and natural brannerite leaching rates become similar at conditions of high 

[H2SO4] and high temperature (95 °C). This observation demonstrates that there must be a 

mechanism change that brannerite undergoes to achieve faster and higher dissolution rate.  
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Figure 5.8: % U dissolved vs. time for tests conducted at 95 °C to examine the effect of 

varying acid concentration. Conditions used: an initial slurry concentration of 100 mg/L (as 

U), the oxidant concentration kept constant at 3 g/L (as [Fe(III)]), and a solution ORP of 

between 600-610 mV. Plot a) shows the data for sample NBCW, plot b) the data for sample 

NBRD. 

 

Based on the results observed for the influence of increased [Fe(III)] and [H2SO4] on 

natural brannerite dissolution at 95 °C, it was decided to investigate the influence of 

[Fe(III)] under conditions of both high [H2SO4] (150 g/L) and high temperature (95 °C). 
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Previous results varying each parameter individually have demonstrated that maximum 

uranium extraction should occur when all three are maximised. The results from the tests 

are presented in Figure 5.9. As anticipated, the dissolution rate increased with increasing 

[Fe(III)] over the range tested (3 g/L to 12 g/L) with ~ 60 % U dissolved from both 

samples when 3 g/L of [Fe(III)] was used, whereas ~ 75-80 % of the uranium dissolved at 

12 g/L Fe(III). Note that the dissolution of uranium in both tests containing 12 g/L Fe(III) 

appeared to reach equilibrium values for uranium dissolution as there was no significant 

change observed in the extent of dissolution after 3 hours total leach time.  

Previous test results from Chapter 4 indicated for synthetic brannerite under similar 

conditions that ~ 37 % of uranium dissolved from synthetic brannerite when 3 g/L of 

[Fe(III)] was present, whereas at 12 g/L Fe(III) ~ 65 % of the uranium dissolved. The 

dissolution of synthetic brannerite in the test containing 12 g/L Fe(III) also most likely 

reached equilibrium at a value of ~ 65 % as there was no significant change in the extent of 

dissolution after 3 hours, which is similar to natural brannerite test in Figure 5.9.  
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Figure 5.9: % U dissolved vs. time for tests conducted at 95°C and an acid concentration 

of 150 g/L to examine the effect of varying [Fe(III)]. Conditions used: an initial slurry 

concentration of 100 mg/L (as U), and a solution ORP of between 600-610 mV. Plot a) shows 

the data for sample NBCW, plot b) the data for sample NBRD. 
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dissolution/removal of some gangue components had occurred. The samples examined 

were NBCW residues from tests conducted using Fe(III) concentrations of 3 g/L and 12 

g/L (to enable a comparison between the best and worst performed samples) and also 

residue remaining from sample NBRD that was dissolved using an Fe(III) concentration of 

3 g/L.  

 

Map results showing the distribution of phases together with a corresponding map 

showing the distribution of the key elements Ti, Th and U are provided in Figure 5.10. 

Results for the 12 g/L Fe(III) experiment using the NBCW sample (Figure 5.10a), indicate 

a large amount of TiO2 deposition had occurred, consistent with leaching of uranium and 

subsequent formation of TiO2 (Eqn. 1). Texturally dense brannerite grains appear not to 

have been as affected by the leach solution with only minor occurrences of TiO2, ususally 

associated with pores and/or fractures. The mechanism of attack by the leach solution is 

evident in the large brannerite particle at the left of Figure 5.10a where dissolution initially 

occurs at the margins of the grain causing a ragged outer surface and associated 

precipitation of fine-grained TiO2. Further leaching results in the brannerite grains being 

nearly completely leached of uranium resulting in near full conversion of the original 

brannerite particle to TiO2. Gangue particles, largely comprising oxides and silicates, 

appear not to have been affected by the leach solution. In addition, other U- and Th-

containing phases present in the sample such as betafite ((Ca,U)2(Ti,Nb,Ta)2O6(OH)) and 

thorutite ((Th,U,Ca)Ti2(O,OH)6) also have remained largely untouched by the leach 

solution. 
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Figure 5.10: EPMA maps for the leached residues showing mineral phases identified after 

samples were leached at the acid concentration of 150 g/L, a temperature of 95 °C and Fe(III) 

concentrations of 3 g/L and 12 g/L. Image a) is sample NBCW leached at 12 g/L Fe(III), 
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image b) is sample NBCW at 3 g/L Fe(III), and image c) is sample NBRD at 3 g/L Fe(III). For 

each phase-patched map there is a corresponding Ti/Th/U map showing the distribution of 

these three key elements. The scale bar for each image is 500 µm. 

 

Compared to the NBCW sample leached at 12 g/L Fe(III), the residue from the 3 g/L 

Fe(III) leach test shows evidence for considerably more dense, unleached brannerite 

particles remaining. Although it is recognised that particle densities within the mapped 

areas are different between Figures 5.10a and 5.10b, a wider examination of both leach test 

residues confirmed the presence of more unreacted brannerite remaining in the the 3 g/L 

Fe(III) leach test sample. This observation is consistent with the results above which 

indicate that higher levels of oxidant lead to increased dissolution of uranium from 

brannerite (see Figure 5.7). It is noted however, that where the original natural brannerite 

particles have been significantly altered, either through alteration via processes involving 

hydrothermal fluids or through metamictisation, at the high acid strength and temperatures 

used in these experiments, even low oxidant concentrations appear to be sufficient to cause 

almost complete extraction of uranium leaving behind almost monominerallic TiO2 (see 

the predominatly TiO2-rich particle at the right of centre in Figure 5.10b).  

 

The NBRD residue from the sample leached at 3 g/L Fe(III) exhibited simlar textures 

and mineralogical changes as noted for sample NBCW leached at 3 g/L Fe(III) and did not 

show signs of having undergone significant levels of uranium extraction (Figure 5.10c). 

While individual brannerite grains have embayed and ragged rims suggestive of partial 

attack by the leach solution, for the most part the inner regions of the grains still appeared 

texturally dense with only minor development of TiO2 (after extraction of uranium). When 

examined in more detail under higher magnification (not shown), the textures of these 
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grains appeared to be microporous and microfractured. These regions were coated/filled by 

TiO2 indicating the leachant was able to penetrate to some degree, but did not result in 

complete extraction.  

 

Observations from the NBCW and NBRD residues remaining after leaching strongly 

suggests that texture plays an integral role in determining the extent of uranium extraction 

in naturally-occurring brannerites. Brannerite grains that are less porous, less altered, and 

less affected by metamictisation (i.e. more crystalline) are less susceptible to leaching 

under mild conditions. In these materials, harsher leaching conditions likely involving 

elevated temperaures, high acid strengths and high levels of oxidant will be required. 

 

5.3.2. Effect of brannerite crystallinity 

Previous experiments to study the effect of metamictisation on the chemical durability 

of synthetic and natural brannerites in acidic solutions indicated that natural brannerite 

provided approximately one order of magnitude higher uranium release rates compared to 

synthetic materials (Zhang et al., 2006). These data suggested that the process of 

metamictisation may lead to enhanced brannerite dissolution rates.  

 

To examine the effect of recrystallisation on uranium extraction, experiments were 

conducted on natural brannerite samples that had been heat treated to restore their 

crystallinity and then leached under the most extreme leach conditions used in the current 

study i.e. an acid concentrationof 150 g/L H2SO4, an Fe(III) oxidant concentration of 12 

g/L, T = 95 °C, and an initial U slurry concentration of 100 mg/L. Results are shown in 

Figure 5.11 and these indicate that for both samples, no significant dissolution of 

recrystallised natural brannerite occurred even under these harsh leach conditions. 
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Maximum U extraction was < 10 % for both samples indicating that the annealing of the 

radiation damage through thermal recrystallisation significantly depresses uranium 

extraction from brannerite. 

 

 

Figure 5.11: % U dissolved vs. time for the heat-treated samples HNBCW and HNBRD in 

solutions containing an Fe(III) concentration of 12 g/L and an acid concentration 150 g/L. 

Inset plot shows in more detail the data for time < 1.5 h. Both experiments were conducted at 

a leach temperature of 95 °C (ORP 600-610 mV).  

 

EPMA mapping analysis was performed on the leached residue from sample HNBCW 

in an attempt to understand the chemistry, mineralogy and texture of the brannerite grains 

remaining. These results are shown in Figure 5.12. The most obvious difference between 

heated and unheated NBCW samples was that; a) there has been extensive recrystallisation 

accompanied by significant phase segregation in the heated sample, b) while large particles 

in the HNBCW seem porous, examination under higher magnification indicates particles 

are comprised of small, euhedral, dense brannerite particles. These observations of the 
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leached sample are consistent with the results obtained in Chapter 3, where a detailed 

knowledge of the unleached sample after heat treatment to 1200ºC was obtained. The 

extensive recrystallisation of the brannerite to produce clusters of 2-3 µm sized, prismatic 

grains as well as significant migration of elements were also observed (section 3.3.4 in 

Chapter 3), with a notable difference in the heated brannerite, which contained less Si, less 

Ca and significantly less Pb. These elements were not to be stabilised in the high 

temperature brannerite with the Ca and Si being incorporated into a Ca silicate mineral 

phase and the Pb and Si into a Pb-rich aluminosilicate film at grain boundaries. In addition, 

a thorianite–uraninite (Th,U)O2 phase present in the unheated sample was decomposed into 

a ThO2 phase and a UO2 phase after heating while larger gangue mineral phases such as 

rutile present in the unheated natural sample remained unaffected by the heating process, 

which is discussed in greater detail in section 3.3.4 in Chapter 3.  

 

 

Figure 5.12: EPMA map for the leached residues from the heat-treated samples HNBCW 

leached at an [FeIII] of 12 g/L, an [H2SO4] of 150 g/L and a temperature of 95 °C. 
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Based on the EPMA map results, the changes in dissolution rates between the natural 

Crockers Well ore and the heat treated sample is likely attributable to a combiantion of 

effects. These include: a) different levels and types of impurities within the brannerite and, 

b) the crystallinity of the sample. For the former, recrystallisation of amorphous natural 

brannerite through high temperature annealing results in the formation of UO2 particles 

among the recrystallised brannerite grains and the formation of Pb-rich aluminosilicate 

films at grain boundaries and triple points (Zhang et al., 2006). Both are readily leachable 

using acidic solutions and the low U extraction results are likely reflecting the solubility of 

UO2. The most important effect of uranium extraction however, appears to be associated 

with the degree of crystallinity. Based on a comparison of leach test results comparing heat 

treated versus natural brannerite samples it is concluded that uranium can be readily 

extracted from brannerite if the brannerite is highly metamict and has additionally 

undergone some degree of alteration. The combination of a disrupted crystalline lattice in 

association with partial leaching and hydration of the brannerite contribute to making the 

brannerite more reactive than unaltered material.  
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5.4. Conclusions 

 Results showed that the effect of increasing [Fe(III)], [H2SO4], and temperature was to 

increase the solubility of uranium from brannerite. Uranium extraction levels were similar 

for both samples as each parameter was varied, with the slight differences attributable to 

small variations in brannerite chemistry and/or degree of alteration withinthe two samples. 

Maximum uranium extraction rates of ~ 80 % U were achieved using an [Fe(III)] of 12 

g/L, at 150 g/L [H2SO4] and a temperature of 95 °C. These conditions are more extreme 

than required for leaching uranium from other U-bearing phases such as uarninite and 

coffinite but refelect the more refractory nature of the chemically and more structurally 

complex brannerite. Samples that were heat treated to 1200 ºC to restore crystallinity 

performed much worse under identical conditions, with maximum uranium extraction rates 

of < 10 % U recorded. The lower extraction rates were attributed to the heat treatment 

causing chemical and structural (recrystallisation) changes to the brannerite. 

 

Uranium recovery processes from brannerite are not straightforward with the efficiency 

of uranium recovery being greatly influenced by the mineralogical characteristics of the 

ore. Natural brannerites, while less susceptible to uranium extraction than other U-bearing 

minerals, can achieve high uranium extraction rates providing i) acid strength, oxidant 

strength and temperatures are maintained at elevated levels (compared to those 

traditionally used for uraninite leaching), and, b) the brannerite has not undergone any post 

crystallisation, high temperature modification (e.g. metamorphism), that is likely to cause 

significant recrystallisation of the sample.  
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Chapter 6 

 

 

 

Conclusions and  

Future work 

 

 

 

A summary of the work conducted in this thesis and the major results achieved have 

been provided. A brief summary of future work than can be conducted as a result of this 

work is also listed. 
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6.1. Conclusions 

 

Natural brannerite and natural brannerite bearing ore – characteristics / mineralogy 

X-ray diffraction analysis confirmed that the unheated samples of NBCW and NBRD 

were X-ray amorphous and therefore had undergone radiation-induced metamictisation. 

The crystallinity of the brannerite was restored upon calcination of the samples to 1200 °C 

for 24 hours in air. For the Crockers Well sample, recrystallisation began at temperatures 

as low as 800 °C while the Roxby Downs sample did not begin to show evidence of 

brannerite recrystallisation until an annealing temperature of 900 °C was reached. 

 

Raman spectroscopy indicated that the effect of metamictisation was to make the peaks 

broad and of low intensity. After calcination, the Raman peaks were sharpened and 

intensified due to the increased crystallinity. Analysis of the natural brannerite samples by 

SEM and EPMA indicated that both samples contained exhibited complex, heterogeneous 

microstructural features. In each sample (NBCW and NBRD), the brannerite was Th-rich 

(~ 8-10 wt % Th) indicating partial solid solution between brannerite and thorutite 

(ThTi2O6) and was thoroughly mixed with uranothorite ([Th,U]SiO4) and a solid solution 

of thorianite-uraninite ([Th,U]O2). Typical gangue mineral phases in the samples included: 

rutile (distributed as fine-grained crystals throughout the Th-brannerite and uranothorite 

dominated particles), quartz, aluminosilicates, unidentified REE-containing phosphates, 

zircon, titanates and apatite. 

After heat treatment the natural brannerite samples (HNBCW and HNBRD), generally 

contained less Si, less Ca and significantly less Pb. These elements appeared not to be 

stabilised in the high temperature brannerite with the Ca and Si being incorporated into a 

Ca silicate mineral phase and the Pb and Si into a Pb-rich aluminosilicate film at grain 
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boundaries. Furthermore, both heated natural brannerite samples contained a high-Th 

brannerite (up to 22-30 wt % Th). The thorianite-uraninite phase in the unheated samples 

was decomposed into separate ThO2 and UO2 phases after heating. 

X-ray diffraction analysis of the ‘high grade’ brannerite leach feed sample (brannerite 

bearing ore) from the Olympic Dam deposit in South Australia indicated that the sample 

was high in quartz, iron oxides and feldspar potassium. No X-ray diffraction pattern for 

brannerite could be identified. EPMA mapping investigations determined very low 

quantities of brannerite within a quartz grain.  

 

Synthetic brannerite  

Synthetic brannerite (UTi2O6) was successfully synthesised. The prepared sample was 

characterised extensively using X-ray diffraction (XRD), scanning electron microscopy 

(ESEM), elemental mapping analysis and X-ray photoelectron spectroscopy (XPS) to 

determine the purity and homogeneity of the sample. It was concluded that the prepared 

sample was primarily brannerite with trace levels of UO2 occurring on the surface. The 

sample was also highly homogenous, with uniform distributions of uranium and titanium. 

The primary oxidation state of the synthesised brannerite was determined to be U
4+

. 

 

Dissolution studies conducted on synthetic brannerite demonstrated that under 

parameters that are commonly used to leach / process uranium minerals no significant 

uranium dissolution occurred (T = 50 °C, [H2SO4] = 15 g/L, [Fe(III)] = 3-12 g/L and ORP 

= 650-700 mV). However if a reaction temperature of 95 °C is used under the following 

conditions; [H2SO4] = 15 g/L, [Fe(III)] = 3-12 g/L and ORP = 600-650 mV; there is a 

significant increases in the dissolution rate, with the system containing 12 g/L Fe(III) at the 

higher reaction temperature of 95 °C, ~ 35 % of the uranium in the synthetic brannerite 
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was dissolved after 6 hours. The results obtained on the influence of [Fe(III)] at 50 °C and 

95 °C clearly show that [Fe(III)] only influenced the dissolution of synthetic brannerite 

when a higher reaction temperature is used (for systems having an [H2SO4] of 15 g/L). 

Investigations into the influence of [H2SO4] on the dissolution of synthetic brannerite at 

five differing acid concentrations of 15, 50, 100, 150 and 200 g/L (H2SO4) showed to have 

a significant influence on dissolution at 50 °C and 95 °C in solutions containing 3 g/L 

Fe(III). This influence is however significantly higher at a reaction temperature of 95 °C, 

which is evidently consistent with a combined effect of acid and temperature and can be 

seen when a direct comparison of results from tests conducted at a temperature of 50 °C. 

For example, if an increasing [H2SO4] from 15 g/L to 50 g/L led to an increase in uranium 

dissolution from 2.59 % to 5.87 %. Whereas at a temperature of 95 °C and increasing 

[H2SO4] from 15 to 50 g/L led to an increase in dissolution from 16.23 % to 49.11 %. In 

addition to these results, at a reaction temperature of 95 °C, increasing the [H2SO4] from 

15 to 200 g/L led to a significant increase in dissolution from 16.23 % to of 80.23 %. 

Synthetic brannerite dissolution most closely follows first order kinetics under the 

following conditions (T = 95 °C, [H2SO4] = 15 – 200 g/L), [Fe(III)] = 3 g/L).  

An investigation into determining if H2SO4 alone at the higher reaction temperature of 

95 °C, in the absence of Fe(III), was conducted to determine if the significant influences of 

[H2SO4] identified may have been due to a dissolution mechanism that did not involve 

Fe(III). The results indicated that no significant dissolution occurs at 95° C with a high 

acid concentration of [H2SO4] = 150 g/L in solution containing no Fe(III) and therefore the 

significant influence of [H2SO4] on brannerite dissolution clearly relies on the presence of 

Fe(III) in solution.  

An investigation was undertaken to determine if the decreases in rate of synthetic 

brannerite dissolution that were observed in a number of tests was predominantly due to 
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decreasing brannerite slurry concentration.X-ray photoelectron spectroscopy (XPS) was 

used to determine if any significant changes on the surfaces of the leached brannerite 

particles and compared to that of the fresh brannerite particles. The results showed no 

significant changes to the surface of either leached to fresh brannerite particles. Tests 

conducted on synthetic brannerite residues combined with fresh synthetic brannerite 

showed that decreases in dissolution rates observed during the dissolution of synthetic 

brannerite were predominantly not due to decreasing brannerite slurry concentration and 

were most likely due to one or more of the following; changes in surface composition / 

surface passivation, changes in surface morphology and changes in particle size. 

Investigations into the electrochemical properties of synthetic brannerite in [H2SO4] 

solutions were studied in a carbon paste electrode. Electrochemical methods were used to 

determine if synthetic brannerite was undergoing any type of passivation effect hindering 

the surface. The results showed that [H2SO4] has a predominate effect on the anodic 

dissolution rate of brannerite. The voltametric scans at a range of temperatures showed that 

the surface of the brannerite is liable to passivate, with the solution temperature and acid 

concentration key players in the behaviour of the surface. Acid concentrations above 100 

g/L are required to prevent the onset of a passive region at moderate over-potentials, and 

promote facile dissolution.  

The tafel curves results showed that acid concentrations from 15 to 50 g/l H2SO4 

display limited leaching, with only a modestly active region corresponding to dissolution. 

H2SO4 concentrations of 100 to 150 g/L show a well-defined active region, ranging from 

approximately 0.45 to 0.55 V vs Ag/AgCl, where dissolution proceeds readily, but further 

scanning in the anodic direction leads to surface passivation, and a rapid drop off of the 

dissolution current.  
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An investigation into the surface of the synthetic brannerite -CPE sample was 

undertaken using EDX analysis after scanning for several minutes shows that the surface 

concentration of U relative to Ti is significantly decreased, indicating that a TiOx 

passivating layer is responsible for the limited leaching of brannerite in commonly 

employed leaching conditions. ICP-MS analysis of the electrolyte solution after 

electrochemical leaching revealed that approximately 10 times the concentration of U 

dissolved when compared to Ti.  

The apparent activation energies for the brannerite leaching in this active area were 

calculated to be approximately 50 kJ/ mol when the concentration of the acid was above 

100 g/L. This apparent activation energy drops to approximately 30 kJ/mol for regions at 

which passivation is seen in the polarisation curves. 

 

Natural brannerite dissolution 

 Results showed that the effect of increasing [Fe(III)], [H2SO4], and temperature was to 

increase the solubility of uranium from brannerite, (which agreed with the trends observed 

for the dissolution tests conducted for synthetic brannerite). Uranium extraction levels 

were similar for both samples as each parameter was varied, with the slight differences 

attributable to small variations in brannerite chemistry and/or degree of alteration within 

the two samples. 

Maximum uranium extraction rates of ~ 80 % U were achieved using an [Fe(III)] of 12 

g/L, at 150 g/L [H2SO4] and a temperature of 95°C. These conditions are more extreme 

than required for leaching uranium from other U-bearing phases such as uraninite and 

coffinite but refelect the more refractory nature of the chemically and more structurally 

complex brannerite. Samples that were heat treated to 1200 ºC to restore crystallinity 

performed much worse under identical conditions, with maximum uranium extraction rates 
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of < 10 % U recorded. The lower extraction rates were attributed to the heat treatment 

causing chemical and structural (recrystallisation) changes to the brannerite.  

Uranium recovery processes from brannerite is not straightforward with the efficiency 

of uranium recovery being greatly influenced by the mineralogical characteristics of the 

ore. Natural brannerites, while less susceptible to uranium extraction than other U-bearing 

minerals, can achieve high uranium extraction rates providing i) acid strength, oxidant 

strength and temperatures are maintained at elevated levels (compared to those 

traditionally used for uraninite leaching), and, b) the brannerite has not undergone any post 

crystallisation, high temperature modification (e.g. metamorphism), that is likely to cause 

significant recrystallisation of the sample.  
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6.2. Future work 

- Studies on the synthesis, characterisation and dissolution of various doped 

brannerites such as UCaTi2O6, UCeTi2O6 and UThTi2O6 – This will enable the 

influence of brannerite composition on dissolution to be determined, which in turn 

could assist in the selection of brannerite bearing ores to mine / process and /or the 

reaction conditions to use for treating ores containing brannerite of certain 

compositions 

 

- An investigation into the effects of various anions and cations on synthetic 

brannerite dissolution – Uranium leach slurries contain numerous soluble species 

that may impact the dissolution of brannerite hence studies in this area of interest 

 

- An investigation into the effect of [Fe(III)] : [Fe(II)] ratio on synthetic brannerite 

dissolution – This will determine the influence of FeTOT (Fe
III

/Fe
II
) and what role 

the oxidation reduction potential has on the dissolution of synthetic brannerite 

 

- Electrochemical studies on natural brannerite and synthetically doped brannerites – 

This will enhance the role various impurities may play in the dissolution rate of 

natural brannerites and synthetically doped brannerites 

 

- An in depth investigation on the passivation layer of synthetic brannerite and 

natural / heated natural brannerite – This investigation will enhance the chemical 

knowledge of the passivating layer that hinders uranium extraction from brannerite 

and may lead to overcoming that barrier 
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- Investigation of standard parameters on high grade ore tailings (seeding of 

synthetic brannerite into ore tailings) – This study will lead a gaining a greater 

understanding on the effect that re-leaching tailings will have on the overall 

uranium extraction 

 

- Studies on the alkaline leaching on synthetic brannerite and natural brannerite – To 

determine if alkaline conditions are more suitable for the optimum extraction of 

uranium from synthetic brannerite 

 

- Bio-leaching studies on synthetic brannerite, doped brannerite and heated natural 

brannerite – To use an environmentally friendly leaching technique, bio-leaching, 

in order to extract the uranium from synthetic brannerite, doped brannerite and 

heated natural brannerite  


